• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-8 de 8

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Managing multi-criteria group decision making environments with high number of alternatives using fuzzy ontologies 

    Morente-Molinera, Juan Antonio ; Kou, Gang; González-Crespo, Rubén ; Corchado, J M; Herrera-Viedma, Enrique (Frontiers in Artificial Intelligence and Applications, 2018)
    The high amount of information that modern multi-criteria group decision making environments must handle requires the development of novel methods. These methods should be able to work with high amounts of alternatives ...

    The Application of Supervised and Unsupervised Computational Predictive Models to Simulate the COVID19 Pandemic 

    James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
    The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they ...

    Analysis of the COVID19 Pandemic Behaviour Based on the Compartmental SEAIRD and Adaptive SVEAIRD Epidemiologic Models 

    James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
    A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, ...

    The Comparison of Different Linear and Nonlinear Models Using Preliminary Data to Efficiently Analyze the COVID-19 Outbreak 

    James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
    The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in ...

    Probabilistic Forecasting Model for the COVID-19 Pandemic Based on the Composite Monte Carlo Model Integrated with Deep Learning and Fuzzy System 

    James Fong, Simon; Lobo Marques, João Alexandre; Li, G.; Dey, Nilanjan; González-Crespo, Rubén; Herrera-Viedma, Enrique; Bernardo Gois, F. Nauber; Xavier Neto, José (Epidemic Analytics for Decision Supports in COVID19 Crisis, 2022)
    There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of ...

    Classification of Breast Thermal Images into Healthy/Cancer Group Using Pre-Trained Deep Learning Schemes 

    Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
    In the women's community, Breast Cancer (BC) is a severe disease. The World Health Organization reported in 2020 that 2.26 million deaths occur due to BC. BC is curable if detected early. Since thermal imaging is non-invasive ...

    Automatic detection of lung nodule in CT scan slices using CNN segmentation schemes: A study 

    Kadry, Seifedine; Herrera-Viedma, Enrique; González-Crespo, Rubén; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
    The lung is one of the prime respiratory organs in human physiology, and its abnormality will severely disrupt the respiratory system. Lung Nodule (LN) is one of the abnormalities, and early screening and treatment are ...

    Deep and handcrafted feature supported diabetic retinopathy detection: A study 

    Kadry, Seifedine; González-Crespo, Rubén; Herrera-Viedma, Enrique; Krishnamoorthy, Sujatha; Rajinikanth, Venkatesan (Procedia Computer Science, 2022)
    The eye is the prime sensory organ in physiology, and the abnormality in the eye severely influences the vision system. Therefore, eye irregularity is commonly assessed using imaging schemes, and Fundus Retinal Image (FRI) ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Herrera-Viedma, Enrique (8)
    González-Crespo, Rubén (7)
    Bernardo Gois, F. Nauber (4)Dey, Nilanjan (4)James Fong, Simon (4)... ver todoPalabra clave
    Scopus(2) (8)
    classification (2)prediction models (2)accuracy (1)adaptive SEAIRD model (1)... ver todoFecha2022 (7)2018 (1)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja