Mostrar el registro sencillo del ítem

dc.contributor.authorSuliman, Azizah
dc.contributor.authorOmarov, Batyrkhan
dc.date2018-06
dc.date.accessioned2022-01-27T08:28:30Z
dc.date.available2022-01-27T08:28:30Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12364
dc.description.abstractNeural network is widely used for image classification problems, and is proven to be effective with high successful rate. However one of its main challenges is the significant amount of time it takes to train the network. The goal of this research is to improve the neural network training algorithms and apply and test them in classification and recognition problems. In this paper, we describe a method of applying Bayesian regularization to improve Levenberg-Marquardt (LM) algorithm and make it better usable in training neural networks. In the experimental part, we qualify the modified LM algorithm using Bayesian regularization and use it to determine an appropriate number of hidden layers in the network to avoid overtraining. The result of the experiment was very encouraging with a 98.8% correct classification when run on test samples.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 5, nº 1
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2669es_ES
dc.rightsopenAccesses_ES
dc.subjectneural networkes_ES
dc.subjectimage classificationes_ES
dc.subjectlevenberg-marquardt methodes_ES
dc.subjectpattern clusteringes_ES
dc.subjectIJIMAIes_ES
dc.titleApplying Bayesian Regularization for Acceleration of Levenberg-Marquardt based Neural Network Traininges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2018.04.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem