• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 11-20 de 70

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Starting points for Newton’s method under a center Lipschitz condition for the second derivative 

    Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2018-03)
    We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose ...

    Extended local convergence for some inexact methods with applications 

    Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ...

    Different methods for solving STEM problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 2019-05)
    Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...

    3D visualization through the hologram for the learning of area and volume concepts 

    Orcos, Lara ; Jordán, Cristina; Magreñán, Á. Alberto (Mathematics, 2019-02-26)
    This study aims to implement and evaluate a methodological proposal using the hologram as a teaching medium for the learning of concepts related to areas and volumes of geometrical bodies. The study has been carried out ...

    A study of dynamics via Mobius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions 

    Geum, Young Hee; Kim, Young Ik; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2018-12-15)
    A generic family of sixth-order modified Newton-like multiple-zero finders have been proposed in Geum et al. (2016). Among them we select a specific family of iterative methods with uniparametric bivariate polynomial weight ...

    New Improvement of the Domain of Parameters for Newton’s Method 

    Amorós, Cristina ; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Regmi, Samundra; Sarría, Íñigo (Mathematics, 2020-01)
    There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability ...

    Study of local convergence and dynamics of a king-like two-step method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 2020-07-01)
    In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ...

    Weaker conditions for inexact mutitpoint Newton-like methods 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moreno-Mediavilla, Daniel ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2020-01)
    In this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will ...

    Advances in the Semilocal Convergence of Newton's Method with Real-World Applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara; Sarría, Íñigo (Mathematics, 2019-03-24)
    The aim of this paper is to present a new semi-local convergence analysis for Newton's method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies ...
    • 1
    • 2
    • 3
    • 4
    • 5
    • . . .
    • 7

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Magreñán, Á. Alberto (53)
    Argyros, Ioannis K (47)
    Magreñán, Á. Alberto (17)
    Sicilia, Juan Antonio (14)Sarría, Íñigo (10)... ver todoPalabra clave
    JCR (70)
    Scopus (67)banach space (29)local convergence (21)majorizing sequence (16)... ver todoFecha2023 (1)2022 (2)2021 (2)2020 (7)2019 (8)2018 (6)2017 (11)2016 (12)2015 (15)2014 (6)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja