Mostrar el registro sencillo del ítem

dc.contributor.authorWall, Friederike
dc.date2017-06
dc.date.accessioned2021-09-01T08:25:43Z
dc.date.available2021-09-01T08:25:43Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11764
dc.description.abstractThis paper studies the effects of learning-induced alterations of distributed search systems’ organizations. In particular, scenarios where alterations of the search-systems’ organizational setup are based on a form of reinforcement learning are compared to scenarios where the organizational setup is kept constant and to scenarios where the setup is changed randomly. The results indicate that learning-induced alterations may lead to high levels of performance combined with high levels of efficiency in terms of reorganization-effort. However, the results also suggest that the complexity of the underlying search problem together with the aspiration level (which drives positive or negative reinforcement) considerably shapes the effects of learning.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 4
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2610es_ES
dc.rightsopenAccesses_ES
dc.subjectsimulationes_ES
dc.subjectlearninges_ES
dc.subjectagentses_ES
dc.subjectcomplexityes_ES
dc.subjectIJIMAIes_ES
dc.titleDistributed Search Systems with Self-Adaptive Organizational Setupses_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2017.4411


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem