• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 41-50 de 70

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Extending the applicability of the local and semilocal convergence of Newton's method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Applied Mathematics and Computation, 2017-01)
    We present a local as well a semilocal convergence analysis for Newton's method in a Banach space setting. Using the same Lipschitz constants as in earlier studies, we extend the applicability of Newton's method as follows: ...

    Enlarging the convergence domain of secant-like methods for equations 

    Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Hilout, S; Magreñán, Á. Alberto (Taiwanese Journal of Mathematics, 2015-04)
    We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's ...

    Improved local convergence analysis of the Gauss-Newton method under a majorant condition 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Computational Optimization and Applications, 2015-03)
    We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97-118, 2008), ...

    New improved convergence analysis for the secant method 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Mathematics and Computers in Simulation, 2016-01)
    We present a new convergence analysis, for the secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz ...

    On the convergence of an optimal fourth-order family of methods and its dynamics 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Applied Mathematics and Computation, 2015-02)
    In this paper, we present the study of the semilocal and local convergence of an optimal fourth-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials ...

    On the election of the damped parameter of a two-step relaxed Newton-type method 

    Amat, Sergio; Busquier, Sonia; Bermúdez, Concepción; Magreñán, Á. Alberto (Nonlineard Dynamics, 2016-04)
    In this paper, we are interested to justified two typical hypotheses that appear in the convergence analysis, |λ|≤2|λ|≤2 and z0z0 sufficient close to z∗z∗ . In order to proof these ideas, the dynamics of a damped ...

    Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions 

    Amat, Sergio ; Argyros, Ioannis K; Busquier, Sonia; Magreñán, Á. Alberto (Numerical Algorithms, 2017-02)
    We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies ...

    On the convergence of inexact two-point Newton-like methods on Banach spaces 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Applied Mathematics and Computation, 2015-08)
    We present a unified convergence analysis of Inexact Newton like methods in order to approximate a locally unique solution of a nonlinear operator equation containing a nondifferentiable term in a Banach space setting. The ...

    On the convergence of a damped Newton-like method with modified right hand side vector 

    Argyros, Ioannis K; Cordero, Alicia; Magreñán, Á. Alberto ; Torregrosa, Juan Ramón (Applied Mathematics and Computation, 2015-09)
    We present a convergence analysis for a damped Newton like method with modified right-hand side vector in order to approximate a locally unique solution of a nonlinear equation in a Banach spaces setting. In the special ...

    On the convergence of a higher order family of methods and its dynamics 

    Argyros, Ioannis K; Cordero, Alicia; Magreñán, Á. Alberto ; Torregrosa, Juan Ramón (Journal of Computational and Applied Mathematics, 2017-01)
    In this paper, we present the study of the local convergence of a higher-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials is studied. Some ...
    • 1
    • . . .
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Magreñán, Á. Alberto (53)
    Argyros, Ioannis K (47)
    Magreñán, Á. Alberto (17)
    Sicilia, Juan Antonio (14)Sarría, Íñigo (10)... ver todoPalabra clave
    JCR (70)
    Scopus (67)banach space (29)local convergence (21)majorizing sequence (16)... ver todoFecha2023 (1)2022 (2)2021 (2)2020 (7)2019 (8)2018 (6)2017 (11)2016 (12)2015 (15)2014 (6)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja