Mostrar el registro sencillo del ítem

dc.contributor.authorEttaouil, Mohamed
dc.contributor.authorHaddouch, Khalid
dc.contributor.authorElmoutaoukil, Karim
dc.date2016-09
dc.date.accessioned2021-07-14T11:34:23Z
dc.date.available2021-07-14T11:34:23Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/11611
dc.description.abstractA wide variety of real world optimization problems can be modelled as Weighted Constraint Satisfaction Problems (WCSPs). In this paper, we model this problem in terms of in original 0-1 quadratic programming subject to leaner constraints. View it performance, we use the continuous Hopfield network to solve the obtained model basing on original energy function. To validate our model, we solve several instance of benchmarking WCSP. In this regard, our approach recognizes the optimal solution of the said instances.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 4, nº 1
dc.relation.urihttps://ijimai.org/journal/bibcite/reference/2529es_ES
dc.rightsopenAccesses_ES
dc.subjectenergyes_ES
dc.subjectprogramminges_ES
dc.subjectneural networkes_ES
dc.subjecthopfieldes_ES
dc.subjectIJIMAIes_ES
dc.titleSolving the Weighted Constraint Satisfaction Problems Via the Neural Network Approaches_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://doi.org/10.9781/ijimai.2016.4111


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem