Mostrar el registro sencillo del ítem

dc.contributor.authorMochón, Francisco
dc.contributor.authorElvira, Carlos
dc.contributor.authorOchoa, Alberto
dc.contributor.authorGonzalvez, Juan Carlos
dc.date2018-03
dc.date.accessioned2021-09-27T10:46:55Z
dc.date.available2021-09-27T10:46:55Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11906
dc.description.abstractA recurring problem in healthcare is the high percentage of patients who miss their appointment, be it a consultation or a hospital test. The present study seeks patient’s behavioural patterns that allow predicting the probability of no- shows. We explore the convenience of using Big Data Machine Learning models to accomplish this task. To begin with, a predictive model based only on variables associated with the target appointment is built. Then the model is improved by considering the patient’s history of appointments. In both cases, the Gradient Boosting algorithm was the predictor of choice. Our numerical results are considered promising given the small amount of information available. However, there seems to be plenty of room to improve the model if we manage to collect additional data for both patients and appointments.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 7
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2616es_ES
dc.rightsopenAccesses_ES
dc.subjectmachine learninges_ES
dc.subjectbig dataes_ES
dc.subjecte-healthes_ES
dc.subjectIJIMAIes_ES
dc.titleMachine-Learning-Based No Show Prediction in Outpatient Visitses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.03.004


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem