• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 21-30 de 70

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    The Kumon Method: Its Importance in the Improvement on the Teaching and Learning of Mathematics from the First Levels of Early Childhood and Primary Education 

    Orcos, Lara ; Hernández-Carrera, Rafael M. ; Espigares Pinazo, Manuel Jesús ; Magreñán, Á. Alberto (Mathematics, 2019-01)
    The present work gathers an educational experience based on the application of the personalized Kumon Mathematics Method, carried out in the school year 2015-2016, in which 30,849 students and 230 teachers from several ...

    Herramienta pedagógica basada en el desarrollo de una aplicación informática para la mejora del aprendizaje en matemática avanzada 

    Sarría, Íñigo ; González-Crespo, Rubén ; González-Castaño, Alexander; Magreñán, Á. Alberto; Orcos, Lara (Revista Española de Pedagogía, 2019-09-01)
    El estudio dinámico de los métodos iterativos ha aumentado en las últimas décadas debido al desarrollo de los ordenadores, aspecto por el cual se ha visto la necesidad de incluir la enseñanza de estos métodos en los planes ...

    Extending the Applicability of Stirling's Method 

    Amorós, Cristina ; Argyros, Ioannis K; Magreñán, Á. Alberto; Regmi, Samundra; González-Crespo, Rubén ; Sicilia, Juan Antonio (Mathematics, 2020-01)
    Stirling's method is considered as an alternative to Newton's method when the latter fails to converge to a solution of a nonlinear equation. Both methods converge quadratically under similar convergence criteria and require ...

    Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Orcos, Lara (Journal of Mathematical Chemistry, 2016-08)
    We present a local convergence analysis of a derivative free fourth order method with one parameter based on rational interpolation in order to approximate a locally unique root of a function. The method is optimal in the ...

    Improving the domain of parameters for Newton's method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Sicilia, Juan Antonio (Journal of Computational and Applied Mathematics, 2017-07)
    We present a new technique to improve the convergence domain for Newton’s method both in the semilocal and local case. It turns out that with the new technique the sufficient convergence conditions for Newton’s method are ...

    A new fourth-order family for solving nonlinear problems and its dynamics 

    Cordero, Alicia; Feng, Licheng; Magreñán, Á. Alberto ; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 2015-03)
    In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made ...

    Local Convergence and the Dynamics of a Two-Step Newton-Like Method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016-05)
    We present the local convergence analysis and the study of the dynamics of a two-step Newton-like method in order to approximate a locally unique solution of multiplicity one of a nonlinear equation.

    On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Journal of Computational and Applied Mathematics, 2016-05)
    We study the local convergence of Chebyshev–Halley methods with six and eight order of convergence to approximate a locally unique solution of a nonlinear equation. In Sharma (2015) (see Theorem 1, p. 121) the convergence ...

    A first overview on the real dynamics of Chebyshev's method 

    García-Olivo, Martín; Gutiérrez, José M; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2017-07)
    In this paper we explore some properties of the well known root-finding Chebyshev’s method applied to polynomials defined on the real field. In particular we are interested in showing the existence of extraneous fixed ...

    Local convergence of a relaxed two-step Newton like method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2017-08)
    We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative ...
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • . . .
    • 7

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Magreñán, Á. Alberto (53)
    Argyros, Ioannis K (47)
    Magreñán, Á. Alberto (17)
    Sicilia, Juan Antonio (14)Sarría, Íñigo (10)... ver todoPalabra clave
    JCR (70)
    Scopus (67)banach space (29)local convergence (21)majorizing sequence (16)... ver todoFecha2023 (1)2022 (2)2021 (2)2020 (7)2019 (8)2018 (6)2017 (11)2016 (12)2015 (15)2014 (6)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja