Mostrar el registro sencillo del ítem

dc.contributor.authorAnacleto, Ricardo
dc.contributor.authorFigueiredo, Lino
dc.date2015
dc.date.accessioned2020-06-15T10:34:50Z
dc.date.available2020-06-15T10:34:50Z
dc.identifier.issn1989-1660
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10178
dc.description.abstractA pedestrian inertial navigation system is typically used to suppress the Global Navigation Satellite System limitation to track persons in indoor or in dense environments. However, low- cost inertial systems provide huge location estimation errors due to sensors and pedestrian dead reckoning inherent characteristics. To suppress some of these errors we propose a system that uses two inertial measurement units spread in person’s body, which measurements are aggregated using learning algorithms that learn the gait behaviors. In this work we present our results on using different machine learning algorithms which are used to characterize the step according to its direction and length. This characterization is then used to adapt the navigation algorithm according to the performed classifications.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;vol. 3, nº 5
dc.relation.urihttps://www.ijimai.org/journal/bibcite/reference/2514es_ES
dc.rightsopenAccesses_ES
dc.subjectlocalizationes_ES
dc.subjectlearninges_ES
dc.subjectmachine learninges_ES
dc.subjectalgorithmses_ES
dc.subjectinformation fusiones_ES
dc.subjectIJIMAIes_ES
dc.titleStep Characterization using Sensor Information Fusion and Machine Learninges_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttps://doi.org/10.9781/ijimai.2015.357


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem