
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-65-

Abstract — Evaluation tools are significant from the Agent

Oriented Software Engineering (AOSE) point of view. Defective

designs of communications in Multi-agent Systems (MAS) may

overload one or several agents, causing a bullying effect on them.

Bullying communications have avoidable consequences, as high

response times and low quality of service (QoS). Architectures

that perform evaluation functionality must include features to

measure the bullying activity and QoS, but it is also

recommendable that they have reusability and scalability

features. Evaluation tools with these features can be applied to a

wide range of MAS, while minimizing designer’s effort. This

work describes the design of an architecture for communication

analysis, and its evolution to a modular version, that can be

applied to different types of MAS. Experimentation of both

versions shows differences between its executions.

Keywords — Analysis, architecture, bullying, communications,

multi-agent systems.

I. INTRODUCTION

OMMUNICATIONS become complex to design in huge

systems which interact frequently. In MAS, interactions

among agents must be designed correctly to avoid behaviors

that may collapse communications. The overall result of these

behaviors is high response times, among other problems.

Within this context, communication analysis techniques

become relevant to evaluate the correct performance of the

MAS. These techniques inspect the communications among

agents in executions, to detect undesirable patterns of

communications, like agents that are overloaded with the

reception of too many messages. Once the undesirable

situation is detected, the re-design the MAS communications is

a straightforward task [1]. Other non desirable situations

appear when there are not expected sequences of agents that

interact in a conversation [2].

The effect of overloading can be compared to bullying, as

explained in [3]. There are agents that play the bully role,

when they send too many messages; other agents play the

mistreated role when they received too many messages; other

agents that play both roles, mistreated and bully; other ones

that are considered as isolated because they neither send nor

receive messages; and there are regular agents that behave

correctly because they send and receive messages in a

balanced way. There are metrics to measure the proportion of

sent and received messages; these metrics are the values to

classify agents into the mentioned patterns. The detection of

non desired patterns in certain conversations can help the

designer to modify the interactions, obtaining better response

times and higher QoS results, [1], [3].

Previous frameworks for the analysis of these behaviors

have been designed embedding the evaluation and debug tools

within the execution of the MAS. Results can be inspected

after the execution, and in consequence a straightforward re-

design can be made.

Despite the satisfactory results obtained with this approach,

reusability for other types of MAS becomes a difficult task,

that involves re-codification of the evaluation and debug

functionality. An efficient architecture is basic for the

designer/tester, not only to obtain satisfactory results, but also

to reuse the analysis tool in other type of MAS.

This work represents one step forward in architectures for

MAS analysis. We provide a new framework for the MAS

execution and evaluation in order to reach complete

independence of both tasks. The result is a new architecture

with two modules: one for the execution and another for the

evaluation and debugging.

This research is presented in the following order: Section 2

describes the related work. The description of the new

architecture is within Section 3. The results of the execution of

the new architecture are included in Section 4. Finally,

conclusions and future work can be found in Section 5.

II. RELATED WORK

Literature regarding load balancing in MAS is relevant and

plentiful. This problem has been focused using different

strategies. [4] apply learning techniques in MAS load

balancing. The task of the agent is to choose the correct

resource using local information. Its objective is to optimize

the resource usage. Unlike our work objective, they are not

concerned in the scalability and adaptability of their solution

to other problems or platforms.

The work in [5] resembles ours because they also use

classification techniques and metrics to analyze the

organization of MAS. They also relate their metrics and the

response time, which is used as indicator of QoS. But it differs

our work in the use of their metrics, which are used just to

evaluate architectures; instead, we present an architecture to

evaluate the communications in MAS.

AntNet [6], Challenger [7], and DIET (Decentralised

Information Ecosystem Technologies) [8] use mobile agents to

use their respective resources equitably, but they do not

identify the cause of the overloading/bullying problem. DIET

An Analysis Architecture for Communications

in Multi-agent Systems

C

Celia Gutiérrez

Complutense University in Madrid, Spain

DOI: 10.9781/ijimai.2013.219

 Special Issue on Artificial Intelligence and Social Application

-66-

overcomes multi-agent platforms limitations in terms of

adaptability and scalability, providing a foundation for an

open, adaptive and scalable agent organization. In this way,

they share the same interests as we do, but they are focused on

supporting basic mobile agent capabilities.

Messor [9] uses adaptive system approach. It uses an

algorithm that emulates the ant behavior to distribute workload

among distributed nodes. In this case, they are specially

focused in peer-to-peer systems.

Other work, the Anticipate Agent Assistance (AAA) [10]

also uses an agent-based metric for testing and managing the

resource information of the wireless points, choosing the less

overloaded access points. They are also concerned in

achieving high QoS indicators of communications. However,

they have confined their solution to the wireless networks.

Finally, [11] perform debugging process on recorded data of

the MAS execution, like in the current work. Their analysis

helps understand the behavior of the system and can reveal

undesirable social behaviors. So their testing and debugging of

complex MAS remains just at social level.

In summary, there are works that are concerned in achieving

equitable behaviors of agents in MAS executions. All of them

differ in the way they make the analysis, design, or evaluation,

and their purpose: ones are focused on load balancing in

general, others on load balancing in communications, and

others in social behaviors. But neither of them has the purpose

of building a scalable architecture of MAS to evaluate its

communications. This architecture can integrate the elements

which are present in MAS communications, as the following

section describes.

III. DESIGN OF THE NEW ARCHITECTURE

The new architecture, called IDKAnalysis 2.0, is based on a

previous version, IDKAnalysis 1.0.

Both architectures follow the Ingenias methodology [12]

and have been executed on Ingenias Development Kit (IDK)

case studies, although they use different versions of IDK

(IDKAnalysis 1.0 uses IDK 2.7, whereas IDKAnalysis 2.0

uses IDK 2.8). IDK versions use a template (build.xml) to

detail the agent deployment of the case study one wants to run.

At the same time, user inputs can be necessary to start the case

study activity, although these inputs vary on each case study.

Further details on this framework can be seen at [13]. Both

versions of IDK are available at

http://sourceforge.net/projects/ingenias/files/INGENIAS%20D

evelopment%20Kit/Aranjuez/, on their corresponding option.

Fig. 1 shows the differences of both versions of the

architectures:

Multi-agent Execution
and

evaluation

Agent deployment
(build.xml file)

QoS measures, bullying measures
(standard output)Initiation of activity

(standard input)

(a)

Eventlog fileMulti-agent
execution

Evaluation of
execution

Agent deployment
(build.xml file)

QoS measures
(LogQoS file)

Bullying measures
(LogBullying file)

(b)

Fig. 1. Block diagram of the IDKAnalysis, version 1.0 (a) and 2.0 (b).

The first version performs the MAS execution and

evaluation at the same time. The outputs only refer to the

analysis, and extract the analysis measures and QoS measures.

The second version is based on an architecture with a front-

end that executes the main functionality of the MAS, and a

back-end that analyzes the communications generated by the

front-end.

There are also differences in the inputs and outputs of both

architectures:

 In the first one, apart from the agent configuration, it is

necessary human interaction to start the activity, whereas

in the second one, the execution starts automatically

(without the user input).

 The outputs of the first version are shown at the same

time. In the second version, the front-end outputs a log

file with the events recorded; the back-end receives as

input the event log file, and produces the two outputs

physically separated in two files.

Inputs and outputs of the back-end are described and

analyzed in the following subsections.

A. Event log file

The event log file registers the main events of the MAS

execution with certain format that corresponds to the main

features of these events. The generation of this file is a

characteristic functionality of IDK2.8.

The standard format of a line is as follows:

Timestap(hours:minutes:seconds:milesecond)

;Name of the event;Additional fields

Additional fields depend on the type of event it represents.

Below there is an example of the event that represents A new

entity is added to the agent mental state:

23:53:47:187;MEAddedToMentalState;BuyerAge

nt_0multipleBuyers@viriato:60000/JADE!Curr

entAssistedAgent!ME0

where the content of the additional fields are:

involved agent ->
BuyerAgent_0multipleBuyers@viriato:60000/J

ADE

kind of entity -> CurrentAssistedAgent

entity id -> ME0

To register all communication information, the types of

http://sourceforge.net/projects/ingenias/files/INGENIAS%20Development%20Kit/Aranjuez/
http://sourceforge.net/projects/ingenias/files/INGENIAS%20Development%20Kit/Aranjuez/

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-67-

events of this version include message shipping and reception

events, and others that are necessary to measure response

times. Even more, with the intention of using the event log file

for other purposes than communication analysis, a wide range

of types of events is included:

1) A new entity is added to the mental state.

2) An agent was initialized completely.

3) A task was scheduled within the agent.

4) A task was executed.

5) An agent is starting collaboration as initiator.

6) An agent has accepted to participate in an interaction

as collaborator.

7) An agent has received a request to participate in

collaboration.

8) A mental entity has been removed from the

conversation.

9) An agent received a message.

10) An agent sent a message.

11) An entity was added to a conversation.

In IDK 2.8 the name of the event log file is generated in such

a way that it contains the day, month, year, hour and minute of

its creation.

An excerpt of an event log file can be found in the

Appendix section.

B. Outputs of the Evaluation Module

As Fig. 1 (b) shows, the outputs of the second module are the

QoS measures (in this case response times) and the bullying

measures. This module is coded in Java, JDK1.7.0_04. For

this purpose, there are two types of events selected from the

event log file.

The first output depends on each case study and basically is

the time elapsed since a service is requested until an offer of

that service is proposed. For MAS with a lot of service

responses (as a consequence of having many agents offering

services), it is may be useful to establish a number of iterations

or responses until a response time is recorded.

It is necessary to choose the task when the time measuring

process initiates and the task when it finishes. The response

time is the elapsed time between them. This depends on each

case. In the experimentation of Section 4, the initiating task is

ChooseMovie, and the finishing task is ChooseCinema. The

type of event that records the executed task is TaskExecuted.

In the example below, the log refers to the starting time of

execution of ChooseMovie task.

18:22:02:355;TaskExecuted;InterfaceAg

ent_3expInterfaceAgentwithprofile!ChooseMo

vie!ME103705

where the additional fields mean:

involved agent ->
InterfaceAgent_3expInterfaceAgentwithprofi

le

task type -> TaskExecuted

task name -> ChooseMovie

task id -> ME103705

The second output is the bullying measures, which are

described in detail in a previous work [3]. In this case,

MessageReceived event is used each time a message is

received by an agent, as in the following example:

23:53:48:885;MessageReceived;BuyerAssignme

nt!0.InterfaceAgent_9multipleInterfaceAgen

tsvir1225148028355!RejectBecomingAssistant

!BuyerAgent_4multipleBuyers!InterfaceAgent

_9multipleInterfaceAgents

where the additional fields are:

protocol -> BuyerAssignment

conversation id ->
0.InterfaceAgent_9multipleInterfaceAgentsv

ir1225148028355

protocol state from which the message is sent ->
RejectBecomingAssistant

sender -> BuyerAgent_4multipleBuyers

receiver ->
InterfaceAgent_9multipleInterfaceAgents

In this way, information about senders and receivers is

enough to compute the measures of [3] and start the evaluation

process.

Although the measures are standard for any type of MAS

with agents playing different roles, the designer must also

specify which the role is going to be analyzed as bully, and

which one as the mistreated. Besides, he must tune a threshold.

As explained in [3], the computed measures are compared with

the indicated values for each pattern, although a margin

between both values is established as threshold.

Considering that all these features must be customizable for

executions of other types of MAS, this module contains the

following parameters:

1) Path of the Eventlog file, LogBullying file, QoS file.

2) Name of the LogBullying file

3) Name of the Qos file.

4) Role that is suspected to be the Bully in the

conversations.

5) Role of that is suspected to be the Mistreated in the

conversations.

6) Threshold for the bullying metrics.

7) Number of iterations that a task must be executed to

calculate the response time.

8) The initial task that must be executed to start the

response time counting.

9) The final task that must be executed to end the

response time counting.

 Special Issue on Artificial Intelligence and Social Application

-68-

C. Advantages of IDKAnalysis 2.0 over IDKAnalysis 1.0

Case studies built under IDKAnalysis 2.0 offer several

aspects of the executions that make it applicable to other case

studies. These features appear on each module:

1) The event log file generated by the first module does

not only record communication related to events, but

also other events that can be analyzed for different

purposes.

2) The second module produces two different files, so

bullying measures and response times can be analyzed

separately. Besides, this module contains some

parameters that can be tuned, so it can be adapted to

other methodology case studies.

Figs. 4 and 5 (in the Appendix section) show the running

architectures of both versions using the experimentation

described in Section 4. Fig. 4 (a) shows the architecture of the

first version, where the distinction between the front-end and

the back-end does not exist. The second version in Fig. 4 (b)

contains the srceclipse package, which is the back-end,

whereas the rest of the packages compose the front-end. The

srceclipse package, which does not appear in Fig. 4 (a), is also

composed of the bullying package and the logs package, as

Fig. 5 shows. The first one contains the source and binary files

for the evaluation process, and the second one is the directory

where the log files (inputs and outputs) are placed. As

explained in the previous subsection, this directory is the first

parameter the designer/tester can customize.

IV. EXPERIMENTATION RESULTS

Executions of both versions have been carried out using the

Cinema case study, pursuing the objective of acquiring cinema

tickets according to certain user’s preferences. The participant

roles are the following:

 Interface agent, which represents the customer.

 Seller agent, which represents the cinema.

 Buyer agent, which represents the intermediary

between the Seller and the Interface.

The hardware of the experimentation has been a machine

with 2 GHz and 2GB RAM, using 32-bit Windows 7

Professional.

 The Cinema case study uses Java Agent DEvelopment

(JADE) platform. JADE framework uses the Foundation for

Intelligent Physical Agents (FIPA) standard for

communications among agents.

 As table 1 shows, configurations with different numbers of

agents for each role have been run:

TABLE I

CONFIGURATIONS FOR CINEMA CASE STUDY

Configuration
Number of

Interface Agents

Number of Seller

Agents
Number of Buyer

Agents

Serious 10 5 10

Simple 20 4 20

FullSystem 100 8 100

The following subsections include examples of executions

on both versions of the tool.

A. Execution using IDKAnalysis 1.0

The Cinema case study begins with two possible options for

the use, as Fig. 2 shows.

Fig. 2. Initial GUI of the Cinema case study built with IDKAnalysis 1.0

It is necessary to start running by selecting Start monthly

activity. This will produce the conversations between the

agents, in order to get the proposed tickets. As this is not the

relevant part of this work, no output has been extracted. Then,

Bullying Measures can be selected, to obtain the values for the

bullying metrics and response times from the generated

communications.

A snapshot of this execution on console can be seen in Fig.

3, where the metrics and classification for IntergaceAgent_16,

IntergaceAgent_19, IntergaceAgent_18 agents, and the

corresponding values for the roles and the system, can be seen

alongside the extraction of a response time.

B. Execution using IDKAnalysis 2.0

Mentioned parameters in subsection 3.B, numbered from 4

to 9, have been tuned as follows:

 Role that is suspected to be the Bully in the

conversations: Interface

 Role of that is suspected to be the Mistreated in the

conversations: Buyer

 Threshold for the bullying metrics: 1.0

 Number of iterations that a task must be executed to

calculate the response time: 10

 The initial task that must be executed to start the

response time counting: ChooseMovie

 The final task that must be executed to end the

response time counting: ChooseCinema

In this way, the response time which is recorded, is the

elapsed time between the ChooseMovie task and the tenth

occurrence of the ChooseCinema task.

In the Appendix section, there are examples of the two

outputs generated by the IDKAnalysis 2.0 using the

FullSystem configuration. They are generated in two separate

files, to facilitate the designer analysis.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-69-

Fig. 3 Output of the IDKAnalysis 1.0 for a FullSystem configuration.

V. FUTURE WORK AND CONCLUSIONS

In this work we have presented a new framework which

separates the multi-agent system execution and the evaluation

of the communication among agents.

This perspective provides several advantages from the

Software Engineering point of view:

 To work on the functionality or the evaluation process

directly, by introducing changes in the front-end (for

the first purpose), or the back-end (for the second

purpose).

 To inspect bullying behaviors and QoS measures

separately, by the analysis of the LogBullying file (in

the first case), or the QoS file (in the second case).

 To reuse the evaluation module in other case studies, by

tuning some parameters accordingly to each multi-agent

 system circumstances. The range of events generated by

IDK8.0 (and IDKAnalysis2.0 in consequence) offers

different possibilities to record QoS, which does not

necessarily use the TaskExecuted event, but other ones.

This architecture offer several possibilities of future work. It

is thought to use the evaluation module in MAS with different

purposes and frameworks:

 ADELFE methodology [14] for Adaptive MAS.

 ICARO-T framework [15] for agent organizations.

Available at http://icaro.morfeo-project.org/

 Agent Based Social Simulation frameworks.

The combination of IDKAnalysis 2.0 with the above

methodologies will provide experimentation outputs with two

purposes:

1) Validate and enlarge the evaluation framework with the

experimentation results. In particular, it is necessary a

previous extraction of the event logs. These logs must

accomplish the basic format of the log file mentioned in

subsection 3.A. Even more, as log extraction is used for

other purposes, an ontology may be parsed to get the

correct parameters for each purpose. This new

component and other ones will be incorporated in a

new version of the tool, IDKAnalysis 3.0.

2) Enlarge the mentioned methodologies and frameworks

from the AOSE point of view, with a complete module

that provides testing and debugging tools.

ACKNOWLEDGMENT

C. Gutiérrez thanks Jorge Gómez-Sanz for his continuous

help on the use of IDK releases, and also for providing the

infrastructure for the Cinema case study.

 Special Invited Paper

-70-

(a)

APPENDIX

This section contains two types of information:

1) Snapshots of the running architecture of the Cinema case

study using IDKAnalysis1.0 and IDKAnalysis2.0. In the

first snapshot, belonging to IDKAnalysis1.0, the package

deployment does not show the distinction between the

front-end and the back-end. This fact is reflected in the

second snapshot, belonging to IDKAnalysis2.0. The third

snapshot shows the content of the back-end. Further

explanations are provided in subsection 3.C.

2) Samples of the input and outputs of the evaluation

module for the execution of the Cinema case study, using

the parameter configuration in subsection 4.B.

(b)

Fig. 4 A snapshot of the running architecture top level in IDKAnalysis1.0 (a)

and IDKAnalysis2.0 (b).

 This is an excerpt of an event log file. Each line

contains the information of an event, according to the

syntax described in subsection 3.A:

18:21:26:770;TaskExecuted;InterfaceAgent_6

5expInterfaceAgentwithprofile!Look_for_an_

assistant!ME1044

18:21:26:770;MessageSent;BuyerAssignment!0

.InterfaceAgent_67expInterfaceAgentwithpro

filePC-

1227028885694!enable!InterfaceAgent_67expI

nterfaceAgentwithprofile!BuyerAgent_6expBu

yerAgentWithProfile@PC-

sheilacg:60000/JADE,

18:21:26:770;TaskScheduled;InterfaceAgent_

7expInterfaceAgentwithprofile!Look_for_an_

assistant!ME1167![ME19:GetAssignments]

18:21:26:770;MessageSent;BuyerAssignment!0

.InterfaceAgent_67expInterfaceAgentwithpro

filePC-

1227028885694!RequestBeingAssistant!Interf

aceAgent_67expInterfaceAgentwithprofile!Bu

yerAgent_6expBuyerAgentWithProfile@PC-

sheilacg:60000/JADE,

18:21:26:786;MessageSent;BuyerAssignment!0

.InterfaceAgent_1expInterfaceAgentwithprof

ilePC-

1227028886568!enable!InterfaceAgent_1expIn

terfaceAgentwithprofile!BuyerAgent_6expBuy

erAgentWithProfile@PC-sheilacg:60000/JADE,

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 1.

-71-

 This is an excerpt of the LogBullying file. It reflects the

classification values and measures for one of the

Interface agents, both roles and the whole system:

Fig. 5 A snapshot of the running architecture second level (back-end) in

IDKAnalysis2.0.

Agente:InterfaceAgent_7expInterfaceAgentwi

thprofile

numOutputAgent =26.0 NumAgent =40

numOutput = 514.0 Bully proportionally to

the bully agents in the system

Regular compared to the agents playing the

same role

Bully in the scope of itself

Metric values:

2.0233462 0.0 1.0116731 0.50583655 0.0

0.25291827 0.0

End Classification of Agents

Classification of each role and system:

Group CoordA 0.0 0.0 0.0

Group NetworkA 0.28266892 4.5903044

1.2182432

System 2.2613513 36.722435

9.745946Mistreated System

Bully System

CoordA:Regular Group

NetworkA:Mistreated Group

End Classification of each role and system

 This is an exerpt of the LogQoS file. Each line contains

the response times (in milliseconds) obtained with a

frequency of 10 iterations:

10 iterations 6755

20 iterations 8106

30 iterations 8994

40 iterations 9511

REFERENCES

[1] C. Gutiérrez, I. García-Magariño, and R. Fuentes-Fernández,

“Detection of undesirable communication patterns in multi-

agent systems,” Engineering Applications of Artificial

Intelligence, vol. 24, no. 1, pp. 103-116, 2011.

[2] C. Gutierrez and I. García-Magariño, “Extraction of execution

patterns in multi-agent systems,” IEEE Latin America

Transactions, vol. 8, no. 3, pp. 311-317, 2010.

[3] C. Gutiérrez and I. García-Magariño, “Revealing bullying

patterns in multi-agent systems,” Journal of Systems and

Software, vol. 84, no. 9, pp. 1563-1575, 2011.

[4] S. Andrea, Y. Shoham, and M. Tennenholtz, “Adaptive Load

Balancing: A Study in Multi-Agent Learning,” Journal of

Artificial Intelligence Research, vol. 2, no. 1, pp. 475-500,

1994.

[5] S. K. Lee and C. S. Hwang, “Architecture modeling and

evaluation for design of agent-based system,” Journal of

Systems and Software, vol. 72, no. 2, pp. 195-208, 2004.

[6] R. Schoonderwoerd, O. Holl, J. Bruten, and L. Rothkrantz,

“Ant-based load balancing in telecommunications networks,”

Adaptive Behavior, vol. 5, no. 2, pp. 169-207, 1996.

[7] A. Chavez, R. Moukas, and P. Maes, “Challenger: A Multiagent

System for Distributed Resource Allocation,” Autonomous

Agents, vol. 97, pp. 323-331, 1997.

[8] C. Hoile, F. Wang, E. Bonsma, and P. Marrow, “Core

Specification and Experiments in DIET: A Decentralised

Ecosystem-inspired Mobile Agent System,” in Proc. 1st Int.

Conf. Autonomous Agents and Multi-Agent Systems, Bologna,

2002, pp. 623-630

[9] A. Montresor and H. Meling, “Messor: Load-Balancing through

a Swarm of Autonomous Agents,” in Proc. 1st Workshop on

Agent and Peer-to-Peer Syst., Bologna, 2002, pp. 125–137.

[10] Y. C. Chen and W. Y. Chen, “An agent-based metric for quality

of services over wireless networks,” Journal of Systems and

Software, vol. 81, no. 10, pp. 1625-1639, 2008.

[11] E. Serrano, A. Quirin, J. Botia, and O. Cordón, “Debugging

complex software systems by means of path finder networks,”

Information Sciences, vol. 180, no. 5, pp. 561-583, 2010.

[12] J. Pavón and J.J. Gomez-Sanz, “Agent Oriented Software

Engineering with INGENIAS,” in Proc. 3rd Int. Central and

Eastern European Conf. on Multi-Agent Systems, vol. 2691,

Prague, pp. 394-403, 2003.

[13] J. J. Gomez-Sanz, R. Fuentes-Fernández, J. Pavón, and I.

García-Magariño, “INGENIAS Development Kit: a visual multi-

agent system development environment,” in Proc. 7th Int. Conf.

Autonomous Agents and Multiagent Systems, 2008, pp. 1675-

1676.

[14] G. Picard and M-P. Gleizes, “The ADELFE Methodology,”

Designing Adaptive Cooperative Multi-Agent Systems, chapter

8, pp. 157-176, Kluwer Publishing, 2004.

 Special Invited Paper

-72-

[15] J. M. Gascueña, A. Fernández-Caballero, and F. J. Garijo, “

Programming Reactive Agent-based Mobile Robots using

ICARO-T Framework,” in 2010 Proc. ICAART Conf., vol. 2,

pp. 287-291.

C. Gutierrez was born in Bilbao, Spain, in 1969.

She received the B.Eng. and Ph.D. degrees in

Computer Science from the University of Deusto in

1992, and from the University of the Basque

Country in 2000, respectively. She has worked for

Labein technological research center, in Bilbao. She
has also worked for the Basque Government and

Indra, as a software Engineer. After doing teaching

and research at some private universities, her current

position is Assistant Professor at the Complutense

University in Madrid, Spain, with the Grasia research group. She has

published in relevant journals and has also direct financially supported

projects. Her current interests focus on Data Mining, Multiagent Systems and

Accessibility.

