
International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-29-

Abstract —Object-Relational Databases introduce new

features which allow manipulating objects in databases. At

present, many DBMS offer resources to manipulate objects in

database, but most application developers just map class to

relations tables, failing to exploit the O-R model strength. The

lack of tools that aid the database project contributes to this

situation. This work presents O-ODM (Object-Object Database

Mapping), a persistent framework that maps objects from OO

applications to database objects. Persistent Frameworks have

been used to aid developers, managing all access to DBMS. This

kind of tool allows developers to persist objects without solid

knowledge about DBMSs and specific languages, improving the

developers’ productivity, mainly when a different DBMS is used.

The results of some experiments using O-ODM are shown.

Keywords —Object-Relational Databases. Persistence

Framework. Java Annotations. SQL:2008

I. INTRODUCTION

ersistent frameworks, frequently called ORM (Object

Relational Mapping) tool [6]-[7]-[8], have been used to

aid database projects. This kind of tool maps objects from

application to relation (relational databases - RD) [11]. Using

ORM tools, developers have advantages; (1) they can persist

data in RD without solid knowledge of Relational Database

Management System (RDBMS). It allows developers to focus

on application development (OO paradigm and language

aspects); (2) all data access is made through the tool, since

ORM tools are integrated in programming environment;

developers can use a single environment to do this work; (3)

generally, when more than one DBMS is used, only one

instruction is modified. This instruction indicates the new

DBMS; then, all the code produced by the tool to one DBMS

is automatically changed to another. In case the instruction

was not available, the developer would have to produce the

new SQL code according to the characteristic of the DBMS

chosen. All these aspects aid both: the point of view system

maintenance and developers’ productivity. Thus, the benefit of

using persistent frameworks cannot be ignored. On the other

hand, it is necessary to consider the new characteristics of

Object-Relation Databases (ORDB).

ORDB allows manipulating objects in databases. Many

DBMS offer new resources such as UDTs (User Data Types),

composite types, REF types, inheritance and others that can be

used to model objects in databases. Besides, using REF types

to represent relationship between objects can result in

improvement of performance given that no field needs to be

created in an existing or new relation. This characteristic

could be more suitable for new applications that have emerged

and which present complex objects such as CAD/CAM

(Computer Aided Design/ Computer Aided Manufacturing),

GIS (Geographic Information System), Genetic, etc [9].

Adding to this, using ORDB, objects from an application must

be mapped to objects from databases; thus the impedance

mismatch, which has been reported in the literature and in real

applications as a problem, can be avoided. Another ORDB

advantage is the possibility to use only one conceptual model

for both the application and the data tiers [1]. Generally, the

entity-relationship model (ERM) and UML class model are

built when the relational model is employed. This causes an

overhead not only related to mapping class to relation, but

also to elaborating the ERM and the need of specific

knowledge to generate this model.

Since the strength of the Object-Relational Model might be

more explored [4] together with the lack of tools to aid

projects and maintenance of ORDB, this paper proposes an O-

ODBM (Object- Object Database Mapping) tool, an object-

relational persistence framework. O-ODBM maps an object

from the application to the ORDB object [16].

However, not all DBMS implement all the resources of

objects specified in the SQL standard. Therefore, some

elements can be unavailable in some of them. Undoubtedly,

this is another important aspect which contributes to ignoring

object resources from DBMS and adds complexity to build

CASE and Persistent framework tools to ORDB.

An example was used to evaluate the O-ODBM. We here

present not only the O-ODBM characteristics, but also an

example and the results.

To develop the O-ODBM, characteristics and operations

were studied which are defined or implemented in JPA (Java

Persistence API) and/or JDO (Java Data Object) standards

and in Hibernate and Torque frameworks. Some of those

characteristics, which provide benefits and /or facilities to

developers, were implemented in our first version of O-

ODBM Framework.

This article is organized as follows. In chapter 2, some

characteristics of JPA (Java Persistence API) and JDO (Java

Data Object), which were incorporated to O-ODBM, are

introduced. Chapter 3 introduces the O-ODBM. Chapter 4

presents the example employed to evaluate the O-ODBM tool,

O-ODM Framework for Object-Relational

Databases

Carlos Alberto Rombaldo Jr, Solange N. Alves Souza, Department of Computing Engineering and

Digital System of University of São Paulo, São Paulo, Brazil.

Luiz Sergio de Souza, Faculdade de Tecnologia - Carapicuíba, São Paulo, Brazil

P

DOI: 10.9781/ijimai.2012.164

Special Issue on Intelligent Systems and Applications

-30-

and the results. Finally, chapter 5 concludes and presents

future works.

II. JPA AND JDO STANDARDS – SOME CHARACTERISTICS

The O-ODBM Framework was developed in Java

programming language. Some reasons pointed for this choice

are (1) many ORM Frameworks available are based on Java

language. (2) Java language facilitates the interoperability and

(3) the number of the OO applications that developed in Java

are increasing.

The JDO (Java Data Object) [7] e JPA (Java Persistence

API) [8] standards define mapping from application object to

relations of RDB. These standards also include a set of

properties that simplify persistence and data access. Some of

these properties were highlighted considering the scope of the

O-ODBM project:

 all access to data is made only by the framework. As a

result, it is no longer necessary to have a solid knowledge

about the DB, SQL and DBMS used.

 offers a language for manipulating data that is closer to

OO programming language than SQL.

 transaction manage, which allows the developer to define

the beginning and end of transactions. The Framework is

responsible for the interface with the DBMS used.

 mechanism for performance control to access, insert,

delete and update objects. In OO applications, references

between objects are very common. These references are

mapped to tables and integrity rules, so that when a query

is made, more than a table could be accessed. The use of

annotations [12] is employed by the developer to indicate

which objects must be persisted. Annotations allow

adding information to java classes directly. The

Framework uses this information to create the SQL code

to generate tables, attributes, integrity rules in attributes

and between tables, etc.

III. PROJECT OF O-ODBM FRAMEWORK

The rules of mapping defined for RDB are not suitable,

since the new data types connected to the OO paradigm

available in ORDBMS are not considered. The rules defined

for the Framework proposed are summarized in Tables I and

II. More details of these rules can be found in [1]-[2], which

are a complementation of [4]-[9]-[14] from the point of view

of real applications.

Requirements of O-ODBM Framework

A set of requirements, which are detailed as follows, was

defined to guide the development of the Framework. In doing

so, the characteristics of ORM Frameworks were considered,

which are advantages for both application and developers.

Then, JPA and JDO standards were studied, as well as

Hibernate and torque implementations [6]-[7]-[8]. In view of

the ORDBMS, SQL:2008 was also studied, along with Oracle

11g release 2 and BD2 9.7.5 version DBMS. To simplify the

reference, the requirements were identified by the R letter and

a sequential number, presented as follows.

 R1 – to control the referential integrity rule connected to

REF type. ORDB allows defining the relationship between

objects using REF. However, if an object A, which is

referenced by object B, is removed, B gets a null reference.

TABLE I

MAPPING OF OBJECT FROM APPLICATIONS TO ORDBMS OBJECTS - ADAPTED

FROM [1]

OO ORDBMS Justify

Class Table Classes may be mapped to conventional

tables. However, if the intention is to

define methods and/or hierarchies, an

UDT must be defined and, to store data, a

typed table connected to UDT needs be

created.

UDT

Typed table

Abstract

class

UDT an UDT should be created whithout a

typed table conected to it to represent an

abstract class. In this case, the UDT would

be used for defining other UDTs and as it

does not have a typed table connected to

it, instances will not be persisted.

Simple

attribute

Build-in

type

SQL:2008 presents many built-in types

such as integer, real, etc. It is hence

possible to find a corresponding type in

SQL for each primitive type of Java.

multivalued

attribute

Array or

Multiset

multidimensional structures are suitable to

store attributes of the same type

(collections).

Methods UDT

methods

It is possible to define methods connected

to UDTs. Thus, developers can choose to

define methods in the database or in the

application.

TABLE II

MAPPING OF ASSOCIATIONS AND HIERARCHY IN ORDBMS – ADAPTED FROM

[1]

Association Corresponding in ORDBMS

Bidiretional

Association

Composition/

Aggregation/

Association

1..1 a cross reference is defined,

i.e., each class maintains a

reference (REF) to the other.
 1..* a cross reference is also

used, although the

aggregated class will be an

Array ou a Multiset of

references.

Unidirectional Association Similarly to the bidirectional

associations above presented, though

the reference will be only in table.

Nth Association (three or

more classes)

A table or a UDT is defined with the

name of the association. The table or the

UDT (and the typed table) must

maintain references to the classes

involved.

Associative Class a table or a UDT can be defined for the

association class similarly to nth

association.

Generalization/

Specialization

a UDT is defined for each class of the

hierarchy. Typed table would be defined

later if data need to be persisted.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-31-

Then, a rule, similar to the rule that controls foreign key in

RDB, needs to be implemented to avoid a null reference.

R2 - Flexibility for multiple platforms of databases. This

requirement means that the Framework gives a simple

mechanism for a developer to change the DBMS and all SQL

code for persistence and data access, which was generated by

the framework for the first DBMS, will automatically be

replaced by the code for the new DBMS. It is important to

highlight, as explained before, there are differences among

ORDBMS and some resources for database object can be not

available; therefore, this may be the most difficult requirement

to be achieved.

R3 – The developer does not need to know the SQL and

DBMS employed. Thus, the framework has to present a

language or a mechanism for object manipulation very similar

to the OO programming language (if compared with the SQL).

As a result, the learning process is facilitated, since the

developer does not need to know SQL to use a DBMS.

R4 – Managing DBMS connections – including to open, to

close and to verify the timeout of connections. If there are

unfinished transactions, the Framework will keep the

connection open until the commit or rollback of these

transactions. The Framework would force itself to interrupt

the transactions, despite keeping (ex. doing rollback) the data

integrity in the database.

R5 – Managing the execution of transactions. For this, the

Framework has to offer an interface for the developer to

define his transactions.

R6 – Automatic code generation for object schema in

DBMS, including codes for manipulating these objects.

R7 – the framework will be an access point to database;

making the direct connection between application and

database unnecessary.

R8 – use of annotations for defining which will be persisted

in the database, facilitating the configuration of objects

schema. The ORM Frameworks studied employs a similar

mechanism; however, in the case of O-ODBM Framework,

appropriated annotations have to be created.

R9 – Implementation of inheritance in database, according

to OO.

R10 – Implementation of unidirectional, bidirectional and

multivalued relationship, using reference (REF) to object

when possible.

R11 – Application performance is not degraded.

R12 – Data could be retrieved on demand. In other words,

according to what is defined by the developer, the Framework

will postpone or will not retrieve related data to improve the

performance of the data access [6]-[8]. This is an important

aspect for performance because one object referenced by

another can keep references for others and so on, which would

certainly degrade the data access performance. Therefore,

when there is no interest in referenced objects, the retrieval of

object and its references would cause unnecessary

performance degradation.

R13 – Data could be persisted on demand, which is defined

as cascade property in JPA [8]. In this case, the Framework

would do the persistence of the associated objects, preventing

null references from being found, i.e., references for objects

that do not exist

A. Architecture of O-ODBM Framework O-ODBM

The tool accepts input in two different formats: Java code,

in which annotations are used to declare persistent classes, or

XML files, which correspond to SQL code for the DBMS

chosen. In the first case, the Framework presents a set of

annotations, similarly to the ORM Frameworks. In the second

case, the XML file, which represents the logical schema to

ORDB, is generated by a case tool [1] for ORDB. The

Framework should be part of the development integrated

environment, in which from a conceptual model (ex. UML

class model), or from a logical schema, the OR database can

be automatically implemented in the DBMS chosen and

accessed by the Framework.

A XSD (XML Schema Definition) was formalized to

register the mapping from Java classes to ORDB objects. In

this XSD, according to SQL:2008 [10] the ORDB data types

are defined that define database objects, methods, inheritance,

collections and other OO concepts. Therefore, in case the

input of the Framework is a XML file produced by the

modeling tool, the XSD would be used to verify it. In

addition, XML documents are also used internally by the tool

for describing the necessary information to mapping among

different formats produced by the tool

Figure 1 introduces the architecture of the O-ODBM

Framework and its components are described as follows.

Configuration Processor: reads the Java class annotated

with the annotations introduced by the Framework. Once the

Java classes have been interpreted, this module processes the

annotations and generates the XML code with OR structure

based on SQL:2008. It was decided to first generate the SQL

code for SQL:2008 and then translate it to a dialect of specific

DBMS. This decision was made due to the differences among

DBMS regarding the object resources offered. Some DBMS

implement part of these resources only; moreover, the

implementation of the specific element can be different among

these DBMS. On the other hand, the SQL:2008 not only has

all the elements related to objects, but can also be easily

Fig. 1. Architecture of O-ODBM Framework.

Special Issue on Intelligent Systems and Applications

-32-

translated into another SQL dialect. The XML-SQL schema

that represents the database object schema is equivalent to the

application object schema. The XML-SQL schema generated

by the Configuration Processor is the input of the Conversion

Manager Component.

Conversion Manager: generates the SQL scripts to be

executed by the DBMS chosen. The Conversion Manager uses

the DBMS layout file appropriated for translating the XML-

SQL code into an adequate SQL dialect. For this, the

Framework uses the XML file (DBMS Layout) that has the

specific syntax for each DBMS. The output of this module is

the SQL script, which is submitted to the DBMS by the

Connection Manager Component.

Connection Manager: all the operations between the

Framework and DBMS, for example, execution of SQL script

to create structures, persistence and retrieval of objects are

made by a connection. This component manages the

connections with DBMS and this is transparent for the

developer. Connections are automatically opened by the

Framework whenever the operation is submitted.

Transaction Controller: manages all the transactions with

the DBMS. When a transaction is opened, this component is

activated and when the connection needs be closed, this

component is consulted to verify/guarantee that there are no

transactions open for that connection. In this process, a

transaction can be finished (rollback or commit), or the

connection is not closed. This component also manages the

transaction inactive time and automatically finishes it if the

transaction achieves the timeout.

DBMS Layout: Since a XML file, produced by the CASE

tool, could be the input for the Framework; a XSD is also used

by the Framework, similarly to the SQL schema, for validating

this file.

B. Annotations

The API (Application Programming Interface) of the

Framework is integrated with the programming environment.

This way, the developer has the set of annotations, which were

produced in this work, available for use and integrated with

the development environment. The type of annotation will

determine the map from Java class to ORDB element made by

the tool. TABLE III introduces the set of annotations.

TABLE IV and TABLE V show more annotations that are

used for defining parameters and default values, respectively.

Experienced developers in Framework and/or in ORDB could

redefine default values.

IV. EXAMPLE USED FOR TESTINGTHE FRAMEWORK

An example, the persistent object schema of which is shown

in Figure 2, was used for testing the applicability of the

Framework. The main concern was to evaluate the behavior

for queries involving objects in hierarchy and the use of

reference (REF) for representing association between objects.

However, this evaluation is not enough to draw conclusions

about the performance of ORDBMS. Therefore, a more

careful evaluation must be made in the future.

In the example, only the annotations shown in Table III

TABLE III

ANNOTATIONS.

Annotation Description

@DbObject indicates the class must be persisted.

@DbField indicates the attribute must be persisted.

@DbMethod indicates the object method must be created in DBMS.

@DbInhetitanc

e

indicates the object is part of the hierarchy. Then, the

hierarchy must be represented in DBMS. If the parent

object has not been annotated with DbObject, only the

derived objects would be part of a hierarchy in DBMS,

although the characteristics inherited will be part of the

derivated objects.

@DbRelation indicates the attribute represents the association. The

associations are represented by the inclusion of the

attributes in associated classes. These attributes make

references between themselves and, depending on the

cardinality of association, this reference may be to an

object or to a collection of objects..

TABLE IV

CONFIGURATIONS FOR @DBFIELD ANNOTATION.S.

PARAMETER Default value Description

size 255 for text and

numbers.

defines the attribute max size.

isPK none indicates the attribute will

be a primary key.

autoIncremet none indicates the attribute values

will be generated by the

DBMS.

type keeps the equivalent

data type in the

DBMS.

defines the data types

that will be used in

DBMS

TABLE V

CONFIGURATIONS FOR @DBFIELD ANNOTATION.S.

PARAMETER Default value Description

size 255 for text and

numbers.

defines the attribute max size.

isPK none indicates the attribute will

be a primary key.

autoIncremet none indicates the attribute values

will be generated by the

DBMS.

type keeps the equivalent

data type in the

DBMS.

defines the data types

that will be used in

DBMS

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-33-

were used.

Since the class was annotated, a DAO class for each

persistent class was generated. Then, using the O-ODBM

Framework, the SQL script of the database schema was

generated and executed in DBMS. After that, insert, update,

delete and select operations were carried out. First, DB2

DBMS was used, and later Oracle DBMS. It is important to

highlight that all these procedures were made by changing the

directives of configurations only, i. e., neither class nor

annotations were changed. TABLE VI introduces the results

of each operation

V. EVALUATION

The set of requirements, defined in section III, and the

result of the tests were used for evaluating the o-ODBM

Framework.

A. Compliance with the requirements

R1 – the referential integrity rule will be implemented by

the Framework if the Java code presenting the appropriate

annotations (i.e., the attribute of the object has @DbRelation

annotation). Therefore, the Framework will implement an

operation to guarantee that null references do not exist.

R2 – the Framework only supports Oracle and DB2,

although the modification of one into another is very simple

for the developer, since he only declares what DBMS will

used and the Framework generates the appropriate code.

There are few DBMS that support OR characteristics and

this limits the application of this requirement. However, it can

be considered met with the use of these two DBMS.

R3 – the Framework has no data access language. However,

the annotations can be used for persistence, queries and

updating objects.

R4 – the Framework manages all the connections with the

DBMS.

R5 – the Framework presents an interface that allows the

developer to define the transaction beginning and end. In fact,

the control of the transaction is made by the JDBC, which

passes this control on to DBMS.

R6 – using the annotated class, the Framework generates

the code to interact with the DBMS.

R7 – The Framework is a centralized data access point.

R8 – as stated before, a set of annotations is available and

the developer can use it to indicate which must be persisted.

R9 – the Framework generates the code with the structures

to represent inheritance as long as the correct annotation has

been used. Then, UDTs hierarchy and typed tables are

created in the database.

R10 – since there is the indication of the cardinality of

association between the objects, the Framework, by default,

creates a list of references in both objects for N:N cardinality.

For 1:N, the reference can be to (1) only one object, (2) a list

of objects, (3) the reference can be on both sides, in this case,

on one side the reference is for an object and on other one, for

a list of objects. This is similar to the OO application.

R11 – to evaluate if there is or not performance

degradation, the decision was to compare the time spent for

database access with and without using the Framework. For

this, the OR schema was generated manually, using a JDBC. It

was verified that the use of the Framework does not cause

performance degradation.

R12 – the capacity of retrieving data on demand (lazy and

eager strategy in JPA [6]-[8]) is implemented by the

Framework. It allows having fewer unnecessary accesses to

DBMS.

R13- cascade strategy (JPA) [6]-[8] is implemented by the

Framework.

B. Analysis of Results

Three measures were used for assessing the results that are:

Productivity: here, the productivity is the amount of code

the user needs to create to interact with the Framework, as

compared with the amount that he has to generate without the

Framework. It is worth highlighting that the code generated by

the Framework will present a lower number of errors than the

code generated by the developer. Another important issue is

related to the necessary time for learning to use the

Framework. This time will be less than that spent to learn

Fig. 2. Class Diagram used in the example to evaluate the Framework.

TABLE VI

TIME OF OPERATION.

 JDBC O-ODBM

creation of schema ----- 2689 ms.

initialization 512 ms 734 ms

insert 129 ms 141 ms

update 198 ms 216 ms

Select 155 ms 173 ms

Special Issue on Intelligent Systems and Applications

-34-

about SQL and ORDB.

Support to OR characteristics: it is the capacity of

generating code with structures that allow implementing OO

characteristics in DBMS such as object, inheritance,

aggregation, composition, references, multivalued structures

using the elements available in ORDB [14].

Performance: here, performance is the response time to

execute the specific operation in ORDB with and without the

use of Framework.

The use of annotations aims to increase productivity, since

the use of the Framework is simpler and more intuitive from

the developer’s point of view. Learning was also considered

facilitated by the use of annotations, since the set of

annotations are integrated to the programming environment,

which the developer interacts with more naturally, similarly to

other Frameworks, such as Hibernate.

Another important issue, the use of annotations eliminates

the need of more detailed knowledge about the local of

persistence and objects there defined. In other words, it is

transparent for the developer if UDTs, typed tables, REF

types, etc were created in DBMS. This directly affects the

developer’s productivity, since there are less concepts he/she

needs know.

Similarly to other ORM tools, such as Hibernate, an

interface was available to allow developers to define

transactions.

Without using Framework, it was necessary to generate all

the database schema manually in each DBMS and JDBC was

employed to make the connection and to access each database.

It is not possible, therefore, to compare the performance for

database schema generation between these two approaches

(with and without the use of Framework). Conversely, the

performance considering these two approaches for the insert,

update and select operations were really closed, without

significant differences. Concerning performance, i.e., response

time in data access, few tests were performed with a simple

example and with a small number of data. Then, specific

work must be done for a real performance evaluation. In direct

access (JDBC), the developer needs detailed knowledge about

the ORDB, DBMS used and available data types, besides the

access language.

As to OR characteristics, the O-ODBM Framework did the

mapping using resources of DBMS objects and inheritance,

aggregation, composition, references and multivalued

structure were employed in this process, i.e., UDTs, REFs,

ROWs, MULTSETs and ARRAYs were used. Although there

are differences among Oracle, DB2 and SQL:2008, the

Framework generated appropriate code to map and to access

all of them.

VI. COMMENTS AND CONCLUSIONS

As the ORM Frameworks do not use the new available data

type for ORDBM, this article introduced a proposal for a new

Framework for ORDBMS, called O-ODBM. As the others, O-

ODBM provides a transparent persistence mechanism. The

advantage of the O-ODBM is the use of ORDB, so that the

strength of object-relational model is not ignored [4] and its

suitability for new applications can be more explored. For

example, for scientific applications, it is necessary to deal with

a large number of data, which can be related or gotten in

groups to obtain information of interest. In this case, the use

of RDB could achieve the high level of redundancy of data

due to the kind of associations that will be necessary. Besides,

to obtain statistic information, not only the existent functions

(ex. average, some, etc.) could be necessary. The use of

elements, such as UDTs from ORDBMS, allows new

solutions to be more easily employed [15].

According to the evaluation made in this work, the O-

ODBM was efficient. The advantages are: new concepts are

not necessary to use it; the performance remains near the

direct access (without Framework); automated generation of

code for the persistence of objects; SQL and DBMS do not

need be known by the developer; persistence mechanism is

transparent for the developer.

Finally, the O-ODBM Framework is still a prototype and

for the tool to be effectively used, functionalities need to be

implemented or improved. However, the prototype was

effective to demonstrate the viability of the proposal.

REFERENCES

[1] T. R. Castro, Projeto Lógico para BDOR de acordo com SQL:2003,
proposta de uma ferramenta CASE. 2011. Dissertação Mestrado –
Engineering School, University of São Paulo, São Paulo, 2011.
Avaiable in <www.teses.usp.br/teses/disponiveis/3/3141/tde-
01062011-131450/>. Acessado em janeiro de 2012.

[2] T. R. Castro, S. N.A. Souza, L. S. DeSouza, “Case tool for Object-
Relational Database Design”, Proceedings of CISTI 2012 – 7ª
Conferencia Ibérica de Sistemas y Tecnologias de Información, Madrid,
España, p 181-186, 2012. Avaiable in: http://aisti.eu/cisti2012.

[3] G. Feuerlicht ,J. Pokorný, K. Richta, “Object-Relational Database
Design: Can Your Application Benefit from SQL:2003?” Galway,
Ireland: Springer , p 1-13, 2009.

[4] M. Fotache, C. Strîmbei, “Object-Relational Databases: An Area with
Some Theoretical Promises and Few Practical Achievements”,
Communications of the IBIMA, v. 9, ISSN 1943-7765, 2009. Avaiable
in: <www.ibimapublishing.com/journals/CIBIMA/volume9/v9n7.pdf>.
Acessado em Janeiro de 2012.

[5] M. F. Golobisky, A. Vecchietti, “Mapping UML Class Diagrams into
Object-Relational Schemas”. Rosario, Argentina: Proceedings of ASSE,
p 65-79, 2005.

[6] D. King, C. Bauer,M. Rydahl, E. Bernard, S. Ebersole, “HIBERNATE -
Relational Persistence for Idiomatic Java” Capitulo 14 e 19, 2009,
Avaiable in: <docs.jboss.org/Hibernate/core/3.3/reference/en/html>.
Acessoado em feveiro de 2012.

[7] Java Data Objects (JDO). Avaiable in:
<www.oracle.com/technetwork/java/index-jsp-135919.html>.

[8] The Java Persistence API - A Simpler Programming Model for Entity
Persistence. Avaiable in:
<www.oracle.com/technetwork/articles/javaee/jpa-137156.html>.

[9] E. Marcos, B. Vela, J. M. Cavero, “A Methodological Approach for
Object-Relational Database Design using UML”, Heidelberg : Springer
Berlin, p 59-72, 2003.

[10] Database languages SQL:, ISO-ANSI WD 9075, ISO, Working Group
WG3, 2008.

[11] A. Silberschatz, H. Korth, S. Sudarshan, Sistemas de Banco de Dados;
Campus, 1a edição. 2006.

[12] Annotations. 2003. Avaiable in:
<download.oracle.com/javase/tutorial/java/javaOO/annotations.html>.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 1, Nº 6

-35-

[13] J. M. Vara, B. Vela, J. M. Cavero, E. Marcos, “Model Transformation
for Object-Relational Database Development”. Proceedings of the
ACM symposium on Applied computing, pp. 1012 – 1019. 2007.

[14] C. Calero, F. Ruiz, A. Baroni, F. Brito, M. Piattini, “An Ontological
Approach to Describe the SQL:2003 Object-Relational Features.”
Journal of Computer Standards & Interfaces - Elsevier. 2005

[15] E. PARDEDE, J. W. RAHAYU, D. TANIAR, New SQL Stardand for
Object-Relational Database Applications. Conference Proceedings on
Standardization and Innovation in Information Technology - SIIT2003.
PP. 191-198. 2003.

[16] C. A. Rombaldo Jr,,S. N. A. Souza, L. S. De Souza, “Framework de

Persistência em Banco de Dados Objeto-Relacional”, Proceedings of

CISTI 2012 – 7ª Conferencia Ibérica de Sistemas y Tecnologias de

Información, Madrid, España, p 341-347, 2012. Avaiable in

http://aisti.eu/cisti2012.

Carlos Alberto Rombaldo Junior received the MSc degree

in Computer Engineering at Engineering School of

University of São Paulo (USP), Brazil, in 2012. He has

worked with Information Security and Software

Development over six years. His major interests are

Information Security, Data Persistence and Object Relational

Databases.

Solange N. Alves de Souza is MSc in Nuclear Engineering

and Energetic Planning (Universidade Federal do Rio de

Janeiro – UFRJ) and PHD in Electric Engineering, Database

concentration area (Universidade de São Paulo - USP).

Professor of Engineering School at University of São Paulo

since 2003, has worked in Software Engineering and

Databases. Themes of interest are OODB, Object-Relational Databases,

Persistence of objects, Data Mining, Big Data and Temporal Databases

Luiz Sergio de Souza is MSc in Nuclear Engineering and

Energetic Planning (Universidade Federal do Rio de Janeiro

– UFRJ). He Received the PhD degree in Electrical

Engineering from University of São Paulo (USP), Brazil, in

2000. He worked in an company for 10 years, in which

developed research and managed projects related to nuclear

submarine. Nowadays he is a professor at Technology

Faculty (FATEC), São Paulo, Brazil. His major research interests are IA,

specially related to neural network, software engineering and data

applications.

