• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 15

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaces 

    Argyros, Ioannis K; Santhosh, George; Magreñán, Á. Alberto (Journal of the Korean Mathematical Society, 2015-01)
    We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These ...

    Expanding the aplicability of secant method with applications 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Bulletin of the Korean Mathematical Society, 2015-05)
    We present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center Lipschitz instead of just ...

    New semilocal and local convergence analysis for the Secant method 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Applied Mathematics and Computation, 2015-06)
    We present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz ...

    A new fourth-order family for solving nonlinear problems and its dynamics 

    Cordero, Alicia; Feng, Licheng; Magreñán, Á. Alberto ; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 2015-03)
    In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made ...

    Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high 

    Argyros, Ioannis K; George, Santhosh; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2015-07)
    We present a local convergence analysis for general multi-point-Chebyshev-Halley-type methods (MMCHTM) of high convergence order in order to approximate a solution of an equation in a Banach space setting. MMCHTM includes ...

    A variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach 

    Lotfi, T; Magreñán, Á. Alberto ; Mahdiani, K; Rainer, J Javier (Applied Mathematics and Computation, 2015-02)
    First, it is attempted to derive an optimal derivative-free Steffensen-King's type family without memory for computing a simple zero of a nonlinear function with efficiency index 4(1/3) approximate to 1.587. Next, since ...

    Extended convergence results for the Newton–Kantorovich iteration 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2015-10)
    We present new semilocal and local convergence results for the Newton–Kantorovich method. These new results extend the applicability of the Newton–Kantorovich method on approximate zeros by improving the convergence domain ...

    Enlarging the convergence domain of secant-like methods for equations 

    Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Hilout, S; Magreñán, Á. Alberto (Taiwanese Journal of Mathematics, 2015-04)
    We present two new semilocal convergence analyses for secant-like methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. These methods include the secant, Newton's ...

    Improved local convergence analysis of the Gauss-Newton method under a majorant condition 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Computational Optimization and Applications, 2015-03)
    We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97-118, 2008), ...

    On the convergence of an optimal fourth-order family of methods and its dynamics 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Applied Mathematics and Computation, 2015-02)
    In this paper, we present the study of the semilocal and local convergence of an optimal fourth-order family of methods. Moreover, the dynamical behavior of this family of iterative methods applied to quadratic polynomials ...
    • 1
    • 2

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Magreñán, Á. Alberto (15)
    Argyros, Ioannis K (13)Cordero, Alicia (3)Torregrosa, Juan Ramón (3)Ezquerro, J A (1)... ver todoPalabra clave
    JCR (15)
    Scopus (14)banach space (11)majorizing sequence (6)semilocal convergence (5)... ver todoFecha
    2015 (15)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja