
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6 

 

-33- 

 

 

Abstract — This paper describes the implementation of a 

prototype REST service   for triangulation of point sets collected 

by mobile GPS receivers. The first objective of this paper is to test 

functionalities of an application, which exploits   mobile devices’ 

capabilities to get data associated with their spatial location.  A 

triangulation of a set of points provides a mechanism through 

which it is possible to produce an accurate representation of 

spatial data. Such triangulation may be used for representing 

surfaces by Triangulated Irregular Networks (TINs), and for 

decomposing complex two-dimensional spatial objects into 

simpler geometries. The second objective of this paper is to 

promote the use of oriented matroids for finding alternative 

solutions to spatial data processing and analysis tasks. This study 

focused on the particular case of the calculation of triangulations 

based on oriented matroids. The prototype described in this paper 

used a wrapper to integrate and expose several tools previously 

implemented in C++. 

 
Keywords — Mobile devices, oriented matroids, spatial data 

representation, services, triangulation. 

 

I. INTRODUCTION 

N the context of  spatial data representation,  triangulation 

of a set of points is essential for many applications. A 

typical example is the generation of triangulated irregular 

networks (TINs) to represent ground topography. Another 

example is the representation of spatial objects using 

simplicial complexes which allows breaking complex objects 

into simpler underlying geometries. In the case of complex 

objects in the two-dimensional Euclidean space, simple 

geometries such as triangles provide a close approximation of 

spatial objects. 

Whatever be the purpose of triangulation, a computational 

solution is necessary to perform an optimal calculation. 

Traditional algorithms are based on strategies that rely on 

geometric representation both of the point set and the 

Euclidean space embedding it. That is the case of greedy 

algorithms ([1]) which build triangles using an iterative 

process based on three criteria: (i) selecting the minimum 

distance between pairs of points, (ii) not revisiting diagonals 

that have already been visited, and (iii) testing intersection of 

new diagonals with those previously obtained. This algorithm 

 
 

has  time complexity. 

A proposal for simple polygons [2] breaks down the input 

polygon into monotonous chains to subsequently perform 

triangulation of each sub-polygon, thus obtaining   time 

complexity. Another proposal initially finds the Voronoi 

diagram [3] associated with the set of points, and then 

calculates the Delaunay triangulation. All of the above cited 

proposals use traditional geometric representations leading to 

algorithms suffering from a significant computational 

complexity. However, in recent decades, there has been an 

interest for using alternative mechanisms to improve 

computational efficiency for spatial data processing. [4] has 

studied the particular case of triangulation of a set of points 

based on oriented matroids, who implemented several tools 

using the C++ language. 

This article describes the implementation of a prototype 

REST service for triangulation of a set of points obtained by 

global positioning system (GPS) receivers. This application 

targets mobile devices such as tablets and cell phones, using 

Android OS. The prototype wraps components generated by 

[4] with the purpose of testing oriented matroids as a means to 

solve problems in which spatial location matters. 

The next section of this paper introduces basic concepts on 

matroids and oriented matroids as well as the proposal of [4] 

for triangulation of a point set using only purely combinatorial 

oriented matroids. The third section describes REST services 

based on entities that are stored in a persistent repository. This 

section also makes a description of the application 

development architecture for Android environment, based on 

the Eclipse IDE. 

The fourth section discusses the architecture of the system 

and its scheme of access and operation. The fifth section 

makes a presentation of an overview of the used tools. The 

sixth section presents a prototype test and the last section 

formulates conclusions and final remarks. 

II. FROM THE GEOMETRIC TO THE COMBINATORIAL 

 This section introduces basic concepts of oriented matroids. 

For a more comprehensive treatment, interested readers are 

referred to [5]. 

A. Matroid 

The concept of matroid was introduced by [6] in the article 

A REST Service for Triangulation of Point Sets   

Using Oriented Matroids 

José Antonio Valero Medina and Ivan Lizarazo Salcedo  

 

Francisco José de Caldas District University, Colombia 

 

I 

DOI: 10.9781/ijimai.2014.264 



 

-34- 

 

entitled "On the abstract properties of linear dependence". 

Whitney describes the approach with respect to a given matrix 

and its columns, in such a way that any subset of these 

columns forms a matrix with a particular range. Considering 

the columns as abstract elements, a matroid with range given 

by the number of linearly independent columns is formed. 

 

According to [¡Error! No se encuentra el origen de la 

referencia.] from a matrix over any field, it is possible to 

define a matroid. In particular, the interest from a 

computational point of view is on finite fields, such as the 

Galois fields , which give exactly  elements when  

is a prime number. With  the  field can be seen as 

the set  with operations of addition and 

multiplication module p. The obtained matroid is called a 

vector matroid. 

The concept of graphic matroid is introduced in [7] based 

on the set of edges of a graph and the set of subsets of arcs of 

the same graph that does not contain all the arcs in any cycle, 

with the peculiarity that non isomorphic graphs may have 

isomorphic matroids. 

The formulation of affine matroid [8] is based on the 

concept of affine independence against affine sets (in  they 

are the empty set, the points themselves, the straight lines and 

the plane itself); thus, given a set of points in the plane and a 

set of affine independent subsets of them, there is a matroid 

called affine matroid. 

B. Oriented Matroids 

According to [8], geometry of matroids is based on what 

affine or linear sets provide but it lacks a structure of 

convexity. There is neither notion of duality or intermediation 

between the points of a straight line, nor existence of 

hyperplanes separating the space into two half-spaces. 

According to [8], vector spaces do not have enough structure 

to support a theory of convexity; therefore, it is not sound to 

expect matroids to do it. Authors state the need of providing an 

additional framing (i.e. an orientation) to the matroids from 

which the convexity may arise.  In a nutshell, that is the theory 

of oriented matroids. 

In [9], it is contended that the oriented matroid of a finite set 

of points draws information from the relative position and 

orientation from the configuration, which can be provided by a 

list of signs that encode the orientation of all its bases. 

Although in the passage from a specific point’s configuration 

to its oriented matroid, metric information is lost, many of the 

structural properties have their counterpart in the 

combinatorial level of oriented matroid. That is to say that  

oriented matroids  describe the structure of incidence between 

the elements of the matroid and their respective hyperplanes, 

as well as they encode the position of the elements relative to 

the hyperplanes; i.e. which items fall on the positive side, 

which ones  on the negative side and which ones inside the 

hyperplane [10]. 

C. Computational calculation of triangulations 

In [4], it is introduced a procedure to perform triangulation 

from a set of points based only on the combinatorial structures 

of the associated oriented matroid. Authors state that 

triangulations are a basic means for decomposing complex 

objects into simpler ones. According to [4], for a configuration 

 with   points, a T subset of subsets of 

, each one made of  elements, is a triangulation if and 

only if 

 

 (1) 

and 

 (2) 

 

The contribution of [4] is that, instead of using expensive 

linear programming with exact arithmetic to ensure the two 

aforementioned conditions, authors use purely combinatorial 

checks based on the oriented matroid . To check whether the 

first condition is met the set of all circuits of  and it 

is verified that for every pair of subsets of  there 

exists a circuit . 

On the other hand, to check purely combinatorial fulfillment 

of the second condition, the set of all co-circuits of  is used. 

There is a co-circuit for each affine hyperplane 

 extending by subsets of , which 

includes all points of  that are on the positive side ( ) and 

all the points of  that are on the downside ( ) of the 

hyperplane. For final checking of the second condition, it is 

verified that, for each , each cocircuit of  contained by 

itself,  whose sets  and  are both not empty,  must have a 

 that also contains itself. 

In accordance with [4], as long as circuits of  determine in 

a purely combinatorial fashion their co-circuits and vice versa, 

and since the matroid of  is defined by anyone of such co-

circuits, the number of possible triangulations of  set 

depends only on its oriented matroid. The passage from the 

geometry to the combinatorics associated with  is 

established through the concept of its chirotopo [11] [12]. 

 

 (3) 

 

A chirotopo assigns its orientation to each ordered base of 

.  The circuits of  can be calculated based on all subsets of 

 elements of  and its cocircuits, using all its subsets of 

 elements and the calculation of the associated chirotopos. In 

[4] proposes several algorithmic solutions for triangulation, 

ranging from obtaining one of the several possible 

triangulations to obtaining all possible number of 

triangulations, by using only combinatorial structures 

associated with the oriented matroid of the points set. These 

algorithms were implemented in the package TOPCOM 

(Triangulations of Point Configurations and Oriented 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6 

 

-35- 

 

Matroids) looking for a minimum time complexity and a 

maximum efficiency [4]. 

III. TECHNOLOGICAL DEVELOPMENT ENVIRONMENT 

This section discusses web development concepts useful for 

using oriented matroids as alternative means for representation 

and implementation of computational solutions involving 

spatial location of data. 

The main reason for adopting a Web implementation was to 

provide high availability for the triangulation functionalities 

proposed by [4]. In a similar way, the choice of the mobile 

devices environment with Android support leaned on the idea 

of having a source of sets of points that would be highly 

available. As it is well known,   using a mobile device such as 

a GPS enabled tablet or a cell phone is something quite 

common these days. 

A. REST webservices 

Possibilities for providing online Web capabilities are very 

different, including solutions based on APIs such as Sockets, 

XML-RPC or RMI-based components. This article used Web 

services REST - REpresentational State Transfer [13], as a 

platform for implementation that provides transparent access 

to resources possibly including persistent repository storage. 

REST was originally introduced as an architectural style for 

building systems hypermedia distributed on a large scale. The 

architectural style REST rests on four principles: 

--Identification of resources via URIs which outline a set of 

resources identifying which elements customers interact with. 

--Uniform interface which allows user to manipulate the 

resources using a predefined set of operations:  create (PUT), 

read (GET), update (POST) and delete (DELETE). 

--Self-descriptive messages, through which resources are 

uncoupled from their representation to allow content’s access 

in a variety of formats (XML, JSON, etc.). 

--Interactions with state through hyperlinks are enabled 

causing that resource’s interactions be stateless, i.e. request 

messages are self-contained. 

The REST services build on well-established W3C 

protocols (HTTP, XML, etc); thus, their creation should be 

fairly simple. Effort to building REST services clients is low 

since testing can be done using any Web browser. 

On the other hand, since messages are contained in the URI, 

a major constraint arises when the associated data set is large 

enough to exceed the maximum size to be considered a well 

formed URI. 

REST constrains the interface of a resource to its generic 

uniform interface with predefined operations, and there is very 

little to choose in terms of available operations. Therefore, a 

lot of effort should be put on defining which resources need to 

be exposed. Furthermore, it is necessary to assess whether the 

four operations are applicable to each resource exposed. In 

addition, it is also necessary to establish what is the 

application’s semantics associated to each individual resource. 

Since REST services are built directly over the HTTP 

transport protocol, nothing has to be decided about the 

communication protocol to use. On the other hand, REST has 

no preset format to adjust the data with. As this issue can be 

negotiated, it is possible to use different formats such as XML, 

JSON, or even the SOAP itself. 

B. Development environments for Android 

Android is undoubtedly one of the most popular platforms 

for mobile devices in the world such that the manufacturers of 

this devices use it in a very high proportion. Android is an 

operating system based on Linux, an open, free and cross-

platform operating system, so there are a very nice set of tools 

for application development. Android provides all the 

necessary interfaces for developing applications that require 

access to the basic functionality of mobile devices (i.e. 

network interface, GPS, etc.) in the Java programming 

language. 

All of the functionalities required in the development of an 

application for Android are available in its Software 

Development Kit (SDK). As alternative it is possible to use 

libraries released by Google as part of its Google Play 

Services. 

The primary IDE environment is the open source tool 

Eclipse, which also has a plugin, which provides an Android 

image, with which it is possible to perform application 

development for Android on any operating system using this 

emulator for testing [14]. 

Each Android application uses an own process identified by 

its ID, and it is the only process accessing user files. The 

devices have a unique focus, the main application, which is the 

application visible on the screen, but they can run several 

applications in the background, each one with its own stack of 

tasks. The pile of tasks is the sequence of execution of 

processes in Android. They consist of activities that are 

stacking as they are invoked, and can only be terminated when 

the tasks above are completed. 

IV. WEB SERVICE FOR TRIANGULATION OF SETS OF POINTS 

As mentioned above, the prototype service of point set 

triangulation was planned in order to be a highly available 

service, so it was arranged as a Web service REST with the 

access mode shown in Fig. 1. 

 

 

 

Fig. 1 Access mode of triangulation service based on oriented matroids. 



 

-36- 

 

The REST web service was deployed on GlassFish in the 

Center for High Performance Computing (CECAD) at 

Francisco José de Caldas District University. The service can 

be accessed from any mobile device connected to the internet 

via a provider of cellular mobile data, or discovered through a 

wireless network.  The mobile device should have a good 

coverage of GPS satellites to guarantee a minimum level of 

accuracy and availability of geographical coordinates. 

Fig. 2 shows the components architecture diagram of the 

system following [15]. For a set of points obtained from the 

mobile device, it was created a REST server with two REST 

services from Entity Classes based on the repository defined 

on the service provided by Java Persistence. 

ConjuntodepuntosFacadeREST is a REST service responsible 

for generating a group ID of points per session triggered by a 

connected mobile device with the read operation (GET) 

enabled. This operation returns a list of points formed by a 

single point with identifier and coordinates dummy but with 

the new group ID. The reading based on identifier operation 

(GET {id}) for this REST service was also adapted to allow 

any connected client to obtain the associated set of points 

saved to the repository within a given time interval. 

 

 
 

TriangulacionesFacadeREST is a REST service created to 

get the possible triangulations from the current set of points. 

For this REST service, it was adapted the reading operation 

based on identifier (GET {id}). Thus, a connected client can 

request all possible triangulations at any time. For the 

calculation of the triangles, the REST service was 

supplemented with a thread responsible for carrying out the 

wrapper of the points2triang component of the software 

implemented by [4].  

The legacy points2triang component receives the set of 

points by its standard input and delivers the calculated 

triangulations (if it is possible to find any) by its standard 

output. In order to enable the communication between this 

component and TriangulacionesFacadeREST service, the 

standard input and output of the component was respectively 

redirected from and to two auxiliary files.  The former is 

created by the REST service with the coordinate 

transformation (from the geographic system coordinates to 

Transversal Mercator) of the points set that the mobile client 

provide.  The latter is generated by the legacy component and 

used by feed backing the TriangulacionesFacadeREST. 

Finally, TriangulacionesFacadeREST returns back to the 

mobile client a set of edges for the different possible 

triangulations associated with the set of points in a session 

with a client. 

The client was implemented based on asynchronous tasks in 

order to reduce the complexity of the main thread and prevent 

application crashes. 

 As mentioned above, the client was developed for the 

Android system using the API provided by Google Play 

Services to get coordinates obtained from the receiving 

device's GPS.  

V. TOOLS 

This section describes tools used for implementation of the 

prototype. 

A. Building of the web service 

The Netbeans IDE was used for the construction of the web 

service (WS-Rest), following a six-step procedure: 

--Creation of tables ConjuntoDePuntos and Triangulaciones. 

--Creation of a new project and addition of connection 

drivers to the database in Derby. 

 

 
 

--Creation of a resource (persistent entity) for each   table in 

the database (Fig. 3). 

--Creation of ConjuntodepuntosFacadeREST and 

TriangulacionesFacadeREST REST Web services for each 

Entity Class created in the previous step (Fig. 4). 

--Creation of methods that implement the REST operations 

that will be used in each REST service created.  The   

ConjuntodepuntosFacadeREST class is adapted using the find 

(GET {id}) and findAll (GET) methods. The 

TriangulacionesFacadeREST class is adapted using the find 

(GET {id}) method. 

GlassFish

Android

Rest Server

Points Rest Service

Triang. Rest Service

Based matroides
Triangulation calc.

Rest Client

GPS receiver
Google play services

Points capture

Viewer triangulation

 

Fig. 2 Triangulation service based on oriented matroids architecture 

diagram. 

 

Fig. 3 Entity classes class diagram. 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6 

 

-37- 

 

--Creation of the Trng class for the Wrapper of the legacy 

component responsible for carrying out the triangulation based 

on the oriented matroid associated to the set of points. 

 

The REST services were available at a public URL allocated 

by the CECAD of the District University. 

 

 

B. Building of the Android (WS-Res) client 

For the construction of the Android client providing access 

to the web service (WS-Rest), following tools were used: 

Eclipse IDE, the Android Development Tools (ADT) plugin 

for Eclipse and the Android SDK. Steps for the installation of 

the mentioned tools were as follows: 

--Installing the Eclipse IDE, downloading it from the URL 

http://www.eclipse.org/downloads/. The installation is doing 

by simple unzip of the downloaded file and run the eclipse 

program from the eclipse folder. 

--Installing the SDK Android available from the URL 

http://developer.android.com/sdk/index.html. After 

downloading the Android SDK, the installer was run, 

specifying a path to the JDK. Then, it was needed, through the 

SDK Manager, to install the "Android SDK Platform-tools", 

"Android 4.3 (18 API)" and "Android 2.2 (8 API)" platform, 

and extra "Android Support Library" package. 

--It was also necessary to create an environment for Android 

emulation, using the AVD (Android Virtual Device) manager 

of the Android SDK. This emulated environment is useful for 

test development for Android without using an actual mobile 

device. 

--To complete the tools installation it was necessary to 

install the Plugin Android Development Tools (ADT) for 

Eclipse using the option "Install New Software of Eclipse", 

providing the URL https://dl-ssl.google.com/android/eclipse/, 

and selecting the two Developer Tools and NDK Plugins 

packages. 

--Once the software tools were installed, the Android 

application project in Eclipse and the layout of the GUI client 

were created. 

To support all of the required functionality, it was necessary 

to make the main activity (MainActivity) to extend the 

FragmentActivity class and to implement 

ConnectionCallbacks and OnConnectionFailedListener 

interfaces of the GooglePlayServicesClient package, as well as 

the LocationListener interface of the package 

com.google.android.gms.location (Fig. 5). 

 

 

VI. PROTOTYPE TEST 

For interaction with the points set triangulation REST 

service, four asynchronous tasks were defined. 

-- A task to obtain the ID of the points set associated with 

the session initiated by the client; this task starts from the 

onCreate method of the main activity class (Fig. 6). 

 

 

 

Fig. 4 Services class diagram. 

 

Fig. 5 Client class diagram. 

 

Fig. 6 Triangulation ID assigned on client interface starting. 



 

-38- 

 

--When an onLocationChanged event is thrown by the 

Google Play Services software component, a popup message is 

put on the user interface whit the geographic coordinates 

provided by the GPS device and the client component put 

them in the Posición Actual controls zone ().  

 

 
--A second task for the insertion of the point selected by the 

user (through the action of the "Guardar punto" button on the 

user interface) provided by the GPS receiver and displayed in 

the user interface in the field "Posición actual" (Fig. 8). 

 

 
--A third task for obtaining the set of points stored so far 

from the REST service (through the action of the "Muestre 

puntos" button of the user interface) (Fig. 9). 

 

 

--Finally, a task to obtain the edges of the possible 

triangulations reachable from the saved set of points. Both the 

list of points and the edges of the possible triangulations are 

presented in the ListView that is shown at the bottom of the 

user interface. 

 

 
 

Fig. 10 shows the user interface with four points provided by 

the mobile device (a Toshiba Excite 10 inches tablet with a 

wireless link) and their possible triangulations. For each 

possible triangulation (identified by idopcion), the triangle is 

shown (identified by sectrn). For each triangle the point 

sequence (indicated by secpnt) and the point’s id (identified by 

idpnt) is shown. The test used four very near points only a few 

meters apart and in this case, the particular point’s 

arrangement produced the only two possible triangulations in 

agreement with the based matroid combinatorial algorithm 

used. 

Coordinate transformation from the original World 

Geodetic System (WGS-84) spatial reference system into the 

Transverse Mercator projection was conducted using the 

minimum latitude and longitude of the set of points as the 

latitude of origin and central meridian parameters. This spatial 

 

Fig. 7 Detection of Updated Location events on the user interface. 

 

Fig. 8 Storage by the service using the user interface. 

 

 

Fig. 9 Stored Points set provided by the service. 

 

Fig. 10 Stored points set obtained from the service and its possible 

triangulations. 



International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 6 

 

-39- 

 

coordinate’s projection is needed as GPS receivers provide 

geographic coordinates.  

The test was also conducted using a LG Optimus L7 Cell 

smartphone. The following explanation focuses on illustrating 

the REST’s server side of this test. TABLE I shows the 12 

points provided by the smartphone. These points were located 

at a farther distance than the points in the previous test.  

 

 
 

When the client mobile device asks to performing the 

triangulation, the original coordinates are projected as shown 

in TABLE II, using for this   test   the values      4.7678158 and    

-74.1465482 (the minimums) as the latitude of origin and 

central meridian parameters respectively. 

 

 
 

TABLE III shows the legacy component result returned to the 

triangulation service REST.  

 

 
 

In this case, the particular point’s arrangement produced 

521 triangulations (all the possible ones). TABLE III shows 

only the result’s head and tail. Each possible triangulation 

takes no more than the point id’s as the process uses only the 

point set combinatorial structure. 

Finally, the four last triangles of the last possible 

TABLE I 

POINT SET LIST ON SERVICE SIDE 

Geographic coordinates JSON format 

World Geodetic System (WGS-84) 

[{"conjuntodepuntosPK":{"idtrng":23,"idpnt":0}, 

"coordx":-74.1465482,"coordy":4.7710368}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":1}, 

"coordx":-74.1429136,"coordy":4.7686211}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":2}, 

"coordx":-74.141702,"coordy":4.7678158}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":3}, 

"coordx":-74.13895, "coordy":4.7768594}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":4}, 

"coordx":-74.1328556,"coordy":4.7716231}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":5}, 

"coordx":-74.1354637,"coordy":4.7729735}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":6}, 

"coordx":-74.1429136,"coordy":4.7686211}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":7}, 

"coordx":-74.1366037,"coordy":4.7763712}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":8}, 

"coordx":-74.1365644,"coordy":4.7764313}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":9}, 

"coordx":-74.1465482,"coordy":4.7710368}, 

{"conjuntodepuntosPK":{"idtrng":23,"idpnt":10}, 

"coordx":-74.140837,"coordy":4.7762281}, 

{"conjuntodepuntosPK": {"idtrng":23,"idpnt":11}, 

"coordx":-74.1409072,"coordy":4.7760984}] 

The point primary key conjuntodepuntosPK is composed of the 

triangulation id idtrng and the point id idpnt. coordx and coordy are the 

point´s meridian and latitude respectively. 

 

 

 

TABLE II 

PROJECTED POINT SET LIST 

Id X Y 

0 3561 0 

1 890 4032 

2 0 5376 

3 10000 8429 

4 4210 15190 

5 5703 12296 

6 890 4032 

7 9460 11031 

8 9527 11075 

9 3561 0 

10 9302 6335 

11 9159 6257 

The projected coordinates were scaled by a 10 factor. 

 

 

 

TABLE III 

THE LEGACY COMPONENT RESULT 

[T[0]:=[0->12,3:{{0,1,2},{0,2,3},{2,3,4},{3,4,7},{4,7,8},{3,7,8},{0,3,10}}];] 

[T[1]:=[1->12,3:{{0,1,2},{0,2,3},{2,3,4},{3,4,7},{4,7,8},{3,7,8},{3,10,11}, 

{0,10,11},{0,3,11}}];] 

[T[2]:=[2->12,3:{{0,1,2},{0,2,3},{4,7,8},{3,7,8},{0,3,10},{2,4,7},{2,3,7}}];] 

[T[3]:=[3->12,3:{{0,2,3},{2,3,4},{3,4,7},{4,7,8},{3,7,8},{0,3,10},{0,2,6}}];] 

[T[4]:=[4->12,3:{{2,3,4},{3,4,7},{4,7,8},{3,7,8},{0,3,10},{1,2,3},{0,1,3}}];] 

[T[5]:=[5->12,3:{{0,1,2},{3,4,7},{4,7,8},{3,7,8},{0,3,10},{0,3,4},{0,2,4}}];] 

[T[6]:=[6->12,3:{{0,1,2},{0,2,3},{2,3,4},{0,3,10},{3,4,8}}];] 

[T[7]:=[7->12,3:{{2,3,4},{3,4,7},{4,7,8},{3,7,8},{1,2,9},{2,3,9},{3,9,10}}];] 

[T[8]:=[8->12,3:{{0,1,2},{0,2,3},{3,4,7},{4,7,8},{3,7,8},{0,3,10},{3,4,5},{2,4,5}, 

{2,3,5}}];] 

[T[9]:=[9->12,3:{{0,1,2},{2,3,4},{3,4,7},{4,7,8},{3,7,8},{2,3,10},{0,2,10}}];] 

… 

[T[514]:=[514->12,3:{{0,1,2},{0,2,10},{2,4,8},{3,8,10},{2,8,10}}];] 

[T[515]:=[515->12,3:{{0,1,2},{2,4,5},{2,3,10},{0,2,10},{2,3,8},{4,5,8},{2,5,8}}];] 

[T[516]:=[516->12,3:{{4,7,8},{3,7,8},{2,4,7},{3,9,10},{1,3,9},{1,3,7},{1,2,7}}];] 

[T[517]:=[517->12,3:{{3,4,7},{4,7,8},{3,7,8},{3,10,11},{0,10,11},{1,2,3},{3,4,5}, 

{2,4,5},{2,3,5},{0,1,11},{1,3,11}}];] 

[T[518]:=[518->12,3:{{3,4,7},{4,7,8},{3,7,8},{3,10,11},{1,2,3},{3,4,5},{2,4,5}, 

{2,3,5},{1,3,9},{9,10,11},{3,9,11}}];] 

[T[519]:=[519->12,3:{{3,4,7},{4,7,8},{3,7,8},{3,10,11},{0,10,11},{0,3,11}, 

{0,1,3},{3,4,5},{2,4,5},{1,3,5},{1,2,5}}];] 

[T[520]:=[520->12,3:{{3,4,7},{4,7,8},{3,7,8},{3,10,11},{0,10,11},{0,3,11}, 

{0,2,6},{3,4,5},{2,4,5},{0,3,5},{0,2,5}}];] 

[T[521]:=[521->12,3:{{0,1,2},{3,7,8},{0,3,10},{0,2,4},{3,5,7},{0,3,5},{0,4,5}, 

{4,5,8},{5,7,8}}];] 

The point primary key conjuntodepuntosPK is composed of the 

triangulation id idtrng and the point id idpnt. coordx and coordy are the 

point´s meridian and latitude respectively. 

 

 

 



 

-40- 

 

 

 

triangulation of the response to the client mobile device are 

shown in TABLE IV  using the JSON format. 

 

 

VII. CONCLUSION 

The implementation of the prototype presented here allowed 

the reuse of a legacy tool implemented in C++ for 

triangulation of point configurations in two-dimensional 

spaces (for a discussion of performance details see [4]). The 

inherited tool was integrated in a Rest Web service using the 

point settings obtained from an Android mobile device. 

Android client’s interaction for coordinates’ collection and 

use of the triangulation service was greatly simplified by the 

adoption of REST services. However, adaptation of the 

semantics of the operations GET and PUT, did not turn out as 

"natural" as it might be expected. 

As definition of the services REST, for both the sets of 

points and the possible triangulations, was based on the Entity 

Class associated with the persistence provided by Java 

Persistence Service,  the interchange format output by the 

triangulation component was not as self-descriptive as the one 

supplied by the service. 

The projected coordinates were scaled by a ten factor in 

order to have integer values (as required by points2triang, the 

legacy component) but having a decimeter precision. The 

introduction of this scale factor did not affect in any way the 

outcome because the procedure used by the legacy component 

takes in account only the combinatorial structure of the 

associated oriented matroid. 

The REST service asynchronous interaction facilitated the 

client implementation faults’ tolerance, mainly the GPS 

receiver disconnection one, being necessary only to define the 

state variables with REST service session as static due that 

Google Play Services destroys and creates newly its objects 

after each disconnection. 

No statistical validation was done because that was beyond 

the scope of the work, but this could be the subject of future 

work. 

The matroid-based triangulation service can be reached at 

the IP address 200.69.103.29 on the http port 22095. The 

Android Client component (UbicacionGeografica.apk) and the 

other resources (i.e., IDE projects for Netbeans and eclipse-

kepler for the services and client respectively) are available at 

IDE projects temporary site. 

ACKNOWLEDGMENTS 

We would like to thank the Francisco José de Caldas 

District University’s Center for High Performance (CECAD) 

for their prompt and ongoing support, and to providing the 

computational resources required for the implementation of the 

prototype and the allocation of a public IP address to access 

the REST services. 

REFERENCES 

[1] Worboys, M. and Duckham, M. (2004) GIS: A Computing Perspective, 

2Nd Edition, CRC Press, Inc., Boca Raton, FL, USA. 

[2] Garey, M. R., Johnson, D. S., Preparata, F. P., and Tarjan, R. E. (1978) 

Information Processing Letters 7(4), 175 – 179. 

[3] deBerg, M., Cheong, O., vanKreveld, M., and Overmars, M. (2008) 

Computational Geometry, Springer Berlin Heidelberg, third edition. 

[4] Pfeifle, J. and Rambau, J. (2003) Computing triangulations using 

oriented matroids In Michael Joswig and Nobuki Takayama, (ed.), 

Algebra, Geometry and Software Systems, pp. 49–75 Springer Berlin 

Heidelberg. 

[5] Valero, J. A. (2013) UD y la Geomática 0(7). 

[6] Whitney, H. (1935) American Journal of Mathematics 57, 509–533. 

Oxley, J. (2007). 

[8] Stell, J. and Webster, J. (2007) Computers, Environment and Urban 

Systems 31(4), 379 – 392 Topology and Spatial Databases. 

[9] Richter-Gebert, J. and Ziegler, G. M. (2004) In Jacob E. Goodman and 

Joseph O’Rourke, (ed.), Handbook of Discrete and Computational 

Geometry, Boca Raton, FL, USA: CRC Press, Inc.. pp. 129–151. 

[10] Anderson, L. and Delucchi, E. (2012) Discrete & Computational 

Geometry 48(4), 807–846. 

[11] De Loera, J. A., Rambau, J., and Santos, F. (2010) Triangulations: 

Structures for Algorithms and Applications, Springer Publishing 

Company, Incorporated, 1st edition. 

[12] Tsukamoto, Y. (2013) Discrete & Computational Geometry 49(2), 287–

295. 

[13] Pautasso, C., Zimmermann, O., and Leymann, F. (2008) In Proceedings 

of the 17th International Conference on World Wide Web WWW ’08 

New York, NY, USA: ACM. pp. 805–814. 

[14] Manuel Báez, Álvaro Borrego, J. C., Cruz, L., González, M., Hernández, 

F., Palomero, D., deLleraand Daniel Sanz, J. R., Saucedo, M., Torralbo, 

P., and ÁlvaroZapata (2010) Introducción a Android, E.M.E. Editorial 

©. 

[15] Kovachev, D. and Klamma, Framework for Computation Offloading in 

Mobile Cloud Computing, R. 12/2012 2012 International Jorunal of 

Interactive Multimedia and Artificial Intelligence 1(7), 6–15. DOI: 

10.9781/ijimai.2012.171 

 

José Antonio Valero Medina is professor at the 

Facultad de Ingeniería at Francisco José de Caldas 

District University in Bogotá Colombia. He holds Msc 

degree in Teleinformática from  Francisco José de 

Caldas District University. Actually he is a student of 

the Engineer PhD program there. His main areas of 

research are distributed systems and Geoinformatics. 

 

Ivan Lizarazo Salcedo is professor at the Engineer 

Faculty at Francisco José de Caldas District University 

in Bogotá Colombia. He holds Master in Geographic 

Information Science and PhD In Geography degrees 

from University Of London. His main areas of research 

are Geographic-Object Based Image Analysis and 

Integration of agent-based simulation and GIS. 

 

 

TABLE IV 

TRIANGULATIONS LIST ON SERVICE SIDE 

…  

 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":10,"secpnt":0,"idpnt":0}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":10,"secpnt":1,"idpnt":3}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":10,"secpnt":2,"idpnt":5}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":12,"secpnt":0,"idpnt":0}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":12,"secpnt":1,"idpnt":4}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":12,"secpnt":2,"idpnt":5}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":14,"secpnt":0,"idpnt":4}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":14,"secpnt":1,"idpnt":5}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":14,"secpnt":2,"idpnt":8}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":16,"secpnt":0,"idpnt":5}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":16,"secpnt":1,"idpnt":7}}, 

{"triangulacionesPK":{"idtrng":23,"idopcion":521,"sectrng":16,"secpnt":2,"idpnt":8}}] 

Each possible triangulation (identified by idopcion) shows  the triangle  

(identified by sectrn), the point sequence (indicated by secpnt), and the 

point’s id (identified by idpnt). 

 

 


