• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 11

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Second derivative free sixth order continuation method for solving nonlinear equations with applications 

    Maroju, P; Magreñán, Á. Alberto ; Motsa, S S; Sarría, Íñigo (Journal of Mathematical Chemistry, 2018-08)
    In this paper, we deal with the study of convergence analysis of modified parameter based family of second derivative free continuation method for solving nonlinear equations. We obtain the order of convergence is at least ...

    Highly efficient family of iterative methods for solving nonlinear models 

    Behl, Ramandeep; Sarría, Íñigo ; González-Crespo, Rubén ; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2019-01-15)
    In this study, we present a new highly efficient sixth-order family of iterative methods for solving nonlinear equations along with convergence properties. Further, we extend this family to the multidimensional case ...

    Different methods for solving STEM problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 2019-05)
    Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...

    New Improvement of the Domain of Parameters for Newton’s Method 

    Amorós, Cristina ; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Regmi, Samundra; Sarría, Íñigo (Mathematics, 2020-01)
    There is a need to extend the convergence domain of iterative methods for computing a locally unique solution of Banach space valued operator equations. This is because the domain is small in general, limiting the applicability ...

    Study of local convergence and dynamics of a king-like two-step method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo ; Sicilia, Juan Antonio (Mathematics, 2020-07-01)
    In this paper, we present the local results of the convergence of the two-step King-like method to approximate the solution of nonlinear equations. In this study, we only apply conditions to the first derivative, because ...

    Advances in the Semilocal Convergence of Newton's Method with Real-World Applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara; Sarría, Íñigo (Mathematics, 2019-03-24)
    The aim of this paper is to present a new semi-local convergence analysis for Newton's method in a Banach space setting. The novelty of this paper is that by using more precise Lipschitz constants than in earlier studies ...

    Herramienta pedagógica basada en el desarrollo de una aplicación informática para la mejora del aprendizaje en matemática avanzada 

    Sarría, Íñigo ; González-Crespo, Rubén ; González-Castaño, Alexander; Magreñán, Á. Alberto; Orcos, Lara (Revista Española de Pedagogía, 2019-09-01)
    El estudio dinámico de los métodos iterativos ha aumentado en las últimas décadas debido al desarrollo de los ordenadores, aspecto por el cual se ha visto la necesidad de incluir la enseñanza de estos métodos en los planes ...

    Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces 

    Maroju, P; Magreñán, Á. Alberto; Sarría, Íñigo ; Kumar, Abhimanyu (Journal of Mathematical Chemistry, 2020-01)
    This paper deal with the study of local convergence of fourth and fifth order iterative method for solving nonlinear equations in Banach spaces. Only the premise that the first order Frechet derivative fulfills the Lipschitz ...

    Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

    Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 2022-04)
    In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • 1
    • 2

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Sarría, Íñigo (10)
    Magreñán, Á. Alberto (8)
    Argyros, Ioannis K (7)
    Magreñán, Á. Alberto (3)
    Orcos, Lara (3)... ver todoPalabra clave
    JCR (11)
    Scopus (11)local convergence (5)banach space (4)dynamics (2)... ver todoFecha2023 (1)2022 (1)2020 (3)2019 (5)2018 (1)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja