• A new efficient parametric family of iterative methods for solving nonlinear systems 

      Chicharro, Francisco Israel (1); Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Journal of Difference Equations and Applications, 18/09/2019)
      A bi-parametric family of iterative schemes for solving nonlinear systems is presented. We prove for any value of parameters the sixth-order of convergence of any members of the class. The efficiency and computational ...
    • A new fourth-order family for solving nonlinear problems and its dynamics 

      Cordero, Alicia; Feng, Licheng; Magreñán, Á. Alberto (1); Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 03/2015)
      In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made ...
    • CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems 

      Chicharro, Francisco Israel (1); Cordero, Alicia; Martínez, Tobias H. (1); Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 03/2020)
      The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means, other iterative methods ...
    • Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications 

      Chicharro, Francisco Israel (1); Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (MDPIMathematics, 05/12/2019)
      A generalized high-order class for approximating the solution of nonlinear systems of equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations, we propose an extension to nonlinear ...
    • Highly efficient family of iterative methods for solving nonlinear models 

      Behl, Ramandeep; Sarría, Íñigo (1); González-Crespo, Rubén (1); Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 15/01/2019)
      In this study, we present a new highly efficient sixth-order family of iterative methods for solving nonlinear equations along with convergence properties. Further, we extend this family to the multidimensional case ...