• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • UNIR REVISTAS
    • Buscar
    •   Inicio
    • UNIR REVISTAS
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-4 de 4

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Classification-based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems 

    Bobadilla, Jesús; Ortega, Fernando; Gutiérrez, Abraham; Alonso, Santiago (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2020-03)
    This paper proposes a scalable and original classification-based deep neural architecture. Its collaborative filtering approach can be generalized to most of the existing recommender systems, since it just operates on the ...

    A Collaborative Filtering Probabilistic Approach for Recommendation to Large Homogeneous and Automatically Detected Groups 

    Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; Hurtado, Remigio (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2020-06)
    In the collaborative filtering recommender systems (CFRS) field, recommendation to group of users is mainly focused on stablished, occasional or random groups. These groups have a little number of users: relatives, friends, ...

    DeepFair: Deep Learning for Improving Fairness in Recommender Systems 

    Bobadilla, Jesús; Lara-Cabrera, Raúl; González-Prieto, Ángel; Ortega, Fernando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2021-06)
    The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both ...

    Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities 

    Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; González-Prieto, Ángel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 2022-06)
    Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Bobadilla, Jesús (4)
    Alonso, Santiago (3)Gutiérrez, Abraham (3)González-Prieto, Ángel (2)Ortega, Fernando (2)... ver todoPalabra clave
    IJIMAI (4)
    recommendation systems (4)collaborative filtering (3)deep learning (2)artificial intelligence (1)... ver todoFecha2022 (1)2021 (1)2020 (2)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja