• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 16

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaces 

    Argyros, Ioannis K; Santhosh, George; Magreñán, Á. Alberto (Journal of the Korean Mathematical Society, 2015-01)
    We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These ...

    Expanding the aplicability of secant method with applications 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Bulletin of the Korean Mathematical Society, 2015-05)
    We present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center Lipschitz instead of just ...

    A unified convergence analysis for secant-type methods 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Journal of the Korean Mathematical Society, 2014-11)
    We present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes he computation ...

    New semilocal and local convergence analysis for the Secant method 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Applied Mathematics and Computation, 2015-06)
    We present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz ...

    Extending the domain of starting points for Newton's method under conditions on the second derivative 

    Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2018-10)
    In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...

    Starting points for Newton’s method under a center Lipschitz condition for the second derivative 

    Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2018-03)
    We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose ...

    Improving the domain of parameters for Newton's method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto ; Sicilia, Juan Antonio (Journal of Computational and Applied Mathematics, 2017-07)
    We present a new technique to improve the convergence domain for Newton’s method both in the semilocal and local case. It turns out that with the new technique the sufficient convergence conditions for Newton’s method are ...

    New improved convergence analysis for Newton-like methods with applications 

    Magreñán, Á. Alberto ; Argyros, Ioannis K; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2017-08)
    We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases ...

    Improved convergence analysis for Newton-like methods 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Numerical Algorithms, 2016-04)
    We present a new semilocal convergence analysis for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in ...

    Enlarging the convergence domain of secant-like methods for equations 

    Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Hilout, S; Magreñán, Á. Alberto (Taiwanese Journal of Mathematics, 2015-04)
    We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's ...
    • 1
    • 2

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Magreñán, Á. Alberto (16)
    Argyros, Ioannis K (15)Ezquerro, J A (3)Hernández-Verón, M A (3)Sicilia, Juan Antonio (2)... ver todoPalabra clave
    JCR (16)
    majorizing sequence (16)
    banach space (13)Scopus (13)semilocal convergence (10)... ver todoFecha2018 (2)2017 (4)2016 (2)2015 (6)2014 (2)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja