FN Clarivate Analytics Web of Science VR 1.0 PT J AU Dong, BB Zhuang, MZ Fang, E Huang, MX AF Dong, Beibei Zhuang, Mengzhou Fang, Eric (Er) Huang, Minxue TI Tales of Two Channels: Digital Advertising Performance Between AI Recommendation and User Subscription Channels SO JOURNAL OF MARKETING LA English DT Article DE in-feed advertising; digital advertising; native advertising; subscription; artificial intelligence; recommendation; click-through rate; conversion rate ID ONLINE; CONSUMERS; ADVERTISEMENTS; POSITION; SALES; MEDIA; MODEL; ME AB Although in-feed advertising is popular on mainstream platforms, academic research on it is limited. Platforms typically deliver organic content through two methods: subscription by users or recommendation by artificial intelligence. However, little is known about the ad performance between these two channels. This research examines how the performance of in-feed ads, in terms of click-through rates and conversion rates, differs between subscription and recommendation channels and whether these effects are mediated by ad intrusiveness and moderated by ad attributes. Two ad attributes are investigated: ad appeal (informational vs. emotional) and ad link (direct vs. indirect). Study 1 finds that the recommendation channel generates higher click-through rates but lower conversion rates than the subscription channel, and these effects are amplified by informational ad appeal and direct ad links. Study 2 explores channel differences, revealing that the recommendation channel yields less source credibility and content control, reducing consumer engagement with organic content. Studies 3 and 4 validate the mediating role of ad intrusiveness and rule out ad recognition as an alternative explanation. Study 5 uses eye-tracking technology to show that the recommendation channel has lower content engagement, lower ad intrusiveness, and greater ad interest. C1 [Dong, Beibei] Lehigh Univ, Coll Business, Mkt, Bethlehem, PA 18015 USA. [Zhuang, Mengzhou] Univ Hong Kong, Fac Business & Econ, Mkt, Hong Kong, Peoples R China. [Fang, Eric (Er)] Lehigh Univ, Coll Business, Iacocca Chair Business, Mkt, Bethlehem, PA USA. [Fang, Eric (Er)] Lehigh Univ, Coll Business, Ctr Digital Mkt Strategy & Analyt, Bethlehem, PA USA. [Huang, Minxue] Wuhan Univ, Econ & Management Sch, Mkt, Wuhan, Peoples R China. C3 Lehigh University; University of Hong Kong; Lehigh University; Lehigh University; Wuhan University RP Dong, BB (autor correspondiente), Lehigh Univ, Coll Business, Mkt, Bethlehem, PA 18015 USA. EM bdong@lehigh.edu; mzhuang@hku.hk; erf219@lehigh.edu; huangminxue@whu.edu.cn RI Zhuang, Mengzhou/AFD-9802-2022 OI Zhuang, Mengzhou/0000-0001-9970-4443 FU The authors thank the JM review team for their valuable guidance in improving the article. Special thanks are extended to Lehigh University colleagues Daniel Zane and Deirdre Malacrea for their comments and assistance in shaping the initia FX The authors thank the JM review team for their valuable guidance in improving the article. Special thanks are extended to Lehigh University colleagues Daniel Zane and Deirdre Malacrea for their comments and assistance in shaping the initial draft of the manuscript. CR Algesheimer R, 2005, J MARKETING, V69, P19, DOI 10.1509/jmkg.69.3.19.66363 ANA, 2021, MED KPIS MATT Aribarg A, 2020, J MARKETING RES, V57, P20, DOI 10.1177/0022243719879711 Bass FM, 2007, MARKET SCI, V26, P179, DOI 10.1287/mksc.1060.0208 Becker M, 2023, J MARKETING, V87, P275, DOI 10.1177/00222429221105818 Ben Dickson, 2018, TECHTALKS Bruce NI, 2017, J MARKETING RES, V54, P202, DOI 10.1509/jmr.14.0117 Campbell C, 2018, J INTERACT MARK, V43, P17, DOI 10.1016/j.intmar.2018.02.002 Campbell C, 2015, BUS HORIZONS, V58, P599, DOI 10.1016/j.bushor.2015.06.003 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chandy RK, 2001, J MARKETING RES, V38, P399, DOI 10.1509/jmkr.38.4.399.18908 Chatterjee P, 2003, MARKET SCI, V22, P520, DOI 10.1287/mksc.22.4.520.24906 Chiou L, 2017, J ECON MANAGE STRAT, V26, P782, DOI 10.1111/jems.12207 Cho CH, 2004, J ADVERTISING, V33, P89, DOI 10.1080/00913367.2004.10639175 Cian L, 2014, J MARKETING RES, V51, P184, DOI 10.1509/jmr.13.0023 CodeFuel, 2021, WHAT AR IN FEED SOC Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055 Dahl DW, 2007, J MARKETING RES, V44, P357, DOI 10.1509/jmkr.44.3.357 Danaher PJ, 2013, J MARKETING RES, V50, P517, DOI 10.1509/jmr.12.0241 Danaher PJ, 2003, J ADVERTISING RES, V43, P252, DOI 10.1017/S0021849903030319 Dinner IM, 2014, J MARKETING RES, V51, P527, DOI 10.1509/jmr.11.0466 eMarketer, 2018, NAT AD SPEND WILL MA Ghose A, 2009, MANAGE SCI, V55, P1605, DOI 10.1287/mnsc.1090.1054 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 GOODWIN S, 1980, J MARKETING RES, V17, P187, DOI 10.2307/3150929 Gordon BR, 2021, J MARKETING, V85, P7, DOI 10.1177/0022242920913236 Guitart IA, 2021, J MARKETING RES, V58, P299, DOI 10.1177/0022243720962505 Ha L, 1996, J ADVERTISING RES, V36, P76 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 Hoffman DL, 2022, J MARKETING, V86, P1, DOI 10.1177/00222429211061636 Karmarkar UR, 2010, J CONSUM RES, V36, P1033, DOI 10.1086/648381 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Li HR, 2002, J ADVERTISING, V31, P37, DOI 10.1080/00913367.2002.10673665 Liu-Thompkins Y, 2019, J ADVERTISING, V48, P1, DOI 10.1080/00913367.2018.1556138 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 MacInnis DJ, 2002, J MARKETING RES, V39, P391, DOI 10.1509/jmkr.39.4.391.19118 Mathwick C, 2004, J CONSUM RES, V31, P324, DOI 10.1086/422111 MILLAR MG, 1990, J PERS SOC PSYCHOL, V59, P217, DOI 10.1037/0022-3514.59.2.217 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Muk Alexander., 2013, Journal of Marketing Analytics, V1, P127, DOI DOI 10.1057/JMA.2013.12 Petty R., 1986, Communication and persuasion: Central and peripheral routes to attitude change, DOI [DOI 10.1016/S0065-2601(08)60214-2, 10.1016/S0065-2601(08)60214-2] PETTY RE, 1983, J CONSUM RES, V10, P135, DOI 10.1086/208954 Pieters R, 2007, J CONSUM RES, V34, P224, DOI 10.1086/519150 Pieters R, 2010, J MARKETING, V74, P48, DOI 10.1509/jmkg.74.5.48 Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Rajavi K, 2019, J CONSUM RES, V46, P651, DOI 10.1093/jcr/ucz026 Rutz OJ, 2011, MARKET SCI, V30, P646, DOI 10.1287/mksc.1110.0635 Sahni NS, 2020, MARKET SCI, V39, P5, DOI 10.1287/mksc.2018.1125 Sahni NS, 2018, MARKET SCI, V37, P236, DOI 10.1287/mksc.2017.1066 SCHUMANN DW, 1990, J CONSUM RES, V17, P192, DOI 10.1086/208549 Seiler S, 2017, MARKET SCI, V36, P838, DOI 10.1287/mksc.2017.1045 TechXplore, 2018, GOOGL LAUNCH AI DRIV Teixeira T, 2012, J MARKETING RES, V49, P144, DOI 10.1509/jmr.10.0207 Trendel O, 2018, J MARKETING RES, V55, P265, DOI 10.1509/jmr.14.0305 Trope Y., 2012, Handbook of Theories of Social Psychology, P118, DOI DOI 10.4135/9781446249215.N7 Vespe F, 1997, J PUBLIC POLICY MARK, V16, P176, DOI 10.1177/074391569701600121 Wang PY, 2019, J MARKETING, V83, P82, DOI 10.1177/0022242918817549 Wang QL, 2019, J ACAD MARKET SCI, V47, P1005, DOI 10.1007/s11747-019-00678-2 Wojdynski B.W., 2016, NATIVE ADVERTISING F Wojdynski BW, 2016, J ADVERTISING, V45, P157, DOI 10.1080/00913367.2015.1115380 Xiang DD, 2019, J ACAD MARKET SCI, V47, P1046, DOI 10.1007/s11747-019-00638-w Xu LZ, 2014, MANAGE SCI, V60, P1392, DOI 10.1287/mnsc.2014.1952 Zhuang MZ, 2021, INFORM SYST RES, V32, P1412, DOI 10.1287/isre.2021.1039 NR 63 TC 1 Z9 1 U1 214 U2 214 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2429 EI 1547-7185 J9 J MARKETING JI J. Mark. PD MAR PY 2024 VL 88 IS 2 BP 141 EP 162 DI 10.1177/00222429231190021 EA SEP 2023 PG 22 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HB2B3 UT WOS:001093043000001 DA 2024-03-27 ER PT J AU Baek, TH AF Baek, Tae Hyun TI Digital Advertising in the Age of Generative AI SO JOURNAL OF CURRENT ISSUES AND RESEARCH IN ADVERTISING LA English DT Article ID IMPACT AB Artificial intelligence (AI) is significantly reshaping branded content delivery and consumer engagement in the advertising industry. Generative AI, exemplified by ChatGPT, is anticipated to have a substantial impact on all digital advertising domains worldwide. This special issue delves into the exploration of future trends in global digital advertising in the era of generative AI. The research articles within this special issue encompass a diverse array of topics, ranging from consumer responses to AI-generated virtual influencers in the metaverse and livestreaming e-commerce to the influence of anthropomorphic virtual agents, privacy concerns in online behavioral advertising, understanding of AI-driven ethnic affinity targeting, and the role of relational bonds within online gaming communities. C1 [Baek, Tae Hyun] Sungkyunkwan Univ, Dept Media & Commun, Seoul, South Korea. C3 Sungkyunkwan University (SKKU) RP Baek, TH (autor correspondiente), Sungkyunkwan Univ, Dept Media & Commun, Seoul, South Korea. EM tbaek@skku.edu RI Baek, Tae Hyun/JGD-1912-2023 CR Aalberts R.J., 2016, Journal of Current Issues Research in Advertising, V37, DOI DOI 10.1080/10641734.2016.1171177 Baek TH, 2023, J BUS RES, V164, DOI 10.1016/j.jbusres.2023.114039 Baek TH, 2022, INT J ADVERT, V41, P850, DOI 10.1080/02650487.2021.2011654 Baek TH, 2018, INT J ADVERT, V37, P421, DOI 10.1080/02650487.2016.1244887 Bakpayev M, 2022, AUSTRALAS MARK J, V30, P90, DOI 10.1016/j.ausmj.2020.04.002 Feng Y, 2019, J CURR ISS RES AD, V40, P36, DOI 10.1080/10641734.2018.1500321 Haikel-Elsabeh M, 2023, J CURR ISS RES AD, V44, P252, DOI 10.1080/10641734.2023.2218420 Kim M, 2023, J CURR ISS RES AD, V44, P274, DOI 10.1080/10641734.2023.2191117 Rodgers S, 2021, J ADVERTISING, V50, P1, DOI 10.1080/00913367.2020.1868233 Saad SB, 2023, J CURR ISS RES AD, V44, P295, DOI 10.1080/10641734.2023.2218432 Statista, 2023, Digital advertising spending worldwide from 2021 to 2026 Wan A, 2023, J CURR ISS RES AD, V44, P332, DOI 10.1080/10641734.2023.2224416 Yun J. T., 2023, J CURRENT ISSUES RES, V44, P24, DOI https://doi.org/10.1080/10641734.2022.2090464 Zhang D, 2023, J CURR ISS RES AD, V44, P392, DOI 10.1080/10641734.2023.2199812 Zhang WL, 2023, J CURR ISS RES AD, V44, P373, DOI 10.1080/10641734.2023.2212022 NR 15 TC 2 Z9 2 U1 155 U2 170 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1064-1734 EI 2164-7313 J9 J CURR ISS RES AD JI J. Curr. Issues Res. Advert. PD JUL 3 PY 2023 VL 44 IS 3 SI SI BP 249 EP 251 DI 10.1080/10641734.2023.2243496 PG 3 WC Business; Communication WE Emerging Sources Citation Index (ESCI) SC Business & Economics; Communication GA Q0SG2 UT WOS:001054694000001 DA 2024-03-27 ER PT J AU Lambrecht, A Tucker, C AF Lambrecht, Anja Tucker, Catherine TI Algorithmic Bias? An Empirical Study of Apparent Gender-Based Discrimination in the Display of STEM Career Ads SO MANAGEMENT SCIENCE LA English DT Article DE algorithmic bias; online advertising; algorithms; artificial intelligence ID FEMALE; WOMEN; TECHNOLOGY; MODELS AB We explore data from a field test of how an algorithm delivered ads promoting job opportunities in the science, technology, engineering and math fields. This ad was explicitly intended to be gender neutral in its delivery. Empirically, however, fewer women saw the ad than men. This happened because younger women are a prized demographic and are more expensive to show ads to. An algorithm that simply optimizes cost-effectiveness in ad delivery will deliver ads that were intended to be gender neutral in an apparently discriminatory way, because of crowding out. We show that this empirical regularity extends to other major digital platforms. C1 [Lambrecht, Anja] London Business Sch, Mkt, London NW1 4SA, England. [Tucker, Catherine] MIT, Mkt, Cambridge, MA 02142 USA. C3 University of London; London Business School; Massachusetts Institute of Technology (MIT) RP Lambrecht, A (autor correspondiente), London Business Sch, Mkt, London NW1 4SA, England. EM alambrecht@london.edu; cetucker@mit.edu RI Lambrecht, Anja/C-6300-2014; Tucker, Catherine E/H-4878-2011 OI /0000-0002-1847-4832 FU National Science Foundation Career Award [6923256] FX Supported by a National Science Foundation Career Award [Grant 6923256]. CR Altonji J. G., 2015, 21655 NBER [Anonymous], WORKING PAPER [Anonymous], 2017, 23180 NBER [Anonymous], 2016, 22776 NBER Arrow K., 1973, Discrimination in Labour Markers Athey S, 2010, AM ECON REV, V100, P608, DOI 10.1257/aer.100.2.608 Becker G.S., 2010, EC DISCRIMINATION BECKER GS, 1993, J POLIT ECON, V101, P385, DOI 10.1086/261880 Bertrand M., 2017, Handbook of economic field experiments, P309, DOI 10.1016/bs.hefe.2016.08.004 Brown C, 1997, J LABOR ECON, V15, P431, DOI 10.1086/209867 Cheryan S, 2011, SOC PSYCHOL PERS SCI, V2, P656, DOI 10.1177/1948550611405218 Cowgill B, 2017, WORKING PAPER Datta Amit, 2015, Proceedings on Privacy Enhancing Technologies, V1, P92, DOI 10.1515/popets-2015-0007 Diekman AB, 2010, PSYCHOL SCI, V21, P1051, DOI 10.1177/0956797610377342 Edelman B.G., 2014, DIGITAL DISCRIMINATI Edelman B, 2017, AM ECON J-APPL ECON, V9, P1, DOI 10.1257/app.20160213 Facebook Business, 2015, SHOW REL SCOR ADS FA FLATH D, 1979, J MARKETING RES, V16, P533, DOI 10.2307/3150813 Ghosh A, 2009, LECT NOTES COMPUT SC, V5929, P208, DOI 10.1007/978-3-642-10841-9_20 Goldfarb A, 2011, MANAGE SCI, V57, P458, DOI 10.1287/mnsc.1100.1287 Goldin C, 2014, AM ECON REV, V104, P1091, DOI 10.1257/aer.104.4.1091 GUNDERSON M, 1989, J ECON LIT, V27, P46 Lambrecht A, 2018, MARKET SCI, V37, P177, DOI 10.1287/mksc.2017.1062 Morton FS, 2003, QME-QUANT MARK ECON, V1, P65, DOI 10.1023/A:1023529910567 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Oaxaca R., 1973, INT ECON REV, V14, P693, DOI [DOI 10.2307/2525981, 10.2307/2525981] ONeil Cathy, 2016, WEAPONS MATH DESTRUC Pope DG, 2011, J HUM RESOUR, V46, P53, DOI 10.1353/jhr.2011.0025 Shapiro JR, 2012, SEX ROLES, V66, P175, DOI 10.1007/s11199-011-0051-0 Shaw M, 2012, OMI SOCIAL MEDIA SUM Silverstein MJ, 2009, HARVARD BUS REV, V87, P46 Sweeney L., 2013, DISCRIMINATION ONLIN, V11, P10, DOI [DOI 10.1145/2447976.2447990, DOI 10.1145/2460276.2460278] Swire P, 2014, CISC VIS NETW IND GL Tucker C, 2014, SOCIAL ADVERTI UNPUB Tucker CE, 2014, J MARKETING RES, V51, P546, DOI 10.1509/jmr.10.0355 Vermeren I., 2015, BRANDWATCH 0128 Williams WM, 2015, P NATL ACAD SCI USA, V112, P5360, DOI 10.1073/pnas.1418878112 NR 37 TC 233 Z9 266 U1 59 U2 345 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD JUL PY 2019 VL 65 IS 7 BP 2966 EP 2981 DI 10.1287/mnsc.2018.3093 PG 16 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA IJ2CB UT WOS:000475704700002 OA Green Submitted, Green Accepted HC Y HP N DA 2024-03-27 ER PT J AU Paskaramoorthy, AB Gebbie, TJ van Zyl, TL AF Paskaramoorthy, Andrew B. Gebbie, Tim J. van Zyl, Terence L. TI A framework for online investment decisions SO INVESTMENT ANALYSTS JOURNAL LA English DT Article DE online adaptive learning; portfolio management; machine learning ID CROSS-SECTION; STOCK; MODEL AB The artificial segmentation of the investment management process into silos of human operators can restrict silos from collectively and adaptively pursuing a unified investment goal. In this article, we argue that the investment process can be accelerated and be made more cohesive by replacing batch processing for component tasks of the investment process with online processing. We propose an integrated and online framework for investment workflows, where components produce outputs that are automatically and sequentially updated as new data arrives. The workflow can be further enhanced to refine signal generation and asset class evolution and definitions. Our results demonstrate that we use this framework in conjunction with resampling methods to optimise component decisions with direct reference to investment objectives while making clear the extent of backtest overfitting. We consider such an online update framework to be a crucial step towards developing intelligent portfolio selection algorithms that integrate financial theory, investor views, and data analysis with process-level learning. C1 [Paskaramoorthy, Andrew B.] Univ Witwatersrand, Comp Sci & Appl Maths, Johannesburg, South Africa. [Gebbie, Tim J.] Univ Cape Town, Dept Stat Sci, Cape Town, South Africa. [van Zyl, Terence L.] Univ Johannesburg, Inst Intelligent Syst, Johannesburg, South Africa. C3 University of Witwatersrand; University of Cape Town; University of Johannesburg RP Paskaramoorthy, AB (autor correspondiente), Univ Witwatersrand, Comp Sci & Appl Maths, Johannesburg, South Africa. EM andrew.paskaramoorthy@wits.ac.za RI van Zyl, Terence L/B-9841-2008; Gebbie, Tim/AAH-7684-2019 OI van Zyl, Terence L/0000-0003-4281-630X; Gebbie, Tim/0000-0002-4061-2621; Paskaramoorthy, Andrew/0000-0002-7812-5909 CR Bailey D., 2014, Notices of the AMS, V61, P458 Bailey DH, 2017, J COMPUT FINANC, V20, P39, DOI 10.21314/JCF.2016.322 Bailey DH, 2014, J PORTFOLIO MANAGE, V40, P94, DOI 10.3905/jpm.2014.40.5.094 Bailey DH, 2012, J RISK, V15, P3 Ban GY, 2018, MANAGE SCI, V64, P1136, DOI 10.1287/mnsc.2016.2644 Black F., 1992, Financial Analysts Journal, V48, P28, DOI DOI 10.2469/FAJ.V48.N5.28 Borodin A, 2004, J ARTIF INTELL RES, V21, P579, DOI 10.1613/jair.1336 Cover T., 1991, Mathematical finance, V1, P1, DOI [DOI 10.1111/J.1467-9965.1991.TB00002.X, https://doi.org/10.1111/j.1467-9965.1991.tb00002.x] Cover TM, 1996, IEEE T INFORM THEORY, V42, P348, DOI 10.1109/18.485708 Daniel K, 1997, J FINANC, V52, P1, DOI 10.2307/2329554 De Prado M.L., 2018, Advances in Financial Machine Learning FAMA EF, 1993, J FINANC ECON, V33, P3, DOI 10.1016/0304-405X(93)90023-5 Ferson WE, 1999, J FINANC, V54, P1325, DOI 10.1111/0022-1082.00148 Gelb A., 1989, Applied Optimal Estimation Harvey CR, 2016, REV FINANC STUD, V29, P5, DOI [10.1093/rfs/hhv059, 10.18845/tm.v29i8.2980] Harvey CR, 2015, J PORTFOLIO MANAGE, V42, P13, DOI 10.3905/jpm.2015.42.1.013 Haugen RA, 1996, J FINANC ECON, V41, P401, DOI 10.1016/0304-405X(95)00868-F Hendricks D, 2014, IEEE C COMP INTEL FI, P457, DOI 10.1109/CIFEr.2014.6924109 Kolm PN, 2014, EUR J OPER RES, V234, P356, DOI 10.1016/j.ejor.2013.10.060 Lee W., 2000, Theory and Methodology of Tactical Asset Allocation Li B, 2014, ACM COMPUT SURV, V46, DOI 10.1145/2512962 Ljung L., 1987, THEORY PRACTICE RECU Lo AW, 2004, J PORTFOLIO MANAGE, P15, DOI 10.3905/jpm.2004.442611 Markowitz H, 1952, J FINANC, V7, P77, DOI 10.1111/j.1540-6261.1952.tb01525.x Murphy N., 2019, ARXIV190302228 Noh JD, 2000, PHYS REV E, V61, P5981, DOI 10.1103/PhysRevE.61.5981 O'Toole R, 2017, J ASSET MANAG, V18, P580, DOI 10.1057/s41260-017-0055-6 ROLL R, 1977, J FINANC ECON, V4, P129, DOI 10.1016/0304-405X(77)90009-5 Snow D., 2020, The Journal of Financial Data Science, V1, P10 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 THEIL H, 1961, INT ECON REV, V2, P65, DOI 10.2307/2525589 van Rensburg P., 2003, J ASSET MANAG, V4, P334, DOI DOI 10.1057/PALGRAVE.JAM.2240114 Wilcox D., 2014, HIERARCHICAL CAUSALI Wilcox DL, 2015, INVEST ANAL J, V44, P1, DOI 10.1080/10293523.2014.994437 Zou Y, 2000, IEEE SIGNAL PROC LET, V7, P324, DOI 10.1109/97.873571 NR 35 TC 8 Z9 8 U1 0 U2 7 PU INVESTMENT ANALYSTS SOC SOUTHERN AFRICA PI FERNDALE PA PO BOX 131, FERNDALE, 2160, SOUTH AFRICA SN 1029-3523 EI 2077-0227 J9 INVEST ANAL J JI Invest. Anal. J. PD JUL 2 PY 2020 VL 49 IS 3 SI SI BP 215 EP 231 DI 10.1080/10293523.2020.1806460 EA SEP 2020 PG 17 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA OI6BK UT WOS:000578874100001 OA Green Submitted DA 2024-03-27 ER PT J AU Sandrini, L Somogyi, R AF Sandrini, Luca Somogyi, Robert TI Generative AI and deceptive news consumption SO ECONOMICS LETTERS LA English DT Article DE Generative AI; News media market; Online advertising; Clickbait; Fake news AB In this paper, we analyze the effects of advancements in generative Artificial Intelligence (GenAI) on the news media market. We model a representative consumer who allocates their time between reading news and deceptive articles. We find that GenAI may induce consumers to inefficiently reallocate their time and increase the consumption of the lower value good, i.e. deceptive content (clickbait articles or fake news). Therefore, early-stage GenAI distorts the incentives of consumers and reduces their welfare. After GenAI technology reaches a certain threshold, however, consumers start benefiting from its advancements. Finally, we find that the negative effects of early-stage GenAI are exacerbated as they induce a lower level of investment in news production.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Sandrini, Luca] Budapest Univ Technol & Econ, QSMS Res Ctr, Muegyet rkp 3, H-1111 Budapest, Hungary. [Somogyi, Robert] Budapest Univ Technol & Econ, Dept Finance, Muegyet Rkp 3, H-1111 Budapest, Hungary. [Somogyi, Robert] Ctr Econ & Reg Studies, Toth Kalman Utca 4, H-1097 Budapest, Hungary. C3 Budapest University of Technology & Economics; Budapest University of Technology & Economics; Hungarian Academy of Sciences; Hungarian Research Network; HUN-REN Centre for Economic & Regional Studies RP Sandrini, L (autor correspondiente), Budapest Univ Technol & Econ, QSMS Res Ctr, Muegyet rkp 3, H-1111 Budapest, Hungary. EM sandrini.luca@gtk.bme.hu RI Somogyi, Robert/C-7476-2019 OI Somogyi, Robert/0000-0003-1033-1754 FU National Research Development and Innovation Office (NKFIH) [OTKA FK-142492] FX We thank Aniko Grad-Gyenge, Laszlo A. Koczy, Melika Liporace, Leonardo Madio and seminar participants at the QSMS seminar for useful comments. Robert Somogyi thanks the support of the National Research Development and Innovation Office (NKFIH) under grant number OTKA FK-142492. CR Acemoglu D., 2021, TASKS AUTOMATION, DOI DOI 10.3386/W28920 Ahmad W., 2023, SSRN Anderson SP, 2020, J ECON THEORY, V186, DOI 10.1016/j.jet.2019.104990 Anderson SP, 2018, ECON J, V128, P34, DOI 10.1111/ecoj.12428 Anderson SP, 2005, REV ECON STUD, V72, P947, DOI 10.1111/0034-6527.00357 Angelucci C, 2019, AM ECON J-MICROECON, V11, P319, DOI 10.1257/mic.20170306 Athey S., 2021, WORKING PAPER SERIES, V28746 Calzada J, 2020, MARKET SCI, V39, P134, DOI 10.1287/mksc.2019.1150 Choné P, 2020, INT J IND ORGAN, V73, DOI 10.1016/j.ijindorg.2020.102663 D'Annunzio A, 2024, MARKET SCI, V43, DOI 10.1287/mksc.2023.1435 Fergusson G., 2023, GENERATING HARMS GEN Freimane M., 2023, SUBSTITUTING A UNPUB Jones C.I., 2023, AI DILEMMA GROWTH VE NAGLER MG, 1993, J PUBLIC ECON, V51, P359, DOI 10.1016/0047-2727(93)90071-Z Ngo R, 2022, Arxiv, DOI [arXiv:2209.00626, DOI 10.48550/ARXIV.2209.00626] Piccolo S, 2018, MANAGE SCI, V64, P1291, DOI 10.1287/mnsc.2016.2665 Sandrini L., 2023, SSRN Simonov A., 2023, 17956 CEPR SINGH N, 1984, RAND J ECON, V15, P546, DOI 10.2307/2555525 Zinman J, 2016, AM ECON J-APPL ECON, V8, P177, DOI 10.1257/app.20130346 NR 20 TC 0 Z9 0 U1 75 U2 75 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0165-1765 EI 1873-7374 J9 ECON LETT JI Econ. Lett. PD NOV PY 2023 VL 232 AR 111317 DI 10.1016/j.econlet.2023.111317 EA SEP 2023 PG 4 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA S5JA1 UT WOS:001071515900001 OA hybrid DA 2024-03-27 ER PT J AU Neumann, N Tucker, CE Whitfield, T AF Neumann, Nico Tucker, Catherine E. Whitfield, Timothy TI Frontiers: How Effective Is Third-Party Consumer Profiling? Evidence from Field Studies SO MARKETING SCIENCE LA English DT Article DE digital advertising; data brokers; profiling; algorithms; machine learning; big data ID BROWSING BEHAVIOR; ONLINE AB Data brokers often u,e (mime browsing records to create digital consumer profiles that they sell to marketers as predefined audiences for ad targeting. However, this process is a "black box"-little is known about the reliability of the digital profiles that are created or of the audience identification provided by buying platforms. In this paper, we investigate using three field tests the accuracy of a variety of demographic and audience-interest segments. We examine the accuracy of more than 90 third-party audiences across 19 data brokers. Audience segments vary greatly in quality and are often inaccurate across leading data brokers. In comparison with random audience selection, the use of black box data profiles, on average, increased identification of a user with a desired single attribute by 0%-77%. Audience identification can be improved, on average, by 123% when combined with optimization software. However, given the high extra costs of targeting solutions and the relative inaccuracy, we find that third-party audiences are often economically unattractive except for higher-priced media placements. C1 [Neumann, Nico] Melbourne Business Sch, Ctr Business Analyt, Carlton, Vic 3053, Australia. [Tucker, Catherine E.] MIT, Sloan Sch Management, Cambridge, MA 02142 USA. [Tucker, Catherine E.] NBER, Cambridge, MA 02138 USA. [Whitfield, Timothy] Burst SMS, Sydney, NSW 2000, Australia. C3 Massachusetts Institute of Technology (MIT); National Bureau of Economic Research RP Neumann, N (autor correspondiente), Melbourne Business Sch, Ctr Business Analyt, Carlton, Vic 3053, Australia. EM n.neumann@mbs.edu; cetucker@mit.edu; twhitfie@gmail.com FU National Science Foundation CAREER Award [6923256] FX This work was supported by a National Science Foundation CAREER Award [6923256]. CR [Anonymous], 2017, ECONOMIST Bergemann D, 2015, AM ECON J-MICROECON, V7, P259, DOI 10.1257/mic.20140155 Bucklin RE, 2003, J MARKETING RES, V40, P249, DOI 10.1509/jmkr.40.3.249.19241 Chen YX, 2001, MARKET SCI, V20, P23, DOI 10.1287/mksc.20.1.23.10201 Coey D, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P1103, DOI 10.1145/2872427.2882984 DeBruyn A, 2019, WORKING PAPER Flosi S, 2013, J ADVERTISING RES, V53, P192, DOI 10.2501/JAR-53-2-192-199 Hof Robert, 2014, FORBES IAB, 2018, Major advertising trade bodies unveil data transparency label IAB and WinterberryGroup, 2018, STAT DAT Johnson GA, 2017, J MARKETING RES, V54, P867, DOI 10.1509/jmr.15.0297 Kelly C, 2017, INACCURATE SEGMENTS Kim Y, 2005, MANAGE SCI, V51, P264, DOI 10.1287/mnsc.1040.0296 Lambrecht A, 2013, J MARKETING RES, V50, P561, DOI 10.1509/jmr.11.0503 Lerner A, 2016, PROCEEDINGS OF THE 25TH USENIX SECURITY SYMPOSIUM, P997 Lin T.-C., 2018, GENDER DIFFERENCES R, DOI DOI 10.2139/SSRN.3045050 Lotame, 2018, NEW STAT AUD DAT ACC Mallazzo M, 2018, DID FLAWED DATA BECO Murthi BPS, 2003, MANAGE SCI, V49, P1344, DOI 10.1287/mnsc.49.10.1344.17313 Narayanan S, 2006, MARKET SCI, V28, P424 Pancras J, 2007, J MARKETING RES, V44, P560, DOI 10.1509/jmkr.44.4.560 Park YH, 2004, MARKET SCI, V23, P280, DOI 10.1287/mksc.1040.0050 Sahni NS, 2019, J MARKETING RES, V56, P401, DOI 10.1177/0022243718813987 Salesforce, 2018, DIG ADV 2020 INS NEW Statista, 2015, AUSTR AG DISTR INT U Trusov M, 2016, MARKET SCI, V35, P405, DOI 10.1287/mksc.2015.0956 NR 26 TC 35 Z9 39 U1 7 U2 56 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD NOV-DEC PY 2019 VL 38 IS 6 BP 918 EP 926 DI 10.1287/mksc.2019.1188 PG 9 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA JU3SK UT WOS:000501598400002 DA 2024-03-27 ER PT J AU Li, LS Chen, JQ Raghunathan, S AF Li, Lusi Chen, Jianqing Raghunathan, Srinivasan TI INFORMATIVE ROLE OF RECOMMENDER SYSTEMS IN ELECTRONIC MARKETPLACES: A BOON OR A BANE FOR COMPETING SELLERS SO MIS QUARTERLY LA English DT Article DE Recommender system; electronic commerce; online advertising; analytical modeling; economics of IS ID IMPACT; REVIEWS AB Recommender systems have become the cornerstone of electronic marketplaces that sell products from competing sellers. Similar to traditional advertising, recommender systems can introduce consumers to new products and increase the market size which benefits sellers. This informative role of recommender systems in electronic marketplaces seems attractive to sellers because sellers do not pay the marketplaces for receiving recommendations. We show that in a marketplace that deploys a recommender system helping consumers discover the product that provides them the highest expected net utility, sellers do not necessarily benefit from the 'free" exposure provided by the recommender system. The impacts of the recommender system are the result of a subtle interaction between advertising effect and competition effect. The advertising effect causes sellers to advertise less on their own and the competition effect causes them to decrease prices in the presence of a recommender system. Essentially, sellers "pay" in the form of more intense price competition because of the recommender system. Furthermore, the competition effect is exacerbated by the advertising effect because the recommender system alters a seller's own strategies related to advertising intensity and price from being strategic substitutes in the absence of the recommender system to being strategic complements in its presence. As a result of these two effects, we find that sellers are more likely to benefit from the recommender system only when it has a high precision. The results do not change qualitatively whether sellers use targeted advertising or uniform advertising. However, we find that a recommender system that benefits sellers when they do not employ targeted advertising may actually hurt them when they adopt targeted advertising with a high precision. On the other hand, in the presence of the recommender system, an increase in sellers' targeting precision beyond a threshold softens price competition, increases seller profits, and reduces consumer surplus. Finally, we find that when the recommender system assigns a larger weight to product fit than price, the adverse impacts of the recommender system on sellers are mitigated, thereby expanding the region in the parameter space where the recommender system is beneficial to sellers. C1 [Li, Lusi] Calif State Univ Los Angeles, Coll Business & Econ, 5151 State Univ Dr, Los Angeles, CA 90032 USA. [Chen, Jianqing; Raghunathan, Srinivasan] Univ Texas Dallas, Jindal Sch Management, 800 West Campbell Rd, Richardson, TX 75080 USA. C3 California State University System; California State University Los Angeles; University of Texas System; University of Texas Dallas RP Li, LS (autor correspondiente), Calif State Univ Los Angeles, Coll Business & Econ, 5151 State Univ Dr, Los Angeles, CA 90032 USA. EM lli57@calstatela.edu; chenjq@utdallas.edu; sraghu@utdallas.edu RI Raghunathan, Srinivasan/KFR-3471-2024 OI Raghunathan, Srinivasan/0000-0002-2782-3520 FU NSFC [71528004, 71431002] FX We thank the detailed and constructive comments from the review team, which have greatly improved the paper. We also thank participants at the Workshop on Information Systems and Economics (2015), as well as seminar participants at Dalian University of Technology and The University of Texas at Dallas for their helpful feedback. Jianqing Chen acknowledges the financial support from the NSFC [Grants No.71528004 and 71431002]. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Bergemann D., 2006, P ACM C EL COMM, P43, DOI DOI 10.1145/1134707.1134713 BESTER H, 1995, EUR ECON REV, V39, P1075, DOI 10.1016/0014-2921(94)00099-L Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Chen LS, 2008, INFORM SCIENCES, V178, P1032, DOI 10.1016/j.ins.2007.09.027 Choudhary V., 2019, WORKING PAPER, DOI [10.2139/ssrn.3398994, DOI 10.2139/SSRN.3398994] Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gal-Or E, 2005, MARKET SCI, V24, P241, DOI 10.1287/mksc.1040.0092 Gal-Or E, 2006, MANAGE SCI, V52, P713, DOI 10.1287/mnsc.1050.0489 Ghoshal A, 2015, J MANAGE INFORM SYST, V31, P243, DOI 10.1080/07421222.2014.1001276 GROSSMAN GM, 1984, REV ECON STUD, V51, P63, DOI 10.2307/2297705 Hennig-Thurau T, 2012, J MARKETING, V76, P89, DOI 10.1509/jm.10.0537 Hervas-Drane A, 2015, INT J RES MARK, V32, P207, DOI 10.1016/j.ijresmar.2015.02.005 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Iyer G, 2005, MARKET SCI, V24, P461, DOI 10.1287/mksc.1050.0117 Jabr W, 2014, MIS QUART, V38, P635, DOI 10.25300/MISQ/2014/38.3.01 Johnson JP, 2006, AM ECON REV, V96, P756, DOI 10.1257/aer.96.3.756 Kwark Y, 2014, INFORM SYST RES, V25, P93, DOI 10.1287/isre.2013.0511 Ni L, 2011, DESALIN WATER TREAT, V34, P32, DOI 10.5004/dwt.2011.2851 Oestreicher-Singer G, 2012, MANAGE SCI, V58, P1963, DOI 10.1287/mnsc.1120.1536 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Shani G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P257, DOI 10.1007/978-0-387-85820-3_8 Soberman DA, 2004, MANAGE SCI, V50, P1744, DOI 10.1287/mnsc.1040.0288 Tam KY, 2006, MIS QUART, V30, P865 Tirole J, 1988, THEORY IND ORG VIVES X, 1984, J ECON THEORY, V34, P71, DOI 10.1016/0022-0531(84)90162-5 Zhang X., MIS Q, V45 NR 29 TC 13 Z9 15 U1 23 U2 150 PU SOC INFORM MANAGE-MIS RES CENT PI MINNEAPOLIS PA UNIV MINNESOTA-SCH MANAGEMENT 271 19TH AVE SOUTH, MINNEAPOLIS, MN 55455 USA SN 0276-7783 J9 MIS QUART JI MIS Q. PD DEC PY 2020 VL 44 IS 4 BP 1957 EP 1985 DI 10.25300/MISQ/2020/14614 PG 29 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA PB0TB UT WOS:000596039600014 DA 2024-03-27 ER PT J AU Rathee, S Banker, S Mishra, A Mishra, H AF Rathee, Shelly Banker, Sachin Mishra, Arul Mishra, Himanshu TI Algorithms propagate gender bias in the marketplace-with consumers' cooperation SO JOURNAL OF CONSUMER PSYCHOLOGY LA English DT Article DE customer segmentation; digital advertising; gender bias; natural language processing; word embedding ID PERSONALITY; STEREOTYPES; PREJUDICE; COGNITION AB Recent research shows that algorithms learn societal biases from large text corpora. We examine the marketplace-relevant consequences of such bias for consumers. Based on billions of documents from online text corpora, we first demonstrate that from gender biases embedded in language, algorithms learn to associate women with more negative consumer psychographic attributes than men (e.g., associating women more closely with impulsive vs. planned investors). Second, in a series of field experiments, we show that such learning results in the delivery of gender-biased digital advertisements and product recommendations. Specifically, across multiple platforms, products, and attributes, we find that digital advertisements containing negative psychographic attributes (e.g., impulsive) are more likely to be delivered to women compared to men, and that search engine product recommendations are similarly biased, which influences consumer's consideration sets and choice. Finally, we empirically examine consumer's role in co-producing algorithmic gender bias in the marketplace and observe that consumers reinforce these biases by accepting gender stereotypes (i.e., clicking on biased ads). We conclude by discussing theoretical and practical implications. C1 [Rathee, Shelly] Villanova Sch Business, Dept Mkt & Business Law, Villanova, PA USA. [Banker, Sachin; Mishra, Arul; Mishra, Himanshu] Univ Utah, David Eccles Sch Business, Salt Lake City, UT USA. [Rathee, Shelly] Villanova Sch Business, Dept Mkt & Business Law, 3044 Bartley Hall, Villanova, PA 19085 USA. C3 Villanova University; Utah System of Higher Education; University of Utah; Villanova University RP Rathee, S (autor correspondiente), Villanova Sch Business, Dept Mkt & Business Law, 3044 Bartley Hall, Villanova, PA 19085 USA. EM shelly.rathee@villanova.edu OI Rathee, Shelly/0000-0002-4403-7775 CR Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897 Agan A. Y., 2023, Automating Automaticity: How the Context of Human Choice Affects the Extent of Algorithmic Bias (No. w30981) Ailawadi KL, 2001, J MARKETING, V65, P71, DOI 10.1509/jmkg.65.1.71.18132 Allport G. A., 1954, NATURE PREJUDICE ANDERSON NH, 1968, J PERS SOC PSYCHOL, V9, P272, DOI 10.1037/h0025907 BELK RW, 1988, J CONSUM RES, V15, P139, DOI 10.1086/209154 Berger J, 2007, J CONSUM RES, V34, P121, DOI 10.1086/519142 BERRY DS, 1985, J PERS SOC PSYCHOL, V48, P312, DOI 10.1037/0022-3514.48.2.312 Boghrati R., 2022, QUANTIFYING GENDER B Boghrati R., 2020, QUANTIFYING 50 YEARS Bolukbasi Tolga, 2016, ADV NEURAL INFORM PR, P4356, DOI DOI 10.5555/3157382.3157584 Brehm JW., 1966, A theory of psychological reactance BRIGGS SR, 1992, J PERS, V60, P253, DOI 10.1111/j.1467-6494.1992.tb00974.x BRISTOR JM, 1993, J CONSUM RES, V19, P518, DOI 10.1086/209320 Caliskan A, 2017, SCIENCE, V356, DOI 10.1126/science.aal4230 Caselles-Dupré H, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P352, DOI 10.1145/3240323.3240377 Charlesworth TES, 2021, PSYCHOL SCI, V32, P218, DOI 10.1177/0956797620963619 Crawford K., 2017, TROUBLE BIAS Defranza D, 2020, J PERS SOC PSYCHOL, V119, P7, DOI 10.1037/pspa0000188 DEVINE PG, 1989, J PERS SOC PSYCHOL, V56, P5, DOI 10.1037/0022-3514.56.1.5 Ellemers N, 2018, ANNU REV PSYCHOL, V69, P275, DOI 10.1146/annurev-psych-122216-011719 Epstein CynthiaFuchs., 1988, DECEPTIVE DISTINCTIO EYSENCK HJ, 1982, PSYCHOL REP, V51, P531, DOI 10.2466/pr0.1982.51.2.531 Garg N, 2018, P NATL ACAD SCI USA, V115, pE3635, DOI 10.1073/pnas.1720347115 Grant Packard, 2024, Journal of Consumer Research, V51, DOI [10.1093/jcr/ucad013, DOI 10.1093/JCR/UCAD013] Greenwald AG, 2000, J PERS SOC PSYCHOL, V79, P1022, DOI 10.1037//0022-3514.79.6.1022 HOFSTEE WKB, 1992, J PERS SOC PSYCHOL, V63, P146, DOI 10.1037/0022-3514.63.1.146 Hyde JS, 2016, CURR OPIN NEUROBIOL, V38, P53, DOI 10.1016/j.conb.2016.02.007 HYDE JS, 1995, AM PSYCHOL, V50, P159, DOI 10.1037/0003-066X.50.3.159 Kimball M.M., 1995, Feminist visions of gender similarities and differences Kray LJ, 2001, J PERS SOC PSYCHOL, V80, P942, DOI 10.1037/0022-3514.80.6.942 Kronrod A., 2020, ADV CONSUM RES, V48, P1247 Lee K, 2011, J CONSUM RES, V38, P343, DOI 10.1086/659315 Liu Pengfei, 2015, P 2015 C EMP METH NA, P1433 MANIS M, 1988, J PERS SOC PSYCHOL, V55, P28, DOI 10.1037/0022-3514.55.1.28 May Chandler., 2019, On measuring social biases in sentence encoders Mohr L.A., 1996, J CONSUM PSYCHOL, V5, P161, DOI DOI 10.1207/S15327663JCP0502_04 ONeil C., 2016, Weapons of math destruction: How big data increases inequality and threatens democracy Ozsoy M.G., 2016, From Word Embeddings to Item Recommendation Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162 RAJU PS, 1980, J CONSUM RES, V7, P272, DOI 10.1086/208815 Reed A, 2012, INT J RES MARK, V29, P310, DOI 10.1016/j.ijresmar.2012.08.002 Roberts BW, 2005, J RES PERS, V39, P166, DOI 10.1016/j.jrp.2004.08.002 Spielmann N, 2021, J ASSOC CONSUM RES, V6, P211, DOI 10.1086/713188 Steenkamp JBEM, 2015, J MARKETING RES, V52, P287, DOI 10.1509/jmr.13.0592 Susser JA, 2016, J EXP PSYCHOL LEARN, V42, P657, DOI 10.1037/xlm0000189 World Bank, 2020, Women in Business Report 2020: Thailand Zell E, 2015, AM PSYCHOL, V70, P10, DOI 10.1037/a0038208 Zheng L, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P425, DOI 10.1145/3018661.3018665 NR 49 TC 1 Z9 1 U1 46 U2 68 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1057-7408 EI 1532-7663 J9 J CONSUM PSYCHOL JI J. Consum. Psychol. PD OCT PY 2023 VL 33 IS 4 SI SI BP 621 EP 631 DI 10.1002/jcpy.1351 EA MAY 2023 PG 11 WC Business; Psychology, Applied WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA T1AG0 UT WOS:000991066000001 DA 2024-03-27 ER PT J AU Matz, SC Segalin, C Stillwell, D Müller, SR Bos, MW AF Matz, Sandra C. Segalin, Cristina Stillwell, David Muller, Sandrine R. Bos, Maarten W. TI Predicting the Personal Appeal of Marketing Images Using Computational Methods SO JOURNAL OF CONSUMER PSYCHOLOGY LA English DT Article DE Personalization; Digital advertising; Personality; Image appeal; Machine learning; Image processing; Computer vision ID 5-FACTOR MODEL; COLOR PREFERENCE; SEX-DIFFERENCES; AESTHETICS; JUDGMENTS; SEARCH; DESIGN; LEVEL; BRAND; LIFE AB Images play a central role in digital marketing. They attract attention, trigger emotions, and shape consumers' first impressions of products and brands. We propose that the shift from one-to-many mass communication to highly personalized one-to-one communication requires an understanding of image appeal at a personal level. Instead of asking "How appealing is this image?" we ask "How appealing is this image to this particular consumer?" Using the well-established five-factor model of personality, we apply machine learning algorithms to predict an image's personality appeal-the personality of consumers to which the image appeals most-from a set of 89 automatically extracted image features (Study 1). We subsequently apply the same algorithm on new images to predict consequential outcomes from the fit between consumer and image personality. We show that image-person fit adds incremental predictive power over the images' general appeal when predicting (a) consumers' liking of new images (Study 2) and (b) consumers' attitudes and purchase intentions (Study 3). C1 [Matz, Sandra C.] Columbia Business Sch, New York, NY 10027 USA. [Segalin, Cristina] CALTECH, Pasadena, CA 91125 USA. [Stillwell, David; Muller, Sandrine R.] Univ Cambridge, Cambridge, England. [Bos, Maarten W.] Snap Inc, Santa Monica, CA USA. C3 Columbia University; California Institute of Technology; University of Cambridge RP Matz, SC (autor correspondiente), Columbia Business Sch, New York, NY 10027 USA. EM sm4409@gsb.columbia.edu RI Müller, Sandrine Ruth/ABA-1888-2020 OI Müller, Sandrine Ruth/0000-0002-1226-6370; Matz, Sandra C./0000-0002-0969-4403 CR Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897 [Anonymous], COMPUTER VISION IMAG [Anonymous], 2015, Deep learning, DOI 10.1038/nature14539 [Anonymous], PROC 18TH ACM INT CO [Anonymous], LECT NOTES COMPUTER Barrick MR, 2003, PERS PSYCHOL, V56, P45, DOI 10.1111/j.1744-6570.2003.tb00143.x Bauerly M, 2008, INT J HUM-COMPUT INT, V24, P275, DOI 10.1080/10447310801920508 BENJAMINI Y, 1995, J R STAT SOC B, V57, P289, DOI 10.1111/j.2517-6161.1995.tb02031.x BIRREN F, 1973, ART PSYCHOTHERAPY, V1, P13, DOI 10.1016/0090-9092(73)90005-7 BRADLEY RA, 1952, BIOMETRIKA, V39, P324, DOI 10.2307/2334029 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Caprara GV, 2004, AM PSYCHOL, V59, P581, DOI 10.1037/0003-066X.59.7.581 Cerosaletti CD, 2009, INT WORK QUAL MULTIM, P47, DOI 10.1109/QOMEX.2009.5246977 Chamorro-Premuzic T, 2009, BRIT J PSYCHOL, V100, P501, DOI 10.1348/000712608X366867 CHILD IL, 1968, CHILD DEV, V39, P237, DOI 10.2307/1127374 CHILDERS TL, 1984, J CONSUM RES, V11, P643, DOI 10.1086/209001 Christoudias CM, 2002, INT C PATT RECOG, P150, DOI 10.1109/ICPR.2002.1047421 Comaniciu D, 2002, IEEE T PATTERN ANAL, V24, P603, DOI 10.1109/34.1000236 Cristani M., 2013, P 21 ACM INT C MULTI, P213 Cyr D, 2009, MIS QUART, V33, P539 Datta R, 2006, LECT NOTES COMPUT SC, V3953, P288, DOI 10.1007/11744078_23 de Montjoye Yves-Alexandre, 2013, Social Computing, Behavioral-Cultural Modeling and Prediction. 6th International Conference, SBP 2013. Proceedings, P48, DOI 10.1007/978-3-642-37210-0_6 Deza Michel Marie, 2009, Encyclopedia of Distances, P1, DOI [10.1007/978-3-642-35943-9_435-1, DOI 10.1007/978-3-642-35943-9_435-1, 10.1007/978-3-642-00234-2, DOI 10.1007/978-3-642-00234-2] Dhar S, 2011, PROC CVPR IEEE, P1657, DOI 10.1109/CVPR.2011.5995467 Feist G.J., 2004, EMPIR STUD ARTS, V22, P77, DOI [10.2190/Y7CA-TBY6-V7LR-76GK, DOI 10.2190/Y7CA-TBY6-V7LR-76GK] Felzenszwalb PF, 2010, IEEE T PATTERN ANAL, V32, P1627, DOI 10.1109/TPAMI.2009.167 Ferrari V, 2009, PROC CVPR IEEE, P1, DOI 10.1109/CVPRW.2009.5206495 Furnham A, 1997, PERS INDIV DIFFER, V23, P923, DOI 10.1016/S0191-8869(97)00131-1 Goldberg LR, 2006, J RES PERS, V40, P84, DOI 10.1016/j.jrp.2005.08.007 Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1 Gujarati Damodar N., 2013, Basic Econometrics, Vfifth Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428 Hirsh JB, 2012, PSYCHOL SCI, V23, P578, DOI 10.1177/0956797611436349 Hurlbert AC, 2007, CURR BIOL, V17, pR623, DOI 10.1016/j.cub.2007.06.022 Jacobsen T, 2002, PERCEPT MOTOR SKILL, V95, P755, DOI 10.2466/PMS.95.7.755-766 Khosla A, 2014, WWW'14: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P867, DOI 10.1145/2566486.2567996 Kosinski M, 2015, AM PSYCHOL, V70, P543, DOI 10.1037/a0039210 Kosinski M, 2013, P NATL ACAD SCI USA, V110, P5802, DOI 10.1073/pnas.1218772110 Kvalem Ingela Lundin, 2006, Body Image, V3, P263 Latto R, 2000, PERCEPTION, V29, P981, DOI 10.1068/p2352 Lecky Prescott., 1945, Self-Consistency: A Theory of Personality Lee L, 2009, J CONSUM RES, V36, P173, DOI 10.1086/597160 Lindgaard G, 2006, BEHAV INFORM TECHNOL, V25, P115, DOI 10.1080/01449290500330448 Lovato P, 2014, IEEE T INF FOREN SEC, V9, P364, DOI 10.1109/TIFS.2014.2298370 Lu X, 2014, PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), P457, DOI 10.1145/2647868.2654927 Marcus B, 2006, J PERS SOC PSYCHOL, V90, P1014, DOI 10.1037/0022-3514.90.6.1014 Mardia K.V., 2009, Directional Statistics, V494 Matz SC, 2017, P NATL ACAD SCI USA, V114, P12714, DOI 10.1073/pnas.1710966114 Matz SC, 2016, PSYCHOL SCI, V27, P715, DOI 10.1177/0956797616635200 McCrae RR, 2014, WILEY HANDBOOK OF GENIUS, P222 MCCRAE RR, 1992, J PERS, V60, P175, DOI 10.1111/j.1467-6494.1992.tb00970.x MCCRAE RR, 1987, J PERS SOC PSYCHOL, V52, P81, DOI 10.1037/0022-3514.52.1.81 McCrae RR, 2002, INT CUL PSY, P105 Messaris P., 1997, VISUAL PERSUASION RO Moon Y, 2002, J CONSUM PSYCHOL, V12, P313, DOI 10.1207/15327660260382351 Murray N, 2012, PROC CVPR IEEE, P2408, DOI 10.1109/CVPR.2012.6247954 Ng T.-T., 2004, Classifying photographic and photorealistic computer graphic images using natural image statistics Oliva A, 2001, INT J COMPUT VISION, V42, P145, DOI 10.1023/A:1011139631724 Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127 Palmer SE, 2011, NEW DIRECTIONS IN COLOUR STUDIES, P361 Palmer SE, 2013, ANNU REV PSYCHOL, V64, P77, DOI 10.1146/annurev-psych-120710-100504 Park G, 2015, J PERS SOC PSYCHOL, V108, P934, DOI 10.1037/pspp0000020 Pieters R, 2004, J MARKETING, V68, P36, DOI 10.1509/jmkg.68.2.36.27794 Pieters R, 2012, MARKET SCI, V31, P59, DOI 10.1287/mksc.1110.0673 Pieters R, 2010, J MARKETING, V74, P48, DOI 10.1509/jmkg.74.5.48 Potter MC, 2014, ATTEN PERCEPT PSYCHO, V76, P270, DOI 10.3758/s13414-013-0605-z Quercia D., 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P180, DOI 10.1109/PASSAT/SocialCom.2011.26 Rawlings D., 1998, Empirical Studies of the Arts, V16, P153, DOI [10.2190/8GVJ-ERL3-HYUM-EH88, DOI 10.2190/8GVJ-ERL3-HYUM-EH88] Redi J. A., 2013, VISUAL COMMUN-US, P1 Rentfrow PJ, 2003, J PERS SOC PSYCHOL, V84, P1236, DOI 10.1037/0022-3514.84.6.1236 ROBINSON C, 1975, PERCEPT MOTOR SKILL, V40, P702, DOI 10.2466/pms.1975.40.3.702 Rosenholtz R., 2005, P SIGCHI C HUMAN FAC, P761, DOI [10.1145/1054972.1055078, DOI 10.1145/1054972.1055078] Schloss KB, 2011, ATTEN PERCEPT PSYCHO, V73, P551, DOI 10.3758/s13414-010-0027-0 Schwartz HA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073791 Segalin C, 2017, IEEE T AFFECT COMPUT, V8, P268, DOI 10.1109/TAFFC.2016.2516994 Shah D, 2006, J SERV RES-US, V9, P113, DOI 10.1177/1094670506294666 Sheth JN, 2000, J ACAD MARKET SCI, V28, P55, DOI 10.1177/0092070300281006 Specht J, 2011, J PERS SOC PSYCHOL, V101, P862, DOI 10.1037/a0024950 TAMURA H, 1978, IEEE T SYST MAN CYB, V8, P460, DOI 10.1109/TSMC.1978.4309999 Tian-Tsong Ng, 2005, 13th Annual ACM International Conference on Multimedia, P239 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x Turner H, 2012, J STAT SOFTW, V48, P1 VALDEZ P, 1994, J EXP PSYCHOL GEN, V123, P394, DOI 10.1037/0096-3445.123.4.394 Viola P, 2001, PROC CVPR IEEE, P511, DOI 10.1109/cvpr.2001.990517 Wedel M, 2015, MARKET SCI, V34, P134, DOI 10.1287/mksc.2014.0882 Wheeler SC, 2005, J CONSUM RES, V31, P787, DOI 10.1086/426613 Wu YY, 2015, P NATL ACAD SCI USA, V112, P1036, DOI 10.1073/pnas.1418680112 NR 88 TC 30 Z9 31 U1 17 U2 126 PU JOHN WILEY & SONS LTD PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND SN 1057-7408 EI 1532-7663 J9 J CONSUM PSYCHOL JI J. Consum. Psychol. PD JUL PY 2019 VL 29 IS 3 BP 370 EP 390 DI 10.1002/jcpy.1092 PG 21 WC Business; Psychology, Applied WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA IG2SI UT WOS:000473648500002 OA Green Accepted DA 2024-03-27 ER PT J AU Yoldar, MT Özcan, U AF Yoldar, Mehmet Turkay Ozcan, Ugur TI Collaborative targeting: Biclustering-based online ad recommendation SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Behavioral targeting; Biclustering; Collaborative filtering; Computational advertising; Online advertising; Ordered weighted averaging; Recommender systems ID AGGREGATION OPERATORS; USER PROFILES; PERSONALIZATION; FRAMEWORK; SYSTEMS AB In online advertising, it is essential to show appropriate ads to target users. However, this is a challenging process. Although conventional targeting methods yield successful results, they cannot effectively select different ads for all users. In this study, we explore collaborative filtering techniques on an online ad dataset. We propose a method of recommending different and effective ads to users. The proposed method, which is based on biclustering and ordered weighted average aggregation operators, can address situations such as the lack of implicit feedback on items. We present the results of an offline analysis of the proposed method together with those of collaborative filtering methods. It is shown that collaborative filtering methods are beneficial, and that the proposed method provides superior results, especially in systems where user navigation histories are well known. C1 [Yoldar, Mehmet Turkay] Gazi Univ, Inst Informat, Dept Management Info Sys, TR-06680 Ankara, Turkey. [Ozcan, Ugur] Gazi Univ, Fac Engn, Dept Ind Engn, TR-06570 Ankara, Turkey. C3 Gazi University; Gazi University RP Yoldar, MT (autor correspondiente), Gazi Univ, Inst Informat, Dept Management Info Sys, TR-06680 Ankara, Turkey. EM mehmetturkay.yoldar@gazi.edu.tr RI Özcan, Uğur/ABI-3999-2020 OI OZCAN, UGUR/0000-0001-8283-9579 CR Adeniyi D. A., 2016, Applied Computing and Informatics, V12, P90, DOI 10.1016/j.aci.2014.10.001 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Alqadah F, 2015, KNOWL INF SYST, V44, P475, DOI 10.1007/s10115-014-0771-x Anand S., 2003, P 2003 INT C INT TEC [Anonymous], 2000, P 2000 ACM C COMP SU [Anonymous], 2001, P WWW10 MAY 1 5 HONG [Anonymous], 2000, ACM SIGKDD Explor. Newsl, DOI [DOI 10.1145/846183.846188, 10.1145/846183.846188] Beliakov G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P705, DOI 10.1007/978-0-387-85820-3_22 Ben-Dor A, 2003, J COMPUT BIOL, V10, P373, DOI 10.1089/10665270360688075 Bergmann S, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.031902 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Broder A. Z., 2008, P 2008 ACM C REC SYS Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Chen G, 2016, IEEE COMMUN SURV TUT, V18, P2124, DOI 10.1109/COMST.2016.2519912 Cheng Y, 2000, INT SYST MOL BIOL C Cho YH, 2002, EXPERT SYST APPL, V23, P329, DOI 10.1016/S0957-4174(02)00052-0 Dave K, 2014, FOUND TRENDS INF RET, V8, P265, DOI 10.1561/1500000045 Eirinaki M., 2003, ACM T INTERNET TECHN, V3, P1, DOI [DOI 10.1145/643477.643478, 10.1145/643477.643478] Emrouznejad A, 2014, INT J INTELL SYST, V29, P994, DOI 10.1002/int.21673 Evans DS, 2009, J ECON PERSPECT, V23, P37, DOI 10.1257/jep.23.3.37 Fabricio O, 2007, 7 INT C INT SYST DES Fang JY, 2009, IEEE CIRCUITS AND SYSTEMS INTERNATIONAL CONFERENCE ON TESTING AND DIAGNOSIS, P26, DOI 10.4248/IJOS.08017 Fernandez-Tobias I, 2012, SPAN C INF RETR ESC Gagolewski M, 2014, AGOP AGGREGATION OPE Goldfarb A, 2014, REV IND ORGAN, V44, P115, DOI 10.1007/s11151-013-9399-3 Golemati M., 2007, P 1 INT C RES CHALL Guo G, 2015, UM WORKSH Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Herrera F, 1996, FUZZY SET SYST, V78, P73, DOI 10.1016/0165-0114(95)00107-7 Herrera F, 1997, IEEE T SYST MAN CY A, V27, P646, DOI 10.1109/3468.618263 Hoppe A, 2013, PROC VLDB ENDOW, V6, P1428, DOI 10.14778/2536274.2536330 Ignatov D. I., 2012, P 12 INT C DAT MIN W Kant S, 2018, J COMPUT SCI-NETH, V25, P204, DOI 10.1016/j.jocs.2017.03.018 Katayama K, 2015, PHYSIOL REP, V3, DOI 10.14814/phy2.12421 Kazienko P, 2007, INFORM SCIENCES, V177, P2269, DOI 10.1016/j.ins.2007.01.002 Kluger Y, 2003, GENOME RES, V13, P703, DOI 10.1101/gr.648603 Kohavi R., 1995, P INT JOINT C ART IN, DOI 10.5555/1643031.1643047 Koren Y, 2011, RECOMMENDER SYSTEMS HANDBOOK, P145, DOI 10.1007/978-0-387-85820-3_5 Kosala Raymond., 2000, SIGKDD EXPLOR NEWSL, V2, P1, DOI [DOI 10.1145/360402.360406, 10.1145/360402.360406] Lazzeroni L, 2002, STAT SINICA, V12, P61 Levene Mark., 2011, INTRO SEARCH ENGINES Li B, 2011, P 2011 23 IEEE INT C Li GJ, 2009, NUCLEIC ACIDS RES, V37, DOI 10.1093/nar/gkp491 Lü LY, 2012, PHYS REP, V519, P1, DOI 10.1016/j.physrep.2012.02.006 Luo Q, 2014, ASIA PAC CONF ANTEN, P104, DOI 10.1109/APCAP.2014.6992424 Markov Z., 2007, DATA MINING WEB UNCO Mele I, 2013, P 6 ACM INT C WEB SE Mobasher B., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P90 Mobasher B, 2000, COMMUN ACM, V43, P142, DOI 10.1145/345124.345169 Mobasher B, 2002, DATA MIN KNOWL DISC, V6, P61, DOI 10.1023/A:1013232803866 MOBASHER B, 2001, P IJCAI 2001 WORKSH Mulvenna MD, 2000, COMMUN ACM, V43, P123, DOI 10.1145/345124.345165 Murali T, 2003, PAC S BIOC LIH HI Nasraoui O., 2000, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V9, P509, DOI 10.1142/S021821300000032X Nasraoui O, 2008, IEEE T KNOWL DATA EN, V20, P202, DOI 10.1109/TKDE.2007.190667 Ning X., 2011, 2011 IEEE 11 INT C D Padilha VA, 2017, BMC BIOINFORMATICS, V18, DOI 10.1186/s12859-017-1487-1 Pan R., 2008, ONE CLASS COLLABORAT Pazzani MJ, 1999, ARTIF INTELL REV, V13, P393, DOI 10.1023/A:1006544522159 Prelic A, 2006, BIOINFORMATICS, V22, P1122, DOI 10.1093/bioinformatics/btl060 Qiu F., 2006, P 15 INT C WORLD WID Raad E., 2010, P 13 INT C NETW BAS Rajan S., 2017, P ACM SIGIR INT C TH Rendle S., 2009, UAI Rosenkrans G, 2007, ONLINE ADVERTISING M, V15 Schafer J. B., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P291 Schiaffino S, 2009, LECT NOTES COMPUT SC, V5640, P193, DOI 10.1007/978-3-642-03226-4_11 Serin A, 2011, ALGORITHM MOL BIOL, V6, DOI 10.1186/1748-7188-6-18 Shabalin AA, 2009, ANN APPL STAT, V3, P985, DOI 10.1214/09-AOAS239 Soltysiak SJ, 1998, BT TECHNOL J, V16, P110, DOI 10.1023/A:1009690117684 Sugiyama K., 2004, 13 INT WORLD WIDE WE Symeonidis P., 2009, P 3 ACM C REC SYST Symeonidis P, 2008, INFORM RETRIEVAL, V11, P51, DOI 10.1007/s10791-007-9038-4 Tanay Amos, 2002, Bioinformatics, V18 Suppl 1, pS136 Varnagar C. R., 2013, INT C INF COMM EMB S YAGER RR, 1988, IEEE T SYST MAN CYB, V18, P183, DOI 10.1109/21.87068 YAGER RR, 1993, FUZZY SET SYST, V59, P125, DOI 10.1016/0165-0114(93)90194-M Yager RR, 1999, IEEE T SYST MAN CY B, V29, P141, DOI 10.1109/3477.752789 Zhang DQ, 2014, IEEE T EMERG TOP COM, V2, P239, DOI 10.1109/TETC.2013.2283233 Zhang QG, 2009, 2009 INTERNATIONAL CONFERENCE ON RESEARCH CHALLENGES IN COMPUTER SCIENCE, ICRCCS 2009, P18, DOI 10.1109/ICRCCS.2009.14 Zhang Z, 2008, PROCEEDINGS OF THE 11TH JOINT CONFERENCE ON INFORMATION SCIENCES Zhen Y., 2009, P 3 ACM C REC SYST NR 82 TC 8 Z9 9 U1 0 U2 24 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD MAY-JUN PY 2019 VL 35 AR 100857 DI 10.1016/j.elerap.2019.100857 PG 17 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA IM0HP UT WOS:000477668400019 DA 2024-03-27 ER PT J AU Nafizah, UY Roper, S Mole, K AF Nafizah, Ully Y. Roper, Stephen Mole, Kevin TI Estimating the innovation benefits of first-mover and second-mover strategies when micro-businesses adopt artificial intelligence and machine learning SO SMALL BUSINESS ECONOMICS LA English DT Article DE Advanced digital technology; Artificial Intelligence; Digital adoption; Innovation; Machine Learning; Micro-Business; Timing Adoption ID RESOURCE-BASED VIEW; RESEARCH-AND-DEVELOPMENT; INFORMATION-TECHNOLOGY; MANAGEMENT-PRACTICES; EMPIRICAL-EVIDENCE; MOVER ADVANTAGE; FIRM RESOURCES; CAPABILITY; ENTRY; PERSPECTIVE AB Plain English SummaryDespite the powerful functions offered by advanced digital technologies, such as Artificial Intelligence and Machine Learning, it is unclear whether micro-businesses should adopt these technologies. In addition, micro-businesses are faced with two adoption strategy options: a first mover strategy by becoming an early adopter, or a second mover strategy by becoming a later adopter of the new technologies. Our study suggests that adopting Artificial Intelligence and Machine Learning enhances micro-businesses' innovation outcomes and innovation processes, highlighting the benefits of technology adoption on micro-businesses with limited financial and human resources. Interestingly, our study suggests the differential benefits of first mover and second mover strategies based on technology characteristics. The principal implication of this study is that micro-businesses should be encouraged to adopt Artificial Intelligence and Machine Learning to compensate for their resources and capabilities in the innovation process. Abstract Digital technologies have the potential to transform all aspects of firms' operations. The emergence of advanced digital technologies such as Artificial Intelligence and Machine Learning raises questions about whether and when micro-businesses should adopt these technologies. In this paper we focus on how firms' adoption decisions on Artificial Intelligence and Machine Learning influence their innovation capabilities. Using survey data for over 6,000 micro-businesses in the UK, we identify two groups of adopters based on the timing of their adoption of Artificial Intelligence and Machine Learning. 'first movers' - early adopters of the new technologies - and 'second movers'- later adopters of the new technology. Probit models are used to investigate the innovation benefits of first and second mover adoption strategies. Our results suggest strong and positive impacts of adopting Artificial Intelligence and Machine Learning on micro-businesses' innovation outcomes and innovation processes. We highlight the differential benefits of first mover and second mover strategies and highlight the role of technology characteristics as the differentiating factor. Our results emphasize both the innovation enabling role of digital technologies and the importance of an appropriate strategic approach to adopting advanced digital technologies. C1 [Nafizah, Ully Y.; Roper, Stephen; Mole, Kevin] Univ Warwick, Warwick Business Sch, Coventry, England. C3 University of Warwick RP Nafizah, UY (autor correspondiente), Univ Warwick, Warwick Business Sch, Coventry, England. EM Ully-Yunita.Nafizah@warwick.ac.uk; Stephen.Roper@wbs.ac.uk; Kevin.Mole@wbs.ac.uk OI NAFIZAH, ULLY YUNITA/0000-0001-5444-4916 CR Agostini L, 2019, EUR J INNOV MANAG, V23, P1, DOI 10.1108/EJIM-11-2019-0330 Agyapong A., 2016, J SMALL BUSINESS ENT, V28, P449, DOI [10.1080/08276331.2016.1217727, DOI 10.1080/08276331.2016.1217727] Ainin S, 2015, IND MANAGE DATA SYST, V115, P570, DOI 10.1108/IMDS-07-2014-0205 Angerrnann H, 2016, EXPERT SYST APPL, V66, P76, DOI 10.1016/j.eswa.2016.08.058 [Anonymous], 2020, OECD Digital Economy Outlook 2020, DOI DOI 10.1787/BB167041-EN Antons D, 2018, J SERV RES-US, V21, P17, DOI 10.1177/1094670517738373 Audretsch DB, 2020, SMALL BUS ECON, V55, P997, DOI 10.1007/s11187-020-00366-4 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Barney JB, 2001, ACAD MANAGE REV, V26, P41, DOI 10.2307/259393 Battisti G, 2015, IND CORP CHANGE, V24, P345, DOI 10.1093/icc/dtv003 Battisti G, 2010, BRIT J MANAGE, V21, P187, DOI 10.1111/j.1467-8551.2009.00629.x Battisti G, 2009, RES POLICY, V38, P1326, DOI 10.1016/j.respol.2009.06.002 Bauer M, 2020, AMCIS 2020 PROCEEDINGS Baumann J, 2016, RES POLICY, V45, P1263, DOI 10.1016/j.respol.2016.03.008 BEIS, 2020, BUSINESS POPULATION Bharadwaj A, 2013, MIS QUART, V37, P471, DOI 10.25300/MISQ/2013/37:2.3 Boulding W, 2001, HARVARD BUS REV, V79, P20 Bourke J, 2016, TECHNOVATION, V55-56, P42, DOI 10.1016/j.technovation.2016.05.003 Brynjolfsson E., 2017, Harvard Bus Rev, V1, P1 Cassiman B, 2002, AM ECON REV, V92, P1169, DOI 10.1257/00028280260344704 Chen LJ, 2022, J BUS IND MARK, V37, P1025, DOI 10.1108/JBIM-09-2020-0448 Cockburn I. M., 2019, IMPACT ARTIFICIAL IN, P115, DOI DOI 10.7208/CHICAGO/9780226613475.001.0001 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Davenport TH, 2018, HARVARD BUS REV, V96, P108 DIXIT A, 1980, ECON J, V90, P95, DOI 10.2307/2231658 Dorrington P, 2016, SMART INNOV SYST TEC, V52, P215, DOI 10.1007/978-3-319-32098-4_19 Farazzmanesh F., 2017, J INFORM SYSTEMS TEL, V5, P162 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 Ghobakhloo M, 2019, J IND INF INTEGR, V16, DOI 10.1016/j.jii.2019.100107 GILBERT RJ, 1982, AM ECON REV, V72, P514 Gimenez F.A.P., 2000, CREAT INNOV MANAG, V9, P235, DOI DOI 10.1111/1467-8691.00197 Giotopoulos I, 2017, J BUS RES, V81, P60, DOI 10.1016/j.jbusres.2017.08.007 GOLDER PN, 1993, J MARKETING RES, V30, P158, DOI 10.2307/3172825 Greene W.H., 2000, ECONOMETRIC ANAL Haefner N, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120392 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hartmann P, 2020, ACAD MANAG DISCOV, V6, P359, DOI 10.5465/amd.2019.0043 Hewitt-Dundas N, 2006, SMALL BUS ECON, V26, P257, DOI 10.1007/s11187-005-2140-3 Hoppe HC, 2000, INT J IND ORGAN, V18, P315, DOI 10.1016/S0167-7187(98)00020-4 Iftikhar N, 2021, PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS (IN4PL), P131, DOI 10.5220/0010691800003062 Jones P, 2014, INT SMALL BUS J, V32, P285, DOI 10.1177/0266242612461802 Kagermann H., 2013, Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group Kelliher F, 2009, J SMALL BUS ENTERP D, V16, P521, DOI 10.1108/14626000910977206 Kianto A, 2017, J BUS RES, V81, P11, DOI 10.1016/j.jbusres.2017.07.018 Klepper S, 2000, STRATEGIC MANAGE J, V21, P997, DOI 10.1002/1097-0266(200010/11)21:10/11<997::AID-SMJ134>3.0.CO;2-O Kopiec Daniel, 2019, Digital innovation: seizing policy opportunities, V52, P380, DOI [DOI 10.1787/A298DC87-EN, 10.1063/1.1731475, DOI 10.1063/1.1731475] LAMBKIN M, 1988, STRATEGIC MANAGE J, V9, P127, DOI 10.1002/smj.4250090713 Liang Li, 2018, Information Systems Journal, V28, P1129, DOI 10.1111/isj.12153 Liberman-Yaconi L, 2010, J SMALL BUS MANAGE, V48, P70, DOI 10.1111/j.1540-627X.2009.00287.x LIEBERMAN MB, 1988, STRATEGIC MANAGE J, V9, P41, DOI 10.1002/smj.4250090706 López-Mielgo N, 2009, TECHNOVATION, V29, P537, DOI 10.1016/j.technovation.2009.02.005 MacGregor RC, 2005, J SMALL BUS ENTERP D, V12, P510, DOI 10.1108/14626000510628199 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Mikalef P, 2018, INF SYST E-BUS MANAG, V16, P547, DOI 10.1007/s10257-017-0362-y MILES RE, 1986, CALIF MANAGE REV, V28, P62, DOI 10.2307/41165202 Nambisan S, 2017, ENTREP THEORY PRACT, V41, P1029, DOI 10.1111/etap.12254 Netter J., 1989, Applied regression models Niebel T, 2019, ECON INNOV NEW TECH, V28, P296, DOI 10.1080/10438599.2018.1493075 Parnell J.A., 2001, International Journal of Commerce Management, V11, P1, DOI 10.1108/eb047425 Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Raymond L, 2009, LECT NOTES BUS INF P, V24, P27 RIORDAN MH, 1992, RAND J ECON, V23, P334, DOI 10.2307/2555866 ROBINSON WT, 1992, STRATEGIC MANAGE J, V13, P609, DOI 10.1002/smj.4250130804 Robinson WT, 2002, J MARKETING RES, V39, P120, DOI 10.1509/jmkr.39.1.120.18938 Romijn H, 2002, RES POLICY, V31, P1053, DOI 10.1016/S0048-7333(01)00176-7 ROSENBLOOM RS, 1987, CALIF MANAGE REV, V29, P51, DOI 10.2307/41162131 Shepherd DA, 1999, MANAGE SCI, V45, P621, DOI 10.1287/mnsc.45.5.621 Simmons G, 2008, INT SMALL BUS J, V26, P351, DOI 10.1177/0266242608088743 Sirmon DG, 2007, ACAD MANAGE REV, V32, P273, DOI 10.2307/20159292 Srinivasan Vijay, 2014, International Journal on Artificial Intelligence Tools (Architectures, Languages, Algorithms), V23, DOI 10.1142/S0218213014600252 Steiber A, 2021, EUR J INNOV MANAG, V24, P799, DOI 10.1108/EJIM-01-2020-0018 Suarez FF, 2007, ACAD MANAGE REV, V32, P377, DOI 10.5465/AMR.2007.24349587 Tang Z, 2012, ASIA PAC J MANAG, V29, P409, DOI 10.1007/s10490-010-9200-1 Toms S, 2010, ACCOUNT AUDIT ACCOUN, V23, P647, DOI 10.1108/09513571011054927 Trabucchi D, 2019, EUR J INNOV MANAG, V22, P23, DOI 10.1108/EJIM-01-2018-0017 Trabucchi D, 2017, RES TECHNOL MANAGE, V60, P43, DOI 10.1080/08956308.2017.1276390 Tran VD, 2012, J IND ECON, V60, P517, DOI 10.1111/j.1467-6451.2012.00490.x Wade M, 2004, MIS QUART, V28, P107 Wang CH, 2008, TECHNOVATION, V28, P349, DOI 10.1016/j.technovation.2007.10.007 Wu F, 2006, IND MARKET MANAG, V35, P493, DOI 10.1016/j.indmarman.2005.05.003 Yoo Y, 2012, ORGAN SCI, V23, P1398, DOI 10.1287/orsc.1120.0771 Yoo YJ, 2010, INFORM SYST RES, V21, P724, DOI 10.1287/isre.1100.0322 Yoon YR, 2009, INT J IND ORGAN, V27, P728, DOI 10.1016/j.ijindorg.2009.04.001 Zhou KZ, 2010, STRATEGIC MANAGE J, V31, P547, DOI 10.1002/smj.830 NR 86 TC 1 Z9 1 U1 66 U2 83 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-898X EI 1573-0913 J9 SMALL BUS ECON JI Small Bus. Econ. Group PD JAN PY 2024 VL 62 IS 1 BP 411 EP 434 DI 10.1007/s11187-023-00779-x EA MAY 2023 PG 24 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA EL4T0 UT WOS:000996939400002 OA Green Published, hybrid DA 2024-03-27 ER PT J AU Diwanji, VS Lee, JJ Cortese, J AF Diwanji, Vaibhav Shwetangbhai Lee, Jaejin Cortese, Juliann TI Deconstructing the role of artificial intelligence in programmatic advertising: at the intersection of automation and transparency SO JOURNAL OF STRATEGIC MARKETING LA English DT Article; Early Access DE artificial intelligence; programmatic advertising; online advertising; digital marketing; search engine marketing; social media marketing; sponsorship disclosure ID CONSUMER; SPONSORSHIP; ATTRIBUTIONS; CREDIBILITY; RELIABILITY; CONGRUENCE AB With the increasingly sophisticated improvements in artificial intelligence (AI) technologies in marketing communications, a gap prevails between heightened levels of excitement around it and high-level application. Consequently, this topic necessitates in-depth investigation to prepare for future changes. This study examines the role of AI in programmatic advertising through a quantitative content analysis of AI-enabled digital programmatic advertisements. Although the idea that sponsorship disclosure, appeals, and sentiments are important in persuasive messages has been documented, this study extends existing literature by examining these concepts within AI-enabled programmatic advertising. Sponsorship-linked marketing and congruence theory guided this study. The results showed that only about half of the ads revealed sponsorship information. Further, the brand-sponsor association was not clearly established in the ads. A sentiment analysis showed the prominence of positive sentiments in the ads. Additionally, the ads mostly used product- and consumer-focused appeals. Theoretical and research contributions and strategic marketing implications are discussed. C1 [Diwanji, Vaibhav Shwetangbhai] Univ Kansas, William Allen White Sch Journalism & Mass Commun, Lawrence, KS 66045 USA. [Lee, Jaejin; Cortese, Juliann] Informat Florida State Univ, Coll Commun, Sch Commun, Tallahassee, FL USA. C3 University of Kansas; State University System of Florida; Florida State University RP Diwanji, VS (autor correspondiente), Univ Kansas, William Allen White Sch Journalism & Mass Commun, Lawrence, KS 66045 USA. EM vdiwanji@ku.edu RI Cortese, Juliann/ADS-4107-2022 CR Aackerman C.E., 2020, POSITIVEPSYCHOLOGY B Abi K, 2021, INT J EC PERFORMANCE, V4, P322 Alaimo C, 2018, IFIP ADV INF COMM TE, V543, P110, DOI 10.1007/978-3-030-04091-8_9 [Anonymous], 2022, Federal Trade Commission." from [Anonymous], 2019, FEDERAL TRADE COMMIS Armstrong J. Scott., 2010, Persuasive advertising: evidencebased principles Baker L., 2007, SEARCH ENGINE J BLOG Bakpayev M, 2022, AUSTRALAS MARK J, V30, P90, DOI 10.1016/j.ausmj.2020.04.002 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Busch O., 2016, Programmatic Advertising, P3, DOI [10.1007/978-3-319-25023-6_1, DOI 10.1007/978-3-319-25023-6_1] Cambria E, 2017, IEEE INTELL SYST, V32, P74, DOI 10.1109/MIS.2017.4531228 Campbell C, 2015, BUS HORIZONS, V58, P599, DOI 10.1016/j.bushor.2015.06.003 Carrillo-Durán MV, 2018, PROF INFORM, V27, P195, DOI 10.3145/epi.2018.ene.18 Chacon B., 2019, LATER BLOG Chang HH, 2018, ONLINE INFORM REV, V42, P697, DOI 10.1108/OIR-08-2016-0214 Chen G, 2019, J ADVERTISING, V48, P347, DOI 10.1080/00913367.2019.1654421 Chen YB, 2021, LECT NOTE NETW SYST, V271, P148, DOI 10.1007/978-3-030-80624-8_19 Clemente S, 2014, MARKET LETT, V25, P373, DOI 10.1007/s11002-013-9257-y CORNWELL B., 1995, SPORT MARKET Q, V4, P13 Cornwell T.B., 2001, J ADVERTISING RES, V41, P17, DOI [10.2501/JAR-41-1-17-31, DOI 10.2501/JAR-41-1-17-31] Cornwell TB, 2005, J ADVERTISING, V34, P21, DOI 10.1080/00913367.2005.10639194 Dahlén M, 2008, J ADVERTISING, V37, P57, DOI 10.2753/JOA0091-3367370305 DeGeurin M., 2021, EMARKETER BLOG Deng SS, 2019, J ADVERTISING, V48, P356, DOI 10.1080/00913367.2019.1652121 Diwanji V, 2022, J APPL MARKETING THE, V9, P5 Diwanji VS, 2021, J ELECTRON COMMER RE, V22, P22 Diwanji VS, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2019.102024 Dix Steve., 2013, Journal of Promotion Management, V19, P393, DOI [10.1080/10496491.2013.817218, DOI 10.1080/10496491.2013.817218] ebizmba, 2020, EBIZMBA BLOG Enberg J., 2019, EMARKETER BLOG Fang Z, 2019, IEEE DATA MINING, P190, DOI 10.1109/ICDM.2019.00029 Felzmann H, 2019, BIG DATA SOC, V6, DOI 10.1177/2053951719860542 Ferrell OC., 2021, Marketing strategy Ferrer-Conill R, 2021, DIGIT JOURNAL, V9, P929, DOI 10.1080/21670811.2020.1836980 Fleck ND, 2007, PSYCHOL MARKET, V24, P975, DOI 10.1002/mar.20192 Forsey C., 2020, HUBSPOT BLOG FRIESTAD M, 1994, J CONSUM RES, V21, P1, DOI 10.1086/209380 Frijda N.H., 1994, NATURE EMOTION, P197 Gibson D., 2018, DRUM BLOG GroundTruth, 2019, GROUNDTRUTH BLOG Hastie R., 1980, Person memory: The cognitive basis of social perception, P155 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Jiang H, 2018, J CREATIVE BEHAV, V52, P168, DOI 10.1002/jocb.141 KASSARJIAN HH, 1977, J CONSUM RES, V4, P8, DOI 10.1086/208674 Kellogg K., 2020, SEARCH ENGINE J BLOG Keshari P., 2014, Journal of Marketing and Communication, V9, P37 Khanna P., 2016, INT J MANAGEMENT SOC, V4, P568, DOI DOI 10.21013/JMSS.V4.N3.P7 Kietzmann J, 2018, J ADVERTISING RES, V58, P263, DOI 10.2501/JAR-2018-035 Kotler P, 2021, J MACROMARKETING, V41, P194, DOI 10.1177/0276146721996433 Krippendorf K., 1980, CONTENT ANAL Lacy S, 1996, JOURNALISM MASS COMM, V73, P963, DOI 10.1177/107769909607300414 Ledro C, 2022, J BUS IND MARK, V37, P48, DOI 10.1108/JBIM-07-2021-0332 Lee S, 2018, SPORT MARKET Q, V27, P82 Lennon R., 2017, THUNDER BLOG Liao B., 2017, CONT COMMUNICATIONS, V7, P97 Liu L., 2018, MARKET SCI, V39(4), P669 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Machin D., 2015, Visual Journalism Macnamara J, 2016, PUBLIC RELAT REV, V42, P377, DOI 10.1016/j.pubrev.2016.03.001 Malthouse EC, 2019, J ADVERTISING, V48, P366, DOI 10.1080/00913367.2019.1652123 Malthouse EC, 2017, J ADVERTISING, V46, P227, DOI 10.1080/00913367.2017.1299653 McGuigan L, 2019, NEW MEDIA SOC, V21, P2366, DOI 10.1177/1461444819846449 Mindaou G., 2019, LINKEDIN BLOG Neuendorf K. A., 2002, CONTENT ANAL GUIDEBO NEWCOMB T, 1958, AM SOCIOL REV, V23, P742, DOI 10.2307/2089062 Ng ICL, 2018, J SERV MANAGE, V29, P518, DOI 10.1108/JOSM-07-2018-412 Pizzi G, 2021, J BUS RES, V129, P878, DOI 10.1016/j.jbusres.2020.11.006 Potter WJ, 1999, J APPL COMMUN RES, V27, P258, DOI 10.1080/00909889909365539 Qin XB, 2019, J ADVERTISING, V48, P338, DOI 10.1080/00913367.2019.1652122 Rachul C, 2020, BMJ OPEN, V10, DOI 10.1136/bmjopen-2020-040989 Raghavan R., 2019, GOOGLE ADS BLOG Rifon NJ, 2004, J ADVERTISING, V33, P29, DOI 10.1080/00913367.2004.10639151 Rodgers W, 2022, J BUS ETHICS, V178, P1043, DOI 10.1007/s10551-022-05048-7 Samuel A, 2021, COMPUT HUM BEHAV, V116, DOI 10.1016/j.chb.2020.106657 Schouten AP, 2020, INT J ADVERT, V39, P258, DOI 10.1080/02650487.2019.1634898 Sebastian M., 2014, ADVERTISINGAGE BLOG Seigchrist G., 2019, LIFEWIRE BLOG Shewan D., 2020, WORDSTREAM BLOG Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022 Taiminen K, 2015, PUBLIC RELAT REV, V41, P734, DOI 10.1016/j.pubrev.2015.06.016 Van Kleef GA, 2015, J APPL PSYCHOL, V100, P1124, DOI 10.1037/apl0000003 van Noort G, 2020, J ADVERTISING, V49, P411, DOI 10.1080/00913367.2020.1795954 Wojdynski BW, 2016, J ADVERTISING, V45, P157, DOI 10.1080/00913367.2015.1115380 Woolley JK, 2010, MASS COMMUN SOC, V13, P631, DOI 10.1080/15205436.2010.516864 Youngmann B, 2021, INFORM RETRIEVAL J, V24, P205, DOI 10.1007/s10791-021-09392-6 NR 86 TC 2 Z9 2 U1 37 U2 54 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0965-254X EI 1466-4488 J9 J STRATEG MARK JI J. Strateg. Mark. PD 2022 NOV 24 PY 2022 DI 10.1080/0965254X.2022.2148269 EA NOV 2022 PG 18 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 6N6BJ UT WOS:000889639300001 DA 2024-03-27 ER PT J AU Chan, JCF Jiang, ZH Tan, BCY AF Chan, Jason C. F. Jiang, Zhenhui Tan, Bernard C. Y. TI Understanding Online Interruption-Based Advertising: Impacts of Exposure Timing, Advertising Intent, and Brand Image SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Advertising intent; brand image; experiment design; human-computer interaction; interruption-based advertising; mindset; online advertising; psychology of web users ID IMPLEMENTAL MIND-SETS; INFORMATION SEARCH; IMPLICIT MEMORY; WEB SITES; PERSUASION; CONSUMERS; CHOICE; KNOWLEDGE; INTERNET; BEHAVIOR AB Interruption-based advertising has gained prominence in the online channel. Yet, little attention has been paid to deriving design principles and conceptualizations for online interruption-based advertising. This paper examines three novel design factors related to this phenomenon, namely, exposure timing, advertising intent, and brand image. Exposure timing pertains to the time by which the advertisement (ad) is launched within a website. Advertising intent refers to the explicitness of ad content in portraying the desire to induce purchase behavior. Brand image relates to consumers' overall perceptions of the advertised brand. In a laboratory experiment, participants were exposed to pop-up ads that were operationalized based on these three design considerations. Results reveal three two-way interactions among the study constructs. Online interruption-based ads shown in the predecisional shopping phase are more effective when their contents are designed with implicit advertising intent compared to explicit intent. Brand image is found to moderate the effects of advertising intent on consumer's purchase intention. Participants' responses also show that ads promoting weak brands with less favorable image tend to enjoy higher purchase intention when shown in the predecisional phase compared with the postdecisional phase. Theoretical and practical implications together with suggestions for future research are discussed. C1 [Chan, Jason C. F.; Jiang, Zhenhui; Tan, Bernard C. Y.] Natl Univ Singapore, Dept Informat Syst, Singapore 119074, Singapore. C3 National University of Singapore RP Chan, JCF (autor correspondiente), NYU, Stern Sch Business, 550 1St Ave, New York, NY 10012 USA. EM jason.chan@stern.nyu.edu; jiang@comp.nus.edu.sg; btan@comp.nus.edu.sg CR Anand Punam., 1989, Cognitive and Affective Responses to Advertising, P135 [Anonymous], 1993, J CURR ISS RES AD Bart Y, 2005, J MARKETING, V69, P133, DOI 10.1509/jmkg.2005.69.4.133 Bettman J.R., 1979, An Information Processing Theory of Consumer Choice Bruner GC, 2000, J ADVERTISING RES, V40, P35, DOI 10.2501/JAR-40-1-2-35-42 Campbell MC, 2000, J CONSUM RES, V27, P69, DOI 10.1086/314309 Chang CC, 2007, J ADVERTISING, V36, P75, DOI 10.2753/JOA0091-3367360305 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Dahlen M, 2001, J ADVERTISING RES, V41, P23, DOI 10.2501/JAR-41-4-23-30 Danaher P., 1997, J INTERACT MARK, V11, P46, DOI DOI 10.1002/(SICI)1522-7138(199721)11:23.0.CO;2-Y Danaher PJ, 2003, MARKET SCI, V22, P461, DOI 10.1287/mksc.22.4.461.24907 de Vries P, 2007, LECT NOTES COMPUT SC, V4744, P164 Degeratu AM, 2000, INT J RES MARK, V17, P55, DOI 10.1016/S0167-8116(00)00005-7 DIESBACH P, 2007, P PERS TECHN, P223 Edwards SM, 2002, J ADVERTISING, V31, P83, DOI 10.1080/00913367.2002.10673678 Engel J, 1990, Consumer Behavior Fogg B.J., 2002, PERSUASIVE TECHNOLOG, DOI [10.1145/764008.763957, DOI 10.1145/764008.763957] FRIED M, 1994, CRIT INQUIRY, V21, P1, DOI 10.1086/448738 GENSCH DH, 1970, J MARKETING RES, V7, P216, DOI 10.2307/3150112 Gibson JJ, 1941, PSYCHOL BULL, V38, P781, DOI 10.1037/h0055307 Gollwitzer P.M., 1996, PSYCHOL ACTION LINKI, P287, DOI DOI 10.1037/0033-2909.120.3.338 Gollwitzer P. M., 1990, Handbook of Motivation and Cognition: Foundations of Social Behavior, V2, P53 Gollwitzer PM, 1999, DUAL-PROCESS THEORIES IN SOCIAL PSYCHOLOGY, P403 GOLLWITZER PM, 1990, J PERS SOC PSYCHOL, V59, P1119, DOI 10.1037/0022-3514.59.6.1119 GOLLWITZER PM, 1989, J PERS SOC PSYCHOL, V56, P531, DOI 10.1037/0022-3514.56.4.531 Ha L, 1996, J ADVERTISING RES, V36, P76 Ha L, 2008, INT J ADVERT, V27, P569, DOI 10.2501/S0265048708080153 HAN CM, 1988, J ADVERTISING RES, V28, P25 Harris J, 2007, J SERV RES-US, V9, P297, DOI 10.1177/1094670507299379 HECKHAUSEN H, 1987, MOTIV EMOTION, V11, P101, DOI 10.1007/BF00992338 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 HOLBROOK MB, 1982, J CONSUM RES, V9, P132, DOI 10.1086/208906 Hong W, 2004, INFORM SYST RES, V15, P60, DOI 10.1287/isre.1040.0017 Howard J.A., 1989, Consumer Behavior in Marketing Strategy *INT ADV BUR, 2008, IAB INT ADV REV REP JACOBY LL, 1981, J EXP PSYCHOL GEN, V110, P306, DOI 10.1037/0096-3445.110.3.306 JIANG Z, J AIS IN PRESS Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Jiang ZH, 2007, INFORM SYST RES, V18, P454, DOI 10.1287/isre.1070.0124 Kahneman D., 1973, ATTENTION EFFORT Katz J, 1997, INTERNET RES, V7, P170, DOI 10.1108/10662249710171814 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Keppel G., 2004, DESIGN ANAL RES HDB Khaled R, 2007, LECT NOTES COMPUT SC, V4744, P36 Kim B. H., 2001, Mass Communication and Society, V4, P265, DOI DOI 10.1207/S15327825MCS0403_02 Knight GA, 1999, J CONSUM MARK, V16, P151, DOI 10.1108/07363769910260524 Kotler P., 2005, PRINCIPLES MARKETING, V11th Lee AY, 2004, J MARKETING RES, V41, P151, DOI 10.1509/jmkr.41.2.151.28665 Lee AY, 2001, PERS SOC PSYCHOL B, V27, P1255, DOI 10.1177/01461672012710002 Lee L, 2006, J CONSUM RES, V33, P60, DOI 10.1086/504136 Li HR, 2002, J ADVERTISING, V31, P43, DOI 10.1080/00913367.2002.10673675 Mithas S, 2006, J MANAGE INFORM SYST, V23, P97, DOI 10.2753/MIS0742-1222230305 Morimoto M., 2006, Journal of Interactive Advertising, V7, P8 NEDUNGADI P, 1990, J CONSUM RES, V17, P263, DOI 10.1086/208556 Ng S, 2006, J CONSUM RES, V32, P519, DOI 10.1086/500482 OLSEN H, 2003, SUPPORTING CUSTOMERS Oxoby RJ, 2007, PSYCHOL MARKET, V24, P295, DOI 10.1002/mar.20162 Peracchio LA, 1997, J CONSUM RES, V24, P178, DOI 10.1086/209503 PETTY RE, 1983, J CONSUM RES, V10, P135, DOI 10.1086/208954 Pharr JM, 2005, J MARKET THEORY PRAC, V13, P34, DOI 10.1080/10696679.2005.11658557 Ratchford BT, 2003, J MARKETING RES, V40, P193, DOI 10.1509/jmkr.40.2.193.19221 Reinhard MA, 2006, J CONSUM PSYCHOL, V16, P249, DOI 10.1207/s15327663jcp1603_7 ROEDIGER HL, 1992, J EXP PSYCHOL LEARN, V18, P1251, DOI 10.1037/0278-7393.18.6.1251 SCHMITTLEIN DC, 1994, MARKET SCI, V13, P41, DOI 10.1287/mksc.13.1.41 SEAMON JG, 1995, J EXP PSYCHOL LEARN, V21, P711, DOI 10.1037/0278-7393.21.3.711 Shapiro S, 1997, J CONSUM RES, V24, P94, DOI 10.1086/209496 *SKYTR, 2008, OFF WORLD AIRL STAR *SKYTR, 2008, IND PUBL SKYTR *SKYTR, 2008, SKYTRAX CORP PROF Speck PS, 1997, J ADVERTISING, V26, P61, DOI 10.1080/00913367.1997.10673529 SPOOL JM, 2002, CUSTOMER SIEVE SRINIVAS K, 1993, J EXP PSYCHOL LEARN, V19, P582, DOI 10.1037/0278-7393.19.3.582 TAYLOR CP, 2001, ADVERTISING AGE, V72, P36 TAYLOR SE, 1995, J PERS SOC PSYCHOL, V69, P213, DOI 10.1037/0022-3514.69.2.213 Vakratsas D, 1999, J MARKETING, V63, P26, DOI 10.2307/1251999 Ward M.R., 2000, Journal of Product Brand Management, V9, P6, DOI DOI 10.1108/10610420010316302 WILLIAMS C, 2007, POP UP ADS TOLD POP Williams P, 2004, J CONSUM RES, V31, P540, DOI 10.1086/425088 WINTER FW, 1973, J MARKETING RES, V10, P130, DOI 10.2307/3149817 Yoo B, 2001, J BUS RES, V52, P1, DOI 10.1016/S0148-2963(99)00098-3 ZHU JY, 2007, 28 INT C INF SYST MO 2007, MARKETING NEWS, V41, P28 NR 82 TC 23 Z9 25 U1 4 U2 78 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD AUG PY 2010 VL 57 IS 3 BP 365 EP 379 DI 10.1109/TEM.2009.2034255 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA 659CF UT WOS:000282543900002 DA 2024-03-27 ER PT J AU Schwartz, EM Bradlow, ET Fader, PS AF Schwartz, Eric M. Bradlow, Eric T. Fader, Peter S. TI Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments SO MARKETING SCIENCE LA English DT Article DE multi-armed bandit; online advertising; field experiments; A/B testing; adaptive experiments; sequential decision making; explore-exploit; earning-and-learning; reinforcement learning; hierarchical models; machine learning ID 2-ARMED BANDIT; ALLOCATION; INDEX AB Firms using online advertising regularly run experiments with multiple versions of their ads since they are uncertain about which ones are most effective. During a campaign, firms try to adapt to intermediate results of their tests, optimizing what they earn while learning about their ads. Yet how should they decide what percentage of impressions to allocate to each ad? This paper answers that question, resolving the well-known "learn-and-earn" trade-off using multi-armed bandit (MAB) methods. The online advertiser's MAB problem, however, contains particular challenges, such as a hierarchical structure (ads within a website), attributes of actions (creative elements of an ad), and batched decisions (millions of impressions at a time), that are not fully accommodated by existing MAB methods. Our approach captures how the impact of observable ad attributes on ad effectiveness differs by website in unobserved ways, and our policy generates allocations of impressions that can be used in practice. We implemented this policy in a live field experiment delivering over 750 million ad impressions in an online display campaign with a large retail bank. Over the course of two months, our policy achieved an 8% improvement in the customer acquisition rate, relative to a control policy, without any additional costs to the bank. Beyond the actual experiment, we performed counterfactual simulations to evaluate a range of alternative model specifications and allocation rules in MAB policies. Finally, we show that customer acquisition would decrease by about 10% if the firm were to optimize click-through rates instead of conversion directly, a finding that has implications for understanding the marketing funnel. C1 [Schwartz, Eric M.] Univ Michigan, Stephen M Ross Sch Business, Ann Arbor, MI 48109 USA. [Bradlow, Eric T.; Fader, Peter S.] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA. C3 University of Michigan System; University of Michigan; University of Pennsylvania RP Schwartz, EM (autor correspondiente), Univ Michigan, Stephen M Ross Sch Business, Ann Arbor, MI 48109 USA. EM ericmsch@umich.edu; ebradlow@wharton.upenn.edu; faderp@wharton.upenn.edu RI Fader, Peter/O-9757-2018 OI Fader, Peter/0000-0003-0272-2990 CR Agarwal Deepak., 2008, Yahoo Research paper series AGRAWAL R, 1995, ADV APPL PROBAB, V27, P1054, DOI 10.2307/1427934 Agrawal S., 2012, JMLR P, P39 Anderson ET, 2011, HARVARD BUS REV, V89, P98 Auer P, 2003, J MACHINE LEARNING R, V3, P397, DOI DOI 10.4271/610369 Bates DM, 1988, NONLINEAR REGRESSION BERRY D. A., 1985, BANDIT PROBLEMS Berry DA, 2004, STAT SCI, V19, P175, DOI 10.1214/088342304000000044 BERRY DA, 1972, ANN MATH STAT, V43, P871, DOI 10.1214/aoms/1177692553 Bertsimas D, 2007, OPER RES, V55, P1120, DOI 10.1287/opre.1070.0427 BRADT RN, 1956, ANN MATH STAT, V27, P1060, DOI 10.1214/aoms/1177728073 Braun M, 2013, MARKET SCI, V32, P753, DOI 10.1287/mksc.2013.0802 Brezzi M, 2002, J ECON DYN CONTROL, V27, P87, DOI 10.1016/S0165-1889(01)00028-8 Chapelle O., 2011, P ADV NEUR INF PROC, V24, P1 Chick SE, 2001, OPER RES, V49, P732, DOI 10.1287/opre.49.5.732.10615 Chick SE, 2012, MANAGE SCI, V58, P550, DOI 10.1287/mnsc.1110.1425 Chick SE, 2010, INFORMS J COMPUT, V22, P71, DOI 10.1287/ijoc.1090.0327 Chick SE, 2009, MANAGE SCI, V55, P421, DOI 10.1287/mnsc.1080.0949 Dani V, 2008, COLT, P355 Davenport Thomas H., 2009, Harvard Business Review, V87, P1 Donahoe J, 2011, HARVARD BUS REV, V89, P92 Filippi S., 2010, ADV NEURAL INFORM PR, V23, P1 Frazier P, 2009, INFORMS J COMPUT, V21, P599, DOI 10.1287/ijoc.1080.0314 Gelman A, 2007, VOL ANAL METHODS SOC Gelman A., 2004, BAYESIAN DATA ANAL Gittins J, 2011, Multi-Armed Bandit Allocation Indices GITTINS JC, 1979, J ROY STAT SOC B MET, V41, P148 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 Granmo OC, 2010, INT J INTELL COMPUT, V3, P207, DOI 10.1108/17563781011049179 Hauser JR, 2014, MANAGE SCI, V60, P1594, DOI 10.1287/mnsc.2014.1961 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hoban PR, 2015, J MARKETING RES, V52, P375, DOI 10.1509/jmr.13.0277 Kaufmann Emilie, 2012, Algorithmic Learning Theory. 23rd International Conference (ALT 2012). Proceedings, P199, DOI 10.1007/978-3-642-34106-9_18 Keller G, 2003, J ECON THEORY, V113, P302, DOI 10.1016/S0022-0531(03)00092-9 Krishnamurthy V, 2009, MATH OPER RES, V34, P287, DOI 10.1287/moor.1080.0371 LAI TL, 1987, ANN STAT, V15, P1091, DOI 10.1214/aos/1176350495 Lambrecht A, 2013, J MARKETING RES, V50, P561, DOI 10.1509/jmr.11.0503 Lin S, 2015, MARKET SCI, V34, P1, DOI 10.1287/mksc.2014.0868 Manchanda P, 2006, J MARKETING RES, V43, P98, DOI 10.1509/jmkr.43.1.98 May B. C., 2011, TECHNICAL REPORT MEYER RJ, 1995, MANAGE SCI, V41, P817, DOI 10.1287/mnsc.41.5.817 Murphy SA, 2005, STAT MED, V24, P1455, DOI 10.1002/sim.2022 Ortega PA, 2014, COMPLEX ADAPT SYST M, V2, DOI 10.1186/2194-3206-2-2 Ortega PA, 2010, J ARTIF INTELL RES, V38, P475, DOI 10.1613/jair.3062 Osband I., 2013, P ADV NEUR INF PROC, P3003 Perchet V, 2016, ANN STAT, V44, P660, DOI 10.1214/15-AOS1381 Powell W. B., 2011, Approximate dynamic programming Reiley D, 2011, P 17 ACM SIGKDD C KN, P1019 ROBBINS H, 1952, B AM MATH SOC, V58, P527, DOI 10.1090/S0002-9904-1952-09620-8 Rubin D, 1990, J EDUC PSYCHOL, V66, P688 Rusmevichientong P, 2010, MATH OPER RES, V35, P395, DOI 10.1287/moor.1100.0446 Russo D, 2014, MATH OPER RES, V39, P1221, DOI 10.1287/moor.2014.0650 Scott SL, 2010, APPL STOCH MODEL BUS, V26, P639, DOI 10.1002/asmb.874 Sutton R. S., 1998, INTRO REINFORCEMENT, V2 Thompson WR, 1933, BIOMETRIKA, V25, P285, DOI 10.1093/biomet/25.3-4.285 TSITSIKLIS JN, 1986, IEEE T AUTOMAT CONTR, V31, P576, DOI 10.1109/TAC.1986.1104332 Urban GL, 2014, MARKET SCI, V33, P27, DOI 10.1287/mksc.2013.0803 WAHRENBERGER DL, 1977, BIOMETRIKA, V64, P172, DOI 10.1093/biomet/64.1.172 White J., 2012, Bandit Algorithms for Website Optimization WHITTLE P, 1980, J ROY STAT SOC B MET, V42, P143 NR 60 TC 109 Z9 126 U1 9 U2 120 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD JUL-AUG PY 2017 VL 36 IS 4 BP 500 EP 522 DI 10.1287/mksc.2016.1023 PG 23 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA FD0JO UT WOS:000407225800002 OA Green Submitted DA 2024-03-27 ER PT J AU Scholz, M Dorner, V Schryen, G Benlian, A AF Scholz, Michael Dorner, Verena Schryen, Guido Benlian, Alexander TI A configuration-based recommender system for supporting e-commerce decisions SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH LA English DT Article DE E-commerce; Recommender system; Attribute weights; Configuration system; Decision support ID MULTIATTRIBUTE UTILITY MEASUREMENT; PROSPECT-THEORY; CONJOINT-ANALYSIS; MODELS; CHOICE; RANGE; CUSTOMIZATION; UNCERTAINTY; SENSITIVITY; HEURISTICS AB Multi-attribute value theory (MAVT)-based recommender systems have been proposed for dealing with issues of existing recommender systems, such as the cold-start problem and changing preferences. However, as we argue in this paper, existing MAVT-based methods for measuring attribute importance weights do not fit the shopping tasks for which recommender systems are typically used. These methods assume well-trained decision makers who are willing to invest time and cognitive effort, and who are familiar with the attributes describing the available alternatives and the ranges of these attribute levels. Yet, recommender systems are most often used by consumers who are usually not familiar with the available attributes and ranges and who wish to save time and effort. Against this background, we develop a new method, based on a product configuration process, which is tailored to the characteristics of these particular decision makers. We empirically compare our method to SWING, ranking-based conjoint analysis and TRADEOFF in a between-subjects laboratory experiment with 153 participants. Results indicate that our proposed method performs better than TRADEOFF and CONJOINT and at least as well as SWING in terms of recommendation accuracy, better than SWING and TRADEOFF and at least as well as CONJOINT in terms of cognitive load, and that participants were faster with our method than with any other method. We conclude that our method is a promising option to help support consumers' decision processes in e-commerce shopping tasks. (C) 2016 Elsevier B.V. All rights reserved. C1 [Scholz, Michael] Univ Passau, Fac Business Adm & Econ, Informat Syst Focus Elect Commerce, Innstr 43, D-94032 Passau, Germany. [Dorner, Verena] Karlsruhe Inst Technol, Inst Informat Syst & Mkt, Chair Informat & Market Design, Karlsruhe, Germany. [Schryen, Guido] Univ Regensburg, Dept Management Informat Syst, Management Informat Syst, Regensburg, Germany. [Benlian, Alexander] Tech Univ Darmstadt, Chair Informat Syst & Elect Serv, Darmstadt, Germany. C3 University of Passau; Helmholtz Association; Karlsruhe Institute of Technology; University of Regensburg; Technical University of Darmstadt RP Scholz, M (autor correspondiente), Univ Passau, Fac Business Adm & Econ, Informat Syst Focus Elect Commerce, Innstr 43, D-94032 Passau, Germany. EM michael.scholz@uni-passau.de; verena.dorner@kit.edu; guido.schryen@wiwi.uni-regensburg.de; benlian@ise.tu-darmstadt.de RI ; Schryen, Guido/P-7623-2018; Benlian, Alexander/E-1075-2014 OI Scholz, Michael/0000-0003-0173-2900; Schryen, Guido/0000-0003-3794-1413; Benlian, Alexander/0000-0002-7294-3097 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 AKAAH IP, 1983, J MARKETING RES, V20, P187, DOI 10.2307/3151685 [Anonymous], DECISION SUPPORT SYS [Anonymous], RATIONAL DECISION MA Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 BETTMAN JR, 1993, J EXP PSYCHOL LEARN, V19, P931 BORCHERDING K, 1991, MANAGE SCI, V37, P1603, DOI 10.1287/mnsc.37.12.1603 Butler J, 1997, EUR J OPER RES, V103, P531, DOI 10.1016/S0377-2217(96)00307-4 DAWES RM, 1979, AM PSYCHOL, V34, P571, DOI 10.1037/0003-066X.34.7.571 De Bruyn A, 2008, MARKET SCI, V27, P443, DOI 10.1287/mksc.1070.0306 Dellaert BGC, 2012, J MARKETING RES, V49, P277, DOI 10.1509/jmr.09.0481 Dellaert BGC, 2009, INT J ELECTRON COMM, V13, P43, DOI 10.2753/JEC1086-4415130302 Ding M, 2005, J MARKETING RES, V42, P67, DOI 10.1509/jmkr.42.1.67.56890 Ding M, 2007, J MARKETING RES, V44, P214, DOI 10.1509/jmkr.44.2.214 EDWARDS W, 1994, ORGAN BEHAV HUM DEC, V60, P306, DOI 10.1006/obhd.1994.1087 Fan ZP, 2013, COMPUT IND ENG, V65, P341, DOI 10.1016/j.cie.2013.02.013 FISCHER GW, 1995, ORGAN BEHAV HUM DEC, V62, P252, DOI 10.1006/obhd.1995.1048 Fishburn PeterC., 1967, Management Science, V13, P435, DOI DOI 10.1287/MNSC.13.7.435 Forsati R, 2014, ACM T INFORM SYST, V32, DOI 10.1145/2641564 HART S G, 1988, P139 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Hauser JR, 2014, J BUS RES, V67, P1688, DOI 10.1016/j.jbusres.2014.02.015 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hoeffler S., 1999, Journal of Consumer Psychology, V8, P113, DOI DOI 10.1207/S15327663JCP0802_01 Huang SL, 2011, ELECTRON COMMER R A, V10, P398, DOI 10.1016/j.elerap.2010.11.003 Keeney RL, 2002, OPER RES, V50, P935, DOI 10.1287/opre.50.6.935.357 Keeney RL., 1976, DECISION ANAL MULTIP Lahtinen TJ, 2016, EUR J OPER RES, V249, P890, DOI 10.1016/j.ejor.2015.09.056 Levi A., 2012, P ACM C REC SYST Mustajoki J, 2005, DECISION SCI, V36, P317, DOI 10.1111/j.1540-5414.2005.00075.x Pfeiffer J, 2013, BUS INFORM SYST ENG+, V5, P397, DOI 10.1007/s12599-013-0295-z Pöyhönen M, 2001, EUR J OPER RES, V129, P569, DOI 10.1016/S0377-2217(99)00467-1 Pu P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P511, DOI 10.1007/978-0-387-85820-3_16 Scholz M, 2015, DECIS SUPPORT SYST, V72, P60, DOI 10.1016/j.dss.2015.02.006 Shi Y, 2014, ACM COMPUT SURV, V47, DOI 10.1145/2556270 SILVER NC, 1987, J APPL PSYCHOL, V72, P146, DOI 10.1037/0021-9010.72.1.146 Sun MH, 1996, EUR J OPER RES, V89, P462, DOI 10.1016/0377-2217(94)00228-2 TVERSKY A, 1992, J RISK UNCERTAINTY, V5, P297, DOI 10.1007/BF00122574 TVERSKY A, 1991, Q J ECON, V106, P1039, DOI 10.2307/2937956 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 Valenzuela A, 2009, J MARKETING RES, V46, P754, DOI 10.1509/jmkr.46.6.754 Van Der Land S., 2013, COMPUT HUM BEHAV, V29, P1045 Van Ittersum K, 2007, J BUS RES, V60, P1177, DOI 10.1016/j.jbusres.2007.04.001 Von Winterfeldt Detlof., 1986, DECISION ANAL BEHAV, V604 VONNITZSCH R, 1993, MANAGE SCI, V39, P937, DOI 10.1287/mnsc.39.8.937 Wallenius J, 2008, MANAGE SCI, V54, P1336, DOI 10.1287/mnsc.1070.0838 Wang T, 2007, J MARKETING RES, V44, P200, DOI 10.1509/jmkr.44.2.200 Wansink B, 1998, J MARKETING RES, V35, P71, DOI 10.2307/3151931 WEBER M, 1993, EUR J OPER RES, V67, P1, DOI 10.1016/0377-2217(93)90318-H Weng L.-T., 2008, P IEEE INT C TOOLS A Wu G, 2008, MANAGE SCI, V54, P1322, DOI 10.1287/mnsc.1070.0846 Wyner G.A., 1992, Marketing Research, V4, P46 Xiao B, 2007, MIS QUART, V31, P137 Xu AJ, 2010, J CONSUM RES, V37, P329, DOI 10.1086/651204 Xu JJ, 2014, MIS QUART, V38, P379, DOI 10.25300/MISQ/2014/38.2.03 Yu X., 2014, P ACM INT C WEB SEAR Zhao WNX, 2016, IEEE T KNOWL DATA EN, V28, P1147, DOI 10.1109/TKDE.2015.2508816 Zigoris P., 2006, P ACM INT C INF KNOW NR 58 TC 35 Z9 37 U1 3 U2 106 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-2217 EI 1872-6860 J9 EUR J OPER RES JI Eur. J. Oper. Res. PD MAY 16 PY 2017 VL 259 IS 1 BP 205 EP 215 DI 10.1016/j.ejor.2016.09.057 PG 11 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA EJ9ES UT WOS:000393530000016 OA Green Submitted DA 2024-03-27 ER PT J AU Li, LS Chen, JQ Raghunathan, S AF Li, Lusi Chen, Jianqing Raghunathan, Srinivasan TI Recommender System Rethink: Implications for an Electronic Marketplace with Competing Manufacturers SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE analytical modeling; economics of IS; recommender system; electronic commerce ID ONLINE PRODUCT RECOMMENDATIONS; WEB PERSONALIZATION; IMPACT; INFORMATION; SALES; STRATEGIES; PERSUASION; CONSUMERS; SEARCH; AGENT AB Recommender systems that inform consumers about their likely ideal products have become the cornerstone of e-commerce platforms that sell products from competing manufacturers. Using a model of an electronic marketplace in which two competing manufacturers sell their products through a common retail platform, we study the effect of recommender systems on the retail platform, manufacturers, consumer surplus, and social welfare. In our setting, consumers are differentiated with respect to their preference for the two products (locational differentiation) and awareness about the two products (informational differentiation). A recommender system selects the recommendation based on a recommendation score, which is a weighted sum of expected retailer profit and expected consumer value. We find that the recommender system may benefit or hurt the retailer and the manufacturers depending on the signs and magnitudes of the substitution effect and demand effect of the recommender system. The substitution effect of the recommender system either intensifies or softens the price competition between two manufacturers through two forces-its direct influence alters the informational differentiation of consumers (which affects the markup that manufacturers can charge), and its strategic influence motivates the manufacturers to use price as a lever to attract more recommendations in their favor. The demand effect of the recommender system increases overall consumer awareness, but, depending on the substitution effect, may increase or decrease the demand. The recommendation strategy, namely, the relative weight assigned to retailer profit vis-a-vis consumer value in computing the recommendation score, along with recommender system precision and the relative sizes of segments of consumers with different awareness levels, determines whether the retailer benefits from the recommender system and by how much. We find that the retailer's optimal recommendation strategy is mildly profit oriented in the sense that it assigns a larger, but not too large, weight to retailer profit compared to consumer value, and that under the optimal strategy, the price competition is less intense and the retailer profit is higher compared to when there is no recommender system. Furthermore, an increase in either the recommender system precision or the fraction of consumers that are aware of at least one product induces the retailer to adopt a more profit-oriented recommendation strategy. C1 [Li, Lusi] Calif State Univ Los Angeles, Coll Business & Econ, Los Angeles, CA 90032 USA. [Chen, Jianqing; Raghunathan, Srinivasan] Univ Texas Dallas, Jindal Sch Management, Richardson, TX 75080 USA. C3 California State University System; California State University Los Angeles; University of Texas System; University of Texas Dallas RP Li, LS (autor correspondiente), Calif State Univ Los Angeles, Coll Business & Econ, Los Angeles, CA 90032 USA. EM lli57@calstatela.edu; chenjq@utdallas.edu; sraghu@utdallas.edu RI Raghunathan, Srinivasan/KFR-3471-2024 OI Raghunathan, Srinivasan/0000-0002-2782-3520 FU National Natural Science Foundation of China [71528004, 71431002, 71671036] FX Jianqing Chen acknowledges financial support from the National Natural Science Foundation of China [Grants 71528004, 71431002, and 71671036]. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Bergemann D., 2006, P ACM C EL COMM, P43, DOI DOI 10.1145/1134707.1134713 BESTER H, 1995, EUR ECON REV, V39, P1075, DOI 10.1016/0014-2921(94)00099-L Brynjolfsson E, 2011, MANAGE SCI, V57, P1373, DOI 10.1287/mnsc.1110.1371 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Chen LS, 2008, INFORM SCIENCES, V178, P1032, DOI 10.1016/j.ins.2007.09.027 Cooke ADJ, 2002, J MARKETING RES, V39, P488, DOI 10.1509/jmkr.39.4.488.19121 Das Aparna, 2009, ARXIV09083633 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gal-Or E, 2005, MARKET SCI, V24, P241, DOI 10.1287/mksc.1040.0092 Gal-Or E, 2006, MANAGE SCI, V52, P713, DOI 10.1287/mnsc.1050.0489 Gretzel U, 2006, INT J ELECTRON COMM, V11, P81, DOI 10.2753/JEC1086-4415110204 GROSSMAN GM, 1984, REV ECON STUD, V51, P63, DOI 10.2307/2297705 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Häubl G, 2006, MIT SLOAN MANAGE REV, V47, P8 Hennig-Thurau T, 2012, J MARKETING, V76, P89, DOI 10.1509/jm.10.0537 Hervas-Drane A, 2015, INT J RES MARK, V32, P207, DOI 10.1016/j.ijresmar.2015.02.005 Hinz O, 2010, BUS INFORM SYST ENG+, V2, P67, DOI 10.1007/s12599-010-0092-x Hosanagar K, 2008, P 29 INT C INF SYST, P31 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Hostler RE, 2005, DECIS SUPPORT SYST, V41, P313, DOI 10.1016/j.dss.2004.07.002 Iyer G, 2005, MARKET SCI, V24, P461, DOI 10.1287/mksc.1050.0117 Jabr W, 2014, MIS QUART, V38, P635, DOI 10.25300/MISQ/2014/38.3.01 Jiang BJ, 2011, MARKET SCI, V30, P757, DOI 10.1287/mksc.1110.0656 Johnson JP, 2006, AM ECON REV, V96, P756, DOI 10.1257/aer.96.3.756 LEWIS TR, 1994, INT ECON REV, V35, P309, DOI 10.2307/2527055 McNee Sean M., 2006, CHI 06 HUM FACT COMP, P1097, DOI DOI 10.1145/1125451 Mooney R. J., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P195, DOI 10.1145/336597.336662 Oestreicher-Singer G, 2012, MANAGE SCI, V58, P1963, DOI 10.1287/mnsc.1120.1536 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Pu P, 2011, P 5 ACM C REC SYST, P157, DOI [10.1145/2043932.2043962, DOI 10.1145/2043932.2043962] Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Shani G, 2005, J MACH LEARN RES, V6, P1265 Soberman DA, 2004, MANAGE SCI, V50, P1744, DOI 10.1287/mnsc.1040.0288 Tam KY, 2006, MIS QUART, V30, P865 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Vargas S., 2011, P 5 ACM C REC SYST, P109, DOI DOI 10.1145/2043932.2043955 Wang JW, 2011, PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 16TH '11), P1003 Xiao B, 2007, MIS QUART, V31, P137 Xiao B, 2015, INFORM SYST RES, V26, P793, DOI 10.1287/isre.2015.0592 NR 41 TC 29 Z9 32 U1 18 U2 167 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD DEC PY 2018 VL 29 IS 4 BP 1003 EP 1023 DI 10.1287/isre.2017.0765 PG 21 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA HL2FZ UT WOS:000458521100013 DA 2024-03-27 ER PT J AU Palanivel, K Sivakumar, R AF Palanivel, K. Sivakumar, R. TI A STUDY ON IMPLICIT FEEDBACK IN MULTICRITERIA E-COMMERCE RECOMMENDER SYSTEM SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE implicit relevance feedback; evaluation; multicriteria E-commerce recommender system ID ALGORITHMS; ACCURACY; IMPROVE; AGENTS AB Recommender systems are personalized intelligent systems capable of helping people to easily locate their relevant information through recommendations from a large repository of information. In order to provide personalized recommendations, the accurate modeling of user's preferences is required. Modeling of user's preferences needs their relevance feedback on the recommendations. The relevance feedback may be collected either explicitly or implicitly. The explicit relevance feedback introduces intrusiveness problem whereas the implicit feedback can be inferred from normal user-system interactions without disturbing the user. The users expect accuracy in recommendations and effortless assistance from the recommender systems. The multicriteria user preference ratings are useful to improve the accuracy of recommendations. However, collecting multiple ratings increases the cognitive load of the user. We believe that a combined, implicit relevance feedback and multicriteria user preference ratings, approach improve the accuracy in recommendations and eliminate the intrusiveness problem of recommender systems. In order to fulfill the above needs and to better understand the potential behind the implicit relevance feedback approach under multicriteria ratings context, this study focuses a new implicit-multicriteria combined recommendation approach. A Music recommender system is developed for this experiment to evaluate the recommendation accuracy of implicit and explicit feedback approaches under the user-based and item-based prediction algorithms against different data sparsity levels, training/test ratio and neighborhood sizes. Out of this experiment, the implicit ratings based prediction algorithms provide better performance than the explicit ratings based prediction algorithms with respect to all the three sensitive parameters. It is also observed that the proposed IB_PIR prediction algorithm computes better predictions than other prediction algorithms. Finally, we discuss the study's implications for theory and practice and conclude with many suggestions for future research on non-intrusive, multicriteria recommender systems. C1 [Palanivel, K.; Sivakumar, R.] Bharathidasan Univ, AVVM Sri Pushpam Coll, Dept Comp Sci, Thanjavur, Tamil Nadu, India. C3 Bharathidasan University RP Palanivel, K (autor correspondiente), Bharathidasan Univ, AVVM Sri Pushpam Coll, Dept Comp Sci, Thanjavur, Tamil Nadu, India. EM palani.avcc@hotmail.com; rskumar.avvmspc@gmail.com CR Adoinavicius G, 2007, IEEE INTELL SYST, V22, P48, DOI 10.1109/MIS.2007.58 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 [Anonymous], 1999, P 22 ACM SIGIR C RES [Anonymous], 1994, P 1994 ACM C COMP SU [Anonymous], THESIS SCH ARCHITECT Burke R., 2002, ENCY LIB INFORM SYST, V69 Chatterjee P, 2003, MARKET SCI, V22, P520, DOI 10.1287/mksc.22.4.520.24906 Chen L., 1998, Proceedings of the Second International Conference on Autonomous Agents, P132, DOI 10.1145/280765.280789 Claypool M, 2001, IEEE INTERNET COMPUT, V5, P32, DOI 10.1109/4236.968829 COOLEY R, 1999, P 1999 KDD WORKSH WE Fox S, 2005, ACM T INFORM SYST, V23, P147, DOI 10.1145/1059981.1059982 Frias-Martinez E, 2005, EXPERT SYST APPL, V29, P320, DOI 10.1016/j.eswa.2005.04.005 Fung TKF, 2008, J ELECTRON COMMER RE, V9, P296 Godoy D, 2005, KNOWL ENG REV, V20, P329, DOI 10.1017/S0269888906000397 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 HINGSTON M, 2006, THESIS U SYDNEY Huberman B., 1996, BEEHIVE SYSTEM COOPE Joachims T, 2007, ACM T INFORM SYST, V25, DOI 10.1145/1229179.1229181 Jung K, 2001, THESIS FLORIDA I TEC Jung S, 2007, INFORM PROCESS MANAG, V43, P791, DOI 10.1016/j.ipm.2006.07.021 Kellar M, 2004, P ASIST ANNU, V41, P168, DOI 10.1002/meet.1450410119 Kelly D., 2003, SIGIR Forum, V37, P18, DOI 10.1145/959258.959260 Kobsa A, 2001, KNOWL ENG REV, V16, P111, DOI 10.1017/S0269888901000108 Konstan JA, 2004, ACM T INFORM SYST, V22, P1, DOI 10.1145/963770.963771 Konstan JA, 1997, COMMUN ACM, V40, P77, DOI 10.1145/245108.245126 Krulwich B, 1997, AI MAG, V18, P37 Lee HH, 2007, IRI 2007: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P273 Lee TQ, 2008, EXPERT SYST APPL, V34, P3055, DOI 10.1016/j.eswa.2007.06.031 Lieberman H, 1995, INT JOINT CONF ARTIF, P924 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 MARTINEZ L, 2009, INT J COMPUTATIONAL, V1, P225 MLADENIC D, 1996, IJSDP7472 J STEF I D Mobasher B, 2000, COMMUN ACM, V43, P142, DOI 10.1145/345124.345169 MOBASHER B, 2005, LNCS LNAI, V3169, P1 Montaner M, 2003, ARTIF INTELL REV, V19, P285, DOI 10.1023/A:1022850703159 Morita M., 1994, P 17 ANN INT ACM SIG, P272 Nah F., 2002, The Journal of Electronic Commerce Research, V3, P98 NIINIVAARA O, 2004, AGENT BASED RECOMMEN Oard D., 1998, Proceedings of 5th DELOS Workshop on Filtering and Collaborative Filtering, V83, P31 Papagelis M, 2005, ENG APPL ARTIF INTEL, V18, P781, DOI 10.1016/j.engappai.2005.06.010 Pazzani M, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P54 Rao KN, 2008, DESIDOC J LIB INF TE, V28, P17 Sakagami H., 1997, P 6 INT WORLD WID WE, P291 SARWAR B, 2000, EC 00 OCT 17 20 MINN Sarwar B. M., 1998, PROC SHAHABI C, 2003, 3 INT WORKSH DAT NET Shih TK, 2002, IND MANAGE DATA SYST, V102, P417, DOI 10.1108/02635570210445853 Shin N., 2001, Journal of Electronic Commerce Research, V2, P164, DOI [10.5195/emaj.2011.12, DOI 10.5195/EMAJ.2011.12] Zenebe A, 2009, FUZZY SET SYST, V160, P76, DOI 10.1016/j.fss.2008.03.017 NR 49 TC 14 Z9 14 U1 1 U2 18 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PY 2010 VL 11 IS 2 BP 140 EP 156 PG 17 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 760HP UT WOS:000290315700004 DA 2024-03-27 ER PT J AU Baum, D Spann, M AF Baum, Daniela Spann, Martin TI The Interplay Between Online Consumer Reviews and Recommender Systems: An Experimental Analysis SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE business-to-consumer (B2C) e-commerce; consumer behavior; decision making; e-tail; electronic word of mouth (eWOM); online consumer reviews; online experiments; recommender system ID WORD-OF-MOUTH; E-COMMERCE; MODERATING ROLE; PRODUCT; INFORMATION; CHOICE; ADVICE; IMPACT; OPINION; SEARCH AB Online consumers face complex purchase decisions due to the huge selection of products and the vast amount of information available. Online retailers therefore try to support consumer decision making by providing recommendations generated by previous consumers as well as recommendations generated by recommender systems. The goal of this study is to analyze the interplay between online consumer reviews and recommender systems and its effect on consumers' decision making. We experimentally manipulate the provision of online consumer reviews and provider-generated recommendations for high-and low-involvement products, as well as search and experience products. Using a representative sample of online consumers, we find that providing online consumer reviews does not necessarily have to be beneficial for an online retailer, as inconsistent recommendations do negatively influence consumers' purchase decisions. In addition, by providing positive opinions of previous customers in addition to a recommender system's recommendation, online retailers may increase the effectiveness of their recommender system. However, if a previous customer's recommendation contradicts that of a recommender system, positive consumer reviews may even have negative consequences for online retailers. C1 [Spann, Martin] Univ Munich, D-81377 Munich, Germany. C3 University of Munich EM baum@bwl.lmu.de; spann@spann.de RI Spann, Martin/F-9636-2011 OI Spann, Martin/0000-0003-4645-3913 CR Ahluwalia R, 1997, ADV CONSUM RES, V24, P222 [Anonymous], P 31 INT C INF SYST [Anonymous], J MANAGEMENT INFORM [Anonymous], 2013, WORLDW B2C EC 2013 F Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 ARNDT J, 1967, J MARKETING RES, V4, P291, DOI 10.1177/002224376700400308 Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Ballinger GA, 2004, ORGAN RES METHODS, V7, P127, DOI 10.1177/1094428104263672 Benlian A, 2012, J MANAGE INFORM SYST, V29, P237, DOI 10.2753/MIS0742-1222290107 Bickart B., 2001, J INTERACT MARK, V15, P31, DOI [10.1002/dir.1014, DOI 10.1002/DIR.1014] Chandrashekaran R, 2004, J RETAILING, V80, P53, DOI 10.1016/j.jretai.2004.01.004 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Clarke K., 1979, ADV CONSUM RES, V6, P313 Cui G, 2012, INT J ELECTRON COMM, V17, P39, DOI 10.2753/JEC1086-4415170102 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dellaert BGC, 2012, J MARKETING RES, V49, P277, DOI 10.1509/jmr.09.0481 Dellarocas C, 2003, MANAGE SCI, V49, P1407, DOI 10.1287/mnsc.49.10.1407.17308 Dias MB, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P291 Elsner H, 2013, BUS INFORM SYST ENG+, V5, P213, DOI 10.1007/s12599-013-0275-3 eMarketer, 2013, EC SAL TOPP 1 TRILL Fitzsimons GJ, 2004, MARKET SCI, V23, P82, DOI 10.1287/mksc.1030.0033 Gupta P, 2010, J BUS RES, V63, P1041, DOI 10.1016/j.jbusres.2009.01.015 Harries C, 2004, J BEHAV DECIS MAKING, V17, P333, DOI 10.1002/bdm.474 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Häubl G, 2003, J CONSUM PSYCHOL, V13, P75 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Hennig-Thurau T, 2003, INT J ELECTRON COMM, V8, P51, DOI 10.1080/10864415.2003.11044293 HOGARTH RM, 1989, INT J FORECASTING, V5, P593, DOI 10.1016/0169-2070(89)90015-0 Iyengar SS, 2000, J PERS SOC PSYCHOL, V79, P995, DOI 10.1037//0022-3514.79.6.995 Jiang YC, 2010, DECIS SUPPORT SYST, V48, P470, DOI 10.1016/j.dss.2009.06.006 Jiménez FR, 2013, J INTERACT MARK, V27, P226, DOI 10.1016/j.intmar.2013.04.004 Kumar N, 2006, INFORM SYST RES, V17, P425, DOI 10.1287/isre.1060.0107 Kwon O, 2012, INT J ELECTRON COMM, V17, P59, DOI 10.2753/JEC1086-4415170103 Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267 Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011 Ma X, 2013, J MANAGE INFORM SYST, V30, P279, DOI 10.2753/MIS0742-1222300310 MAHESWARAN D, 1990, J MARKETING RES, V27, P361, DOI 10.2307/3172593 Mudambi SM, 2010, MIS QUART, V34, P185 Park DH, 2007, INT J ELECTRON COMM, V11, P125, DOI 10.2753/JEC1086-4415110405 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 PAYNE JW, 1992, ANNU REV PSYCHOL, V43, P87, DOI 10.1146/annurev.ps.43.020192.000511 Pleger BebkoC., 2000, Journal of Services Marketing, V14, P9 Schindler RM, 2005, ADVERT CONS, P35 Sen S, 2007, J INTERACT MARK, V21, P76, DOI 10.1002/dir.20090 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Smith D, 2005, J INTERACT MARK, V19, P15, DOI 10.1002/dir.20041 SMITH DC, 1992, J MARKETING RES, V29, P296, DOI 10.2307/3172741 SNIEZEK JA, 1995, ORGAN BEHAV HUM DEC, V62, P159, DOI 10.1006/obhd.1995.1040 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 Wang Alex, 2008, International Journal of Internet Marketing and Advertising, V4, P328, DOI 10.1504/IJIMA.2008.019152 Wang WQ, 2008, J MANAGE INFORM SYST, V24, P249, DOI 10.2753/MIS0742-1222240410 Xiao B, 2007, MIS QUART, V31, P137 Yaniv I, 2007, ORGAN BEHAV HUM DEC, V103, P104, DOI 10.1016/j.obhdp.2006.05.006 Zahedi F., 2003, P 2003 AM C INF SYST ZEGER SL, 1986, BIOMETRICS, V42, P121, DOI 10.2307/2531248 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 58 TC 44 Z9 48 U1 9 U2 127 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1086-4415 EI 1557-9301 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD FAL PY 2014 VL 19 IS 1 BP 129 EP 161 DI 10.2753/JEC1086-4415190104 PG 33 WC Business; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA CA1YK UT WOS:000348705300005 DA 2024-03-27 ER PT J AU Lee, D Nam, K Han, I Cho, K AF Lee, Dongwon Nam, Kihwan Han, Ingoo Cho, Kanghyun TI From free to fee: Monetizing digital content through expected utility-based recommender systems SO INFORMATION & MANAGEMENT LA English DT Article DE Utility-based business rule analytics; Digital content monetization; Free-to-fee conversion; Recommendation system; Association rule mining ID ASSOCIATION RULES; WEB PERSONALIZATION; BAYESIAN-ANALYSIS; DECISION-MAKING; IMPACT; ONLINE; MODEL; RISK; ALGORITHM; DISCOVERY AB This study proposes a novel framework for designing business rule analytics to assist businesses offering digital content in effectively converting free-only users (FOUs) into paying customers. Based on the theory of expected utility, we expand upon traditional frequency-driven rule analytics by integrating three business-relevant factors (target size, conversion profit, and conversion likelihood) into the process of generating recommendations for FOUs in digital content markets. The framework was tested using two different types of empirical analysis. We conducted a field experiment collaborating with a nationwide e-book store to determine how FOUs responded to the recommendations generated under the proposed framework. Furthermore, we analyzed over 5 million transactions collected from the e-book seller and a mobile application provider to examine the impact of customer segmentation on the effectiveness of our approach. Our findings suggest that business analytics derived from the utility-based mechanisms can significantly enhance digital content providers' business performance. C1 [Lee, Dongwon] Hansung Univ, Sch Business Adm, 116 Samseongyoro 16gil, Seoul 02876, South Korea. [Nam, Kihwan] Dongguk Univ, Business Sch, Management Informat Syst, 30 Pildong Ro,1 Gil, Seoul, South Korea. [Han, Ingoo] Korea Adv Inst Sci & Technol, SUPEX, Coll Business Management Engn Dept, 85 Hoegiro, Seoul 130722, South Korea. [Cho, Kanghyun] Temple Univ, Fox Sch Business, 1801 Liacouras Walk, Philadelphia, PA 19122 USA. C3 Hansung University; Dongguk University; Korea Advanced Institute of Science & Technology (KAIST); Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University RP Nam, K (autor correspondiente), Dongguk Univ, Business Sch, Management Informat Syst, 30 Pildong Ro,1 Gil, Seoul, South Korea. EM namkh@dongguk.edu OI Cho, Kanghyun/0000-0002-1140-3118; Nam, Kihwan/0000-0002-9138-7209 CR Adomavicius G, 2011, INFORM SYST RES, V22, P99, DOI 10.1287/isre.1100.0274 Adomavicius G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P217, DOI 10.1007/978-0-387-85820-3_7 Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072 ALBERT JH, 1993, J AM STAT ASSOC, V88, P669, DOI 10.2307/2290350 Albert TC, 2004, MIS QUART, V28, P161 Anand SS, 1998, KNOWL-BASED SYST, V10, P449, DOI 10.1016/S0950-7051(98)00035-5 Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Aral S, 2021, MANAGE SCI, V67, P2381, DOI 10.1287/mnsc.2020.3650 Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 Bernoulli D, 1954, ECONOMETRICA, V22, P23, DOI 10.2307/1909829 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Cao LB, 2010, IEEE T KNOWL DATA EN, V22, P755, DOI 10.1109/TKDE.2010.32 Chen LS, 2008, INFORM SCIENCES, V178, P1032, DOI 10.1016/j.ins.2007.09.027 Chen YL, 2006, DECIS SUPPORT SYST, V42, P1503, DOI 10.1016/j.dss.2005.12.004 Chiu MC, 2018, EUR J OPER RES, V271, P141, DOI 10.1016/j.ejor.2018.05.002 Churilov L, 2005, J MANAGE INFORM SYST, V21, P85, DOI 10.1080/07421222.2005.11045826 De Pessemier T, 2009, EUROITV'09: PROCEEDINGS OF THE SEVENTH EUROPEAN INTERACTIVE TELEVISION CONFERENCE, P133 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Foong Li Law, 2011, 2011 5th Malaysian Conference in Software Engineering (MySEC), P349, DOI 10.1109/MySEC.2011.6140696 Ghose A, 2009, MANAGE SCI, V55, P1605, DOI 10.1287/mnsc.1090.1054 Hu JY, 2007, PATTERN RECOGN, V40, P3317, DOI 10.1016/j.patcog.2007.02.003 Hu YH, 2006, DECIS SUPPORT SYST, V42, P1, DOI 10.1016/j.dss.2004.09.007 HUBER J, 1982, J CONSUM RES, V9, P90, DOI 10.1086/208899 Jain A, 2011, IEEE WIREL COMMUN, V18, P4, DOI 10.1109/MWC.2011.5999758 Jiang T, 2009, IEEE T KNOWL DATA EN, V21, P305, DOI 10.1109/TKDE.2008.163 Jiao WL, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103238 Kamakura WA, 2003, INT J RES MARK, V20, P45, DOI 10.1016/S0167-8116(02)00121-0 Kim Y, 2004, DECIS SUPPORT SYST, V37, P215, DOI 10.1016/S0167-9236(03)00008-3 Konstan JA, 1997, COMMUN ACM, V40, P77, DOI 10.1145/245108.245126 Krulwich B., 1996, P AAAI SPRING S MACH Kumar N, 2007, DECIS SUPPORT SYST, V43, P16, DOI 10.1016/j.dss.2005.05.004 Kwan ISY, 2005, DECIS SUPPORT SYST, V41, P189, DOI 10.1016/j.dss.2004.11.012 Lai TL, 2004, INFORM SYST FRONT, V6, P353, DOI 10.1023/B:ISFI.0000046377.32617.3d Lee D, 2019, INFORM SYST RES, V30, P239, DOI 10.1287/isre.2018.0800 Lee D, 2013, EXPERT SYST APPL, V40, P2715, DOI 10.1016/j.eswa.2012.11.021 Li L., 2010, P 19 INT C WORLD WID, P661, DOI DOI 10.1145/1772690.1772758 Li XB, 2005, DECIS SUPPORT SYST, V41, P112, DOI 10.1016/j.dss.2004.06.016 Li XB, 2006, INFORM SYST RES, V17, P254, DOI 10.1287/isre.1060.0095 Lin QY, 2003, INFORM MANAGE-AMSTER, V40, P431, DOI 10.1016/S0378-7206(02)00062-9 Lin TC, 2013, J ELECTRON COMMER RE, V14, P315 Liu DR, 2009, INFORM SCIENCES, V179, P3505, DOI 10.1016/j.ins.2009.06.004 Liu JQ, 2016, IEEE T KNOWL DATA EN, V28, P1245, DOI 10.1109/TKDE.2015.2510012 Mäntymäki M, 2020, INFORM SYST J, V30, P295, DOI 10.1111/isj.12262 Misir M, 2017, ARTIF INTELL, V244, P291, DOI 10.1016/j.artint.2016.12.001 Niemand T, 2019, PSYCHOL MARKET, V36, P773, DOI 10.1002/mar.21211 Nobile A, 1998, STAT COMPUT, V8, P229, DOI 10.1023/A:1008905311214 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Rabin M, 2000, ECONOMETRICA, V68, P1281, DOI 10.1111/1468-0262.00158 Robbins SS, 2003, INFORM MANAGE-AMSTER, V40, P205, DOI 10.1016/S0378-7206(02)00002-2 Russell R, 2020, BUS INFORM SYST ENG+, V62, P253, DOI 10.1007/s12599-020-00632-5 Sarathy R, 2002, INFORM SYST RES, V13, P389, DOI 10.1287/isre.13.4.389.74 Schein A. I., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P253, DOI 10.1145/564376.564421 Schryen G, 2015, COMMUN ASSOC INF SYS, V37, P286 Shampanier K, 2007, MARKET SCI, V26, P742, DOI 10.1287/mksc.1060.0254 Swaminathan V, 2003, J CONSUM PSYCHOL, V13, P93, DOI 10.1207/S15327663JCP13-1&2_08 Tam KY, 2006, MIS QUART, V30, P865 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Train KE, 2009, DISCRETE CHOICE METHODS WITH SIMULATION, 2ND EDITION, P1, DOI 10.1017/CBO9780511805271 Tsai PSM, 2004, INFORM SYST, V29, P685, DOI 10.1016/S0306-4379(03)00061-9 Tseng VS, 2016, IEEE T KNOWL DATA EN, V28, P54, DOI 10.1109/TKDE.2015.2458860 Ulaga Wolfgang., 2018, MIT SLOAN MANAGE REV, V60, P1 Wang K, 2003, IEEE T KNOWL DATA EN, V15, P642, DOI 10.1109/TKDE.2003.1198396 Wang W, 2016, DECIS SUPPORT SYST, V87, P80, DOI 10.1016/j.dss.2016.05.002 Woerndl W, 2009, INT J INF TECHNOL WE, V4, P67, DOI 10.4018/jitwe.2009010105 Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P3 Xiao B, 2007, MIS QUART, V31, P137 Xue YF, 2006, DECIS SUPPORT SYST, V41, P560, DOI 10.1016/j.dss.2004.06.007 Yao H, 2006, DATA KNOWL ENG, V59, P603, DOI 10.1016/j.datak.2005.10.004 Zhang J, 2009, J MARKETING RES, V46, P190, DOI 10.1509/jmkr.46.2.190 Zhang JJ, 2011, MARKET SCI, V30, P170, DOI 10.1287/mksc.1100.0607 Zhang T, 2007, J BUS RES, V60, P912, DOI 10.1016/j.jbusres.2007.02.006 NR 72 TC 3 Z9 3 U1 11 U2 27 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-7206 EI 1872-7530 J9 INFORM MANAGE-AMSTER JI Inf. Manage. PD SEP PY 2022 VL 59 IS 6 AR 103681 DI 10.1016/j.im.2022.103681 PG 14 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 5A6TV UT WOS:000863018900005 DA 2024-03-27 ER PT J AU Xu, LN Roy, A Niculescu, M AF Xu, Lina Roy, Abhijit Niculescu, Mihai TI A Dual Process Model of the Influence of Recommender Systems on Purchase Intentions in Online Shopping Environments SO JOURNAL OF INTERNET COMMERCE LA English DT Article DE Low and high involvement; online purchase intention; recommendation label; risk avoidance; social proof ID WORD-OF-MOUTH; SOCIAL PROOF; MODERATING ROLE; DECISION; INFORMATION; INVOLVEMENT; PERSONALIZATION; ABANDONMENT; CONSUMERS; QUALITY AB Whereas much research has looked at how recommendation systems influence online purchase intentions, this article illustrates the dual process model by which they occur. Using two studies, we fill the research void in interactive marketing by demonstrating how the dual processes of social proof and risk avoidance mediate the impact of recommendation labels on consumer decision-making contingent upon their level of involvement. Study 1 (n = 73), used a mixed-subjects design with a college student sample to demonstrate that both types of recommendation labels will lead to higher purchase intentions in an online setting. Most importantly, it provides evidence for the main effect of our theoretical model across different product categories. Study 2 (n = 160) provides support for our remaining four hypotheses by demonstrating the underlying process through which recommendation labels have a two-fold effect on purchase intentions. Specifically, the recommendation label increased the risk avoidance effect for high-involvement consumers and enhanced the social proof effect for low-involvement consumers. In both cases, the recommendation labels increased purchase intentions. Implications of our findings for theoretical and practical contributions and future directions are also explored. C1 [Xu, Lina; Niculescu, Mihai] New Mexico State Univ, Dept Mkt, Las Cruces, NM 88003 USA. [Roy, Abhijit] Univ Scranton, Dept Mkt, 320 Madison Ave, Scranton, PA 18510 USA. C3 New Mexico State University; University of Scranton RP Roy, A (autor correspondiente), Univ Scranton, Dept Mkt, 320 Madison Ave, Scranton, PA 18510 USA. EM roya2@scranton.edu RI Xu, Lina/JXL-1543-2024; Roy, Abhijit/KDN-0263-2024 OI Roy, Abhijit/0000-0002-3312-3563 CR Amblee N, 2011, INT J ELECTRON COMM, V16, P91, DOI 10.2753/JEC1086-4415160205 Ashraf M, 2019, BEHAV INFORM TECHNOL, V38, P1259, DOI 10.1080/0144929X.2019.1583285 Barnes, 2020, P SOC CONS PSYCH 202 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 Breugelmans E, 2012, J RETAILING, V88, P226, DOI 10.1016/j.jretai.2011.10.003 Carnoy, 2018, CNET CELSI RL, 1988, J CONSUM RES, V15, P210, DOI 10.1086/209158 CHAIKEN S, 1980, J PERS SOC PSYCHOL, V39, P752, DOI 10.1037/0022-3514.39.5.752 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Choi J, 2011, INT J ELECTRON COMM, V16, P129, DOI 10.2753/JEC1086-4415160105 Cialdini RB, 2004, ANNU REV PSYCHOL, V55, P591, DOI 10.1146/annurev.psych.55.090902.142015 Dash G, 2021, J BUS RES, V122, P608, DOI 10.1016/j.jbusres.2020.10.016 Degeratu AM, 2000, INT J RES MARK, V17, P55, DOI 10.1016/S0167-8116(00)00005-7 Deldjoo Y, 2020, ACM COMPUT SURV, V53, DOI 10.1145/3407190 Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Dickins TE, 2020, LEARN MOTIV, V72, DOI 10.1016/j.lmot.2020.101681 Dowling G.R., 1986, PSYCHOL MARKETING, V3, P193, DOI [10.1002/mar.4220030307, DOI 10.1002/MAR.4220030307] Felfernig Alexander, 2017, Advances in Artificial Intelligence: from Theory to Practice. 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017. Proceedings: LNAI 10350, P335, DOI 10.1007/978-3-319-60042-0_39 Gai PJ, 2019, J MARKETING, V83, P61, DOI 10.1177/0022242919873901 Gass R.H., 2018, Persuasion, Social Influence, and Compliance Gaining, V6th Goodman JK, 2013, J BEHAV DECIS MAKING, V26, P213, DOI 10.1002/bdm.1753 Guo JP, 2018, J MANAGE INFORM SYST, V35, P1121, DOI 10.1080/07421222.2018.1523564 Haas A, 2014, J RETAILING, V90, P428, DOI 10.1016/j.jretai.2014.05.003 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 HONG ST, 1989, J CONSUM RES, V16, P175, DOI 10.1086/209206 KAPLAN LB, 1974, J APPL PSYCHOL, V59, P287, DOI 10.1037/h0036657 Kees J, 2017, J ADVERTISING, V46, P141, DOI 10.1080/00913367.2016.1269304 Kohan S.E., 2021, FORBES Kugler T, 2012, J BEHAV DECIS MAKING, V25, P123, DOI 10.1002/bdm.724 Landers RN, 2015, IND ORGAN PSYCHOL-US, V8, P142, DOI 10.1017/iop.2015.13 LAURENT G, 1985, J MARKETING RES, V22, P41, DOI 10.2307/3151549 Lee D, 2021, MANAGE SCI, V67, P524, DOI 10.1287/mnsc.2019.3546 Lenth RV, 2001, AM STAT, V55, P187, DOI 10.1198/000313001317098149 Lowe ML, 2019, J CONSUM RES, V46, P159, DOI 10.1093/jcr/ucy068 Murray KB, 2008, INT SER OPER RES MAN, V121, P55, DOI 10.1007/978-0-387-78213-3_3 Murray KB, 2009, J INTERACT MARK, V23, P138, DOI 10.1016/j.intmar.2009.02.009 Nolan JM, 2008, PERS SOC PSYCHOL B, V34, P913, DOI 10.1177/0146167208316691 Olson ErikL., 2002, Journal of Interactive Marketing, V16, P22, DOI DOI 10.1002/DIR.10007 PETTY RE, 1983, J CONSUM RES, V10, P135, DOI 10.1086/208954 PETTY RE, 1979, J PERS SOC PSYCHOL, V37, P1915, DOI 10.1037/0022-3514.37.10.1915 Rao H, 2001, ADMIN SCI QUART, V46, P502, DOI 10.2307/3094873 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Roethke K, 2020, DECIS SUPPORT SYST, V131, DOI 10.1016/j.dss.2020.113268 Salmon SJ, 2015, FOOD QUAL PREFER, V45, P113, DOI 10.1016/j.foodqual.2015.06.004 Shearman SM, 2007, COMMUN RES REP, V24, P271, DOI 10.1080/08824090701624148 Shi SW, 2014, MARKET SCI, V33, P871, DOI 10.1287/mksc.2014.0872 Smith B, 2017, IEEE INTERNET COMPUT, V21, P12, DOI 10.1109/MIC.2017.72 Sridhar S, 2012, J MARKETING, V76, P70, DOI 10.1509/jm.10.0377 Steelman ZR, 2014, MIS QUART, V38, P355, DOI 10.25300/MISQ/2014/38.2.02 Talib YYA, 2017, SHS WEB CONF, V34, DOI 10.1051/shsconf/20173402005 Tan X, 2019, INFORM SYST RES, V30, P1248, DOI 10.1287/isre.2019.0861 Tang H, 2019, ELECTRON MARK, V29, P533, DOI 10.1007/s12525-018-0313-6 Teas RK, 2000, J ACAD MARKET SCI, V28, P278, DOI 10.1177/0092070300282008 Van Der Heide B, 2016, COMMUN RES, V43, P672, DOI 10.1177/0093650214565915 Wang CL, 2021, J RES INTERACT MARK, V15, P1, DOI 10.1108/JRIM-03-2021-270 Wang WQ, 2013, INFORM SYST RES, V24, P861, DOI 10.1287/isre.1120.0445 Winter S, 2015, CYBERPSYCH BEH SOC N, V18, P431, DOI 10.1089/cyber.2015.0005 Yaniv I, 2009, J EXP PSYCHOL LEARN, V35, P558, DOI 10.1037/a0014589 NR 58 TC 1 Z9 1 U1 8 U2 30 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1533-2861 EI 1533-287X J9 J INTERNET COMMER JI J. Internet Commer. PD JUL 3 PY 2023 VL 22 IS 3 BP 432 EP 453 DI 10.1080/15332861.2022.2049113 EA MAR 2022 PG 22 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA J6NI1 UT WOS:000769862700001 DA 2024-03-27 ER PT J AU Guo, GB Zhang, J Thalmann, D Yorke-Smith, N AF Guo, Guibing Zhang, Jie Thalmann, Daniel Yorke-Smith, Neil TI Leveraging prior ratings for recommender systems in e-commerce SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Prior ratings; Recommender systems; Rating confidence; Similarity measure; Data sparsity; Cold start ID PRICE; PERCEPTIONS; BRAND; INFORMATION; EXPERIENCE; ALLEVIATE; BEHAVIOR; QUALITY; TRUST; MODEL AB User ratings are the essence of recommender systems in e-commerce. Lack of motivation to provide ratings and eligibility to rate generally only after purchase restrain the effectiveness of such systems and contribute to the well-known data sparsity and cold start problems. This article proposes a new information source for recommender systems, called prior ratings. Prior ratings are based on users' experiences of virtual products in a mediated environment, and they can be submitted prior to purchase. A conceptual model of prior ratings is proposed, integrating the environmental factor presence whose effects on product evaluation have not been studied previously. A user study conducted in website and virtual store modalities demonstrates the validity of the conceptual model, in that users are more willing and confident to provide prior ratings in virtual environments. A method is proposed to show how to leverage prior ratings in collaborative filtering. Experimental results indicate the effectiveness of prior ratings in improving predictive performance. (C) 2014 Elsevier B.V. All rights reserved. C1 [Guo, Guibing; Zhang, Jie; Thalmann, Daniel] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore. [Yorke-Smith, Neil] Amer Univ Beirut, Beirut, Lebanon. [Yorke-Smith, Neil] Univ Cambridge, Cambridge, England. C3 Nanyang Technological University; American University of Beirut; University of Cambridge RP Guo, GB (autor correspondiente), Inst Media Innovat, 50 Nanyang Dr,Res Techno Plaza,XFrontiers Block, Singapore 637553, Singapore. EM gguo1@ntu.edu.sg; zhangj@ntu.edu.sg; danielthalmann@ntu.edu.sg; nysmith@aub.edu.lb RI Zhang, Jie/A-3737-2011; Thalmann, Daniel/AAL-1097-2020; Thalmann, Daniel/A-4347-2008 OI Thalmann, Daniel/0000-0002-0451-7491; FU St Edmunds College, Cambridge FX We thank the reviewers for their constructive comments. Guibing Guo acknowledges the Ph.D. Grant from the Institute for Media Innovation, Nanyang Technological University, Singapore. Neil Yorke-Smith thanks the Operations group at the Judge Business School and the fellowship at St Edmunds College, Cambridge. CR Ahmed A., 2013, P 6 ACM INT C WEB SE, P385 Ahn HJ, 2008, INFORM SCIENCES, V178, P37, DOI 10.1016/j.ins.2007.07.024 [Anonymous], 2012, P 2012 ACM INT C INT [Anonymous], J COMPUTER MEDIATED [Anonymous], 2009, ADV ARTIFICIAL INTEL [Anonymous], P 2014 INT C ADV SOC Arapakis I., 2009, P ACM INT C IM VID R, P1, DOI [10.1145/1646396.1646433, DOI 10.1145/1646396.1646433] Batstone Cunningham, 2007, 2 LIFE OFFICIAL GUID BEARDEN WO, 1982, J MARKETING RES, V19, P229, DOI 10.2307/3151623 Bobadilla J, 2012, INFORM PROCESS MANAG, V48, P204, DOI 10.1016/j.ipm.2011.03.007 Boyd d., 2006, First Monday, DOI DOI 10.5210/FM.V11I12.1418 Carenini G., 2003, IUI 03. 2003 International Conference on Intelligent User Interfaces, P12, DOI 10.1145/604045.604052 Crandall DavidJ., 2008, KDD, P160, DOI DOI 10.1145/1401890.1401914 DODDS WB, 1991, J MARKETING RES, V28, P307, DOI 10.2307/3172866 Eno J, 2011, LECT NOTES COMPUT SC, V6787, P87, DOI 10.1007/978-3-642-22362-4_8 Fang H., 2014, LEVERAGING DECOMPOSE Gantner Z., 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P176, DOI 10.1109/ICDM.2010.129 GARDIAL SF, 1994, J CONSUM RES, V20, P548, DOI 10.1086/209369 GOERING PA, 1985, J CONSUM RES, V12, P74, DOI 10.1086/209036 Guibing Guo, 2012, User Modeling, Adaptation, and Personalization. Proceedings 20th International Conference, UMAP 2012, P114, DOI 10.1007/978-3-642-31454-4_10 Gunawardana A, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P19 Guo G., 2013, P 7 ACM C REC SYST R, P383 Guo G., 2013, P IJCAI, V13, P2619 Guo G., 2013, Journal of Advanced Management Science, V1, P61, DOI [10.12720/joams.1.1.61-65, DOI 10.12720/JOAMS.1.1.61-65] Guo G., 2014, P 29 ANN ACM S APPL, P248, DOI DOI 10.1145/2554850.2554878 Guo GB, 2014, KNOWL-BASED SYST, V57, P57, DOI 10.1016/j.knosys.2013.12.007 Guy I., 2009, P 14 INT C INTELLIGE, P77 Heeter C., 1992, Presence: Teleoperators & Virtual Environments, V1, P262, DOI [10.1162/pres.1992.1.2.262, DOI 10.1162/PRES.1992.1.2.262] Hemp P, 2006, HARVARD BUS REV, V84, P48 Hu X., 2010, 2010 2nd International Workshop on Database Technology and Applications, P1 JACOBY J, 1977, J CONSUM RES, V3, P209, DOI 10.1086/208669 Jamali M., 2010, 4 ACM C REC SYST, P135, DOI [DOI 10.1145/1864708.1864736, 10.1145/1864708.1864736] Jamali Mohsen., 2011, Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI'11, P2644 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Konstas I, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P195, DOI 10.1145/1571941.1571977 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Lathia N, 2008, APPLIED COMPUTING 2008, VOLS 1-3, P2000 Li H., 2001, Journal of Interactive Marketing, V15, P13, DOI [https://doi.org/10.1002/dir.1013, DOI 10.1002/DIR.1013, 10.1002/dir.1013] Li HR, 2003, J CONSUM PSYCHOL, V13, P395, DOI 10.1207/S15327663JCP1304_07 LICHTENSTEIN DR, 1993, J MARKETING RES, V30, P234, DOI 10.2307/3172830 Liu NathanN., 2011, P 5 ACM C RECOMMENDE, P37, DOI [10.1145/2043932.2043943, DOI 10.1145/2043932.2043943] Ma D., 2011, P 4 ACM INT C WEB SE, P287 Ma H., 2008, P 17 ACM C INF KNOWL, P931 Ma H, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P203, DOI 10.1145/1571941.1571978 Massa P, 2007, RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P17 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McNee SM, 2003, LECT NOTES ARTIF INT, V2702, P178 MILGROM P, 1986, J POLIT ECON, V94, P796, DOI 10.1086/261408 NELSON P, 1974, J POLIT ECON, V82, P729, DOI 10.1086/260231 Nguyen TienT., 2013, Proceedings of the 7th ACM Conference on Recommender Systems. RecSys '13, P149 Olson J., 1974, CUE PROPERTIES PRICE, P20 Phang C.W., 2009, P 30 INT C INF SYST, P167 Picciano A.G., 2002, J ASYNCHRONOUS LEARN, V6, P21, DOI [DOI 10.24059/OLJ.V6I1.1870, DOI 10.24059/olj.v6i1.1870] RAO AR, 1989, J MARKETING RES, V26, P351, DOI 10.2307/3172907 Shah F., 2010, FLAIRS C, P475 Slater M, 2010, ACM T GRAPHIC, V29, DOI 10.1145/1778765.1778829 STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Stokes R., 1974, THESIS Tang Jiliang, 2013, P 6 ACM INT C WEB SE, DOI DOI 10.1145/2433396.2433405 Xiao B, 2007, MIS QUART, V31, P137 Yang B., 2013, P 23 INT JOINT C ART, P2747 Yeasin M, 2006, IEEE T MULTIMEDIA, V8, P500, DOI 10.1109/TMM.2006.870737 ZEITHAML VA, 1988, J MARKETING, V52, P2, DOI 10.2307/1251446 Zhang J, 2012, COMPUT INTELL-US, V28, P549, DOI 10.1111/j.1467-8640.2012.00428.x NR 64 TC 18 Z9 20 U1 0 U2 53 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2014 VL 13 IS 6 BP 440 EP 455 DI 10.1016/j.elerap.2014.10.003 PG 16 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA AW4FL UT WOS:000346236500006 DA 2024-03-27 ER PT J AU Pu, P Chen, L Kumar, P AF Pu, Pearl Chen, Li Kumar, Pratyush TI Evaluating product search and recommender systems for E-commerce environments SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Preference-based search; Product recommender systems; Example critiquing interfaces; Decision technology; Electronic product catalog; Tradeoff analysis; Fisheye view interfaces AB Online systems that help users select the most preferential item from a large electronic catalog are known as product search and recommender systems. Evaluation of various proposed technologies is essential for further development in this area. This paper describes the design and implementation of two user studies in which a particular product search tool, known as example critiquing, was evaluated against a chosen baseline model. The results confirm that example critiquing significantly reduces users' task time and error rate while increasing decision accuracy. Additionally, the results of the second user study show that a particular implementation of example critiquing also made users more confident about their choices. The main contribution is that through these two user studies, an evaluation framework of three criteria was successfully identified, which can be used for evaluating general product search and recommender systems in E-commerce environments. These two experiments and the actual procedures also shed light on some of the most important issues which need to be considered for evaluating such tools, such as the preparation of materials for evaluation, user task design, the context of evaluation, the criteria, the measures and the methodology of result analyses. C1 [Pu, Pearl; Chen, Li] Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol Lausanne, Human Comp Interact Grp, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland. [Kumar, Pratyush] Univ Virginia, Business Adm, Darden Grad Sch Business, Charlottesville, VA USA. [Kumar, Pratyush] Univ Virginia, Darden Grad Sch Business Adm, Charlottesville, VA USA. C3 Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; University of Virginia; University of Virginia RP Pu, P (autor correspondiente), Ecole Polytech Fed Lausanne, Swiss Fed Inst Technol Lausanne, Human Comp Interact Grp, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland. EM pearl.pu@epfl.ch; li.chen@epfl.ch; KumarP08@darden.virginia.edu CR [Anonymous], 1993, ADAPTIVE DECISION MA, DOI DOI 10.1017/CBO9781139173933 Bederson B. B., 2004, ACM Transactions on Computer-Human Interaction, V11, P90, DOI 10.1145/972648.972652 BEDERSON BB, 2000, P ACM C US INT SOFTW, P217 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Burke RD, 1997, IEEE EXPERT, V12, P32, DOI 10.1109/64.608186 Callahan E., 2000, EC '00, P197 CARENINI G, 2002, AAAI 02 WORKSH PREF Faltings B, 2004, COMPUT INTELL, V20, P246, DOI 10.1111/j.0824-7935.2004.00237.x FISCHER GW, 1993, J EXP PSYCHOL HUMAN, V19, P580 Furnas G. W., 1986, ACM SIGCHI Bulletin, V17, P16, DOI DOI 10.1145/22339.22342 HA V, 2003, ARTIF INTELL, V46, P9 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hogarth R.M., 1987, JUDGMENT CHOICE Huan Pearl, 2004, P 5 ACM C EL COMM, P208 JANECEK P, 2002, P INT C ADV VIS INT Jedetski J, 2002, IEEE INTERNET COMPUT, V6, P72, DOI 10.1109/4236.991446 Keeney RL., 1976, DECISION ANAL MULTIP Lamping J, 1995, CHI 95, P401, DOI DOI 10.1145/223904.223956 Linden Greg., 1997, P 6 INT C USER MODEL, P67 Maes P, 1999, COMMUN ACM, V42, P81, DOI 10.1145/295685.295716 MCCARTHY K, 2004, P 3 INT C AD HYP AD McCarthy KK, 2005, Proceedings of the Thirty-Eighth Annual Conference of the American Association of Bovine Practitioners, P175, DOI 10.1145/1040830.1040871 Paraschiv Corina., 2002, ELECTRON COMMER RES, V2, P255 Pirolli P., 2003, ACM Transactions on Computer-Human Interaction, V10, P20, DOI 10.1145/606658.606660 Pu P, 2004, CONSTRAINTS, V9, P289, DOI 10.1023/B:CONS.0000049205.05581.24 PU P, 2000, P SIGCHI C HUM FACT, P289, DOI DOI 10.1145/332040.332446 RAO R, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P318, DOI 10.1145/191666.191776 REILLY J, 2004, P 7 EUR C CAS BAS RE REILLY J, 2004, P 24 SGAI INT C INN RESNICK P, 1994, P ACM C COMP SUPP CO, P130 Sarkar Manojit., 1992, Pro- ceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI '92, P83, DOI DOI 10.1145/142750.142763 SMYTH B, 2004, P IEEE WIC ACM INT C Spence R., 1982, Behaviour and Information Technology, V1, P43, DOI 10.1080/01449298208914435 Stolze M., 2000, International Journal on Digital Libraries, V3, P60, DOI 10.1007/s007990050010 Torrens M., 2002, Constraints, V7, P49, DOI 10.1023/A:1017940426216 TORRENS M, 1997, WORKSH NOT CONSTR AG TORRENS M, 1999, WORKSH NOT ART INT E, P10 TVERSKY A, 1988, PSYCHOL REV, V95, P371, DOI 10.1037/0033-295X.95.3.371 Zhang J., 2004, IC200454 SWISS FED I IC200454 SWISS FED I NR 40 TC 31 Z9 37 U1 0 U2 25 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD JUN PY 2008 VL 8 IS 1-2 BP 1 EP 27 DI 10.1007/s10660-008-9015-z PG 27 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA V15HZ UT WOS:000207794400001 OA Green Submitted DA 2024-03-27 ER PT J AU Baczkiewicz, A Kizielewicz, B Shekhovtsov, A Watróbski, J Salabun, W AF Baczkiewicz, Aleksandra Kizielewicz, Bartlomiej Shekhovtsov, Andrii Watrobski, Jaroslaw Salabun, Wojciech TI Methodical Aspects of MCDM Based E-Commerce Recommender System SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE e-commerce; decision support system; MCDM; consumer multi-criteria decision-making process; compromise ranking; TOPSIS-COMET; COCOSO; EDAS; MAIRCA; MABAC ID DECISION-SUPPORT-SYSTEM; OF-THE-ART; RANK REVERSAL; EDAS METHOD; SELECTION; CRITERIA; TOPSIS; INTEGRATION; TRANSPORT; MODEL AB The aim of this paper is to present the use of an innovative approach based on MCDM methods as the main component of a consumer Decision Support System (DSS) by recommending the most suitable products among a given set of alternatives. This system provides a reliable recommendation to the consumer in the form of a compromise ranking constructed from the five MCDM methods: the hybrid approach TOPSIS-COMET, COCOSO, EDAS, MAIRCA, and MABAC. Each of the methods used contributes significantly to the final compromise ranking built with the Copeland strategy. Chosen MCDM methods were combined with the objective CRITIC weighting method, and their performance was presented on the illustrative example of choosing the most suitable mobile phone. A sensitivity analysis involving the r(w) and WS correlation coefficients was performed to determine the match between the compromise ranking of the candidates and the rankings provided by each MCDM method. Sensitivity analysis demonstrated that all investigated compromise candidate rankings show high convergence with the rankings provided by the particular MCDM methods. Thus, the performed study proved that the proposed approach shows high potential to be successfully used as a central component of DSS for recommending the most suitable product. Such DSS could be a universal and future-proof solution for e-commerce sites and websites, providing advanced product comparison capabilities in delivering a recommendation to the user as a final ranking of alternatives. C1 [Baczkiewicz, Aleksandra; Watrobski, Jaroslaw] Univ Szczecin, Inst Management, Ul Cukrowa 8, PL-71004 Szczecin, Poland. [Baczkiewicz, Aleksandra] Univ Szczecin, Doctoral Sch, Ul Mickiewicza 16, PL-70383 Szczecin, Poland. [Kizielewicz, Bartlomiej; Shekhovtsov, Andrii; Salabun, Wojciech] West Pomeranian Univ Technol Szczecin, Fac Comp Sci & Informat Technol, Dept Artificial Intelligence & Appl Math, Res Team Intelligent Decis Support Syst, Ul Zolnierska 49, PL-71210 Szczecin, Poland. C3 University of Szczecin; University of Szczecin; West Pomeranian University of Technology RP Salabun, W (autor correspondiente), West Pomeranian Univ Technol Szczecin, Fac Comp Sci & Informat Technol, Dept Artificial Intelligence & Appl Math, Res Team Intelligent Decis Support Syst, Ul Zolnierska 49, PL-71210 Szczecin, Poland. EM aleksandra.baczkiewicz@phd.usz.edu.pl; bartlomiej-kizielewicz@zut.edu.pl; andrii-shekhovtsov@zut.edu.pl; jaroslaw.watrobski@usz.edu.pl; wojciech.salabun@zut.edu.pl RI Sałabun, Wojciech/H-2883-2016; Shekhovtsov, Andrii/AAM-6977-2021; Bączkiewicz, Aleksandra/AAP-8553-2021; Wątróbski, Jarosław/ABI-7844-2020; Kizielewicz, Bartłomiej/AAN-1295-2021 OI Sałabun, Wojciech/0000-0001-7076-2519; Shekhovtsov, Andrii/0000-0002-0834-2019; Bączkiewicz, Aleksandra/0000-0003-4249-8364; Wątróbski, Jarosław/0000-0002-4415-9414; Kizielewicz, Bartłomiej/0000-0001-5736-4014 FU National Science Center [UMO-2018/29 /B/HS4/02725]; [001/RID/2018/19] FX The work was supported by the National Science Center, Decision number UMO-2018/29 /B/HS4/02725 (B.K., A.S. and W.S.) and by the project financed within the framework of the program of the Minister of Science and Higher Education under the name "Regional Excellence Initiative" in the years 2019-2022, Project Number 001/RID/2018/19; the amount of financing: PLN 10.684.00000 (A.B. and J.W.). CR Acosta M, 2017, FORESTS, V8, DOI 10.3390/f8040116 Adali Esra Aytac., 2017, European Journal of Multidisciplinary Studies, V2, P88, DOI [DOI 10.26417/EJMS.V5I1.P93-101, 10.26417/ejms.v5i1.p93-101] Aggarwal Ashish, 2018, Procedia Computer Science, V132, P236, DOI 10.1016/j.procs.2018.05.193 Aksoy E, 2021, GUMUHANE U SOSYAL BI, V12, P1 Alamdari PM, 2020, IEEE ACCESS, V8, P115694, DOI 10.1109/ACCESS.2020.3002803 Alyoubi BA, 2015, PROCEDIA COMPUT SCI, V65, P278, DOI 10.1016/j.procs.2015.09.079 Ansari N., 2016, SMARTPHONE SELECTION Baczkiewicz A., 2021, MCDA BASED DECISION Baidya J, 2021, COMPLEX INTELL SYST, V7, P2503, DOI 10.1007/s40747-021-00413-x Baryannis G., 2019, Revisiting supply chain risk, P53, DOI DOI 10.1007/978-3-030-03813-7_4 BARZILAI J, 1994, INFOR, V32, P57 Behzadian M, 2012, EXPERT SYST APPL, V39, P13051, DOI 10.1016/j.eswa.2012.05.056 Brauers WKM, 2006, CONTROL CYBERN, V35, P445 Cánovas-Segura B, 2016, PROG ARTIF INTELL, V5, P181, DOI 10.1007/s13748-016-0089-x Chen IF, 2018, INT J INF TECH DECIS, V17, P1915, DOI 10.1142/S0219622018500505 Deb Kaustuv, 2018, International Journal of Information Engineering and Electronic Business, V10, P52, DOI 10.5815/ijieeb.2018.06.06 Dezert J, 2020, PROCEEDINGS OF 2020 23RD INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2020), P195 DIAKOULAKI D, 1995, COMPUT OPER RES, V22, P763, DOI 10.1016/0305-0548(94)00059-H Ecer F, 2021, RENEW SUST ENERG REV, V143, DOI 10.1016/j.rser.2021.110916 Efe B, 2020, SOFT COMPUT, V24, P15447, DOI 10.1007/s00500-020-04876-x Faizi S, 2018, INT J FUZZY SYST, V20, P93, DOI 10.1007/s40815-017-0313-2 Faizi S, 2017, SYMMETRY-BASEL, V9, DOI 10.3390/sym9080136 Gigovic LJ, 2016, SUSTAINABILITY-BASEL, V8, DOI 10.3390/su8040372 Goguen JA., 1973, J Symb Logic, V38, P656, DOI [10.2307/2272014, DOI 10.2307/2272014] Goswami S., 2020, INT J DATA NETW SCI, V4, P27, DOI [10.5267/j.ijdns.2019.8.004, DOI 10.5267/J.IJDNS.2019.8.004] Goswami S.S., 2021, International Journal of Service Science, Management, Engineering, and Technology, V12, P116, DOI [10.4018/IJSSMET.2021050107, DOI 10.4018/IJSSMET.2021050107] Goswami SS, 2021, DECISION-INDIA, V48, P71, DOI 10.1007/s40622-020-00260-8 Zolfani SH, 2020, INT J STRATEG PROP M, V24, P102, DOI 10.3846/ijspm.2020.11543 Jahan A, 2012, INT J ADV MANUF TECH, V58, P411, DOI 10.1007/s00170-011-3366-7 Jahani A, 2016, J ENVIRON PLANN MAN, V59, P222, DOI 10.1080/09640568.2015.1005732 Jirí M, 2019, IFMBE PROC, V68, P83, DOI 10.1007/978-981-10-9038-7_15 Kazan H., 2014, International Journal of Management and Sustainability, V3, P203, DOI DOI 10.1109/ACCESS.2019.2942207 Keshavarz Ghorabaee M, 2017, TRANSPORT-VILNIUS, V32, P66, DOI 10.3846/16484142.2017.1282381 Keshavarz Ghorabaee M, 2016, INT J COMPUT COMMUN, V11, P358 Keshavarz Ghorabaee M, 2015, INFORMATICA-LITHUAN, V26, P435, DOI 10.15388/Informatica.2015.57 Khademolqorani S, 2013, PROCD SOC BEHV, V73, P388, DOI 10.1016/j.sbspro.2013.02.066 Khan S, 2021, INT J SUSTAIN ENG, V14, P357, DOI 10.1080/19397038.2020.1871442 Kizielewicz Bartlomiej, 2021, Computational Science - ICCS 2021. 21st International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12742), P338, DOI 10.1007/978-3-030-77961-0_29 Kizielewicz Bartlomiej, 2020, Procedia Computer Science, V176, P3581, DOI 10.1016/j.procs.2020.09.028 Kizielewicz B, 2020, Procedia Computer Science, V176, P3524 Kizielewicz B., 2020, Procedia Computer Science, V176, P2243, DOI [10.1016/j.procs.2020.09.274, DOI 10.1016/J.PROCS.2020.09.274] Kizielewicz B., 2021, FACTA UNIV-SER MECH Kumar G, 2020, INT J INF TECH DECIS, V19, P1037, DOI 10.1142/S021962202050025X Kumar S., 2020, P INT C ADV RES INN, P147 Kuo T, 2017, EUR J OPER RES, V260, P152, DOI 10.1016/j.ejor.2016.11.052 Lahav O., 2018, ARXIV181110799 Lai H, 2020, INZ EKON, V31, P411, DOI 10.5755/j01.ee.31.4.24990 Lei NR, 2015, DECIS SUPPORT SYST, V69, P82, DOI 10.1016/j.dss.2014.11.010 Liu XL, 2021, OMEGA-INT J MANAGE S, V102, DOI 10.1016/j.omega.2020.102317 Madic Milos, 2015, University Politehnica of Bucharest, Scientific Bulletin, Series D (Mechanical Engineering), V77, P193 Mishra AR, 2021, INFORMATICA-LITHUAN, V32, P119, DOI 10.15388/20-INFOR430 Mishra AR, 2022, J AMB INTEL HUM COMP, V13, P295, DOI 10.1007/s12652-021-02902-w Mishra AR, 2019, GRANULAR COMPUT, V4, P511, DOI 10.1007/s41066-018-0114-5 Mishra AR, 2020, NEURAL COMPUT APPL, V32, P3901, DOI 10.1007/s00521-018-3716-6 Mishra AR, 2019, NEURAL COMPUT APPL, V31, P1299, DOI 10.1007/s00521-017-3101-x Musrini M., 2020, P 2 FAC IND TECH INT, P270 Natasya WAG, 2017, 2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE), P456, DOI 10.1109/ICITISEE.2017.8285550 Okfalisa O., 2021, SINERGI, V25, P101, DOI [10.22441/sinergi.2021.1.013, DOI 10.22441/SINERGI.2021.1.013] Pamucar D., 2014, P 16 INT SCI EXPERT, P89 Pamucar D, 2017, EXPERT SYST APPL, V88, P58, DOI 10.1016/j.eswa.2017.06.037 Pamucar D, 2015, EXPERT SYST APPL, V42, P3016, DOI 10.1016/j.eswa.2014.11.057 Peng XD, 2020, TECHNOL ECON DEV ECO, V26, P695, DOI 10.3846/tede.2020.11920 Peng XD, 2020, ARTIF INTELL REV, V53, P3813, DOI 10.1007/s10462-019-09780-x Piegat A, 2014, APPL COMPUT INTELL S, V2014, DOI 10.1155/2014/536492 Rani P, 2019, 2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), P509, DOI 10.1109/ICIIP47207.2019.8985985 Razmak J, 2015, J MULTI-CRITERIA DEC, V22, P101, DOI 10.1002/mcda.1530 Saabun W., 2015, STUD P POLISH ASS KN, V77, P54 Salabun W., 2019, COMET METHOD 1 MCDA, V3 Salabun W, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12091549 Salabun W, 2020, LECT NOTES COMPUT SC, V12138, P632, DOI 10.1007/978-3-030-50417-5_47 Salabun W, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123314 Salabun W, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P1485, DOI 10.1109/SSCI.2018.8628864 Salabun W, 2018, 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), P1478, DOI 10.1109/SSCI.2018.8628934 Salabun W, 2018, PROCEDIA COMPUT SCI, V126, P2248, DOI 10.1016/j.procs.2018.07.224 Salabun W, 2016, SMART INNOV SYST TEC, V56, P181, DOI 10.1007/978-3-319-39630-9_15 Salabun W, 2014, MANAG PROD ENG REV, V5, P62, DOI 10.2478/mper-2014-0028 Salabun W, 2015, J MULTI-CRITERIA DEC, V22, P37, DOI 10.1002/mcda.1525 Sari F, 2020, J APICULT RES, V59, P546, DOI 10.1080/00218839.2020.1718341 Shekhovtsov Andrii, 2021, Computational Science - ICCS 2021. 21st International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12747), P458, DOI 10.1007/978-3-030-77980-1_35 Shekhovtsov Andrii, 2020, Procedia Computer Science, V176, P3730, DOI 10.1016/j.procs.2020.09.014 Shekhovtsov A., 2020, RELIABLE DECISION MA, DOI [10.22190/FUME210315056S, DOI 10.22190/FUME210315056S] Shekhovtsov A, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12091541 Shekhovtsov A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12197915 Shoja BM, 2019, IEEE ACCESS, V7, P119121, DOI 10.1109/ACCESS.2019.2937518 Singh R, 2020, INT J QUAL RELIAB MA, V37, P837, DOI 10.1108/IJQRM-01-2020-0022 García-Cascales MS, 2012, MATH COMPUT MODEL, V56, P123, DOI 10.1016/j.mcm.2011.12.022 Stanujkic D, 2017, STUD INFORM CONTROL, V26, P5 Sutton RT, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0221-y Tus A, 2019, OPSEARCH, V56, P528, DOI 10.1007/s12597-019-00371-6 Verly C., 2013, Intern. J. Multicriteria Decision Making, V3, P325, DOI 10.1504/IJMCDM.2013.056781 Vertakova Y., 2019, Journal of Applied Engineering Science, V17, P74 Watróbski J, 2019, OMEGA-INT J MANAGE S, V86, P107, DOI 10.1016/j.omega.2018.07.004 Watróbski J, 2017, FED CONF COMPUT SCI, P949, DOI 10.15439/2017F455 Wei GW, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16245082 Wen Z, 2020, ADV INTELL SYST COMP, V1001, P813, DOI 10.1007/978-3-030-21248-3_61 Yadegaridehkordi E, 2019, INT J INF TECH DECIS, V18, P1845, DOI 10.1142/S0219622019500366 Yalçin N, 2018, TECHNOL ECON DEV ECO, V24, P534, DOI 10.3846/20294913.2016.1213201 Yang M., 2009, PHARM CARE RES, V1 Yang WG, 2020, MATH PROBL ENG, V2020, DOI 10.1155/2020/9676518 Yazdani M, 2019, J CIV ENG MANAG, V25, P858, DOI 10.3846/jcem.2019.11309 Yazdani M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11133704 Yazdani M, 2018, MAT HORIZ, P113, DOI 10.1007/978-981-13-2417-8_5 Yazdani M, 2019, MANAGE DECIS, V57, P2501, DOI 10.1108/MD-05-2017-0458 Yusuff R.M., 2010, INT J INNOV MANAG TE, V1, P511, DOI [DOI 10.7763/IJIMT.2010.V1.89, 10.7763/IJIMT.2010.V1.89] Zanakis SH, 1998, EUR J OPER RES, V107, P507, DOI 10.1016/S0377-2217(97)00147-1 Zandi I., 2021, GEOGR URBAN SPACE DE, V7, P41, DOI [10.22067/jgusd.2021.48121.0, DOI 10.22067/JGUSD.2021.48121.0] Zavadskas EK, 2012, ELEKTRON ELEKTROTECH, V122, P3, DOI 10.5755/j01.eee.122.6.1810 Zhang XY, 2008, IEEE WCNC, P13 Zhang Y, 2019, ELECTRON MARK, V29, P219, DOI 10.1007/s12525-019-00346-x Zizovic M, 2020, MATHEMATICS-BASEL, V8, DOI 10.3390/math8061015 Zolfani S. H., 2019, INT SCI C BUSINESS M, P797, DOI 10.3846/cibmee.2019.081 Zong K, 2021, J THEOR APPL EL COMM, V16, P1150, DOI 10.3390/jtaer16040065 NR 112 TC 38 Z9 37 U1 8 U2 48 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD SEP PY 2021 VL 16 IS 6 BP 2192 EP 2229 DI 10.3390/jtaer16060122 PG 38 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA UV7RY UT WOS:000699671700001 OA gold DA 2024-03-27 ER PT J AU Sitar-Taut, DA Mican, D AF Sitar-Taut, Dan-Andrei Mican, Daniel TI MRS OZ: managerial recommender system for electronic commerce based on Onicescu method and Zipf's law SO INFORMATION TECHNOLOGY & MANAGEMENT LA English DT Article DE Recommender systems; Onicescu method; Content based filtering; Management decision making; Multi criteria decisions; Analytic hierarchy process ID SOCIAL NETWORKS; PERSONALIZATION; INFORMATION AB User decision intuition is challenging and complex, even if the user and product are known. Thus, recommending products is a management decision with high degree of incertitude. What if we are facing also the cold-start problem, like new products or visitors? This is a hot topic in recommender systems, tackled in variously, successfully or not. This perspective adds more incertitude to the existing uncertain scenario. Our philosophy is the shift from a user-centric view, hit by uncertainty, to a company-centric one taken in certainty circumstances, later to apply win-win approaches. We propose a multi-criteria algorithm -MRS OZ- for an ecommerce site RS that tackles the cold-start differently. It uses Onicescu method, being adapted according to Zipf's Law, very popular in internet marketing. The paper opted for an exploratory research based on primary and secondary methods, consisting in literature review, 2-step survey addressed to 110 managers splat in 2 groups, and statistical analyses. The algorithm may substitute the human expertise on the given sample item list and criteria set. This work reveals that Onicescu method is suitable for recommender systems field, but relative inner category rankings and more domain related weight ratios strengthen the algorithm. Onicescu method has a wide applicability, but not for recommender systems. Also, the mixture with Zipf's Law is completely experimental in research area. C1 [Sitar-Taut, Dan-Andrei; Mican, Daniel] Babes Bolyai Univ, Fac Econ & Business Adm, Dept Business Informat Syst, Cluj Napoca, Romania. C3 Babes Bolyai University from Cluj RP Mican, D (autor correspondiente), Babes Bolyai Univ, Fac Econ & Business Adm, Dept Business Informat Syst, Cluj Napoca, Romania. EM daniel.mican@econ.ubbcluj.ro RI Sitar-Taut, Dan-Andrei/U-4746-2017; Mican, Daniel/K-6927-2018 OI Sitar-Taut, Dan-Andrei/0000-0001-5360-3874; Mican, Daniel/0000-0003-0277-9700 CR Alexandridis G, 2017, DATA MIN KNOWL DISC, V31, P1031, DOI 10.1007/s10618-017-0504-3 Amine Ait Younes RA, 2000, 118 BIS, V1-2 [Anonymous], 2013, CONSUMER BEHAV EUROP [Anonymous], 2006, Hyperion Baur AW, 2014, IFIP ADV INF COMM TE, V445, P1 Bouyahia T, 2017, FDN PRACTICE SECURIT, P51 Brandtner P, 2015, LECT NOTES COMPUT SC, V9073, P295, DOI 10.1007/978-3-319-18714-3_19 Broderick M, 2015, COMMUN ACM, V58, P21, DOI 10.1145/2732421 Chaffey D., 2016, Digital Marketing: Strategy, Implementation Di Noia T, 2017, INFORM SCIENCES, V382, P234, DOI 10.1016/j.ins.2016.11.015 Dobre I, 2002, MODELAREA DECIZIILOR Eirinaki M, 2018, FUTURE GENER COMP SY, V78, P413, DOI 10.1016/j.future.2017.09.015 Frémal S, 2017, EXPERT SYST APPL, V77, P105, DOI 10.1016/j.eswa.2017.01.031 Gan MX, 2018, FUTURE GENER COMP SY, V78, P462, DOI 10.1016/j.future.2017.02.027 Ghoshal A, 2015, J MANAGE INFORM SYST, V31, P243, DOI 10.1080/07421222.2014.1001276 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 Guo JP, 2018, FUTURE GENER COMP SY, V78, P451, DOI 10.1016/j.future.2017.02.031 Gurini DF, 2018, FUTURE GENER COMP SY, V78, P430, DOI 10.1016/j.future.2017.03.020 Huang SL, 2011, ELECTRON COMMER R A, V10, P398, DOI 10.1016/j.elerap.2010.11.003 Hwangbo H, 2017, EXPERT SYST APPL, V89, P254, DOI 10.1016/j.eswa.2017.07.041 Ilie L, 2006, MANAGEMENTUL FIRMEI J Figueira, 2005, ELECTRE METHODS MULT Karpus A, 2016, KDIR: PROCEEDINGS OF THE 8TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL. 1, P419, DOI 10.5220/0006083904190424 Leskovec J, 2014, MINING OF MASSIVE DATASETS, 2ND EDITION, P1 Lika B, 2014, EXPERT SYST APPL, V41, P2065, DOI 10.1016/j.eswa.2013.09.005 Lin ZJ, 2015, J MANAGE INFORM SYST, V32, P246, DOI 10.1080/07421222.2015.1138572 Manber U, 2000, COMMUN ACM, V43, P35, DOI 10.1145/345124.345136 Margaris D, 2018, FUTURE GENER COMP SY, V78, P440, DOI 10.1016/j.future.2017.03.015 Marlinda L, 2017, 5 INT C CYB IT SERV Martin A, 2017, MULT CRIT DECIS MAK, P83, DOI 10.1007/978-3-319-39292-9_5 Megyesi E, 2014, INT MULTI SCI GEOCO, P65 Morawski J, 2017, INT J INTELL SYST, V32, P1062, DOI 10.1002/int.21884 Nadolski RJ, 2009, JASSS-J ARTIF SOC S, V12 Nguyen PT, 2015, LECT NOTES COMPUT SC, V9366, P605, DOI 10.1007/978-3-319-25007-6_35 Nilashi M, 2015, ELECTRON COMMER R A, V14, P542, DOI 10.1016/j.elerap.2015.08.004 Onicescu O, 1970, REV STAT Popescu V, 2009, MANAGEMENT OF TECHNOLOGICAL CHANGES, VOL 2, P769 Resteanu C, 2016, STUD INFORM CONTROL, V25, P433 Rezaeimehr F, 2018, FUTURE GENER COMP SY, V78, P419, DOI 10.1016/j.future.2017.04.003 ROY B, 1991, THEOR DECIS, V31, P49, DOI 10.1007/BF00134132 Roy B, 2001, PRESENTATION INTERPR Roy B., 1973, METHODE ELECTRE 2 AP, P291 Roy B, 1968, REUNE FRANCAISE INFO, V8, P8 Roy B, 1978, CAHIERS CERO, V20, P22 Saaty T. L., 1980, The analytical hierarchy process, planning, priority Saaty TL., 2008, INT J SERV SCI, V1, P83, DOI [10.1504/IJSSCI.2008.017590, DOI 10.1504/IJSSCI.2008.017590] Shambour Q, 2016, INT J ADV COMPUT SC, V7, P274 Son J, 2017, EXPERT SYST APPL, V89, P404, DOI 10.1016/j.eswa.2017.08.008 VASTOTERRIENTES L, 2016, J INTELL INF SYST, V46, P313, DOI DOI 10.1007/s10844-015-0362-7 Yu S, 2018, J NETW COMPUT APPL, V104, P38, DOI 10.1016/j.jnca.2017.12.004 Zipf GK, 1950, J CLIN PSYCHOL, V6, P306 NR 51 TC 8 Z9 8 U1 1 U2 20 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1385-951X EI 1573-7667 J9 INFORM TECHNOL MANAG JI Inf. Technol. Manag. PD JUN PY 2020 VL 21 IS 2 BP 131 EP 143 DI 10.1007/s10799-019-00309-w PG 13 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA LY4WN UT WOS:000540530300004 DA 2024-03-27 ER PT J AU Huang, SL AF Huang, Shiu-li TI Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Recommender systems; Multi-attribute utility theory; Radial basis function network; SMARTER; Vector space model ID ARTIFICIAL NEURAL-NETWORKS; CRITERIA DECISION-MAKING; INDIVIDUAL-DIFFERENCES; SELECTION; AGENT; STRATEGIES AB Recommender systems are useful in reducing information overload and improving decision making. Utility-based recommender systems provide recommendations based on the computation of the utility of each item for the user. Some utility-elicitation methods have been developed on the basis of multi-attribute utility theory (MAUT) to represent a decision maker's complete preference. This study investigates whether these utility-based techniques outperform the traditional content-based technique for online recommendations. A laboratory experiment was conducted in two e-commerce contexts to compare the decomposed and holistic utility-based methods, simple multi-attribute rating technique exploiting ranks (SMARTER) and radial basis function network (RBFN), with the content-based method vector space model (VSM) in terms of recommendation accuracy, time expense, and user perceptions. The results demonstrate that the performances of utility-based methods depend on recommendation contexts. Furthermore, this study proposes guidelines for choosing appropriate recommendation methods in different contexts. (C) 2010 Elsevier B. V. All rights reserved. C1 [Huang, Shiu-li] Ming Chuan Univ, Dept Informat Management, Gueishan Township 333, Taoyuan County, Taiwan. C3 Ming Chuan University RP Huang, SL (autor correspondiente), Natl Taipei Univ, Dept Business Adm, 151 Univ Rd, New Taipei City 23741, Taiwan. EM shiulihuang@gmail.com RI Novoa, Kevin/J-2867-2014; Huang, Shiu-Li/CAH-5940-2022; Huang, Shiu-Li/CAF-0381-2022 CR AG, 2005, ENGINEERING, V17, P734 Al-Aomar R, 2008, INT J INF TECH DECIS, V7, P35, DOI 10.1142/S0219622008002806 [Anonymous], 2005, NEURAL NETWORKS CLAS Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Choi SH, 2004, EXPERT SYST APPL, V27, P549, DOI 10.1016/j.eswa.2004.05.017 DYER JS, 1992, MANAGE SCI, V38, P645, DOI 10.1287/mnsc.38.5.645 EDWARDS W, 1994, ORGAN BEHAV HUM DEC, V60, P306, DOI 10.1006/obhd.1994.1087 EDWARDS W, 1977, IEEE T SYST MAN CYB, V7, P326, DOI 10.1109/TSMC.1977.4309720 FISCHER GW, 1977, ORGAN BEHAV HUM PERF, V18, P295, DOI 10.1016/0030-5073(77)90032-0 Gretzel U, 2006, INT J ELECTRON COMM, V11, P81, DOI 10.2753/JEC1086-4415110204 Guan Steven., 2002, Electronic Commerce Research and Applications, V1, P314, DOI DOI 10.1016/S1567-4223(02)00023-6 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Haykin S., 1999, NEURAL NETWORKS COMP Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hostler RE, 2005, DECIS SUPPORT SYST, V41, P313, DOI 10.1016/j.dss.2004.07.002 Iijima J, 2007, ELECTRON COMMER R A, V6, P139, DOI 10.1016/j.elerap.2006.11.002 Kardes FR, 2006, J CONSUM PSYCHOL, V16, P135, DOI 10.1207/s15327663jcp1602_4 Keeney RL., 1976, DECISION ANAL MULTIP LASKEY KB, 1987, MANAGE SCI, V33, P965, DOI 10.1287/mnsc.33.8.965 Lee BK, 2004, PSYCHOL MARKET, V21, P159, DOI 10.1002/mar.20000 Lee WP, 2004, EXPERT SYST APPL, V27, P665, DOI 10.1016/j.eswa.2004.07.001 LIN FR, 2005, P 4 WORKSH E BUS LAS Liu DR, 2005, INFORM MANAGE-AMSTER, V42, P387, DOI 10.1016/j.im.2004.01.008 MALAKOOTI B, 1994, MANAGE SCI, V40, P1542, DOI 10.1287/mnsc.40.11.1542 Manouselis N, 2007, INT J PATTERN RECOGN, V21, P311, DOI 10.1142/S021800140700548X Manouselis N, 2007, WORLD WIDE WEB, V10, P415, DOI 10.1007/s11280-007-0019-8 MILLER GA, 1956, PSYCHOL REV, V63, P81, DOI 10.1037/0033-295X.101.2.343 Morera OF, 1998, ORGAN BEHAV HUM DEC, V75, P187, DOI 10.1006/obhd.1998.2791 Nowlis SM, 1997, J MARKETING RES, V34, P205, DOI 10.2307/3151859 ONKEN J, 1985, J EXP PSYCHOL HUMAN, V11, P14, DOI 10.1037/0096-1523.11.1.14 PARK CW, 1976, J MARKETING RES, V13, P144, DOI 10.2307/3150848 Pazzani MJ, 1999, ARTIF INTELL REV, V13, P393, DOI 10.1023/A:1006544522159 Pomerol J-C., 2000, MULTICRITERION DECIS Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Saaty TL., 1980, ANAL HIERARCHY PROCE, DOI DOI 10.21236/ADA214804 Salton G., 1989, AUTOMATIC TEXT PROCE SCHICKELZUBER V, 2005, P WORKSH KNOWL DISC SCHMITT C, 2002, P ABIS WORKSH HANN G SCHOEMAKER PJH, 1982, MANAGE SCI, V28, P182, DOI 10.1287/mnsc.28.2.182 Schunk D, 2006, J ECON PSYCHOL, V27, P386, DOI 10.1016/j.joep.2005.08.003 SRIVASTAVA J, 1995, ORGAN BEHAV HUM DEC, V63, P112, DOI 10.1006/obhd.1995.1066 STOLZE M, 2003, P 2 INT WORLD C MASS Sun MH, 1996, MANAGE SCI, V42, P835, DOI 10.1287/mnsc.42.6.835 Tewari G, 2003, DECIS SUPPORT SYST, V34, P127, DOI 10.1016/S0167-9236(02)00076-3 Trope Y, 2003, PSYCHOL REV, V110, P403, DOI 10.1037/0033-295X.110.3.403 Viswanathan Madhubalan., 1994, Journal of Consumer Psychology, V3, P79, DOI DOI 10.1016/S1057-7408(08)80029-0 Wang M., 1998, J MULTI-CRITERIA DEC, V7, P340 Witten IH, 2005, DATA MINING PRACTICA, P525 WRIGHT P, 1975, J MARKETING RES, V12, P60, DOI 10.2307/3150659 Yamamoto N, 2005, CONSUM COMM NETWORK, P65 YAP CS, 1992, P 25 HAW INT C SYST, P578 Zeng C, 2004, INT J ELECTRON COMM, V8, P115, DOI 10.1080/10864415.2004.11044314 NR 54 TC 72 Z9 81 U1 2 U2 64 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JUL-AUG PY 2011 VL 10 IS 4 BP 398 EP 407 DI 10.1016/j.elerap.2010.11.003 PG 10 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 817MN UT WOS:000294677800004 DA 2024-03-27 ER PT J AU Kim, HM Ghiasi, B Spear, M Laskowski, M Li, JY AF Kim, Henry M. Ghiasi, Bita Spear, Max Laskowski, Marek Li, Jiye TI Online serendipity: The case for curated recommender systems SO BUSINESS HORIZONS LA English DT Article DE Recommender systems; Curated recommender systems; E-commerce strategy; E-business; Online retail AB When used effectively, recommender systems provide users with suggestions based on their own preferences. These systems first showed their value with e commerce sites like Amazon and eBay, which provided recommendations algorithmically. A key drawback of these systems is that some items need personal touch recommendations to spur on purchase, use, or consumption. A recommender system that facilitates personal touch recommendations by enabling users to discover good recommenders as opposed to focusing on recommending items algorithmically addresses this drawback. In this article, we discuss such a system a curated recommender system. A curated recommender system is optimal for online retailers and service providers, especially those that sell books, stream content, or provide social networking platforms. (C) 2017 Kelley School of Business, Indiana University. Published by Elsevier Inc. All rights reserved. C1 [Kim, Henry M.; Ghiasi, Bita; Laskowski, Marek; Li, Jiye] York Univ, Schulich Sch Business, 4700 Keele St, Toronto, ON, Canada. [Spear, Max] Indigo Books & Mus Inc, Toronto, ON, Canada. C3 York University - Canada RP Kim, HM (autor correspondiente), York Univ, Schulich Sch Business, 4700 Keele St, Toronto, ON, Canada. EM hmkim@yorku.ca; bghiasi13@schulich.yorku.ca; mspear@indigo.ca; marlas@yorku.ca; jiyeli2007@gmail.com OI , Henry/0000-0002-7010-6455 CR Adomavicius G, 2012, IEEE T KNOWL DATA EN, V24, P896, DOI 10.1109/TKDE.2011.15 [Anonymous], 2016, ACM TRANS MANAG INF, DOI DOI 10.1145/2843948 [Anonymous], 2008, P 2 INT C UB INF MAN, DOI 10.1145/1352793.1352837 Fowler J., 2014, THE NEXT WEB Guy I., 2015, Social Recommender Systems, P511 Hennig-Thurau T, 2012, J MARKETING, V76, P89, DOI 10.1509/jm.10.0537 Kantardzic M., 2011, Data mining: concepts, models, methods, and algorithms Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 NR 9 TC 12 Z9 15 U1 1 U2 33 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0007-6813 EI 1873-6068 J9 BUS HORIZONS JI Bus. Horiz. PD SEP-OCT PY 2017 VL 60 IS 5 BP 613 EP 620 DI 10.1016/j.bushor.2017.05.005 PG 8 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA FH6QW UT WOS:000411302800006 DA 2024-03-27 ER PT J AU Eryarsoy, E Piramuthu, S AF Eryarsoy, Enes Piramuthu, Selwyn TI Experimental evaluation of sequential bias in online customer reviews SO INFORMATION & MANAGEMENT LA English DT Article DE Recommender systems; Online product reviews; Sequential bias ID INFORMATION SEARCH AB Explicit information used in the development of recommender systems includes online customer feedback. Such explicit input from customers suffers from several types of bias, which directly affect the quality of the resulting recommender system. Recent research has identified sequential bias to be present in online customer reviews. However, to our knowledge, no study to date has confirmed its existence in this context. Given the nature of sequential bias, confirming its existence necessitates a controlled experimental study, which is lacking in extant published literature. We attempt to address this gap. Results from our study show evidence for the existence of sequential bias. (C) 2014 Elsevier B.V. All rights reserved. C1 [Eryarsoy, Enes] Istanbul Sehir Univ, Istanbul, Turkey. [Piramuthu, Selwyn] Univ Florida, Gainesville, FL 32611 USA. [Piramuthu, Selwyn] RFID European Lab, Paris, France. C3 Istanbul Sehir University; State University System of Florida; University of Florida RP Piramuthu, S (autor correspondiente), Univ Florida, Gainesville, FL 32611 USA. EM eryarsoy@gmail.com; selwyn@ufl.edu RI Eryarsoy, Enes/AAY-3816-2020 OI Eryarsoy, Enes/0000-0002-5918-0558 CR [Anonymous], 1957, MODELS MAN SOCIAL RA Deffuant G., 2007, M2M C MARS MARCH DEFFUANT G, 2006, 1 WORLD C SOC SIM KY DITTO PH, 1992, J PERS SOC PSYCHOL, V63, P568, DOI 10.1037/0022-3514.63.4.568 Edwards K, 1996, J PERS SOC PSYCHOL, V71, P5, DOI 10.1037/0022-3514.71.1.5 FESTINGER L., 1964, CONFLICT DECIS DISSO FREY D, 1981, J EXP SOC PSYCHOL, V17, P51, DOI 10.1016/0022-1031(81)90006-8 HOLTON B, 1989, PERS SOC PSYCHOL B, V15, P42, DOI 10.1177/0146167289151004 Hu N, 2012, DECIS SUPPORT SYST, V52, P674, DOI 10.1016/j.dss.2011.11.002 Hu N, 2011, DECIS SUPPORT SYST, V50, P627, DOI 10.1016/j.dss.2010.08.013 Jonas E, 2001, J PERS SOC PSYCHOL, V80, P557, DOI 10.1037/0022-3514.80.4.557 Kapoor G, 2009, J ORG COMP ELECT COM, V19, P85, DOI 10.1080/10919390902820764 Piramuthu S., 2010, P WORKSH DAT MIN MAR, P5 Piramuthu S, 2007, ADV SOFT COMP, V43, P298, DOI 10.1007/978-3-540-72575-6_48 Piramuthu S, 2012, DECIS SUPPORT SYST, V53, P418, DOI 10.1016/j.dss.2012.02.006 Rabin M, 1999, Q J ECON, V114, P37, DOI 10.1162/003355399555945 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Sikora RT, 2012, KNOWL-BASED SYST, V27, P314, DOI 10.1016/j.knosys.2011.10.011 Solloway T., 2010, The Emotional cognitive processing model TVERSKY A, 1973, COGNITIVE PSYCHOL, V5, P207, DOI 10.1016/0010-0285(73)90033-9 You L., 2014, INF SYST E BUS MANAG NR 21 TC 17 Z9 19 U1 0 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7206 EI 1872-7530 J9 INFORM MANAGE-AMSTER JI Inf. Manage. PD DEC PY 2014 VL 51 IS 8 BP 964 EP 971 DI 10.1016/j.im.2014.09.001 PG 8 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA AX8EE UT WOS:000347142300003 DA 2024-03-27 ER PT J AU Köcher, S Jugovac, M Jannach, D Holzmüller, HH AF Koecher, Soeren Jugovac, Michael Jannach, Dietmar Holzmueller, Hartmut H. TI New Hidden Persuaders: An Investigation of Attribute-Level Anchoring Effects of Product Recommendations SO JOURNAL OF RETAILING LA English DT Article DE Recommender systems; Anchoring effects; Numerical attributes; Decision making; Attention; Online shopping ID WILLINGNESS-TO-PAY; PREFERENCE CONSTRUCTION; DECISION-MAKING; E-COMMERCE; SYSTEMS; CHOICE; PRICE; CONTEXT; IMPACT; CONSUMERS AB Recommender systems on marketers' websites are typically designed to facilitate purchase decisions by helping customers easily identify products that match their tastes and needs. However, such product recommendations can not only support but also influence decision-making and outcomes. Expanding on previous research on the persuasiveness of product recommendations, this paper demonstrates that recommender systems can affect online decision-making through an anchoring effect such that consumers' decision-making processes and, ultimately, choices are biased toward numerical attributes of (even random) product recommendations; we refer to this phenomenon as attribute-level anchoring effect. The findings of the current research reveal that this effect occurs because consumers tend to pay more attention to alternatives that are similar to a recommended option. From a practical perspective, these results indicate the potential to shape consumer interests and choices through recommender systems and highlight possible customer protection issues in online shopping environments. (C) 2018 New York University. Published by Elsevier Inc. All rights reserved. C1 [Koecher, Soeren; Holzmueller, Hartmut H.] TU Dortmund Univ, Fac Business & Econ, Dept Mkt, Otto Hahn Str 6, D-44227 Dortmund, Germany. [Jugovac, Michael] TU Dortmund Univ, Fac Comp Sci, Otto Hahn Str 12, D-44227 Dortmund, Germany. [Jannach, Dietmar] Alpen Adria Univ Klagenfurt, Fac Tech Sci, Dept Appl Informat, Univ Str 65-67, A-9020 Klagenfurt, Austria. C3 Dortmund University of Technology; Dortmund University of Technology; University of Klagenfurt RP Köcher, S (autor correspondiente), TU Dortmund Univ, Fac Business & Econ, Dept Mkt, Otto Hahn Str 6, D-44227 Dortmund, Germany. EM soeren.koecher@tu-dortmund.de; michaeljugovac@tu-dortmund.de; dietmar.jannach@aau.at; hartmut.holzmueller@tu-dortmund.de OI Kocher, Soren/0000-0002-7277-238X CR Adaval R, 2011, J MARKETING RES, V48, P355, DOI 10.1509/jmkr.48.2.355 Adomavicius G, 2013, INFORM SYST RES, V24, P956, DOI 10.1287/isre.2013.0497 [Anonymous], INT J RES MARKETING, DOI [DOI 10.1016/0167-8116(95)00027-5, DOI 10.1016/0167-8116%2895%2900027-5] Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Ariely D, 2003, Q J ECON, V118, P73, DOI 10.1162/00335530360535153 ARIELY D, 1995, ORGAN BEHAV HUM DEC, V63, P223, DOI 10.1006/obhd.1995.1075 Armel KC, 2008, JUDGM DECIS MAK, V3, P396 Atalay AS, 2012, J CONSUM RES, V39, P848, DOI 10.1086/665984 Bar-Hillel Maya, 2011, DISCUSSION PAPER SER, Vdp580 Bettman JR, 1998, J CONSUM RES, V25, P187, DOI 10.1086/209535 Biswas D, 2010, J MARKETING RES, V47, P508, DOI 10.1509/jmkr.47.3.508 Blair E, 2006, J ACAD MARKET SCI, V34, P4, DOI 10.1177/0092070305283778 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Brewer NT, 2002, J BEHAV DECIS MAKING, V15, P65, DOI 10.1002/bdm.403 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 CALDER BJ, 1981, J CONSUM RES, V8, P197, DOI 10.1086/208856 Chandon P, 2009, J MARKETING, V73, P1, DOI 10.1509/jmkg.73.6.1 Chapman GB, 1999, ORGAN BEHAV HUM DEC, V79, P115, DOI 10.1006/obhd.1999.2841 Cosley D., 2003, PROC SIGCHI C HUMAN, P585 Edwards SM, 2002, J ADVERTISING, V31, P83, DOI 10.1080/00913367.2002.10673678 Epley N, 2001, PSYCHOL SCI, V12, P391, DOI 10.1111/1467-9280.00372 Felfernig A, 2007, LECT NOTES COMPUT SC, V4744, P283, DOI 10.1007/978-3-540-77006-0_34 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Flynn LR, 1999, J BUS RES, V46, P57, DOI 10.1016/S0148-2963(98)00057-5 Furnham A., 2011, J SOCIO-ECON, V40, P35, DOI [10.1016/j.socec.2010.10.008, DOI 10.1016/J.SOCEC.2010.10.008] Gedikli F, 2014, INT J HUM-COMPUT ST, V72, P367, DOI 10.1016/j.ijhcs.2013.12.007 GORDON ME, 1986, ACAD MANAGE REV, V11, P191, DOI 10.2307/258340 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Häubl G, 2003, J CONSUM PSYCHOL, V13, P75 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 Herlocker J.L., 2000, P 2000 ACM C COMP SU, P241, DOI DOI 10.1145/358916.358995 HERR PM, 1989, J CONSUM RES, V16, P67, DOI 10.1086/209194 Higgins E.T., 1996, SOCIAL PSYCHOL HDB B, DOI DOI 10.1109/EMBC44109.2020.9176396 Hostler RE, 2011, INFORM MANAGE-AMSTER, V48, P336, DOI 10.1016/j.im.2011.08.002 Hostler RE, 2005, DECIS SUPPORT SYST, V41, P313, DOI 10.1016/j.dss.2004.07.002 Howard DJ, 2006, J MARKETING, V70, P185, DOI 10.1509/jmkg.70.4.185 HUBER J, 1982, J CONSUM RES, V9, P90, DOI 10.1086/208899 Iyengar SS, 2000, J PERS SOC PSYCHOL, V79, P995, DOI 10.1037//0022-3514.79.6.995 Jannach D., 2009, P 3 ACM C REC SYST, P205, DOI 10.1145/1639714.1639749 Jiang YC, 2010, DECIS SUPPORT SYST, V48, P470, DOI 10.1016/j.dss.2009.06.006 Jonas E, 2002, EUR J SOC PSYCHOL, V32, P147, DOI 10.1002/ejsp.112 Jung MH, 2016, J MARKETING RES, V53, P354, DOI 10.1509/jmr.14.0238 Kirshenbaum Evan, 2012, Machine Learning and Knowledge Discovery in Databases. Proceedings of the European Conference (ECML PKDD 2012), P51, DOI 10.1007/978-3-642-33486-3_4 Konstan JA, 2012, USER MODEL USER-ADAP, V22, P101, DOI 10.1007/s11257-011-9112-x Krajbich I, 2010, NAT NEUROSCI, V13, P1292, DOI 10.1038/nn.2635 Kramer T, 2007, J MARKETING RES, V44, P224, DOI 10.1509/jmkr.44.2.224 Kridel Donald J., 2013, J SERVICE SCI MANAGE, V6, P32, DOI DOI 10.4236/JSSM.2013.65A004 LeBoeuf RA, 2006, J BEHAV DECIS MAKING, V19, P393, DOI 10.1002/bdm.535 Levav J, 2010, J POLIT ECON, V118, P274, DOI 10.1086/652463 Liang TP, 2006, J MANAGE INFORM SYST, V23, P45, DOI 10.2753/MIS0742-1222230303 LYNCH JG, 1991, J CONSUM RES, V18, P284, DOI 10.1086/209260 LYNCH JG, 1982, J CONSUM RES, V9, P225, DOI 10.1086/208919 Manning KC, 2007, J RETAILING, V83, P411, DOI 10.1016/j.jretai.2007.03.011 Mazumdar T, 2005, J MARKETING, V69, P84, DOI 10.1509/jmkg.2005.69.4.84 Mussweiler T, 1999, J EXP SOC PSYCHOL, V35, P136, DOI 10.1006/jesp.1998.1364 Mussweiler T, 2000, PERS SOC PSYCHOL B, V26, P1142, DOI 10.1177/01461672002611010 Muthukrishnan AV, 2001, J CONSUM RES, V28, P89, DOI 10.1086/321949 Nanou T, 2010, MULTIMEDIA SYST, V16, P219, DOI 10.1007/s00530-010-0190-0 Nilashi M, 2016, ELECTRON COMMER R A, V19, P70, DOI 10.1016/j.elerap.2016.09.003 NORTHCRAFT GB, 1987, ORGAN BEHAV HUM DEC, V39, P84, DOI 10.1016/0749-5978(87)90046-X Nunes JC, 2004, J MARKETING RES, V41, P457, DOI 10.1509/jmkr.41.4.457.47014 Nyström M, 2013, BEHAV RES METHODS, V45, P272, DOI 10.3758/s13428-012-0247-4 Oppenheimer DA, 2008, COGNITION, V106, P13, DOI 10.1016/j.cognition.2006.12.008 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Pu P, 2011, P 5 ACM C REC SYST, P157, DOI [10.1145/2043932.2043962, DOI 10.1145/2043932.2043962] Raghubir P, 1999, J MARKETING RES, V36, P313, DOI 10.2307/3152079 Raghubir P, 2002, J CONSUM RES, V29, P335, DOI 10.1086/344430 Raghubir P, 1996, J CONSUM RES, V23, P26, DOI 10.1086/209464 REDELMEIER DA, 1995, JAMA-J AM MED ASSOC, V273, P302, DOI 10.1001/jama.1995.03520280048038 Rooderkerk RP, 2011, J MARKETING RES, V48, P767, DOI 10.1509/jmkr.48.4.767 Schafer J. Ben, 1999, Proceedings of the 1st ACM conference on Electronic commerce, P158, DOI [DOI 10.1145/336992.337035, 10.1145/336992.337035] Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Shiv B, 2005, J MARKETING RES, V42, P383, DOI 10.1509/jmkr.2005.42.4.383 SIMONSON I, 1992, J MARKETING RES, V29, P281, DOI 10.2307/3172740 SIMONSON I, 1989, J CONSUM RES, V16, P158, DOI 10.1086/209205 Simonson I, 2004, J CONSUM RES, V31, P681, DOI 10.1086/425103 SLOVIC P, 1995, AM PSYCHOL, V50, P364, DOI 10.1037/0003-066X.50.5.364 Sridhar S, 2012, J MARKETING, V76, P70, DOI 10.1509/jm.10.0377 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 Strack F, 1997, J PERS SOC PSYCHOL, V73, P437, DOI 10.1037/0022-3514.73.3.437 Swaminathan V, 2003, J CONSUM PSYCHOL, V13, P93, DOI 10.1207/S15327663JCP13-1&2_08 Teppan Erich, 2011, P RECSYS 2011 WORKSH TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 TVERSKY A, 1993, MANAGE SCI, V39, P1179, DOI 10.1287/mnsc.39.10.1179 Vijayasarathy L. R., 2001, Electronic Markets, V11, P75, DOI 10.1080/10196780151105483 Wang WQ, 2007, J MANAGE INFORM SYST, V23, P217, DOI 10.2753/MIS0742-1222230410 Wansink B, 1998, J MARKETING RES, V35, P71, DOI 10.2307/3151931 Wong KFE, 2000, ORGAN BEHAV HUM DEC, V82, P314, DOI 10.1006/obhd.2000.2900 Wu LL, 2013, P ANN HICSS, P2753, DOI 10.1109/HICSS.2013.461 Xiao B, 2007, MIS QUART, V31, P137 Ying YP, 2006, J MARKETING RES, V43, P355, DOI 10.1509/jmkr.43.3.355 Yoo K.-H., 2013, SpringerBriefs in electrical and computer engineering Zanker M, 2006, LECT NOTES COMPUT SC, V4082, P51 2013, DECIS SUPPORT SYST, V56, P180, DOI DOI 10.1016/J.DSS.2013.05.023 2018, DECIS SUPPORT SYST, V110, P46, DOI DOI 10.1016/J.DSS.2018.03.005 2014, MIS Q, V38, P379 2006, PSYCHOL SCI, V17, P311 NR 97 TC 21 Z9 21 U1 8 U2 61 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0022-4359 EI 1873-3271 J9 J RETAILING JI J. Retail. PD MAR PY 2019 VL 95 IS 1 BP 24 EP 41 DI 10.1016/j.jretai.2018.10.004 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HV8SB UT WOS:000466252600004 DA 2024-03-27 ER PT J AU Hsieh, MT Lee, SJ Wu, CH Hou, CL Ouyang, CS Lin, ZP AF Hsieh, Mi-Tsuen Lee, Shie-Jue Wu, Chih-Hung Hou, Chun-Liang Ouyang, Chen-Sen Lin, Zhan-Pei TI Leveraging attribute latent features for addressing new item cold-start issue SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE E-commerce; Recommender system; Item cold-start problem; Matrix factorization; Neural networks AB A recommender system employs an information filtering technology aiming to recommend items that are likely to be of interest to users, based on user behavior, rating feedback of items, or item characteristics. The cold-start problem occurs when the recommender system has difficulties in drawing any recommendations due to lack of information. In this paper, we focus on the item cold-start problem. When new items are added to the catalogue, they can easily be overlooked because no feedback information is accessible for recommending them to users, impeding the promotion of new products online. We propose a hybrid recommender system, called ALFNCF (Attribute Latent Features with Neural Collaborative Filtering), which combines the advantages of collaborative filtering, content-based filtering, and neural network technologies, to address the item cold-start issue. Like collaborative filtering, ALFNCF considers the interaction between users with similar behavior and items with similar feedback, while it also takes into account the influence of user's and item's attributes on individual behaviors. As in content-based filtering, attribute information is used in ALFNCF to establish links between new and old items. ALFNCF not only can retain the linear interactions between users and items, but also can learn the non-linear interactions by neural network units. Through the training on users' past rating feedback information for old items, ALFNCF can predict the user's ratings for new items. Experimental results show that our proposed method is effective and superior to other methods in the promotion of new items. C1 [Hsieh, Mi-Tsuen; Lee, Shie-Jue] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung, Taiwan. [Lee, Shie-Jue] Natl Sun Yat Sen Univ, Intelligent Elect Commerce Res Ctr, Kaohsiung, Taiwan. [Wu, Chih-Hung] Natl Univ Kaohsiung, Dept Elect Engn, Kaohsiung, Taiwan. [Hou, Chun-Liang] Chunghwa Telecom Co Ltd, Informat Technol Dept, Southern Taiwan Business Grp, Kaohsiung, Taiwan. [Ouyang, Chen-Sen] I Shou Univ, Dept Informat Engn, Kaohsiung, Taiwan. [Lin, Zhan-Pei] ROC Mil Acad, Dept Elect Engn, Kaohsiung, Taiwan. C3 National Sun Yat Sen University; National Sun Yat Sen University; National University Kaohsiung; Chunghwa Telecom; I Shou University RP Lee, SJ (autor correspondiente), Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung, Taiwan. EM mcsie@itlm.ee.nsysu.edu.tw; leesj@mail.ee.nsysu.edu.tw; johnw@nuk.edu.tw; hjl@cht.com.tw; ouyangcs@isu.edu.tw; ccdavidlin@gmail.com FU Ministry of Science and Technology [MOST-108-2221-E-110-046-MY2, MOST-109-2622-E-110-009]; NSYSU-KMU Joint Research Project [NSYSUKMU 110-I001]; Intelligent Electronic Commerce Research Center" from the Featured Areas Research Center Program FX The authors would like to express their sincere appreciations to the Guest Editors and Reviewers for their comments which were very helpful in improving the quality and presentation of the paper. This work was supported by the grants MOST-108-2221-E-110-046-MY2 and MOST-109-2622-E-110-009, Ministry of Science and Technology, the NSYSU-KMU Joint Research Project (#NSYSUKMU 110-I001), and the "Intelligent Electronic Commerce Research Center" from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan. CR Ajaegbu C., 2021, J AMBIENT INTELL HUM, V12, P10629, DOI 10.1007/s12652-020-02876-1 Aleksandrova M, 2017, J INTELL INF SYST, V48, P365, DOI 10.1007/s10844-016-0418-3 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Cheng H.-T., 2016, P 1 WORKSH DEEP LEAR Covington P, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P191, DOI 10.1145/2959100.2959190 Das Barman S, 2019, 2019 8TH INTERNATIONAL CONFERENCE ON SOFTWARE AND COMPUTER APPLICATIONS (ICSCA 2019), P258, DOI 10.1145/3316615.3316732 Desrosiers C, 2011, RECOMMENDER SYSTEMS HANDBOOK, P107, DOI 10.1007/978-0-387-85820-3_4 Ebesu T, 2018, ACM/SIGIR PROCEEDINGS 2018, P515, DOI 10.1145/3209978.3209991 Enrich M, 2013, LECT NOTES BUS INF P, V152, P101 Ghazanfar MA, 2012, INFORM SCIENCES, V208, P81, DOI 10.1016/j.ins.2012.04.012 Glorot X., 2011, P 14 INT C ARTIFICIA, P315 Guo GB, 2015, AAAI CONF ARTIF INTE, P123 Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725 Guo X, 2019, IEEE ACCESS, V7, P11349, DOI 10.1109/ACCESS.2019.2891544 He XN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P173, DOI 10.1145/3038912.3052569 Hu L, 2019, AAAI CONF ARTIF INTE, P3830 Ji K, 2015, KNOWL-BASED SYST, V83, P42, DOI 10.1016/j.knosys.2015.03.008 Kim D, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P233, DOI 10.1145/2959100.2959165 Kingma D. P., 2014, ARXIV Koren Y, 2008, 14 ACM SIGKDD INT C Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Li JJ, 2019, AAAI CONF ARTIF INTE, P4189 Li ZY, 2019, COMPLEXITY, DOI 10.1155/2019/6325654 Ma D., 2011, P 4 ACM INT C WEB SE, P287 Pan FY, 2019, PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), P695, DOI 10.1145/3331184.3331268 Park S.T., 2009, P 3 ACM C REC SYST, P21, DOI DOI 10.1145/1639714.1639720 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Qian TY, 2022, IEEE T KNOWL DATA EN, V34, P3597, DOI 10.1109/TKDE.2020.3038234 Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127 Santos C.N., 2014, P COLING 2014 25 INT, P69 Tang JX, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P565, DOI 10.1145/3159652.3159656 Volkovs M, 2017, ADV NEUR IN, V30 Wang DH, 2018, KNOWL-BASED SYST, V157, P1, DOI 10.1016/j.knosys.2018.05.001 Xiong F, 2020, IEEE T CYBERNETICS, V50, P4186, DOI 10.1109/TCYB.2019.2939390 Xiong F, 2020, IEEE T SYST MAN CY-S, V50, P3804, DOI 10.1109/TSMC.2018.2854000 Xu JW, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P3981 Zheng L, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P425, DOI 10.1145/3018661.3018665 Zhu Y, 2020, IEEE T KNOWL DATA EN, V32, P631, DOI 10.1109/TKDE.2019.2891530 NR 38 TC 2 Z9 2 U1 21 U2 71 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JUL-AUG PY 2022 VL 54 AR 101177 DI 10.1016/j.elerap.2022.101177 EA JUL 2022 PG 12 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 5A7LR UT WOS:000863065400003 DA 2024-03-27 ER PT J AU Yang, ZK Lin, ZJ AF Yang, Zekun Lin, Zhijie TI Interpretable video tag recommendation with multimedia deep learning framework SO INTERNET RESEARCH LA English DT Article DE Interpretable AI; Machine learning; Recommender system; User-generated content; Multimedia; Convolutional neural network AB Purpose Tags help promote customer engagement on video-sharing platforms. Video tag recommender systems are artificial intelligence-enabled frameworks that strive for recommending precise tags for videos. Extant video tag recommender systems are uninterpretable, which leads to distrust of the recommendation outcome, hesitation in tag adoption and difficulty in the system debugging process. This study aims at constructing an interpretable and novel video tag recommender system to assist video-sharing platform users in tagging their newly uploaded videos. Design/methodology/approach The proposed interpretable video tag recommender system is a multimedia deep learning framework composed of convolutional neural networks (CNNs), which receives texts and images as inputs. The interpretability of the proposed system is realized through layer-wise relevance propagation. Findings The case study and user study demonstrate that the proposed interpretable multimedia CNN model could effectively explain its recommended tag to users by highlighting keywords and key patches that contribute the most to the recommended tag. Moreover, the proposed model achieves an improved recommendation performance by outperforming state-of-the-art models. Practical implications The interpretability of the proposed recommender system makes its decision process more transparent, builds users' trust in the recommender systems and prompts users to adopt the recommended tags. Through labeling videos with human-understandable and accurate tags, the exposure of videos to their target audiences would increase, which enhances information technology (IT) adoption, customer engagement, value co-creation and precision marketing on the video-sharing platform. Originality/value The proposed model is not only the first explainable video tag recommender system but also the first explainable multimedia tag recommender system to the best of our knowledge. C1 [Yang, Zekun] Renmin Univ China, Sch Informat Resource Management, Beijing, Peoples R China. [Lin, Zhijie] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing, Peoples R China. C3 Renmin University of China; Tsinghua University RP Lin, ZJ (autor correspondiente), Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing, Peoples R China. EM dr.zhijie.lin@gmail.com RI YANG, Zekun/JCO-3822-2023 OI YANG, Zekun/0000-0003-4040-8476 FU National Natural Science Foundation of China [71801217, 72022007, 71872080]; Tsinghua University Initiative Scientific Research Program [2019THZWJC12] FX The authors appreciate the editors and the anonymous reviewers for their detailed and constructive comments. This work was supported in part by the National Natural Science Foundation of China [Grants 71801217, 72022007 and 71872080] and Tsinghua University Initiative Scientific Research Program [Grant 2019THZWJC12]. CR Arras L, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0181142 Bach S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130140 Belém FM, 2017, J ASSOC INF SCI TECH, V68, P830, DOI 10.1002/asi.23736 Bellini V, 2018, PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), P24, DOI 10.1145/3270323.3270327 Brodie RJ, 2011, J SERV RES-US, V14, P252, DOI 10.1177/1094670511411703 China Internet Network Information Center, 2019, 44 STAT REPORT INTER Dominguez V, 2019, PROCEEDINGS OF IUI 2019, P408, DOI 10.1145/3301275.3302274 Grave E, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P3483 He X., 2015, P 24 ACM INT C INF K, P1661, DOI [10.1145/2806416.2806504, DOI 10.1145/2806416.2806504] Kenny EM, 2021, ARTIF INTELL, V294, DOI 10.1016/j.artint.2021.103459 Kingma D. P., 2015, arXiv preprint arXiv:1412.6980 Komiak SYX, 2006, MIS QUART, V30, P941 Lau RYK, 2018, PROD OPER MANAG, V27, P1775, DOI 10.1111/poms.12737 Li MM, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P509, DOI 10.1145/3357384.3357912 Lopezosa C, 2020, JOURNAL PRACT, V14, P465, DOI 10.1080/17512786.2019.1628657 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Lv GY, 2016, AAAI CONF ARTIF INTE, P3000 Matt C, 2019, INTERNET RES, V29, P1526, DOI 10.1108/INTR-06-2018-0274 Montaner M., 2002, Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, P304 Montavon G., 2019, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, V11700 LNCS, P193, DOI [10.1007/978-3-030-28954-6_10/COVER, DOI 10.1007/978-3-030-28954-6_10, DOI 10.1007/978-3-030-28954-610] Montavon G, 2017, PATTERN RECOGN, V65, P211, DOI 10.1016/j.patcog.2016.11.008 Nunes I, 2017, USER MODEL USER-ADAP, V27, P393, DOI 10.1007/s11257-017-9195-0 Oh S, 2017, INTERNET RES, V27, P691, DOI 10.1108/IntR-01-2016-0005 Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Parra E, 2018, INT C PROGRAM COMPRE, P222, DOI 10.1145/3196321.3196351 Rantanen A, 2020, INTERNET RES, V30, P45, DOI 10.1108/INTR-07-2018-0318 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Richardson A, 2018, P 2 WORKSH EXPL ART, V2018, P137 Sakaji H, 2016, INT C NETWB INFO, P550, DOI 10.1109/NBiS.2016.46 Schaefer C., 2021, Hawaii International Conference on System Sciences, P2347, DOI DOI 10.24251/HICSS.2021.286 Sheh R., 2017, AAAI Workshop-Technical Report, P628 Sheh R.K., 2017, 2017 AAAI FALL S SER Sigurbjornsson B., 2008, P 17 INT C WORLD WID, P327, DOI DOI 10.1145/1367497.1367542 Tafesse W, 2020, INTERNET RES, V30, P1689, DOI 10.1108/INTR-10-2019-0406 Toderici G, 2010, PROC CVPR IEEE, P3447, DOI 10.1109/CVPR.2010.5539985 van der Waa J, 2020, INT J HUM-COMPUT ST, V144, DOI 10.1016/j.ijhcs.2020.102493 Vance A, 2008, J MANAGE INFORM SYST, V24, P73, DOI 10.2753/MIS0742-1222240403 Wang N, 2018, ACM/SIGIR PROCEEDINGS 2018, P165, DOI 10.1145/3209978.3210010 Wang YL, 2017, AAAI CONF ARTIF INTE, P210 Wei YW, 2019, PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), P1446, DOI 10.1145/3343031.3350858 Yang C, 2020, IEEE ACCESS, V8, P78252, DOI 10.1109/ACCESS.2020.2989473 Yang WM, 2019, ACM T KNOWL DISCOV D, V13, DOI 10.1145/3332932 Yang ZK, 2020, AAAI CONF ARTIF INTE, V34, P9426 You Z, 2015, EXPERT SYST APPL, V42, P3357, DOI 10.1016/j.eswa.2014.12.022 Zhang YD, 2020, FRONT COMPUT SCI-CHI, V14, DOI 10.1007/s11704-018-8106-9 NR 45 TC 7 Z9 7 U1 11 U2 67 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1066-2243 J9 INTERNET RES JI Internet Res. PD MAR 15 PY 2022 VL 32 IS 2 SI SI BP 518 EP 535 DI 10.1108/INTR-08-2020-0471 EA JUL 2021 PG 18 WC Business; Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science; Telecommunications GA ZY6TT UT WOS:000677661200001 DA 2024-03-27 ER PT J AU Militaru, D Zaharia, C AF Militaru, Dorin Zaharia, Costin TI ONLINE COLLABORATIVE FILTERING-BASED SYSTEMS: SEMANTICS AND EFFICIENCY SO ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH LA English DT Article DE Electronic Commerce; Collaborative filtering; Recommender Systems; Marketing; Experimentation AB Internet services operate on a vastly larger scale and allow virtual interactions. Both Web and Internet have created vast new opportunities, providing an infrastructure that enables buyers and sellers to find each other online. Companies can now offer many products, services and information easily and with lower costs. It becomes more and more difficult for customers to find quickly what they are looking for. Nevertheless, recommendation systems are playing a major role. Collaborative filtering (CF), or recommender system based-CF, has appeared as one methodology designed to perform such a recommendation task. These systems allow people to use expressed preferences of thousands of other people in order to find the product they desire based on the level of similarity between tastes. The concept has appeared from convergent research on search browsers, intelligent agents and data mining, and it allows to avoid the difficult question of "why" consumers prefer this or that product or brand. Early studies of electronic markets tools and recommender systems took a simplistic view of consumers as economic agents whose behavior was guided by the search for the lowest cost transactions. Moreover, most studies take into account only technical aspects of these systems like algorithms' development and computational problems. No study had been interested in recommendation's efficiency of collaborative filtering-based systems. This article explores the current state of research in recommender systems-based collaborative filtering and proposes an experiment to find if such electronic recommendations are better than human recommendations. C1 [Militaru, Dorin] Grp Sup Co Amiens Picardie, ESC Amiens, Dept Mkt, F-80038 Amiens, France. [Zaharia, Costin] MCF Univ Mans IUT GEA, F-75007 Paris, France. [Zaharia, Costin] IAE Paris 1, ENSAM Paris, ESTP Cachan, Paris, France. C3 Arts et Metiers Institute of Technology RP Militaru, D (autor correspondiente), Grp Sup Co Amiens Picardie, ESC Amiens, Dept Mkt, 18 Pl St Michel, F-80038 Amiens, France. EM dorin.militaru@supco-amiens.fr; Costin.Zaharia@univ-lemans.fr CR [Anonymous], 1998, MSRTR9812 [Anonymous], 1994, 1994 ACM C COMPUTER, DOI DOI 10.1145/192844.192905 Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Das A. S., 2007, WWW GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 GOLDBERG K, 2000, M0041 UCB EL RES LAB HERLOCKER JL, 2000, CSCW 00 PHIL PA DEC MCKIM R, 2000, J DATABASE MARKETING, V7, P385 Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Rich E., 1979, Cognitive Science, V3, P335 Rosen E., 2000, The Anatomy of Buzz SARWAR B, 2000, EC 00 MINN MINN ACM Schafer J.B., 1999, Recommender Systems in E-Commerce Shardanand U., 1995, SOCIAL INFORM FILTER Vapnik V.N., 1998, STAT LEARNING THEORY, P732 NR 15 TC 0 Z9 0 U1 0 U2 5 PU ACAD ECONOMIC STUDIES PI BUCHAREST PA 15-17 CALEA DOROBANTI, SECTOR 1, BUCHAREST, 00000, ROMANIA SN 0424-267X J9 ECON COMPUT ECON CYB JI Econ. Comput. Econ. Cybern. Stud. PY 2011 VL 45 IS 1 BP 203 EP 214 PG 12 WC Economics; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Mathematics GA 743JR UT WOS:000289015100013 DA 2024-03-27 ER PT J AU Lee, D Hosanagar, K AF Lee, Dokyun Hosanagar, Kartik TI How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE e-commerce; personalization; recommender systems; sales diversity; consumer purchase behavior; collaborative filtering; Gini coefficient ID EMPIRICAL-ANALYSIS; IMPACT; ASSORTMENT; INTERNET; COMMERCE; VARIETY; SEARCH; TAIL AB We investigate the impact of collaborative filtering recommender algorithms (e.g., Amazon's "Customers who bought this item also bought") commonly used in e-commerce on sales diversity. We use data from a randomized field experiment run on the website of a top retailer in North America across 82,290 products and 1,138,238 users. We report four main findings. First, we demonstrate and quantify across a wide range of product categories that the use of traditional collaborative filters (CFs) is associated with a decrease in sales diversity relative to a world without product recommendations. Furthermore, the design of the CF matters. CFs based on purchase data are associated with a greater effect size than those based on product views. Second, the decrease in aggregate sales diversity may not always be accompanied by a corresponding decrease in individual-level consumption diversity. In fact, it is even possible for individual consumption diversity to increase while aggregate sales diversity decreases. Third, copurchase network analyses show that while recommenders can help individuals explore new products, similar users still end up exploring the same kinds of products, resulting in concentration bias at the aggregate level. Fourth and finally, there is a difference between absolute and relative impact on niche items. Specifically, absolute sales and views for niche items in fact increase, but their gains are smaller compared with the gains in views and sales for popular items. Thus, whereas niche items gain in absolute terms, they lose out in terms of market share. We discuss economic impacts and managerial implications. C1 [Lee, Dokyun] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15293 USA. [Hosanagar, Kartik] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA. C3 Carnegie Mellon University; University of Pennsylvania RP Lee, D (autor correspondiente), Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15293 USA. EM dokyun@cmu.edu; kartikh@wharton.upenn.edu OI Lee, Dokyun/0000-0002-3186-3349 FU Jay H. Baker Retailing Center; Wharton Risk Management and Decision Processes Center; Mack Institute for Innovation Management; Fishman-Davidson Center for Service and Operations Management FX The authors gratefully acknowledge financial support from the Jay H. Baker Retailing Center, the Wharton Risk Management and Decision Processes Center, the Mack Institute for Innovation Management, and the Fishman-Davidson Center for Service and Operations Management. CR Adamopoulos P, 2015, ACM T INTEL SYST TEC, V5, DOI 10.1145/2559952 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2014, INFORMS J COMPUT, V26, P351, DOI 10.1287/ijoc.2013.0570 Anderson Chris., 2004, The Long Tail: Why the Future of Business is Selling Less of More [Anonymous], 2010, Proceedings of the for the 10th ACM SIGCOMM Conference on Internet Measurement, DOI DOI 10.1145/1879141.1879193 Borle S, 2005, MARKET SCI, V24, P616, DOI 10.1287/mksc.1050.0121 Breese J. S., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P43 Brynjolfsson E, 2000, MANAGE SCI, V46, P563, DOI 10.1287/mnsc.46.4.563.12061 Brynjolfsson E, 2006, MIT SLOAN MANAGE REV, V47, P67 Brynjolfsson E, 2011, MANAGE SCI, V57, P1373, DOI 10.1287/mnsc.1110.1371 Celma O., 2008, P 2 KDD WORKSH LARG, P1 Cooke ADJ, 2002, J MARKETING RES, V39, P488, DOI 10.1509/jmkr.39.4.488.19121 De P, 2010, MANAGE SCI, V56, P1930, DOI 10.1287/mnsc.1100.1233 Dias MB, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P291 Elberse A, 2008, HARVARD BUS REV, V86, P88 Fisher M.L., 2003, Operations management: critical perspectives on business and management, V4, P73 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gallino S, 2017, MANAGE SCI, V63, P2813, DOI 10.1287/mnsc.2016.2479 Good P., 2005, Permutation, parametric and bootstrap tests of hypotheses, V3rd ed Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Hinz O, 2010, BUS INFORM SYST ENG+, V2, P67, DOI 10.1007/s12599-010-0092-x Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Jannach Dietmar, 2013, User Modeling, Adaptation, and Personalization. 21th International Conference, UMAP 2013. Proceedings., P25, DOI 10.1007/978-3-642-38844-6_3 Jannach D., 2009, P 3 ACM C REC SYST, P205, DOI 10.1145/1639714.1639749 Jannach D, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P7, DOI 10.1145/2959100.2959186 Jannach D, 2015, USER MODEL USER-ADAP, V25, P427, DOI 10.1007/s11257-015-9165-3 Jiang BJ, 2011, MARKET SCI, V30, P757, DOI 10.1287/mksc.1110.0656 Jiang H, 2014, OPER RES, V62, P973, DOI 10.1287/opre.2014.1292 Kök AG, 2009, INT SER OPER RES MAN, V122, P99, DOI 10.1007/978-0-387-78902-6_6 Lamere P., 2008, SUN JAVAONE C Lee S, 2011, IEEE INT C BIO BIO W, P725, DOI 10.1109/BIBMW.2011.6112460 Lewis GJ, 2005, SUPPLY CHAIN MANAG, V10, P349, DOI 10.1108/13598540510624179 Lin ZJ, 2017, MIS QUART, V41, P397, DOI 10.25300/MISQ/2017/41.2.04 Mooney R. J., 2000, ACM 2000. Digital Libraries. Proceedings of the Fifth ACM Conference on Digital Libraries, P195, DOI 10.1145/336597.336662 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Pariser Eli, 2011, FILTER BUBBLE WHAT I Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Sarwar B., 2001, P 10 INT C WORLD WID, P285 SCHAFER J.B., 1999, P 1 ACM C EL COMM, P158, DOI DOI 10.1145/336992.337035 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Tan TF, 2017, INFORM SYST RES, V28, P643, DOI 10.1287/isre.2017.0712 Thompson Clive., 2008, The New York Times van Herpen E, 2002, MARKET SCI, V21, P331, DOI 10.1287/mksc.21.3.331.144 Walter FE, 2012, INF SYST E-BUS MANAG, V10, P367, DOI 10.1007/s10257-011-0170-8 Wu L.-L., 2011, System Sciences (HICSS), 2011 44th Hawaii International Conference on, P1, DOI DOI 10.1109/HICSS.2011.357 Zhu K., 2001, Electronic Markets, V11, P273, DOI 10.1080/101967801753405562 NR 48 TC 62 Z9 71 U1 20 U2 155 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD MAR PY 2019 VL 30 IS 1 BP 239 EP 259 DI 10.1287/isre.2018.0800 PG 21 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA HU1PR UT WOS:000465044800015 OA Green Submitted DA 2024-03-27 ER PT J AU Lau, RYK AF Lau, Raymond Y. K. TI Towards a web services and intelligent agents-based negotiation system for B2B eCommerce SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article; Proceedings Paper CT 7th International Conference on Electronic Commerce (ICEC 2005) CY AUG 15-17, 2005 CL Xian, PEOPLES R CHINA SP Xian Jiaotong Univ, Sun Yat-Sen Univ DE automated negotiations; intelligent agents; web services; eCommerce ID ARGUMENTATION; LOGIC AB With the explosive growth of the number of transactions conducted via electronic channels, there is a pressing need for the development of intelligent support tools to improve the degree and sophistication of automation for eCommerce. With reference to the BBT business model, negotiation is one of key steps for B2B eCommerce. Nevertheless, classical negotiation models are ineffective for supporting multi- agent multi- issue negotiations often encountered in eBusiness environment. The first contribution of this paper is the exploitation of Web services and intelligent agent techniques for the design and development of a distributed service discovery and negotiation system to streamline B2B eCommerce. In addition, an effective and efficient integrative negotiation mechanism is developed to conduct multi- party multi- issue negotiations for B2B eCommerce. Finally, an empirical study is conducted to evaluate our intelligent agents- based negotiation mechanism and to compare the negotiation performance of our software agents with that of their human counterparts. Our research work opens the door to the development of the next generation of intelligent system solutions to support B2B eCommerce. (C) 2006 Elsevier B. V. All rights reserved. C1 City Univ Hong Kong, Dept Informat Syst, Kowloon, Hong Kong, Peoples R China. C3 City University of Hong Kong RP Lau, RYK (autor correspondiente), City Univ Hong Kong, Dept Informat Syst, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China. EM raylau@cityu.edu.hk RI Novoa, Kevin/J-2867-2014 OI Lau, Raymond/0000-0002-5751-4550 CR [Anonymous], ELECT COMMERCE RES BAZERMAN MH, 1985, ORGAN BEHAV HUM DEC, V35, P294, DOI 10.1016/0749-5978(85)90026-3 BOX D, 2000, ACCESS PROTOCOL SOAP Chen Minder., 2003, Journal of Electronic Commerce Research, V4, P128 Curbera F, 2002, IEEE INTERNET COMPUT, V6, P86, DOI 10.1109/4236.991449 Davies NJ, 2004, BT TECHNOL J, V22, P118, DOI 10.1023/B:BTTJ.0000015502.09747.39 DELANEY M, 1997, DECIS SUPPORT SYST, V20, P53 DUMAS M, 2002, ELECTRON COMMER R A, V1, P29 Ehtamo H, 2001, EUR J OPER RES, V130, P54, DOI 10.1016/S0377-2217(00)00019-9 Faratin P, 2002, ARTIF INTELL, V142, P205, DOI 10.1016/S0004-3702(02)00290-4 Fatima SS, 2004, ARTIF INTELL, V152, P1, DOI 10.1016/S0004-3702(03)00115-2 Governatori G, 2000, FR ART INT, V54, P469 GUTTMAN R, 1999, LECT NOTES COMPUTER, V1571, P70 Guttman RH, 1998, KNOWL ENG REV, V13, P147, DOI 10.1017/S0269888998002082 HARSANYI J, 1973, MANAGE SCI, V18, P80 He MH, 2003, IEEE T KNOWL DATA EN, V15, P985, DOI 10.1109/TKDE.2003.1209014 Heiskanen P, 1999, EUR J OPER RES, V117, P578, DOI 10.1016/S0377-2217(98)00276-8 Jaiswal A, 2004, ELECTRON COMMER R A, V3, P355, DOI DOI 10.1016/J.ELERAP.2004.06.005 JENNINGS N, 2002, INT J GROUP DECISION, V10, P199 Keeney R. L., 1993, DECISIONS MULTIPLE O, DOI DOI 10.1017/CBO9781139174084 KOWALCZYK R, 2001, LECT NOTES ARTIF INT, P31 Kraus S, 1998, ARTIF INTELL, V104, P1, DOI 10.1016/S0004-3702(98)00078-2 KRAUS S, 1998, ARTIF INTELL, V94, P79 KRAUSE P, 1995, COMPUT INTELL, V11, P113, DOI 10.1111/j.1467-8640.1995.tb00025.x Krovi R, 1999, IEEE T SYST MAN CY C, V29, P15, DOI 10.1109/5326.740666 Lau RYK, 2005, SEVENTH INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE, VOLS 1 AND 2, SELECTED PROCEEDINGS, P271 Lau RYK, 2004, LECT NOTES ARTIF INT, V3157, P605 Lau RYK, 2003, IEEE/WIC INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY, PROCEEDINGS, P196, DOI 10.1109/IAT.2003.1241068 LAU RYK, 1984, P 4 IEEE WIC INT C I, P295 Leymann F, 2002, IBM SYST J, V41, P198, DOI 10.1147/sj.412.0198 Lomuscio AR, 2003, GROUP DECIS NEGOT, V12, P31, DOI 10.1023/A:1022232410606 Ma M, 1999, COMMUN ACM, V42, P78, DOI 10.1145/295685.295708 Maes P, 1999, COMMUN ACM, V42, P81, DOI 10.1145/295685.295716 MATWIN S, 1991, IEEE T SYST MAN CYB, V21, P102, DOI 10.1109/21.101141 Nash JF, 1950, ECONOMETRICA, V18, P155, DOI 10.2307/1907266 PRUITT S, 1981, NEGOTIATION BEHAV Raiffa Howard., 1982, ART SCI NEGOTIATION ROSENSCHEIN J, 1994, RULES ENCOUNTER DESI, P29 Rubenstein-Montano B, 2002, IEEE T EVOLUT COMPUT, V6, P366, DOI 10.1109/TEVC.2002.802874 RUBINSTEIN A, 1982, ECONOMETRICA, V50, P97, DOI 10.2307/1912531 SAMUEL PM, 2001, COMPUTER NETWORKS, V37, P195 SHAW MJ, 2000, HDB ELECT COMMERCE, P3 SIERRA C, 1999, P EUSFLAT ESTYLF JOI, P155 Sycara K, 1997, P 14 NAT C ART INT 9, P36 Sycara K., 1989, DISTRIBUTED ARTIFICI, V2, P119 Tremblett P, 2002, DR DOBBS J, V27, P34 von Neumann J., 1994, THEORY GAMES EC BEHA *W3C, 2004, WEB SERV ACT WILKENFELD J, 1995, DECIS SUPPORT SYST, V14, P369, DOI 10.1016/0167-9236(94)00027-P Williams JD, 2003, PHYS PLASMAS, V10, P103, DOI 10.1063/1.1526695 WOOLDRIDGE M, 1995, KNOWL ENG REV, V10, P115, DOI 10.1017/S0269888900008122 Wurman P. R., 1998, Proceedings of the Second International Conference on Autonomous Agents, P301, DOI 10.1145/280765.280847 YING H, 2003, ELECTRON COMMER R A, V2, P15 Zeng DJ, 1998, INT J HUM-COMPUT ST, V48, P125, DOI 10.1006/ijhc.1997.0164 [No title captured] NR 55 TC 44 Z9 51 U1 4 U2 35 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD FAL PY 2007 VL 6 IS 3 BP 260 EP 273 DI 10.1016/j.elerap.2006.06.007 PG 14 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Business & Economics; Computer Science GA 225HY UT WOS:000250508900004 DA 2024-03-27 ER PT J AU Sun, LH Guo, JP Zhu, YL AF Sun, Lihua Guo, Junpeng Zhu, Yanlin TI A multi-aspect user-interest model based on sentiment analysis and uncertainty theory for recommender systems SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Recommender system; Sentiment analysis; Uncertainty theory; Product reviews; User interest ID PRODUCT; STATE; WEB AB This work presents a new multi-aspect user-interest model for recommender systems to improve recommendation and prediction accuracy. We introduce the overall user satisfaction for a product to build a user-interest profile by computing the user-interest levels from multi-aspect reviews. A domain emotional dictionary is built to overcome the gap in quantity between negative and positive words for sentiment polarity analysis. A sentiment analysis model is designed to characterize the users' sentiment polarity and strength based on uncertainty theory and the domain emotional dictionary. Accordingly, a new multi-aspect user-interest model is proposed by considering the sentiment analysis model with the user-interest profile. Then, our proposed model is applied to recommender systems and experimentally tested on five products of different categories from three e-commerce websites. Our model not only outperforms the traditional and state-of-the-art models on rating prediction tasks but also improves the recommendation accuracy in multiple domains. C1 [Sun, Lihua; Guo, Junpeng; Zhu, Yanlin] Tianjin Univ, Coll Management Econ, Tianjin 300072, Peoples R China. C3 Tianjin University RP Guo, JP (autor correspondiente), Tianjin Univ, Coll Management Econ, Tianjin 300072, Peoples R China. EM guojp@tju.edu.cn RI Zhang, Yihao/JGM-3514-2023 FU National Natural Science Foundation of China [71671121] FX This work is supported by the National Natural Science Foundation of China (Grant No. 71671121). CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Aljukhadar M, 2012, INT J ELECTRON COMM, V17, P41, DOI 10.2753/JEC1086-4415170202 [Anonymous], 2013, CLIN TRANSL ONCOL Appel O, 2016, KNOWL-BASED SYST, V108, P110, DOI 10.1016/j.knosys.2016.05.040 Bao Y, 2014, AAAI CONF ARTIF INTE, P2 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Chen L, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P239, DOI 10.1145/2567948.2577276 Chen L, 2015, USER MODEL USER-ADAP, V25, P99, DOI 10.1007/s11257-015-9155-5 Chen XW, 2012, EUR J OPER RES, V222, P312, DOI 10.1016/j.ejor.2012.05.010 Chen YC, 2009, ELECTRON COMMER R A, V8, P48, DOI 10.1016/j.elerap.2008.09.001 DILLON M, 1983, INFORM PROCESS MANAG, V19, P402, DOI 10.1016/0306-4573(83)90062-6 Ding SB, 2013, APPL MATH COMPUT, V223, P139, DOI 10.1016/j.amc.2013.07.083 Ding SB, 2014, J INTELL FUZZY SYST, V26, P483, DOI 10.3233/IFS-130919 Dong Z., 2006, Hownet and the computation of meaning Esparza SG, 2012, KNOWL-BASED SYST, V29, P3, DOI 10.1016/j.knosys.2011.07.007 Ganu G, 2012, INFORM SYST, V38, P1, DOI 10.1016/j.is.2012.03.001 Gao Y, 2016, IEEE T FUZZY SYST, V24, P981, DOI 10.1109/TFUZZ.2015.2500267 Gao Y, 2015, INFORM SCIENCES, V296, P61, DOI 10.1016/j.ins.2014.10.048 Gao Y, 2012, APPL MATH MODEL, V36, P2592, DOI 10.1016/j.apm.2011.09.042 Gao Y, 2011, COMPUT MATH APPL, V62, P2591, DOI 10.1016/j.camwa.2011.07.058 Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Joachims T., 1998, P 10 EUR C MACH LEAR, P137, DOI DOI 10.1007/BFB0026683 Koohi H, 2016, MEASUREMENT, V91, P134, DOI 10.1016/j.measurement.2016.05.058 Koren Y, 2011, RECOMMENDER SYSTEMS HANDBOOK, P145, DOI 10.1007/978-0-387-85820-3_5 Lakiotaki K, 2011, IEEE INTELL SYST, V26, P64, DOI 10.1109/MIS.2011.33 Ling G, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P105, DOI 10.1145/2645710.2645728 Liu B., 2010, Journal of Uncertain Systems, V4, P83 Liu B.D., 2007, Uncertainty Theory, V2nd, DOI DOI 10.1007/978-3-642-13959-8 Liu BD, 2012, FUZZY OPTIM DECIS MA, V11, P387, DOI 10.1007/s10700-012-9128-7 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Liu W, 2010, INFORMATION-TOKYO, V13, P1693 Loia V, 2014, KNOWL-BASED SYST, V58, P75, DOI 10.1016/j.knosys.2013.09.024 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 McAuley J., 2013, P 7 ACM C REC SYST, P165 Musat C.-C., 2013, IJCAI 13, P2684 Musto C, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P321, DOI 10.1145/3109859.3109905 Qiu L, 2016, KNOWL-BASED SYST, V110, P233, DOI 10.1016/j.knosys.2016.07.033 Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 Turney PD, 2002, 40TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, PROCEEDINGS OF THE CONFERENCE, P417 Vapnik, 2013, NATURE STAT LEARNING Varshney S, 2017, 2017 2ND INTERNATIONAL CONFERENCE ON TELECOMMUNICATION AND NETWORKS (TEL-NET), P270 WANG H, 2014, P 2014 C EMP METH NA, V2014, P1192 Wang JY, 2018, LECT NOTES COMPUT SC, V10745, P433, DOI 10.1007/978-3-319-74521-3_46 Wang XS, 2012, INFORMATION-TOKYO, V15, P449 Yang Y., 1997, ICML, V97, P412, DOI DOI 10.5555/645526.657137 Yao K, 2015, IEEE T FUZZY SYST, V23, P1333, DOI 10.1109/TFUZZ.2014.2360551 Yao K, 2012, IEEE T FUZZY SYST, V20, P1154, DOI 10.1109/TFUZZ.2012.2194152 Zhai CY, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), P1119, DOI [10.1109/CSCI.2016.212, 10.1109/CSCI.2016.0213] Zhang YF, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P83, DOI 10.1145/2600428.2609579 NR 49 TC 10 Z9 13 U1 5 U2 61 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD DEC PY 2020 VL 20 IS 4 BP 857 EP 882 DI 10.1007/s10660-018-9319-6 PG 26 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA OH9EB UT WOS:000582891600008 DA 2024-03-27 ER PT J AU Pathak, B Garfinkel, R Gopal, RD Venkatesan, R Yin, F AF Pathak, Bhavik Garfinkel, Robert Gopal, Ram D. Venkatesan, Rajkumar Yin, Fang TI Empirical Analysis of the Impact of Recommender Systems on Sales SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS LA English DT Article DE collaborative filtering; electronic commerce; e-tail; experience goods; recommender systems ID CONSUMER DECISION-MAKING; WORD-OF-MOUTH; ONLINE; INFORMATION; REVIEWS; PERSUASION; COMMERCE; CRITICS; AGENTS; COSTS AB Online retailers are increasingly using information technologies to provide value-added services to customers. Prominent examples of these services are online recommender systems and consumer feedback mechanisms, both of which serve to reduce consumer search costs and uncertainty associated with the purchase of unfamiliar products. The central question we address is how recommender systems affect sales. We take into consideration the interaction among recommendations, sales, and price. We then develop a robust empirical model that incorporates the indirect effect of recommendations on sales through retailer pricing, potential simultaneity between sales and recommendations, and a comprehensive measure of the strength of recommendations. Applying the model to a panel data set collected from two online retailers, we found that the strength of recommendations has a positive effect on sales. Moreover, this effect is moderated by the recency effect, where more recently released recommended items positively affect the cross-selling efforts of sellers. We also show that recommender systems help to reinforce the long-tail phenomenon of electronic commerce, and obscure recommendations positively affect cross-selling. We also found a positive effect of recommendations on prices. These results suggest that recommendations not only improve sales but they also provide added flexibility to retailers to adjust their prices. A comparative analysis reveals that recommendations have a higher effect on sales than does consumer feedback. Our empirical results show that providing value-added services, such as digital word of mouth and recommendations, allows retailers to charge higher prices while at the same time increasing demand by providing more information regarding the quality and match of products. C1 [Pathak, Bhavik] Indiana Univ S Bend, Sch Business & Econ, South Bend, IN USA. [Garfinkel, Robert; Gopal, Ram D.] Univ Connecticut, Sch Business, Operat & Informat Management Dept, Storrs, CT 06269 USA. [Venkatesan, Rajkumar] Univ Virginia, Darden Business Sch, Charlottesville, VA 22903 USA. [Yin, Fang] Univ Oregon, Lundquist Coll Business, Dept Decis Sci, Eugene, OR 97403 USA. C3 Indiana University System; Indiana University South Bend; University of Connecticut; University of Virginia; University of Oregon RP Pathak, B (autor correspondiente), Indiana Univ S Bend, Sch Business & Econ, South Bend, IN USA. RI Gopal, Ram/M-9077-2019 OI Gopal, Ram/0000-0003-4241-9355 CR ADAMS WJ, 1976, Q J ECON, V90, P475, DOI 10.2307/1886045 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Alba J, 1997, J MARKETING, V61, P38, DOI 10.2307/1251788 [Anonymous], 2006, Hyperion Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Ben Schafer J, 2001, DATA MIN KNOWL DISC, V5, P115, DOI 10.1023/A:1009804230409 Benbasat I, 2003, MIS QUART, V27, P183 BERGEMANN D, 2006, 1563 YAL U Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Caves RE, 1996, INT J IND ORGAN, V14, P29, DOI 10.1016/0167-7187(95)00478-5 Chen P., 2004, P 25 INT C INF SYST, P710 Chevalier J, 2003, QME-QUANT MARK ECON, V1, P203, DOI 10.1023/A:1024634613982 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Dellarocas C, 2003, MANAGE SCI, V49, P1407, DOI 10.1287/mnsc.49.10.1407.17308 Eliashberg J, 1997, J MARKETING, V61, P68, DOI 10.2307/1251831 FLYNN LJ, 2006, NY TIMES 0123 Ghose A, 2006, INFORM SYST RES, V17, P3, DOI 10.1287/isre.1050.0072 Grenci RT, 2002, COMMUN ACM, V45, P64, DOI 10.1145/504729.504730 Gretzel U, 2006, INT J ELECTRON COMM, V11, P81, DOI 10.2753/JEC1086-4415110204 GUERNSEY L, 2003, NY TIMES 0501 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hostler RE, 2005, DECIS SUPPORT SYST, V41, P313, DOI 10.1016/j.dss.2004.07.002 Konstan JA, 1997, COMMUN ACM, V40, P77, DOI 10.1145/245108.245126 Kumar N, 2006, INFORM SYST RES, V17, P425, DOI 10.1287/isre.1060.0107 Latcovich S, 2001, OXFORD REV ECON POL, V17, P217, DOI 10.1093/oxrep/17.2.217 Liang TP, 2006, J MANAGE INFORM SYST, V23, P45, DOI 10.2753/MIS0742-1222230303 Liang TP, 2006, J MANAGE INFORM SYST, V23, P9, DOI 10.2753/MIS0742-1222230301 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Mild A., 2003, Journal of Retailing and Consumer Services, V10, P123, DOI [DOI 10.1016/S0969-6989(03)00003-1, 10.1016/S0969-6989(03)00003-1] MOBASHER B, 2001, 3 ACM WORKSH WEB INF MUI YQ, 2006, WASHINGTON POST 0107 NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 NELSON P, 1974, J POLIT ECON, V82, P729, DOI 10.1086/260231 Nikolaeva R, 2006, INT J ELECTRON COMM, V11, P101, DOI 10.2753/JEC1086-4415110205 NULL C, 2003, NETFLIX FIXING HOLLY OESTREICHERSING.G, 2006, P 27 INT C INF SYST, P382 Reinstein DA, 2005, J IND ECON, V53, P27, DOI 10.1111/j.0022-1821.2005.00244.x Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Schafer J. Ben, 1999, Proceedings of the 1st ACM conference on Electronic commerce, P158, DOI [DOI 10.1145/336992.337035, 10.1145/336992.337035] Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931 Smith MD, 2001, J IND ECON, V49, P541, DOI 10.1111/1467-6451.00162 Stiglitz J., 1989, HDB IND ORG, P769, DOI DOI 10.1016/S1573-448X(89)01016-2 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Vakratsas D, 1999, J MARKETING, V63, P26, DOI 10.2307/1251999 Wang WQ, 2007, J MANAGE INFORM SYST, V23, P217, DOI 10.2753/MIS0742-1222230410 WESTBROOK RA, 1987, J MARKETING RES, V24, P258, DOI 10.2307/3151636 Xiao B, 2007, MIS QUART, V31, P137 Yang Y., 2005, Journal of Electronic Commerce Research, V6, P112 NR 50 TC 170 Z9 191 U1 8 U2 156 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 0742-1222 EI 1557-928X J9 J MANAGE INFORM SYST JI J. Manage. Inform. Syst. PD FAL PY 2010 VL 27 IS 2 BP 159 EP 188 DI 10.2753/MIS0742-1222270205 PG 30 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 679DB UT WOS:000284138500006 DA 2024-03-27 ER PT J AU Karn, AL Karna, RK Kondamudi, BR Bagale, G Pustokhin, DA Pustokhina, IV Sengan, S AF Karn, Arodh Lal Karna, Rakshha Kumari Kondamudi, Bhavana Raj Bagale, Girish Pustokhin, Denis A. Pustokhina, Irina, V Sengan, Sudhakar TI Customer centric hybrid recommendation system for E-Commerce applications by integrating hybrid sentiment analysis SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Hybrid recommender system; E-Commerce; Sentiment analysis; Neural network; Accuracy; Filtering; Deep learning; Bert AB Internet applications such as Online Social Networking and Electronic commerce are becoming incredibly common, resulting in more content being available. Recommender systems (RS) assist users in identifying appropriate information out of a large pool of options. In today's internet applications, RS are extremely important. To increase user satisfaction, this type of system supports personalized recommendations based on a massive volume of data. These suggestions assist clients in selecting products, while concerns can increase product utilization. We discovered that much research work is going on in the field of recommendation and that there are some effective systems out there. In the context of social information, sentimental analysis (SA) can aid in increasing the knowledge of a user's behaviour, views, and reactions, which is helpful for incorporating into RS to improve recommendation accuracy. RS has been found to resolve information overload challenges in information retrieval, but they still have issues with cold-start and data sparsity. SA, on the other hand, is well-known for interpreting text and conveying user choices. It's frequently used to assist E-Commerce in tracking customer feedback on their products and attempting to comprehend customer needs and preferences. To improve the accuracy and correctness of any RS, this paper proposes a recommendation model based on a Hybrid Recommendation Model (HRM) and hybrid SA. In the proposed method, we first generate a preliminary recommendation list using a HRM. To generate the final recommendation list, the HRM with SA is used. In terms of various evaluation criteria, the HRM with SA outperforms traditional models. C1 [Karn, Arodh Lal] Xian Jiaotong Liverpool Univ, Sch Math & Phys, Dept Financial & Actuarial Math, Suzhou 215123, Jiangsu, Peoples R China. [Karna, Rakshha Kumari] Harbin Inst Technol, Sch Management, Harbin 150001, Peoples R China. [Kondamudi, Bhavana Raj] Inst Publ Enterprise, Dept Management Studies, Hyderabad 500101, India. [Bagale, Girish] SVKMs NMIMS Univ, SBMs Pravin Dalal Sch Entrepreneurship & Family B, Mumbai 400056, Maharashtra, India. [Pustokhin, Denis A.] State Univ Management, Dept Logist, Moscow 109542, Russia. [Pustokhina, Irina, V] Plekhanov Russian Univ Econ, Dept Entrepreneurship & Logist, Moscow 117997, Russia. [Sengan, Sudhakar] PSN Coll Engn & Technol, Dept Comp Sci & Engn, Tirunelveli 627152, Tamil Nadu, India. C3 Xi'an Jiaotong-Liverpool University; Harbin Institute of Technology; SVKM's NMIMS (Deemed to be University); State University of Management; Plekhanov Russian University of Economics RP Sengan, S (autor correspondiente), PSN Coll Engn & Technol, Dept Comp Sci & Engn, Tirunelveli 627152, Tamil Nadu, India. EM alkmaithili@foxmail.com; rakshha.karna@gmail.com; bhavana_raj_83@yahoo.com; girishbagale08@gmail.com; dpustokhin@yandex.ru; ivpustokhina@yandex.ru; sudhasengan@gmail.com RI Pustokhina, Irina/D-3508-2019; Pustokhin, Denis/AEU-9889-2022 OI Pustokhina, Irina/0000-0001-5480-8871; KARN, ARODH LAL/0000-0003-4557-1889 CR Aaron O., 2019, SHOPIFY PLUS 0131 Agarwal B, 2015, COMPUT INTEL NEUROSC, V2015, DOI 10.1155/2015/715730 Alhamid MF, 2015, MULTIMED TOOLS APPL, V74, P11399, DOI 10.1007/s11042-014-2236-3 [Anonymous], 2018, ADV POSITIONING FLOW Cheng T., 2016, WWW, P2787 Dang CN, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21165666 Dang NC, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9030483 Devipriya K., 2020, INT J SCI TECHNOL RE, V9, P3812 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Fayyaz Z, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10217748 Fu MS, 2019, IEEE T CYBERNETICS, V49, P1084, DOI 10.1109/TCYB.2018.2795041 García-Cumbreras MA, 2013, EXPERT SYST APPL, V40, P6758, DOI 10.1016/j.eswa.2013.06.049 Ghabayen A, 2014, J COMPUTER SCI, V10, P1166, DOI [10.3844/jcssp.2014.1166.1173, DOI 10.3844/JCSSP.2014.1166.1173] Ghabayen A.S., 2017, International Journal on Advanced Science, Engineering and Information Technology, V7, P2063, DOI [DOI 10.18517/IJASEIT.7.6.1826, 10.18517/ijaseit.7.6.1826] Guimaraes R, 2016, I SYMP CONSUM ELECTR, P71, DOI 10.1109/ISCE.2016.7797377 Hanafizadeh P, 2021, ELECTRON MARK, V31, P269, DOI 10.1007/s12525-020-00449-w He P, 2022, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09609-w He X., 2015, P 24 ACM INT C INF K, P1661, DOI [10.1145/2806416.2806504, DOI 10.1145/2806416.2806504] Hu FY, 2023, ELECTRON COMMER RES, V23, P2647, DOI 10.1007/s10660-022-09557-5 Hu Y., 2011, P ISMIR, P103 Jaiswal Sapna, 2020, ITM Web of Conferences, V32, DOI 10.1051/itmconf/20203203034 Ka-Hou Chan, 2020, Neural Information Processing. 27th International Conference, ICONIP 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12532), P693, DOI 10.1007/978-3-030-63830-6_58 Kamatchi SB, 2019, PROCEDIA COMPUT SCI, V165, P724, DOI 10.1016/j.procs.2020.01.023 Kang LS, 2021, ELECTRON MARK, V31, P253, DOI 10.1007/s12525-020-00416-5 Kashyap R, 2023, ELECTRON COMMER RES, V23, P2183, DOI 10.1007/s10660-022-09531-1 Kumar S, 2020, IEEE T COMPUT SOC SY, V7, P915, DOI 10.1109/TCSS.2020.2993585 Kundu S, 2022, ELECTRON COMMER RES, V22, P925, DOI 10.1007/s10660-020-09429-w Lei XJ, 2016, IEEE T MULTIMEDIA, V18, P1910, DOI 10.1109/TMM.2016.2575738 Li GL, 2019, IEEE ACCESS, V7, P126539, DOI 10.1109/ACCESS.2019.2937375 Lin David, 2015, 2015 IEEE International Test Conference (ITC), P1, DOI 10.1109/TEST.2015.7342397 Melville P., 2010, ENCY MACHINE LEARNIN, DOI DOI 10.1007/978-0-387-30164-8_705 Nimirthi P, 2019, Social Network Forensics, Cyber Security, and Machine Learning, P59 Osman NA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248695 Pan R., 2012, TAG BASED SYSTEMS SP, P355 Peleja F, 2013, MULTIMEDIA SYST, V19, P543, DOI 10.1007/s00530-013-0310-8 Preethi G, 2017, INT CONF COMP INFO, P93, DOI 10.1109/CITS.2017.8035341 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Salehi Mojtaba, 2013, International Journal of Business Information Systems, V14, P480, DOI 10.1504/IJBIS.2013.057501 Sánchez-Moreno D, 2020, 2020 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2020), P502, DOI 10.1109/WIIAT50758.2020.00075 Selmene S, 2020, 4TH INTERNATIONAL CONFERENCE ON E-COMMERCE, E-BUSINESS AND E-GOVERNMENT, ICEEG 2020, P96, DOI 10.1145/3409929.3414744 Shafqat W, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12104107 SHAREEF S. M., 2020, Engineering and Technology Journal, V38, P6 Son J, 2017, EXPERT SYST APPL, V89, P404, DOI 10.1016/j.eswa.2017.08.008 Strub Florian, 2016, Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, P11 Su X., 2009, Advances in artificial intelligence, V2009, P4, DOI [10.1155/2009/421425, DOI 10.1155/2009/421425] Wang B, 2018, FUTURE INTERNET, V10, DOI 10.3390/fi10120117 Wang Y., 2018, INT C EL BUS 2018 P, P211 Wang YB, 2018, WIREL COMMUN MOB COM, DOI 10.1155/2018/2734219 Wu XQ, 2021, ELECTRON COMMER RES, V21, P689, DOI 10.1007/s10660-019-09339-6 Zhang HW, 2021, IEEE ACCESS, V9, P48039, DOI 10.1109/ACCESS.2021.3061279 Zhou LC, 2020, ELECTRON COMMER RES, V20, P321, DOI 10.1007/s10660-020-09411-6 Zhuang YY, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13148039 Ziani A., 2017, P 2 INT C AUT CONTR NR 53 TC 15 Z9 16 U1 51 U2 121 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD MAR PY 2023 VL 23 IS 1 SI SI BP 279 EP 314 DI 10.1007/s10660-022-09630-z EA OCT 2022 PG 36 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA F6MZ6 UT WOS:000875791900001 DA 2024-03-27 ER PT J AU Khan, ZA Chaudhary, NI Zubair, S AF Khan, Zeshan Aslam Chaudhary, Naveed Ishtiaq Zubair, Syed TI Fractional stochastic gradient descent for recommender systems SO ELECTRONIC MARKETS LA English DT Article DE Recommender systems; E-Commerce; Fractional calculus; Stochastic gradient descent ID MATRIX FACTORIZATION; PARAMETER-ESTIMATION; ADAPTIVE STRATEGY; ORDER CIRCUITS; IDENTIFICATION; ALGORITHM; STABILITY; DESIGN; LMS AB Recently, recommender systems are getting popular in the e-commerce industry for retrieving and recommending most relevant information about items for users from large amounts of data. Different stochastic gradient descent (SGD) based adaptive strategies have been proposed to make recommendations more precise and efficient. In this paper, we propose a fractional variant of the standard SGD, named as fractional stochastic gradient descent (FSGD), for recommender systems. We compare its convergence and estimated accuracy with standard SGD against a number of features with different learning rates and fractional orders. The performance of our proposed method is evaluated using the root mean square error (RMSE) as a quantitative evaluation measure. We examine that the proposed strategy is more accurate in terms of RMSE than the standard SGD for all values of fractional orders and different numbers of features. The contribution of fractional calculus has not been explored yet to solve the recommender systems problem; therefore, we exploit FSGD for solving this problem. The results show that our proposed method performs significantly well in terms of estimated accuracy and convergence as compared to the standard SGD. C1 [Khan, Zeshan Aslam; Chaudhary, Naveed Ishtiaq; Zubair, Syed] Int Islamic Univ, Dept Elect Engn, Islamabad 44000, Pakistan. C3 International Islamic University, Pakistan RP Khan, ZA (autor correspondiente), Int Islamic Univ, Dept Elect Engn, Islamabad 44000, Pakistan. EM zeeshan.aslam@iiu.edu.pk; naveed.ishtiaq@iiu.edu.pk; szubair@iiu.edu.pk RI Chaudhary, Naveed/I-7754-2019 OI Chaudhary, Naveed Ishtiaq/0000-0002-9568-3216 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Aggarwal C. C., 2001, KDD-2001. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P227, DOI 10.1145/502512.502543 Aggarwal C. C., 2016, RECOMMENDER SYSTEMS, V1 [Anonymous], STAT ANAL MISSING DA [Anonymous], MODARES J ELECT ENG [Anonymous], NEURAL COMPUTING APP [Anonymous], 2007, P KDD CUP WORKSH [Anonymous], INT C ALG APPL MAN [Anonymous], 2011, FRACTIONAL CALCULUS, DOI DOI 10.1007/978-94-007-0747-4 [Anonymous], 4 IFAC WORKSH FRACT Aslam MS, 2017, NONLINEAR DYNAM, V87, P519, DOI 10.1007/s11071-016-3058-9 Aslam MS, 2015, SIGNAL PROCESS, V107, P433, DOI 10.1016/j.sigpro.2014.04.012 Badri V, 2016, IEEE T CONTR SYST T, V24, P1059, DOI 10.1109/TCST.2015.2462739 Baskonus HM, 2015, OPEN MATH, V13, P547, DOI 10.1515/math-2015-0052 Baskonus HM, 2015, ENTROPY-SWITZ, V17, P5771, DOI 10.3390/e17085771 Bell RM, 2007, IEEE DATA MINING, P43, DOI 10.1109/ICDM.2007.90 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bouzeriba A, 2016, NEURAL COMPUT APPL, V27, P1349, DOI 10.1007/s00521-015-1938-4 Bulut Hasan, 2013, ABSTR APPL AN, V2013 Chaudhary NI, 2018, APPL MATH MODEL, V55, P698, DOI 10.1016/j.apm.2017.11.023 Chaudhary NI, 2017, IET SIGNAL PROCESS, V11, P975, DOI 10.1049/iet-spr.2016.0578 Chaudhary NI, 2017, ISA T, V68, P189, DOI 10.1016/j.isatra.2017.03.011 Chaudhary NI, 2015, NONLINEAR DYNAM, V82, P1811, DOI 10.1007/s11071-015-2279-7 Chen DL, 2015, APPL MATH COMPUT, V257, P537, DOI 10.1016/j.amc.2015.01.012 Chen DL, 2013, CENT EUR J PHYS, V11, P1414, DOI 10.2478/s11534-013-0241-1 Chen P.-L., 2011, KDD-Cup, P21 Chin WS, 2015, ACM T INTEL SYST TEC, V6, DOI 10.1145/2668133 Ortigueira MD, 2006, SIGNAL PROCESS, V86, P2503, DOI 10.1016/j.sigpro.2006.02.001 Elwakil AS, 2010, IEEE CIRC SYST MAG, V10, P40, DOI 10.1109/MCAS.2010.938637 Funk S., 2006, Netflix update: Try this at home Gangola S, 2018, ADV ENV ENG GREEN TE, P1, DOI 10.4018/978-1-5225-3126-5.ch001 Gemulla R., 2011, P 17 ACM SIGKDD INT Geravanchizadeh M, 2014, Iranian Journal of Electrical and Electronic Engineering, V10, P256 Harper FM, 2016, ACM T INTERACT INTEL, V5, DOI 10.1145/2827872 He C, 2016, EXPERT SYST APPL, V56, P9, DOI 10.1016/j.eswa.2016.02.013 Heimbach I, 2015, ELECTRON MARK, V25, P125, DOI 10.1007/s12525-015-0187-9 Hofmann T, 2004, ACM T INFORM SYST, V22, P89, DOI 10.1145/963770.963774 Kawai M, 2016, INT INF I TOKYO INF, V19, P2177 Köhler S, 2016, ELECTRON MARK, V26, P369, DOI 10.1007/s12525-016-0232-3 Koren Y, 2008, 14 ACM SIGKDD INT C Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Luo X, 2013, KNOWL-BASED SYST, V37, P154, DOI 10.1016/j.knosys.2012.07.016 Luo X, 2012, KNOWL-BASED SYST, V27, P271, DOI 10.1016/j.knosys.2011.09.006 Machado JT, 2011, COMMUN NONLINEAR SCI, V16, P1140, DOI 10.1016/j.cnsns.2010.05.027 Malek H, 2016, IET POWER ELECTRON, V9, P1608, DOI 10.1049/iet-pel.2015.0636 Mnih Andriy, 2007, ADV NEURAL INFORM PR, P1257, DOI DOI 10.1145/1390156.1390267 Ortigueira MD, 2015, SIGNAL PROCESS, V107, P197, DOI 10.1016/j.sigpro.2014.10.002 Pahnehkolaei SMA, 2017, INFORM SCIENCES, V418, P703, DOI 10.1016/j.ins.2017.08.046 Pahnehkolaei SMA, 2017, CHAOS SOLITON FRACT, V103, P488, DOI 10.1016/j.chaos.2017.06.003 Pahnehkolaei SMA, 2017, COMMUN NONLINEAR SCI, V47, P328, DOI 10.1016/j.cnsns.2016.11.013 Paterek A., 2007, P KDD CUP WORKSH, V2007, P5 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Psychalinos C, 2016, CIRC SYST SIGNAL PR, V35, P1807, DOI 10.1007/s00034-016-0285-8 Pu YF, 2017, IEEE T NEUR NET LEAR, V28, P2319, DOI 10.1109/TNNLS.2016.2582512 Raja MAZ, 2015, SIGNAL PROCESS, V107, P327, DOI 10.1016/j.sigpro.2014.06.015 Raja MAZ, 2014, IET SIGNAL PROCESS, V8, P968, DOI 10.1049/iet-spr.2013.0438 Rennie Jasson DM, 2005, P 22 INT C MACH LEAR, P713, DOI DOI 10.1145/1102351.1102441 Rostami M, 2015, SIGNAL PROCESS, V107, P361, DOI 10.1016/j.sigpro.2014.03.042 Sabatier J, 2007, ADV FRACTIONAL CALCU Safarinejadian B, 2016, INT J CONTROL, V89, P2277, DOI 10.1080/00207179.2016.1155237 Salter J, 2006, IEEE INTELL SYST, V21, P35, DOI 10.1109/MIS.2006.4 Sarwar B., 2000, Application of dimensionality reduction in recommender system-a case study Schafer J. B., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P291 Srebro N., 2004, ADV NEURAL INFORM PR, P1329 Takács G, 2009, J MACH LEARN RES, V10, P623 Machado JAT, 2015, APPL MATH MODEL, V39, P4095, DOI 10.1016/j.apm.2014.12.037 Wang ZJ, 2016, COMM COM INF SC, V643, P199, DOI 10.1007/978-981-10-2663-8_21 Wu GC, 2016, J VIB CONTROL, V22, P2092, DOI 10.1177/1077546315574649 Yu HF, 2014, KNOWL INF SYST, V41, P793, DOI 10.1007/s10115-013-0682-2 Yu HF, 2012, IEEE DATA MINING, P765, DOI 10.1109/ICDM.2012.168 Zubair S, 2018, SIGNAL PROCESS, V142, P441, DOI 10.1016/j.sigpro.2017.08.009 NR 72 TC 34 Z9 35 U1 1 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD JUN PY 2019 VL 29 IS 2 BP 275 EP 285 DI 10.1007/s12525-018-0297-2 PG 11 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA IE7EA UT WOS:000472536000012 DA 2024-03-27 ER PT J AU Panniello, U Hill, S Gorgoglione, M AF Panniello, Umberto Hill, Shawndra Gorgoglione, Michele TI The impact of profit incentives on the relevance of online recommendations SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Consumer trust; e-Commerce; Incentive-centered design; Recommender systems ID E-COMMERCE; PRODUCT RECOMMENDATIONS; INTEGRATIVE MODEL; CONSUMER REVIEWS; SYSTEMS; TRUST; CONTEXT; PERSONALIZATION; CUSTOMERS; VARIETY AB Recommender systems are commonly used by firms to improve consumers' online shopping experiences, with the secondary benefit of increased sales and profits. Prior research has demonstrated that a trade-off between relevance and profit exists, and that recommendations' manipulations and biases may hurt the credibility of recommender systems, and thus reduces customer trust. While many of the proposed designs suggest simple heuristics to bias recommendations toward higher-margin items, very little is known about consumers' reactions (in terms of purchasing behavior and trust) to recommender algorithms that balance recommendations' relevance and profitability or the drivers of this behavior. We aim to fill this gap. Data from an online randomized field experiment showed that balancing recommendations' accuracy and profit has a positive effect on consumers' purchasing behavior and does not affect their trust. We also found that the profit made during our experiment was due to a balance of several variables. (C) 2016 Elsevier B.V. All rights reserved. C1 [Panniello, Umberto; Gorgoglione, Michele] Politecn Bari, Bari, Italy. [Hill, Shawndra] Univ Penn, Wharton Business Sch, Philadelphia, PA 19104 USA. C3 Politecnico di Bari; University of Pennsylvania RP Panniello, U (autor correspondiente), Politecn Bari, Bari, Italy. EM umberto.panniello@poliba.it OI Panniello, Umberto/0000-0002-7902-5993 CR Aamir M., 2015, INT J COMPUT APPL, V120, P25 Adomavicius G, 2005, ACM T INFORM SYST, V23, P103, DOI 10.1145/1055709.1055714 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2012, IEEE T KNOWL DATA EN, V24, P896, DOI 10.1109/TKDE.2011.15 Adomavicius G, 2013, INFORM SYST RES, V24, P956, DOI 10.1287/isre.2013.0497 Akoglu L., 2010, 2010 IEEE INT C DAT AKSOY L, 2001, SOC CONS RES WINT C [Anonymous], 1993, ADAPTIVE DECISION MA, DOI DOI 10.1017/CBO9781139173933 [Anonymous], 2001, P 2 DELOS NETW EXC W Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Azaria A., 2013, P 7 ACM C REC SYST H Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 Baum D, 2014, INT J ELECTRON COMM, V19, P129, DOI 10.2753/JEC1086-4415190104 BAUMOL WJ, 1956, MANAGE SCI, V3, P93, DOI 10.1287/mnsc.3.1.93 Beldad A, 2010, COMPUT HUM BEHAV, V26, P857, DOI 10.1016/j.chb.2010.03.013 Ben Schafer J, 2001, DATA MIN KNOWL DISC, V5, P115, DOI 10.1023/A:1009804230409 Benbasat I, 2005, Journal of the Association for Information Systems, V6, P4, DOI [DOI 10.17705/1JAIS.00065, 10.17705/1jais.00065] Benlian A, 2012, J MANAGE INFORM SYST, V29, P237, DOI 10.2753/MIS0742-1222290107 Bharati P, 2004, DECIS SUPPORT SYST, V37, P187, DOI 10.1016/S0167-9236(03)00006-X Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Brand M., 2005, SIAM INT C DAT MIN N Breese J. S., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P43 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Broniarczyk SM, 1998, J MARKETING RES, V35, P166, DOI 10.2307/3151845 Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Chen LS, 2008, INFORM SCIENCES, V178, P1032, DOI 10.1016/j.ins.2007.09.027 Cho Y.C., 2015, IJMIS, V19, P16 Choi J, 2011, INT J ELECTRON COMM, V16, P129, DOI 10.2753/JEC1086-4415160105 Cooke ADJ, 2002, J MARKETING RES, V39, P488, DOI 10.1509/jmkr.39.4.488.19121 Das A., 2009, MAXIMIZING PROFIT US Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Ganesan S., 1994, J MARKETING, V58, P1, DOI DOI 10.2307/1252265 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Gorgoglione M., 2011, Proc. of the fifth ACM conference on RS, P85, DOI DOI 10.1145/2043932.2043951 Gretzel U, 2006, INT J ELECTRON COMM, V11, P81, DOI 10.2753/JEC1086-4415110204 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 HERPEN EV, 2002, MARKET SCI, V21, P331 Hess TJ, 2005, J MANAGE INFORM SYST, V22, P15, DOI 10.2753/MIS0742-1222220302 Hoch SJ, 1999, MARKET SCI, V18, P527, DOI 10.1287/mksc.18.4.527 Hosanagar K., 2008, P INT C INF SYST PAR Hu R., 2011, DIVERS RECSYS Iwata T, 2008, IEEE T KNOWL DATA EN, V20, P1254, DOI 10.1109/TKDE.2008.55 Jarvenpaa S. L., 1998, Journal of Management Information Systems, V14, P29 KAHN BE, 1991, J RETAILING, V67, P274 Komiak SYX, 2006, MIS QUART, V30, P941 Liang TP, 2006, J MANAGE INFORM SYST, V23, P45, DOI 10.2753/MIS0742-1222230303 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McGinty L, 2006, INT J ELECTRON COMM, V11, P35, DOI 10.2753/JEC1086-4415110202 McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 Mooney R.J., 2000, P 5 ACM C DIG LIB SA Palmisano C, 2008, IEEE T KNOWL DATA EN, V20, P1535, DOI 10.1109/TKDE.2008.110 Panniello U, 2016, INFORM SYST RES, V27, P182, DOI 10.1287/isre.2015.0610 Panniello U, 2014, USER MODEL USER-ADAP, V24, P35, DOI 10.1007/s11257-012-9135-y Panniello U, 2012, ELECTRON COMMER RES, V12, P1, DOI 10.1007/s10660-012-9087-7 Panniello U, 2009, LECT NOTES COMPUT SC, V5692, P348, DOI 10.1007/978-3-642-03964-5_32 Park SH, 2013, INT J ELECTRON COMM, V18, P51, DOI 10.2753/JEC1086-4415180202 Pathak A, 2015, COMPANION PROCEEDINGS OF THE SECOND ACM IKDD CONFERENCE ON DATA SCIENCES (CODS), DOI 10.1145/2778865.2778873 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Pavlou PA, 2007, MIS QUART, V31, P105 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Pham A., 2005, INFORM SYST RES, V23, P231 Schoorman FD, 2007, ACAD MANAGE REV, V32, P344, DOI 10.5465/AMR.2007.24348410 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 SHANNON CE, 1948, BELL SYST TECH J, V27, P379, DOI 10.1002/j.1538-7305.1948.tb01338.x Shardanand U., 1995, SIGCHI C HUM FACT CO Simonson I, 2005, J MARKETING, V69, P32, DOI 10.1509/jmkg.69.1.32.55512 Soboroff I., 1999, IJCAI WORKSH MACH LE Sun Y., 2015, P INT MULTICONFERENC Swearingen K., 2001, ACM SIGIR WORKSH REC, P393 Umberto P., 2015, Int. J. Electron. Commer. Stud., V6, P1, DOI DOI 10.7903/IJECS.1348 Xiao B, 2007, MIS QUART, V31, P137 Zhang M., 2008, ACM C REC SYST LAUS NR 76 TC 19 Z9 21 U1 2 U2 51 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2016 VL 20 BP 87 EP 104 DI 10.1016/j.elerap.2016.10.003 PG 18 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA EI9JS UT WOS:000392824700007 DA 2024-03-27 ER PT J AU Molaie, MM Lee, W AF Molaie, Mir Majid Lee, Wonjae TI Economic corollaries of personalized recommendations SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Artificial intelligence; Consumer purchase diversity; E-commerce; Field experiment; Machine learning; Neural networks; Personalization; Recommender systems; Sale diversity ID LONG TAIL; SYSTEMS; CONTEXT; COSTS AB The impact of recommendation systems (RSs) on the diversity of consumption is not transparent or well understood. Available studies, whether experimental or theoretical, show inconsistent and even opposite results, which manifests as debate in the literature. In this paper, we investigate the impact of two main recommender systems, neural collaborative filtering and deep content filtering, on sales diversity via a randomized field experiment. Our results confirm the capability of recommender engines in increasing or decreasing aggregate sales diversity. Nonetheless, they amplify homogenization and reduce individual-level consumption diversity. In conclusion, our research reconciles seemingly contradict previous findings and illustrates that the design of the RS is the decisive factor in homogenizing or diversifying product sales. C1 [Molaie, Mir Majid; Lee, Wonjae] Korea Adv Inst Sci & Technol, Grad Sch Culture Technol, Daejeon, South Korea. C3 Korea Advanced Institute of Science & Technology (KAIST) RP Lee, W (autor correspondiente), Korea Adv Inst Sci & Technol, Grad Sch Culture Technol, Daejeon, South Korea. EM majid@kaist.ac.kr; wnjlee@kaist.ac.kr OI Molaie, Mir Majid/0000-0001-8063-7383 CR Adomavicius G, 2018, INFORM SYST RES, V29, P84, DOI 10.1287/isre.2017.0703 Anderson A, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P2155, DOI 10.1145/3366423.3380281 [Anonymous], 2006, Hyperion Baier D, 2010, J RETAIL CONSUM SERV, V17, P173, DOI 10.1016/j.jretconser.2010.03.005 Brynjolfsson E, 2011, MANAGE SCI, V57, P1373, DOI 10.1287/mnsc.1110.1371 Chaney AJB, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P224, DOI 10.1145/3240323.3240370 Chen SS, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102573 Chinchanachokchai S, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102528 Claussen J., 2019, DATA EXTERNALITIES O Donnelly R., 2021, LONG TAIL EFFECT PER Elberse A, 2013, BLOCKBUSTERS HIT MAK Gerlach M, 2016, PHYS REV X, V6, DOI 10.1103/PhysRevX.6.021009 Good P., 2013, PERMUTATION TESTS PR Hauser JR, 2014, J BUS RES, V67, P1688, DOI 10.1016/j.jbusres.2014.02.015 He XN, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P173, DOI 10.1145/3038912.3052569 Holtz David, 2020, EC '20: Proceedings of the 21st ACM Conference on Economics and Computation, P75, DOI 10.1145/3391403.3399532 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Hoskins JD, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102234 Jannach D, 2019, ACM TRANS MANAG INF, V10, DOI 10.1145/3370082 Kim J, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102381 Konstan JA, 2012, USER MODEL USER-ADAP, V22, P101, DOI 10.1007/s11257-011-9112-x Kumar A, 2014, MIS QUART, V38, P1057, DOI 10.25300/MISQ/2014/38.4.06 Lee D, 2019, INFORM SYST RES, V30, P239, DOI 10.1287/isre.2018.0800 Lee S., 2011, PROC RECSYS 11, P93, DOI DOI 10.1145/2043932.2043952 Lee Y, 2019, J RETAIL CONSUM SERV, V51, P437, DOI 10.1016/j.jretconser.2017.10.016 Li X., 2021, Information Systems Research Liaukonyte J., 2021, PERSONALIZED SOCIAL Lombardi S, 2013, EXPERT SYST APPL, V40, P5219, DOI 10.1016/j.eswa.2013.03.009 Milano S, 2020, AI SOC, V35, P957, DOI 10.1007/s00146-020-00950-y Möller J, 2018, INFORM COMMUN SOC, V21, P959, DOI 10.1080/1369118X.2018.1444076 Morales PR, 2021, THEOR COMPUT SCI, V859, P80, DOI 10.1016/j.tcs.2021.01.013 Morik M, 2020, PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), P429, DOI 10.1145/3397271.3401100 Panniello U, 2016, INFORM SYST RES, V27, P182, DOI 10.1287/isre.2015.0610 Pariser Eli, 2011, FILTER BUBBLE WHAT I Rendle S., 2009, P 25 C UNCERTAINTY A, P452, DOI DOI 10.5555/1795114.1795167 Resnick P., 1994, Transcending Boundaries, CSCW '94. Proceedings of the Conference on Computer Supported Cooperative Work, P175, DOI 10.1145/192844.192905 Schreiner T, 2019, J RETAIL CONSUM SERV, V48, P87, DOI 10.1016/j.jretconser.2019.02.010 Srivastava A, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.02.018 Suglia A, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P202, DOI 10.1145/3079628.3079684 Verkijika SF, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102743 Virosztek D, 2021, ADV MATH, V380, DOI 10.1016/j.aim.2021.107595 Yucesoy B, 2018, EPJ DATA SCI, V7, DOI 10.1140/epjds/s13688-018-0135-y Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 NR 43 TC 2 Z9 2 U1 11 U2 38 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD SEP PY 2022 VL 68 AR 103003 DI 10.1016/j.jretconser.2022.103003 EA MAY 2022 PG 9 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 1Q3ON UT WOS:000802601300006 DA 2024-03-27 ER PT J AU Wang, J Kamran, A Shahzad, F Syed, NA AF Wang, Jian Kamran, Asif Shahzad, Fakhar Syed, Nadeem Ahmad TI Enhancing group recommender systems: A fusion of social tagging and collaborative filtering for cohesive recommendations SO SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE LA English DT Article; Early Access DE group recommender system; collaborative filtering; group decision-making; tagging information; user experience ID TRUST; STATE AB This study examines the challenges and opportunities of using group recommendation systems in an information overload scenario. Social network recommendation systems are increasingly important because they deliver users customized choices. Most existing solutions are geared for single users, making it difficult to propose for a group with different interests. This paper analyses group recommendation systems and exposes their flaws. This study tested whether the suggested approach outperforms the one without tagging information in recall, precision, and user satisfaction. Empirical evidence indicates that the algorithm exhibits appropriate levels of reliability and accuracy compared to conventional methods. The proposed approach has the potential to substantially enhance the existing state of social network group recommendation systems, thereby facilitating users in their quest to identify and participate in groups that align with their preferences. C1 [Wang, Jian] Zhengzhou Univ Light Ind, Coll Econ & Management, Zhengzhou, Peoples R China. [Kamran, Asif] Nazeer Hussain Univ, Fac Business Management & Study, Karachi, Pakistan. [Shahzad, Fakhar] Shenzhen Univ, Res Inst Business Analyt & Supply Chain Management, Coll Management, Shenzhen, Peoples R China. [Syed, Nadeem Ahmad] Khadim Ali Shah Bukhari Inst Technol, Dept Business Adm, Karachi, Pakistan. C3 Zhengzhou University of Light Industry; Shenzhen University RP Shahzad, F (autor correspondiente), Shenzhen Univ, Res Inst Business Analyt & Supply Chain Management, Coll Management, Shenzhen, Peoples R China. EM fshahzad51@szu.edu.cn RI Shahzad, Fakhar/F-7336-2012; Kamran, Asif/F-1939-2016 OI Shahzad, Fakhar/0000-0002-6408-2848; Kamran, Asif/0000-0001-7134-4394 FU Philosophy and social Science planning project of Henan Province, China FX No Statement Availabler No Statement Available CR Aljunid MF, 2021, CAAI T INTELL TECHNO, V6, P480, DOI 10.1049/cit2.12048 Allam H, 2019, INT J INFORM MANAGE, V45, P211, DOI 10.1016/j.ijinfomgt.2018.11.005 Amer-Yahia S, 2009, PROC VLDB ENDOW, V2 Bok K, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11167681 Bok K, 2019, ELECTRONICS-SWITZ, V8, DOI 10.3390/electronics8101165 Breese H Heckerman D., 1998, P 14 C UNC ART INT, p1998 43 Cao D, 2021, IEEE T KNOWL DATA EN, V33, P1195, DOI 10.1109/TKDE.2019.2936475 Castro J, 2018, INT J INTELL SYST, V33, P2058, DOI 10.1002/int.21922 Castro J, 2015, INT J INTELL SYST, V30, P887, DOI 10.1002/int.21730 Cechinel C, 2013, INFORM PROCESS MANAG, V49, P34, DOI 10.1016/j.ipm.2012.07.004 Chen YL, 2008, EXPERT SYST APPL, V34, P2082, DOI 10.1016/j.eswa.2007.02.008 Choi B, 2017, TELEMAT INFORM, V34, P550, DOI 10.1016/j.tele.2016.11.005 Dara S, 2020, J INTELL INF SYST, V54, P271, DOI 10.1007/s10844-018-0542-3 DESANCTIS G, 1987, MANAGE SCI, V33, P589, DOI 10.1287/mnsc.33.5.589 Duchateau F., 2011, Proceedings 2011 27th IEEE International Conference on Data Engineering Workshops (ICDEW 2011), P218, DOI 10.1109/ICDEW.2011.5767663 Fang G., 2018, Wireless Communications and Mobile Computing, V2018, P1, DOI [10.1155/2018/6709607, DOI 10.1155/2018/6709607] Fogel J, 2009, COMPUT HUM BEHAV, V25, P153, DOI 10.1016/j.chb.2008.08.006 Gabriel HH, 2014, EXPERT SYST APPL, V41, P457, DOI 10.1016/j.eswa.2013.07.071 Garcia I, 2011, LECT NOTES COMPUT SC, V6786, P547, DOI 10.1007/978-3-642-21934-4_45 Garcia I, 2009, LECT NOTES COMPUT SC, V5692, P26, DOI 10.1007/978-3-642-03964-5_4 Hao BW, 2022, INT J INTELL SYST, V37, P10880, DOI 10.1002/int.23011 Hsu SW, 2018, ELECTRON COMMER R A, V28, P30, DOI 10.1016/j.elerap.2018.01.006 Jameson A., 2004, 2 METHODS ENHANCING, P447, DOI DOI 10.1145/989863.989948 Jia JJ, 2021, SCI PROGRAMMING-NETH, V2021, DOI 10.1155/2021/1969118 Jin QB, 2020, IEEE ACCESS, V8, P17594, DOI 10.1109/ACCESS.2020.2965595 Karimpour D, 2021, 2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), DOI 10.1109/CSICC52343.2021.9420562 Kim JK, 2010, INT J INFORM MANAGE, V30, P212, DOI 10.1016/j.ijinfomgt.2009.09.006 King DL, 2013, CLIN PSYCHOL REV, V33, P331, DOI 10.1016/j.cpr.2013.01.002 Kumar S., 2015, Asian Social Science, V11, P202, DOI [10.5539/ass.v11n2p202, DOI 10.5539/ASS.V11N2P202] Laughlin PR, 2011, GROUP PROCESS INTERG, V14, P63, DOI 10.1177/1368430210372524 Lee J, 2011, INTERNET RES, V21, P187, DOI 10.1108/10662241111123766 Liao SH, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101655 Masthoff J, 2006, USER MODEL USER-ADAP, V16, P281, DOI 10.1007/s11257-006-9008-3 McCarthy J, 2014, INTERNET RES, V24, P181, DOI 10.1108/IntR-08-2012-0154 McCarthy K., 2006, 2006 International Conference on Intelligent User Interfaces, P267, DOI 10.1145/1111449.1111506 McCarthy K, 2006, LECT NOTES ARTIF INT, V4106, P196 Milicevic AK, 2010, ARTIF INTELL REV, V33, P187, DOI 10.1007/s10462-009-9153-2 Morawski J, 2017, INT J INTELL SYST, V32, P1062, DOI 10.1002/int.21884 Mou N., 2018, Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, V24, P1261, DOI [10.13196/j.cims.2018.05.020, DOI 10.13196/J.CIMS.2018.05.020] Nozari RB, 2020, KNOWL-BASED SYST, V205, DOI 10.1016/j.knosys.2020.106296 Papadakis H, 2022, KNOWL INF SYST, V64, P35, DOI 10.1007/s10115-021-01628-7 Pavlou PA, 2006, INFORM SYST RES, V17, P198, DOI 10.1287/isre.1060.0094 Pérez-Almaguer Y, 2021, EXPERT SYST APPL, V184, DOI 10.1016/j.eswa.2021.115444 Qi JY, 2014, SYST RES BEHAV SCI, V31, P424, DOI 10.1002/sres.2279 Rekha VS, 2018, INFORM SOFTWARE TECH, V101, P51, DOI 10.1016/j.infsof.2018.04.009 Ridings C.M., 2004, J COMPUT-MEDIAT COMM, V10, DOI [10.1111/j.1083-6101.2004.tb00229, DOI 10.1111/J.1083-6101.2004.TB00229.X, 10.1111/j.1083-6101.2004.tb00229.x] Rocca B., 2019, Introduction to recommender systems: Overview of some major recommendation algorithms Salehi-Abari A., 2015, Preference-oriented social networks: Group recommendation and inference, P35, DOI DOI 10.1145/2792838.2800190 Samer R, 2020, UMAP'20: PROCEEDINGS OF THE 28TH ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, P221, DOI 10.1145/3340631.3394851 Seo YD, 2021, EXPERT SYST APPL, V183, DOI 10.1016/j.eswa.2021.115396 Seo YD, 2018, EXPERT SYST APPL, V93, P299, DOI 10.1016/j.eswa.2017.10.027 Shepitsen A, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P259 Song TT, 2017, INFORM MANAGE-AMSTER, V54, P1072, DOI 10.1016/j.im.2017.03.003 Souabi S., 2021, Advances in Science, Technology and Engineering Systems, V6, P719, DOI [10.25046/aj060178, DOI 10.25046/AJ060178] Srifi M, 2020, INFORMATION, V11, DOI 10.3390/info11060317 Sun LF, 2017, IEEE T MULTIMEDIA, V19, P609, DOI 10.1109/TMM.2016.2635589 Wang W, 2019, IEEE T SYST MAN CY-S, V49, P1152, DOI 10.1109/TSMC.2017.2699690 Wu Y, 2023, IEEE ACCESS, V11, P1854, DOI 10.1109/ACCESS.2022.3224598 Xie XQ, 2016, LECT NOTES COMPUT SC, V9931, P292, DOI 10.1007/978-3-319-45814-4_24 Xu B, 2022, COGN COMPUT, V14, P1055, DOI 10.1007/s12559-022-10001-x Yin HZ, 2022, IEEE T KNOWL DATA EN, V34, P3447, DOI 10.1109/TKDE.2020.3023787 Yin HZ, 2019, PROC INT CONF DATA, P566, DOI 10.1109/ICDE.2019.00057 Yin XC, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101337 Yuan Q, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P163, DOI 10.1145/2623330.2623616 Yun YD, 2018, J INF SCI, V44, P331, DOI 10.1177/0165551517692955 Zapata A, 2015, INT J HUM-COMPUT ST, V76, P22, DOI 10.1016/j.ijhcs.2014.12.002 Zervas Panagiotis, 2016, Smart Learning Environments, V3, DOI 10.1186/s40561-016-0037-z Zhang Y, 2017, MOBILE NETW APPL, V22, P1182, DOI 10.1007/s11036-017-0864-3 Zhang Y, 2016, IEEE T SERV COMPUT, V9, P786, DOI 10.1109/TSC.2016.2592520 Zhen Y., 2009, TAGICOFI TAG INFORM, P69, DOI DOI 10.1145/1639714.1639727 Zheng XH, 2019, APPL INTELL, V49, P2623, DOI 10.1007/s10489-018-01406-z NR 71 TC 0 Z9 0 U1 3 U2 3 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1092-7026 EI 1099-1743 J9 SYST RES BEHAV SCI JI Syst. Res. Behav. Sci. PD 2024 FEB 14 PY 2024 DI 10.1002/sres.3000 EA FEB 2024 PG 16 WC Management; Social Sciences, Interdisciplinary WE Social Science Citation Index (SSCI) SC Business & Economics; Social Sciences - Other Topics GA HU6S4 UT WOS:001162065100001 DA 2024-03-27 ER PT J AU Adomavicius, G Bockstedt, JC Curley, SP Zhang, JJ AF Adomavicius, Gediminas Bockstedt, Jesse C. Curley, Shawn P. Zhang, Jingjing TI Effects of Online Recommendations on Consumers' Willingness to Pay SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE behavioral economics; electronic commerce; laboratory experiments; preferences; recommender systems; willingness to pay ID FINANCIAL INCENTIVES; SYSTEMS; JUDGMENT AB Recommender systems are an integral part of the online retail environment. Prior research has focused largely on computational approaches to improving recommendation accuracy, and only recently researchers have started to study their behavioral implications and potential side effects. We used three controlled experiments, in the context of purchasing digital songs, to explore the willingness-to-pay judgments of individual consumers after being shown personalized recommendations. In Study 1, we found strong evidence that randomly assigned song recommendations affected participants' willingness to pay, even when controlling for participants' preferences and demographics. In Study 2, participants viewed actual system-generated recommendations that were intentionally perturbed ( introducing recommendation error), and we observed similar effects. In Study 3, we showed that the influence of personalized recommendations on willingness-to-pay judgments was obtained even when preference uncertainty was reduced through immediate and mandatory song sampling prior to pricing. The results demonstrate the existence of important economic side effects of personalized recommender systems and inform our understanding of how system recommendations can influence our everyday preference judgments. The findings have significant implications for the design and application of recommender systems as well as for online retail practices. C1 [Adomavicius, Gediminas; Curley, Shawn P.] Univ Minnesota, Carlson Sch Management, Informat & Decis Sci, Minneapolis, MN 55455 USA. [Bockstedt, Jesse C.] Emory Univ, Goizueta Business Sch, Informat Syst & Operat Management, Atlanta, GA 30322 USA. [Zhang, Jingjing] Indiana Univ, Kelley Sch Business, Operat & Decis Technol, Bloomington, IN 47405 USA. C3 University of Minnesota System; University of Minnesota Twin Cities; Emory University; Indiana University System; Indiana University Bloomington; IU Kelley School of Business RP Adomavicius, G (autor correspondiente), Univ Minnesota, Carlson Sch Management, Informat & Decis Sci, Minneapolis, MN 55455 USA. EM gedas@umn.edu; bockstedt@emory.edu; curley@umn.edu; jjzhang@indiana.edu OI Bockstedt, Jesse/0000-0002-4274-9744; Zhang, Jingjing/0000-0002-6805-8685 FU Carlson School of Management FX This work was supported in part by a research grant provided by the Carlson School of Management. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2013, INFORM SYST RES, V24, P956, DOI 10.1287/isre.2013.0497 Amatriain Xavier, 2012, NETFLIX TECH BL 0405 Ariely D, 2006, J ECON BEHAV ORGAN, V60, P1, DOI 10.1016/j.jebo.2004.10.003 Ariely D, 2003, Q J ECON, V118, P73, DOI 10.1162/00335530360535153 BECKER GM, 1964, BEHAV SCI, V9, P226, DOI 10.1002/bs.3830090304 BOX GEP, 1954, ANN MATH STAT, V25, P484, DOI 10.1214/aoms/1177728717 BOX GEP, 1954, ANN MATH STAT, V25, P290, DOI 10.1214/aoms/1177728786 Camerer CF, 1999, J RISK UNCERTAINTY, V19, P7, DOI 10.1023/A:1007850605129 Chapman GB, 1996, APPL COGNITIVE PSYCH, V10, P519 Chapman GB, 2002, HEURISTICS BIASES PS, P120, DOI DOI 10.1017/CBO9780511808098.008 Chen YB, 2005, MARKET SCI, V24, P218, DOI 10.1287/mksc.1040.0089 Cosley D., 2003, PROC SIGCHI C HUMAN, P585 de Matos MG, 2016, MANAGE SCI, V62, P2563, DOI 10.1287/mnsc.2015.2258 Donaldson C, 1998, APPL ECON, V30, P667, DOI 10.1080/000368498325651 Epley N, 2010, J CONSUM PSYCHOL, V20, P20, DOI 10.1016/j.jcps.2009.12.005 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 JACOWITZ KE, 1995, PERS SOC PSYCHOL B, V21, P1161, DOI 10.1177/01461672952111004 Kahneman D., 2011, Thinking, Fast and Slow Lanning S., 2007, P KDD CUP WORKSH, P3 Leonard TC, 2008, CONST POLITICAL ECON, V19, P356, DOI 10.1007/s10602-008-9056-2 Lichtenstein S, 2006, CONSTRUCTION OF PREFERENCE, P1, DOI 10.2277/ 0521542200 Marshall M., 2006, Aggregate knowledge raises $5m from Kleiner, on a roll Mauchly JW, 1940, ANN MATH STAT, V11, P204, DOI 10.1214/aoms/1177731915 Müller H, 2012, MARKET LETT, V23, P73, DOI 10.1007/s11002-011-9137-2 Mussweiler T, 1999, J EXP SOC PSYCHOL, V35, P136, DOI 10.1006/jesp.1998.1364 NORTHCRAFT GB, 1987, ORGAN BEHAV HUM DEC, V39, P84, DOI 10.1016/0749-5978(87)90046-X Ricci F, 2015, RECOMMENDER SYSTEMS Salganik MJ, 2008, SOC PSYCHOL QUART, V71, P338, DOI 10.1177/019027250807100404 Salganik MJ, 2006, SCIENCE, V311, P854, DOI 10.1126/science.1121066 Sarwar Badrul, 2001, P 10 INT C WORLD WID, P285, DOI 10.1145/371920.372071 SCHKADE DA, 1989, ORGAN BEHAV HUM DEC, V44, P203, DOI 10.1016/0749-5978(89)90025-3 Shapiro C., 1998, Information Rules: A Strategic Guide to the Network Economy Surowiecki J., 2004, WISDOM CROWDS WHY MA Tucker CE, 2011, MANAGE SCI, V57, P828, DOI 10.1287/mnsc.1110.1312 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 TVERSKY A, 1988, PSYCHOL REV, V95, P371, DOI 10.1037/0033-295X.95.3.371 Wilson TD, 1996, J EXP PSYCHOL GEN, V125, P387, DOI 10.1037/0096-3445.125.4.387 WRIGHT WF, 1989, ORGAN BEHAV HUM DEC, V44, P68, DOI 10.1016/0749-5978(89)90035-6 Zhang JJ, 2012, MANAGE SCI, V58, P892, DOI 10.1287/mnsc.1110.1459 NR 41 TC 66 Z9 75 U1 19 U2 219 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD MAR PY 2018 VL 29 IS 1 BP 84 EP 102 DI 10.1287/isre.2017.0703 PG 19 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA FZ6OM UT WOS:000427718900006 DA 2024-03-27 ER PT J AU Nguyen, VD Sriboonchitta, S Huynh, VN AF Van-Doan Nguyen Sriboonchitta, Songsak Van-Nam Huynh TI Using community preference for overcoming sparsity and cold-start problems in collaborative filtering system offering soft ratings SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Recommender systems; E-commerce; Soft ratings; Community preferences; Dempster-Shafer theory ID BELIEF-THEORETIC APPROACH; RECOMMENDER SYSTEMS; TRUST; CLASSIFICATION; ALLEVIATE; ALGORITHM AB This paper introduces a new collaborative filtering recommender system that is capable of offering soft ratings as well as integrating with a social network containing all users. Offering soft ratings is known as a new methodology for modeling subjective, qualitative, and imperfect information about user preferences, as well as a more realistic and flexible means for users to express their preferences on products and services. Additionally, in the system, community preferences that are extracted from the social network are employed for overcoming sparsity and cold-start problems. In the experiment, the new system is tested using a data set culled from Flixster, a social network focused on movies. The experiment's results show that this system is more effective than the selected baseline in terms of recommendation accuracy. (C) 2017 Elsevier B.V. All rights reserved. C1 [Van-Doan Nguyen; Van-Nam Huynh] Japan Adv Inst Sci & Technol, Nomi, Japan. [Sriboonchitta, Songsak] Chiang Mai Univ, Chiang Mai, Thailand. C3 Japan Advanced Institute of Science & Technology (JAIST); Chiang Mai University RP Nguyen, VD (autor correspondiente), Japan Adv Inst Sci & Technol, Nomi, Japan. EM nvdoan@jaist.ac.jp RI Huynh, Van/GSM-7997-2022 OI yamaka, woraphon/0000-0002-0787-1437; Nguyen, Doan/0000-0001-5834-3709 FU JSPS KAKENHI [25240049]; Grants-in-Aid for Scientific Research [25240049] Funding Source: KAKEN FX This research work was supported by JSPS KAKENHI Grant No. 25240049. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 [Anonymous], SYNTHESIS LECT DATA [Anonymous], P 13 PAC RIM INT C Barjasteh Iman., 2015, RecSys, P91, DOI DOI 10.1145/2792838.2800196 Bauer J, 2014, DECIS SUPPORT SYST, V68, P77, DOI 10.1016/j.dss.2014.09.005 Bloch I, 1996, PATTERN RECOGN LETT, V17, P905, DOI 10.1016/0167-8655(96)00039-6 DEMPSTER AP, 1967, ANN MATH STAT, V38, P325, DOI 10.1214/aoms/1177698950 Ghazanfar MA, 2014, EXPERT SYST APPL, V41, P3261, DOI 10.1016/j.eswa.2013.11.010 Girvan M, 2002, P NATL ACAD SCI USA, V99, P7821, DOI 10.1073/pnas.122653799 Grcar M., 2005, Advances in Web Mining and Web Usage Analysis. 7th International Workshop on Knowledge Discovery on the Web, WebKDD 2005. Revised Papers (Lecture Notes in Artificial Intelligence Vol. 4198), P58 Gregory S, 2008, LECT NOTES ARTIF INT, V5211, P408, DOI 10.1007/978-3-540-87479-9_45 Gregory S, 2007, LECT NOTES ARTIF INT, V4702, P91 Guo GB, 2015, AAAI CONF ARTIF INTE, P123 Guo GB, 2014, KNOWL-BASED SYST, V57, P57, DOI 10.1016/j.knosys.2013.12.007 Herlocker JL, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P230, DOI 10.1145/312624.312682 Huang Z, 2004, ACM T INFORM SYST, V22, P116, DOI 10.1145/963770.963775 Hwang SY, 2010, ELECTRON COMMER R A, V9, P323, DOI 10.1016/j.elerap.2010.01.001 Jannach D, 2012, LECT NOTES BUS INF P, V123, P76 Jiang CQ, 2015, DECIS SUPPORT SYST, V79, P195, DOI 10.1016/j.dss.2015.09.002 Jierui Xie, 2012, Advances in Knowledge Discovery and Data Mining. Proceedings 16th Pacific-Asia Conference (PAKDD 2012), P25, DOI 10.1007/978-3-642-30220-6_3 Kim HN, 2010, ELECTRON COMMER R A, V9, P73, DOI 10.1016/j.elerap.2009.08.004 Kim HK, 2011, ELECTRON COMMER R A, V10, P501, DOI 10.1016/j.elerap.2011.03.002 Kim J.K., 2002, Electronic Commerce Research and Applications, V1, P301, DOI DOI 10.1016/S1567-4223(02)00022-4 Konstas I, 2009, PROCEEDINGS 32ND ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P195, DOI 10.1145/1571941.1571977 Li YM, 2013, DECIS SUPPORT SYST, V55, P740, DOI 10.1016/j.dss.2013.02.009 Lika B, 2014, EXPERT SYST APPL, V41, P2065, DOI 10.1016/j.eswa.2013.09.005 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103 Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066133 Nguyen VD, 2016, LECT NOTES COMPUT SC, V9795, P170, DOI 10.1007/978-3-319-42345-6_15 Palla G, 2005, NATURE, V435, P814, DOI 10.1038/nature03607 Papagelis M, 2005, LECT NOTES COMPUT SC, V3477, P224 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Rohitha KK, 2007, IEEE T SYST MAN CY B, V37, P1446, DOI 10.1109/TSMCB.2007.903536 Shafer G., 1976, A mathematical theory of evidence, V76 Shambour Q, 2011, INT J INTELL SYST, V26, P814, DOI 10.1002/int.20495 SMETS P, 1994, ARTIF INTELL, V66, P191, DOI 10.1016/0004-3702(94)90026-4 Smets P, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P612 Sun ZB, 2015, J SYST SOFTWARE, V99, P109, DOI 10.1016/j.jss.2014.09.019 Nguyen VD, 2015, LECT NOTES ARTIF INT, V9161, P429, DOI 10.1007/978-3-319-20807-7_39 Wickramarathne TL, 2011, IEEE T KNOWL DATA EN, V23, P175, DOI 10.1109/TKDE.2010.88 Wu H, 2016, KNOWL-BASED SYST, V97, P111, DOI 10.1016/j.knosys.2016.01.011 NR 42 TC 21 Z9 22 U1 3 U2 29 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2017 VL 26 BP 101 EP 108 DI 10.1016/j.elerap.2017.10.002 PG 8 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA FN8MF UT WOS:000416278500010 DA 2024-03-27 ER PT J AU Vézina, R Militaru, D AF Vézina, R Militaru, D TI Collaborative filtering:: theoretical positions and a research agenda in marketing SO INTERNATIONAL JOURNAL OF TECHNOLOGY MANAGEMENT LA English DT Article DE electronic commerce; collaborative filtering; recommender systems; marketing; experimentation ID INFORMATION AB Internet offers many choices of products, services and content. But the Multitude of choices has made it more difficult for customers to find quickly what they are looking for. Collaborative Filtering (CF), or recommender system based-CF, is a methodology designed to perform such a recommendation task. These systems allow users to use expressed preferences of thousands of other people to find the product they desire, based on the level of similarity between tastes. The concept has emerged from convergent research on search browsers, intelligent agents and data mining, and it permits to escape the difficult question of 'why' consumers prefer a particular product or brand. Furthermore, CF is open for the end-user and allows customers to discover things within an information environment that they probably never would have discovered otherwise. On a more practical perspective, CF through internet allows us to focus exclusively on the similarity of preferences without 'social contamination': the consumer obtains recommendations to purchase a given product or brand on the basis of his or her own past preferences and on the basis of the preferences of a large group of anonymous consumers. In this paper, we will review the Current state of research in consumer behaviour that provides the theoretical foundations underlying collaborative filtering. Then we will propose a research agenda in marketing keeping in mind the perspective of users i.e. consumers or marketers. C1 Univ Laval, Fac Sci Adm, Dept Mkt, Quebec City, PQ G1K 7P4, Canada. GRID, F-94235 Cachan, France. C3 Laval University RP Univ Laval, Fac Sci Adm, Dept Mkt, Quebec City, PQ G1K 7P4, Canada. EM Richard.Vezina@fsa.ulaval.ca; militaru@grid.ens-cachan.fr CR [Anonymous], 1998, MSRTR9812 [Anonymous], 1971, CONSUMER DEMAND NEW Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 ARNDT J, 1967, RISK TAING INFORMATI Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 BELK RW, 1971, P 2ND ANN C ASS CONS, P470 Bhargava HK, 1999, COMPUTER, V32, P31, DOI 10.1109/2.751326 BILLSUS D, 1999, P 7 INT C US MOD JUN BIONDO J, 1971, J PERS, V39, P407, DOI 10.1111/j.1467-6494.1971.tb00051.x BONE PF, 1992, ADV CONSUM RES, V19, P579 BREHM JW, 1989, ADV CONSUM RES, V16, P72 Bristor J., 1990, RES CONSUMER BEHAV, V4, P51 BURKE R, 1999, WORKSH AI EL COMM AA BURKE R, 2000, ENCY LIB INFORMATION, V69 BURNSTEIN E, 1977, J EXP SOC PSYCHOL, V13, P315, DOI 10.1016/0022-1031(77)90002-6 BURNSTEIN E, 1975, J EXP SOC PSYCHOL, V11, P412, DOI 10.1016/0022-1031(75)90045-1 BURNSTEIN E, 1973, J EXP SOC PSYCHOL, V9, P236, DOI 10.1016/0022-1031(73)90012-7 CARPENTER GS, 1994, J MARKETING RES, V31, P339, DOI 10.2307/3152221 CECI SJ, 1982, PUBLIC OPIN QUART, V46, P228, DOI 10.1086/268715 Dubois B., 1999, EUROPEAN ADV CONSUME, VIV, P201 Eliashberg J, 1997, J MARKETING, V61, P68, DOI 10.2307/1251831 EZINA R, 1997, MARKETNG PROGR PROSP, P1300 FEICK LF, 1986, ADV CONSUM RES, V13, P301 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 GOLDBERG K, 2000, M0041 UCB EL RES LAB Good N, 1999, SIXTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-99)/ELEVENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE (IAAI-99), P439 HERLOCKER JL, 2000, CSCW 00 HOFFMAN T, 1999, P 16 INT JOINT C ART, P688 LANCASTER KJ, 1966, J POLIT ECON, V74, P132, DOI 10.1086/259131 MCKIM R, 2000, J DATABASE MARKETING, V7, P385 MYERS JH, 1972, J MARKETING RES, V9, P41, DOI 10.2307/3149604 NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 RESICK P, 1994, P ACM 1994 C COMP SU, P175 Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Rich E., 1979, Cognitive Science, V3, P335 Richins MarshaL., 1988, ADV CONSUM RES, V15, P32 Rosen E., 2000, The Anatomy of Buzz SARWAR B, 2000, EC 00 SHARDANAND U, 1995, SOCIAL INFORMATION F Tepper K, 1997, RES CON BEH, V8, P209 Vapnik V.N., 1998, STAT LEARNING THEORY, P732 VOLLE M, 2000, E CONOMIE Wilkie W.L., 1991, PERSPECTIVES CONSUME, P1 NR 43 TC 9 Z9 10 U1 1 U2 12 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 0267-5730 EI 1741-5276 J9 INT J TECHNOL MANAGE JI Int. J. Technol. Manage. PY 2004 VL 28 IS 1 BP 31 EP 45 DI 10.1504/IJTM.2004.005051 PG 15 WC Engineering, Multidisciplinary; Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Business & Economics; Operations Research & Management Science GA 853DQ UT WOS:000223807100003 DA 2024-03-27 ER PT J AU Mushtaque, U Pazour, JA AF Mushtaque, Uzma Pazour, Jennifer A. TI Assortment optimization under cardinality effects and novelty for unequal profit margin items SO JOURNAL OF REVENUE AND PRICING MANAGEMENT LA English DT Article DE Recommender Systems; Novelty; Diversity; Assortment Optimization; Consideration Sets; Online Retail AB This work focuses on assortment optimization problems concerned with the three ways a recommender system increases conversion rates: (1) improve accuracy, (2) provide consideration sets and (3) introduce novelty and diversity. To do so, we introduce a new random utility-based model, which in addition to item and user attributes, captures context effects, as well as the need to introduce novel items. We use this new model and an existing random utility model to study assortment optimization problems in which the value that a customer derives from an assortment reaches a maximum and then begins to decline with increase in size. We focus on an online retail environment, in which a trade-off exists between recommending items with high profit margins, but low consumer choice probability. We present polynomial-time algorithms to solve both optimization models. We computationally analyze the performance of the algorithms using real-world online transactional data. C1 [Mushtaque, Uzma; Pazour, Jennifer A.] Rensselaer Polytech Inst, 110 8th St, Troy, NY 12180 USA. C3 Rensselaer Polytechnic Institute RP Mushtaque, U (autor correspondiente), Rensselaer Polytech Inst, 110 8th St, Troy, NY 12180 USA. EM mushtu@rpi.edu; Pazouj@rpi.edu FU NSF (National Science Foundation) [1550532]; Directorate For Engineering; Div Of Civil, Mechanical, & Manufact Inn [1550532] Funding Source: National Science Foundation FX This work is supported by NSF (National Science Foundation) Award Number: 1550532. CR Aljukhadar M, 2012, INT J ELECTRON COMM, V17, P41, DOI 10.2753/JEC1086-4415170202 [Anonymous], 2011, Proceedings of International Workshop on Diversity in Document Retrieval (DDR) Ben-Akiva, 1984, TRANSPORT POLICY DEC, V4 Berry D, 2018, P 2018 IISE ANN C Besbes O, 2016, PROD OPER MANAG, V25, P114, DOI 10.1111/poms.12402 Bollen D., 2010, P 4 ACM C REC SYST, P63, DOI [10.1145/1864708.1864724, DOI 10.1145/1864708.1864724] Cachon G. P., 2005, Manufacturing & Service Operations Management, V7, P330, DOI 10.1287/msom.1050.0088 Castells P, 2015, RECOMMENDER SYSTEMS, DOI DOI 10.1007/978-1-4899-7637-6_26 Chaptini BassamH., 2005, USE DISCRETE CHOICE Chen D., 2012, J DATABASE MARKETING, V19, P197, DOI DOI 10.1057/dbm.2012.17 Chen YC, 2009, ELECTRON COMMER R A, V8, P48, DOI 10.1016/j.elerap.2008.09.001 Echenique F, 2018, MATH SOC SCI, V93, P67, DOI 10.1016/j.mathsocsci.2018.02.004 Edmunds A, 2000, INT J INFORM MANAGE, V20, P17, DOI 10.1016/S0268-4012(99)00051-1 Eppler MJ, 2004, INFORM SOC, V20, P325, DOI 10.1080/01972240490507974 Flores A, 2019, EUR J OPER RES, V273, P1052, DOI 10.1016/j.ejor.2018.08.047 Gallego G, 2015, OPER RES, V63, P212, DOI 10.1287/opre.2014.1328 Garaus M, 2016, J BUS RES, V69, P3459, DOI 10.1016/j.jbusres.2016.01.040 Goyal V, 2016, OPER RES, V64, P219, DOI 10.1287/opre.2015.1450 Gross R., 2014, International Journal of Business Management Economic Research, V5, P64 Hahsler M., 2011, RECOMMENDERLAB FRAME, P1 Hauser JR, 2014, J BUS RES, V67, P1688, DOI 10.1016/j.jbusres.2014.02.015 Tuu HH, 2013, ASIA PAC J MARKET LO, V25, P590, DOI 10.1108/APJML-09-2012-0102 Holton AE, 2012, CYBERPSYCH BEH SOC N, V15, P619, DOI 10.1089/cyber.2011.0610 Huang SL, 2011, ELECTRON COMMER R A, V10, P398, DOI 10.1016/j.elerap.2010.11.003 Hübner A, 2016, EUR J OPER RES, V250, P505, DOI 10.1016/j.ejor.2015.11.007 Hunter, 2005, J PERSONAL SELLING S, V24, P91 Hunter G.L., 2004, J PERS SELL SALES M, V24, P91, DOI DOI 10.2753/PSS0885-3134260201 JACOBY J, 1977, J MARKETING RES, V14, P569, DOI 10.2307/3151201 JACOBY J, 1974, J MARKETING RES, V11, P63, DOI 10.2307/3150994 KAMAKURA WA, 1984, J MARKETING RES, V21, P420, DOI 10.2307/3151468 Kivetz R, 2004, J MARKETING RES, V41, P262, DOI 10.1509/jmkr.41.3.262.35993 Kivetz R, 2004, J MARKETING RES, V41, P237, DOI 10.1509/jmkr.41.3.237.35990 Kök AG, 2015, INT SER OPER RES MAN, V223, P175, DOI 10.1007/978-1-4899-7562-1_8 Konstan JA, 2012, USER MODEL USER-ADAP, V22, P101, DOI 10.1007/s11257-011-9112-x Laker LF, 2018, PROD OPER MANAG, V27, P2213, DOI 10.1111/poms.12777 LANCASTER K, 1990, MARKET SCI, V9, P189, DOI 10.1287/mksc.9.3.189 LANCASTER KJ, 1966, J POLIT ECON, V74, P132, DOI 10.1086/259131 Li CY, 2016, TELEMAT INFORM, V33, P834, DOI 10.1016/j.tele.2015.12.007 Li MX, 2016, INFORM MANAGE-AMSTER, V53, P467, DOI 10.1016/j.im.2015.11.002 Louviere JJ, 2008, J CHOICE MODEL, V1, P128 Manrai AK, 1998, EUR J OPER RES, V111, P193, DOI 10.1016/S0377-2217(98)00145-3 Mehta N, 2003, MARKET SCI, V22, P58, DOI 10.1287/mksc.22.1.58.12849 NEMHAUSER GL, 1978, MATH PROGRAM, V14, P265, DOI 10.1007/BF01588971 Noone BM, 2016, J REVENUE PRICING MA, V15, P264, DOI 10.1057/rpm.2016.8 Park JY, 2013, TOURISM MANAGE, V35, P1, DOI 10.1016/j.tourman.2012.05.004 Pazour, 2020, IISE 2020 C P Pazour J., 2020, J REVENUE PRICING MA Ramdas K, 2003, PROD OPER MANAG, V12, P79, DOI 10.1111/j.1937-5956.2003.tb00199.x Resnick P, 1997, COMMUN ACM, V40, P56, DOI 10.1145/245108.245121 Rieskamp J, 2006, J ECON LIT, V44, P631, DOI 10.1257/jel.44.3.631 Rooderkerk RP, 2011, J MARKETING RES, V48, P767, DOI 10.1509/jmkr.48.4.767 Sarwar B., 2000, EC'00. Proceedings of the 2nd ACM Conference on Electronic Commerce, P158, DOI 10.1145/352871.352887 Sicilia M, 2010, ELECTRON COMMER R A, V9, P183, DOI 10.1016/j.elerap.2009.03.004 Speier-Pero, 2019, J DECIS SYST, P1 Talluri K, 2004, MANAGE SCI, V50, P15, DOI 10.1287/mnsc.1030.0147 Todd PM, 2003, J ECON PSYCHOL, V24, P143, DOI 10.1016/S0167-4870(02)00200-3 Topaloglu, 2019, ASSORTMENT OPTIMIZAT Train KE, 2009, DISCRETE CHOICE METHODS WITH SIMULATION, 2ND EDITION, P1, DOI 10.1017/CBO9780511805271 Tseng VS, 2013, IEEE T KNOWL DATA EN, V25, P1772, DOI 10.1109/TKDE.2012.59 van Ryzin G, 1999, MANAGE SCI, V45, P1496, DOI 10.1287/mnsc.45.11.1496 Vargas S., 2011, P 5 ACM C REC SYST, P109, DOI DOI 10.1145/2043932.2043955 Vargas S, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1281, DOI 10.1145/2600428.2610382 Wang RX, 2013, J REVENUE PRICING MA, V12, P254, DOI 10.1057/rpm.2012.40 Weber EU, 2009, ANNU REV PSYCHOL, V60, P53, DOI 10.1146/annurev.psych.60.110707.163633 Working H., 1929, J Am Stat Assoc, V24, P73, DOI [10.1080/01621459.1929.10506274, DOI 10.1080/01621459.1929.10506274] Yücel E, 2009, EUR J OPER RES, V199, P759, DOI 10.1016/j.ejor.2008.08.004 Zhou T, 2010, P NATL ACAD SCI USA, V107, P4511, DOI 10.1073/pnas.1000488107 NR 67 TC 2 Z9 2 U1 1 U2 11 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1476-6930 EI 1477-657X J9 J REVENUE PRICING MA JI J. Revenue Pricing Manag. PD FEB PY 2022 VL 21 IS 1 BP 106 EP 126 DI 10.1057/s41272-020-00279-7 EA FEB 2021 PG 21 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA ZA0VQ UT WOS:000617401900001 DA 2024-03-27 ER PT J AU Pollmann, K Loh, W Fronemann, N Ziegler, D AF Pollmann, Kathrin Loh, Wulf Fronemann, Nora Ziegler, Daniel TI Entertainment vs. manipulation: Personalized human-robot interaction between user experience and ethical design SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Human -robot interaction; User experience; Ethical design; personalization; Design patterns ID ANTHROPOMORPHISM; PATERNALISM; CARE AB A personalized human-robot interaction (HRI) can increase the acceptance of robots through positive effects on the user experience (UX), as well as the user's attitude towards and perception of the robot. From an ethical perspective, however, personalized HRI poses certain risks with regard to autonomy and manipulation of the users. Taking the scenario of a personalized quizmaster robot as an example, this paper combines the usercentered design of a personalized robot behavior with ethical design perspectives. Based on motivation strategies of the robot quiz master, the paper assesses and generalizes which interaction behaviors may be ethically permissible and at the same time enjoyable, engaging and motivating. Balancing the two perspectives of UX and ethical design, we propose transferable recommendations for the design of personalized HRI based on the approach of cascading models of design. C1 [Pollmann, Kathrin; Fronemann, Nora; Ziegler, Daniel] Inst Ind Engn, Fraunhofer IAO, Stuttgart, Germany. [Loh, Wulf] Univ Tubingen, Ctr Ethics Sci & Humanities IZEW, Tubingen, Germany. [Pollmann, Kathrin] Nobelstr 12, D-70563 Stuttgart, Germany. C3 Eberhard Karls University of Tubingen RP Pollmann, K (autor correspondiente), Nobelstr 12, D-70563 Stuttgart, Germany. EM kathrin.pollmann@iao.fraunhofer.de RI Loh, Wulf/AAG-9989-2021 OI Loh, Wulf/0000-0001-7643-1614 FU German Federal Ministry for Edu- cation and Research (BMBF) [16SV7941, 16SV7944] FX Funding This research was funded by the German Federal Ministry for Edu- cation and Research (BMBF; 16SV7941, 16SV7944) . CR Aaltonen I, 2017, ACMIEEE INT CONF HUM, P53, DOI 10.1145/3029798.3038362 Alonso-Martín F, 2015, SENSORS-BASEL, V15, P15799, DOI 10.3390/s150715799 [Anonymous], 2017, EUPRESOLUTION2015210 [Anonymous], 2008, P 7 INT JOINT C AUTO [Anonymous], 2018, 9241112018 DIN EN IS [Anonymous], 2000, What We Owe to Each Other, DOI 10.2307/j.ctv134vmrn Bartneck C, 2004, RO-MAN 2004: 13TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, P591, DOI 10.1109/ROMAN.2004.1374827 Beauchamp TL., 2019, PRINCIPLES BIOMEDICA Bosse C, 2013, ROBOETHICS, P30 Breazeal C, 2003, INT J HUM-COMPUT ST, V59, P119, DOI 10.1016/S1071-5819(03)00018-1 Breazeal C, 2002, MU S ART SOC SIM ORG, V3, P149 Breazeal C., 2004, Designing Sociable Robots Brooks AndrewG., 2004, COMPUT ENTERTAIN, V2, P10, DOI DOI 10.1145/1027154.1027171 Bryson JJ, 2018, ETHICS INF TECHNOL, V20, P15, DOI 10.1007/s10676-018-9448-6 Calo MR, 2012, INTELL ROBOT AUTON, P187 Churamani N, 2017, PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON HUMAN AGENT INTERACTION (HAI'17), P171, DOI 10.1145/3125739.3125756 Coeckelbergh M, 2016, AI SOC, V31, P455, DOI 10.1007/s00146-015-0626-3 Coons Christian, 2014, Manipulation: Theory and practice Darling Kate, 2016, ROBOT LAW DARWALL SL, 1977, ETHICS, V88, P36, DOI 10.1086/292054 Dautenhahn K, 2004, RO-MAN 2004: 13TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, P17, DOI 10.1109/ROMAN.2004.1374720 Dautenhahn K, 2002, IEEE ROMAN 2002, PROCEEDINGS, P192, DOI 10.1109/ROMAN.2002.1045621 Davidson D. L., 1980, Electron Microscopy and Analysis, 1979, P21 Denning T, 2009, UBICOMP'09: PROCEEDINGS OF THE 11TH ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, P105 Drury J.L., 2004, CHI 04 EXTENDED ABST Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3 DWORKIN G, 1972, MONIST, V56, P64, DOI 10.5840/monist197256119 Dworkin Gerald., 1988, THEORY PRACTICE AUTO Edwards A, 2019, COMPUT HUM BEHAV, V90, P308, DOI 10.1016/j.chb.2018.08.042 Ermi L., 2005, Fundamental components of the gameplay experience: Analysing immersion Eyal Nir, 2014, Hooked: How to Build Habit-Forming Products, V1st Fan HY, 2006, J ORG COMP ELECT COM, V16, P179, DOI 10.1207/s15327744joce1603&4_2 Fischer A., 2017, MANIPULATION Forlizzi J., 2007, 2007 2nd Annual Conference on Human-Robot Interaction (HRI), P129 FRANKENA WK, 1986, PHILOS TOPICS, V14, P149, DOI 10.5840/philtopics19861428 Frankfurt Harry., 1987, RESPONSIBILITY CHARA Fronemann N, 2022, AI SOC, V37, P517, DOI 10.1007/s00146-021-01210-3 Fronemann N, 2014, PROCEEDINGS OF THE NORDICHI'14: THE 8TH NORDIC CONFERENCE ON HUMAN-COMPUTER INTERACTION: FUN, FAST, FOUNDATIONAL, P727, DOI 10.1145/2639189.2641203 Gorin Moti, 2014, Manipulation: Theory and Practice, V2014, P73 Gransche B., 2014, WANDEL AUTONOMIE KON Guggemos J, 2020, BRIT J EDUC TECHNOL, V51, P1864, DOI 10.1111/bjet.13006 Gunkel DJ, 2018, ROBOT RIGHTS Hassenzahl M., 2007, COMMUNICATION PR SEN, P10 Hellman Deborah, 2008, When Is Discrimination Wrong? Honneth Axel., 1996, The struggle for recognition: moral grammar of social conflicts, V1st HUSAK DN, 1981, PHILOS PUBLIC AFF, V10, P27 Johnson DO, 2016, INT J SOC ROBOT, V8, P247, DOI 10.1007/s12369-015-0331-x Karami AB, 2013, PROC INT C TOOLS ART, P626, DOI 10.1109/ICTAI.2013.98 Kidd CD, 2008, 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, P3230, DOI 10.1109/IROS.2008.4651113 Kirby R, 2010, ROBOT AUTON SYST, V58, P322, DOI 10.1016/j.robot.2009.09.015 Kobsa A, 2001, USER MODEL USER-ADAP, V11, P49, DOI 10.1023/A:1011187500863 Korsgaard Christine., 2009, SELF CONSTITUTION AG Lamers M.H., 2011, LECT NOTES I COMPUTE, V59, DOI [10.1007/978-3-642-19385-9, DOI 10.1007/978-3-642-19385-9] Leite Iolanda, 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, P669, DOI 10.1109/ROMAN.2009.5326256 Loh J., 2022, SOCIAL ROBOTICS GOOD Looije R., 2008, J PHYS AGENTS, V2, P13, DOI [10.14198/JoPha.2008.2.2.03, DOI 10.14198/JOPHA.2008.2.2.03] McGonical Jane., 2011, REALITY IS BROKEN WH Millar J, 2015, IEEE TECHNOL SOC MAG, V34, P47, DOI 10.1109/MTS.2015.2425612 Nielsen J., 1994, USABILITY ENG Nishimuta I, 2017, PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), P1787, DOI 10.1109/CSCI.2017.313 Noggle R., 2018, ETHICS MANIPULATION Norman D. A., 2013, DESIGN EVERYDAY THIN, DOI DOI 10.15358/9783800648108 Ötting SK, 2022, HUM FACTORS, V64, P1027, DOI 10.1177/0018720820966433 Pollmann Kathrin, 2020, MuC'20: Proceedings of the Conference on Mensch und Computer, P485, DOI 10.1145/3404983.3410414 Pollmann K, 2021, MULTIMODAL TECHNOLOG, V5, DOI 10.3390/mti5090049 Pontes HM, 2021, INT J MENT HEALTH AD, V19, P508, DOI 10.1007/s11469-019-00088-z Poole S., 2000, TRIGGER HAPPY VIDEOG Rawls J, 1971, THEORY JUSTICE Reiss S, 2004, REV GEN PSYCHOL, V8, P179, DOI 10.1037/1089-2680.8.3.179 Reyes RSJ, 2020, 2020 THE 5TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING (ICCRE 2020), P25, DOI [10.1109/iccre49379.2020.9096267, 10.1109/ICCRE49379.2020.9096267] Ritschel H, 2017, IEEE ROMAN, P378, DOI 10.1109/ROMAN.2017.8172330 RUDINOW J, 1978, ETHICS, V88, P338, DOI 10.1086/292086 Ryan Marie-Laure., 2001, NARRATIVE VIRTUAL RE Scheutz M, 2012, INTELL ROBOT AUTON, P205 Seibt J., 2016, P ROBOPHILOSOPHY 201, V290 Sheldon KM, 2001, J PERS SOC PSYCHOL, V80, P325, DOI 10.1037/0022-3514.80.2.325 Sorell T, 2014, ETHICS INF TECHNOL, V16, P183, DOI 10.1007/s10676-014-9344-7 Starcevic V., 2017, Current Addiction Reports, V4, P317, DOI DOI 10.1007/S40429-017-0158-7 Sudhkar RS, 2015, 1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, P661, DOI 10.1109/ICCUBEA.2015.135 Susser D, 2019, INTERNET POLICY REV, V8, DOI 10.14763/2019.2.1410 Syrdal Dag Sverre, 2007, 16th IEEE International Conference on Robot and Human Interactive Communication, P1143 Tanaka F, 2011, ACMIEEE INT CONF HUM, P265, DOI 10.1145/1957656.1957763 Thompson C, 2017, 2017 IEEE 5TH INTERNATIONAL SYMPOSIUM ON ROBOTICS AND INTELLIGENT SENSORS (IRIS), P173, DOI 10.1109/IRIS.2017.8250117 Thunberg S, 2020, ACMIEEE INT CONF HUM, P482, DOI 10.1145/3371382.3378294 Turkle S., 2010, Close engagements with artificial companions: Key social, psychological, ethical and design issues, P3, DOI DOI 10.1075/NLP.8.03TUR Vorderer P., 2006, PLAYING VIDEO GAMES Wada K, 2007, IEEE T ROBOT, V23, P972, DOI 10.1109/TRO.2007.906261 Weber, 2014, MANIPULATION THEORY, P17, DOI DOI 10.1093/ACPROF:OSO/9780199338207.003.0002 Williams B., 1985, Ethics and the Limits of Philosophy Williams Bernard., 1981, Moral Luck, P101 Yogeeswaran K, 2016, J HUM-ROBOT INTERACT, V5, P29, DOI 10.5898/JHRI.5.2.Yogeeswaran Ziegler D., 2019, MENSCH COMPUTER 2019 NR 92 TC 5 Z9 5 U1 22 U2 40 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD APR PY 2023 VL 189 AR 122376 DI 10.1016/j.techfore.2023.122376 EA FEB 2023 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 9R7JE UT WOS:000945823800001 OA hybrid DA 2024-03-27 ER PT J AU Chandrashekhar, H Bhasker, B AF Chandrashekhar, Hemalatha Bhasker, Bharat TI PERSONALIZED RECOMMENDER SYSTEM USING ENTROPY BASED COLLABORATIVE FILTERING TECHNIQUE SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Recommender System; Collaborative Filtering; Personalization; Entropy; Ecommerce ID OF-THE-ART; E-COMMERCE AB This paper introduces a novel collaborative filtering recommender system for ecommerce which copes reasonably well with the ratings sparsity issue through the use of the notion of selective predictability and the use of the information theoretic measure known as entropy to estimate the same. It exploits the predictable portion(s) of apparently complex relationships between users when picking out mentors for an active user. The potential of the proposed approach in providing novel as well as good quality recommendations have been demonstrated through comparative experiments on popular datasets such as MovieLens and Jester. The approach. s additional capability to come up with explanations for its recommendations will enhance the user. s comfort level in accepting the personalized recommendations. C1 [Chandrashekhar, Hemalatha] Indian Inst Management, Ranchi, Bihar, India. [Bhasker, Bharat] Indian Inst Management, Lucknow, Uttar Pradesh, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Ranchi; Indian Institute of Management (IIM System); Indian Institute of Management Lucknow RP Chandrashekhar, H (autor correspondiente), Indian Inst Management, Ranchi, Bihar, India. EM hemalatha@iimranchi.ac.in; bhasker@iiml.ac.in RI Bhasker, Bharat/Q-5025-2019; Chandrashekhar, Hemalatha/AAH-5434-2020 OI Bhasker, Bharat/0000-0002-7128-1423 CR Adolphs C, 2010, J ELECTRON COMMER RE, V11, P326 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Aggarwal C. C., 1999, Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, P201, DOI [DOI 10.1145/312129.312230, 10.1145/312129.312230] Bell R. M., 2007, P 13 ACM SIGKDD INT Bell Robert M., 2007, P KDD CUP WORKSH 13, P7, DOI DOI 10.1007/S007790170019 Breese J. S., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P43 Cho YH, 2002, EXPERT SYST APPL, V23, P329, DOI 10.1016/S0957-4174(02)00052-0 Delgado J., 1999, P ACM SIGIR 99 WORKS Desmarais-Frantz A, 2005, INT CONF E BUS ENG, P229, DOI 10.1109/ICEBE.2005.39 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Herlocker JL, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P230, DOI 10.1145/312624.312682 Hill W., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P194 Huang Z, 2007, IEEE INTELL SYST, V22, P68, DOI 10.1109/MIS.2007.4338497 Kim J.K., 2002, Electronic Commerce Research and Applications, V1, P301, DOI DOI 10.1016/S1567-4223(02)00022-4 Koren Y, 2008, 14 ACM SIGKDD INT C Lee WP, 2002, EXPERT SYST APPL, V22, P275, DOI 10.1016/S0957-4174(02)00015-5 Palanivel K, 2010, J ELECTRON COMMER RE, V11, P140 Resnick P., 1994, Transcending Boundaries, CSCW '94. Proceedings of the Conference on Computer Supported Cooperative Work, P175, DOI 10.1145/192844.192905 Sarwar B., 2001, P 10 INT C WORLD WID, P285 Schickel-Zuber V., 2006, P 21 NAT C ART INT, V2, P1413 Schickel-Zuber V, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P599 SHANNON CE, 1948, BELL SYST TECH J, V27, P379, DOI 10.1002/j.1538-7305.1948.tb01338.x Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931 Srikumar K., 2005, INT J ELECT BUSINESS, V3, P4 Yang Y., 2005, Journal of Electronic Commerce Research, V6, P112 NR 26 TC 22 Z9 23 U1 1 U2 16 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PY 2011 VL 12 IS 3 BP 214 EP 237 PG 24 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 893SP UT WOS:000300376000005 DA 2024-03-27 ER PT J AU Wang, Q Yu, JJ Deng, WW AF Wang, Qian Yu, Jijun Deng, Weiwei TI An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Electronic commerce; Recommender system; Product recommendation; Individual diversity; Aggregate diversity; Re-ranking approach ID PERSONALIZED RECOMMENDATION; NETWORK ANALYSIS; LONG TAIL; SYSTEMS; ACCURACY; IMPACT AB The effectiveness of product recommendations is previously assessed based on recommendation accuracy. Recently, individual diversity and aggregate diversity of product recommendations have been recognized as important dimensions in evaluating the recommendation effectiveness. However, the gain of either diversity is usually at the cost of accuracy and the increase of one diversity does not guarantee a significant improvement in the other. A few attempts have been made to achieve reasonable trade-offs either between recommendation accuracy and individual diversity or between recommendation accuracy and aggregate diversity. Little attention has been paid to obtain a balance among the three important aspects of product recommendations. To address this problem, we propose an adjustable re-ranking approach that incorporates two new ranking criteria for improving both diversities. Three ranking lists are generated to guarantee recommendation accuracy, individual diversity, and aggregate diversity, respectively. The three ranking lists are finally merged with tunable parameters to generate a recommendation list. To evaluate the proposed method, experiments are conducted on a data set obtained from Alibaba. The results show that the proposed method achieves much higher improvements in both diversities than the baseline methods when sacrificing the same amount of recommendation accuracy. C1 [Wang, Qian; Yu, Jijun] Sun Yat Sen Univ, Dept Informat Syst & Engn, Sch Business, Guangzhou, Guangdong, Peoples R China. [Deng, Weiwei] City Univ Hong Kong, Coll Business, Dept Informat Syst, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R China. C3 Sun Yat Sen University; City University of Hong Kong RP Deng, WW (autor correspondiente), City Univ Hong Kong, Coll Business, Dept Informat Syst, Kowloon Tong, 83 Tat Chee Ave, Hong Kong, Peoples R China. EM wwdeng3-c@my.cityu.edu.hk FU National Natural Science Foundation of China [71772187, 70971141] FX This work was supported by the National Natural Science Foundation of China (Grant Nos. 71772187, 70971141). CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G., 2009, Workshop on Information Technologies and Systems, P79 Adomavicius G, 2012, IEEE T KNOWL DATA EN, V24, P896, DOI 10.1109/TKDE.2011.15 Adomavicius G, 2014, INFORMS J COMPUT, V26, P351, DOI 10.1287/ijoc.2013.0570 Borgatti SP, 2006, SOC NETWORKS, V28, P466, DOI 10.1016/j.socnet.2005.11.005 Breese H Heckerman D., 1998, P 14 C UNC ART INT, p1998 43 Brynjolfsson E, 2011, MANAGE SCI, V57, P1373, DOI 10.1287/mnsc.1110.1371 Budanitsky A, 2006, COMPUT LINGUIST, V32, P13, DOI 10.1162/coli.2006.32.1.13 Burke R, 2007, The adaptive web: methods and strategies of web personalization, P377, DOI DOI 10.1007/978-3-540-72079-9_12 Chen L., 2017, ARXIV170905135CS Chien BC, 2009, INFORM SYST FRONT, V11, P551, DOI 10.1007/s10796-008-9126-z Deb K., 2014, SEARCH METHODOLOGIES, P403, DOI DOI 10.1007/978-1-4614-6940-7_15 Di Noia T, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P285, DOI 10.1145/2645710.2645774 Dias MB, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P291 Ding S, 2017, DECIS SUPPORT SYST, V101, P106, DOI 10.1016/j.dss.2017.06.005 Dwork C., 2001, P 10 INT C WORLD WID, P613, DOI DOI 10.1145/371920.372165 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gan MX, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0114662 Gan MX, 2013, DECIS SUPPORT SYST, V55, P811, DOI 10.1016/j.dss.2013.03.006 Ghoshal A, 2015, INFORM SYST RES, V26, P532, DOI 10.1287/isre.2015.0583 Girardi D, 2016, J BIOMED INFORM, V63, P66, DOI 10.1016/j.jbi.2016.07.021 Gogna A, 2017, KNOWL-BASED SYST, V125, P83, DOI 10.1016/j.knosys.2017.03.023 Hafshejani ZY, 2018, ELECTRON COMMER RES, V18, P1 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hsu FM, 2012, EXPERT SYST APPL, V39, P6221, DOI 10.1016/j.eswa.2011.12.005 Jing N, 2018, ELECTRON COMMER RES, V18, P159, DOI 10.1007/s10660-017-9275-6 Karakaya Mo, 2017, KNOWL INF SYST, V56, P1 Kim HK, 2012, EXPERT SYST APPL, V39, P7403, DOI 10.1016/j.eswa.2012.01.066 Konak A, 2006, RELIAB ENG SYST SAFE, V91, P992, DOI 10.1016/j.ress.2005.11.018 Kunaver M, 2017, KNOWL-BASED SYST, V123, P154, DOI 10.1016/j.knosys.2017.02.009 Lika B, 2014, EXPERT SYST APPL, V41, P2065, DOI 10.1016/j.eswa.2013.09.005 Ma Y, 2017, ELECTRON COMMER RES, V17, P3, DOI 10.1007/s10660-016-9240-9 Muter I, 2017, INFORMS J COMPUT, V29, P405, DOI 10.1287/ijoc.2016.0741 Niemann K, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P955 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Shani G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P257, DOI 10.1007/978-0-387-85820-3_8 Tucker C., 2007, 465507 MIT Wang JK, 2016, P ANN HICSS, P688, DOI 10.1109/HICSS.2016.91 Wang Q, 2017, DECIS SUPPORT SYST, V103, P46, DOI 10.1016/j.dss.2017.09.001 Weng SS, 2008, EXPERT SYST APPL, V34, P1857, DOI 10.1016/j.eswa.2007.02.023 Zhang M, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P123 Zhang Q, 2017, DECIS SUPPORT SYST, V104, P49, DOI 10.1016/j.dss.2017.10.002 Ziegler C-N, 2005, P 14 INT C WORLD WID, P22, DOI DOI 10.1145/1060745.1060754 NR 44 TC 9 Z9 10 U1 9 U2 42 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD MAR PY 2019 VL 19 IS 1 BP 59 EP 79 DI 10.1007/s10660-018-09325-4 PG 21 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA HL1ZY UT WOS:000458504200003 OA hybrid DA 2024-03-27 ER PT J AU Adomavicius, G Bockstedt, JC Curley, SP Zhang, JJ AF Adomavicius, Gediminas Bockstedt, Jesse C. Curley, Shawn P. Zhang, Jingjing TI Do Recommender Systems Manipulate Consumer Preferences? A Study of Anchoring Effects SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE anchoring effects; behavioral decision making; behavioral economics; electronic commerce; experimental research; preferences; recommender systems ID UNCERTAINTY; INTERFACES; JUDGMENTS; TRUST AB Recommender systems are becoming a salient part of many e-commerce websites. Much research has focused on advancing recommendation technologies to improve accuracy of predictions, although behavioral aspects of using recommender systems are often overlooked. In our studies, we explore how consumer preferences at the time of consumption are impacted by predictions generated by recommender systems. We conducted three controlled laboratory experiments to explore the effects of system recommendations on preferences. Studies 1 and 2 investigated user preferences for television programs across a variety of conditions, which were surveyed immediately following program viewing. Study 3 investigated the granularity of the observed effects within individual participants. Results provide strong evidence that the rating presented by a recommender system serves as an anchor for the consumer's constructed preference. Viewers' preference ratings are malleable and can be significantly influenced by the recommendation received. The effect is sensitive to the perceived reliability of a recommender system and, thus, not a purely numerical or priming-based effect. Finally, the effect of anchoring is continuous and linear, operating over a range of perturbations of the system. These general findings have a number of important implications (e.g., on recommender systems performance metrics and design, preference bias, potential strategic behavior, and trust), which are discussed. C1 [Adomavicius, Gediminas; Curley, Shawn P.] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA. [Bockstedt, Jesse C.] Univ Arizona, Eller Coll Management, Tucson, AZ 85721 USA. [Zhang, Jingjing] Indiana Univ, Kelley Sch Business, Bloomington, IN 47405 USA. C3 University of Minnesota System; University of Minnesota Twin Cities; University of Arizona; Indiana University System; IU Kelley School of Business; Indiana University Bloomington RP Adomavicius, G (autor correspondiente), Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA. EM gedas@umn.edu; bockstedt@email.arizona.edu; curley@umn.edu; jjzhang@indiana.edu OI Zhang, Jingjing/0000-0002-6805-8685 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Ariely D, 2003, Q J ECON, V118, P73, DOI 10.1162/00335530360535153 Bell Robert M., 2007, P KDD CUP WORKSH 13, P7, DOI DOI 10.1007/S007790170019 Breese H Heckerman D., 1998, P 14 C UNC ART INT, p1998 43 Chapman GB, 1996, APPL COGNITIVE PSYCH, V10, P519 Chapman GB, 2002, HEURISTICS BIASES PS, P120, DOI DOI 10.1017/CBO9780511808098.008 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Cosley D., 2003, PROC SIGCHI C HUMAN, P585 Deshpande M, 2004, ACM T INFORM SYST, V22, P143, DOI 10.1145/963770.963776 Epley N, 2010, J CONSUM PSYCHOL, V20, P20, DOI 10.1016/j.jcps.2009.12.005 Flynn LJ, 2006, NY TIMES Funk S., 2006, Netflix update: Try this at home Goldberg K, 2001, INFORM RETRIEVAL, V4, P133, DOI 10.1023/A:1011419012209 JACOWITZ KE, 1995, PERS SOC PSYCHOL B, V21, P1161, DOI 10.1177/01461672952111004 Johnson JEV, 2009, J BEHAV DECIS MAKING, V22, P410, DOI 10.1002/bdm.640 Komiak SYX, 2006, MIS QUART, V30, P941 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Koren Yehuda, 2009, Netflix prize documentation, V81, P1 Ku G, 2006, J PERS SOC PSYCHOL, V90, P975, DOI 10.1037/0022-3514.90.6.975 Lam S, 2004, 13 INT C WORLD WID W, P353 Lanning S., 2007, P KDD CUP WORKSH, P3 Lichtenstein S, 2006, CONSTRUCTION OF PREFERENCE, P1, DOI 10.2277/ 0521542200 McNee SM, 2003, LECT NOTES ARTIF INT, V2702, P178 Mobasher B, 2007, ACM T INTERNET TECHN, V7, DOI 10.1145/1278366.1278372 Mussweiler T, 2000, J EXP SOC PSYCHOL, V36, P495, DOI 10.1006/jesp.1999.1414 NORTHCRAFT GB, 1987, ORGAN BEHAV HUM DEC, V39, P84, DOI 10.1016/0749-5978(87)90046-X Piotte Matrin., 2009, The Pragmatic Theory solution to the Netflix Grand Prize Pu P, 2007, KNOWL-BASED SYST, V20, P542, DOI 10.1016/j.knosys.2007.04.004 Russo JE, 2010, J CONSUM PSYCHOL, V20, P25, DOI 10.1016/j.jcps.2009.12.006 Sarwar Badrul, 2001, P 10 INT C WORLD WID, P285, DOI 10.1145/371920.372071 SCHKADE DA, 1989, ORGAN BEHAV HUM DEC, V44, P203, DOI 10.1016/0749-5978(89)90025-3 Schonfeld E, 2007, CNNMONEY JUL Strack F, 1997, J PERS SOC PSYCHOL, V73, P437, DOI 10.1037/0022-3514.73.3.437 Swearingen K., 2001, ACM SIGIR 2001 WORKS Thorsteinson TJ, 2008, ORGAN BEHAV HUM DEC, V107, P29, DOI 10.1016/j.obhdp.2008.01.003 Tintarev N, 2011, RECOMMENDER SYSTEMS HANDBOOK, P479, DOI 10.1007/978-0-387-85820-3_15 Toscher Andreas, 2009, NETFLIX PRIZE DOCUME, P1 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 Wang WQ, 2007, J MANAGE INFORM SYST, V23, P217, DOI 10.2753/MIS0742-1222230410 Wilson R., 2010, Journal of Direct, Data and Digital Marketing Practice, V12, P69, DOI [10.1057/dddmp.2010.19, DOI 10.1057/DDDMP.2010.19] Yoo KH, 2011, RECOMMENDER SYSTEMS HANDBOOK, P455, DOI 10.1007/978-0-387-85820-3_14 NR 41 TC 110 Z9 129 U1 22 U2 190 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD DEC PY 2013 VL 24 IS 4 BP 956 EP 975 DI 10.1287/isre.2013.0497 PG 20 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA 273MW UT WOS:000328540100006 DA 2024-03-27 ER PT J AU Huang, CL Huang, WL AF Huang, Cheng-Lung Huang, Wei-Liang TI Handling sequential pattern decay: Developing a two-stage collaborative recommender system SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Recommender systems; Clustering; Sequential pattern; Collaborative filtering; Electronic commerce AB This study proposes a sequential pattern based collaborative recommender system that predicts the customer's time-variant purchase behavior in an e-commerce environment where the customer's purchase patterns may change gradually. A new two-stage recommendation process is developed to predict customer purchase behavior for the product categories, as well as for product items. The time window weight is introduced to produce sequential patterns closer to the current time period that possess a larger impact on the prediction than patterns relatively far from the current time period. This study is the first to propose time-decaying sequential patterns within a collaborative recommender system. The experimental results show that the proposed system outperforms the traditional collaborative system using a public food mart dataset and a synthetic dataset. (C) 2008 Elsevier B.V. All rights reserved. C1 [Huang, Cheng-Lung; Huang, Wei-Liang] Natl Kaohsiung First Univ Sci & Technol, Dept Informat Management, Kaohsiung 811, Taiwan. C3 National Kaohsiung University of Science & Technology RP Huang, CL (autor correspondiente), Natl Kaohsiung First Univ Sci & Technol, Dept Informat Management, 2 Juoyue Rd, Kaohsiung 811, Taiwan. EM clhuang@ccms.nkfust.edu.tw FU National Science Council of the Republic of China, Taiwan [NSC 96-2221-E-327-008] FX The authors would like to thank the anonymous referees for their valuable comments, which helped in improving the quality of this paper. The authors would also like to thank the National Science Council of the Republic of China, Taiwan for financially supporting this research under Contract No. NSC 96-2221-E-327-008. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415 Agrawal R., 1994, 9910 RJ IBM ALM RES [Anonymous], 2011, Pei. data mining concepts and techniques Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 Chen YL, 2006, DECIS SUPPORT SYST, V42, P1203, DOI 10.1016/j.dss.2005.10.006 Chen YL, 2005, IEEE T SYST MAN CY B, V35, P959, DOI 10.1109/TSMCB.2005.847741 Cho YB, 2005, EXPERT SYST APPL, V28, P359, DOI 10.1016/j.eswa.2004.10.015 CONOVER W. J., 1980, PRACTICAL NONPARAMET Cowgill MC, 1999, COMPUT MATH APPL, V37, P99, DOI 10.1016/S0898-1221(99)00090-5 Davidovitch N, 2006, SCI CONTEXT, V19, P309, DOI 10.1017/S0269889706000949 DAVIES DL, 1979, IEEE T PATTERN ANAL, V1, P224, DOI 10.1109/TPAMI.1979.4766909 Garfinkel R, 2006, DECIS SUPPORT SYST, V42, P1974, DOI 10.1016/j.dss.2006.05.005 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 Goldberg D., 1989, GENETIC ALGORITHMS S HUANG JP, 2003, P 4 C INF MAN NEW TE, P53 Kaymak U, 2001, JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, P1038, DOI 10.1109/NAFIPS.2001.944748 Kazienko P, 2007, INFORM SCIENCES, V177, P2269, DOI 10.1016/j.ins.2007.01.002 KOHONEN T, 1997, SELF ORGANIZED MAPS KOWALSKI G., 1997, INFORM RETRIEVAL SYS Krulwich B., 1996, P AAAI SPRING S MACH, V25, P110 Kyoung-jae Kim, 2005, Artificial Intelligence and Simulation. 13th International Conference on AI, Simulation, and Planning in High Autonomy Systems, AIS 2004. Revised Selected Papers (Lecture Notes in Artificial Intelligence Vol.3397), P409 Lang K., 1995, P 12 INT C MACHINE L, P331 Lee HJ, 2007, EXPERT SYST APPL, V32, P143, DOI 10.1016/j.eswa.2005.11.010 Lekakos G, 2006, INTERACT COMPUT, V18, P410, DOI 10.1016/j.intcom.2005.11.004 Maulik U, 2000, PATTERN RECOGN, V33, P1455, DOI 10.1016/S0031-3203(99)00137-5 Mild A., 2003, Journal of Retailing and Consumer Services, V10, P123, DOI [DOI 10.1016/S0969-6989(03)00003-1, 10.1016/S0969-6989(03)00003-1] Min SH, 2005, EXPERT SYST APPL, V28, P189, DOI 10.1016/j.eswa.2004.10.001 Pei J, 2004, IEEE T KNOWL DATA EN, V16, P1424, DOI 10.1109/TKDE.2004.77 Pei J., 2001, P 2001 INT C DAT ENG Perugini S, 2004, J INTELL INF SYST, V23, P107, DOI 10.1023/B:JIIS.0000039532.05533.99 Rashid A.M., 2002, P 7 INT C INT US INT, P127, DOI [10.1145, DOI 10.1145/502716.502737] Resnick P., 1994, P ACM C COMP SUPP CO, P175, DOI DOI 10.1145/192844.192905 Rijsbergen V., 1979, INFORM RETRIEVAL, VSecond Edi Rucker J, 1997, COMMUN ACM, V40, P73, DOI 10.1145/245108.245125 Salzberg SL, 1997, DATA MIN KNOWL DISC, V1, P317, DOI 10.1023/A:1009752403260 Sarwar S., 2000, PROCEEDING 2 ACM C E, P158, DOI DOI 10.1145/352871.352887 Schafer J., 2001, DATA MIN KNOWL DISC, V5, P115, DOI DOI 10.1023/A:1009804230409 Schafer J. Ben, 1999, Proceedings of the 1st ACM conference on Electronic commerce, P158, DOI [DOI 10.1145/336992.337035, 10.1145/336992.337035] Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931 Srikant R., 1996, Advances in Database Technology - EDBT '96. 5th International Conference on Extending Database Technology. Proceedings, P3 Tseng LY, 2001, PATTERN RECOGN, V34, P415, DOI 10.1016/S0031-3203(00)00005-4 Ujjin S, 2003, PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), P124, DOI 10.1109/SIS.2003.1202257 Wang YF, 2004, EXPERT SYST APPL, V26, P427, DOI 10.1016/j.eswa.2003.10.001 WEI K, 2007, INT C SERV SYST SERV, P1 Yang WJ, 2004, IEEE SYS MAN CYBERN, P4135 Yang YM, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P42, DOI 10.1145/312624.312647 NR 47 TC 38 Z9 45 U1 0 U2 12 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD MAY-JUN PY 2009 VL 8 IS 3 BP 117 EP 129 DI 10.1016/j.elerap.2008.10.001 PG 13 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 448OP UT WOS:000266272200002 DA 2024-03-27 ER PT J AU Li, P Zhu, XR Su, XJ AF Li, Peng Zhu, Xinru Su, Xinjie TI Neural_BPR: Multi-processing popularity bias mitigating method in recommendation systems SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE E-commerce platform economy; Recommender system; Popularity bias; Artificial intelligence; Small and medium enterprises AB E-commerce recommendations address the problem of information overload, but recent research has identified the phenomenon of popularity bias in recommendation mechanisms. This phenomenon tends to homogenise recommendation results, i.e. popular products are widely recommended and non-popular products are under-exposed. The persistent presence of popularity bias in recommendation systems can lead to several negative consequences: (1) Consumers are unable to attain satisfactory personalized shopping experiences. (2) Small and medium enterprises are deprived of fair competitive opportunities, making survival challenging. (3) The user base of e-commerce platforms dwindles, leading to reduced transaction volumes. In this paper, we propose a multi-process fusion debiasing method. Convolutional neural networks are used to extract feature information to be embedded in the recommendation algorithm for pre-processing, in-processing and post-processing in turn to mitigate popularity bias and simultaneously enhance recommendation utility. The effectiveness of the proposed debiasing method is validated using the Bayesian Personalized Ranking (BPR) recommendation model as an example. Experimental results on two public datasets demonstrate that our model outperforms two baseline models and a state-of-the-art model. Specifically, compared to the traditional BPR model, the alleviation of popularity bias is around 70% to 80%, and the recommendation utility increases by approximately 30% to 50%. C1 [Li, Peng; Zhu, Xinru; Su, Xinjie] Harbin Univ Commerce, Sch Management, Harbin, Peoples R China. C3 Harbin University of Commerce RP Li, P (autor correspondiente), Harbin Univ Commerce, Sch Management, Harbin, Peoples R China. EM lipeng@hrbcu.edu.cn FU Federation of Social Science of Heilongjiang Province of China [22310] FX This work was supported by the Federation of Social Science of Heilongjiang Province of China, grant number 22310. CR Abdollahpouri H, 2019, Arxiv, DOI arXiv:1901.07555 Abdollahpouri H, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P42, DOI 10.1145/3109859.3109912 Acs ZJ, 2022, TEC EMPRESARIAL, V16, P1, DOI 10.18845/te.v16i1.5926 Basu S, 2021, ELECTRON COMMER R A, V48, DOI 10.1016/j.elerap.2021.101074 Beutel A, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2212, DOI 10.1145/3292500.3330745 Bose AJ, 2019, PR MACH LEARN RES, V97 Cutolo D, 2021, ACAD MANAGE PERSPECT, V35, P584, DOI 10.5465/amp.2019.0103 Ghanem N, 2022, ELECTRON COMMER R A, V55, DOI 10.1016/j.elerap.2022.101195 Harper FM, 2016, ACM T INTERACT INTEL, V5, DOI 10.1145/2827872 Lee H., 2009, ICML Li K, 2022, J SMALL BUS MANAGE, V60, P93, DOI 10.1080/00472778.2019.1695495 Liu DC, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P583, DOI 10.1145/3041021.3054202 Liu YD, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2765, DOI 10.1145/3292500.3330707 Liu Z., 2023, ACM Trans. Inf. Syst., V41, P1 Mansoury M, 2022, ACM T INFORM SYST, V40, DOI 10.1145/3470948 Manyika J., 2016, Digital globalization: The new era of global flows Ranzato M, 2007, PROC CVPR IEEE, P1429 Rastegarpanah B, 2019, PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19), P231, DOI 10.1145/3289600.3291002 Rendle S, 2012, Arxiv, DOI [arXiv:1205.2618, DOI 10.48550/ARXIV.1205.2618] Saito Y, 2020, PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), P309, DOI 10.1145/3397271.3401114 Sha X, 2021, ELECTRON COMMER R A, V48, DOI 10.1016/j.elerap.2021.101071 Steck H, 2019, Arxiv, DOI arXiv:1904.13033 Steck Harald, 2011, P 5 ACM C REC SYST, P125 Xiao T, 2022, WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P1158, DOI 10.1145/3488560.3498521 Xue F, 2019, ACM T INFORM SYST, V37, DOI 10.1145/3314578 Yih WT, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, P643 Yoo B, 2012, ELECTRON COMMER R A, V11, P180, DOI 10.1016/j.elerap.2011.12.007 Zhu ZW, 2022, WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P1497, DOI 10.1145/3488560.3498427 Zhu ZW, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P85, DOI 10.1145/3437963.3441820 Zhu ZW, 2020, PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), P449, DOI 10.1145/3397271.3401177 NR 30 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2023 VL 62 AR 101323 DI 10.1016/j.elerap.2023.101323 EA OCT 2023 PG 11 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA W9JI7 UT WOS:001094714600001 DA 2024-03-27 ER PT J AU Lee, HC Rim, HC Lee, DG AF Lee, Ho-Chang Rim, Hae-Chang Lee, Do-Gil TI Learning to rank products based on online product reviews using a hierarchical deep neural network SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Product ranking; Online product reviews; Hierarchical deep neural network ID WORD-OF-MOUTH; FORECASTING SALES; CONSUMER REVIEWS; IMPACT AB Product ranking based on online product reviews is a task of inferring relative user preferences between different products as a variant of entity-level sentiment analysis. Despite the complex relationship between the overall user's preference and individual diverse opinions, existing approaches generally employ empirical assumptions about sentiment features of the products of interest. In this paper, we propose a novel unified approach for learning to rank products based on online product reviews. Unlike existing approaches, it uses deep-learning techniques to extract the high-level latent review representation that contains the most semantic information in the learning process. For this approach, we extend the recently proposed hierarchical attention network to operate in the ranking domain. This network hierarchically learns optimal feature representations of the products and their reviews through the use of two-level attention-based encoders. To construct a more advanced ranking model, several features were added to give sufficient information about the relative user preferences, and two representative ranking loss functions, RankNet and ListNet, were applied. Furthermore, we demonstrate that this network outperforms the existing methods in sales rank prediction based on online product reviews. C1 [Lee, Ho-Chang; Rim, Hae-Chang] Korea Univ, Dept Comp Sci, Seoul, South Korea. [Lee, Do-Gil] Korea Univ, Res Inst Korean Studies, Seoul, South Korea. C3 Korea University; Korea University RP Lee, DG (autor correspondiente), Korea Univ, Res Inst Korean Studies, Seoul, South Korea. EM pery@korea.ac.kr; rim@korea.ac.kr; motdg@korea.ac.kr OI Lee, Ho-Chang/0000-0003-2864-2972 FU Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT Future Plannig [2012M3C4A7033344] FX This research was supported by Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Plannig (2012M3C4A7033344). CR [Anonymous], P INT C WEB INT MIN [Anonymous], ARXIV160309025 Appel O, 2016, KNOWL-BASED SYST, V108, P110, DOI 10.1016/j.knosys.2016.05.040 Bahdanau D., 2015, ARXIV14090473 Bashir S, 2016, APPL SOFT COMPUT, V38, P151, DOI 10.1016/j.asoc.2015.10.001 Bickart B., 2001, J INTERACT MARK, V15, P31, DOI [10.1002/dir.1014, DOI 10.1002/DIR.1014] Burges CJ, 2005, P 22 INT C MACH LEAR, P89, DOI DOI 10.1145/1102351.1102363 Cao T., 2007, P 24 INT C MACH LEAR, P129, DOI [10.1145/1273496.1273513, DOI 10.1145/1273496.1273513] Chen T, 2017, EXPERT SYST APPL, V72, P221, DOI 10.1016/j.eswa.2016.10.065 Decker R, 2010, INT J RES MARK, V27, P293, DOI 10.1016/j.ijresmar.2010.09.001 Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Du JF, 2014, EXPERT SYST APPL, V41, P1680, DOI 10.1016/j.eswa.2013.08.065 Fan ZP, 2017, J BUS RES, V74, P90, DOI 10.1016/j.jbusres.2017.01.010 Ganesan K, 2012, INFORM RETRIEVAL, V15, P116, DOI 10.1007/s10791-011-9174-8 Gerani Shima, 2014, P 2014 C EMP METH NA, P1602, DOI [10.1007/978-3-642-14834-7_15, DOI 10.1007/978-3-642-14834-7_15] He RN, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P507, DOI 10.1145/2872427.2883037 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Huang Z., 2015, ARXIV Jannach D, 2016, COMMUN ACM, V59, P94, DOI 10.1145/2891406 Jindal N., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P244, DOI 10.1145/1148170.1148215 Kessler Wiltrud, 2013, P 2013 C EMP METH NA, P1892 Kim Y, 2014, P 2014 C EMP METH NA, V2014, P1746, DOI [DOI 10.3115/V1/D14-1181, 10.3115/v1/D14-1181] Kingma D. P., 2014, ARXIV Liu Y, 2017, INFORM FUSION, V36, P149, DOI 10.1016/j.inffus.2016.11.012 Liu Y, 2008, IEEE DATA MINING, P443, DOI 10.1109/ICDM.2008.94 Liu Yang, 2007, P 30 ANN INT ACM SIG, P607, DOI [10.1145/1277741.1277845, DOI 10.1145/1277741.1277845] Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Najmi E, 2015, COMPUTING, V97, P843, DOI 10.1007/s00607-015-0439-8 Quanchao Liu, 2013, Advanced Data Mining and Applications. 9th International Conference, ADMA 2013. Proceedings: LNCS 8347, P300, DOI 10.1007/978-3-642-53917-6_27 Raffel C., 2015, INT C LEARNING REPRE Romeo Salvatore., 2016, Proceedings of COLING 2016, P1734 Saumya S, 2018, ELECTRON COMMER R A, V29, P78, DOI 10.1016/j.elerap.2018.03.008 Schneider MJ, 2016, INT J FORECASTING, V32, P243, DOI 10.1016/j.ijforecast.2015.08.005 Song YQ, 2014, PROCEEDINGS OF THE THIRD NORTHEAST ASIA INTERNATIONAL SYMPOSIUM ON LANGUAGE, LITERATURE AND TRANSLATION, VOLS 1 AND 2, P83 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Sun Jianshu, 2009, Polibits, V0, P33 Varathan KD, 2017, J ASSOC INF SCI TECH, V68, P811, DOI 10.1002/asi.23716 Wang B., 2017, ARXIV170206106 Wang Lu, 2016, ARXIV160602785 Xie SH, 2015, PROCEEDINGS OF THE 2015 IEEE INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (IEEE DSAA 2015), P464 Xu K, 2015, PR MACH LEARN RES, V37, P2048 Yagci IA, 2018, ELECTRON COMMER R A, V30, P102, DOI 10.1016/j.elerap.2018.05.010 Yang ZJ, 2016, ADV SOC SCI EDUC HUM, V64, P1480 Yu J., 2011, IEEE T GEOSCI REMOTE, V49, P1 Zhang A, 2010, J OPER OCEANOGR, V3, P11, DOI 10.1080/1755876X.2010.11020114 Zhang K., 2011, OCEANS 2011 IEEE - Spain, P1, DOI [DOI 10.1145/2378104.2378116, 10.1109/Oceans-Spain.2011.6003503, DOI 10.1109/OCEANS-SPAIN.2011.6003503] Zhang Z, 2013, ACM TRANS MANAG INF, V3, DOI 10.1145/2407740.2407744 Zheng L, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P425, DOI 10.1145/3018661.3018665 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 2011, CLUTT HDB RES INT ED, P1, DOI DOI 10.1109/CEWIT.2011.6135866 NR 51 TC 21 Z9 21 U1 9 U2 83 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JUL-AUG PY 2019 VL 36 AR 100874 DI 10.1016/j.elerap.2019.100874 PG 10 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA IM0HV UT WOS:000477669200013 DA 2024-03-27 ER PT J AU Panniello, U Gorgoglione, M Tuzhilin, A AF Panniello, Umberto Gorgoglione, Michele Tuzhilin, Alexander TI In CARSs We Trust: How Context-Aware Recommendations Affect Customers' Trust and Other Business Performance Measures of Recommender Systems SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE business value of IT; case studies; economics of IS; electronic commerce; field experiments; recommender systems; context aware ID INTEGRATIVE MODEL; E-COMMERCE; INFORMATION; DETERMINANTS; SATISFACTION; VARIETY; IMPACT AB Most of the work on context-aware recommender systems has focused on demonstrating that the contextual information leads to more accurate recommendations. Little work has been done, however, on studying how much the contextual information affects the business performance. In this paper, we study how including context in recommendations affects customers' trust, sales, and other crucial business-related performance measures. To do this, we delivered content-based and context-aware recommendations through a live controlled experiment with real customers of a commercial European online publisher. We measured the recommendations' accuracy and diversification, how much customers spent purchasing products during the experiment, the quantity and price of their purchases, and the customers' level of trust. We show that collecting and using contextual information in recommendations affects business-related performance measures, such as company sales, by improving the accuracy and diversification of recommendations, which in turn improves trust and, ultimately, business performance results. C1 [Panniello, Umberto; Gorgoglione, Michele] Politecn Bari, I-70126 Bari, Italy. [Tuzhilin, Alexander] NYU, Stern Sch Business, 550 1St Ave, New York, NY 10012 USA. C3 Politecnico di Bari; New York University RP Panniello, U; Gorgoglione, M (autor correspondiente), Politecn Bari, I-70126 Bari, Italy.; Tuzhilin, A (autor correspondiente), NYU, Stern Sch Business, 550 1St Ave, New York, NY 10012 USA. EM umberto.panniello@poliba.it; michele.gorgoglione@poliba.it; atuzhili@stern.nyu.edu CR Adomavicius G, 2005, ACM T INFORM SYST, V23, P103, DOI 10.1145/1055709.1055714 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2012, IEEE T KNOWL DATA EN, V24, P896, DOI 10.1109/TKDE.2011.15 Adomavicius G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P217, DOI 10.1007/978-0-387-85820-3_7 Allen J, 2020, ARCHAEOL OCEAN, V55, P1, DOI 10.1002/arco.5207 [Anonymous], STAT ANAL ENG SCI [Anonymous], 2012, P RECSYS [Anonymous], 2012, P 6 ACM C REC SYST [Anonymous], 2012, NETFLIX RECOMMENDA 1 [Anonymous], 2012, PROC ACM RECSYS BAUMOL WJ, 1956, MANAGE SCI, V3, P93, DOI 10.1287/mnsc.3.1.93 Beldad A, 2010, COMPUT HUM BEHAV, V26, P857, DOI 10.1016/j.chb.2010.03.013 Ben Schafer J, 2001, DATA MIN KNOWL DISC, V5, P115, DOI 10.1023/A:1009804230409 Benbasat I, 2005, Journal of the Association for Information Systems, V6, P4, DOI [DOI 10.17705/1JAIS.00065, 10.17705/1jais.00065] Bharati P, 2004, DECIS SUPPORT SYST, V37, P187, DOI 10.1016/S0167-9236(03)00006-X Bollen D., 2010, P 4 ACM C REC SYST, P63, DOI [10.1145/1864708.1864724, DOI 10.1145/1864708.1864724] Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Colson E, 2014, P 8 ACM C REC SYST Cooke ADJ, 2002, J MARKETING RES, V39, P488, DOI 10.1509/jmkr.39.4.488.19121 Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Dourish P, 2004, PERS UBIQUIT COMPUT, V8, P19, DOI 10.1007/s00779-003-0253-8 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Flynn LJ, 2006, NY TIMES BK REV, P9 Ganesan S., 1994, J MARKETING, V58, P1, DOI DOI 10.2307/1252265 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Gorgoglione M., 2011, Proc. of the fifth ACM conference on RS, P85, DOI DOI 10.1145/2043932.2043951 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hu R., 2011, Proc. of the 16th Int'l Conf. on Intelligent User Interfaces (IUI '11), P347, DOI [10.1145/1943403.1943462, DOI 10.1145/1943403.1943462] Hunt N, 2014, 8 ACM C REC SYST FOS Jarvenpaa S. L., 1998, Journal of Management Information Systems, V14, P29 KAHN BE, 1991, J RETAILING, V67, P274 Knijnenburg BP, 2012, USER MODEL USER-ADAP, V22, P441, DOI 10.1007/s11257-011-9118-4 Knijnenburg BP, 2012, 6 ACM C REC SYST Koenigstein N., 2012, Proceedings of the sixth ACM Conference on Recommender Systems, P281 Komiak SYX, 2006, MIS QUART, V30, P941 Kwon O, 2009, EXPERT SYST APPL, V36, P1893, DOI 10.1016/j.eswa.2007.12.064 Lenzini G, 2009, ADBIS WORKSH, P121 Liang TP, 2006, J MANAGE INFORM SYST, V23, P45, DOI 10.2753/MIS0742-1222230303 Liu Q., 2012, P 6 ACM C RECOMMENDE, P285 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McDonald DG, 2003, COMMUN RES, V30, P60, DOI 10.1177/0093650202239026 McGinty L, 2003, LECT NOTES ARTIF INT, V2689, P276 McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 Mui YQ, 2006, WASHINGTON POST Panniello U, 2015, WORKING PAPER Panniello U, 2014, USER MODEL USER-ADAP, V24, P35, DOI 10.1007/s11257-012-9135-y Panniello Umberto, 2009, P 3 ACM C REC SYST, P265, DOI [10.1145/1639714.1639764, DOI 10.1145/1639714.1639764] Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Pavlou PA, 2007, MIS QUART, V31, P105 Pazzani M. J., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P325 Pu P, 2011, 5 ACM C REC SYST, P23 Schein AI, 2012, 25 INT ACM SIGIR C R, P253 Schoorman FD, 2007, ACAD MANAGE REV, V32, P344, DOI 10.5465/AMR.2007.24348410 Shmueli G, 2011, MIS QUART, V35, P553 Simonson I, 2005, J MARKETING, V69, P32, DOI 10.1509/jmkg.69.1.32.55512 Smyth B, 2001, LECT NOTES ARTIF INT, V2080, P347 Smyth B, 2012, P 6 ACM C REC SYST, P289 Swearingen K., 2001, ACM SIGIR WORKSH REC, P393 Swearingen K, 2002, C DES INT SYST, P25 Vargas S., 2011, P 5 ACM C REC SYST, P109, DOI DOI 10.1145/2043932.2043955 Xiao B, 2007, MIS QUART, V31, P137 Zhang C, 2011, MIS Q, V35, P859 Zhang M, 2009, 2009 ACM C REC SYST, P123 Ziegler C-N, 2005, P 14 INT C WORLD WID, P22, DOI DOI 10.1145/1060745.1060754 NR 64 TC 47 Z9 50 U1 6 U2 134 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD MAR PY 2016 VL 27 IS 1 BP 182 EP 196 DI 10.1287/isre.2015.0610 PG 15 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA DL4JI UT WOS:000375600200011 DA 2024-03-27 ER PT J AU Iwanaga, J Nishimura, N Sukegawa, N Takano, Y AF Iwanaga, Jiro Nishimura, Naoki Sukegawa, Noriyoshi Takano, Yuichi TI Improving collaborative filtering recommendations by estimating user preferences from clickstream data SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Collaborative filtering; User preference; Rating matrix; Clickstream data; E-commerce; Recommender system ID MATRIX-FACTORIZATION; SYSTEMS; RATINGS; ONTOLOGY; COMMERCE; CONTEXT; CHOICE; NOISY; MODEL; TRUST AB For practical applications of collaborative filtering, we need a user-item rating matrix that encodes user preferences for items. However, estimation of user preferences is inevitably affected by some degree of noise, which can markedly degrade the recommender performance. The primary aim of this research is to obtain a high-quality rating matrix by the effective use of clickstream data, which are a record of a user's page view (PV) history on an e-commerce site. To this end, we use the shape-restricted optimization model for estimating item-choice probabilities from the recency and frequency of each user's previous PVs. Experimental results based on real-world clickstream data demonstrate that higher recommender performance is achieved with our method than with baseline methods for constructing a rating matrix. Moreover, high recommender performance is maintained by our shape-restricted estimation even when only a limited number of training samples are available. C1 [Iwanaga, Jiro] Retty Inc, Minato Ku, Sumitomo Fudosan Azabu Juban Bldg,1-4-1 Mita, Tokyo 1080073, Japan. [Nishimura, Naoki] Recruit Lifestyle Co Ltd, Chiyoda Ku, GranTokyo South Tower,1-9-2 Marunouchi, Tokyo 1006640, Japan. [Sukegawa, Noriyoshi] Tokyo Univ Sci, Katsushika Ku, 6-3-1 Niijuku, Tokyo 1258585, Japan. [Takano, Yuichi] Univ Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan. C3 Tokyo University of Science; University of Tsukuba RP Sukegawa, N (autor correspondiente), Tokyo Univ Sci, Katsushika Ku, 6-3-1 Niijuku, Tokyo 1258585, Japan. EM sukegawa@rs.tus.ac.jp RI Sukegawa, Noriyoshi/AAW-8223-2021 OI Sukegawa, Noriyoshi/0000-0002-3560-0036 FU JSPS KAKENHI [JP17K12983] FX The authors would like to thank Recruit Lifestyle Co., Ltd.2 for providing the clickstream data used in the experiments. This work was supported by JSPS KAKENHI Grant No. JP17K12983. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Akcayol MA, 2018, ELECTRON COMMER R A, V28, P86, DOI 10.1016/j.elerap.2018.01.013 Amatriain X, 2009, LECT NOTES COMPUT SC, V5535, P247, DOI 10.1007/978-3-642-02247-0_24 Amatriain Xavier, 2009, P 3 ACM C REC SYST R, P247, DOI [10.1145/1639714.1639744, DOI 10.1145/1639714.1639744] [Anonymous], 2016, RECOMMENDER SYSTEMS, DOI DOI 10.1007/978-3-319-29659-3 Ansari S, 2001, 2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P27, DOI 10.1109/ICDM.2001.989497 Ar Y, 2016, EXPERT SYST APPL, V61, P122, DOI 10.1016/j.eswa.2016.05.021 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Bobadilla J, 2012, INFORM SCIENCES, V185, P1, DOI 10.1016/j.ins.2011.09.014 Bucklin RE, 2009, J INTERACT MARK, V23, P35, DOI 10.1016/j.intmar.2008.10.004 Campos PG, 2014, USER MODEL USER-ADAP, V24, P67, DOI 10.1007/s11257-012-9136-x Campos PG, 2010, PROCEEDINGS OF THE RECSYS'2010 ACM CHALLENGE ON CONTEXT-AWARE MOVIE RECOMMENDATION (CAMRA2010), P20, DOI 10.1145/1869652.1869655 Chen G, 2009, INFORM PROCESS MANAG, V45, P368, DOI 10.1016/j.ipm.2008.12.004 Cho YH, 2004, EXPERT SYST APPL, V26, P233, DOI 10.1016/S0957-4174(03)00138-6 Ding Y, 2006, P 17 AUSTR DAT C ADC, V49, P99 Ding Y., 2005, PROC 14 ACM INT C IN, P485, DOI DOI 10.1145/1099554.1099689 Ekstrand Michael D., 2010, Foundations and Trends in Human-Computer Interaction, V4, P81, DOI 10.1561/1100000009 Gadanho S, 2007, RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P97 Gordea S, 2007, LECT NOTES COMPUT SC, V4831, P171 Guo GB, 2014, ELECTRON COMMER R A, V13, P440, DOI 10.1016/j.elerap.2014.10.003 Hafshejani ZY, 2018, ELECTRON COMMER RES, V18, P813, DOI 10.1007/s10660-018-9287-x Han H, 2018, ELECTRON COMMER R A, V30, P38, DOI 10.1016/j.elerap.2018.05.005 Pham HX, 2013, MULTIMED TOOLS APPL, V65, P119, DOI 10.1007/s11042-012-1119-8 Hernando A, 2016, KNOWL-BASED SYST, V97, P188, DOI 10.1016/j.knosys.2015.12.018 Hong WX, 2012, EXPERT SYST APPL, V39, P12398, DOI 10.1016/j.eswa.2012.04.082 Hwang WY, 2018, ELECTRON COMMER R A, V29, P12, DOI 10.1016/j.elerap.2018.03.002 Hwangbo H, 2018, ELECTRON COMMER R A, V28, P94, DOI 10.1016/j.elerap.2018.01.012 Iwanaga J, 2016, KNOWL-BASED SYST, V99, P157, DOI 10.1016/j.knosys.2016.02.006 Jahrer Michael, 2010, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD'10, P693, DOI [DOI 10.1145/1835804.1835893, 10.1145/1835804.1835893] Jawaheer G, 2014, ACM T INTERACT INTEL, V4, DOI 10.1145/2512208 Ji K, 2016, NEUROCOMPUTING, V173, P912, DOI 10.1016/j.neucom.2015.08.046 Kai Y, 2002, SIAM PROC S, P59 Karatzoglou Alexandros., 2011, Proceedings of the fifth ACM conference on Recommender systems, P313 Kermany NR, 2017, ELECTRON COMMER R A, V21, P50, DOI 10.1016/j.elerap.2016.12.005 Kim YS, 2011, EXPERT SYST APPL, V38, P13320, DOI 10.1016/j.eswa.2011.04.154 Koohi H, 2017, EXPERT SYST APPL, V83, P30, DOI 10.1016/j.eswa.2017.04.027 Koren Y, 2010, ACM T KNOWL DISCOV D, V4, DOI 10.1145/1644873.1644874 Koren Y, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P447 Kwon Y, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P307 Larrain Santiago, 2015, P 9 ACM C REC SYST, P269 Latha R, 2015, COMM COM INF SC, V566, P46, DOI 10.1007/978-3-319-26404-2_4 Leal F, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.11.004 Lee DD, 1999, NATURE, V401, P788, DOI 10.1038/44565 Lee DD, 2001, ADV NEUR IN, V13, P556 Lee TQ, 2008, EXPERT SYST APPL, V34, P3055, DOI 10.1016/j.eswa.2007.06.031 Li B, 2013, WORLD WIDE WEB, V16, P677, DOI 10.1007/s11280-012-0161-9 Li SSY, 2015, J ASSOC INF SYST, V16, P72, DOI 10.17705/1jais.00389 Li X, 2015, EXPERT SYST APPL, V42, P4274, DOI 10.1016/j.eswa.2015.01.054 Liao CL, 2016, ELECTRON COMMER R A, V18, P1, DOI 10.1016/j.elerap.2016.05.001 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Liu GM, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P155, DOI 10.1145/2939672.2939674 Liu MS, 2017, KNOWL-BASED SYST, V119, P178, DOI 10.1016/j.knosys.2016.12.010 Liu Nathan N, 2010, P 19 ACM INT C INF K, P1445, DOI DOI 10.1145/1871437.1871643 Liu XJ, 2017, CLUSTER COMPUT, V20, P1281, DOI 10.1007/s10586-017-0807-6 Luo X, 2014, IEEE T IND INFORM, V10, P1273, DOI 10.1109/TII.2014.2308433 Ma X, 2017, ELECTRON COMMER R A, V25, P29, DOI 10.1016/j.elerap.2017.06.005 Mobasher B., 2001, PROC IJCAI 2001 WORK, P53 Najafabadi MK, 2017, COMPUT HUM BEHAV, V67, P113, DOI 10.1016/j.chb.2016.11.010 Nilashi M, 2018, EXPERT SYST APPL, V92, P507, DOI 10.1016/j.eswa.2017.09.058 Nilashi M, 2016, ELECTRON COMMER R A, V19, P70, DOI 10.1016/j.elerap.2016.09.003 Nilashi M, 2015, INFORM SCIENCES, V293, P235, DOI 10.1016/j.ins.2014.09.012 Nishimura N, 2018, INFORM SCIENCES, V429, P406, DOI 10.1016/j.ins.2017.11.014 O'Mahony M. P., 2006, 2006 International Conference on Intelligent User Interfaces, P109, DOI 10.1145/1111449.1111477 Parra D., 2011, P CARS 2011 Polatidis N, 2016, EXPERT SYST APPL, V48, P100, DOI 10.1016/j.eswa.2015.11.023 Resnick P., 1994, Transcending Boundaries, CSCW '94. Proceedings of the Conference on Computer Supported Cooperative Work, P175, DOI 10.1145/192844.192905 Ricci F, 2015, RECOMMENDER SYSTEMS Salah A, 2016, NEUROCOMPUTING, V175, P206, DOI 10.1016/j.neucom.2015.10.050 Sarwar B., 2001, P 10 INT C WORLD WID, P285 Su Q, 2015, ELECTRON COMMER R A, V14, P1, DOI 10.1016/j.elerap.2014.10.002 Tian G, 2017, INFORM SYST FRONT, V19, P75, DOI 10.1007/s10796-015-9590-1 Umyarov A, 2011, ACM T WEB, V5, DOI 10.1145/1921591.1921594 Nguyen VD, 2017, ELECTRON COMMER R A, V26, P101, DOI 10.1016/j.elerap.2017.10.002 Villegas NM, 2018, KNOWL-BASED SYST, V140, P173, DOI 10.1016/j.knosys.2017.11.003 Xu Y, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P313, DOI [10.1145/2939672.2939703, 10.1007/978-3-319-32025-0_20] Yang JF, 2010, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING, VOL I AND II, P19 Yera R, 2016, APPL SOFT COMPUT, V40, P187, DOI 10.1016/j.asoc.2015.10.060 Toledo RY, 2015, KNOWL-BASED SYST, V76, P96, DOI 10.1016/j.knosys.2014.12.011 Yu X, 2018, KNOWL-BASED SYST, V141, P80, DOI 10.1016/j.knosys.2017.11.010 Zhang J, 2016, APPL INTELL, V45, P230, DOI 10.1007/s10489-015-0756-9 Zhang S, 2006, SIAM PROC S, P549 Zimdars A., 2001, P 17 C UNC ART INT U, P580 NR 82 TC 17 Z9 17 U1 0 U2 36 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD SEP-OCT PY 2019 VL 37 AR 100877 DI 10.1016/j.elerap.2019.100877 PG 12 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA JC1QV UT WOS:000489053400002 DA 2024-03-27 ER PT J AU Deng, WW AF Deng, Weiwei TI Leveraging consumer behaviors for product recommendation: an approach based on heterogeneous network SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Product recommendation; Recommender system; Consumer behavior; Heterogeneous network; Electronic commerce ID PERSONALIZED RECOMMENDATION; RELEVANCE MEASURE; INFORMATION; SYSTEM AB Consumer behaviors (e.g., clicking products, adding products to favorites, adding products to carts, and purchasing products) play important roles in inferring consumers' interests for product recommendation. Although studies have been conducted to incorporate the consumer behaviors for product recommendation, the heterogeneity of the behaviors and their composites were seldom explored for product recommendation. There is a need to capture the heterogeneity of the consumer behaviors and reveal their importance in the product recommendation because the behaviors indicate different consumer preferences for products. To bridge the gap, this research proposes a heterogeneous network-based approach to leverage the consumer behaviors for product recommendation. The proposed approach represents consumers and products as different types of nodes and behaviors as different types of edges. Meta paths that describe behavioral relationships between the consumers and products are used to calculate their similarities, which are further used to generate recommendations. To select informative meta paths for product recommendation, a heuristic selection mechanism is proposed. Besides, the research uses a non-negative matrix factorization method to learn the weights of the selected meta paths and then makes personalized recommendations for consumers. Experimental results based on real-world data demonstrate that the proposed approach not only helps to understand the roles of different consumer behaviors in product recommendation, but also achieves better recommendation performance than several baseline methods. C1 [Deng, Weiwei] South China Normal Univ, Sch Econ & Management, Waihuan Xi Rd 378, Guangzhou, Guangdong, Peoples R China. C3 South China Normal University RP Deng, WW (autor correspondiente), South China Normal Univ, Sch Econ & Management, Waihuan Xi Rd 378, Guangzhou, Guangdong, Peoples R China. EM weiweideng@m.scnu.edu.cn CR Castro J, 2018, INT J INTELL SYST, V33, P2058, DOI 10.1002/int.21922 Castro J, 2015, INT J INTELL SYST, V30, P887, DOI 10.1002/int.21730 Cooper C, 2014, WWW'14 COMPANION: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P811, DOI 10.1145/2567948.2579244 DENG W., 2017, ICIS 2017 P He XJ, 2019, KNOWL-BASED SYST, V184, DOI 10.1016/j.knosys.2019.104899 Hidasi B., 2016, ICLR, P1, DOI DOI 10.48550/ARXIV.1511.06939 Hu L, 2017, IEEE ACCESS, V5, P19773, DOI 10.1109/ACCESS.2017.2751682 Jing N, 2018, ELECTRON COMMER RES, V18, P159, DOI 10.1007/s10660-017-9275-6 Kang D, 2019, MULTIMED TOOLS APPL, V78, P3267, DOI 10.1007/s11042-018-6733-7 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Lao N., 2010, P 16 ACM SIGKDD INT, P881 Lin CJ, 2007, NEURAL COMPUT, V19, P2756, DOI 10.1162/neco.2007.19.10.2756 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Liu HZ, 2019, KNOWL-BASED SYST, V181, DOI 10.1016/j.knosys.2019.05.027 Liu Y, 2019, EXPERT SYST, V36, DOI 10.1111/exsy.12365 Meng XF, 2014, LECT NOTES COMPUT SC, V8709, P636, DOI 10.1007/978-3-319-11116-2_61 Mishra R, 2015, DECIS SUPPORT SYST, V75, P1, DOI 10.1016/j.dss.2015.04.004 Oramas S, 2017, ACM T INTEL SYST TEC, V8, DOI 10.1145/2926718 Pourgholamali F, 2017, ELECTRON COMMER R A, V25, P70, DOI 10.1016/j.elerap.2017.08.001 Ru Jia, 2017, 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), P1, DOI 10.1109/CITS.2017.8035294 Shani G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P257, DOI 10.1007/978-0-387-85820-3_8 Shi C, 2019, IEEE T KNOWL DATA EN, V31, P357, DOI 10.1109/TKDE.2018.2833443 Shi C, 2017, IEEE T KNOWL DATA EN, V29, P17, DOI 10.1109/TKDE.2016.2598561 Shi C, 2014, IEEE T KNOWL DATA EN, V26, P2479, DOI 10.1109/TKDE.2013.2297920 Sun JS, 2020, ELECTRON COMMER RES, V20, P147, DOI 10.1007/s10660-019-09390-3 Sun LH, 2020, ELECTRON COMMER RES, V20, P857, DOI 10.1007/s10660-018-9319-6 Sunt YZ, 2011, PROC VLDB ENDOW, V4, P992 Wang JZ, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P839, DOI 10.1145/3219819.3219869 Wang Q, 2019, INT J ELECTRON COMM, V23, P147, DOI 10.1080/10864415.2018.1564549 Wang Q, 2017, DECIS SUPPORT SYST, V103, P46, DOI 10.1016/j.dss.2017.09.001 Wang Q, 2019, ELECTRON COMMER RES, V19, P59, DOI 10.1007/s10660-018-09325-4 Wei X, 2019, LECT NOTES ARTIF INT, V11775, P72, DOI 10.1007/978-3-030-29551-6_7 Wu S, 2019, AAAI CONF ARTIF INTE, P346 Xu W, 2016, J NETW COMPUT APPL, V59, P362, DOI 10.1016/j.jnca.2015.01.003 Xu YH, 2019, DECIS SUPPORT SYST, V119, P1, DOI 10.1016/j.dss.2019.01.004 Yu JL, 2018, CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P357, DOI 10.1145/3269206.3271725 Zhang JH, 2018, INFORM SYST FRONT, V20, P617, DOI 10.1007/s10796-016-9697-z Zhang MY, 2019, ACM T KNOWL DISCOV D, V13, DOI 10.1145/3320277 Zhou LC, 2020, ELECTRON COMMER RES, V20, P321, DOI 10.1007/s10660-020-09411-6 NR 39 TC 2 Z9 2 U1 12 U2 46 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD DEC PY 2022 VL 22 IS 4 BP 1079 EP 1105 DI 10.1007/s10660-020-09441-0 EA NOV 2020 PG 27 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 5W8QD UT WOS:000589577500001 DA 2024-03-27 ER PT J AU Dong, XS Tu, HQ Zhu, HZ Liu, TL Zhao, X Xie, K AF Dong, Xiaosong Tu, Hanqi Zhu, Hanzhe Liu, Tianlang Zhao, Xing Xie, Kai TI Does diversity facilitate consumer decisions: a comparative perspective based on single-category versus multi-category products SO ASIA PACIFIC JOURNAL OF MARKETING AND LOGISTICS LA English DT Article; Early Access DE Information diversity; Online visitor heterogeneity; Consumer decision making; Recommender systems; Online marketing ID SEGMENTATION; COMPLEXITY AB PurposeThis study aims to explore the opposite effects of single-category versus multi-category products information diversity on consumer decision making. Further, the authors investigate the moderating role of three categories of visitors - direct, hesitant and hedonic - in the relationship between product information diversity and consumer decision making.Design/methodology/approachThe research utilizes a sample of 1,101,062 product click streams from 4,200 consumers. Visitors are clustered using the k-means algorithm. The diversity of information recommendations for single and multi-category products is characterized using granularity and dispersion, respectively. Empirical analysis is conducted to examine their influence on the two-stage decision-making process of heterogeneous online visitors.FindingsThe study reveals that the impact of recommended information diversity on consumer decision making differs significantly between single-category and multiple-category products. Specifically, information diversity in single-category products enhances consumers' click and purchase intention, while information diversity in multiple-category products reduces consumers' click and purchase intention. Moreover, based on the analysis of online visiting heterogeneity, hesitant, direct and hedonic features enhance the positive impact of granularity on consumer decision making; while direct features exacerbate the negative impact of dispersion on consumer decision making.Originality/valueFirst, the article provides support for studies related to information cocoon. Second, the research contributes evidence to support the information overload theory. Third, the research enriches the field of precision marketing theory. C1 [Dong, Xiaosong; Tu, Hanqi; Liu, Tianlang; Xie, Kai] Nanchang Univ, Res Ctr Econ & Social Dev Cent China, Sch Econ & Management, Nanchang, Peoples R China. [Dong, Xiaosong] Shanghai Univ Engn Sci, Sch Management, Shanghai, Peoples R China. [Zhu, Hanzhe] Univ Alberta, Edmonton, AB, Canada. [Zhao, Xing] Shanghai Univ Engn Sci, Sch Management, Shanghai, Peoples R China. C3 Nanchang University; Shanghai University of Engineering Science; University of Alberta; Shanghai University of Engineering Science RP Zhao, X (autor correspondiente), Shanghai Univ Engn Sci, Sch Management, Shanghai, Peoples R China. EM 1246191958@qq.com FU This work was supported by the National Natural Science Foundation of China and "14th Five-Year Plan" (2021) Fund Project of Social Sciences in Jiangxi Province (Grant number 72272072, 21GL01). [2021]; National Natural Science Foundation of China [72272072, 21GL01]; Fund Project of Social Sciences in Jiangxi Province FX This work was supported by the National Natural Science Foundation of China and "14th Five-Year Plan" (2021) Fund Project of Social Sciences in Jiangxi Province (Grant number 72272072, 21GL01). CR Battistello L, 2021, CIRP J MANUF SCI TEC, V35, P517, DOI 10.1016/j.cirpj.2021.08.008 Brzeczek T, 2020, REV MANAG SCI, V14, P1009, DOI 10.1007/s11846-018-0315-y Burson KA, 2007, J CONSUM RES, V34, P104, DOI 10.1086/513051 [车敬上 Che Jingshang], 2019, [心理科学进展, Advances in Psychological Science], V27, P1758 CHEWNING EG, 1990, ACCOUNT ORG SOC, V15, P527, DOI 10.1016/0361-3682(90)90033-Q Dellaert BGC, 2012, J MARKETING RES, V49, P424, DOI 10.1509/jmr.09.0315 Feng YY, 2000, OPER RES, V48, P332, DOI 10.1287/opre.48.2.332.13373 Hu HF, 2019, J BUS RES, V100, P27, DOI 10.1016/j.jbusres.2019.03.011 Huseynov F, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019854639 Ireland NJ, 2007, J IND ECON, V55, P235, DOI 10.1111/j.1467-6451.2007.00310.x Li YR, 2021, BEHAV INFORM TECHNOL, V40, P1448, DOI 10.1080/0144929X.2020.1759691 Liao SH, 2020, ASIA PAC J MARKET LO, V32, P589, DOI 10.1108/APJML-03-2019-0211 Lin Y., 2021, Journal of Information Science, V49, P302 Liu HP, 2021, J INTELL FUZZY SYST, V40, P6529, DOI 10.3233/JIFS-189491 Liu W, 2022, DISCRETE DYN NAT SOC, V2022, DOI 10.1155/2022/1326579 Liu Y, 2015, ANN OPER RES, V233, P263, DOI 10.1007/s10479-013-1443-z Lo Papa G, 2011, GEOMORPHOLOGY, V135, P332, DOI 10.1016/j.geomorph.2011.02.015 Lurie NH, 2004, J CONSUM RES, V30, P473, DOI 10.1086/380283 Ma BJ, 2012, ELECTRON COMMER R A, V11, P560, DOI 10.1016/j.elerap.2012.09.001 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Muvengwi J, 2019, URBAN FOR URBAN GREE, V43, DOI 10.1016/j.ufug.2019.126370 Nambiar A., 2022, Plos One, V17 Otondo RF, 2008, INFORM MANAGE-AMSTER, V45, P21, DOI 10.1016/j.im.2007.09.003 Park SH, 2013, INT J ELECTRON COMM, V18, P51, DOI 10.2753/JEC1086-4415180202 Pipitwanichakarn T, 2021, ASIA PAC J MARKET LO, V33, P1415, DOI 10.1108/APJML-10-2018-0448 Punhani A, 2022, IEEE ACCESS, V10, P115025, DOI 10.1109/ACCESS.2022.3215568 Qin R, 2017, ELECTRON COMMER R A, V24, P68, DOI 10.1016/j.elerap.2017.07.001 Sasaki T, 2011, J ECON PSYCHOL, V32, P391, DOI 10.1016/j.joep.2011.02.010 Sohrabi M, 2024, MOL BIOTECHNOL, V66, P424, DOI 10.1007/s12033-022-00630-w Sondhi N, 2023, ASIA PAC J MARKET LO, V35, P380, DOI 10.1108/APJML-07-2021-0492 Song Keyong-Seog, 2020, [Journal of Digital Convergence, 디지털융복합연구], V18, P137, DOI 10.14400/JDC.2020.18.4.137 Tan AH, 2022, IEEE T CYBERNETICS, V52, P192, DOI 10.1109/TCYB.2020.2973379 Tjahjaningsih E, 2020, J ASIAN FINANC ECON, V7, P481, DOI 10.13106/jafeb.2020.vol7.no12.481 Torres A., 2007, IADIS INT C E COMM Tsekouras D, 2020, J ACAD MARKET SCI, V48, P186, DOI 10.1007/s11747-019-00682-6 Wan X, 2017, INT J PROD ECON, V186, P123, DOI 10.1016/j.ijpe.2017.02.002 Wu IC, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102323 Wu JH, 2014, DECIS SUPPORT SYST, V58, P43, DOI 10.1016/j.dss.2013.01.015 Yang Z., 2023, Iscience, V26 Zavali M, 2023, IEEE T ENG MANAGE, V70, P1353, DOI 10.1109/TEM.2021.3070069 NR 40 TC 0 Z9 0 U1 30 U2 30 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1355-5855 EI 1758-4248 J9 ASIA PAC J MARKET LO JI Asia Pac. J. Market. Logist. PD 2023 NOV 7 PY 2023 DI 10.1108/APJML-05-2023-0395 EA NOV 2023 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA W9ML8 UT WOS:001094797300001 DA 2024-03-27 ER PT J AU McGinty, L Smyth, B AF McGinty, Lorraine Smyth, Barry TI Adaptive selection: An analysis of critiquing and preference-based feedback in conversational recommender systems SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE adaptive e-commerce applications; conversational recommender systems; critiquing; feedback elicitation; preference-based feedback; similarity and diversity AB E-commerce recommender systems help consumers to locate products within a complex product-space. Conversational recommender systems engage the user in a multi-cycle session, suggesting one or more products during each cycle, and using the feedback to inform the suggestions for the next cycle. By combining user feedback over several cycles, the system obtains a clear picture of the product the user wishes to purchase. As demonstrated under several experimental conditions, the performance of recommender systems is dramatically improved by the technique of adaptive selection, which employs critiquing and preference-based feedback, and emphasizes product diversity rather than similarity as a selection constraint. C1 Univ Coll Dublin, Sch Comp Sci & Informat, Dublin, Ireland. C3 University College Dublin RP McGinty, L (autor correspondiente), Univ Coll Dublin, Sch Comp Sci & Informat, Dublin, Ireland. EM lorraine.mcginty@ucd.ie; barry.smyth@ucd.ie RI Smyth, Barry/AAY-9953-2020 OI Smyth, Barry/0000-0003-0962-3362 CR [Anonymous], P 17 INT JOINT C ART Bridge D, 2002, LECT NOTES ARTIF INT, V2416, P43 BRIDGE D, 2001, WORKSH CBR EL COMM, P1 Bridge DerekG., 2002, ECCBR Workshops, P9 Burke R., 2000, ENCY LIB INFORM SYST, V69, P32 Burke RD, 1996, PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, P462 Chen LC, 2004, LECT NOTES COMPUT SC, V3073, P1 COSTELLO E, 2006, P 11 INT C INT US IN, P282 Coyle L, 2004, LECT NOTES COMPUT SC, V3155, P560 DOYLE M, 2000, P 5 EUR WORKSH CAS B, P49 Faltings Boi, 2004, P 9 INT C INTELLIGEN, P22 GOKER M, 2000, P 5 EUR WORKSH CAS B, P99 Huan Pearl, 2004, P 5 ACM C EL COMM, P208 LEAKE DB, 1996, CASE BASED REASONING McCarthy K, 2004, LECT NOTES COMPUT SC, V3137, P176 MCCARTHY K, 2004, P INT C INT US INT, P175 McCarthy K., 2005, P INT FLAIRS C 2005, P123 McGinty L, 2002, LECT NOTES ARTIF INT, V2416, P575 McGinty L, 2003, LECT NOTES ARTIF INT, V2689, P276 McGinty L., 2003, P WORKSHOP PERSONALI, P20 MCGINTY L, 2002, P WORKSH PERS ECOMM, P80 McSherry D, 2002, LECT NOTES ARTIF INT, V2416, P219 NADER M, 2005, P IEEE INT C ETECHN, P772 PRICE B, 2005, P 20 NAT C ART INT, P541 Pu P, 2004, IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2004), PROCEEDINGS, P724, DOI 10.1109/WI.2004.10058 Pu P, 2004, CONSTRAINTS, V9, P289, DOI 10.1023/B:CONS.0000049205.05581.24 Reilly J, 2004, LECT NOTES COMPUT SC, V3155, P763 Ricci F., 2005, Information and Communication Technologies in Tourism 2005, P172 Schafer J., 2001, DATA MIN KNOWL DISC, V5, P115, DOI DOI 10.1023/A:1009804230409 Shardanand U., 1995, Human Factors in Computing Systems. CHI'95 Conference Proceedings, P210, DOI 10.1145/223904.223931 Shearin S., 2001, The 6th International Conference on Intelligent User Interfaces (IUI '01), P145 Shimazu H., 2001, Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-2001), P1443 Smyth B, 2001, LECT NOTES ARTIF INT, V2080, P347 SMYTH B, 2003, P 18 INT JOINT C ART, P127 NR 34 TC 35 Z9 39 U1 1 U2 11 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1086-4415 EI 1557-9301 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD WIN PY 2006 VL 11 IS 2 BP 35 EP 57 DI 10.2753/JEC1086-4415110202 PG 23 WC Business; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 119YF UT WOS:000243049700003 DA 2024-03-27 ER PT J AU Farias, VF Li, AA AF Farias, Vivek F. Li, Andrew A. TI Learning Preferences with Side Information SO MANAGEMENT SCIENCE LA English DT Article DE personalization; e-commerce; online retail; recommender systems; collaborative filtering; matrix recovery; tensor recovery; side information; multi-interaction data ID RECOMMENDER SYSTEMS; MATRIX; NUMBER; DECOMPOSITIONS; OPTIMIZATION AB Product and content personalization is now ubiquitous in e-commerce. There are typically not enough available transactional data for this task. As such, companies today seek to use a variety of information on the interactions between a product and a customer to drive personalization decisions. We formalize this problem as one of recovering a large-scale matrix with side information in the form of additional matrices of conforming dimension. Viewing the matrix we seek to recover and the side information we have as slices of a tensor, we consider the problem of slice recovery, which is to recover specific slices of "simple" tensors from noisy observations of the entire tensor. We propose a definition of simplicity that on the one hand elegantly generalizes a standard generative model for our motivating problem and on the other hand subsumes low-rank tensors for a variety of existing definitions of tensor rank. We provide an efficient algorithm for slice recovery that is practical for massive data sets and provides a significant performance improvement over state-of-the-art incumbent approaches to tensor recovery. Furthermore, we establish near-optimal recovery guarantees that, in an important regime, represent an order improvement over the best available results for this problem. Experiments on data from a music streaming service demonstrate the performance and scalability of our algorithm. C1 [Farias, Vivek F.] MIT, Sloan Sch Management, Cambridge, MA 02142 USA. [Li, Andrew A.] MIT, Operat Res Ctr, Cambridge, MA 02142 USA. C3 Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT) RP Farias, VF (autor correspondiente), MIT, Sloan Sch Management, Cambridge, MA 02142 USA. EM vivekf@mit.edu; aali@mit.edu OI Farias, Vivek/0000-0002-5856-9246; /0000-0002-9552-6421 CR Acar E, 2005, LECT NOTES COMPUT SC, V3495, P256 Achlioptas D, 2007, J ACM, V54, DOI 10.1145/1219092.1219097 Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 [Anonymous], DAIMI REP Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 Bahadori Mohammad Taha, 2014, ADV NEURAL INFORM PR, P3491 Bernhardsson E, 2014, MACH LEARN C APR 14 Berry MW, 1995, SIAM REV, V37, P573, DOI 10.1137/1037127 Besbes O., 2015, MANUFACTURING SERVIC, V18, P15 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Candès EJ, 2011, IEEE T INFORM THEORY, V57, P2342, DOI 10.1109/TIT.2011.2111771 Candès EJ, 2010, IEEE T INFORM THEORY, V56, P2053, DOI 10.1109/TIT.2010.2044061 CARROLL JD, 1970, PSYCHOMETRIKA, V35, P283, DOI 10.1007/BF02310791 CATTELL RB, 1966, MULTIVAR BEHAV RES, V1, P245, DOI 10.1207/s15327906mbr0102_10 Chatterjee S, 2015, ANN STAT, V43, P177, DOI 10.1214/14-AOS1272 Chiang K.-Y., 2015, Advances in Neural Information Processing Systems, P3429 Chung TS, 2009, MARKET SCI, V28, P52, DOI 10.1287/mksc.1080.0371 Demirezen EM, 2016, PROD OPER MANAG, V25, P593, DOI 10.1111/poms.12540 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gandy S, 2011, INVERSE PROBL, V27, DOI 10.1088/0266-5611/27/2/025010 Garfinkel R, 2008, DECIS SUPPORT SYST, V46, P61, DOI 10.1016/j.dss.2008.05.006 Gavish M, 2014, IEEE T INFORM THEORY, V60, P5040, DOI 10.1109/TIT.2014.2323359 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 GOLDBERG D, 1992, COMMUN ACM, V35, P61, DOI 10.1145/138859.138867 Grey P, 2015, EXPORT X 1211 Gross D, 2011, IEEE T INFORM THEORY, V57, P1548, DOI 10.1109/TIT.2011.2104999 GROVER R, 1987, J MARKETING RES, V24, P139, DOI 10.2307/3151504 Harris A., 2015, FAST CO HENRION R, 1994, CHEMOMETR INTELL LAB, V25, P1, DOI 10.1016/0169-7439(93)E0086-J Hoff PD, 2007, J AM STAT ASSOC, V102, P674, DOI 10.1198/016214506000001310 Hosanagar K., 2008, P 2008 INT C INF SYS Huang B, 2015, PAC J OPTIM, V11, P339 Jacobs BJD, 2016, MARKET SCI, V35, P389, DOI 10.1287/mksc.2016.0985 Jain P., 2014, Advances in Neural Information Processing Systems, P1431 Jain P. K., 2013, WORKING PAPER Keshavan RH, 2010, IEEE T INFORM THEORY, V56, P2980, DOI 10.1109/TIT.2010.2046205 Kleinberg JM, 1999, J ACM, V46, P604, DOI 10.1145/324133.324140 Kolda TG, 2009, SIAM REV, V51, P455, DOI 10.1137/07070111X Koltchinskii V, 2011, ANN STAT, V39, P2302, DOI 10.1214/11-AOS894 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Liu J, 2013, IEEE T PATTERN ANAL, V35, P208, DOI 10.1109/TPAMI.2012.39 Liu Y., 2014, P ADV NEUR INF PROC, V2, P1763 Morup M, 2011, WIRES DATA MIN KNOWL, V1, P24, DOI 10.1002/widm.1 Mu C, 2013, WORKING PAPER Naik P, 2008, MARKET LETT, V19, P201, DOI 10.1007/s11002-008-9036-3 Oliver NM, 2000, IEEE T PATTERN ANAL, V22, P831, DOI 10.1109/34.868684 Owen AB, 2009, ANN APPL STAT, V3, P564, DOI 10.1214/08-AOAS227 Papadimitriou C. H., 1998, Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1998, P159, DOI 10.1145/275487.275505 Pastur L.A., 1967, MATH USSR SB, V1, P457, DOI [10.1070/SM1967v001n04ABEH001994, 10.1070/sm1967v001n04abeh001994, DOI 10.1070/SM1967V001N04ABEH001994] Recht B, 2011, J MACH LEARN RES, V12, P3413 Romera-Paredes B., 2013, Advances in Neural Information Processing Systems, P2967 Romera-Paredes Bernardino, 2013, ICML, P1444 Shi Y, 2014, ACM COMPUT SURV, V47, DOI 10.1145/2556270 Signoretto M, 2014, MACH LEARN, V94, P303, DOI 10.1007/s10994-013-5366-3 Singh A, 2008, INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, P650 SIROVICH L, 1987, J OPT SOC AM A, V4, P519, DOI 10.1364/JOSAA.4.000519 So AMC, 2007, MATH PROGRAM, V109, P367, DOI 10.1007/s10107-006-0040-1 Soni A, 2016, IEEE T INFORM THEORY, V62, P3636, DOI 10.1109/TIT.2016.2549040 Statista, 2016, ANN NUMB WORLDW ACT Sun Jian-Tao., 2005, PROC WWW 05, P382, DOI DOI 10.1145/1060745.1060803 Suzuki T, 2015, PR MACH LEARN RES, V37, P1273 Tomioka R., 2011, ADV NEURAL INFORM PR, V24, P972 Tomioka Ryota, 2013, ADV NEURAL INFORM PR, P1331 Troyanskaya O, 2001, BIOINFORMATICS, V17, P520, DOI 10.1093/bioinformatics/17.6.520 Vasilescu MAO, 2002, LECT NOTES COMPUT SC, V2350, P447 WOLD S, 1978, TECHNOMETRICS, V20, P397, DOI 10.2307/1267639 Xu M., 2013, P C ADV NEUR INF PRO, P2301, DOI DOI 10.5555/2999792.2999869 YIN YQ, 1988, PROBAB THEORY REL, V78, P509, DOI 10.1007/BF00353874 Yuan M, 2016, FOUND COMPUT MATH, V16, P1031, DOI 10.1007/s10208-015-9269-5 Zheng Q., 2015, ADV NEURAL INFORM PR, V28, P3106 Zhou H, 2013, J AM STAT ASSOC, V108, P540, DOI 10.1080/01621459.2013.776499 NR 74 TC 28 Z9 32 U1 5 U2 52 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD JUL PY 2019 VL 65 IS 7 BP 3131 EP 3149 DI 10.1287/mnsc.2018.3092 PG 19 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA IJ2CB UT WOS:000475704700010 OA Green Submitted DA 2024-03-27 ER PT J AU Liu, X Datta, A Rzadca, K AF Liu, Xin Datta, Anwitaman Rzadca, Krzysztof TI Trust beyond reputation: A computational trust model based on stereotypes SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Security and trust; Computational trust; E-commerce; Multiagent systems; Information retrieval; Distributed systems; Recommender systems ID PEER; CONTEXT; SYSTEM AB Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"-essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information. (c) 2012 Elsevier B.V. All rights reserved. C1 [Liu, Xin] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland. [Datta, Anwitaman] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore. [Rzadca, Krzysztof] Univ Warsaw, Inst Informat, PL-00325 Warsaw, Poland. C3 Swiss Federal Institutes of Technology Domain; Ecole Polytechnique Federale de Lausanne; Nanyang Technological University; University of Warsaw RP Liu, X (autor correspondiente), Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland. EM x.liu@epfl.ch; anwitaman@ntu.edu.sg; krzadca@mimuw.edu.pl RI Datta, .Anwitaman/A-3713-2011 OI Datta, Anwitaman/0000-0002-4203-1572 FU A* Star TSRP [1021580038] FX This work has been supported in part by A* Star TSRP grant number 1021580038. CR Aringhieri R, 2006, J AM SOC INF SCI TEC, V57, P528, DOI 10.1002/asi.20307 Bartoszynski R, 2008, PROBABILITY AND STATISTICAL INFERENCE, 2ND EDITION, P1 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Buchegger S., 2004, P P2PECON Burnett C., 2010, Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, V1, P241, DOI DOI 10.1016/J.DSS.2005.05.019 Burnett C., 2011, P 14 INT WORKSH TRUS, P25 Cachin Christian, 2009, SIGACT News, V40, P81, DOI 10.1145/1556154.1556173 Conte R., 2002, REPUTATION ARTIFICIA Coons E. E., 2010, BIOFEEDBACK, V38, P101 Corbitt B. J., 2003, ELECTRON COMMER R A, V2, P203, DOI [DOI 10.1016/S1567-4223(03)00024-3, 10.1016/s1567-4223(03)00024-3] Gambetta D., 2000, Can We Trust Trust?, V13, P213, DOI [DOI 10.2307/591021, 10.2307/2234217] Josang A., 2003, P WORKSH FORM ASP SE Josang Audun., 2006, Proceedings of the 29th Australasian Computer Science Conference, ACSC, P85 Josang Audun., 2002, Proceedings of the 15th bled electronic commerce conference, V5, P2502 Kamvar S. D., 2003, P 12 INT C WORLD WID, P640, DOI [10.1145/775152.775242, DOI 10.1145/775152.775242] Kass Gordon V., 1980, Applied Statistics, V29, P119, DOI DOI 10.2307/2986296 Kaufman LM, 2009, IEEE SECUR PRIV, V7, P61, DOI 10.1109/MSP.2009.87 Kim HW, 2012, ELECTRON COMMER R A, V11, P241, DOI 10.1016/j.elerap.2011.06.003 Liu X., 2011, P 22 INT JOINT C ART Liu X., 2009, P 18 ACM C INF KNOWL Liu X., 2010, P 2010 IEEE 2 INT C Liu X., 2012, AAAI, P1938 Liu X, 2012, J NETW SYST MANAG, V20, P200, DOI 10.1007/s10922-011-9198-9 MacKay DJ, 2003, Information theory, inference, and learning algorithms Macskassy S. A., 2010, P 2010 INT C ADV SOC Mui L., 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sciences, P2431, DOI 10.1109/HICSS.2002.994181 Oxenham M. G., 2003, SPIE C SERIES Palmisano C, 2008, IEEE T KNOWL DATA EN, V20, P1535, DOI 10.1109/TKDE.2008.110 Quinlan J.R., 1992, Proceedings of the 5th Australian Joint Conference on Artificial Intelligence (AI'92), P343, DOI DOI 10.1142/9789814536271 Rahman AA., 1997, PROC ACM NEW SECURIT, P48, DOI 10.1145/283699.283739 Ravichandran A., 2006, SACMAT 2006. Proceedings of Eleventh ACM Symposium on Access Control Models and Technologies, P71 Regan K., 2006, P 21 NAT C ART INT, V2 Rich E., 1979, COGNITIVE SCI, V3, P329, DOI DOI 10.1207/S15516709COG0304_3 Sabater J., 2001, Proceedings of the Fifth International Conference on Autonomous Agents, P194, DOI 10.1145/375735.376110 Su X., 2009, Advances in artificial intelligence, V2009, P4, DOI [10.1155/2009/421425, DOI 10.1155/2009/421425] Sun L, 2005, LECT NOTES COMPUT SC, V3828, P651 Swamynathan G, 2005, LECT NOTES COMPUT SC, V3759, P82 Tadelis S, 2003, ECON THEOR, V21, P635, DOI 10.1007/s00199-002-0257-z Teacy WTL, 2006, AUTON AGENT MULTI-AG, V12, P183, DOI 10.1007/s10458-006-5952-x Tirole J, 1996, REV ECON STUD, V63, P1, DOI 10.2307/2298112 Wu F, 2011, ELECTRON COMMER R A, V10, P428, DOI 10.1016/j.elerap.2010.09.004 Xin L., 2011, 11030086 ARXIV Xin L., 2011, P 10 INT C AUT AG MU Xiong L, 2004, IEEE T KNOWL DATA EN, V16, P843, DOI 10.1109/TKDE.2004.1318566 Zhou RF, 2007, IEEE T PARALL DISTR, V18, P460, DOI 10.1109/TPDS.2007.1015 NR 46 TC 37 Z9 45 U1 0 U2 48 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JAN-FEB PY 2013 VL 12 IS 1 BP 24 EP 39 DI 10.1016/j.elerap.2012.07.001 PG 16 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 091AZ UT WOS:000315022400003 OA Green Submitted DA 2024-03-27 ER PT J AU Gupta, S Dixit, VS AF Gupta, Shalini Dixit, Veer Sain TI A Meta-Heuristic Algorithm Approximating Optimized Recommendations for E-Commerce Business Promotions SO INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY PROJECT MANAGEMENT LA English DT Article DE Clickstream; E-Commerce; Implicit Preference; Information Retrieval; Recommender System; Sequential Path; Sessions; Web Log Mining ID COLLABORATIVE RECOMMENDER; USER PROFILES; SYSTEM; BEHAVIOR; USAGE AB To provide personalized services such as online-product recommendations, it is usually necessary to model clickstream behavior of users if implicit preferences are taken into account. To accomplish this, web log mining is a promising approach that mines clickstream sessions and depicts frequent sequential paths that a customer follows while browsing e-commerce websites. Strong attributes are identified from the navigation behavior of users. These attributes reflect absolute preference (AP) of the customer towards a product viewed. The preferences are obtained only for the products clicked. These preferences are further refined by calculating the sequential preference (SP) of the user for the products. This paper proposes an intelligent recommender system known as SAPRS (sequential absolute preference-based recommender system) that embed these two approaches that are integrated to improve the quality of recommendation. The performance is evaluated using information retrieval methods. Extensive experiments were carried out to evaluate the proposed approach against state-of-the-art methods. C1 [Gupta, Shalini; Dixit, Veer Sain] Univ Delhi, Atma Ram Sanatan Dharma Coll, Dept Comp Sci, Delhi, India. C3 University of Delhi; Atma Ram Sanatan Dharma College RP Gupta, S (autor correspondiente), Univ Delhi, Atma Ram Sanatan Dharma Coll, Dept Comp Sci, Delhi, India. RI Dixit, Veer Sain/AAT-4833-2021; dixit, veer sain/C-8030-2013 OI Gupta, Shalini/0000-0002-4270-1222 CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G, 2011, RECOMMENDER SYSTEMS HANDBOOK, P217, DOI 10.1007/978-0-387-85820-3_7 Aloysius G, 2013, J KING SAUD UNIV-COM, V25, P77, DOI 10.1016/j.jksuci.2012.07.001 [Anonymous], 2007, P 2007 INT C SERV SY, DOI DOI 10.1109/ICSSSM.2007.4280214 Barragáns-Martínez AB, 2010, INFORM SCIENCES, V180, P4290, DOI 10.1016/j.ins.2010.07.024 Ben-Shimon David, 2015, P 9 ACM C RECOMMENDE, P357, DOI DOI 10.1145/2792838.2798723 Breese J. S., 1998, Uncertainty in Artificial Intelligence. Proceedings of the Fourteenth Conference (1998), P43 Burke R, 2002, USER MODEL USER-ADAP, V12, P331, DOI 10.1023/A:1021240730564 Chen W, 2014, WORLD WIDE WEB, V17, P271, DOI 10.1007/s11280-012-0187-z Chen YL, 2009, ELECTRON COMMER R A, V8, P241, DOI 10.1016/j.elerap.2009.03.002 Chiang RD, 2013, ELECTRON COMMER R A, V12, P362, DOI 10.1016/j.elerap.2013.06.002 Christakou C, 2007, INT J ARTIF INTELL T, V16, P771, DOI 10.1142/S0218213007003540 Cleger-Tamayo S, 2012, KNOWL-BASED SYST, V27, P180, DOI 10.1016/j.knosys.2011.11.017 Degemmis M, 2007, USER MODEL USER-ADAP, V17, P217, DOI 10.1007/s11257-006-9023-4 Dwivedi P, 2015, EXPERT SYST, V32, P264, DOI 10.1111/exsy.12061 Felfernig A, 2011, RECOMMENDER SYSTEMS HANDBOOK, P187, DOI 10.1007/978-0-387-85820-3_6 Ghauth KI, 2010, AUSTRALAS J EDUC TEC, V26, P764 Ghazanfar MA, 2015, INTELL DATA ANAL, V19, P845, DOI 10.3233/IDA-150748 Greening D. R., 1998, RECOMMENDER SYSTEMS, P53 Hamidi H, 2018, J GLOB INF MANAG, V26, P41, DOI 10.4018/JGIM.2018010103 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hong Yu., 2012, J CHINESE COMPUTER S, V1, P24 Hu YF, 2008, IEEE DATA MINING, P263, DOI 10.1109/ICDM.2008.22 Iaquinta Leo, 2007, 7th International Conference on Hybrid Intelligent Systems, HIS 2007, P47 Jeong B, 2009, EXPERT SYST APPL, V36, P6181, DOI 10.1016/j.eswa.2008.07.085 Jung KY, 2004, LECT NOTES COMPUT SC, V3036, P295 Kim HN, 2010, ELECTRON COMMER R A, V9, P73, DOI 10.1016/j.elerap.2009.08.004 Kim SC, 2016, MULTIMED TOOLS APPL, V75, P4957, DOI 10.1007/s11042-013-1814-0 Kim YS, 2013, J INF SCI ENG, V29, P63 Kim YS, 2011, EXPERT SYST APPL, V38, P13320, DOI 10.1016/j.eswa.2011.04.154 Kim YS, 2005, EXPERT SYST APPL, V28, P381, DOI 10.1016/j.eswa.2004.10.017 Koren Y, 2008, 14 ACM SIGKDD INT C Lee TQ, 2008, EXPERT SYST APPL, V34, P3055, DOI 10.1016/j.eswa.2007.06.031 Li J, 2016, J GLOB INF MANAG, V24, P45, DOI 10.4018/JGIM.2016100103 Li Y, 2010, TEXTILE BIOENGINEERING AND INFORMATICS SYMPOSIUM PROCEEDINGS, VOLS 1-3, P955, DOI 10.3993/tbis2010168 Liu H., 2012, J COMPUTATIONAL INFO, V8, P1383 Mabroukeh NR, 2010, ACM COMPUT SURV, V43, DOI 10.1145/1824795.1824798 Martínez L, 2009, 2009 IEEE/WIC/ACM INTERNATIONAL JOINT CONFERENCES ON WEB INTELLIGENCE (WI) AND INTELLIGENT AGENT TECHNOLOGIES (IAT), VOL 3, P187 Park YJ, 2009, EXPERT SYST APPL, V36, P1932, DOI 10.1016/j.eswa.2007.12.034 Pazzani M, 1997, MACH LEARN, V27, P313, DOI 10.1023/A:1007369909943 Puntheeranurak S, 2007, 2007 CIT: 7TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, P223, DOI 10.1109/CIT.2007.54 Rathipriya R., 2011, ARXIV11096726 Resnick P., 1994, Transcending Boundaries, CSCW '94. Proceedings of the Conference on Computer Supported Cooperative Work, P175, DOI 10.1145/192844.192905 Ricci F., 2011, INTRO RECOMMENDER SY Rojsattarat E, 2003, LECT NOTES COMPUT SC, V2690, P337 Sarwar B., 2001, P 10 INT C WORLD WID, P285 Shepitsen A, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P259 Su Q, 2015, ELECTRON COMMER R A, V14, P1, DOI 10.1016/j.elerap.2014.10.002 Tan, 2011, J TIANJIN U SCI TECH, V3, P18 Nguyen TTS, 2014, IEEE T KNOWL DATA EN, V26, P2574, DOI 10.1109/TKDE.2013.78 Tran T, 2006, 2006 ICEC: Eighth International Conference on Electronic Commerce, Proceedings, P512 Yong Zheng, 2015, Web Information Systems Engineering - WISE 2015. 16th International Conference. Proceedings: LNCS 9418, P431, DOI 10.1007/978-3-319-26190-4_29 Yue H. E., 2012, SYSTEMS ENG THEORY P, V6, P23 Zaki MJ, 2001, MACH LEARN, V42, P31, DOI 10.1023/A:1007652502315 Zanker M, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P139 Zhang Z, 2013, INFORM SCIENCES, V235, P117, DOI 10.1016/j.ins.2013.01.025 Zhao XY, 2013, KNOWL-BASED SYST, V48, P46, DOI 10.1016/j.knosys.2013.04.009 Zheng L., 2010, P INT C ADV COMP THE, V5, pV5, DOI [10.1109/ICACTE.2010.5579511, DOI 10.1109/ICACTE.2010.5579511] NR 58 TC 0 Z9 0 U1 0 U2 4 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1938-0232 EI 1938-0240 J9 INT J INF TECHNOL PR JI Int. J. Inf. Technol. Proj. Manag. PD APR-JUN PY 2020 VL 11 IS 2 BP 23 EP 49 DI 10.4018/IJITPM.2020040103 PG 27 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA LK8DY UT WOS:000531091700003 DA 2024-03-27 ER PT J AU Yang, ZK Feng, J AF Yang, Zekun Feng, Juan TI Explainable multi-task convolutional neural network framework for electronic petition tag recommendation SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Recommender systems; E-government; E-petition; Explainable machine learning; Multi-task learning; User-generated content ID E-GOVERNMENT SERVICES; POLITICAL-PARTICIPATION; INTERNET; ADOPTION; RESPONSIVENESS; REGRESSION; GROWTH AB Electronic petition (e-petition) is an electronic government (e-government) service that allows citizens to file petitions to governments via the internet. The complexity of the e-petition filing process and the unexplainable e-government tools would reduce the perceived ease of use and trust of users, which causes citizens to make errors when tagging their e-petition. These errors may lead to failure and delay in resolving the e-petition, which further restrains citizen engagement and electronic participation (e-participation) adoption on e-petition platforms (EPP). The purpose of this study is to develop an explainable tag recommender system to assist citizens in tagging their e-petitions. Specifically, we design an explainable multi-task learning framework for e-petition tag recommendation based on convolutional neural networks and layer-wise relevance propagation. We also conduct both quantitative and qualitative experiments to demonstrate the recommendation effec-tiveness as well as interpretability of our model. This is among the first attempt to design an e-petition tag recommender system and an explainable e-government recommender system. The practical implications of our research are two-fold. For citizens, our proposed model recommends more accurate tags with human -understandable explanations, which could assist citizens' tagging decisions and increase the possibility for an e-petition to be resolved. For governments, the e-petition service quality of governments would be enhanced, which further promotes e-participation adoption, citizen engagement, and e-government success on EPPs. C1 [Yang, Zekun] Renmin Univ China, Res Ctr Digital Humanities, Sch Informat Resource Management, Beijing 100872, Peoples R China. [Feng, Juan] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing, Peoples R China. [Feng, Juan] Tsinghua Univ, Shenzhen Int Grad Sch, Beijing, Peoples R China. C3 Renmin University of China; Tsinghua University; Tsinghua University RP Feng, J (autor correspondiente), Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing, Peoples R China.; Feng, J (autor correspondiente), Tsinghua Univ, Shenzhen Int Grad Sch, Beijing, Peoples R China. EM fengjuan@sem.tsinghua.edu.cn RI YANG, Zekun/JCO-3822-2023 OI YANG, Zekun/0000-0003-4040-8476 FU Fundamental Research Funds for the Central Universities; Research Funds of Renmin University of China [23XNF040]; National Natural Science Foundation of China [72204255] FX The authors appreciate the editors and the anonymous reviewers for their detailed and constructive comments. This research was supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China [Grant 23XNF040] as well as the National Natural Science Foundation of China [Grant 72204255] . CR Abu-Shanab E, 2019, ELECTRON COMMER R A, V38, DOI 10.1016/j.elerap.2019.100892 Alathur S, 2012, TRANSFORM GOV-PEOPLE, V6, P392, DOI 10.1108/17506161211267536 Aljazzaf ZM, 2020, INT J ADV COMPUT SC, V11, P192 Alshibly H, 2015, ELECTRON COMMER R A, V14, P393, DOI 10.1016/j.elerap.2015.05.003 Anduiza E, 2010, J INF TECHNOL POLITI, V7, P356, DOI 10.1080/19331681003791891 [Anonymous], 2010, ACM Sigkdd Explorations Newsletter, DOI DOI 10.1145/1882471.1882480 Ayachi R, 2016, UNIVERSAL ACCESS INF, V15, P681, DOI 10.1007/s10209-015-0442-z Bach S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0130140 Baldi P., 2013, ADV NEURAL INFORM PR, P26 Batista G. E. A. P. A., 2004, ACM SIGKDD EXPL NEWS, V6, P20, DOI [10.1145/1007730.1007735, DOI 10.1145/1007730.1007735] Belém FM, 2017, J ASSOC INF SCI TECH, V68, P830, DOI 10.1002/asi.23736 Bellini V, 2018, PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), P24, DOI 10.1145/3270323.3270327 Bershadskaya L, 2014, P 8 ICEGOV2014 INT C, P395, DOI [10.1145/2691195.2691198, DOI 10.1145/2691195.2691198] Bershadskaya L., 2013, ACM International Conference Proceeding Series, P73, DOI DOI 10.1145/2591888.2591900 Bobadilla J, 2013, KNOWL-BASED SYST, V46, P109, DOI 10.1016/j.knosys.2013.03.012 Chen W, 2019, J COMPUT SCI TECH-CH, V34, P957, DOI 10.1007/s11390-019-1954-4 Colesca SE, 2008, J APPL RES TECHNOL, V6, P204 Cruickshank P., 2010, Electronic Government and Electronic Participation, P275 Dominguez V, 2019, PROCEEDINGS OF IUI 2019, P408, DOI 10.1145/3301275.3302274 Dumas CL, 2015, BIG DATA SOC, V2, DOI 10.1177/2053951715598170 Dyczkowski K., 2012, CCIS, P441, DOI DOI 10.1007/978-3-642-31715-6_47 Estevez E, 2013, GOV INFORM Q, V30, pS94, DOI 10.1016/j.giq.2012.11.001 Rodriguez-Hevía LF, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176807 Gao X., 2020, STATE CAPACITY BUILD, P29 Gao YZ, 2016, IEEE T MED IMAGING, V35, P1532, DOI 10.1109/TMI.2016.2519264 Gibreel O, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122181 Grave E, 2018, PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), P3483 Guy I, 2010, SIGIR 2010: PROCEEDINGS OF THE 33RD ANNUAL INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH DEVELOPMENT IN INFORMATION RETRIEVAL, P194 Hagen L., 2018, POLICY ANAL MODELLIN, P205, DOI [10.1007/978-3-319-61762-6_9, DOI 10.1007/978-3-319-61762-6_9] Hagen L, 2018, INFORM PROCESS MANAG, V54, P1292, DOI 10.1016/j.ipm.2018.05.006 Hagen L, 2016, GOV INFORM Q, V33, P783, DOI 10.1016/j.giq.2016.07.006 Hajiramezanali E, 2018, ADV NEUR IN, V31 Hale S. A., 2013, P 5 ANN ACM WEB SCI, P132, DOI [10.1145/2464464.2464518, DOI 10.1145/2464464.2464518] Harbin Institute of Technology, 2022, RES CTR SOC COMP INF Hassan HAM, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P465, DOI 10.1145/3240323.3240409 Heitin L., 2016, Education week, V36, P5 Hernon P., 2002, United States government information: Policies and sources Hessel M, 2018, AAAI CONF ARTIF INTE, P3215 Hinton G. E., 2012, arXiv, DOI [10.48550/arXiv.1207.0580, DOI 10.48550/ARXIV.1207.0580] Hoerl AE, 2000, TECHNOMETRICS, V42, P80, DOI 10.2307/1271436 Hossain MD, 2011, ELECTRON COMMER R A, V10, P576, DOI 10.1016/j.elerap.2010.12.003 Jaeger PT, 2003, GOV INFORM Q, V20, P323, DOI 10.1016/j.giq.2003.08.003 Jiang JY, 2019, GOVERNANCE, V32, P531, DOI 10.1111/gove.12391 Jiang M, 2009, SOC SCI COMPUT REV, V27, P174, DOI 10.1177/0894439308327313 Jieba, 2022, JIEB Jochumsen H, 2012, NEW LIB WORLD, V113, P586, DOI 10.1108/03074801211282948 Jungherr A, 2010, POLICY INTERNET, V2, P131, DOI 10.2202/1944-2866.1084 Kenny EM, 2021, ARTIF INTELL, V294, DOI 10.1016/j.artint.2021.103459 Kim TY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12125191 Kraus M, 2019, DECIS SUPPORT SYST, V125, DOI 10.1016/j.dss.2019.113100 Krestel R., 2009, P 3 ACM C REC SYST, P61, DOI DOI 10.1145/1639714.1639726 Lee HI, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12030969 Li F., 2019, EXPLORE-NY, V6, P91 Li F, 2019, TELEMAT INFORM, V42, DOI 10.1016/j.tele.2019.06.001 Li H., 2019, E GOVT, V3, P72 Li XH, 2008, IEEE T SIGNAL PROCES, V56, P675, DOI 10.1109/TSP.2007.907820 Lindner R., 2009, INT PARLIAMENTARY E, V1, P1, DOI DOI 10.29379/JEDEM.V1I1.3 Lindner R, 2011, POLICY INTERNET, V3, DOI 10.2202/1944-2866.1083 Liu J., 2009, P 25 C UNC ART INT, P339 Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038 Liu YZ, 2016, J HOUS ECON, V33, P82, DOI 10.1016/j.jhe.2016.05.002 Ma L, 2020, INT REV ADM SCI, V86, P80, DOI 10.1177/0020852317749025 McDonald GC, 2009, WIRES COMPUT STAT, V1, DOI 10.1002/wics.14 Meng TG, 2020, CHINA REV, V20, P13 Message Board for Leaders, 2022, HOM MESS BOARD LEAD Messina P, 2019, USER MODEL USER-ADAP, V29, P251, DOI 10.1007/s11257-018-9206-9 Mohammed R, 2020, INT CONF INFORM COMM, P243, DOI 10.1109/ICICS49469.2020.239556 Montavon G., 2019, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, V11700 LNCS, P193, DOI [10.1007/978-3-030-28954-6_10/COVER, DOI 10.1007/978-3-030-28954-6_10, DOI 10.1007/978-3-030-28954-610] Montavon G, 2017, PATTERN RECOGN, V65, P211, DOI 10.1016/j.patcog.2016.11.008 Nguyen HTH, 2017, LECT NOTES ARTIF INT, V10234, P186, DOI 10.1007/978-3-319-57454-7_15 Noble WS, 2006, NAT BIOTECHNOL, V24, P1565, DOI 10.1038/nbt1206-1565 Panagiotopoulos P, 2011, TRANSFORM GOV-PEOPLE, V5, P20, DOI 10.1108/17506161111114626 Preisach C, 2010, LECT NOTES ARTIF INT, V6118, P348 Reusens M, 2017, DECIS SUPPORT SYST, V98, P26, DOI 10.1016/j.dss.2017.04.002 Sabucedo L. A., 2012, 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP), P409, DOI 10.1109/DICTAP.2012.6215392 Sæbo O, 2008, GOV INFORM Q, V25, P400, DOI 10.1016/j.giq.2007.04.007 Santoyo-González A, 2018, 2018 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING (IEEE CSCN) Scherer S., 2014, P 8 INT C THEORY PRA, P61, DOI [10.1145/2691195.2691237, DOI 10.1145/2691195.2691237] Shao Z., 2020, COMP EC SOC SYST, V1, P114 Shi WS, 2017, 2017 IEEE 24TH INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS 2017), P229, DOI 10.1109/ICWS.2017.37 Song Y, 2011, ACM T WEB, V5, DOI 10.1145/1921591.1921595 Steinbach M, 2020, J INF TECHNOL POLITI, V17, P12, DOI 10.1080/19331681.2019.1676361 Su Z, 2016, SOC SCI RES, V59, P52, DOI 10.1016/j.ssresearch.2016.04.017 Sun C, 2011, INT J CHEM ENG, V2011, DOI 10.1155/2011/545234 Tai KT, 2020, PUBLIC MANAG REV, V22, P278, DOI 10.1080/14719037.2019.1584233 Tajbakhsh MS, 2016, 2016 IEEE 4TH INTERNATIONAL CONFERENCE ON FUTURE INTERNET OF THINGS AND CLOUD WORKSHOPS (FICLOUDW), P252, DOI 10.1109/W-FiCloud.2016.59 Terán L, 2019, GOV INFORM Q, V36, P520, DOI 10.1016/j.giq.2019.03.003 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x Tin Kam Ho, 1995, Proceedings of the Third International Conference on Document Analysis and Recognition, P278, DOI 10.1109/ICDAR.1995.598994 UK Government and Parliament, 2022, PET van der Waa J, 2020, INT J HUM-COMPUT ST, V144, DOI 10.1016/j.ijhcs.2020.102493 Verkijika SF, 2018, ELECTRON COMMER R A, V30, P83, DOI 10.1016/j.elerap.2018.05.012 Wang YL, 2017, AAAI CONF ARTIF INTE, P210 Wang Z, 2020, J URBAN MANAG, V9, P228, DOI 10.1016/j.jum.2019.11.006 We the People, 2020, PET WHIT HOUS ISS MA Xavier Glorot, 2011, 14 INT C ARTIF INTEL, P315, DOI DOI 10.1002/ECS2.1832 Xu BC, 2019, IEEE INT CON AUTO SC, P812, DOI [10.1109/COASE.2019.8843151, 10.1109/coase.2019.8843151] Yang GB, 2007, CHINA QUART, P122, DOI 10.1017/S030574100600083X Yang ZK, 2020, AAAI CONF ARTIF INTE, V34, P9426 Yao Y, 2015, J ECON GROWTH, V20, P405, DOI 10.1007/s10887-015-9116-1 Zhang YF, 2020, FOUND TRENDS INF RET, V14, P1, DOI 10.1561/1500000066 Zhang Y, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1011, DOI 10.1145/3357384.3358005 Zhang ZJ, 2018, 2018 IEEE/ACM 26TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), DOI 10.1109/IWQoS.2018.8624183 Zhong SR, 2017, 2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), P671, DOI 10.1109/ICBDA.2017.8078720 Zhou PY, 2019, INFORM SOFTWARE TECH, V109, P1, DOI 10.1016/j.infsof.2019.01.002 Zhou PY, 2017, 2017 IEEE 24TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER), P272, DOI 10.1109/SANER.2017.7884628 Zolotov MN, 2018, COMPUT HUM BEHAV, V81, P350, DOI 10.1016/j.chb.2017.12.031 NR 107 TC 1 Z9 1 U1 12 U2 14 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD MAY-JUN PY 2023 VL 59 AR 101263 DI 10.1016/j.elerap.2023.101263 EA MAY 2023 PG 15 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA I8QH5 UT WOS:001005370500001 DA 2024-03-27 ER PT J AU Rahman, MS Bag, S Hossain, MA Fattah, FAMA Gani, MO Rana, NP AF Rahman, Muhammad Sabbir Bag, Surajit Hossain, Md Afnan Fattah, Fadi Abdel Muniem Abdel Gani, Mohammad Osman Rana, Nripendra P. TI The new wave of AI-powered luxury brands online shopping experience: The role of digital multisensory cues and customers' engagement SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE AI-powered digital assistance; Digital multisensory cue; Customer engagement; Online platform; Online shopping experience ID QUALITATIVE COMPARATIVE-ANALYSIS; ARTIFICIAL-INTELLIGENCE; INFORMATION-SYSTEMS; COMPLEXITY THEORY; FUZZY-SETS; PERFORMANCE; ACCEPTANCE; MARKET; SEM; TECHNOLOGY AB Academic literature retains a dearth of empirical evidence of the cutting-edge aspect of artificial intelligence (AI)-powered digital assistance and digital multisensory cues, despite the prospect of these factors on real-life customers' luxury brand online shopping experience. Thus, the aim of this study is to examine the significant pathway and effects of AI-powered digital assistance toward customers' luxury brand online shopping experi-ence. Drawing on S-O-R (Stimulus, organism, and response) and TRAM (Technology Readiness and Acceptance Model) paradigm, a multi-method research design was deployed to investigate constructs. Firstly, semi-structured interviews were utilized to explore customers' online behavior under the luxury brands and infor-mation technology aspect. Secondly, survey data were collected and analyzed by using partial least squares structural equation modeling (PLS-SEM) and fuzzy-set qualitative comparative analysis (fsQCA). The PLS-based analysis of quantitative data confirmed the exploratory insights of qualitative findings, establishing the con-nections of AI-powered digital assistance, customer engagement, and customers' luxury brand online shopping experience. Research findings also suggest that customer engagement plays a mediation role in the relationship between AI-powered digital assistance and customers' luxury brand online shopping experience. Besides, digital multisensory cues moderate the relationship between AI-powered digital assistance and customer engagement. Further, fsQCA complements the findings of PLS-SEM that reveal the significant combination of factors that lead to the perceptions of customers' luxury brand online shopping experience. C1 [Rahman, Muhammad Sabbir; Hossain, Md Afnan] North South Univ, Sch Business & Econ, Dept Mkt & Int Business, Dhaka 1229, Bangladesh. [Bag, Surajit] Univ Johannesburg, Dept Transport & Supply Chain Management, Johannesburg, South Africa. [Hossain, Md Afnan] Univ Wollongong, Fac Business & Law, Sch Business, Wollongong, NSW 2522, Australia. [Fattah, Fadi Abdel Muniem Abdel] Asharqiyah Univ, Coll Business Adm, Ibra, Oman. [Gani, Mohammad Osman] Bangladesh Univ Profess BUP, Fac Business Studies FBS, Dept Mkt, Dhaka, Bangladesh. [Rana, Nripendra P.] Qatar Univ, Coll Business & Econ, POB 2713, Doha, Qatar. [Gani, Mohammad Osman] Hiroshima Univ, Grad Sch Humanities & Social Sci, Higashihiroshima, Japan. C3 North South University (NSU); University of Johannesburg; University of Wollongong; Qatar University; Hiroshima University RP Rahman, MS (autor correspondiente), North South Univ, Sch Business & Econ, Dept Mkt & Int Business, Dhaka 1229, Bangladesh. EM rahman.sabbir@northsouth.edu; surajit.bag@gmail.com; mah619@uowmail.edu.au; fadi.fattah@asu.edu.om; osman.gani100@gmail.com; nrana@qu.edu.qa RI Rau, Lea/IXW-9119-2023; Rahman, Muhammad Sabbir/G-3968-2018; Hossain, Dr Md Afnan/M-6626-2017; AbdelFattah, Fadi/L-7441-2014 OI Hossain, Dr Md Afnan/0000-0003-2954-1823; AbdelFattah, Fadi/0000-0002-4665-4777; GANI, MOHAMMAD OSMAN/0000-0002-9724-4006 CR Agrebi S, 2015, J RETAIL CONSUM SERV, V22, P16, DOI 10.1016/j.jretconser.2014.09.003 Al-Shidhani S.S.S., 2021, SAGE OPEN, V13 Amatulli C, 2012, INT REV RETAIL DISTR, V22, P189, DOI 10.1080/09593969.2011.652647 An MA, 2020, J BUS RES, V120, P389, DOI 10.1016/j.jbusres.2020.02.044 Anderson CL, 2010, MIS QUART, V34, P613 [Anonymous], 2021, WATER AIR SOIL POLL Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Athwal N, 2019, INFORM TECHNOL PEOPL, V32, P603, DOI 10.1108/ITP-01-2018-0017 Atwal G, 2017, J BRAND MANAG ADV CO, P43, DOI 10.1007/978-3-319-51127-6_3 Balakrishnan J, 2024, ANN OPER RES, V333, P653, DOI 10.1007/s10479-021-04049-5 Barsalou LW, 1999, BEHAV BRAIN SCI, V22, P637, DOI 10.1017/S0140525X99532147 Bassano C., 2020, P 53 HAWAII INT C SY, P1618 Batat W., 2022, J STRATEG MARK, P1 Beauloye FE, 2022, How personalisation and artificial intelligence are transforming luxury retail online: AI and the future of luxury e-commerce Benbasat I, 1999, MIS QUART, V23, P3, DOI 10.2307/249403 BLEE KM, 2002, METHODS SOCIAL MOVEM, V0016 Brodie RJ, 2011, J SERV RES-US, V14, P252, DOI 10.1177/1094670511411703 Butt AH, 2021, PSYCHOL MARKET, V38, P1014, DOI 10.1002/mar.21487 Moreno FC, 2016, J BUS RES, V69, P1396, DOI 10.1016/j.jbusres.2015.10.114 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Castillo D, 2021, SERV IND J, V41, P900, DOI 10.1080/02642069.2020.1787993 Chan L., 2022, APPL ARTIF INTELL, P213, DOI [10.1007/978-3-031-05740-3_14, DOI 10.1007/978-3-031-05740-3_14] Chandon JL, 2016, J BUS RES, V69, P299, DOI 10.1016/j.jbusres.2015.08.001 Chang CW, 2021, SERV IND J, V41, P330, DOI 10.1080/02642069.2019.1611784 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Chin WW, 2008, J MARKET THEORY PRAC, V16, P287, DOI 10.2753/MTP1069-6679160402 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Chung N, 2015, COMPUT HUM BEHAV, V50, P588, DOI 10.1016/j.chb.2015.02.068 Cowan K, 2021, J BUS RES, V123, P86, DOI 10.1016/j.jbusres.2020.09.058 Creswell W., 2009, Research design: Qualitative, quantitative, and mixed methods approaches, V3rd, DOI DOI 10.1080/15424065.2022.2046231 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DAY GS, 1994, J MARKETING, V58, P37, DOI 10.2307/1251915 De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 Disko, 2018, LUX PHYG CULT SHOCK DONOVAN RJ, 1994, J RETAILING, V70, P283, DOI 10.1016/0022-4359(94)90037-X Dubois B, 2005, MARKET LETT, V16, P115, DOI 10.1007/s11002-005-2172-0 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 EASTERBY-SMITH M., 2008, MANAGEMENT RES, V3rd Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Fang JM, 2016, INT J INFORM MANAGE, V36, P1205, DOI 10.1016/j.ijinfomgt.2016.08.006 Fionda AM, 2009, J BRAND MANAG, V16, P347, DOI 10.1057/bm.2008.45 Fiss PC, 2011, ACAD MANAGE J, V54, P393, DOI 10.5465/AMJ.2011.60263120 Fournier S, 1998, J CONSUM RES, V24, P343, DOI 10.1086/209515 Frankel S., 2022, INT TEXTILE APPAREL, V78, P1 Garg P, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2020.102069 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Godey B, 2012, J BUS RES, V65, P1461, DOI 10.1016/j.jbusres.2011.10.012 Grant RM, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/smj.4250171110 Grewal D, 2017, J RETAILING, V93, P55, DOI 10.1016/j.jretai.2016.12.001 Gulfraz MB, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103000 Guo KX, 2023, J HOSP TOUR RES, V47, P1017, DOI 10.1177/10963480211030319 Gupta S, 2020, J INTERACT MARK, V51, P26, DOI 10.1016/j.intmar.2020.04.003 Rodríguez PG, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102201 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hagtvedt H, 2009, J CONSUM PSYCHOL, V19, P608, DOI 10.1016/j.jcps.2009.05.007 Han MS, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103061 Hausman A, 2000, J CONSUM MARK, V17, P403, DOI 10.1108/07363760010341045 Hayes AF, 2011, COMMUN SER, P434 Hernández B, 2010, J BUS RES, V63, P964, DOI 10.1016/j.jbusres.2009.01.019 Hernandez-Ortega B, 2021, PSYCHOL MARKET, V38, P1122, DOI 10.1002/mar.21497 HOLBROOK MB, 1982, J CONSUM RES, V9, P132, DOI 10.1086/208906 Hollebeek L, 2011, J STRATEG MARK, V19, P555, DOI 10.1080/0965254X.2011.599493 Hollebeek LD, 2014, J INTERACT MARK, V28, P149, DOI 10.1016/j.intmar.2013.12.002 Holmqvist J, 2020, J BUS RES, V116, P503, DOI 10.1016/j.jbusres.2019.10.015 Holt DB, 2002, J CONSUM RES, V29, P70, DOI 10.1086/339922 Hossain MA, 2021, J BUS RES, V131, P287, DOI 10.1016/j.jbusres.2021.03.063 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Hung J.Y., 2012, GLOB J BUS RES, V6, P45 Hyun H, 2022, J STRATEG MARK, DOI 10.1080/0965254X.2022.2052937 Izogo EE, 2018, J CONSUM BEHAV, V17, P379, DOI 10.1002/cb.1715 Jackson T, 2020, Virtual reality shopping, AI store assistants, branded online avatars and apps aplenty-what the 5G revolution means for luxury fashion Jacoby J, 2002, J CONSUM PSYCHOL, V12, P51, DOI 10.1207/S15327663JCP1201_05 Jang SC, 2009, J BUS RES, V62, P451, DOI 10.1016/j.jbusres.2008.01.038 Jin SV, 2023, INT J HUM-COMPUT INT, V39, P1874, DOI 10.1080/10447318.2022.2129277 Jin T, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102466 Kamboj S, 2018, INT J INFORM MANAGE, V39, P169, DOI 10.1016/j.ijinfomgt.2017.12.001 Kauppinen-Räisänen H, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102251 Kaya B, 2020, J BUS RES, V114, P278, DOI 10.1016/j.jbusres.2020.04.016 KIM Won-Gu, 2020, [The Journal of Industrial Distribution & Business, 산경연구논집], V11, P41 Kim YJ, 2014, COMPUT HUM BEHAV, V33, P256, DOI 10.1016/j.chb.2014.01.015 Klaus P, 2022, J PROD BRAND MANAG, V31, P368, DOI 10.1108/JPBM-10-2020-3164 Klaus P, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102248 Klaus P, 2020, J SERV MANAGE, V31, P1175, DOI 10.1108/JOSM-05-2020-0159 Knowles J., 2020, MIT Sloan Management Review, V61, P2 Ko E, 2016, J BUS RES, V69, P5749, DOI 10.1016/j.jbusres.2016.04.170 Kreuzer M, 2020, J BUS RES, V116, P482, DOI 10.1016/j.jbusres.2019.11.033 Kumar P., 2022, PSYCHIAT RES Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Lambert D.M., 1990, J BUS LOGIST, V11, DOI DOI 10.1007/978-3-319-10966-4 Larson JS, 2014, J CONSUM PSYCHOL, V24, P188, DOI 10.1016/j.jcps.2013.09.001 Lee CT, 2022, BEHAV INFORM TECHNOL, V41, P1270, DOI 10.1080/0144929X.2021.1872704 Lee LDW, 2020, EUR J MARKETING, V54, P615, DOI 10.1108/EJM-02-2019-0219 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Li DM, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102355 Lim SH, 2020, INT J HUM-COMPUT INT, V36, P1304, DOI 10.1080/10447318.2020.1739882 Lin CH, 2007, PSYCHOL MARKET, V24, P641, DOI 10.1002/mar.20177 Loureiro S., 2011, AUSTR NZ MARKETING A Loureiro S.M. C., 2018, INT J FASH DES TECHN, V11, P310, DOI [10.1080/17543266.2018.1431810, DOI 10.1080/17543266.2018.1431810] Radziwill NM, 2017, Arxiv, DOI [arXiv:1704.04579, DOI 10.48550/ARXIV.1704.04579] Malhotra N., 2018, Marketing Research, V3rd Manthiou A, 2017, J TRAVEL TOUR MARK, V34, P531, DOI 10.1080/10548408.2016.1208786 Mayer R., 2020, WATER AIR SOIL POLL Mazaheri E, 2014, J BUS RES, V67, P253, DOI 10.1016/j.jbusres.2013.05.011 McLean G, 2021, J BUS RES, V124, P312, DOI 10.1016/j.jbusres.2020.11.045 Mehrabian A., 1974, APPROACH ENV PSYCHOL Miao M, 2022, J GLOB FASH MARK, V13, P30, DOI 10.1080/20932685.2021.1960581 Miao Y., 2020, INT C MACHINE LEARNI, P170 Mohseni S, 2018, CURR ISSUES TOUR, V21, P616, DOI 10.1080/13683500.2016.1200539 Nagy S, 2021, AMFITEATRU ECON, V23, P155, DOI 10.24818/EA/2021/56/155 Nath P, 2010, IND MARKET MANAG, V39, P317, DOI 10.1016/j.indmarman.2008.09.001 Nilsson Nils, 2010, The Quest for Artificial Intelligence Nyadzayo MW, 2020, J FASH MARK MANAG, V24, P589, DOI 10.1108/JFMM-05-2018-0070 Oh H. M., 2007, Journal of Travel Research, V46, P119, DOI 10.1177/0047287507304039 Olya HGT, 2016, J BUS RES, V69, P2791, DOI 10.1016/j.jbusres.2015.11.015 Ou YC, 2017, J ACAD MARKET SCI, V45, P336, DOI 10.1007/s11747-016-0477-6 Panetta K, 2019, CIOS CAN SEPARATE AI Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Pantano E, 2021, J BUS RES, V123, P117, DOI 10.1016/j.jbusres.2020.09.049 Pantano E, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102096 Pantano E, 2020, J BUS RES, V116, P209, DOI 10.1016/j.jbusres.2020.05.036 Pantano E, 2018, J RETAIL CONSUM SERV, V43, P94, DOI 10.1016/j.jretconser.2018.03.012 Pappas IO, 2017, TELEMAT INFORM, V34, P730, DOI 10.1016/j.tele.2016.08.021 Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Parguel B, 2016, J BUS RES, V69, P341, DOI 10.1016/j.jbusres.2015.08.006 Park J, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102272 Peck J., 2008, HDB CONSUMER PSYCHOL, P193 Pekovic S, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102171 Peng C, 2014, J INTERNET COMMER, V13, P159, DOI 10.1080/15332861.2014.944437 Peng N, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102891 Perez-Vega R, 2021, J BUS RES, V129, P902, DOI 10.1016/j.jbusres.2020.11.002 Petit O, 2019, J INTERACT MARK, V45, P42, DOI 10.1016/j.intmar.2018.07.004 Phau I., 2000, J BRAND MANAG, V8, P122 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Pine BJ., 1999, The experience economy: work is theatre every business a stage Prashar S., 2017, Vikalpa: The Journal For Decision Makers, V42, P1, DOI [https://doi.org/10.1177/0256090916686681, DOI 10.1177/0256090916686681, DOI 10.1016/j.dss.2011.10.022] Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Prentic C, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102186 Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304 Prentice C, 2018, J RETAIL CONSUM SERV, V43, P325, DOI 10.1016/j.jretconser.2018.05.003 Ragin CC, 2005, SOCIOL METHOD RES, V33, P423, DOI 10.1177/0049124105274499 Ragin CC, 2008, SOCIOL METHOD RES, V36, P431, DOI 10.1177/0049124107313903 Ragin CharlesC., 2009, CONFIGURATIONAL COMP, P87, DOI DOI 10.4135/9781452226569.N5 Rahman MS, 2022, INFORM TECHNOL PEOPL, V35, P316, DOI 10.1108/ITP-12-2019-0621 Raju B, 2021, J NEUROSURG, V135, P373, DOI 10.3171/2020.5.JNS201288 Ransbotham S, 2017, MIT Sloan Manag Rev, V59 Richter NF, 2016, INT MARKET REV, V33, P376, DOI 10.1108/IMR-04-2014-0148 Rigdon EE, 2012, LONG RANGE PLANN, V45, P341, DOI 10.1016/j.lrp.2012.09.010 Rodrigues LF, 2016, COMPUT HUM BEHAV, V63, P392, DOI 10.1016/j.chb.2016.05.063 Roozen I., 2019, Journal of Relationship Marketing, V18, P247 Rosemann M, 2008, MIS QUART, V32, P1 Roy SK, 2022, J STRATEG MARK, V30, P45, DOI 10.1080/0965254X.2019.1642937 Rubin H. J., 2012, QUALITATIVE INTERVIE Russell S., 2010, Artificial intelligence a modern approach, V3rd Russo I, 2019, AUSTRALAS MARK J, V27, P129, DOI 10.1016/j.ausmj.2018.11.001 Salem SF, 2022, J GLOB FASH MARK, V13, P75, DOI 10.1080/20932685.2021.1978308 Sambamurthy V, 2003, MIS QUART, V27, P237 Saunders M., 2012, RES METHODS BUSINESS, DOI DOI 10.1007/S13398-014-0173-7.2 Schmitt B, 2015, J CONSUM PSYCHOL, V25, P166, DOI 10.1016/j.jcps.2014.09.001 Schweiger E., 2020, RES HDB LUXURY BRAND Sekaran U., 2011, Research methods for business: A skill building approach, V5th ed., DOI DOI 10.1108/17506200710779521 Serazio M, 2015, TELEV NEW MEDIA, V16, P599, DOI 10.1177/1527476413491015 Shah D, 2021, J BUS RES, V125, P772, DOI 10.1016/j.jbusres.2020.06.062 Sharma A, 2020, J BUS RES, V111, P25, DOI 10.1016/j.jbusres.2020.02.009 Sharma M, 2022, INFORM SYST FRONT, DOI 10.1007/s10796-022-10339-5 Sheth JN, 2020, J INT MARKETING, V28, P3, DOI 10.1177/1069031X19897044 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Shukla P, 2011, J WORLD BUS, V46, P242, DOI 10.1016/j.jwb.2010.11.002 Silva ES, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2020.102430 Singh J, 2019, J PERS SELL SALES M, V39, P2, DOI 10.1080/08853134.2018.1557525 SLATER SF, 1995, J MARKETING, V59, P63, DOI 10.2307/1252120 Spence C, 2011, PSYCHOL MARKET, V28, P267, DOI 10.1002/mar.20392 Strickland E, 2019, IEEE SPECTRUM, V56, P24, DOI 10.1109/MSPEC.2019.8678513 Sung E, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102382 Thang D.C.L., 2003, J RETAIL CONSUM SERV, V10, P193, DOI DOI 10.1016/S0969-6989(02)00006-1 Thapa S, 2022, J PROD BRAND MANAG, V31, P984, DOI 10.1108/JPBM-05-2021-3500 Truong Y, 2009, J BRAND MANAG, V16, P375, DOI 10.1057/bm.2009.1 Tynan C, 2010, J BUS RES, V63, P1156, DOI 10.1016/j.jbusres.2009.10.012 Ul Islam J, 2017, TELEMAT INFORM, V34, P96, DOI 10.1016/j.tele.2017.01.004 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Van Esch P, 2021, J ASSOC CONSUM RES, V6, P394, DOI 10.1086/714503 Varadarajan R, 2020, IND MARKET MANAG, V89, P89, DOI 10.1016/j.indmarman.2020.03.003 Venkatesh V, 2016, J ASSOC INF SYST, V17, P328, DOI 10.17705/1jais.00428 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Vickers J.S., 2003, Marketing Review, V3, P459, DOI [https://doi.org/10.1362/146934703771910071, DOI 10.1362/146934703771910071] Vlacic B, 2021, J BUS RES, V128, P187, DOI 10.1016/j.jbusres.2021.01.055 Wang YJ, 2011, J RETAILING, V87, P46, DOI 10.1016/j.jretai.2010.09.002 Widanengsih E, 2021, J IND ENG MANAG RES, V2, P73, DOI 10.7777/jiemar.v2i1.115 Wiedmann K., 2013, Marketing Review St. Gallen, V30, P60, DOI DOI 10.1365/S11621-013-0300-4 Wong CS, 2002, LEADERSHIP QUART, V13, P243, DOI 10.1016/S1048-9843(02)00099-1 Woodside AG, 2015, PSYCHOL MARKET, V32, P65, DOI 10.1002/mar.20763 NR 192 TC 16 Z9 17 U1 61 U2 133 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAY PY 2023 VL 72 AR 103273 DI 10.1016/j.jretconser.2023.103273 EA FEB 2023 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 8X4LS UT WOS:000931986400001 DA 2024-03-27 ER PT J AU Oestreicher-Singer, G Sundararajan, A AF Oestreicher-Singer, Gal Sundararajan, Arun TI RECOMMENDATION NETWORKS AND THE LONG TAIL OF ELECTRONIC COMMERCE SO MIS QUARTERLY LA English DT Article DE Networks; social networks; electronic commerce; recommender systems; Gini coefficient; long tail; influence; social media; Web 2.0 ID CONSUMER; DIFFUSION AB It has been conjectured that the peer-based recommendations associated with electronic commerce lead to a redistribution of demand from popular products or "blockbusters" to less popular or "niche" products, and that electronic markets will therefore be characterized by a "long tail" of demand and revenue. We test this conjecture using the revenue distributions of books in over 200 distinct categories on Amazon. corn and detailed daily snapshots of co-purchase recommendation networks in which the products of these categories are situated. We measure how much a product is influenced by its position in this hyperlinked network of recommendations using a variant of Google's PageRank measure of centrality. We then associate the average influence of the network on each category with the inequality in the distribution of its demand and revenue, quantifying this inequality using the Gini coefficient derived from the category's Lorenz curve. We establish that categories whose products are influenced more by the recommendation network have significantly flatter demand and revenue distributions, even after controlling for variation in average category demand, category size, and price differentials. Our empirical findings indicate that doubling the average network influence on a category is associated with an average increase of about 50 percent in the relative revenue for the least popular 20 percent of products, and with an average reduction of about 15 percent in the relative revenue for the most popular 20 percent of products. We also show that this effect is enhanced by higher assortative mixing and lower clustering in the network, and is greater in categories whose products are more evenly influenced by recommendations. The direction of these results persists over time, across both demand and revenue distributions, and across both daily and weekly demand aggregations. Our work illustrates how the microscopic economic data revealed by online networks can be used to define and answer new kinds of research questions, offers a fresh perspective on the influence of networked IT artifacts on business outcomes, and provides novel empirical evidence about the impact of visible recommendations on the long tail of electronic commerce. C1 [Oestreicher-Singer, Gal] Tel Aviv Univ, Recanati Grad Sch Business, IL-69978 Tel Aviv, Israel. NYU, Stern Sch Business, New York, NY 10012 USA. C3 Tel Aviv University; New York University RP Oestreicher-Singer, G (autor correspondiente), Tel Aviv Univ, Recanati Grad Sch Business, IL-69978 Tel Aviv, Israel. EM galos@post.tau.ac.il; asundara@stern.nyu.edu RI Oestreicher - Singer, Gal/JYQ-4365-2024 FU NET Institute FX We thank Vijay Gurbaxani, Ravi Bapna, and the members of the review team for their careful and detailed suggestions during the review process. We also thank Vasant Dhar, Nicholas Economides, William Greene, Panos Ipeirotis, Roy Radner, and seminar participants at the International Workshop and Conference on Network Science, the Wharton School, New York University, Tel-Aviv University, the Zentrum fur Europaische Wirtschaftsforschung, the Statistical Challenges in Electronic Commerce Research Symposium, the Telecommunications Policy Research Conference, the INFORMS Conference on Information Systems and Technology, and the International Conference on Information Systems for their feedback. Financial support from the NET Institute (http://www.netinst.org/) is gratefully acknowledged. CR Anderson C, 2006, LONG TAIL WHY FUTURE Aral S., 2007, CTR DIGITAL BUSINESS, V9 Aral S, 2009, P NATL ACAD SCI USA, V106, P21544, DOI 10.1073/pnas.0908800106 Bailey J., 2008, 20 WORKSH INF SYST E Barrot C., 2008, ROLE SPATIAL PROXIMI Bradlow ET, 2005, MARKET LETT, V16, P267, DOI 10.1007/s11002-005-5891-3 Bramoullé Y, 2007, J ECON THEORY, V135, P478, DOI 10.1016/j.jet.2006.06.006 Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Brin S., 1999, 19990120 STANF U COM Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Brynjolfsson E, 2006, MIT SLOAN MANAGE REV, V47, P67 Choi J, 2011, J MARKETING RES, V48, P670, DOI 10.1509/jmkr.48.4.670 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Corrado Gini., 1921, ECON J, V31, P124, DOI [DOI 10.2307/2223319, 10.2307/2223319] Dellarocas Chris., 2010, MEDIA AGGREGATORS LI Desai PS, 2000, MARKET SCI, V19, P381, DOI 10.1287/mksc.19.4.381.11793 Dhar V., 2009, CEDER0906 NEW YORK U Elberse A., HARVARD BUSINESS REV, V86, P88 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Galeotti A, 2010, REV ECON STUD, V77, P218, DOI 10.1111/j.1467-937X.2009.00570.x Goh K. H., 2008, 20 WORKSH INF SYST E Goldenberg J, 2001, MARKET LETT, V12, P211, DOI 10.1023/A:1011122126881 Hervas-Drane A., 2007, 0741 NEW YORK U STER Hill S, 2006, STAT SCI, V21, P256, DOI 10.1214/088342306000000222 Katona Z, 2008, MARKET SCI, V27, P764, DOI 10.1287/mksc.1070.0349 Keller E., 2003, INFLUENCES Langville A., 2004, INTERNET MATH, V1, P335, DOI DOI 10.1080/15427951.2004.10129091 Lariviere MA, 1997, MARKET SCI, V16, P112, DOI 10.1287/mksc.16.2.112 Li SB, 2005, J MARKETING RES, V42, P233, DOI 10.1509/jmkr.42.2.233.62288 Lorenz MO, 1905, J AM STAT ASSOC, V9, P209 Mayzlin D., 2008, Link to Success: How Blogs Build an Audience by Promoting Rivals Muller Eitan., 2009, Innovation Diffusion and New Product Growth Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480 Niraj R, 2008, MARKET SCI, V27, P225, DOI 10.1287/mksc.1070.0299 Oestreicher-Singer G., 2012, MANAGEMENT IN PRESS Oh J., 2008, Examining the diffusion of user-generated content in online social networks Sriram S, 2010, MARKET SCI, V29, P291, DOI 10.1287/mksc.1090.0506 Sundararajan A, 2007, BE J THEOR ECON, V7 Tucker C., 2008, LONG TAIL STEEP TAIL Valente TW, 1996, SOC NETWORKS, V18, P69, DOI 10.1016/0378-8733(95)00256-1 van Den Bulte Christophe., 2007, Social Networks and Marketing Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918 Watts DJ, 2007, J CONSUM RES, V34, P441, DOI 10.1086/518527 Wedel M, 2004, J MARKETING RES, V41, P448, DOI 10.1509/jmkr.41.4.448.47017 Zhao X., 2008, INFORMS C INF SYST T NR 45 TC 139 Z9 170 U1 7 U2 194 PU SOC INFORM MANAGE-MIS RES CENT PI MINNEAPOLIS PA UNIV MINNESOTA-SCH MANAGEMENT 271 19TH AVE SOUTH, MINNEAPOLIS, MN 55455 USA SN 0276-7783 J9 MIS QUART JI MIS Q. PD MAR PY 2012 VL 36 IS 1 BP 65 EP 83 DI 10.2307/41410406 PG 19 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 895EY UT WOS:000300480200005 OA Green Submitted DA 2024-03-27 ER PT J AU Yan, SR Pirooznia, S Heidari, A Navimipour, NJ Unal, M AF Yan, Shu-Rong Pirooznia, Sina Heidari, Arash Navimipour, Nima Jafari Unal, Mehmet TI Implementation of a Product-Recommender System in an IoT-Based Smart Shopping Using Fuzzy Logic and Apriori Algorithm SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Apriori algorithm; filtering; fuzzy logic; Internet of things; recommender systems; shopping cart; smartening AB The Internet of Things (IoT) has recently become important in accelerating various functions, from manufacturing and business to healthcare and retail. A recommender system can handle the problem of information and data buildup in IoT-based smart commerce systems. These technologies are designed to determine users' preferences and filter out irrelevant information. Identifying items and services that customers might be interested in and then convincing them to buy is one of the essential parts of effective IoT-based smart shopping systems. Due to the relevance of product-recommender systems from both the consumer and shop perspectives, this article presents a new IoT-based smart product-recommender system based on an apriori algorithm and fuzzy logic. The suggested technique employs association rules to display the interdependencies and linkages among many data objects. The most common use of association rule discovery is "shopping cart analysis." Customers' buying habits and behavior are studied based on the numerous goods they place in their shopping carts. As a result, the association rules are generated using a fuzzy system. The apriori algorithm then selects the product based on the provided fuzzy association rules. The results revealed that the suggested technique had achieved acceptable results in terms of mean absolute error, root-mean-square error, precision, recall, diversity, novelty, and catalog coverage when compared to cutting-edge methods. Finally, themethod helps increase recommender systems' diversity in IoT-based smart shopping. C1 [Yan, Shu-Rong] Hunan Univ, Sch Business Adm, Changsha 410082, Peoples R China. [Pirooznia, Sina; Heidari, Arash] Islamic Azad Univ, Tabriz Branch, Dept Comp Engn, Tabriz, Iran. [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey. [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkey. C3 Hunan University; Islamic Azad University; Kadir Has University; Nisantasi University RP Yan, SR (autor correspondiente), Hunan Univ, Sch Business Adm, Changsha 410082, Peoples R China.; Navimipour, NJ (autor correspondiente), Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey. EM sryan@ygu.edu.cn; sina.pirooznia@gmail.com; arash_heidari@ieee.org; Nima.navimipour@khas.edu.tr; mehmet.unal@nisantasi.edu.tr RI Heidari, Arash/AAK-9761-2021; Jafari Navimipour, Nima/AAF-5662-2021; Ünal, Mehmet/AAO-6590-2021 OI Heidari, Arash/0000-0003-4279-8551; Jafari Navimipour, Nima/0000-0002-5514-5536; Ünal, Mehmet/0000-0003-4927-649X; pirooznia, sina/0009-0007-0388-7398 FU key program of the National Social Science Foundation of China [18AJY013] FX This work was supported by the key program of the National Social Science Foundation of China under Grant 18AJY013. Reviewof this manuscript was arranged by Department Editor D. Cetindamar. CR Ahmad M. B., 2021, J EMERG TECHNOL INNO Ahmadian S, 2020, KNOWL-BASED SYST, V192, DOI 10.1016/j.knosys.2019.105371 Al-Hadi I. A. A.-Q., 2017, P 2 INT C INT THINGS, P1 Bian WJ, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.884673 Bouazza H, 2022, J KING SAUD UNIV-COM, V34, P5633, DOI 10.1016/j.jksuci.2022.02.003 Cepeda-Pacheco JC, 2022, NEURAL COMPUT APPL, V34, P7691, DOI 10.1007/s00521-021-06872-0 Chen LS, 2008, INFORM SCIENCES, V178, P1032, DOI 10.1016/j.ins.2007.09.027 Chen X., 2019, P 36 INT C MACHINE L, P1052 Dong Jiahua, 2021, IEEE Trans Pattern Anal Mach Intell, VPP, DOI 10.1109/TPAMI.2021.3128560 Du H, 2022, IEEE T WIREL COMMUN, V21, P8322, DOI [10.1109/TWC.2022.3165588, 10.1109/TNNLS.2022.3204090] Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Himeur Y, 2022, COMPUT SCI REV, V43, DOI 10.1016/j.cosrev.2021.100439 Imani M, 2022, IEEE INTELL SYST, V37, P44, DOI 10.1109/MIS.2022.3163227 Imani M, 2022, IEEE T NEUR NET LEAR, V33, P5913, DOI 10.1109/TNNLS.2021.3071958 Jabeen F, 2019, PEER PEER NETW APPL, V12, P1263, DOI 10.1007/s12083-019-00733-3 JAFARZADEH H, 2015, INDIAN J SCI TECHNOL, V8, P707 Jalili M, 2018, IEEE ACCESS, V6, P74003, DOI 10.1109/ACCESS.2018.2883742 Jiang YQ, 2011, LECT NOTES COMPUT SC, V6988, P196, DOI 10.1007/978-3-642-23982-3_25 Ju CH, 2019, MULTIMED TOOLS APPL, V78, P30097, DOI 10.1007/s11042-018-6980-7 Katarya R, 2020, MULTIMED TOOLS APPL, V79, P35927, DOI 10.1007/s11042-020-09199-5 Li, 2019, COMPUTER DIGITAL ENG, V47, P1293 Li DY, 2021, IEEE T CONTROL NETW, V8, P89, DOI 10.1109/TCNS.2020.3034523 LI M, IN PRESS Liu GH, 2021, IEEE COMMUN MAG, V59, P132, DOI 10.1109/MCOM.001.2000921 Ma ZY, 2021, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.353 Mekouar L, 2022, COMPUT COMMUN, V187, P1, DOI 10.1016/j.comcom.2022.01.020 Meng SM, 2022, IEEE T IND INFORM, V18, P5637, DOI 10.1109/TII.2022.3143103 Ojagh S, 2020, FUTURE GENER COMP SY, V108, P97, DOI 10.1016/j.future.2020.02.041 Raza S, 2020, IEEE INT CONF BIG DA, P551, DOI 10.1109/BigData50022.2020.9378340 Rezaee Abbas Ali, 2020, Proceedings of the 10th International Conference on Computer and Knowledge Engineering (ICCKE 2020), P665, DOI 10.1109/ICCKE50421.2020.9303619 Ruiz-García G, 2019, IEEE T FUZZY SYST, V27, P2381, DOI 10.1109/TFUZZ.2019.2898582 Saleem Y, 2022, IEEE T EMERG TOP COM, V10, P280, DOI 10.1109/TETC.2020.3014722 Sánchez P, 2022, ACM COMPUT SURV, V54, DOI 10.1145/3510409 Shannon C. E., 1948, BELL SYST TECH J, V27, P623, DOI [DOI 10.1002/J.1538-7305.1948.TB00917.X, DOI 10.1002/J.1538-7305.1948.TB01338.X] Walti C., 2022, U.S. Patent, Patent No. [11,321,761, 11321761] Wang J., 2015, PROC INT AAAI C WEB Wang J, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12147219 Woo Lee Hyung, 2019, [Journal of Internet Computing and Services, 인터넷정보학회논문지], V20, P57, DOI 10.7472/jksii.2019.20.1.57 Wu HH, 2022, APPL SOFT COMPUT, V120, DOI 10.1016/j.asoc.2022.108626 Wu XX, 2021, IEEE T SOFTWARE ENG, V48, P2541, DOI 10.1109/TSE.2021.3063727 Zhang GR, 2023, INT J CONSUM STUD, V47, P74, DOI 10.1111/ijcs.12806 ZHANG Y, IN PRESS Zheng WF, 2021, PATTERN RECOGN, V120, DOI 10.1016/j.patcog.2021.108153 Zheng WF, 2021, PEERJ COMPUT SCI, V7, DOI 10.7717/peerj-cs.613 ZHONG L, IN PRESS Zhou LY, 2022, J BUS RES, V143, P72, DOI 10.1016/j.jbusres.2022.01.060 NR 46 TC 11 Z9 11 U1 11 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 4940 EP 4954 DI 10.1109/TEM.2022.3207326 EA OCT 2022 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA IR4M3 UT WOS:001007844500001 DA 2024-03-27 ER PT J AU Rausch, TM Derra, ND Wolf, L AF Rausch, Theresa Maria Derra, Nicholas Daniel Wolf, Lukas TI Predicting online shopping cart abandonment with machine learning approaches SO INTERNATIONAL JOURNAL OF MARKET RESEARCH LA English DT Article DE classification; e-commerce; machine learning; prediction; shopping cart abandonment; supervised learning ID ARTIFICIAL NEURAL-NETWORKS; WEB SITE; BIG DATA; CLICKSTREAM; BEHAVIOR; MODEL; CLASSIFICATION; DATAFICATION; REGRESSION AB Excessive online shopping cart abandonment rates constitute a major challenge for e-commerce companies and can inhibit their success within their competitive environment. Simultaneously, the emergence of the Internet's commercial usage results in steadily growing volumes of data about consumers' online behavior. Thus, data-driven methods are needed to extract valuable knowledge from such big data to automatically identify online shopping cart abandoners. Hence, this contribution analyzes clickstream data of a leading German online retailer comprising 821,048 observations to predict such abandoners by proposing different machine learning approaches. Thereby, we provide methodological insights to gather a comprehensive understanding of the practicability of classification methods in the context of online shopping cart abandonment prediction: our findings indicate that gradient boosting with regularization outperforms the remaining models yielding an F-1-Score of 0.8569 and an AUC value of 0.8182. Nevertheless, as gradient boosting tends to be computationally infeasible, a decision tree or boosted logistic regression may be suitable alternatives, balancing the trade-off between model complexity and prediction accuracy. C1 [Rausch, Theresa Maria; Derra, Nicholas Daniel; Wolf, Lukas] Univ Bayreuth, Bayreuth, Germany. C3 University of Bayreuth RP Derra, ND (autor correspondiente), Univ Bayreuth, Res Inst Small & Medium Sized Enterprises BF M, Mainstr 5, D-95444 Bayreuth, Germany. EM nicholas.derra@bfm-bayreuth.de OI Wolf, Lukas/0000-0003-0832-6155; Derra, Nicholas Daniel/0000-0003-4448-0221 CR Abu-Nimeh S., 2007, P ANTIPHISHING WORKI, P60 Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401 Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Bucklin RE, 2003, J MARKETING RES, V40, P249, DOI 10.1509/jmkr.40.3.249.19241 Caruana R, 2006, P 23 INT C MACH LEAR, P161, DOI [DOI 10.1145/1143844.1143865, 10.1145/1143844.1143865.] Chatterjee P, 2003, MARKET SCI, V22, P520, DOI 10.1287/mksc.22.4.520.24906 Chen HC, 2012, MIS QUART, V36, P1165 Cheung KW, 2003, DECIS SUPPORT SYST, V35, P231, DOI 10.1016/S0167-9236(02)00108-2 Chipman HA, 1998, J AM STAT ASSOC, V93, P935, DOI 10.2307/2669832 Cho CH, 2006, CYBERPSYCHOL BEHAV, V9, P261, DOI 10.1089/cpb.2006.9.261 Chollet F, 2018, Deep learning in R Climent F, 2019, J BUS RES, V101, P885, DOI 10.1016/j.jbusres.2018.11.015 Close AG, 2010, J BUS RES, V63, P986, DOI 10.1016/j.jbusres.2009.01.022 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 COVER TM, 1967, IEEE T INFORM THEORY, V13, P21, DOI 10.1109/TIT.1967.1053964 Cui G, 2006, MANAGE SCI, V52, P597, DOI 10.1287/mnsc.1060.0514 Davis J, 2006, P 23 INT C MACH LEAR, P233, DOI [10.1145/1143844.1143874, DOI 10.1145/1143844.1143874] Deng L., 2011, P AS SUMM C APSIPA A, P1 Dietterich T. G., 2002, The Handbook of Brain Theory and Neural Networks, VVol. 2, P110 Doshi-Velez F., 2017, ARXIV170208608 Duda R. O., 2000, PATTERN CLASSIFICATI Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010 Fayyad U, 1996, AI MAG, V17, P37 Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504 Friedman J, 2000, ANN STAT, V28, P337, DOI 10.1214/aos/1016218223 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Friedman JH, 2002, COMPUT STAT DATA AN, V38, P367, DOI 10.1016/S0167-9473(01)00065-2 GEISSER S, 1975, J AM STAT ASSOC, V70, P320, DOI 10.2307/2285815 Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009 Hand DJ, 2009, MACH LEARN, V77, P103, DOI 10.1007/s10994-009-5119-5 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Huang GH, 2018, J BUS RES, V85, P165, DOI 10.1016/j.jbusres.2017.12.008 Jain AK, 1996, COMPUTER, V29, P31, DOI 10.1109/2.485891 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Kelly S, 2017, J ASSOC INF SYST, V18, P872, DOI 10.17705/1jais.00477 Khadivi S., 2014, 2014 6 C INF KNOWL T Kohavi R, 2001, DATA MIN KNOWL DISC, V5, P5, DOI 10.1023/A:1009840925866 Kohavi R., 1995, INT JOINT C ART INT, DOI DOI 10.1067/MOD.2000.109031 Kukar-Kinney M, 2010, J ACAD MARKET SCI, V38, P240, DOI 10.1007/s11747-009-0141-5 L'Heureux A, 2017, IEEE ACCESS, V5, P7776, DOI 10.1109/ACCESS.2017.2696365 Liu B., 2018, 2018 IEEE INT C CONS Lycett M, 2013, EUR J INFORM SYST, V22, P381, DOI 10.1057/ejis.2013.10 Moe WW, 2004, J INTERACT MARK, V18, P5, DOI 10.1002/dir.10074 Moe WW, 2004, MANAGE SCI, V50, P326, DOI 10.1287/mnsc.1040.0153 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Mokryn O, 2019, ELECTRON COMMER R A, V34, DOI 10.1016/j.elerap.2019.100836 Montgomery AL, 2004, MARKET SCI, V23, P579, DOI 10.1287/mksc.1040.0073 Montgomery AL, 2001, INTERFACES, V31, P90, DOI 10.1287/inte.31.2.90.10630 Moro S, 2014, DECIS SUPPORT SYST, V62, P22, DOI 10.1016/j.dss.2014.03.001 Muhammad Iqbal, 2015, ICTACT Journal on Soft Computing, V5, P946 Opitz D., 1999, J ARTIF INTELL RES, V11, P169, DOI [10.1613/jair.614, DOI 10.1613/JAIR.614] Provost F, 2001, MACH LEARN, V42, P203, DOI 10.1023/A:1007601015854 Provost F., 1997, Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, P43 Rajamma RK, 2009, J PROD BRAND MANAG, V18, P188, DOI 10.1108/10610420910957816 Razi MA, 2005, EXPERT SYST APPL, V29, P65, DOI 10.1016/j.eswa.2005.01.006 Rokach L, 2010, ARTIF INTELL REV, V33, P1, DOI 10.1007/s10462-009-9124-7 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Sakar CO, 2019, NEURAL COMPUT APPL, V31, P6893, DOI 10.1007/s00521-018-3523-0 SAMUEL AL, 1959, IBM J RES DEV, V3, P211, DOI 10.1147/rd.441.0206 Schapire RE, 1998, ANN STAT, V26, P1651 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Sismeiro C, 2004, J MARKETING RES, V41, P306, DOI 10.1509/jmkr.41.3.306.35985 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742 Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910 Tibshirani RJ, 2009, ANN APPL STAT, V3, P822, DOI 10.1214/08-AOAS224 Vafeiadis T, 2015, SIMUL MODEL PRACT TH, V55, P1, DOI 10.1016/j.simpat.2015.03.003 Van den Poel D, 2005, EUR J OPER RES, V166, P557, DOI 10.1016/j.ejor.2004.04.022 Vapnik V, 2006, ESTIMATION DEPENDENC Williams N, 2006, ACM SIGCOMM COMP COM, V36, P7, DOI 10.1145/1163593.1163596 Zhang GQ, 1998, INT J FORECASTING, V14, P35, DOI 10.1016/S0169-2070(97)00044-7 ZHANG P, 1993, ANN STAT, V21, P299, DOI 10.1214/aos/1176349027 Zhang QC, 2018, INFORM FUSION, V42, P146, DOI 10.1016/j.inffus.2017.10.006 NR 79 TC 9 Z9 9 U1 3 U2 41 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1470-7853 EI 2515-2173 J9 INT J MARKET RES JI Int. J. Market Res. PD JAN PY 2022 VL 64 IS 1 BP 89 EP 112 AR 1470785320972526 DI 10.1177/1470785320972526 EA NOV 2020 PG 24 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA XY4WS UT WOS:000631216300001 DA 2024-03-27 ER PT J AU Lee, D Hosanagar, K AF Lee, Dokyun Hosanagar, Kartik TI How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages? SO MANAGEMENT SCIENCE LA English DT Article DE e-commerce; personalization; recommender systems; product attributes; consumer reviews; awareness; salience; purchase journey ID WORD-OF-MOUTH; CONSUMER-BEHAVIOR; E-COMMERCE; SEARCH; SALES; EXPERIENCE; UTILITARIAN; UNCERTAINTY; INFORMATION; COMMUNICATION AB We investigate the moderating effect of product attributes and review ratings on views, conversion|views (conversion conditional on views), and final conversion of a purchase-based collaborative filtering recommender system on an e-commerce site. We run a randomized field experiment on a top retailer with 184,375 users split into a recommender-treated group and a control group. We tag theory-driven attributes of 37,125 unique products via Amazon Mechanical Turk to augment the usual product data (e.g., review ratings, descriptions). By examining the recommender's impact through different stages-awareness (views), salience (conversion|views), and final conversion-and across product types, we provide nuanced insights. The study confirms that the recommender increases views, conversion|views, and final conversion rates by 15.3%, 21.6%, and 7.5%, respectively, but this lift is moderated by product attributes and review ratings. We find that the lift on product views is greater for utilitarian products compared with hedonic products as well as for experience products compared with search products. In contrast, the lift on conversion| views rate is greater for hedonic products compared with utilitarian products. Furthermore, the lift on views rate is greater for products with higher average review ratings, which suggests that a recommender acts as a complement to review ratings, whereas the opposite is true for conversion|views, where recommender and review ratings are substitutes. Additionally, a recommender's awareness lift is greater than its saliency impact. We discuss the potential mechanisms behind our results as well as their managerial implications. C1 [Lee, Dokyun] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Hosanagar, Kartik] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA. C3 Carnegie Mellon University; University of Pennsylvania RP Lee, D (autor correspondiente), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM dokyun@cmu.edu; kartikh@wharton.upenn.edu OI Lee, Dokyun/0000-0002-3186-3349; hosanagar, kartik/0000-0002-6442-9434 FU Berkman Faculty Fund; Jay H. Baker Retailing Center; Mack Institute for Innovation Management; FishmanDavidson Center for Service and Operations Management FX The authors gratefully acknowledge the financial support from the Berkman Faculty Fund, the Jay H. Baker Retailing Center, the Mack Institute for Innovation Management, and the FishmanDavidson Center for Service and Operations Management. CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Adomavicius G., 2011, RecSys 2011 workshop on human decision making in recommender systems, P35 Adomavicius G, 2013, INFORM SYST RES, V24, P956, DOI 10.1287/isre.2013.0497 Aggarwal P., 2005, International Journal of Internet Marketing and Advertising, V2, P38, DOI 10.1504/IJIMA.2005.007503 Ai CR, 2003, ECON LETT, V80, P123, DOI 10.1016/S0165-1765(03)00032-6 Anderson Chris., 2004, The Long Tail: Why the Future of Business is Selling Less of More Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 Animesh A, 2010, INFORM SYST RES, V21, P190, DOI 10.1287/isre.1080.0222 [Anonymous], 1986, Limited dependent and qualitative variables in econometrics [Anonymous], 1975, CLUSTERING ALGORITHM Arnold MJ, 2003, J RETAILING, V79, P77, DOI 10.1016/S0022-4359(03)00007-1 BABIN BJ, 1994, J CONSUM RES, V20, P644, DOI 10.1086/209376 Bagwell K, 2007, Handbook of Industrial Organization, V3, P1701, DOI DOI 10.1016/S1573-448X(06)03028-7 Bart Y, 2014, J MARKETING RES, V51, P270, DOI 10.1509/jmr.13.0503 Benbasat I, 1996, DECIS SUPPORT SYST, V17, P241, DOI 10.1016/0167-9236(96)00003-6 Benbasat I, 2005, Journal of the Association for Information Systems, V6, P4, DOI [DOI 10.17705/1JAIS.00065, 10.17705/1jais.00065] Berger J, 2014, J CONSUM PSYCHOL, V24, P586, DOI 10.1016/j.jcps.2014.05.002 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 BUTTERS GR, 1977, REV ECON STUD, V44, P465, DOI 10.2307/2296902 CAUDILL SB, 1988, OXFORD B ECON STAT, V50, P425 Chang C.C., 2010, World Academy of Science, Engineering and Technology, V66, P111 Chen P., 2004, INT C INF SYST, V12, P711 Chen P.-Y., 2009, System Sciences, P1 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chiu CM, 2014, INFORM SYST J, V24, P85, DOI 10.1111/j.1365-2575.2012.00407.x Choi J, 2011, INT J ELECTRON COMM, V16, P129, DOI 10.2753/JEC1086-4415160105 Clemons EK, 2008, J MANAGE INFORM SYST, V25, P13, DOI 10.2753/MIS0742-1222250202 Dai H., 2014, ADV CONSUMER RES Das A. S., 2007, P 16 INT C WORLD WID, P271 De P, 2013, INFORM SYST RES, V24, P998, DOI 10.1287/isre.2013.0487 De P, 2010, MANAGE SCI, V56, P1930, DOI 10.1287/mnsc.1100.1233 Dhar R, 2000, J MARKETING RES, V37, P60, DOI 10.1509/jmkr.37.1.60.18718 Dias MB, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P291 Dimoka A, 2012, MIS QUART, V36, P395 Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 Econsultancy and Monetate, 2013, REALITIES ONLINE PER FEICK L, 1992, J ADVERTISING, V21, P9, DOI 10.1080/00913367.1992.10673364 Fleder D, 2009, MANAGE SCI, V55, P697, DOI 10.1287/mnsc.1080.0974 Gigerenzer G, 2001, DAHL WS ENV, P37 Girard T, 2003, J BUS PSYCHOL, V18, P101, DOI 10.1023/A:1025087021768 Girard T, 2010, J BUS RES, V63, P1079, DOI 10.1016/j.jbusres.2008.12.011 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 Greevy R, 2004, J AM STAT ASSOC, V99, P7, DOI 10.1198/016214504000000025 Gu B, 2012, INFORM SYST RES, V23, P182, DOI 10.1287/isre.1100.0343 Hann IH, 2003, MANAGE SCI, V49, P1563, DOI 10.1287/mnsc.49.11.1563.20586 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Häubl G, 2006, MIT SLOAN MANAGE REV, V47, P8 Häubl G, 2003, J CONSUM PSYCHOL, V13, P75 Hinz O, 2010, BUS INFORM SYST ENG+, V2, P67, DOI 10.1007/s12599-010-0092-x HIRSCHMAN EC, 1982, J MARKETING, V46, P92, DOI 10.2307/1251707 Hong Y, 2014, INFORM SYST RES, V25, P328, DOI 10.1287/isre.2014.0520 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Hsieh YC, 2005, J RETAILING, V81, P75, DOI 10.1016/j.jretai.2005.01.006 Huang P, 2009, J MARKETING, V73, P55, DOI 10.1509/jmkg.73.2.55 JACOBY J, 1971, J APPL PSYCHOL, V55, P570, DOI 10.1037/h0032045 Jannach D., 2009, P 3 ACM C REC SYST, P205, DOI 10.1145/1639714.1639749 Khan Uzma., 2005, INSIDE CONSUMPTION C, P144 Kim C, 2012, ELECTRON COMMER R A, V11, P374, DOI 10.1016/j.elerap.2012.04.002 Klein LR, 2003, J INTERACT MARK, V17, P29, DOI 10.1002/dir.10058 Klein LR, 1998, J BUS RES, V41, P195, DOI 10.1016/S0148-2963(97)00062-3 Komiak S. X., 2004, Information Technology & Management, V5, P181, DOI 10.1023/B:ITEM.0000008081.55563.d4 Komiak SYX, 2006, MIS QUART, V30, P941 Krishnan B.C., 2001, J SERV MARK, V15, P328 Kumar A, 2019, INFORM SYST RES, V30, P819, DOI 10.1287/isre.2018.0833 Kumar A, 2015, MANAGE SCI, V61, P1921, DOI 10.1287/mnsc.2014.2086 Lee D.-h., 2014, Proc. of IEEE Workshop on Signal Processing Systems (SiPS), P1, DOI DOI 10.1109/REDW.2014.7004595 Lee D, 2019, INFORM SYST RES, V30, P239, DOI 10.1287/isre.2018.0800 Lee D, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P85, DOI 10.1145/2872427.2882976 Li XT, 2013, P ANN HICSS, P2908, DOI 10.1109/HICSS.2013.397 Lin ZJ, 2017, MIS QUART, V41, P397, DOI 10.25300/MISQ/2017/41.2.04 Lunt M, 2014, AM J EPIDEMIOL, V179, P226, DOI 10.1093/aje/kwt212 Monetate, 2013, MAXIMIZE ONLINE SALE MOORE R, 2001, ADV CONSUM RES, V28, P128 NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 NELSON P, 1974, J POLIT ECON, V82, P729, DOI 10.1086/260231 Oestreicher-Singer G, 2012, MANAGE SCI, V58, P1963, DOI 10.1287/mnsc.1120.1536 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Paraschiv Corina., 2002, ELECTRON COMMER RES, V2, P255 Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Sarkar A., 2011, INT MANAGEMENT REV, V7, P58 Sarwar Badrul, 2001, P 10 INT C WORLD WID, P285, DOI 10.1145/371920.372071 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Stafford MR, 2002, J ADVERTISING, V31, P17, DOI 10.1080/00913367.2002.10673664 Strahilevitz M, 1998, J CONSUM RES, V24, P434, DOI 10.1086/209519 Sun M, 2012, MANAGE SCI, V58, P696, DOI 10.1287/mnsc.1110.1458 Swaminathan V, 2003, J CONSUM PSYCHOL, V13, P93, DOI 10.1207/S15327663JCP13-1&2_08 Thompson Clive., 2008, The New York Times To PL, 2007, TECHNOVATION, V27, P774, DOI 10.1016/j.technovation.2007.01.001 Train KE, 2009, DISCRETE CHOICE METHODS WITH SIMULATION, 2ND EDITION, P1, DOI 10.1017/CBO9780511805271 Tucker CE, 2011, MANAGE SCI, V57, P828, DOI 10.1287/mnsc.1110.1312 Weathers D, 2007, J RETAILING, V83, P393, DOI 10.1016/j.jretai.2007.03.009 WEITZMAN ML, 1979, ECONOMETRICA, V47, P641, DOI 10.2307/1910412 WOLINSKY A, 1983, REV ECON STUD, V50, P647, DOI 10.2307/2297767 Xiao B, 2007, MIS QUART, V31, P137 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 96 TC 32 Z9 34 U1 20 U2 132 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD JAN PY 2021 VL 67 IS 1 BP 524 EP 546 DI 10.1287/mnsc.2019.3546 PG 23 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA RN8XS UT WOS:000640637000001 DA 2024-03-27 ER PT J AU Pfeiffer, J Pfeiffer, T Meissner, M Weiss, E AF Pfeiffer, Jella Pfeiffer, Thies Meissner, Martin Weiss, Elisa TI Eye-Tracking-Based Classification of Information Search Behavior Using Machine Learning: Evidence from Experiments in Physical Shops and Virtual Reality Shopping Environments SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE virtual reality; recommender system; mobile eye tracking; goal-directed search; exploratory search; electronic commerce field experiments; laboratory experiments; decision support systems ID DECISION-MAKING; DESIGN SCIENCE; ONLINE; TECHNOLOGY; ATTENTION; CHOICE; IMPACT; MODEL; TIME; INDIVIDUALS AB Classifying information search behavior helps tailor recommender systems to individual customers' shopping motives. But how can we identify these motives without requiring users to exert too much effort? Our research goal is to demonstrate that eye tracking can be used at the point of sale to do so. We focus on two frequently investigated shopping motives: goal-directed and exploratory search. To train and test a prediction model, we conducted two eye-tracking experiments in front of supermarket shelves. The first experiment was carried out in immersive virtual reality; the second, in physical reality-in other words, as a field study in a real supermarket. We conducted a virtual reality study, because recently launched virtual shopping environments suggest that there is great interest in using this technology as a retail channel. Our empirical results show that support vector machines allow the correct classification of search motives with 80% accuracy in virtual reality and 85% accuracy in physical reality. Our findings also imply that eye movements allow shopping motives to be identified relatively early in the search process: our models achieve 70% prediction accuracy after only 15 seconds in virtual reality and 75% in physical reality. Applying an ensemble method increases the prediction accuracy substantially, to about 90%. Consequently, the approach that we propose could be used for the satisfiable classification of consumers in practice. Furthermore, both environments' best predictor variables overlap substantially. This finding provides evidence that in virtual reality, information search behavior might be similar to the one used in physical reality. Finally, we also discuss managerial implications for retailers and companies that are planning to use our technology to personalize a consumer assistance system. C1 [Pfeiffer, Jella] Justus Liebig Univ Giessen, D-35394 Giessen, Germany. [Pfeiffer, Thies] Univ Appl Sci Emden Leer, D-26723 Emden, Germany. [Meissner, Martin] Zeppelin Univ, D-88045 Friedrichshafen, Germany. [Weiss, Elisa] Karlsruhe Inst Technol, D-76133 Karlsruhe, Germany. C3 Justus Liebig University Giessen; Zeppelin University; Helmholtz Association; Karlsruhe Institute of Technology RP Pfeiffer, J (autor correspondiente), Justus Liebig Univ Giessen, D-35394 Giessen, Germany. EM jella.pfeiffer@wirtschaft.uni-giessen.de; thies.pfeiffer@hs-emden-leer.de; martin.meissner@zu.de; elisa@fam-weiss.de RI Meißner, Martin/O-3209-2019 OI Meißner, Martin/0000-0002-3574-4283; Pfeiffer, Thies/0000-0001-6619-749X CR Aggarwal CC, 2015, DATA MINING, DOI 10.1007/978-3-319-14142-8 Ajanki A, 2009, USER MODEL USER-ADAP, V19, P307, DOI 10.1007/s11257-009-9066-4 Bednarik Roman., 2012, Proceedings of the symposium on eye tracking research and applications, P83, DOI [DOI 10.1145/2168556.2168569, 10.1145/2168556.2168569, 10.1145/2168556.2168569.] Berg LP, 2017, VIRTUAL REAL-LONDON, V21, P1, DOI 10.1007/s10055-016-0293-9 Bigné E, 2016, J BUS RES, V69, P1423, DOI 10.1016/j.jbusres.2015.10.119 Blattgerste J, 2018, COMMUNICATION BY GAZE INTERACTION (COGAIN 2018), DOI 10.1145/3206343.3206349 Bonetti F, 2018, PROGR IS, P119, DOI 10.1007/978-3-319-64027-3_9 Bowman DA, 2007, COMPUTER, V40, P36, DOI 10.1109/MC.2007.257 Boyd DE, 2019, J BUS RES, V100, P590, DOI 10.1016/j.jbusres.2018.06.007 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Burke R.R., 2018, Innovative Research Methodologies in Management: Volume II: Futures, Biometrics and Neuroscience Research, P63, DOI DOI 10.1007/978-3-319-64400-4_3 Cacioppo JT, 1996, PSYCHOL BULL, V119, P197, DOI 10.1037/0033-2909.119.2.197 Chandon P, 2009, J MARKETING, V73, P1, DOI 10.1509/jmkg.73.6.1 Chiou JS, 2011, COMPUT HUM BEHAV, V27, P203, DOI 10.1016/j.chb.2010.07.037 Cowan K, 2019, J BUS RES, V100, P483, DOI 10.1016/j.jbusres.2018.10.063 David ME, 2017, J CONSUM BEHAV, V16, pE26, DOI 10.1002/cb.1651 De Bruyn A, 2008, MARKET SCI, V27, P443, DOI 10.1287/mksc.1070.0306 de Melo EV, 2015, PROC INT C TOOLS ART, P644, DOI 10.1109/ICTAI.2015.98 DeFanti TA, 1993, Proceedings of the 20st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, P135, DOI [DOI 10.1145/166117.166134, 10.1145/166117.166134] Diaz G, 2013, J VISION, V13, DOI 10.1167/13.1.20 Dickinger A., 2011, Information Technology and Tourism, V13, P239, DOI 10.3727/109830512X13283928066995 Duchowski A, 2002, BEHAV RES METH INS C, V34, P573, DOI 10.3758/BF03195486 Duchowski A. T., 2002, Proceedings ETRA 2002. Eye Tracking Research and Applications Symposium, P103, DOI 10.1145/507072.507094 Duchowski A T., 2004, Proceedings o f ETRA: Eye Tracking Research Applications Symposium, P35, DOI [10.1145/968363.968369, DOI 10.1145/968363.968369] EHRENBERG ASC, 1993, J ROY STAT SOC A STA, V156, P167, DOI 10.2307/2982727 Foulsham T, 2011, VISION RES, V51, P1920, DOI 10.1016/j.visres.2011.07.002 Glöckner A, 2011, J BEHAV DECIS MAKING, V24, P71, DOI 10.1002/bdm.684 Godin G, 2004, P 10 EUR S VIRT ENV, P7 Guenter B, 2012, ACM T GRAPHIC, V31, DOI 10.1145/2366145.2366183 Gutirrez Alonso M. A., 2008, STEPPING VIRTUAL REA Guyon I., 2003, J MACH LEARN RES, V3, P1157, DOI DOI 10.1162/153244303322753616 Hastie T, 2013, ELEMENTS STAT LEARNI Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 HIRSCHMAN EC, 1982, J MARKETING, V46, P92, DOI 10.2307/1251707 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 Holmqvist K., 2011, EYE TRACKING COMPREH Hui SK, 2009, MARKET SCI, V28, P320, DOI 10.1287/mksc.1080.0400 Hyönä J, 2003, MIND'S EYE: COGNITIVE AND APPLIED ASPECTS OF EYE MOVEMENT RESEARCH, P313, DOI 10.1016/B978-044451020-4/50018-9 Iacovou CL, 1995, MIS QUART, V19, P465, DOI 10.2307/249629 Inman JJ, 2017, J RETAILING, V93, P7, DOI 10.1016/j.jretai.2016.12.006 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Janiszewski C, 1998, J CONSUM RES, V25, P290, DOI 10.1086/209540 Kahn BE, 2017, J RETAILING, V93, P29, DOI 10.1016/j.jretai.2016.11.004 Kaltcheva VD, 2006, J MARKETING, V70, P107, DOI 10.1509/jmkg.2006.70.1.107 Kramida G, 2016, IEEE T VIS COMPUT GR, V22, P1912, DOI 10.1109/TVCG.2015.2473855 Krol M, 2017, JUDGM DECIS MAK, V12, P596 Kuhn M, 2018, caret: Classification and Regression Training Kuncheva L.I, 2014, Combining pattern classifiers: methods and algorithms Lai ML, 2013, EDUC RES REV-NETH, V10, P90, DOI 10.1016/j.edurev.2013.10.001 Lau KW, 2019, VIRTUAL REAL-LONDON, V23, P255, DOI 10.1007/s10055-018-0362-3 Lee Leonard., 2018, Journal of the Association for Consumer Research, V3, P277, DOI 10.1086/698414 Léger PM, 2014, J ASSOC INF SYST, V15, P651 Loomis JM, 1999, BEHAV RES METH INS C, V31, P557, DOI 10.3758/BF03200735 MacLean K.E., 2008, REV HUMAN FACTORS ER, V4, P149, DOI [DOI 10.1518/155723408X342826, 10.1518/155723408X342826] Mariscal G, 2010, KNOWL ENG REV, V25, P137, DOI 10.1017/S0269888910000032 Meiβner M., 2017, J BUS RES, DOI [DOI 10.1016/J.JBUSRES.2017.09.028, 10.1016/j.jbusres.2017.09.028] Meiner M, 2016, J MARKETING RES, V53, P1, DOI 10.1509/jmr.13.0467 Meyer DD., 2017, Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071) Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Moeslund TB, 2001, COMPUT VIS IMAGE UND, V81, P231, DOI 10.1006/cviu.2000.0897 Opitz D., 1999, J ARTIF INTELL RES, V11, P169, DOI [10.1613/jair.614, DOI 10.1613/JAIR.614] Orquin JL, 2013, ACTA PSYCHOL, V144, P190, DOI 10.1016/j.actpsy.2013.06.003 Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Peukert C, 2019, J MANAGE INFORM SYST, V36, P755, DOI 10.1080/07421222.2019.1628889 Pfeiffer T., 2016, EYEWEAR COMPUTING SK, V23, P199, DOI [10. 4230/DagRep. 6. 1. 160, DOI 10.4230/DAGREP.6.1.160] Pieters R, 1999, INT J RES MARK, V16, P1, DOI 10.1016/S0167-8116(98)00022-6 Rayner K, 1998, PSYCHOL BULL, V124, P372, DOI 10.1037/0033-2909.124.3.372 RUSSO JE, 1994, J CONSUM RES, V21, P274, DOI 10.1086/209397 Scholz M, 2017, EUR J OPER RES, V260, P388, DOI 10.1016/j.ejor.2016.12.022 Shi SW, 2013, MANAGE SCI, V59, P1009, DOI 10.1287/mnsc.1120.1625 Shimojo S, 2003, NAT NEUROSCI, V6, P1317, DOI 10.1038/nn1150 Shmueli G, 2011, MIS QUART, V35, P553 Shmueli G, 2010, STAT SCI, V25, P289, DOI 10.1214/10-STS330 Slater M., 2003, Presence Connect, V3, P1 Slater M., 1995, ACM Transactions on Computer-Human Interaction, V2, P201, DOI [10.1145/210079.210084, DOI 10.1145/210079.210084, DOI 10.1145/210079] Speier C, 1999, DECISION SCI, V30, P337, DOI 10.1111/j.1540-5915.1999.tb01613.x STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Sutherland I., 1968, P AFIPS FALL JOINT C, V33, P757, DOI [10.1145/1476589.1476686, DOI 10.1145/1476589.1476686] Tanriverdi V., 2000, CHI 2000 Conference Proceedings. Conference on Human Factors in Computing Systems. CHI 2000. The Future is Here, P265, DOI 10.1145/332040.332443 Tien T, 2014, J SURG RES, V191, P169, DOI 10.1016/j.jss.2014.04.032 van der Lans R, 2008, MARKET SCI, V27, P922, DOI 10.1287/mksc.1070.0327 van der Lans R, 2011, BEHAV RES METHODS, V43, P239, DOI 10.3758/s13428-010-0031-2 van Nierop E, 2010, J MARKETING RES, V47, P63, DOI 10.1509/jmkr.47.1.63 Vidal M, 2013, UBICOMP'13: PROCEEDINGS OF THE 2013 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING, P439, DOI 10.1145/2493432.2493477 WEBSTER DM, 1994, J PERS SOC PSYCHOL, V67, P1049, DOI 10.1037/0022-3514.67.6.1049 Wirth R., 2000, Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, P29 Witten IH, 2011, MOR KAUF D, P1 Wolfinbarger M, 2001, CALIF MANAGE REV, V43, P34, DOI 10.2307/41166074 Xiao B, 2007, MIS QUART, V31, P137 Xu SH, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P83 Zhu R, 2004, IEEE T NEUR SYS REH, V12, P295, DOI 10.1109/TNSRE.2004.827825 NR 91 TC 44 Z9 49 U1 44 U2 219 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD SEP PY 2020 VL 31 IS 3 BP 675 EP 691 DI 10.1287/isre.2019.0907 PG 17 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA NV5UN UT WOS:000574386400018 OA Green Published, Bronze DA 2024-03-27 ER PT J AU Li, G Li, N AF Li, Guo Li, Na TI Customs classification for cross-border e-commerce based on text-image adaptive convolutional neural network SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Customs classification; Cross-border e-commerce; Convolutional neural network; Text and image classification ID PATTERN-RECOGNITION; EFFICIENCY; SYSTEM; ENERGY; MODEL AB Customs classification is an essential international procedure to import cross-border goods traded by various companies and individuals. Proper classification of such goods with high efficiency in light of the rapidly increasing amount of international trade is still challenging. The current abundant e-commence data and advanced machine learning techniques provide an opportunity for cross-border e-commerce sellers to classify goods efficiently. Thus, in this paper, we propose a text-image adaptive convolutional neural network to effectively utilize website information and facilitate the customs classification process. The proposed model includes two independent submodels: one for text and the other for image. The submodels are fused by a novel method, which can adjust the value of parameters according to the model training result. Finally, we conduct a case study and comparison experiments based on a group of customs tariff codes and a data set from an e-commerce website. Experiment results indicate the effectiveness of text and image combination in performance improvement, the outperformance of the adaptive fusion method, as well as the potential of this approach when applied to customs classification. C1 [Li, Guo; Li, Na] Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China. [Li, Guo; Li, Na] Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China. [Li, Guo] Sustainable Dev Res Inst Econ & Soc Beijing, Beijing 100081, Peoples R China. C3 Beijing Institute of Technology; Beijing Institute of Technology RP Li, G (autor correspondiente), Beijing Inst Technol, Sch Management & Econ, Beijing 100081, Peoples R China.; Li, G (autor correspondiente), Beijing Inst Technol, Ctr Energy & Environm Policy Res, Beijing 100081, Peoples R China.; Li, G (autor correspondiente), Sustainable Dev Res Inst Econ & Soc Beijing, Beijing 100081, Peoples R China. EM liguo@bit.edu.cn RI Li, Guo/ACY-6481-2022; Li, Na/AAO-7841-2021; N'Dri, Amoin Bernadine/IWD-7811-2023 OI Li, Guo/0000-0002-7127-1102; Li, Na/0000-0003-3768-500X CR Aanen SS, 2015, EXPERT SYST APPL, V42, P1298, DOI 10.1016/j.eswa.2014.09.032 Abbasi A, 2010, MIS QUART, V34, P435 Abdolshah M, 2017, EXPERT SYST APPL, V77, P57, DOI 10.1016/j.eswa.2017.01.030 Appels T., 1998, INT J LOGIST MANAG, V15, P111 Bai X, 2017, PATTERN RECOGN, V66, P437, DOI 10.1016/j.patcog.2016.12.005 Bi WJ, 2016, IEEE T IND INFORM, V12, P1270, DOI 10.1109/TII.2016.2547584 Cheng F, 2018, PATTERN RECOGN, V83, P340, DOI 10.1016/j.patcog.2018.06.005 Dakhlia S, 2013, J PUBLIC ECON THEORY, V15, P803, DOI 10.1111/jpet.12055 Ding LY, 2015, PROCEDIA COMPUT SCI, V60, P1462, DOI 10.1016/j.procs.2015.08.224 Farid DM, 2014, EXPERT SYST APPL, V41, P1937, DOI 10.1016/j.eswa.2013.08.089 Frecknall Hughes J., 2001, EUROPEAN MANAGEMENT, V19, P651, DOI [10.1016/S0263-2373(01)00090-1, DOI 10.1016/S0263-2373(01)00090-1] FUKUSHIMA K, 1980, BIOL CYBERN, V36, P193, DOI 10.1007/BF00344251 Grüschow RM, 2016, ELECTRON COMMER R A, V18, P27, DOI 10.1016/j.elerap.2016.06.001 Han DM, 2018, EXPERT SYST APPL, V95, P43, DOI 10.1016/j.eswa.2017.11.028 Han W, 2020, ELECTRON COMMER RES, V20, P651, DOI 10.1007/s10660-018-9318-7 He LF, 2018, ELECTRON COMMER RES, V18, P277, DOI 10.1007/s10660-018-9292-0 Hsu CI, 2009, COMPUT IND ENG, V57, P506, DOI 10.1016/j.cie.2008.02.003 Hsu VN, 2011, M&SOM-MANUF SERV OP, V13, P163, DOI 10.1287/msom.1100.0312 Huang AZ, 2018, ELECTRON COMMER RES, V18, P143, DOI 10.1007/s10660-017-9262-y Jing N, 2018, ELECTRON COMMER RES, V18, P159, DOI 10.1007/s10660-017-9275-6 Kalva PR, 2007, PROC INT CONF DOC, P561 Kazemian HB, 2015, EXPERT SYST APPL, V42, P1166, DOI 10.1016/j.eswa.2014.08.046 Kim S, 2018, COMPUT NETW, V137, P119, DOI 10.1016/j.comnet.2018.03.006 LeCun Y, 1989, NEURAL COMPUT, V1, P541, DOI 10.1162/neco.1989.1.4.541 Lee H, 2018, ELECTRON COMMER RES, V18, P433, DOI 10.1007/s10660-017-9268-5 Lee J., 2004, Electronic Commerce Research, V4, P335, DOI 10.1023/B:ELEC.0000037081.43372.6a Li G, 2020, DECISION SCI, V51, P691, DOI 10.1111/deci.12340 Li G, 2018, J CLEAN PROD, V197, P124, DOI 10.1016/j.jclepro.2018.06.177 Ma Y, 2017, ELECTRON COMMER RES, V17, P3, DOI 10.1007/s10660-016-9240-9 Martin AK, 2013, TELECOMMUN POLICY, V37, P715, DOI 10.1016/j.telpol.2013.05.005 Pourakbar M, 2018, EUR J OPER RES, V271, P331, DOI 10.1016/j.ejor.2018.05.012 Ramesh G, 2017, J INF SECUR APPL, V35, P75, DOI 10.1016/j.jisa.2017.06.001 Raus M, 2009, GOV INFORM Q, V26, P246, DOI 10.1016/j.giq.2008.11.008 Robinson R, 2012, ELECTRON COMMER RES, V12, P301, DOI 10.1007/s10660-012-9095-7 Rovetta D, 2009, LEG ISS ECON INTEGR, V36, P7 Schu G, 2018, EXPERT SYST APPL, V98, P57, DOI 10.1016/j.eswa.2017.12.045 Song L, 2017, ELECTRON COMMER RES, V17, P51, DOI 10.1007/s10660-016-9244-5 Sun JS, 2018, STRUCT CHANGE ECON D, V47, P57, DOI 10.1016/j.strueco.2018.07.007 Sun JS, 2018, J CLEAN PROD, V175, P561, DOI 10.1016/j.jclepro.2017.12.042 Swapna G., 2018, Procedia Computer Science, V132, P1253, DOI 10.1016/j.procs.2018.05.041 Tanha J, 2017, INT J MACH LEARN CYB, V8, P355, DOI 10.1007/s13042-015-0328-7 Urciuoli L, 2013, GOV INFORM Q, V30, P473, DOI 10.1016/j.giq.2013.06.001 Ward BT, 2012, INFORM SYST MANAGE, V29, P331, DOI 10.1080/10580530.2012.716995 Wei YC, 2016, IEEE T PATTERN ANAL, V38, P1901, DOI 10.1109/TPAMI.2015.2491929 Wu HF, 2018, J ELECTROMYOGR KINES, V42, P136, DOI 10.1016/j.jelekin.2018.07.005 Wu YF, 2011, TELECOMMUN POLICY, V35, P603, DOI 10.1016/j.telpol.2011.05.002 Xiao B, 2007, MIS QUART, V31, P137 Xiao B, 2011, MIS QUART, V35, P169 Yapar BK, 2015, WORLD CONFERENCE ON TECHNOLOGY, INNOVATION AND ENTREPRENEURSHIP, P642, DOI 10.1016/j.sbspro.2015.06.145 Zhang XM, 2018, MULTIMED TOOLS APPL, V77, P7469, DOI 10.1007/s11042-017-4657-2 Zhu FY, 2019, NEUROCOMPUTING, V328, P182, DOI 10.1016/j.neucom.2018.02.099 NR 51 TC 26 Z9 26 U1 5 U2 50 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD DEC PY 2019 VL 19 IS 4 SI SI BP 779 EP 800 DI 10.1007/s10660-019-09334-x PG 22 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA JM2DA UT WOS:000496029800003 DA 2024-03-27 ER PT J AU Fu, JD Mouakket, S Sun, Y AF Fu, Jindi Mouakket, Samar Sun, Yuan TI The role of chatbots' human-like characteristics in online shopping SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Chatbots; Technology Readiness Index; Human -like characteristics; Trust ID TECHNOLOGY READINESS; SOCIAL PRESENCE; CONSUMERS ACCEPTANCE; ANTHROPOMORPHISM; AGENT; TRUST; EMPLOYEES; RESPONSIVENESS; PERCEPTIONS; VARIABLES AB Despite their importance for online shopping, little is known about what motivates customers to trust and use chatbots. This study fills this gap by investigating factors leading customers to trust chatbots, eventually leading to a willingness to use them. We examined the antecedents of trust from two perspectives: first, the customer perspective, represented by innovativeness and optimism, and second, the chatbots' human-like characteristics, represented by anthropomorphism, empathy, and social presence. The model was examined using a represen-tative sample of 395 online shopping customers. Our findings show that customer's readiness characteristics (optimism and innovativeness), and the human-like characteristics of chatbots (empathy and social presence) have a positive influence on customers' trust in chatbots, while perceived anthropomorphism has a negative influence on trust. In addition, our results indicate that customers' trust significantly affects their willingness to use this new technology. The results of the study provide key insights for chatbot developers and marketing managers on how to build trust in chatbots, which will, in turn, lead to an increase in customers' willingness to use this technology in the online shopping context. C1 [Fu, Jindi] Hangzhou Dianzi Univ, Sch Management, Hangzhou, Peoples R China. [Fu, Jindi] Zhejiang Univ, Sch Management, Hangzhou, Peoples R China. [Mouakket, Samar] Univ Sharjah, Coll Comp & Informat, Sharjah, U Arab Emirates. [Sun, Yuan] Zhejiang Gongshang Univ, Key Res Inst Humanities & Social Sci Univ, Modern Business Res Ctr, Minist Educ China, Hangzhou, Peoples R China. [Sun, Yuan] Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou City, Peoples R China. [Sun, Yuan] Zhejiang Gongshang Univ, Zheshang Res Inst, Hangzhou, Peoples R China. C3 Hangzhou Dianzi University; Zhejiang University; University of Sharjah; Zhejiang Gongshang University; Zhejiang Gongshang University; Zhejiang Gongshang University RP Sun, Y (autor correspondiente), Zhejiang Gongshang Univ, Key Res Inst Humanities & Social Sci Univ, Modern Business Res Ctr, Minist Educ China, Hangzhou, Peoples R China.; Sun, Y (autor correspondiente), Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou City, Peoples R China.; Sun, Y (autor correspondiente), Zhejiang Gongshang Univ, Zheshang Res Inst, Hangzhou, Peoples R China. EM 3030630052@163.com; samar@sharjah.ac.ae; sunyuan@mail.zjgsu.edu.cn RI Mouakket, Samar/HJY-0400-2023 OI SUN, Yuan/0000-0002-8659-1870 FU National Natural Science Foundation of China [72102058]; China Postdoctoral Science Foundation [2021M702794, 2023T160579]; Zhejiang Postdoctoral Science Foundation [ZJ2021057]; Major Project of National Social Sci- ence Fund of China [21 ZD119]; Zhejiang Provincial Natural Sci- ence Foundation [LR23G020001] FX This work was supported by grants awarded by the National Natural Science Foundation of China (72102058) , China Postdoctoral Science Foundation (2021M702794, 2023T160579) , Zhejiang Postdoctoral Science Foundation (ZJ2021057) , Major Project of National Social Sci- ence Fund of China (21 & ZD119) , and Zhejiang Provincial Natural Sci- ence Foundation (LR23G020001) . CR Aggarwal P, 2012, J CONSUM RES, V39, P307, DOI 10.1086/662614 Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 Aoki N, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101490 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Barclay D., 1995, PARTIAL LEAST SQUARE Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Baylor A.L., 2005, International Journal of Artificial Intelligence in Education, V15, P95, DOI DOI 10.1007/BF02504991 Ben Mimoun M.S., 2013, Improving Consumer Performance and Perceived Service Quality in a New Type of Commercial Environment in 3D, Thanks to Embodied Virtual Sales Agents, P233, DOI [10.4018/978-1-4666-3954-6.ch014, DOI 10.4018/978-1-4666-3954-6.CH014] Birnbaum GE, 2016, COMPUT HUM BEHAV, V63, P416, DOI 10.1016/j.chb.2016.05.064 BRISLIN RW, 1970, J CROSS CULT PSYCHOL, V1, P185, DOI 10.1177/135910457000100301 Cameron D, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106561 Carmines EG., 1979, RELIABILITY VALIDITY, V17, P37, DOI [DOI 10.4135/9781412985642, 10.4135/9781412985642.n4] Carrion G.C., 2017, PARTIAL LEAST SQUARE, DOI DOI 10.1007/978-3-319-64069-3_8 Cassell J., 2000, EMBODIED CONVERSATIO Castellano S, 2018, MANAGE DECIS, V56, P1232, DOI 10.1108/MD-04-2017-0444 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chang YW, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102325 Chen JV, 2021, INTERNET RES, V31, P1376, DOI 10.1108/INTR-11-2019-0447 Chen MF, 2018, INTERNET RES, V28, P351, DOI 10.1108/IntR-03-2017-0099 Chen Q, 2022, J BUS RES, V145, P552, DOI 10.1016/j.jbusres.2022.02.088 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Chin WW, 1998, QUANT METH SER, P295 Chin WW, 2013, SPRINGER P MATH STAT, V56, P221, DOI 10.1007/978-1-4614-8283-3_15 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Cruz-Cárdenas J, 2021, J BUS RES, V122, P217, DOI 10.1016/j.jbusres.2020.08.054 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Dhagarra D, 2020, INT J MED INFORM, V141, DOI 10.1016/j.ijmedinf.2020.104164 Dikmen M, 2017, IEEE SYS MAN CYBERN, P1093, DOI 10.1109/SMC.2017.8122757 Dirsehan T, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101361 Edwards C, 2016, COMPUT HUM BEHAV, V65, P666, DOI 10.1016/j.chb.2016.07.003 Etemad-Sajadi R, 2014, INT J QUAL RELIAB MA, V31, P419, DOI 10.1108/IJQRM-05-2013-0077 Fernandes T, 2021, J BUS RES, V122, P180, DOI 10.1016/j.jbusres.2020.08.058 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gao LL, 2017, INFORM SYST FRONT, V19, P525, DOI 10.1007/s10796-015-9611-0 Gefen D, 2004, OMEGA-INT J MANAGE S, V32, P407, DOI 10.1016/j.omega.2004.01.006 Gefen D., 2003, e-Service Journal, V2, P7, DOI DOI 10.2979/ESJ.2003.2.2.7 Glikson E, 2020, ACAD MANAG ANN, V14, P627, DOI 10.5465/annals.2018.0057 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Gong L, 2007, HUM COMMUN RES, V33, P163, DOI 10.1111/j.1468-2958.2007.00295.x Goudey A, 2016, RECH APPL MARKET-ENG, V31, P2, DOI 10.1177/2051570716643961 Griol D, 2013, APPL ARTIF INTELL, V27, P759, DOI 10.1080/08839514.2013.835230 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Haddad A, 2020, ADV INTELL SYST COMP, V1016, P249, DOI 10.1007/978-981-13-9364-8_19 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Han MC, 2021, J INTERNET COMMER, V20, P46, DOI 10.1080/15332861.2020.1863022 Harman H.H., 1976, MODERN FACTOR ANAL, DOI DOI 10.2307/2282293 Heerink M, 2010, INT J SOC ROBOT, V2, P361, DOI 10.1007/s12369-010-0068-5 Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Huang JM, 2015, J HOSP TOUR TECHNOL, V6, P26, DOI 10.1108/JHTT-02-2015-0013 Jiang H, 2022, COMPUT HUM BEHAV, V134, DOI 10.1016/j.chb.2022.107329 Jiang QL, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.103074 Jiang Y, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107485 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kaushik AK, 2015, TOUR MANAG PERSPECT, V16, P278, DOI 10.1016/j.tmp.2015.09.002 Kim Y, 2012, COMPUT HUM BEHAV, V28, P241, DOI 10.1016/j.chb.2011.09.006 Konya-Baumbach E, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107513 Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lin JSC, 2011, MANAG SERV QUAL, V21, P424, DOI 10.1108/09604521111146289 Lin XL, 2022, IND MARKET MANAG, V101, P45, DOI 10.1016/j.indmarman.2021.11.016 Longoni C, 2019, J CONSUM RES, V46, P629, DOI 10.1093/jcr/ucz013 Lu J, 2012, J ELECTRON COMMER RE, V13, P50 Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 McLean G, 2019, COMPUT HUM BEHAV, V99, P28, DOI 10.1016/j.chb.2019.05.009 Meng J, 2009, J INT CONSUM MARK, V22, P19, DOI 10.1080/08961530902844915 Mostafa RB, 2022, EUR J MARKETING, V56, P1748, DOI 10.1108/EJM-02-2020-0084 Murray J, 2019, INT J RETAIL DISTRIB, V47, P1364, DOI 10.1108/IJRDM-01-2019-0016 Nugroho MA, 2017, PROCEDIA COMPUT SCI, V124, P319, DOI 10.1016/j.procs.2017.12.161 Parasuraman A, 2015, J SERV RES-US, V18, P59, DOI 10.1177/1094670514539730 Parasuraman A., 2001, Techno-Ready Marketing: How and Why Your Customers Adopt Technology Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Powell PA, 2017, COMPUT HUM BEHAV, V68, P137, DOI 10.1016/j.chb.2016.11.024 Rosenbaum MS, 2015, J BUS RES, V68, P1862, DOI 10.1016/j.jbusres.2015.01.014 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Siau K., 2018, Cutter business technology journal, V31, P47 Sun S, 2020, INT J HOSP MANAG, V90, DOI 10.1016/j.ijhm.2020.102633 Sundar S. S., 2008, Digital media, youth, and credibility, P73, DOI DOI 10.1162/DMAL.9780262562324.073 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Verhagen T, 2014, J COMPUT-MEDIAT COMM, V19, P529, DOI 10.1111/jcc4.12066 Wagner K, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P1386 Walczuch R, 2007, INFORM MANAGE-AMSTER, V44, P206, DOI 10.1016/j.im.2006.12.005 Wang CC, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103325 Waytz A, 2014, J EXP SOC PSYCHOL, V52, P113, DOI 10.1016/j.jesp.2014.01.005 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Yoo Y, 2001, MIS QUART, V25, P371, DOI 10.2307/3250922 Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 NR 92 TC 0 Z9 0 U1 49 U2 49 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD SEP-OCT PY 2023 VL 61 AR 101304 DI 10.1016/j.elerap.2023.101304 EA AUG 2023 PG 11 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA T7RS0 UT WOS:001079924200001 DA 2024-03-27 ER PT J AU Sivathanu, B Pillai, R Metri, B AF Sivathanu, Brijesh Pillai, Rajasshrie Metri, Bhimaraya TI Customers' online shopping intention by watching AI-based deepfake advertisements SO INTERNATIONAL JOURNAL OF RETAIL & DISTRIBUTION MANAGEMENT LA English DT Article DE Online shopping intention; Deepfake video advertising; PLS-SEM; Media richness; Information manipulation; Personalization; Perceived trust ID MANIPULATION THEORY 2; MEDIA-RICHNESS; ARTIFICIAL-INTELLIGENCE; INTEGRATED MODEL; SOCIAL PRESENCE; COGNITIVE LOAD; BIG DATA; PLS-SEM; TRUST; IMPACT AB Purpose The purpose of this study was to investigate the online shopping intention of customers by watching artificial intelligence (AI)-based deepfake video advertisements using media richness (MR) theory and Information Manipulation Theory 2 (IMT2). Design/methodology/approach A conceptual model was developed to understand customers' online shopping intention by watching deepfake videos. A quantitative survey was conducted among the 1,180 customers using a structured questionnaire to test the conceptual model, and data were analyzed with partial least squares structural equation modeling. Findings The outcome of this research provides the antecedents of the online shopping intention of customers after watching AI-based deepfake videos. These antecedents are MR, information manipulation tactics, personalization and perceived trust. Perceived deception negatively influences customers' online shopping intention, and cognitive load has no effect. It also elucidates the manipulation tactics used by the managers to develop AI-based deepfake videos. Practical implications The distinctive model that emerged is insightful for senior executives and managers in the e-commerce and retailing industry to understand the influence of AI-based deepfake videos. This provides the antecedents of online shopping intention due to deepfakes, which are helpful for designers, marketing managers and developers. Originality/value The authors amalgamate the MR and IMT2 theory to understand the online shopping intention of the customers after watching AI-based deepfake videos. This work is a pioneer in examining the effect of AI-based deepfakes on the online shopping intention of customers by providing a framework that is empirically validated. C1 [Sivathanu, Brijesh] Coll Engn Pune, Dept Management, Pune, Maharashtra, India. [Pillai, Rajasshrie] Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. [Metri, Bhimaraya] Indian Inst Management, Nagpur, Maharashtra, India. C3 College of Engineering Pune; Indian Institute of Management (IIM System); Indian Institute of Management Nagpur RP Pillai, R (autor correspondiente), Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. EM rajasshriel@gmail.com RI S, BRIJESH/AAQ-4753-2021; Pillai, Rajasshrie/GRO-0859-2022 OI Sivathanu, Dr. Brijesh/0000-0003-2505-9140 CR Adee S., 2020, IEEE SPECTRUM Aiolfi S, 2021, INT J RETAIL DISTRIB, V49, P1089, DOI 10.1108/IJRDM-10-2020-0410 Al-Debei MM, 2015, INTERNET RES, V25, P707, DOI 10.1108/IntR-05-2014-0146 Al-Maghrabi T, 2011, INT J RETAIL DISTRIB, V39, P899, DOI 10.1108/09590551111183308 Alamäki A, 2019, INFORM PROCESS MANAG, V56, P756, DOI 10.1016/j.ipm.2019.01.003 All Pakistan Textile Mills Association, 2020, AI GENERATED TEXT IS ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Arora S., 2021, J INTERNET COMMER, V21, P1 Banerjee S, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102416 Bankole FO, 2017, TELEMAT INFORM, V34, P490, DOI 10.1016/j.tele.2016.08.004 Baron K., 2019, FORBES Bergin R., 2013, MEDIA RICHNESS THEOR Bianchi C, 2018, INT J RETAIL DISTRIB, V46, P364, DOI 10.1108/IJRDM-02-2017-0035 Blake, 2020, 50 STATS SHOWING POW Bleier A, 2015, J RETAILING, V91, P390, DOI 10.1016/j.jretai.2015.04.001 Brunelle E, 2009, J INTERNET COMMER, V8, P222, DOI 10.1080/15332860903467649 Campbell C, 2022, J ADVERTISING, V51, P22, DOI 10.1080/00913367.2021.1909515 Cao LL, 2021, INT J RETAIL DISTRIB, V49, P958, DOI 10.1108/IJRDM-09-2020-0350 Chen CC, 2018, TELEMAT INFORM, V35, P1512, DOI 10.1016/j.tele.2018.03.019 Chen MF, 2014, INT J HOSP MANAG, V36, P221, DOI 10.1016/j.ijhm.2013.09.006 Chen MY, 2013, ELECTRON COMMER RES, V13, P1, DOI 10.1007/s10660-013-9104-5 Chen YM, 2018, J RETAIL CONSUM SERV, V41, P281, DOI 10.1016/j.jretconser.2017.04.004 Chetioui Y, 2021, EUROMED J BUS, V16, P544, DOI 10.1108/EMJB-05-2020-0046 Chiluwa I.E., 2019, HDB RES DECEPTION FA Chitrakorn K., 2021, BRANDS CAN TAP FUTUR Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Cui G., 2014, J MARKETING, V1 DAFT RL, 1987, MIS QUART, V11, P355, DOI 10.2307/248682 Dan A., 2020, FORBES Dialani P., 2021, NOTHE POSITIVE POTEN Dubey R, 2018, INT J LOGIST MANAG, V29, P485, DOI 10.1108/IJLM-02-2017-0039 Etemad-Sajadi R, 2016, COMPUT HUM BEHAV, V61, P227, DOI 10.1016/j.chb.2016.03.045 Fan XJ, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101986 Giertz JN, 2022, J SERV MANAGE, V33, P485, DOI 10.1108/JOSM-06-2021-0211 Grewal D, 2018, J MARKET EDUC, V40, P85, DOI 10.1177/0273475318755838 Grewal D, 2017, J RETAILING, V93, P1, DOI 10.1016/j.jretai.2016.12.008 GUADAGNOLI E, 1988, PSYCHOL BULL, V103, P265, DOI 10.1037/0033-2909.103.2.265 Guide VDR, 2015, J OPER MANAG, V37, pV, DOI 10.1016/S0272-6963(15)00056-X Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Hamouda M, 2018, J ENTERP INF MANAG, V31, P426, DOI 10.1108/JEIM-07-2017-0101 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Ishii K, 2019, HUM BEHAV EMERG TECH, V1, P124, DOI 10.1002/hbe2.138 Kalinic Z, 2016, INF SYST E-BUS MANAG, V14, P367, DOI 10.1007/s10257-015-0287-2 Kalpokas Ignas, 2021, SN Soc Sci, V1, P1, DOI 10.1007/s43545-020-00010-8 Kang M, 2016, INFORM TECHNOL PEOPL, V29, P580, DOI 10.1108/ITP-01-2015-0023 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Kietzmann J, 2021, INT J ADVERT, V40, P473, DOI 10.1080/02650487.2020.1834211 Kietzmann J, 2020, BUS HORIZONS, V63, P135, DOI 10.1016/j.bushor.2019.11.006 Kim JH, 2010, J FASH MARK MANAG, V14, P247, DOI 10.1108/13612021011046093 Kim YJ, 2014, COMPUT HUM BEHAV, V33, P256, DOI 10.1016/j.chb.2014.01.015 Koo DM, 2010, COMPUT HUM BEHAV, V26, P377, DOI 10.1016/j.chb.2009.11.009 Kwok AOJ, 2021, CURR ISSUES TOUR, V24, P1798, DOI 10.1080/13683500.2020.1738357 Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153 Lee J., 2022, SSRN ELECT J, DOI 10.2139/ssrn.4059116 Lee J, 2011, INTERNET RES, V21, P187, DOI 10.1108/10662241111123766 Li CH, 2016, INT J CONTEMP HOSP M, V28, P924, DOI 10.1108/IJCHM-05-2014-0227 Lim JS., 2020, Journal of Marketing Communications, V26, P145, DOI DOI 10.1080/13527266.2018.1469543 Lipowski M, 2018, BALT J MANAG, V13, P169, DOI 10.1108/BJM-04-2017-0127 Luthera N., 2020, FORBES Mahmud B., 2020, ARXIV PREPRINT, V5, P13 Maity M, 2018, J BUS RES, V87, P36, DOI 10.1016/j.jbusres.2018.02.003 Maras MH, 2019, INT J EVID PROOF, V23, P255, DOI 10.1177/1365712718807226 MCCORNACK SA, 1992, COMMUN MONOGR, V59, P1, DOI 10.1080/03637759209376245 McCornack SA, 2014, J LANG SOC PSYCHOL, V33, P348, DOI 10.1177/0261927X14534656 Mitra G., 2020, EXPRESS COMPUTER Morosan C, 2014, INT J CONTEMP HOSP M, V26, P246, DOI 10.1108/IJCHM-11-2012-0221 Mustafi M.A. A., 2020, Journal of Contemporary Marketing Science, V3, P385, DOI [DOI 10.1108/JCMARS-05-2020-0024, 10.1108/jcmars-05-2020-0024] Nguyen T.T., 2019, Deep Learning for Deepfakes Creation and Detection Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Ogara SO, 2014, COMPUT HUM BEHAV, V36, P453, DOI 10.1016/j.chb.2014.03.064 Ogonowski A, 2014, J RETAIL CONSUM SERV, V21, P482, DOI 10.1016/j.jretconser.2014.03.004 PAAS FGWC, 1994, PERCEPT MOTOR SKILL, V79, P419, DOI 10.2466/pms.1994.79.1.419 Patel L., 2020, FORBES Paul H, 2021, DATA MIN KNOWL DISC, V35, P1830, DOI 10.1007/s10618-021-00772-6 Peng K, 2020, INTERNET RES, V30, P1143, DOI 10.1108/INTR-03-2019-0095 Peng L., 2009, ACCOUNT FINANC, V24, P75 Peng L, 2016, J CONSUM MARK, V33, P269, DOI 10.1108/JCM-01-2015-1281 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Qin X., 2019, J ADVERTISING, V48, P1 Ringle C.M., 2005, Smart PLS 2.0 Riquelme IP, 2014, J BUS ETHICS, V119, P405, DOI 10.1007/s10551-013-1628-z Román S, 2007, J BUS ETHICS, V72, P131, DOI 10.1007/s10551-006-9161-y Roy SK, 2017, TECHNOL FORECAST SOC, V124, P257, DOI 10.1016/j.techfore.2016.09.022 Samuel LHS, 2015, J INTERNET COMMER, V14, P233, DOI 10.1080/15332861.2015.1028250 Schmeck A, 2015, INSTR SCI, V43, P93, DOI 10.1007/s11251-014-9328-3 Schrader C, 2012, COMPUT HUM BEHAV, V28, P648, DOI 10.1016/j.chb.2011.11.011 Sengar N., 2022, EC TIMES, P1 Sohn K, 2021, INT J RETAIL DISTRIB, V49, P61, DOI 10.1108/IJRDM-03-2020-0091 Sokolova K, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.01.011 Somers M., 2020, SLOAN Souiden N, 2019, J RETAIL CONSUM SERV, V50, P286, DOI 10.1016/j.jretconser.2018.07.023 Srivastava S., 2020, ANAL INSIGHT Stover D, 2018, B ATOM SCI, V74, P283, DOI 10.1080/00963402.2018.1486618 Suh KS, 1999, INFORM MANAGE, V35, P295, DOI 10.1016/S0378-7206(98)00097-4 Tolosana Ruben, 2020, Information Fusion, V64, P131, DOI 10.1016/j.inffus.2020.06.014 Sebastian AT, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1876545 Tseng CH, 2020, INT J INFORM MANAGE, V50, P353, DOI 10.1016/j.ijinfomgt.2019.08.010 Tseng FC, 2017, INTERNET RES, V27, P520, DOI 10.1108/IntR-06-2016-0181 Tsou HT, 2015, INT J INFORM MANAGE, V35, P1, DOI 10.1016/j.ijinfomgt.2014.09.001 Tukachinsky R, 2019, COMMUN THEOR, V29, P297, DOI 10.1093/ct/qty032 Tuomi A, 2021, ANN TOUR RES EMPIR I, V2, DOI 10.1016/j.annale.2021.100027 Voropanova E, 2015, INT REV RETAIL DISTR, V25, P529, DOI 10.1080/09593969.2015.1089304 Walczyk JJ, 2014, J LANG SOC PSYCHOL, V33, P424, DOI 10.1177/0261927X14535395 Wang Y, 2019, ASIA PAC J MARKET LO, V31, P55, DOI 10.1108/APJML-06-2017-0112 Wang YY, 2018, INT J INFORM MANAGE, V38, P7, DOI 10.1016/j.ijinfomgt.2017.07.003 Westerlund M, 2019, TECHNOL INNOV MANAG, V9, P39, DOI 10.22215/timreview/1282 Whittaker L, 2021, AUSTRALAS MARK J, V29, P204, DOI 10.1177/1839334921999479 Williams D.E., 2020, INT REV RETAIL DISTR, V31, P1 Wu WY, 2017, INF SYST E-BUS MANAG, V15, P689, DOI 10.1007/s10257-016-0323-x Yang, 2020, ONLINE BEHAV ADVERTI Yeh YS, 2009, ONLINE INFORM REV, V33, P1066, DOI 10.1108/14684520911011016 Yoo K., 2014, INFORM COMMUNICATION, P49 Yoo K. H., 2010, Information Technology and Tourism, V12, P139, DOI 10.3727/109830510X12887971002701 Zhang M, 2020, SERV IND J, V40, P656, DOI 10.1080/02642069.2019.1576642 Zhu YQ, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2020.103314 Zhu YQ, 2016, COMPUT HUM BEHAV, V65, P442, DOI 10.1016/j.chb.2016.08.048 Zhuang, 2010, BUYER BEWARE CONSUME Zhuang MZ, 2018, J BUS RES, V87, P24, DOI 10.1016/j.jbusres.2018.02.016 NR 121 TC 3 Z9 4 U1 79 U2 153 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-0552 EI 1758-6690 J9 INT J RETAIL DISTRIB JI Int. J. Retail Distrib. Manag. PD JAN 2 PY 2023 VL 51 IS 1 BP 124 EP 145 DI 10.1108/IJRDM-12-2021-0583 EA SEP 2022 PG 22 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 7I7HO UT WOS:000853274200001 DA 2024-03-27 ER PT J AU Louta, M Roussaki, I Pechlivanos, L AF Louta, Malamati Roussaki, Ioanna Pechlivanos, Lambros TI An intelligent agent negotiation strategy in the electronic marketplace environment SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH LA English DT Article; Proceedings Paper CT 20th European Conference on Operational Research (EURO XX) CY JUL 04-07, 2004 CL Rhodes Isl, GREECE DE intelligent agents; negotiation protocol and model; strategy; ranking mechanism ID COMPUTING PARETO SOLUTIONS; ISSUE NEGOTIATIONS; INFORMATION; MODEL AB E-commerce will strongly penetrate the market if coupled with appropriate technologies and mechanisms. Mobile agents may enhance the intelligence and improve the efficiency of systems in the e-marketplace. We propose a dynamic multi-lateral negotiation model and construct an efficient negotiation strategy based on a ranking mechanism that does not require a complicated rationale on behalf of the buyer agents. This strategy can be used to extend the functionality of autonomous intelligent agents, so that they quickly reach to an agreement aiming to maximise their owner's utility. The framework proposed considers both contract and decision issues, is based on real market conditions, and has been empirically evaluated. Moreover, it is shown that in a linear framework like the one we employ, more elaborate ranking mechanisms do not necessarily improve efficiency. (C) 2006 Elsevier B.V. All rights reserved. C1 [Louta, Malamati] Technol Educ Inst Western Macedonia, Dept Business Adm, Koila 50100, Kozani, Greece. [Roussaki, Ioanna] Natl Tech Univ Athens, GR-15773 Athens, Greece. [Pechlivanos, Lambros] Athens Univ Econ & Business, Athens 10434, Greece. C3 National Technical University of Athens; Athens University of Economics & Business RP Louta, M (autor correspondiente), Technol Educ Inst Western Macedonia, Dept Business Adm, Koila 50100, Kozani, Greece. EM louta@telecom.ntua.gr; nanario@telecom.ntua.gr; lpech@aueb.gr RI Roussaki, Ioanna G/AIF-3176-2022 OI Louta, Malamati/0009-0005-2283-7383; Pechlivanos, Lambros/0000-0001-8667-3561 CR Aarts E., 1989, Simulated Annealing and Boltzmann Machines AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396 Axelrod R., 1997, COMPLEXITY COOPERATI Bac M, 1996, GAME ECON BEHAV, V13, P125, DOI 10.1006/game.1996.0028 Brugha C, 2004, J OPER RES SOC, V55, P1156, DOI 10.1057/palgrave.jors.2601777 Busch LA, 2002, GAME ECON BEHAV, V41, P169, DOI 10.1016/S0899-8256(02)00505-5 CHEN MK, 2002, AGENDAS MULTI ISSUE CONTIZER V, 2003, P 5 WORKSH AG MED EL Crane M., 1991, CONJOINT ANAL GUIDE Ehtamo H, 2001, EUR J OPER RES, V130, P54, DOI 10.1016/S0377-2217(00)00019-9 Faratin P, 1998, ROBOT AUTON SYST, V24, P159, DOI 10.1016/S0921-8890(98)00029-3 Fatima S. S., 2002, Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, P143 Fatima SS, 2004, ARTIF INTELL, V152, P1, DOI 10.1016/S0004-3702(03)00115-2 Fershtman C, 2000, GAME ECON BEHAV, V30, P216, DOI 10.1006/game.1999.0727 FIELD S, 2000, ELECT COMMERCE SPECI, V32 Figueira J, 2005, MULTIPLE CRITERIA DE, V78 Gerding EnricoH., 2000, Scientific approaches and techniques for negotiation. a game theoretic and artificial intelligence perspective Ghosh S, 1998, HARVARD BUS REV, V76, P126 GLITHO R, 1998, FEATURE TOPIC IEEE C, V36 Gosling J., 2005, Java Language Specification, Vthird He MH, 2003, IEEE T KNOWL DATA EN, V15, P985, DOI 10.1109/TKDE.2003.1209014 Heiskanen P, 1999, EUR J OPER RES, V117, P578, DOI 10.1016/S0377-2217(98)00276-8 Heiskanen P, 2001, EUR J OPER RES, V133, P44, DOI 10.1016/S0377-2217(00)00179-X In Y, 2004, J ECON BEHAV ORGAN, V53, P385, DOI 10.1016/S0167-2681(03)00087-8 Inderst R, 2000, GAME ECON BEHAV, V30, P64, DOI 10.1006/game.1998.0710 Jennings NR, 2001, GROUP DECIS NEGOT, V10, P199, DOI 10.1023/A:1008746126376 Kaelbling LP, 1996, J ARTIF INTELL RES, V4, P237, DOI 10.1613/jair.301 KALAI E, 1977, ECONOMETRICA, V45, P1623, DOI 10.2307/1913954 KAPETANAKIS S, 2002, P NAT C INN APPL ART Karlins M., 1970, PERSUASION OPINIONS, V2nd KARP A, 2003, REPRESENTING UTILITY Keeney RL., 1993, Decisions with Multiple Objectives: Preferences and Value Tradeoffs KLEIN M, 2002, P ACM INT JOINT C AU KRAOUS S, 1998, ARTIF INTELL, V104, P1 KRAUS S, 1995, COMPUT INTELL, V11, P132, DOI 10.1111/j.1467-8640.1995.tb00026.x LI C, 2003, P ACM C EL COMM SAND Louta A, 2002, COMPUT COMMUN, V25, P662, DOI 10.1016/S0140-3664(01)00393-0 LOUTA M, 2005, P IEEE WIC ACM INT C LOUTA M, 2004, P IEEE INT C INT SYS Luo XD, 2003, ARTIF INTELL, V148, P53, DOI 10.1016/S0004-3702(03)00041-9 MYERSON RB, 1981, ECONOMETRICA, V49, P883, DOI 10.2307/1912508 Papadimitriou C.H., 1982, Combinational Optimization: Algorithms and Complexity Pardalos P.M., 1995, Advances in Multicriteria Analysis PETERS H, 1986, ECONOMETRICA, V54, P153, DOI 10.2307/1914163 Ponsati C, 1997, INT J GAME THEORY, V26, P501, DOI 10.1007/BF01813888 Ponsati C, 1998, ECON THEOR, V11, P667, DOI 10.1007/s001990050208 Pruitt D.G., 1981, NEGOTIATION BEHAV RAIFFA H, 1982, AR SCI NEGOTIATION Raith MG, 2000, MATH SOC SCI, V39, P303, DOI 10.1016/S0165-4896(99)00032-3 Rosenschein J. S., 1994, RULES ENCOUNTER DESI ROUSSAKI I, 2003, THESIS NATL TECHNICA ROUSSAKI I, 2004, P 4 INT C INT DES AP RUBINSTEIN A, 1982, ECONOMETRICA, V50, P97, DOI 10.2307/1912531 RUBINSTEIN A, 1985, ECONOMETRICA, V53, P1151, DOI 10.2307/1911016 Sandholm T.W., 1999, DISTRIBUTED RATIONAL Sycara K., 1989, DISTRIBUTED ARTIFICI, V2, P119 SYCARA KP, 1990, EUR J OPER RES, V46, P216, DOI 10.1016/0377-2217(90)90133-V TAG M, 1996, P INT 1996 C NAR JAP Vulkan N, 1999, ECON J, V109, pF67, DOI 10.1111/1468-0297.00403 ZUIDWEG H, 1999, P 6 INT C INT SERV N NR 60 TC 31 Z9 33 U1 3 U2 20 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0377-2217 EI 1872-6860 J9 EUR J OPER RES JI Eur. J. Oper. Res. PD JUN 16 PY 2008 VL 187 IS 3 BP 1327 EP 1345 DI 10.1016/j.ejor.2006.09.016 PG 19 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Science (CPCI-S) SC Business & Economics; Operations Research & Management Science GA 253ZS UT WOS:000252556700042 DA 2024-03-27 ER PT J AU Liébana-Cabanillas, F Marinkovic, V de Luna, IR Kalinic, Z AF Liebana-Cabanillas, Francisco Marinkovic, Veljko de Luna, Iviane Ramos Kalinic, Zoran TI Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Mobile payment; NFC; SEM; Neural network; Behavioral intention ID INTERNET BANKING ADOPTION; M-COMMERCE ADOPTION; PERSONAL INNOVATIVENESS; PERCEIVED EASE; INITIAL TRUST; INFORMATION-TECHNOLOGY; CUSTOMER SATISFACTION; BEHAVIORAL INTENTION; CONSUMER ADOPTION; SOCIAL INFLUENCES AB As a modern alternative to cash, check or credit cards, the interest in mobile payments is growing in our society, from consumers to merchants. The present study develops a new research model used for the prediction of the most significant factors influencing the decision to use m-payment. To this end, the authors have carried out a study through an online survey of a national panel of Spanish users of smartphones. Two techniques were used: first, structural equation modeling (SEM) was used to determine which variables had significant influence on mobile payment adoption; in a second phase, the neural network model was used to rank the relative influence of significant predictors obtained by SEM. This research found that the most significant variables impacting the intention to use were perceived usefulness and perceived security variables. On the other side, the results of neural network analysis confirmed many SEM findings, but also gave slightly different order of influence of significant predictors. The conclusions and implications for management provide companies with alternatives to consolidate this new business opportunity under the new technological developments. C1 [Liebana-Cabanillas, Francisco; de Luna, Iviane Ramos] Univ Granada, Dept Mkt & Market Res, Granada, Spain. [Kalinic, Zoran] Univ Kragujevac, Fac Econ, Djure Pucara Starog 3, Kragujevac 34000, Serbia. [Marinkovic, Veljko] Univ Kragujevac, Fac Econ, Mkt Res & Consumer Behav, Kragujevac, Serbia. C3 University of Granada; University of Kragujevac; University of Kragujevac RP Kalinic, Z (autor correspondiente), Univ Kragujevac, Fac Econ, Djure Pucara Starog 3, Kragujevac 34000, Serbia. EM franlieb@ugr.es; vmarinkovic@kg.ac.rs; iviane@correo.ugr.es; zkalinic@kg.ac.rs RI Kalinic, Zoran/AAH-1448-2020; Liebana-Cabanillas, F./I-1063-2015; Ramos de Luna, Iviane/F-2450-2018 OI Kalinic, Zoran/0000-0001-8137-9005; Ramos de Luna, Iviane/0000-0002-0056-9438; LIEBANA-CABANILLAS, FRANCISCO/0000-0002-3255-0651 FU Andalusia Regional Government [P10-SEJ-6768]; Capes Foundation-Ministry of Education of Brazil [BEX 0739/13-8]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III-44010] FX This study has being conducted thanks to the financial support received through the Excellence Research Project P10-SEJ-6768 from the Andalusia Regional Government, Research Grant BEX 0739/13-8 of the Capes Foundation-Ministry of Education of Brazil and also through the Research Project III-44010 of the Ministry of Education, Science and Technological Development of the Republic of Serbia. CR Abdullah F, 2016, COMPUT HUM BEHAV, V56, P238, DOI 10.1016/j.chb.2015.11.036 AJZEN I, 1977, PSYCHOL BULL, V84, P888, DOI 10.1037/0033-2909.84.5.888 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T [Anonymous], 2016, On the pulse of the networked society [Anonymous], 2015, REV INTEGRATIVE BUSI [Anonymous], 2015, GARTN SAYS 2018 50 P Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Baptista G, 2016, COMPUT HUM BEHAV, V63, P480, DOI 10.1016/j.chb.2016.05.074 Bhattacherjee A, 2001, DECIS SUPPORT SYST, V32, P201, DOI 10.1016/S0167-9236(01)00111-7 Bhatti T., 2007, Journal of Internet Banking and Commerce, Volume, V12 BLUM A, 1992, NEURAL NETWORKS C PL Borges Monica S., 2015, International Journal of Electronic Business, V12, P70, DOI 10.1504/IJEB.2015.068316 Business Insider, 2015, BI INT Byrne B.M., 1998, STRUCTURAL EQUATION Cavus N., 2015, GLOBAL J INF TECHNOL, V5, P62, DOI DOI 10.18844/GJIT.V5I2.196 Chan FTS, 2012, DECIS SUPPORT SYST, V54, P621, DOI 10.1016/j.dss.2012.08.009 Chong AYL, 2015, INT J PROD ECON, V159, P66, DOI 10.1016/j.ijpe.2014.09.034 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 Cobanoglu C., 2015, HOSPITALITY REV, V31, P6 Dahlberg T, 2015, ELECTRON COMMER R A, V14, P265, DOI 10.1016/j.elerap.2015.07.006 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dennehy D., 2015, J Innov Manag, V3, P49, DOI [10.24840/2183-0606_003.001_0006, DOI 10.24840/2183-0606_003.001_0006] Devaraj S, 2002, INFORM SYST RES, V13, P316, DOI 10.1287/isre.13.3.316.77 Di Pietro L, 2015, TRANSPORT RES C-EMER, V56, P463, DOI 10.1016/j.trc.2015.05.001 eMarketer, 2015, MOB PAYM WILL TRIPL eMarketer, 2017, PERS MOB PAYM RIS EU FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Forrester, 2016, FORR FOR MOB PAYM RE Francisco LC, 2015, INT J INF TECH DECIS, V14, P421, DOI 10.1142/S0219622015500078 Fung Global Retail & Technology, 2016, MOB PAYM SUPP EUR MO Gao LL, 2017, INFORM SYST FRONT, V19, P525, DOI 10.1007/s10796-015-9611-0 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Ghezzi Antonio, 2010, Info, V12, P3, DOI 10.1108/14636691011071130 Hair J.F., 2009, Multivariate data analysis Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Harris MA, 2016, INT J INFORM MANAGE, V36, P441, DOI 10.1016/j.ijinfomgt.2016.02.004 Hartono E, 2014, DECIS SUPPORT SYST, V62, P11, DOI 10.1016/j.dss.2014.02.006 Haykin S., 2001, Neural Networks: A Comprehensive Foundation Hernández-García A, 2011, J UNIVERS COMPUT SCI, V17, P1314 Hsiao CH, 2015, SCIENTOMETRICS, V105, P1091, DOI 10.1007/s11192-015-1749-5 Huang JH, 2004, INT MARKET REV, V21, P598, DOI 10.1108/02651330410568033 IBM Corporation, 2012, IBM SPSS NEUR NETW 2 Jiang CH, 2016, COMPUT HUM BEHAV, V64, P754, DOI 10.1016/j.chb.2016.07.046 Kalinic Z, 2016, INF SYST E-BUS MANAG, V14, P367, DOI 10.1007/s10257-015-0287-2 Kesharwani A, 2012, INT J BANK MARK, V30, P303, DOI 10.1108/02652321211236923 Kim C, 2010, COMPUT HUM BEHAV, V26, P310, DOI 10.1016/j.chb.2009.10.013 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Li H., 2014, PACIS, P231 Liébana-Cabanillas F, 2018, SERV BUS, V12, P25, DOI 10.1007/s11628-017-0336-7 Liébana-Cabanillas F, 2017, ECON RES-EKON ISTRAZ, V30, P892, DOI 10.1080/1331677X.2017.1305784 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liébana-Cabanillas F, 2015, TECHNOL ANAL STRATEG, V27, P1031, DOI 10.1080/09537325.2015.1047757 Liébana-Cabanillas F, 2014, COMPUT HUM BEHAV, V35, P464, DOI 10.1016/j.chb.2014.03.022 Lu J, 2005, J STRATEGIC INF SYST, V14, P245, DOI 10.1016/j.jsis.2005.07.003 Lu JN, 2014, INTERNET RES, V24, P134, DOI 10.1108/IntR-05-2012-0100 Lu YB, 2011, INFORM MANAGE-AMSTER, V48, P393, DOI 10.1016/j.im.2011.09.006 Luarn P, 2005, COMPUT HUM BEHAV, V21, P873, DOI 10.1016/j.chb.2004.03.003 Luna I.R, 2012, THESIS, P2012 Mahajan Vijay., 1985, Models for Innovation Adoption Malaquias RF, 2016, COMPUT HUM BEHAV, V54, P453, DOI 10.1016/j.chb.2015.08.039 Marinkovic V, 2017, ONLINE INFORM REV, V41, P138, DOI 10.1108/OIR-11-2015-0364 Masamila B, 2010, COMM COM INF SC, V87, P175 Mastercard, 2016, PAG MOV CON TECN NFC Meixin X, 2014, STUDY INTENTION USE Merhi MI, 2016, COMPUT HUM BEHAV, V60, P253, DOI 10.1016/j.chb.2016.02.072 Montazemi AR, 2015, INFORM MANAGE-AMSTER, V52, P210, DOI 10.1016/j.im.2014.11.002 Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192 Moosmayer DC, 2013, EXPERT SYST APPL, V40, P3028, DOI 10.1016/j.eswa.2012.12.018 Morosan, 2016, INFORM COMMUNICATION, P427 Morosan C, 2016, INT J HOSP MANAG, V53, P17, DOI 10.1016/j.ijhm.2015.11.003 Negnevitsky M., 2011, ARTIFICIAL INTELLIGE, DOI DOI 10.1007/S00894-010-0935-X Oliveira T, 2016, COMPUT HUM BEHAV, V61, P404, DOI 10.1016/j.chb.2016.03.030 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Ozturk AB, 2016, INT J INFORM MANAGE, V36, P1350, DOI 10.1016/j.ijinfomgt.2016.04.005 Parasuraman A, 2005, J SERV RES-US, V7, P213, DOI 10.1177/1094670504271156 Patel N, 2016, STRATEGY ANAL, P1 Pham TTT, 2015, TECHNOL SOC, V43, P159, DOI 10.1016/j.techsoc.2015.05.004 Plouffe CR, 2001, INFORM SYST RES, V12, P208, DOI 10.1287/isre.12.2.208.9697 Ramos-de-Luna I, 2016, INF SYST E-BUS MANAG, V14, P293, DOI 10.1007/s10257-015-0284-5 Riquelme HE, 2010, INT J BANK MARK, V28, P328, DOI 10.1108/02652321011064872 Rogers, 2003, DIFFUSION INNOVATION Sam KM, 2014, IN C IND ENG ENG MAN, P1121, DOI 10.1109/IEEM.2014.7058813 Martín HS, 2012, TOURISM MANAGE, V33, P341, DOI 10.1016/j.tourman.2011.04.003 Schierz PG, 2010, ELECTRON COMMER R A, V9, P209, DOI 10.1016/j.elerap.2009.07.005 Shaikh AA, 2015, COMPUT HUM BEHAV, V49, P541, DOI 10.1016/j.chb.2015.03.059 Shaikh AA, 2015, TELEMAT INFORM, V32, P129, DOI 10.1016/j.tele.2014.05.003 Shanko Genet, 2016, International Journal of Networking and Virtual Organisations, V16, P143 Sharma S.K, 2017, INFORM SYST FRONT, DOI [10.1007/s10976-017-9775-x, DOI 10.1007/S10976-017-9775-X] Sharma SK, 2015, MANAG RES REV, V38, P750, DOI 10.1108/MRR-06-2014-0139 Sheela KG, 2013, MATH PROBL ENG, V2013, DOI 10.1155/2013/425740 Shibchurn J, 2015, COMPUT HUM BEHAV, V44, P103, DOI 10.1016/j.chb.2014.10.059 Shin DH, 2009, COMPUT HUM BEHAV, V25, P1343, DOI 10.1016/j.chb.2009.06.001 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Slade E, 2015, J STRATEG MARK, V23, P209, DOI 10.1080/0965254X.2014.914075 Slade EL, 2015, PSYCHOL MARKET, V32, P860, DOI 10.1002/mar.20823 Su P, 2017, TECH ANAL STRAT MANA, P1 Tan GWH, 2014, COMPUT HUM BEHAV, V36, P198, DOI 10.1016/j.chb.2014.03.052 Tan GWH, 2014, TELEMAT INFORM, V31, P292, DOI 10.1016/j.tele.2013.06.002 Thakur R, 2014, INTERNET RES, V24, P369, DOI 10.1108/IntR-12-2012-0244 Upadhyay P, 2016, INTERNET RES, V26, P38, DOI 10.1108/IntR-05-2014-0143 van der Heijden H, 2003, INFORM MANAGE-AMSTER, V40, P541, DOI 10.1016/S0378-7206(02)00079-4 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Wei TT, 2009, IND MANAGE DATA SYST, V109, P370, DOI 10.1108/02635570910939399 Wu JH, 2005, INFORM MANAGE-AMSTER, V42, P719, DOI 10.1016/j.im.2004.07.001 Yadav R, 2016, J ENTERP INF MANAG, V29, P222, DOI 10.1108/JEIM-04-2015-0034 Yang SQ, 2012, COMPUT HUM BEHAV, V28, P129, DOI 10.1016/j.chb.2011.08.019 Zarmpou T, 2012, ELECTRON COMMER RES, V12, P225, DOI 10.1007/s10660-012-9092-x Zhang LY, 2012, COMPUT HUM BEHAV, V28, P1902, DOI 10.1016/j.chb.2012.05.008 Zhou T, 2011, INFORM DEV, V27, P290, DOI 10.1177/0266666911424075 Zhou T, 2011, INTERNET RES, V21, P527, DOI 10.1108/10662241111176353 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 Zolkepli IA, 2015, COMPUT HUM BEHAV, V43, P189, DOI 10.1016/j.chb.2014.10.050 Zupanovic D, 2015, PROCEDIA ENGINEER, V100, P1396, DOI 10.1016/j.proeng.2015.01.509 NR 117 TC 222 Z9 231 U1 15 U2 220 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD APR PY 2018 VL 129 BP 117 EP 130 DI 10.1016/j.techfore.2017.12.015 PG 14 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA GD8LH UT WOS:000430763400010 HC Y HP N DA 2024-03-27 ER PT J AU Mukhopadhyay, S Samaddar, S Nargundkar, S AF Mukhopadhyay, Somnath Samaddar, Subhashish Nargundkar, Satish TI PREDICTING ELECTRONIC COMMERCE GROWTH: AN INTEGRATION OF DIFFUSION AND NEURAL NETWORK MODELS SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE E-commerce; Dotcom; Forecasting; Neural Network; Diffusion models; and E-market Planning ID PRODUCT GROWTH; FORECASTING METHODS; ADOPTION AB There is a growing recognition that e-market planners and various planning agencies in Information Technology sectors have a significant interest in measuring and forecasting the growth of e-commerce. The difficulties lie in finding a forecasting model that can incorporate both internal and external influences on diffusion, as well as an acceptable measure for e-commerce growth. This study uses models based on the knowledge of traditional diffusion theories as well as artificial neural networks. Additionally, it integrates the two into a hybrid model in order to study e-commerce growth. A count of dot-com hosts is used as a reliable measure of e-commerce growth in all the models. Our study demonstrates that a simple Neural Network model, if properly calibrated, can create a very flexible response function to forecast e-commerce diffusion growth. The neural network model successfully modeled both the internal and external influences in the data, while the traditional formulations could only model the internal influences. The predictive validation of the results was enhanced by replicating the comparisons on simulated data with various degrees of external influence. The study suggests that when external influences are present, the neural network model will be superior to the best traditional diffusion model. C1 [Mukhopadhyay, Somnath] Univ Texas El Paso, El Paso, TX 79968 USA. [Samaddar, Subhashish; Nargundkar, Satish] Georgia State Univ, Dept Managerial Sci, Atlanta, GA 30303 USA. C3 University of Texas System; University of Texas El Paso; University System of Georgia; Georgia State University RP Mukhopadhyay, S (autor correspondiente), Univ Texas El Paso, El Paso, TX 79968 USA. EM smukhopadhyay@utep.edu; s-samaddar@gsu.edu; snargundkar@gsu.edu CR Adya M, 1998, J FORECASTING, V17, P481, DOI 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-Q Armstrong JS, 2001, INT SER OPER RES MAN, V30, P15 ARMSTRONG JS, 1992, INT J FORECASTING, V8, P69, DOI 10.1016/0169-2070(92)90008-W BARNDEN JA, 1995, SIMULATION EVALUATIO, P247 BASS FM, 1969, MANAGE SCI, V15, P215, DOI 10.1287/mnsc.15.5.215 Bishop C.M., 1995, NEURAL NETWORKS PATT CARBONE R, 1982, J FORECASTING, V1, P215, DOI 10.1002/for.3980010207 CHANGSU K, 2004, J ELECTRON COMMER RE, V5, P199 *CISC SYST, 1999, MEAS INT EC Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Coleman JS, 1966, MED INNOVATION DIFFU Dutta A, 2004, INT J ELECTRON COMM, V9, P143, DOI 10.1080/10864415.2005.11044329 Elman J. L., 1987, 8701 UC SAN DIEG I C FOURT L.A., 1960, J MARKETING, V25, P31 Golder PN, 1997, MARKET SCI, V16, P256, DOI 10.1287/mksc.16.3.256 GURBAXANI V, 1990, COMMUN ACM, V33, P65, DOI 10.1145/96267.96283 Hecht-Nielsen R., 1990, NEUROCOMPUTING HEELER RM, 1980, MANAGE SCI, V26, P1007, DOI 10.1287/mnsc.26.10.1007 KAHN RE, 1994, COMMUN ACM, V37, P15, DOI 10.1145/179606.179729 Lippmann R. P., 1987, IEEE ASSP Magazine, V4, P4, DOI 10.1145/44571.44572 MAHAJAN V, 1988, MANAGE SCI, V34, P1188, DOI 10.1287/mnsc.34.10.1188 MAHAJAN V, 1979, J MARKETING, V43, P55, DOI 10.2307/1250271 MANSFIELD E, 1961, ECONOMETRICA, V29, P741, DOI 10.2307/1911817 Press L, 1997, COMMUN ACM, V40, P11, DOI 10.1145/265684.265686 Rai A, 1998, COMMUN ACM, V41, P97, DOI 10.1145/286238.286253 Rogers E., 1983, DIFFUSIONS INNOVATIO Roy A, 1997, IEEE T NEURAL NETWOR, V8, P402, DOI 10.1109/72.557694 Rumelhart DE., 1985, LEARNING INTERNAL RE, DOI [DOI 10.7551/MITPRESS/5236.001.0001, 10.1016/b978-1-4832-1446-7.50035-2] RUSSELL TD, 1987, MANAGEMENT SCI OCT, P1267 Sarle W. S., 1995, Computing Science and Statistics. Vol.27. Proceedings of the 27th Symposium on the Interface. Statistics and Manufacturing with Subthemes in Environmental Statistics, Graphics and Imaging, P352 Sejnowski T. J., 1987, Complex Systems, V1, P145 SHARDA R, 1992, J INTELL MANUF, V3, P317, DOI 10.1007/BF01577272 Somers MJ, 2001, J OCCUP ORGAN PSYCH, V74, P47, DOI 10.1348/096317901167226 TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926 Valente TW, 1996, SOC NETWORKS, V18, P69, DOI 10.1016/0378-8733(95)00256-1 Van den Bulte C, 1997, MARKET SCI, V16, P338, DOI 10.1287/mksc.16.4.338 VENKATRAMAN N, 1994, MANAGE SCI, V40, P496, DOI 10.1287/mnsc.40.4.496 Wang YCW, 2004, J ELECTRON COMMER RE, V5, P85 Weiland A., 1988, GEOMETRIC ANAL NEUR, P385 YAO JT, 2004, J ELECTRON COMMER RE, V5, P54 NEURAL NETWORK FAQ 3 NETCRAFT 2004 NR 42 TC 4 Z9 8 U1 1 U2 9 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PY 2008 VL 9 IS 4 BP 280 EP 295 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA V17EZ UT WOS:000207921800003 DA 2024-03-27 ER PT J AU Ma, C Wu, JY Sun, HY Zhou, X Sun, XY AF Ma, Chao Wu, Jingyi Sun, Heyuan Zhou, Xin Sun, Xiyan TI Enhancing user experience in digital payments: A hybrid approach using SEM and neural networks SO FINANCE RESEARCH LETTERS LA English DT Article DE Digital payments; Digital currency; Structural equation modeling (SEM); Artificial neural network (ANN); User experience; Technology Acceptance; Central bank digital currencies (CBDCs); Technology acceptance model (TAM); UTAUT ID MOBILE PAYMENT; ADOPTION; ACCEPTANCE; INTENTION; DETERMINANTS; FRAMEWORK; SECURITY; ATTITUDE; UTAUT AB This article proposes a hybrid approach utilizing Structural Equation Modeling (SEM) and Artificial Neural Network (ANN) techniques to predict and enhance user experience (UX) in digital payments. The study introduces a novel Technology Acceptance Model to predict the critical factors influencing users' adoption of digital currencies and subsequently improve their experience. The research findings reveal that perceived ease of use and perceived usefulness significantly influence attitudes towards adopting digital currencies. Furthermore, the accuracy of the SEM results is confirmed through the implementation of the Artificial Neural Network. These conclusions hold significant implications for the future promotion of digital currencies. C1 [Ma, Chao] Ningbo Univ, Pan Tianshou Coll Architecture & Art Design, Ningbo, Zhejiang, Peoples R China. [Wu, Jingyi] Kookmin Univ, Fash design, 77 Jeongneung Ro, Seoul, South Korea. [Sun, Heyuan] Kookmin Univ, Sustainable Design & Mat Innovat Dept, 80-7 Yeonhui Dong, Seoul, South Korea. [Zhou, Xin] Yango Univ, Digital Media Art Design Coll, Bldg 9,Area A,18 Huaxi South Rd, Fuzhou, Fujian, Peoples R China. [Sun, Xiyan] Yunnan Arts Univ, Art & Design, 1577 Yuhua Rd, Kunming, Yunnan, Peoples R China. C3 Ningbo University; Kookmin University; Kookmin University; Yunnan Arts University RP Sun, HY (autor correspondiente), Kookmin Univ, Sustainable Design & Mat Innovat Dept, 80-7 Yeonhui Dong, Seoul, South Korea.; Zhou, X (autor correspondiente), Yango Univ, Digital Media Art Design Coll, Bldg 9,Area A,18 Huaxi South Rd, Fuzhou, Fujian, Peoples R China.; Sun, XY (autor correspondiente), Yunnan Arts Univ, Art & Design, 1577 Yuhua Rd, Kunming, Yunnan, Peoples R China. EM sunayuanwind@163.com; 124789269g@gmail.com; sunxiyan_02@163.com OI MA, CHAO/0000-0003-2264-5275 FU Achievements of social science planning in Zhejiang Province [22NDQN222YB]; Fundamental Research Funds for the Provincial Universities of Zhejiang [SJWY2022003] FX Achievements of social science planning in Zhejiang Province. (22NDQN222YB) . The Fundamental Research Funds for the Provincial Universities of Zhejiang. (SJWY2022003) . Research Achievements of High Quality Development Action in Mountain (Island) Counties Empowered by Social Sciences. CR AJZEN I, 1977, PSYCHOL BULL, V84, P888, DOI 10.1037/0033-2909.84.5.888 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Apanasevic T, 2016, INT J BANK MARK, V34, P37, DOI 10.1108/IJBM-06-2014-0064 Balapour A, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102063 Ben Arfi W, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120688 Bojjagani S, 2021, J AMB INTEL HUM COMP, DOI 10.1007/s12652-021-03316-4 Chawla D, 2019, INT J BANK MARK, V37, P1590, DOI 10.1108/IJBM-09-2018-0256 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Gao LL, 2015, COMPUT HUM BEHAV, V53, P249, DOI 10.1016/j.chb.2015.07.014 Hanif Y, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101693 KLEMPERER P, 1987, Q J ECON, V102, P375, DOI 10.2307/1885068 Koenig-Lewis N, 2015, SERV IND J, V35, P537, DOI 10.1080/02642069.2015.1043278 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Liébana-Cabanillas F, 2014, COMPUT HUM BEHAV, V35, P464, DOI 10.1016/j.chb.2014.03.022 Liu CH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.830842 Ma C, 2023, J INTERNET TECHNOL, V24, P759, DOI 10.53106/160792642023052403019 Ma C, 2022, MOB INF SYST, V2022, DOI 10.1155/2022/4846372 Malarvizhi CA, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.870793 Munoz-Leiva F., 2017, SPAN J MARKET-ESIC, V21, P25, DOI [10.1016/j.sjme.2016.12.001, DOI 10.1016/J.SJME.2016.12.001] Oliveira T, 2016, COMPUT HUM BEHAV, V61, P404, DOI 10.1016/j.chb.2016.03.030 Phonthanukitithaworn C, 2016, SAGE OPEN, V6, DOI 10.1177/2158244016675397 Posey C, 2014, INFORM MANAGE-AMSTER, V51, P551, DOI 10.1016/j.im.2014.03.009 Qu B, 2022, FINANC INNOV, V8, DOI 10.1186/s40854-021-00312-7 Roussou I, 2019, INF SYST E-BUS MANAG, V17, P223, DOI 10.1007/s10257-019-00426-7 Schierz PG, 2010, ELECTRON COMMER R A, V9, P209, DOI 10.1016/j.elerap.2009.07.005 SHAPIRO SP, 1987, AM J SOCIOL, V93, P623, DOI 10.1086/228791 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Slade EL, 2015, PSYCHOL MARKET, V32, P860, DOI 10.1002/mar.20823 Tam C, 2019, INFORM MANAGE-AMSTER, V56, P356, DOI 10.1016/j.im.2018.07.009 Tsiakis T, 2005, COMPUT SECUR, V24, P10, DOI 10.1016/j.cose.2004.11.001 Upadhyay N, 2022, INT J BANK MARK, V40, P960, DOI 10.1108/IJBM-06-2021-0262 Wei MF, 2021, J THEOR APPL EL COMM, V16, P618, DOI 10.3390/jtaer16040037 NR 32 TC 1 Z9 1 U1 28 U2 28 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1544-6123 EI 1544-6131 J9 FINANC RES LETT JI Financ. Res. Lett. PD DEC PY 2023 VL 58 AR 104376 DI 10.1016/j.frl.2023.104376 EA SEP 2023 PN B PG 13 WC Business, Finance WE Social Science Citation Index (SSCI) SC Business & Economics GA T3NR9 UT WOS:001077092800001 DA 2024-03-27 ER PT J AU Khan, AN Cao, XF Pitafi, AH AF Khan, Ali Nawaz Cao, Xiongfei Pitafi, Abdul Hameed TI Personality Traits as Predictor of M-Payment Systems: A SEM-Neural Networks Approach SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Agreeableness; Artificial Neural Networks; Conscientiousness; Extraversion; M-Commerce; Mobile Payment; Neuroticism; Openness to Experience; Personality Traits; SEM ID MOBILE CREDIT CARD; BIG 5; TECHNOLOGY ACCEPTANCE; SMALL BUSINESSES; 5-FACTOR MODEL; UNIFIED THEORY; ADOPTION; DETERMINANTS; INTENTION; GENDER AB Mobile phones have led to a great revolution of modern society, helpful for many businesses to reorient their sales methods towards effective commercial formats. The m-payment, for instance, as an emergent technology to these novel commercial setups, is now undertaking the adoption process. Individual users are known to vary in their tendency to accept new technologies. Not surprisingly, some conceptual models describe how and why individuals use m-payments. Until recently, however, the role of personality in overall, and the big five model of personality, in particular, had remained mostly unexplored. This article aims to ascertain the impact of personality traits on m-payment adoption. Data were collected from 323 m-payment customers and analyzed using a two-step research methodology. SEM was applied to test the hypothesis, and significant antecedents of m-payment were identified. Next significant personality factors were input to a neural network model for ranking. The results showed that conscientious and agreeableness is the two main predictors of m-payment adoption. C1 [Khan, Ali Nawaz] Tongji Univ Shanghai, Sch Econ & Management, Shanghai, Peoples R China. [Cao, Xiongfei; Pitafi, Abdul Hameed] Hefei Univ Technol, Sch Management, Hefei, Peoples R China. C3 Tongji University; Hefei University of Technology RP Khan, AN (autor correspondiente), Tongji Univ Shanghai, Sch Econ & Management, Shanghai, Peoples R China. RI KHAN, ALI/AAJ-9493-2021 CR AbuShanab E., 2010, COMMUNICATIONS ASS I, V26 Ahani A, 2017, COMPUT HUM BEHAV, V75, P560, DOI 10.1016/j.chb.2017.05.032 Ali A, 2019, ASIAN BUS MANAG, V18, P98, DOI 10.1057/s41291-018-00050-2 Ali A, 2019, COMPUT HUM BEHAV, V91, P115, DOI 10.1016/j.chb.2018.09.033 ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Bano S, 2019, CHILD YOUTH SERV REV, V103, P200, DOI 10.1016/j.childyouth.2019.06.002 Barnett T, 2015, EUR J INFORM SYST, V24, P374, DOI 10.1057/ejis.2014.10 BARRICK MR, 1991, PERS PSYCHOL, V44, P1, DOI 10.1111/j.1744-6570.1991.tb00688.x Butt S, 2008, COMPUT HUM BEHAV, V24, P346, DOI 10.1016/j.chb.2007.01.019 Cao XF, 2019, J EDUC COMPUT RES, V57, P1083, DOI 10.1177/0735633118781907 Carmines E.G., 1981, SOCIAL MEASUREMENT C, P65, DOI DOI 10.1207/S15327965PLI0404_1 Chen XG, 2017, J COMPUT INFORM SYST, V57, P287, DOI 10.1080/08874417.2016.1180649 Dahlberg T, 2015, ELECTRON COMMER R A, V14, P265, DOI 10.1016/j.elerap.2015.07.006 de Reuver M, 2015, ELECTRON COMMER R A, V14, P331, DOI 10.1016/j.elerap.2014.08.004 Devaraj S, 2008, INFORM SYST RES, V19, P93, DOI 10.1287/isre.1070.0153 Donner J, 2008, ASIAN J COMMUN, V18, P318, DOI 10.1080/01292980802344190 Eichhorn B.R., 2014, MIDWEST SAS USERS GR Forgays DK, 2014, COMPUT HUM BEHAV, V31, P314, DOI 10.1016/j.chb.2013.10.053 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Garrett JL, 2014, FAM CONSUM SCI RES J, V42, P358, DOI 10.1111/fcsr.12069 Gupta S., 2014, J ORG END USER COMPU Hair J. F., 1998, Multivariate data analysis with readings, V5th ed. Hardie E., 2007, Australian Journal of Emerging Technologies and Society, V5, P34 Harman H. H., 1976, MODERN FACTOR ANAL Hartmann T, 2017, J ORGAN END USER COM, V29, P1, DOI 10.4018/JOEUC.2017040101 Haykin S., 2001, Neural Networks: A Comprehensive Foundation Huang JH, 2010, SOC BEHAV PERSONAL, V38, P673, DOI 10.2224/sbp.2010.38.5.673 Huang LK, 2017, J ORGAN END USER COM, V29, P1, DOI 10.4018/JOEUC.2017010101 Jacques P.H., 2009, J BUS MANAG, V15, P143 Jani D, 2014, INT J HOSP MANAG, V37, P11, DOI 10.1016/j.ijhm.2013.10.007 Judge TA, 2000, J APPL PSYCHOL, V85, P237, DOI 10.1037//0021-9010.85.2.237 Katrimpouza A., 2017, TWITTER ADOPTION STU Khan AN, 2018, WIRELESS PERS COMMUN, V103, P2529, DOI 10.1007/s11277-018-5945-5 Kim C, 2010, COMPUT HUM BEHAV, V26, P310, DOI 10.1016/j.chb.2009.10.013 Korukonda AR, 2005, INFORM SCIENCES, V170, P309, DOI 10.1016/j.ins.2004.03.007 Kuan KKY, 2001, INFORM MANAGE-AMSTER, V38, P507, DOI 10.1016/S0378-7206(01)00073-8 Kumar A., 2008, J SERVICE MARKETING, V22, P568, DOI 10.1108/08876040810909695 Lai J.-Y., 2016, J ORG END USER COMPU Lakhal S, 2017, J COMPUT EDUC, V4, P251, DOI 10.1007/s40692-017-0086-5 Lakhal S, 2012, INT J MANAG EDUC-OXF, V10, P88, DOI 10.1016/j.ijme.2012.03.003 Leong LY, 2017, INTERNET RES, V27, P786, DOI 10.1108/IntR-04-2016-0107 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Liébana-Cabanillas F, 2017, TECHNOL FORECAST SOC, V120, P32, DOI 10.1016/j.techfore.2017.04.002 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liébana-Cabanillas F, 2014, INT J INFORM MANAGE, V34, P151, DOI 10.1016/j.ijinfomgt.2013.12.006 Mallat N., 2008, E SERVICE J, V6, P24, DOI DOI 10.2979/ESJ.2008.6.2.24 Matzler K, 2011, J MARKET MANAG-UK, V27, P874, DOI 10.1080/0267257X.2010.543634 MCCRAE RR, 1987, J PERS SOC PSYCHOL, V52, P81, DOI 10.1037/0022-3514.52.1.81 Merritt C., 2011, J PAYMENTS STRATEGY, V5 Mooradian TA, 2008, SOC PERSONAL PSYCHOL, V2, P1703, DOI 10.1111/j.1751-9004.2008.00128.x Mouakket S., 2018, The Journal of High Technology Management Research, V29, P124, DOI [DOI 10.1016/J.HITECH.2016.10.003, 10.1016/j.hitech.2016.10.003] Nov O., 2008, Proceedings of the Annual Hawaii International Conference on System Sciences, P1 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Oliveira T, 2016, COMPUT HUM BEHAV, V61, P404, DOI 10.1016/j.chb.2016.03.030 Özbek V, 2014, PROCD SOC BEHV, V150, P541, DOI 10.1016/j.sbspro.2014.09.073 Pavlou PA, 2006, INFORM SYST RES, V17, P198, DOI 10.1287/isre.1060.0094 Pham TTT, 2015, TECHNOL SOC, V43, P159, DOI 10.1016/j.techsoc.2015.05.004 Pitafi A. H., 2018, TECHNOL SOC, V55, DOI [10.1016/j.techsoc.2018.08.002, DOI 10.1016/J.TECHS0C.2018.08.002] Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Reza M., 2014, Journal of Information Systems Research and Innovation, P1 Rogers E., 2003, Diffusion of innovation Ross C, 2009, COMPUT HUM BEHAV, V25, P578, DOI 10.1016/j.chb.2008.12.024 Salahshour Rad M., 2017, INFORM TECHNOLOGY AD Schaupp LC, 2016, J ORGAN END USER COM, V28, P49, DOI 10.4018/JOEUC.2016070104 Schmitt DP, 2008, J PERS SOC PSYCHOL, V94, P168, DOI 10.1037/0022-3514.94.1.168 Sharma SK, 2019, INFORM SYST FRONT, V21, P815, DOI 10.1007/s10796-017-9775-x Sharma SK, 2017, BEHAV INFORM TECHNOL, V36, P1053, DOI 10.1080/0144929X.2017.1340973 Soltani S., 2013, J CONSUM AFF, DOI DOI 10.1111/J.1745-6606.1986.TB00382.X Stachl C, 2017, EUR J PERSONALITY, V31, P701, DOI 10.1002/per.2113 Statista Corporation, 2015, MOB PAYM REV WORLDW Tan GWH, 2014, TELEMAT INFORM, V31, P292, DOI 10.1016/j.tele.2013.06.002 Terzis V, 2012, COMPUT HUM BEHAV, V28, P1985, DOI 10.1016/j.chb.2012.05.019 Ting HR, 2016, PROCD SOC BEHV, V224, P368, DOI 10.1016/j.sbspro.2016.05.390 Ul Islam J, 2017, MARK INTELL PLAN, V35, P510, DOI 10.1108/MIP-10-2016-0193 Venkatesh V, 2000, ORGAN BEHAV HUM DEC, V83, P33, DOI 10.1006/obhd.2000.2896 Venkatesh V, 2012, MIS QUART, V36, P157 Walczak S, 1999, INFORM SOFTWARE TECH, V41, P107, DOI 10.1016/S0950-5849(98)00116-5 Walczak S, 1999, INFORM SCIENCES, V119, P1, DOI 10.1016/S0020-0255(99)00057-2 Walczak S., 2001, J MANAGEMENT INFORMA, V17 Walczak S, 2016, J THEOR APPL EL COMM, V11, P67, DOI 10.4067/S0718-18762016000100005 Wang YS, 2012, BRIT J EDUC TECHNOL, V43, P139, DOI 10.1111/j.1467-8535.2010.01151.x Weidmann R., 2017, J RES PERSONALITY, V69 Xiong Y., 2016, J THEORETICAL APPL I, V87 Yang SQ, 2012, COMPUT HUM BEHAV, V28, P129, DOI 10.1016/j.chb.2011.08.019 Yoon HS, 2013, COMPUT HUM BEHAV, V29, P1133, DOI 10.1016/j.chb.2012.10.005 Zhang L, 2014, J HOSP TOUR TECHNOL, V5, P299, DOI 10.1108/JHTT-03-2014-0008 ZMUD RW, 1979, MANAGE SCI, V25, P966, DOI 10.1287/mnsc.25.10.966 NR 88 TC 47 Z9 49 U1 2 U2 31 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PD OCT-DEC PY 2019 VL 31 IS 4 BP 89 EP 110 DI 10.4018/JOEUC.2019100105 PG 22 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA KH2NC UT WOS:000510483300006 DA 2024-03-27 ER PT J AU Mkedder, N Özata, FZ AF Mkedder, Nadjim Ozata, Fatma Zeynep TI I will buy virtual goods if I like them: a hybrid PLS-SEM-artificial neural network (ANN) analytical approach SO JOURNAL OF MARKETING ANALYTICS LA English DT Article DE Consumption value theory; F2P games; PLS-SEM; Artificial neural network (ANN); Virtual goods; Perceived value; Purchase intention ID PERCEIVED VALUE; ONLINE GAME; DISCRIMINANT VALIDITY; PURCHASE INTENTION; CUSTOMIZATION; CONSUMPTION; DETERMINANTS; SATISFACTION; COMMUNITIES; MOTIVATIONS AB Despite the popularity of Free-to-Play (F2P) games in recent years, the motivations behind players' intention to purchase virtual goods in F2P games still require further investigations. This study aims to address this dilemma by investigating the antecedents of functional, emotional, and social values in shaping the purchase intention of virtual goods in F2P games. Using purposive sampling, data were collected through a survey from 352 F2P game participants in the United States. A hybrid PLS-SEM-Artificial Neural Network (ANN) modeling approach was employed to examine the impact of these factors on the intention to purchase virtual goods. The results reveal that perceived value positively influences the purchase intention of virtual goods. The findings also show that functional, emotional, and social values significantly impact the perceived value and purchase intention of virtual goods. Further, perceived value mediates the relationship between quality, achievement, enjoyment, aesthetics, customization, self-presentation, and the intention to purchase virtual goods. The ANN results reveal that quality and social presence are the most critical factors since they achieve the greatest normalized importance ratio compared to the others. The model illustrated considerable explanatory evidence for purchase intention in the context of F2P games. Additionally, this research significantly strengthens the marketing literature by developing an understanding of the intention to buy virtual goods in F2P games. The proposed model can provide insights for F2P game providers to design their games and marketing strategies. C1 [Mkedder, Nadjim] Univ Abou Bekr Belkaid Tlemcen, Grad Sch Business & Management, Dept Mkt, 22 St Abi Ayad Abdelkarim Fg Pasteur,Bp 119, Tilimsen, Algeria. [Ozata, Fatma Zeynep] Anadolu Univ, Grad Sch Social Sci, Dept Mkt, Yunus Emre Campus,POB 26470, Eskisehir, Turkiye. C3 Universite Abou Bekr Belkaid; Anadolu University RP Mkedder, N (autor correspondiente), Univ Abou Bekr Belkaid Tlemcen, Grad Sch Business & Management, Dept Mkt, 22 St Abi Ayad Abdelkarim Fg Pasteur,Bp 119, Tilimsen, Algeria. EM mkeddernadjim@yahoo.com; fzozata@anadolu.edu.tr RI Mkedder, Nadjim/GPS-8499-2022; Ozata, Fatma Zeynep/R-1499-2019 OI Mkedder, Nadjim/0000-0002-4523-2038; Ozata, Fatma Zeynep/0000-0002-3338-0308 CR Al-Sharafi MA, 2022, INT J BANK MARK, V40, P1071, DOI 10.1108/IJBM-07-2021-0291 Aryadoust V, 2016, EDUC ASSESS, V21, P135, DOI 10.1080/10627197.2016.1166343 Bleize D N., 2019, Journal of Marketing Communications, V25, P403, DOI DOI 10.1080/13527266.2016.1278028 Cai XW, 2022, PLOS ONE, V17, DOI 10.1371/journal.pone.0262998 Chauhan S, 2021, SYMMETRY-BASEL, V13, DOI 10.3390/sym13081545 Chen CC, 2018, LIBR HI TECH, V36, P583, DOI 10.1108/LHT-01-2018-0007 Chen H, 2022, BEHAV INFORM TECHNOL, V41, P1171, DOI 10.1080/0144929X.2020.1864017 Chen HJ, 2014, ASIA PAC J MARKET LO, V26, P232, DOI 10.1108/APJML-07-2013-0084 Cialdini R. B., 2001, INFLUENCE SCI PRACTI DODDS WB, 1991, J MARKETING RES, V28, P307, DOI 10.2307/3172866 ESA, 2021, Essential facts about the video game industry Esteves J, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103452 Franke G, 2019, INTERNET RES, V29, P430, DOI 10.1108/IntR-12-2017-0515 Ghazali EM, 2023, KYBERNETES, V52, P1937, DOI 10.1108/K-08-2021-0678 Guo Y, 2012, J COMPUT INFORM SYST, V52, P18 Guo Y, 2011, INFORM MANAGE-AMSTER, V48, P303, DOI 10.1016/j.im.2011.07.004 Gupta S, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102511 Gupta S, 2019, INT REV RETAIL DISTR, V29, P178, DOI 10.1080/09593969.2018.1562955 Hair J.F., 2009, Multivariate data analysis Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair Jr J.F., 2016, PRIMER PARTIAL LEAST Hamari J, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102040 Hamari J, 2019, INT J HUM-COMPUT INT, V35, P804, DOI 10.1080/10447318.2018.1497115 Hamari J, 2017, COMPUT HUM BEHAV, V71, P59, DOI 10.1016/j.chb.2017.01.042 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Högberg J, 2019, USER MODEL USER-ADAP, V29, P619, DOI 10.1007/s11257-019-09223-w Hollebeek LD, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102892 Hsiao KL, 2020, LIBR HI TECH, V38, P638, DOI 10.1108/LHT-09-2018-0123 Hsiao KL, 2016, ELECTRON COMMER R A, V16, P18, DOI 10.1016/j.elerap.2016.01.001 Hsieh JK, 2018, J ELECTRON COMMER RE, V19, P164 Huang E, 2012, INTERNET RES, V22, P252, DOI 10.1108/10662241211235644 Huang LY, 2011, INTERNET RES, V21, P581, DOI 10.1108/10662241111176380 Huang TZ, 2017, PROGRAM-ELECTRON LIB, V51, P259, DOI 10.1108/PROG-12-2016-0078 Hussain A, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103128 Hussain A, 2022, J SERV MARK, V36, P398, DOI 10.1108/JSM-05-2020-0164 InsiderIntelligence, 2022, US VID GAM IND 2022 Jang M, 2021, INF SYST E-BUS MANAG, V19, P439, DOI 10.1007/s10257-019-00420-z Katz E., 1974, The uses of mass communications: Current perspectives on gratifications research, DOI DOI 10.1561/106.00000008 Kaur P, 2020, TELEMAT INFORM, V53, DOI 10.1016/j.tele.2020.101376 Kaur P, 2018, ONLINE INFORM REV, V42, P205, DOI 10.1108/OIR-12-2015-0383 Kim HW, 2012, ELECTRON COMMER R A, V11, P241, DOI 10.1016/j.elerap.2011.06.003 Kim HW, 2011, INFORM MANAGE-AMSTER, V48, P228, DOI 10.1016/j.im.2011.05.004 Kock N., 2017, In partial least squares path modeling, P245, DOI [10.1007/978-3-319-64069-3_11, DOI 10.1007/978-3-319-64069-3] Konuk FA, 2019, J RETAIL CONSUM SERV, V50, P103, DOI 10.1016/j.jretconser.2019.05.005 Kumar A, 2023, J RES INTERACT MARK, V17, P176, DOI 10.1108/JRIM-02-2020-0035 Lau O, 2021, FASH TEXT, V8, DOI 10.1186/s40691-021-00270-9 Lee HT, 2022, INTERNET RES, V32, P1288, DOI 10.1108/INTR-01-2021-0050 Lee J, 2012, CYBERPSYCH BEH SOC N, V15, P643, DOI 10.1089/cyber.2012.0093 Lehdonvirta V, 2009, ELECTRON COMMER RES, V9, P97, DOI 10.1007/s10660-009-9028-2 Leong LY, 2020, EXPERT SYST APPL, V162, DOI 10.1016/j.eswa.2020.113849 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Li HX, 2015, COMPUT HUM BEHAV, V48, P261, DOI 10.1016/j.chb.2015.01.053 Li K, 2018, INTERNET RES, V28, P1103, DOI 10.1108/IntR-06-2017-0246 Liao GY, 2022, ELECTRON COMMER R A, V53, DOI 10.1016/j.elerap.2022.101147 Liao GY, 2019, INTERNET RES, V29, P349, DOI 10.1108/IntR-11-2017-0463 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Liengaard BD, 2021, DECISION SCI, V52, P362, DOI 10.1111/deci.12445 Liew LWL, 2018, BEHAV INFORM TECHNOL, V37, P558, DOI 10.1080/0144929X.2018.1464599 Lima XJ, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2020.102422 Lin CY, 2015, INTERNET RES, V25, P829, DOI 10.1108/IntR-12-2013-0268 LYNN M, 1992, BASIC APPL SOC PSYCH, V13, P67, DOI 10.1207/s15324834basp1301_6 Mäntymäki M, 2015, INT J INFORM MANAGE, V35, P124, DOI 10.1016/j.ijinfomgt.2014.10.004 Merhi MI, 2016, COMPUT HUM BEHAV, V60, P253, DOI 10.1016/j.chb.2016.02.072 Mishra AK, 2023, INT J CONSUM STUD, V47, P563, DOI 10.1111/ijcs.12850 Mkedder N., 2023, Journal of Global Marketing, P1, DOI [10.1080/08911762.2023.2236583, DOI 10.1080/08911762.2023.2236583] Mkedder N, 2021, CENT EUR MANAG J, V29, P124, DOI 10.7206/cemj.2658-0845.62 Mooi E, 2011, CONCISE GUIDE TO MARKET RESEARCH: THE PROCESS, DATA, AND METHODS USING IBM SPSS STATISTICS, P11, DOI 10.1007/978-3-642-12541-6_2 Nitzl C, 2016, IND MANAGE DATA SYST, V116, P1849, DOI 10.1108/IMDS-07-2015-0302 Nowak KL, 2003, PRESENCE-TELEOP VIRT, V12, P481, DOI 10.1162/105474603322761289 Ozkara BY, 2017, J RETAIL CONSUM SERV, V37, P119, DOI 10.1016/j.jretconser.2017.04.001 Park K, 2017, WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, P445, DOI 10.1145/3041021.3054176 Park SB, 2011, COMPUT HUM BEHAV, V27, P2372, DOI 10.1016/j.chb.2011.07.016 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Ratan R, 2015, COMPUT HUM BEHAV, V50, P367, DOI 10.1016/j.chb.2015.04.010 Reer F, 2022, COMPUT HUM BEHAV, V132, DOI 10.1016/j.chb.2022.107242 Rezaei S, 2014, COMPUT HUM BEHAV, V35, P252, DOI 10.1016/j.chb.2014.03.002 Ringle C M., 2022, SmartPLS 4 Ringle CM, 2023, DATA BRIEF, V48, DOI 10.1016/j.dib.2023.109074 Ringle CM, 2016, IND MANAGE DATA SYST, V116, P1865, DOI 10.1108/IMDS-10-2015-0449 Sarstedt M, 2020, INT J MARKET RES, V62, P288, DOI 10.1177/1470785320915686 Schuberth F, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.02541 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sharma M, 2022, INFORM SYST FRONT, DOI 10.1007/s10796-022-10339-5 Sharma PN, 2023, EUR J MARKETING, V57, P1662, DOI 10.1108/EJM-08-2020-0636 Sharma TG, 2022, BEHAV INFORM TECHNOL, V41, P348, DOI 10.1080/0144929X.2020.1811770 SHETH JN, 1991, J BUS RES, V22, P159, DOI 10.1016/0148-2963(91)90050-8 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Sohaib O, 2020, IEEE ACCESS, V8, P13138, DOI 10.1109/ACCESS.2019.2960083 Statista, 2020, CONS SPEND GAM US 2 Sweeney JC, 2001, J RETAILING, V77, P203, DOI 10.1016/S0022-4359(01)00041-0 Syahrivar J, 2022, INT J RETAIL DISTRIB, V50, P117, DOI 10.1108/IJRDM-09-2020-0358 Talukder Shamim, 2019, Journal of Systems and Information Technology, V21, P419, DOI 10.1108/JSIT-10-2017-0096 Teng CI, 2017, INT J INFORM MANAGE, V37, P601, DOI 10.1016/j.ijinfomgt.2017.06.006 Teng CI, 2010, COMPUT HUM BEHAV, V26, P1547, DOI 10.1016/j.chb.2010.05.029 Wang L, 2022, J BUS RES, V147, P308, DOI 10.1016/j.jbusres.2022.04.011 Wang L, 2022, INFORM SYST J, V32, P1097, DOI 10.1111/isj.12384 Wang L, 2021, INFORM TECHNOL PEOPL, V34, P297, DOI 10.1108/ITP-10-2019-0527 Wang L, 2023, EXPERT SYST APPL, V212, DOI 10.1016/j.eswa.2022.118799 Wedel M, 2020, INT J RES MARK, V37, P443, DOI 10.1016/j.ijresmar.2020.04.004 Weilbull L., 1985, MEDIA GRATIFICATIONS, P123 Wu JH, 2010, COMPUT HUM BEHAV, V26, P1862, DOI 10.1016/j.chb.2010.07.033 Wu SL, 2018, J BUS RES, V92, P242, DOI 10.1016/j.jbusres.2018.07.035 Yang H, 2016, TELEMAT INFORM, V33, P256, DOI 10.1016/j.tele.2015.08.007 Yee N, 2006, CYBERPSYCHOL BEHAV, V9, P772, DOI 10.1089/cpb.2006.9.772 ZEITHAML VA, 1988, J MARKETING, V52, P2, DOI 10.2307/1251446 Zhao YS, 2021, INT SYM MIX AUGMENT, P52, DOI 10.1109/ISMAR-Adjunct54149.2021.00020 NR 108 TC 3 Z9 3 U1 9 U2 9 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 2050-3318 EI 2050-3326 J9 J MARK ANAL JI J. Market. Anal. PD MAR PY 2024 VL 12 IS 1 SI SI BP 42 EP 70 DI 10.1057/s41270-023-00252-4 EA SEP 2023 PG 29 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA IX8O1 UT WOS:001063358700001 DA 2024-03-27 ER PT J AU Thongsri, N Tripak, O AF Thongsri, Nattaporn Tripak, Orawan TI Does social banking matter in times of crisis? Evidence from the COVID-19 pandemic: a combined SEM-neural network approach SO INTERNATIONAL JOURNAL OF SOCIAL ECONOMICS LA English DT Article DE Social banking; Structural equation modeling (SEM); Neural network model; COVID-19; Thailand ID WORD-OF-MOUTH; MOBILE BANKING; PERCEIVED RISK; INFORMATION-TECHNOLOGY; CONSUMER ACCEPTANCE; USER ACCEPTANCE; METHOD BIAS; ADOPTION; ANTECEDENTS; INTENTIONS AB Purpose - The purpose of this study was to investigate the factors that would influence the intention to use social banking during the coronavirus disease 2019 (COVID-19) pandemic. This study integrated two theories, namely the integrated technology acceptance model (TAM), which focused on the acceptance of technology by consumers, and electronic word of mouth (eWOM), which focused on consumer behavior. This study also applied the significant variables in the context of Thailand, which were trust and perceived risk.Design/methodology/approach- A quantitative research method was applied by collecting data from 411 consumers during the COVID-19 pandemic in Thailand. A combined multi-analytic approach of a structural equation model (SEM)-neural network was used to analyze the data. In the first step, the SEM was used to determine the important factors that affected the adoption of social banking. In the second step, a neural network model was used to prioritize the important factors to confirm the results of the SEM method in step 1.Findings - The empirical results of the data analysis using the SEM method showed that the perceived ease of use, perceived usefulness and trust were the most significant determinants of adopting social banking. This was consistent with the neural network method of the important factors. Practical implications - The results of this research could initiate issues that should be developed for the continued use of online banking among consumers in the context of developing countries, such as Thailand.Originality/value-This research model provided guidelines for the effective development of mobile banking applications for use on mobile devices. The results of this research made strong theoretical contributions to the existing literature on online banking and offered procedures and information to the relevant sectors.Peer review - The peer review history for this article is available at: https://publons.com/publon/10.1108/ IJSE-10-2022-0709 C1 [Thongsri, Nattaporn] Prince Songkla Univ, Fac Sci & Ind Technol, Surat Thani Campus, Surat Thani, Thailand. [Tripak, Orawan] Prince Songkla Univ, Fac Sci, Hat Yai, Thailand. C3 Prince of Songkla University; Prince of Songkla University RP Thongsri, N (autor correspondiente), Prince Songkla Univ, Fac Sci & Ind Technol, Surat Thani Campus, Surat Thani, Thailand. EM nattaporn.th@psu.ac.th; orawan.t@psu.ac.th OI Thongsri, Nattaporn/0000-0002-4077-8517 CR Agatonovic-Kustrin S, 2000, J PHARMACEUT BIOMED, V22, P717, DOI 10.1016/S0731-7085(99)00272-1 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alalwan AA, 2016, J ENTERP INF MANAG, V29, P118, DOI 10.1108/JEIM-04-2015-0035 Anyasi F., 2009, RES J INF TECHNOL, V1, P1 Arif I, 2020, TECHNOL SOC, V61, DOI 10.1016/j.techsoc.2020.101231 Awa HO, 2015, J SCI TECHNOL POLICY, V6, P76, DOI 10.1108/JSTPM-04-2014-0012 Bank of Thailand, 2020, CBDC PROGR THAIL Bank of Thailand, 2020, BOT STRAT PLAN ADDR Bronner F, 2016, ANN TOURISM RES, V57, P94, DOI 10.1016/j.annals.2015.12.012 Chen CS, 2013, MANAG SERV QUAL, V23, P410, DOI 10.1108/MSQ-10-2012-0137 Cheung CMK, 2012, DECIS SUPPORT SYST, V54, P461, DOI 10.1016/j.dss.2012.06.008 Cheung CMK, 2009, LECT NOTES ARTIF INT, V5736, P501, DOI 10.1007/978-3-642-04754-1_51 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Deb M, 2014, MARK INTELL PLAN, V32, P475, DOI 10.1108/MIP-07-2013-0119 Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 Eagly A. H., 1993, PSYCHOL ATTITUDES Falk R.F., 1992, A primer for soft modeling Fayad R, 2015, PROC ECON FINANC, V26, P1000, DOI 10.1016/S2212-5671(15)00922-3 Garner SarahJane., 1986, MID ATLAN J BUS, V24, P49 GOODHUE DL, 1995, MIS QUART, V19, P213, DOI 10.2307/249689 Gopinath S, 2014, MARKET SCI, V33, P241, DOI 10.1287/mksc.2013.0820 Govender I., 2014, Mediterranean Journal of Social Sciences, V5, P451, DOI DOI 10.5901/MJSS.2014.V5N7P451 Gramlich J., 2019, 10 FACTS AMERICANS F Hair J.F., 2006, Proceedings of the 7th International Conference on, P1 Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Hassan HE, 2020, TELEMAT INFORM, V46, DOI 10.1016/j.tele.2019.101312 Hau YS, 2016, INT J INFORM MANAGE, V36, P520, DOI 10.1016/j.ijinfomgt.2016.02.008 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Im I, 2008, INFORM MANAGE-AMSTER, V45, P1, DOI 10.1016/j.im.2007.03.005 Islam AKMN, 2020, TECHNOL FORECAST SOC, V159, DOI 10.1016/j.techfore.2020.120201 Kasikorn Bank, 2019, AN ADM DEP Koksal MH, 2016, INT J BANK MARK, V34, P327, DOI 10.1108/IJBM-03-2015-0025 Kostic S.C., 2020, NEW NORMAL STRATEGIC Liao ZQ, 2017, J RETAIL CONSUM SERV, V39, P258, DOI 10.1016/j.jretconser.2017.06.003 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Lin HF, 2011, INT J INFORM MANAGE, V31, P252, DOI 10.1016/j.ijinfomgt.2010.07.006 Mahittivanicha Narongyod, 2020, GLOBAL SOCIAL MEDIA Malaquias RF, 2019, INT J INFORM MANAGE, V44, P132, DOI 10.1016/j.ijinfomgt.2018.10.004 Malaquias RF, 2016, COMPUT HUM BEHAV, V54, P453, DOI 10.1016/j.chb.2015.08.039 Malaquias RF, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101260 Marketingoops.Com, 2020, UPD THAI BEH HAS CHA Meade A.W., 2007, 22 ANN M SOC IND ORG, DOI [10.1037/e518532013-132, DOI 10.1037/E518532013-132] Mehrad D, 2017, TELEMAT INFORM, V34, P1351, DOI 10.1016/j.tele.2016.08.009 Merhi M, 2019, TECHNOL SOC, V59, DOI 10.1016/j.techsoc.2019.101151 Mortazavi M, 2014, J RES INTERACT MARK, V8, P102, DOI 10.1108/JRIM-08-2013-0057 Mullan J, 2017, INT J BANK MARK, V35, P1152, DOI 10.1108/IJBM-09-2015-0145 Ngo V.M., 2022, OPER MANAGE RES, P1 Nguyen HH, 2021, RES INT BUS FINANC, V56, DOI 10.1016/j.ribaf.2021.101380 Nilashi M, 2018, J COMPUT SCI-NETH, V28, P168, DOI 10.1016/j.jocs.2018.09.006 Phanachai Areepermphon, 2020, COVID 19 CHANGED CON Podsakoff PM, 2012, ANNU REV PSYCHOL, V63, P539, DOI 10.1146/annurev-psych-120710-100452 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Roy G, 2017, GLOB BUS REV, V18, P198, DOI 10.1177/0972150916666966 Ruangkanjanases A., 2018, J TELECOMMUNICATION, V10, P147 Shaikh AA, 2015, TELEMAT INFORM, V32, P129, DOI 10.1016/j.tele.2014.05.003 Shankar A., 2016, Journal of Internet Banking and Commerce, V21, P1 Shankar A, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101920 Sharma SK, 2018, GOV INFORM Q, V35, P557, DOI 10.1016/j.giq.2018.07.002 Siemsen E, 2010, ORGAN RES METHODS, V13, P456, DOI 10.1177/1094428109351241 Singh AK, 2023, EVALUATION REV, V47, P350, DOI 10.1177/0193841X221121244 Stockdale LA, 2020, J ADOLESCENCE, V79, P173, DOI 10.1016/j.adolescence.2020.01.010 Talukder MS, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119793 Taylor J.W., 1974, Journal of marketing, V38, P54, DOI DOI 10.1177/002224297403800211 Teng SS, 2014, ONLINE INFORM REV, V38, P746, DOI 10.1108/OIR-04-2014-0089 Thongsri Nattaporn, 2018, Journal of Systems and Information Technology, V20, P278, DOI 10.1108/JSIT-11-2017-0107 Thongsri N., 12 INT C UB MED COMP, P314 Van Nguyen P., 2022, EVALUATION REV Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Ngo VM, 2023, INT J EMERG MARK, V18, P1355, DOI 10.1108/IJOEM-10-2021-1561 Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 Wessels L, 2010, INT J BANK MARK, V28, P547, DOI 10.1108/02652321011085194 Xie KL, 2016, J TRAVEL TOUR MARK, V33, P211, DOI 10.1080/10548408.2015.1050538 Zhang Y., 1996, EUR J MARKETING, V30, P50, DOI DOI 10.1108/03090569610153309 NR 74 TC 1 Z9 1 U1 4 U2 8 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0306-8293 EI 1758-6712 J9 INT J SOC ECON JI Int. J. Soc. Econ. PD FEB 7 PY 2024 VL 51 IS 2 SI SI BP 227 EP 247 DI 10.1108/IJSE-10-2022-0709 EA MAR 2023 PG 21 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HF8X2 UT WOS:000961047200001 DA 2024-03-27 ER PT J AU Peng, LF Lai, LL AF Peng, Lifang Lai, Lingling TI A service innovation evaluation framework for tourism e-commerce in China based on BP neural network SO ELECTRONIC MARKETS LA English DT Article DE Tourism e-commerce; Service innovation evaluation; BP neural network AB With the rapid development of tourism e-commerce in China, how to evaluate the effectiveness of tourism e-commerce service innovation in the e-commerce field has become an important and critical issue. Drawing on pertaining literature, this paper chooses the back propagation (BP) neural network model to evaluate the effectiveness of tourism e-commerce service innovation. The study first establishes the evaluation index system that is consistent with the characteristics of the tourism e-commerce service industry and selects ten tourism e-commerce service providers to conduct an empirical analysis. Then Matlab7.0 is employed to simulate this evaluation model and to draw the corresponding conclusions. Finally, this paper summarizes the limitations of the study and proposes future research avenues. The insightful results of this study can mirror the development situation of tourism e-commerce and provide an effective evaluation framework for the tourism e-commerce service innovation performance in China. C1 [Peng, Lifang] Xiamen Univ, Sch Management, Xiamen 361005, Fujian Province, Peoples R China. [Lai, Lingling] Xiamen City Univ, Dept Business, Xiamen 361008, Fujian Province, Peoples R China. C3 Xiamen University RP Peng, LF (autor correspondiente), Xiamen Univ, Sch Management, 422 South Siming Rd, Xiamen 361005, Fujian Province, Peoples R China. EM lfpeng@xmu.edu.cn; lingling@xmcu.cn RI Novoa, Kevin/J-2867-2014 CR Akoumianakis D, 2010, ELECTRON COMMER RES, V10, P43, DOI 10.1007/s10660-010-9045-1 [Anonymous], 2009, INTERNET WEEKLY JUN, P73 [Anonymous], 2003, EC POLICY REV [Anonymous], 2011, IRESEARCH REPORT BARRAS R, 1986, RES POLICY, V15, P161, DOI 10.1016/0048-7333(86)90012-0 Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3 Berger Helmut, 2007, Virtual Reality, V11, P75, DOI 10.1007/s10055-006-0057-z Bilderbeed P., 1998, 3 SI4S Büyüközkan G, 2008, MATH COMPUT SIMULAT, V77, P464, DOI 10.1016/j.matcom.2007.11.015 Chen J., 2008, ECONOMICS, P66 Counter R., 2001, APPL OPTICS, V6, P4979 Djella F., 2001, Science and Public Policy, V28, P57 Drejer I, 2004, RES POLICY, V33, P551, DOI 10.1016/j.respol.2003.07.004 Gallouj F., 1998, EUROPEAN J INNOVATIO, V13, P123 Guan JC, 2006, EUR J OPER RES, V170, P971, DOI 10.1016/j.ejor.2004.07.054 Hipp C, 2005, RES POLICY, V34, P517, DOI 10.1016/j.respol.2005.03.002 Hipp C., 2000, INT J INNOV MANAG, V4, P417 Ho CI, 2007, TOURISM MANAGE, V28, P1434, DOI 10.1016/j.tourman.2006.12.002 HU L Y, 2008, INNOVATION RES, V22, P116 Hugo H., 2006, CAN WE MEASURE COMP Jie Lu, 2001, Electronic Markets, V11, P107, DOI 10.1080/101967801300197025 Jin Liu, 2004, IEEE Circuits and Systems Magazine, V4, P4, DOI 10.1109/MCAS.2004.1330746 Kak S, 2002, INFORM SCIENCES, V148, P97, DOI 10.1016/S0020-0255(02)00281-5 Kline Stephen., 1986, POSITIVE SUM STRATEG, P289, DOI DOI 10.1108/14601069810368485 Milbergs E., 2004, Innovation Metrics: Measurement to Insight Miles I, 2008, IBM SYST J, V47, P115, DOI 10.1147/sj.471.0115 Normann R., 1991, SERVICE MANAGEMENT S Novak J, 2009, ELECTRON MARK, V19, P15, DOI 10.1007/s12525-009-0003-5 Patier D, 2010, PROCD SOC BEHV, V2, P6229, DOI 10.1016/j.sbspro.2010.04.033 PAVITT K, 1984, RES POLICY, V13, P343, DOI 10.1016/0048-7333(84)90018-0 Poon Auliana., 1993, TOURISM TECHNOLOGY C Straub D., 2004, VALIDATION GUIDELINE, P13 Sun CC, 2010, EXPERT SYST APPL, V37, P7745, DOI 10.1016/j.eswa.2010.04.066 Watts RJ, 1997, TECHNOL FORECAST SOC, V56, P25, DOI 10.1016/S0040-1625(97)00050-4 Wen KL, 2008, ADV ENG SOFTW, V39, P137, DOI 10.1016/j.advengsoft.2006.12.002 Werthner H, 2004, COMMUN ACM, V47, P101, DOI 10.1145/1035134.1035141 Wu G. S., 2003, SERVICES INNOVATION Zhang GJ, 2009, 2009 INTERNATIONAL FORUM ON INFORMATION TECHNOLOGY AND APPLICATIONS, VOL 3, PROCEEDINGS, P664, DOI 10.1109/IFITA.2009.273 NR 38 TC 21 Z9 24 U1 2 U2 103 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD MAR PY 2014 VL 24 IS 1 BP 37 EP 46 DI 10.1007/s12525-013-0148-0 PG 10 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA AC6TC UT WOS:000332656900004 DA 2024-03-27 ER PT J AU Pan, H Zhou, HX AF Pan, Hong Zhou, Hanxun TI Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Convolutional neural network; E-commerce; Data mining; Sales forecasting ID MODEL; PREDICTION; SENTIMENT AB In recent years, the rapid development of e-commerce has brought great convenience to people. Compared with traditional business environment, e-commerce is more dynamic and complex, which brings many challenges. Data mining technology can help people better deal with these challenges. Traditional data mining technology cannot effectively use the massive data in the electricity supplier, it relies on the time-consuming and labour-consuming characteristic engineering, and the obtained model is not scalable. Convolutional neural network can effectively use a large amount of data, and can automatically extract effective features from the original data, with higher availability. In this paper, convolutional neural network is used to mine e-commerce data to achieve the prediction of commodity sales. First, this article combines the inherent nature of the relevant merchandise information with the original cargo log data that can be converted into a specific "data frame" format. Raw log data includes items sold over a long period of time, price, quantity view, browse, search, search, times collected, number of items added to cart, and many other metrics. Then, convolutional neural network is applied to extract effective features on the data frame. Finally, the final layer of the convolutional neural network uses these features to predict sales of goods. This method can automatically extract effective features from the original structured time series data by convolutional neural network, and further use these features to achieve sales forecast. The validity of the proposed algorithm is verified on the real e-commerce data set. C1 [Pan, Hong] Liaoning Univ, Sch Econ, Shenyang 110036, Liaoning, Peoples R China. [Zhou, Hanxun] Liaoning Univ, Sch Informat, Shenyang 110036, Liaoning, Peoples R China. C3 Liaoning University; Liaoning University RP Zhou, HX (autor correspondiente), Liaoning Univ, Sch Informat, Shenyang 110036, Liaoning, Peoples R China. EM lidachao223@sohu.com CR Bell D, 2018, SIMUL-T SOC MOD SIM, V94, P195, DOI 10.1177/0037549717743106 Borkar TS, 2019, IEEE T IMAGE PROCESS, V28, P6022, DOI 10.1109/TIP.2019.2924172 Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007 Pham DH, 2018, DATA KNOWL ENG, V114, P26, DOI 10.1016/j.datak.2017.06.001 Guo ZQ, 2019, IET INTELL TRANSP SY, V13, P1374, DOI 10.1049/iet-its.2018.5530 Gysel P, 2018, IEEE T NEUR NET LEAR, V29, P5784, DOI 10.1109/TNNLS.2018.2808319 Hanson J, 2018, BIOINFORMATICS, V34, P4039, DOI 10.1093/bioinformatics/bty481 Jiang XH, 2018, NEUROCOMPUTING, V275, P1132, DOI 10.1016/j.neucom.2017.09.056 Kannadath BS, 2018, AM J GASTROENTEROL, V113, pS41 Khaled A, 2019, COMPUT HUM BEHAV, V101, P435, DOI 10.1016/j.chb.2018.08.051 Kuzovkin D, 2019, ACM T APPL PERCEPT, V16, DOI 10.1145/3333612 Liberis E, 2018, BIOINFORMATICS, V34, P2944, DOI 10.1093/bioinformatics/bty305 Lin JB, 2019, INFORM MANAGE-AMSTER, V56, P213, DOI 10.1016/j.im.2018.05.009 Mahdavinejad MS, 2018, DIGIT COMMUN NETW, V4, P161, DOI 10.1016/j.dcan.2017.10.002 Manogaran Gunasekaran, 2018, International Journal of Advanced Intelligence Paradigms, V10, P118 Mau S, 2018, INT J BANK MARK, V36, P1125, DOI 10.1108/IJBM-11-2016-0180 Ortega JA, 2018, BIOSYST ENG, V174, P231, DOI 10.1016/j.biosystemseng.2018.07.012 Qiu X., 2019, Journal of Banking and Financial Technology, V3, P33, DOI DOI 10.1007/S42786-018-00006-2 Ramos André Lubene, 2019, REM, Int. Eng. J., V72, P9 Rao H, 2019, APPL SOFT COMPUT, V74, P634, DOI 10.1016/j.asoc.2018.10.036 Rout JK, 2018, ELECTRON COMMER RES, V18, P181, DOI 10.1007/s10660-017-9257-8 Sarthak Yadav, 2018, INT J DIGITAL INFORM, V8, P174 Seinen C, 2018, PHYSICA D, V376, P78, DOI 10.1016/j.physd.2017.09.005 Sivasankar E, 2019, INT J BUSINESS INFOR, V31, P1, DOI DOI 10.1504/IJBIS.2019.099524 Stripling E, 2018, SWARM EVOL COMPUT, V40, P116, DOI 10.1016/j.swevo.2017.10.010 Vijaya J, 2019, CLUSTER COMPUT, V22, P10757, DOI 10.1007/s10586-017-1172-1 Wan SH, 2018, IEEE ACCESS, V6, P36825, DOI 10.1109/ACCESS.2018.2851382 Wang D, 2018, WIRELESS PERS COMMUN, V103, P941, DOI 10.1007/s11277-018-5488-9 Wang J, 2017, FRONT INFORM TECH EL, V18, P1817, DOI 10.1631/FITEE.1601468 Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004 Wu T, 2018, COMPUT IND ENG, V116, P97, DOI 10.1016/j.cie.2017.11.032 Xu SX, 2017, PROD OPER MANAG, V26, P292, DOI 10.1111/poms.12638 Yao YQ, 2019, STAT PAP, V60, P235, DOI 10.1007/s00362-018-01068-6 Zhu LH, 2018, IEEE WIREL COMMUN, V25, P84, DOI 10.1109/MWC.2018.1700157 NR 34 TC 25 Z9 28 U1 5 U2 60 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD JUN PY 2020 VL 20 IS 2 SI SI BP 297 EP 320 DI 10.1007/s10660-020-09409-0 EA APR 2020 PG 24 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LK9BZ UT WOS:000529581000001 DA 2024-03-27 ER PT J AU Tan, B Yi, C Chan, HC AF Tan, Barney Yi, Cheng Chan, Hock C. TI Deliberation Without Attention: The Latent Benefits of Distracting Website Features for Online Purchase Decisions SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE Web design; human-computer interaction; unconscious thought theory; deliberation without attention; online shopping ID TECHNOLOGY ACCEPTANCE MODEL; UNCONSCIOUS THOUGHT THEORY; CONSCIOUS THOUGHT; WEB PERSONALIZATION; USER EXPERIENCE; TASK; INFORMATION; CHOICE; INTERRUPTION; SATISFACTION AB Early studies on Web design typically caution against the use of distracting website features in electronic commerce, such as animated banners, pop-ups, and floating advertisements, because they may cause annoyance for online consumers and disrupt information processing, leading to poorer purchase decisions. Yet, the recently uncovered deliberation-without-attention (D-W-A) effect suggests that distracting consumers from the decision-making process may improve their decision quality when there are a large number of decision parameters to consider. To ascertain whether the D-W-A effect can be triggered through the use of distracting website features in the context of online shopping, two experiments are conducted. The first experiment reveals that the presence of distracting website features, in the form of pop-ups, gives rise to annoyance in general, but also leads to better purchase decisions when the decision to be made is complex. The second experiment supports the findings of the first and sheds further light on the underlying mode of thought triggered by these features. In particular, by eliminating a number of potential alternative mechanisms, including online judgments, the mere disruption of decision-related thought, and cognitively constrained conscious deliberation, the second experiment demonstrates that unconscious deliberation is likely to be the underlying cause of superior decision making. With these findings, this research supports a more balanced view in the recent human-computer interaction literature, which suggests that the usual advice to minimize the use of distracting website features should be examined more carefully. The research also uncovers evidence that contributes to the ongoing debate surrounding the D-W-A effect and unconscious thought theory. C1 [Tan, Barney] Univ Sydney, Sch Business, Discipline Business Informat Syst, Sydney, NSW 2006, Australia. [Yi, Cheng] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing 100084, Peoples R China. [Chan, Hock C.] Natl Univ Singapore, Dept Informat Syst, Singapore 117417, Singapore. C3 University of Sydney; Tsinghua University; National University of Singapore RP Tan, B (autor correspondiente), Univ Sydney, Sch Business, Discipline Business Informat Syst, Sydney, NSW 2006, Australia. EM barney.tan@sydney.edu.au; yich@sem.tsinghua.edu.cn; chanhc@comp.nus.edu.sg OI Tan, Barney/0000-0002-0687-9699 CR Acker F, 2008, JUDGM DECIS MAK, V3, P292 [Anonymous], 1993, ADAPTIVE DECISION MA, DOI DOI 10.1017/CBO9781139173933 Bailey BP, 2006, COMPUT HUM BEHAV, V22, P685, DOI 10.1016/j.chb.2005.12.009 Bargh JA, 2011, SOC COGNITION, V29, P629, DOI 10.1521/soco.2011.29.6.629 Baron R.S., 1986, ADV EXP SOC PSYCHOL, V19, P1, DOI [10.1016/S0065-2601(08)60211-7, 10.1016/S0065-2601, DOI 10.1016/S0065-2601, DOI 10.1016/S0065-2601(08)60211-7] Beck J., 2001, The attention economy: Understanding the new currency of business, DOI 10.1145/375348.376626 Blackshaw P, 2003, ADVERTISING AGE, V74, P1 Blackwell RogerD., 2001, CONSUMER BEHAV, V9th Bos MW, 2008, J EXP SOC PSYCHOL, V44, P1114, DOI 10.1016/j.jesp.2008.01.001 Bos MW, 2011, J CONSUM PSYCHOL, V21, P4, DOI 10.1016/j.jcps.2010.09.002 Brajnik G, 2010, INT J HUM-COMPUT INT, V26, P971, DOI 10.1080/10447318.2010.502100 Burns KS, 2006, J ADVERTISING, V35, P53, DOI 10.2753/JOA0091-3367350104 Carter M, 2014, EUR J INFORM SYST, V23, P185, DOI 10.1057/ejis.2012.55 Chen QM, 1999, J ADVERTISING RES, V39, P27 Chircu AM, 2006, DECIS SUPPORT SYST, V42, P898, DOI 10.1016/j.dss.2005.07.011 Cleeremans A, 2009, THINK NOT THIN UNPUB Czerwinski M, 2000, P OZHCI SYDN Devaraj S, 2002, INFORM SYST RES, V13, P316, DOI 10.1287/isre.13.3.316.77 Dijksterhuis A, 2006, SCIENCE, V311, P1005, DOI 10.1126/science.1121629 Dijksterhuis A, 2004, J PERS SOC PSYCHOL, V87, P586, DOI 10.1037/0022-3514.87.5.586 Dijksterhuis A, 2006, PERSPECT PSYCHOL SCI, V1, P95, DOI 10.1111/j.1745-6916.2006.00007.x Dijksterhuis A, 2009, PSYCHOL SCI, V20, P1381, DOI 10.1111/j.1467-9280.2009.02451.x Edwards SM, 2002, J ADVERTISING, V31, P83, DOI 10.1080/00913367.2002.10673678 Faber RJ, 2004, AM BEHAV SCI, V48, P447, DOI 10.1177/0002764204270281 Flavián C, 2006, INFORM MANAGE-AMSTER, V43, P1, DOI 10.1016/j.im.2005.01.002 Gao J, 2010, PACIS 2010 P TAIP TA Gao Y., 2005, ADV TOPICS ELECT COM, P28 Gluck J, 2007, CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1 AND 2, P41 Ham J, 2009, SOC COGNITION, V27, P509, DOI 10.1521/soco.2009.27.4.509 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Hausman AV, 2009, J BUS RES, V62, P5, DOI 10.1016/j.jbusres.2008.01.018 Hong W, 2004, INFORM SYST RES, V15, P60, DOI 10.1287/isre.1040.0017 Hong W, 2007, J AM SOC INF SCI TEC, V58, P1467, DOI 10.1002/asi.20624 Jonides J, 1997, J COGNITIVE NEUROSCI, V9, P462, DOI 10.1162/jocn.1997.9.4.462 Kahneman D, 2003, AM PSYCHOL, V58, P697, DOI 10.1037/0003-066X.58.9.697 Kahneman D., 1973, ATTENTION EFFORT Koufaris M, 2002, INFORM SYST RES, V13, P205, DOI 10.1287/isre.13.2.205.83 Lassiter GD, 2009, PSYCHOL SCI, V20, P671, DOI 10.1111/j.1467-9280.2009.02347.x Lerouge D, 2009, J CONSUM RES, V36, P367, DOI 10.1086/599047 Li HR, 2002, J ADVERTISING, V31, P37, DOI 10.1080/00913367.2002.10673665 Ling M., 2006, WEB CONTENT PERSONAL Liu W, 2008, J CONSUM RES, V35, P640, DOI 10.1086/592126 McCoy S, 2007, COMMUN ACM, V50, P84, DOI 10.1145/1226736.1226740 MILLER GA, 1956, SCI AM, V195, P42, DOI 10.1038/scientificamerican0856-42 Nadkarni S, 2007, MIS QUART, V31, P501 Newell BR, 2009, Q J EXP PSYCHOL, V62, P707, DOI 10.1080/17470210802215202 OLSHAVSKY RW, 1979, ORGAN BEHAV HUM PERF, V24, P300, DOI 10.1016/0030-5073(79)90032-1 PASADEOS Y, 1990, JOURNALISM QUART, V67, P35, DOI 10.1177/107769909006700107 Payne JW, 2008, PSYCHOL SCI, V19, P1118, DOI 10.1111/j.1467-9280.2008.02212.x PAYNE JW, 1988, J EXP PSYCHOL LEARN, V14, P534, DOI 10.1037/0278-7393.14.3.534 Rey A, 2009, PSYCHOL RES-PSYCH FO, V73, P372, DOI 10.1007/s00426-008-0156-4 Schooler J.W., 1995, CREATIVE COGNITION A, P97 Schumann JH, 2014, J MARKETING, V78, P59, DOI 10.1509/jm.11.0316 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Sloman SA, 1996, PSYCHOL BULL, V119, P3, DOI 10.1037/0033-2909.119.1.3 Smilek D, 2006, VIS COGN, V14, P543, DOI 10.1080/13506280500193487 Smith S. P., 2006, ECIS 2006 P Speier C, 1999, DECISION SCI, V30, P337, DOI 10.1111/j.1540-5915.1999.tb01613.x Speier C., 1997, PROC ICIS 97, P21 Strick M, 2011, SOC COGNITION, V29, P738, DOI 10.1521/soco.2011.29.6.738 Strick M, 2010, PSYCHOL SCI, V21, P484, DOI 10.1177/0956797610363555 Tam KY, 2006, MIS QUART, V30, P865 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Tan CH, 2010, INFORM SYST RES, V21, P305, DOI 10.1287/isre.1080.0232 Thorsteinson TJ, 2009, JUDGM DECIS MAK, V4, P235 Trafton JG, 2003, INT J HUM-COMPUT ST, V58, P583, DOI 10.1016/S1071-5819(03)00023-5 van de Heijden AHC, 1992, SELECTIVE ATTENTION Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Waroquier L, 2010, SOC PSYCHOL PERS SCI, V1, P111, DOI 10.1177/1948550609356597 WILSON TD, 1991, J PERS SOC PSYCHOL, V60, P181, DOI 10.1037/0022-3514.60.2.181 WILSON TD, 1993, PERS SOC PSYCHOL B, V19, P331, DOI 10.1177/0146167293193010 Zhang P., 2000, J ASSOC INF SYST, V1, P1 Zhang P, 2006, ADV MANAG INFORM SYS, V6, P70 Zhong CB, 2008, PSYCHOL SCI, V19, P912, DOI 10.1111/j.1467-9280.2008.02176.x NR 74 TC 4 Z9 4 U1 12 U2 138 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD JUN PY 2015 VL 26 IS 2 BP 437 EP 455 DI 10.1287/isre.2015.0566 PG 19 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA CL0CG UT WOS:000356605700011 DA 2024-03-27 ER PT J AU Talukder, MS Sorwar, G Bao, YK Ahmed, JU Palash, MAS AF Talukder, Md. Shamim Sorwar, Golam Bao, Yukun Ahmed, Jashim Uddin Palash, Md. Abu Saeed TI Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Healthcare; Wearable technology; Adoption decision; SEM-Neural Network; Elderly; Developing Country; China ID INFORMATION-SYSTEMS CONTINUANCE; GOVERNMENT SERVICES; USERS PERSPECTIVES; UNIFIED THEORY; ADOPTION; DETERMINANTS; MODEL; PERCEPTION; VALIDITY; INTERNET AB Wearable healthcare technology (WHT) has the potential to improve access to healthcare information especially to the older population and empower them to play an active role in self-management of their health. Despite their potential benefits, the acceptance and usage of WHT among the elderly are considerably low. However, little research has been conducted to describe any systematic study of the elderly's intention to adopt WHT. The objective of this study was to develop a theoretical model on the basis of extended Unified Theory of Acceptance and Use of Technology (UTAUT2) with additional constructs- resistance to change, technology anxiety, and self-actualization, to investigate the key predictors of WHT adoption by elderly. The model used in the current study was analyzed in two steps. In the first step, a Structural Equation Modeling (SEM) was used to determine significant determinants that affect the adoption of WHT. In the second step, a neural network model was applied to validate the findings in step 1 and establish the relative importance of each determinant to the adoption of WHT. The findings revealed that social influence, performance expectancy, functional congruence, self-actualization, and hedonic motivation had a positive relationship with the adoption of WHT. In addition, technology anxiety and resistance to change posed important but negative influences on WHT acceptance. Surprisingly, the study did not find any significant relationship between effort expectancy and facilitating conditions with behavioral intention to use WHT by the elderly. The results of this research have strong theoretical contributions to the existing literature of WHT. It also provides valuable information for WHT developers and social planners in the design and execution of WHT for the elderly. C1 [Talukder, Md. Shamim; Bao, Yukun; Palash, Md. Abu Saeed] Huazhong Univ Sci & Technol, Sch Management, Ctr Modern Informat Management, Wuhan 430074, Hubei, Peoples R China. [Talukder, Md. Shamim; Ahmed, Jashim Uddin] North South Univ, Dept Management, Dhaka, Bangladesh. [Sorwar, Golam] Southern Cross Univ, Sch Business & Tourism, Lismore, NSW, Australia. C3 Huazhong University of Science & Technology; North South University (NSU); Southern Cross University RP Bao, YK (autor correspondiente), Huazhong Univ Sci & Technol, Sch Management, Ctr Modern Informat Management, Wuhan 430074, Hubei, Peoples R China. EM Shamim.talukder@northsouth.edu; golam.sorwar@scu.edu.au; yukunbao@hust.edu.cn; jashim.ahmed@northsouth.edu RI Ahmed, Jashim Uddin/P-5988-2019 OI Ahmed, Jashim Uddin/0000-0001-8145-6912; Talukder, Dr. Shamim/0000-0003-2095-4699 FU National Natural Science Foundation of China [71810107003] FX This study was supported by the National Natural Science Foundation of China under Project No. 71810107003. CR Ahmad SZ, 2017, INT J INFORM MANAGE, V37, P367, DOI 10.1016/j.ijinfomgt.2017.03.008 Aldholay AH, 2018, TELEMAT INFORM, V35, P1421, DOI 10.1016/j.tele.2018.03.012 [Anonymous], 2013, EXPLORING PREDICTORS [Anonymous], 2017, World population prospects 2017: Data booklet [Anonymous], RADIOL INFECT DIS [Anonymous], ED INF TECHNOL [Anonymous], 2004, J ASSOC INF SYST, DOI DOI 10.17705/1JAIS.00059 [Anonymous], DETERMINANTS IT RELA [Anonymous], GOV INF Q [Anonymous], COMP 2 FORMULATIONS ATCHLEY RC, 1989, GERONTOLOGIST, V29, P183, DOI 10.1093/geront/29.2.183 BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 Bao YK, 2017, INT J MED INFORM, V102, P12, DOI 10.1016/j.ijmedinf.2017.01.003 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Bhattacherjee A, 2008, J COMPUT INFORM SYST, V48, P69 Byrne B, 2010, INTERNATIONAL HANDBOOK OF PSYCHOLOGY IN EDUCATION, P3 Canhoto AI, 2017, J MARKET MANAG-UK, V33, P32, DOI 10.1080/0267257X.2016.1234505 Chan FTS, 2012, DECIS SUPPORT SYST, V54, P621, DOI 10.1016/j.dss.2012.08.009 Chen M, 2017, IEEE COMMUN MAG, V55, P54, DOI 10.1109/MCOM.2017.1600410CM Chin WW, 1998, QUANT METH SER, P295 Chong AYL, 2015, INT J PROD ECON, V159, P66, DOI 10.1016/j.ijpe.2014.09.034 Chong AYL, 2010, INT J MOB COMMUN, V8, P129, DOI 10.1504/IJMC.2010.031444 Choudrie J., 2017, HAW INT C SYST SCI 5 Cimperman M, 2016, INT J MED INFORM, V90, P22, DOI 10.1016/j.ijmedinf.2016.03.002 Conci M, 2009, LECT NOTES COMPUT SC, V5726, P63, DOI 10.1007/978-3-642-03655-2_7 Czaja S.J., 2013, TECHNOLOGIES ACTIVE, P27, DOI DOI 10.1007/978-1-4419-8348-0_3 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Deng ZH, 2014, INT J MED INFORM, V83, P210, DOI 10.1016/j.ijmedinf.2013.12.002 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Dwivedi YK, 2015, INFORM SYST FRONT, V17, P143, DOI 10.1007/s10796-014-9500-y Falk R.F., 1992, A primer for soft modeling FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gao S, 2016, LECT NOTES COMPUT SC, V9844, P280, DOI 10.1007/978-3-319-45234-0_26 Gao YW, 2015, IND MANAGE DATA SYST, V115, P1704, DOI 10.1108/IMDS-03-2015-0087 Godinho C, 2016, J NEUROENG REHABIL, V13, DOI 10.1186/s12984-016-0136-7 Goldberg E, 2016, PROCEEDINGS OF THE 2016 16TH CONFERENCE ON FORMAL METHODS IN COMPUTER-AIDED DESIGN (FMCAD 2016), P49, DOI 10.1109/FMCAD.2016.7886660 Guo XT, 2013, ELECTRON MARK, V23, P49, DOI 10.1007/s12525-012-0112-4 Hair J F., 2010, Technometrics, V15 Hair J.F., 2009, Multivariate data analysis Hair J.F. Jr., 2016, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Harman H. H., 1976, Modern Factor Analysis Heinz M, 2013, J GERONTOL NURS, V39, P42, DOI 10.3928/00989134-20121204-04 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hew JJ, 2017, TELEMAT INFORM, V34, P34, DOI 10.1016/j.tele.2016.12.009 HEYLIGHEN F, 1992, BEHAV SCI, V37, P39, DOI 10.1002/bs.3830370105 HIRSCHHEIM R, 1988, COMPUT J, V31, P398, DOI 10.1093/comjnl/31.5.398 Holden RJ, 2010, J BIOMED INFORM, V43, P159, DOI 10.1016/j.jbi.2009.07.002 Hoque MR, 2017, INFORM HEALTH SOC CA, V42, P1, DOI 10.3109/17538157.2015.1075541 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Hu ZY, 2017, J SYST SCI COMPLEX, V30, P1425, DOI 10.1007/s11424-017-5293-7 Huber F, 2010, J BUS RES, V63, P1113, DOI 10.1016/j.jbusres.2009.10.006 Irani Z, 2007, EUR J INFORM SYST, V16, P327, DOI 10.1057/palgrave.ejis.3000698 Jeong SC, 2017, TELEMAT INFORM, V34, P399, DOI 10.1016/j.tele.2016.09.001 Kaufman G, 2002, J AGING STUD, V16, P169, DOI 10.1016/S0890-4065(02)00042-7 Kekade S, 2018, COMPUT METH PROG BIO, V153, P137, DOI 10.1016/j.cmpb.2017.10.008 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Kijsanayotin B, 2009, INT J MED INFORM, V78, P404, DOI 10.1016/j.ijmedinf.2008.12.005 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Lallmahomed MZI, 2017, TELEMAT INFORM, V34, P57, DOI 10.1016/j.tele.2017.01.003 Lee B, 2011, COMPUT HUM BEHAV, V27, P1231, DOI 10.1016/j.chb.2011.01.003 Lee C, 2015, J PROD INNOVAT MANAG, V32, P747, DOI 10.1111/jpim.12176 Lee SY, 2018, TECHNOL FORECAST SOC, V129, P154, DOI 10.1016/j.techfore.2018.01.002 Li H, 2016, INT J MED INFORM, V88, P8, DOI 10.1016/j.ijmedinf.2015.12.010 Li HX, 2018, COMPUT HUM BEHAV, V85, P175, DOI 10.1016/j.chb.2018.03.048 Liu Y, 2017, INFORM SYST J, V27, P59, DOI 10.1111/isj.12094 Lowry PB, 2014, IEEE T PROF COMMUN, V57, P123, DOI 10.1109/TPC.2014.2312452 Luck D.J. Rubin., 1987, Marketing Research, V7th Lunney A, 2016, COMPUT HUM BEHAV, V65, P114, DOI 10.1016/j.chb.2016.08.007 Marquié JC, 2002, BEHAV INFORM TECHNOL, V21, P273, DOI 10.1080/0144929021000020998 Maslow A.H., 2012, MOTIVATION PERSONALI, V3rd Mathur A, 2005, PSYCHOL MARKET, V22, P969, DOI 10.1002/mar.20094 Meuter ML, 2003, J BUS RES, V56, P899, DOI 10.1016/S0148-2963(01)00276-4 Moschis G.P., 1992, Marketing to older consumers: A handbook of information for strategy development Negahban A, 2014, COMPUT HUM BEHAV, V35, P75, DOI 10.1016/j.chb.2014.02.020 O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6 Oliveira T, 2016, COMPUT HUM BEHAV, V61, P404, DOI 10.1016/j.chb.2016.03.030 Ooi KB, 2018, EXPERT SYST APPL, V93, P376, DOI 10.1016/j.eswa.2017.10.009 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Phang CW, 2006, IEEE T ENG MANAGE, V53, P555, DOI 10.1109/TEM.2006.883710 Phichitchaisopa N, 2013, EXCLI J, V12, P413 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Premkumar G, 1995, DECISION SCI, V26, P303, DOI 10.1111/j.1540-5915.1995.tb01431.x Reichheld FF, 2000, HARVARD BUS REV, V78, P105 Rho MJ, 2015, CLUSTER COMPUT, V18, P321, DOI 10.1007/s10586-014-0356-1 Ruhl K., 2004, Historical Soc. Res., V29, P171, DOI [10.12759/hsr.29.2004.4.171-177, DOI 10.12759/HSR.29.2004.4.171-177] Saxena S, 2017, FORESIGHT, V19, P421, DOI 10.1108/FS-02-2017-0003 Scott JE, 2009, INFORM MANAGE-AMSTER, V46, P221, DOI 10.1016/j.im.2008.10.003 Sekaran U., 2011, Research methods for business: A skill building approach, V5th ed., DOI DOI 10.1108/17506200710779521 Sharma SK, 2018, GOV INFORM Q, V35, P557, DOI 10.1016/j.giq.2018.07.002 Sharma SK, 2016, COMPUT HUM BEHAV, V62, P61, DOI 10.1016/j.chb.2016.03.073 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 SIMONSON MR, 1987, J EDUC COMPUT RES, V3, P231, DOI 10.2190/7CHY-5CM0-4D00-6JCG SIRGY MJ, 1985, J BUS RES, V13, P195, DOI 10.1016/0148-2963(85)90026-8 Srizongkhram S, 2018, PORTL INT CONF MANAG Steele R, 2009, INT J MED INFORM, V78, P788, DOI 10.1016/j.ijmedinf.2009.08.001 Talukder MS, 2019, TECHNOL SOC, V56, P147, DOI 10.1016/j.techsoc.2018.09.013 Talukder MS, 2019, IND MANAGE DATA SYST, V119, P170, DOI 10.1108/IMDS-01-2018-0009 Tedesco S, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17061277 Teo TSH, 2003, OMEGA-INT J MANAGE S, V31, P483, DOI 10.1016/j.omega.2003.08.005 Turner P, 2007, BEHAV INFORM TECHNOL, V26, P287, DOI 10.1080/01449290601173499 Veeramootoo N, 2018, GOV INFORM Q, V35, P161, DOI 10.1016/j.giq.2018.03.004 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Venkatesh V, 2011, INFORM SYST J, V21, P527, DOI [10.1111/j.1365-2575.2011.00373.x, 10.1111/J.1365-2575.2011.00373.x] Vroman KG, 2015, COMPUT HUM BEHAV, V43, P156, DOI 10.1016/j.chb.2014.10.018 Wang T, 2014, BEHAV INFORM TECHNOL, V33, P1048, DOI 10.1080/0144929X.2013.781221 Wei J, 2014, IEEE CONSUM ELECTR M, V3, P53, DOI 10.1109/MCE.2014.2317895 Wei TT, 2009, IND MANAGE DATA SYST, V109, P370, DOI 10.1108/02635570910939399 Williams MD, 2015, J ENTERP INF MANAG, V28, P443, DOI 10.1108/JEIM-09-2014-0088 Woodside AG, 2014, J BUS RES, V67, P2495, DOI 10.1016/j.jbusres.2014.07.006 Woodside AG, 2013, J BUS RES, V66, P463, DOI 10.1016/j.jbusres.2012.12.021 Xue LS, 2012, INT J MED INFORM, V81, P637, DOI 10.1016/j.ijmedinf.2012.04.008 NR 114 TC 135 Z9 138 U1 27 U2 174 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JAN PY 2020 VL 150 AR 119793 DI 10.1016/j.techfore.2019.119793 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA JW8VM UT WOS:000503324600007 OA hybrid HC Y HP N DA 2024-03-27 ER PT J AU Sabbir, MM Islam, M Das, S AF Sabbir, Md. Mahiuddin Islam, Mazharul Das, Samir TI Understanding the determinants of online pharmacy adoption: a two-staged SEM-neural network analysis approach SO JOURNAL OF SCIENCE AND TECHNOLOGY POLICY MANAGEMENT LA English DT Article DE UTAUT; Health literacy; Personal innovativeness; Neural network analysis; Online pharmacy ID TECHNOLOGY ACCEPTANCE MODEL; INFORMATION-TECHNOLOGY; BEHAVIORAL INTENTION; COMMERCE ADOPTION; HEALTH LITERACY; PERSONAL INNOVATIVENESS; USER ACCEPTANCE; MOBILE; SERVICES; SYSTEM AB Purpose This study aims to understand the determinants of online pharmacy or epharmacy adoption among young consumers in Bangladesh using an extended unified theory of acceptance and use of technology (UTAUT) model. Design/methodology/approach A structured Google Docs questionnaire was sent out to 420 respondents using messenger service; 285 useable responses were finally extracted. Data were empirically validated using the two-staged structural equation model (SEM)-neural network analysis approach. Findings The robustness of the classical UTAUT model remains intact in the context of online pharmacy adoption. Among the integrated variables, while perceived trust and health literacy were found significant, perceived risk and personal innovativeness were found insignificant in determining consumers' intention to adopt online pharmacy. The neural network analysis provided further verification of these findings derived from the SEM. Practical implications The findings of this study would facilitate in devising better strategies for entering or expanding online pharmacy business in developing countries such as Bangladesh. Originality/value The originality of the current study relates to the two-fold contributions of this study. First, while this study extended the classical UTAUT model by incorporating perceived risk, perceived trust, personal innovativeness and health literacy, the inclusion of the following two variables is fresh within the extant online pharmacy literature. Second, by using a two-staged SEM-neural network analysis approach, this study advances the past studies on e-commerce adoption in pharmaceutical settings and provides a general understanding of the customers of developing countries. C1 [Sabbir, Md. Mahiuddin; Islam, Mazharul; Das, Samir] Univ Barishal, Fac Business Studies, Dept Mkt, Barishal, Bangladesh. C3 University of Barishal RP Sabbir, MM (autor correspondiente), Univ Barishal, Fac Business Studies, Dept Mkt, Barishal, Bangladesh. EM mmsabbir@bu.ac.bd; mazharul97@yahoo.com; samir.bumkt@gmail.com RI Sabbir, Mahiuddin/AAZ-9248-2020 OI Sabbir, Mahiuddin/0000-0001-5804-3343; Islam, Mazharul/0000-0003-0643-7003 CR Abanmy N, 2017, SAUDI PHARM J, V25, P891, DOI 10.1016/j.jsps.2017.02.001 Agarwal R, 1998, INFORM SYST RES, V9, P204, DOI 10.1287/isre.9.2.204 Ahmed H.U., 2019, FINANCIAL EXPRESS AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alam MZ, 2020, INT J INFORM MANAGE, V50, P128, DOI 10.1016/j.ijinfomgt.2019.04.016 Alsadoun AA, 2020, International Journal of Advanced Science and Technology, V29, P262, DOI [10.31838/jcr.07.16.43, DOI 10.31838/JCR.07.16.43] Aref MM, 2020, REV ECON POLIT SCI-R, V5, P21, DOI 10.1108/REPS-10-2018-0013 Awa HO, 2015, J SCI TECHNOL POLICY, V6, P76, DOI 10.1108/JSTPM-04-2014-0012 Bessell TL, 2002, EUR J CLIN PHARMACOL, V58, P567, DOI 10.1007/s00228-002-0519-5 Boontarig W., 2012, 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), P479, DOI 10.1109/SHUSER.2012.6268881 Brusch I, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2019.101936 Brusselaers J, 2020, FOREST POLICY ECON, V111, DOI 10.1016/j.forpol.2019.102026 Chan FTS, 2012, DECIS SUPPORT SYST, V54, P621, DOI 10.1016/j.dss.2012.08.009 Childers TL, 2001, J RETAILING, V77, P511, DOI 10.1016/S0022-4359(01)00056-2 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Desai C, 2016, INDIAN J PHARMACOL, V48, P615, DOI 10.4103/0253-7613.194865 DOLL WJ, 1994, MIS QUART, V18, P453, DOI 10.2307/249524 Dowell D, 2015, IND MARKET MANAG, V44, P119, DOI 10.1016/j.indmarman.2014.10.016 Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Ferdous M., 2013, J BUSINESS STUDIES, V34 Fittler A, 2018, J MED INTERNET RES, V20, DOI 10.2196/11115 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Grewal D., 2004, J RELATIONSHIP MARKE, V2, P31, DOI DOI 10.1300/J366V02N03_03 Hair J.F., 2009, Multivariate data analysis Hew TS, 2016, J COMPUT INFORM SYST, V56, P352, DOI 10.1080/08874417.2016.1164497 Hinkin TR, 1998, ORGAN RES METHODS, V1, P104, DOI 10.1177/109442819800100106 Holden RJ, 2010, J BIOMED INFORM, V43, P159, DOI 10.1016/j.jbi.2009.07.002 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Hussain A, 2019, INT J INFORM MANAGE, V44, P76, DOI 10.1016/j.ijinfomgt.2018.09.016 Ignjatovi D., 2019, FINIZ 2019 DIGITIZAT, P78, DOI [10.15308/finiz-2019-78-84, DOI 10.15308/FINIZ-2019-78-84] Isaac O, 2019, ASIA PAC MANAG REV, V24, P335, DOI 10.1016/j.apmrv.2018.12.003 Karakaya F, 2014, J EDUC BUS, V89, P13, DOI 10.1080/08832323.2012.740520 Khan AN, 2018, WIRELESS PERS COMMUN, V103, P2529, DOI 10.1007/s11277-018-5945-5 Khan J. J., 2020, DAILY STAR Kline R. B., 2015, PRINCIPLES PRACTICE Koufaris M, 2004, INFORM MANAGE-AMSTER, V41, P379, DOI 10.1016/j.im.2003.08.004 Lee SY, 2014, TELEMAT INFORM, V31, P308, DOI 10.1016/j.tele.2013.06.001 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Lu J, 2005, J STRATEGIC INF SYST, V14, P245, DOI 10.1016/j.jsis.2005.07.003 Mancuso JM, 2008, NURS HEALTH SCI, V10, P248, DOI 10.1111/j.1442-2018.2008.00394.x Natarajan T, 2017, J RETAIL CONSUM SERV, V37, P8, DOI 10.1016/j.jretconser.2017.02.010 Nicola M, 2020, INT J SURG, V78, P185, DOI 10.1016/j.ijsu.2020.04.018 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Nuq PA, 2013, INT J HEALTHCARE MAN, V6, P217, DOI 10.1179/2047971913Y.0000000033 Nutbeam D, 2000, HEALTH PROMOT INT, V15, P259, DOI 10.1093/heapro/15.3.259 Ofori D, 2019, COGENT BUS MANAG, V6, DOI 10.1080/23311975.2019.1644715 Orizio G, 2011, J MED INTERNET RES, V13, DOI 10.2196/jmir.1795 Orsolini L, 2015, HUM PSYCHOPHARM CLIN, V30, P302, DOI 10.1002/hup.2466 Osborne RH, 2013, BMC PUBLIC HEALTH, V13, DOI 10.1186/1471-2458-13-658 Otto L., 2019, PACIS 2019 P Paasche-Orlow MK, 2007, AM J HEALTH BEHAV, V31, pS19 Pipitwanichakarn T, 2019, J SCI TECHNOL POLICY, V10, P193, DOI 10.1108/JSTPM-12-2017-0074 Porter Eileen J, 2002, Care Manag J, V3, P192, DOI 10.1891/cmaj.3.4.192.57452 Rahman SU, 2018, S ASIAN J BUS STUD, V7, P111, DOI 10.1108/SAJBS-11-2016-0088 Rana NP, 2016, COMPUT HUM BEHAV, V59, P265, DOI 10.1016/j.chb.2016.02.019 Ratten V, 2015, J SCI TECHNOL POLICY, V6, P25, DOI 10.1108/JSTPM-06-2014-0029 Rogers, 2003, DIFFUSION INNOVATION Rogers E. M., 1995, DIFFUSION INNOVATION Sabbir M.M., 2018, COMILLA U J BUSINESS, V5, P123 Sarker S.K., 2019, J SHAHEED SUHRAWARDY, V11, P43, DOI 10.3329/jssmc.v11i1.43178 Scott JE, 2009, INFORM MANAGE-AMSTER, V46, P221, DOI 10.1016/j.im.2008.10.003 Shafique-ur Rehman, 2019, J GLOB ENTREP RES, V9, DOI 10.1186/s40497-019-0155-5 Shareef MA, 2017, INT J INFORM MANAGE, V37, P257, DOI 10.1016/j.ijinfomgt.2017.02.003 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Singh H, 2020, Journal of Drug Delivery and Therapeutics, P335 Sivathanu B, 2019, J SCI TECHNOL POLICY, V10, P143, DOI 10.1108/JSTPM-07-2017-0033 Soh PY, 2020, J AMB INTEL HUM COMP, DOI 10.1007/s12652-020-01718-4 Sorensen K, 2012, BMC PUBLIC HEALTH, V12, DOI 10.1186/1471-2458-12-80 Speros C, 2005, J ADV NURS, V50, P633, DOI 10.1111/j.1365-2648.2005.03448.x Steele R, 2009, INT J MED INFORM, V78, P788, DOI 10.1016/j.ijmedinf.2009.08.001 Su L., 2011, J MED MARKETING DEVI, V11, P197, DOI [10.1177/1745790411405712, DOI 10.1177/1745790411405712] Svorc J., 2012, Journal of Systems Integration, V3, P3 Tabachnick B. G., 2007, Using Multivariate Statistics, V5, P481, DOI DOI 10.1037/022267 Tan GWH, 2014, COMPUT HUM BEHAV, V36, P198, DOI 10.1016/j.chb.2014.03.052 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2008, MIS QUART, V32, P483 Venkatesh V, 2012, MIS QUART, V36, P157 Vermeir I, 2006, J AGR ENVIRON ETHIC, V19, P169, DOI 10.1007/s10806-005-5485-3 Wei YC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02648-0 Wiedmann K. P., 2010, J. Cust. Behav, V9, P175, DOI [DOI 10.1362/147539210X511362, 10.1362/147539210X511362] Yang SQ, 2016, INTERNET RES, V26, P982, DOI 10.1108/IntR-01-2015-0010 Yi MY, 2006, INFORM MANAGE-AMSTER, V43, P350, DOI 10.1016/j.im.2005.08.006 Yin M., 2016, ACM INT C P SER 17 1, P1, DOI [DOI 10.1145/2971603.2971616, 10.1145/2971603.2971616] Yiu CS, 2007, INT J INFORM MANAGE, V27, P336, DOI 10.1016/j.ijinfomgt.2007.03.002 Yu YY, 2014, J SCI TECHNOL POLICY, V5, P41, DOI 10.1108/JSTPM-02-2013-0004 NR 90 TC 14 Z9 15 U1 1 U2 10 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2053-4620 EI 1758-5538 J9 J SCI TECHNOL POLICY JI J. Sci. Technol. Policy Manag. PD SEP 21 PY 2021 VL 12 IS 4 BP 666 EP 687 DI 10.1108/JSTPM-07-2020-0108 EA NOV 2020 PG 22 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA US5IA UT WOS:000592700700001 DA 2024-03-27 ER PT J AU Guan, SU Chan, TK Zhu, FM AF Guan, Sheng-Uei Chan, Tai Kheng Zhu, Fangming TI Evolutionary intelligent agents for e-commerce: Generic preference detection with feature analysis SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article; Proceedings Paper CT 6th International Conference on Electronic Commerce CY OCT, 2004 CL Delft, NETHERLANDS DE generic preference; e-commerce; generic attributes; feature analysis; genetic algorithm ID ACQUISITION; RECOMMENDATION AB Product recommendation and preference tracking systems have been adopted extensively in e-commerce businesses. However, the heterogeneity of product attributes results in undesired impediment for an efficient yet personalized e-commerce product brokering. Amid the assortment of product attributes, there are some intrinsic generic attributes having significant relation to a customer's generic preference. This paper proposes a novel approach in the detection of generic product attributes through feature analysis. The objective is to provide an insight to the understanding of customers' generic preference. Furthermore, a genetic algorithm is used to find the suitable feature weight set, hence reducing the rate of misclassification. A prototype has been implemented and the experimental results are promising. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore. C3 National University of Singapore RP Guan, SU (autor correspondiente), Natl Univ Singapore, Dept Elect & Comp Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore. EM eleguans@nus.edu.sg RI Novoa, Kevin/J-2867-2014; Zhu, Fang/L-3411-2016; Zhu, Fang/IRY-9603-2023 CR Alba E, 2002, IEEE T EVOLUT COMPUT, V6, P443, DOI 10.1109/TEVC.2002.800880 [Anonymous], 1996, Genetic Algorithms + Data Structures = Evolution Programs CHU SC, 1999, P 3 INT C KNOWL BAS, P492 Davis L., 1987, Research Notes in Artificial Intelligence Guan S, 2004, J RES PRACT INF TECH, V36, P35 GUAN S, 2002, J INF TECHNOL, V1, P473 Guan Steven., 2002, Electronic Commerce Research and Applications, V1, P314, DOI DOI 10.1016/S1567-4223(02)00023-6 Guan SU, 2003, INT J INTELL SYST, V18, P1173, DOI 10.1002/int.10145 GUAN SU, 2004, ELECTRON COMMER R A, V3, P39 GUAN SU, 2004, ELECTRON COMMER R A, V3, P232 GUO Y, 2003, P 2003 INT C AUT AG, P1004 Han E. H., 2001, P 5 PAC AS C KNOWL D, P53 INGBER L, 1992, MATH COMPUT MODEL, V16, P87, DOI 10.1016/0895-7177(92)90108-W Jung SY, 2002, 2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P235, DOI 10.1109/ICDM.2002.1183908 Kwak M, 2001, ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, P625, DOI 10.1109/ISIE.2001.931866 Kwon O.-W., 2000, Proceedings of the 5th International Workshop on Information Retrieval with Asian Languages, P9 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Luke S., 1997, Proceedings of the First International Conference on Autonomous Agents, P59, DOI 10.1145/267658.267668 NEUMANN F, 2002, P INT C DAT ENG ICDE NWANA H, 1996, BT TECHNOLOGY J, V14 Shahabi C, 2003, DISTRIB PARALLEL DAT, V14, P173, DOI 10.1023/A:1024888710505 Sheth B., 1993, Proceedings. The Ninth Conference on Artificial Intelligence for Applications (Cat. No.93CH3254-0), P345, DOI 10.1109/CAIA.1993.366590 Shibata H, 2002, IWADS: 2ND INTERNATIONAL WORKSHOP ON AUTONOMOUS DECENTRALIZED SYSTEM, PROCEEDINGS, P176 SUNG HH, 2002, IEEE INTELL SYST APP, V17, P34 Tamma V, 2002, LECT NOTES ARTIF INT, V2531, P219 NR 25 TC 14 Z9 17 U1 0 U2 8 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD WIN PY 2005 VL 4 IS 4 BP 377 EP 394 DI 10.1016/j.elerap.2005.07.002 PG 18 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH); Conference Proceedings Citation Index - Science (CPCI-S) SC Business & Economics; Computer Science GA 113VT UT WOS:000242626800008 OA Green Submitted DA 2024-03-27 ER PT J AU Varzaru, AA Bocean, CG AF Varzaru, Anca Antoaneta Bocean, Claudiu George TI A Two-Stage SEM-Artificial Neural Network Analysis of Mobile Commerce and Its Drivers SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE m-commerce; e-commerce; total sales; GDP; mobile device; internet users; U; S ID CUSTOMER SATISFACTION; HYBRID SEM; IMPACT; CONSUMERS; BUSINESS; ADOPTION AB The COVID-19 health and economic crisis has affected all areas of social life globally, including the economy. The world economy has declined due to purchasing power for individuals who have been forced to stay at home and cannot perform work. These restrictions to prevent the spread of SARS-Cov-2 have led to an increase in electronic commerce and mobile commerce as tools for procuring goods and services. In this paper, we conducted a longitudinal analysis of mobile commerce as an essential electronic commerce component, establishing the main drivers of mobile commerce and the intensity of their influences. The research focuses on mobile commerce in the United States (U.S.). It covers the period 2010-2020, the last year of this period capturing the context of the COVID-19 pandemic and its impact on electronic commerce (e-commerce) and mobile commerce (m-commerce). In the macroeconomic analysis of competitiveness, we established the main drivers of m-commerce, using artificial neural networks and the mediation effects found between the variables that describe m-commerce, e-commerce, and total sales, using structural equation modeling. The research results indicate an increase in the share of e-commerce in total sales and a predominance of the m-commerce share in e-commerce on the background of traffic restrictions and social distance rules imposed due to the COVID-19 pandemic. Stakeholders in the m-commerce area should consider the following enhancing drivers: increasing internet speed, expanding 5G and Wi-Fi networks, and increasing accessibility and trust in mobile devices and applications. C1 [Varzaru, Anca Antoaneta] Univ Craiova, Dept Econ Accounting & Int Business, Craiova 200585, Romania. [Bocean, Claudiu George] Univ Craiova, Dept Management Mkt & Business Adm, Craiova 200585, Romania. C3 University of Craiova; University of Craiova RP Varzaru, AA (autor correspondiente), Univ Craiova, Dept Econ Accounting & Int Business, Craiova 200585, Romania. EM anca.varzaru@edu.ucv.ro; bocean.claudiu@ucv.ro RI Bocean, Claudiu George/AAG-9932-2020 OI Bocean, Claudiu George/0000-0001-9714-1333; Varzaru, Anca Antoaneta/0000-0001-6045-204X CR Abubakar AM, 2019, PERS REV, V49, P67, DOI 10.1108/PR-06-2017-0180 Alaimo LS, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12229594 Taha VA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13041710 Alsharif MH, 2018, T EMERG TELECOMMUN T, V29, DOI 10.1002/ett.3254 andWShazia Dr Khan, 2019, P 10 INT C DIGITAL S Bollen KA, 2011, P NATL ACAD SCI USA, V108, P15639, DOI 10.1073/pnas.1010661108 Bureau of Economic Analysis (BEA), NAT INC PROD ACC TAB Chang BY, 2015, S AFR J BUS MANAG, V46, P53, DOI 10.4102/sajbm.v46i4.109 Chung K.C., 2019, P USIPCO, P1, DOI [10.1145/3332324.3332335, DOI 10.1145/3302509.3311041] De Best R., MOBILE PAYMENTS WORL Du S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061580 Duch-Brown N, 2017, INT J IND ORGAN, V52, P30, DOI 10.1016/j.ijindorg.2017.01.009 Dumanska I., 2021, T ENV DEV, V17, P386, DOI [10.37394/232015.2021.17.38, DOI 10.37394/232015.2021.17.38] Dzaka D., 2015, SINGAPOREAN J BUSINE, V3, P1, DOI [10.12816/0010936, DOI 10.12816/0010936] eMarketer, WORLDW EC WILL APPR Falk M, 2015, INT J PROD ECON, V170, P357, DOI 10.1016/j.ijpe.2015.10.003 Sanz LF, 2020, TEH VJESN, V27, P2062, DOI 10.17559/TV-20190524075657 Fouskas Konstantinos, 2020, Strategic Innovative Marketing and Tourism, V2020, P687 Fuchs M, 2010, J TRAVEL RES, V49, P165, DOI 10.1177/0047287509336469 Fulgoni G., MOBILE PATH PURCHASE Gupta S., 2020, P INT C INN COMP COM, DOI [10.2139/ssrn.359530410.2139/ssrn.3595304, DOI 10.2139/SSRN.359530410.2139/SSRN.3595304] Hew JJ, 2017, TELEMAT INFORM, V34, P43, DOI 10.1016/j.tele.2016.04.003 Hew TS, 2016, J COMPUT INFORM SYST, V56, P352, DOI 10.1080/08874417.2016.1164497 Holmes A, 2013, INT J RETAIL DISTRIB, V42, P25, DOI 10.1108/IJRDM-10-2012-0096 Jahanshahi A.A., 2012, Afr. J. Bus. Manage, V6, P6486 Jakimoski K., 2014, International Journal of U- and e-Service, Science and Technology, V7, P13, DOI [DOI 10.14257/IJUNESST.2014.7.6, DOI 10.14257/IJUNESST.2014.7.6.02] Jehangir M, 2011, COMM COM INF SC, V189, P440 Kaabi S., 2019, P INT C DIG EC, P183, DOI DOI 10.1007/978-3-030-30874-2_14 Kalinic Z, 2021, EXPERT SYST APPL, V175, DOI 10.1016/j.eswa.2021.114803 Kalinic Z, 2020, J ENTERP INF MANAG, V33, P71, DOI 10.1108/JEIM-05-2019-0136 Kareem T.S., 2014, International Journal of Academic Research in Business and Social Sciences, V4, P215 Katsikeas C, 2020, INT MARKET REV, V37, P405, DOI 10.1108/IMR-02-2019-0080 Kim EA, 2020, SAF HEALTH WORK-KR, V11, P275, DOI 10.1016/j.shaw.2020.07.006 Kumar, 2021, APPL ARTIFICIAL NEUR, P154 Kuo T., 2016, P 17 AS PAC IND ENG, P7 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Marinao-Artigas E, 2020, ELECTRON COMMER R A, V39, DOI 10.1016/j.elerap.2019.100919 Marinkovic V, 2017, ONLINE INFORM REV, V41, P138, DOI 10.1108/OIR-11-2015-0364 Ngubelanga A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13115973 Nilashi M, 2015, J RETAIL CONSUM SERV, V26, P57, DOI 10.1016/j.jretconser.2015.05.002 Oday A, 2021, J HOSP TOUR TECHNOL, V12, P471, DOI 10.1108/JHTT-01-2020-0007 Oh LB, 2012, J OPER MANAG, V30, P368, DOI 10.1016/j.jom.2012.03.001 Ozturk Ozgurol, 2013, Design, User Experience, and Usability. Web, Mobile, and Product Design. Second International Conference, DUXU 2013 Held as Part of HCI International 2013. Proceedings. LNCS 8015, P623, DOI 10.1007/978-3-642-39253-5_69 Pantelimon F. V., 2020, INFORM EC, V24, P27, DOI [https://doi.org/10.24818/issn14531305/24.2.2020.03, DOI 10.24818/ISSN14531305/24.2.2020.03, 10.24818/issn14531305/24.2.2020.03] Pew Research Center (PRC), MOB FACT SHEET Pousttchi K, 2015, INT J ELECTRON COMM, V19, P1, DOI 10.1080/10864415.2015.1029351 Rossi, 2017, DEV MARKETING SCI, DOI [10.1007/978-3-319-66023-3_230, DOI 10.1007/978-3-319-66023-3_230] Salwani Mohamed Intan, 2009, Information Management & Computer Security, V17, P166, DOI 10.1108/09685220910964027 Sardjono W, 2021, J PHYS CONF SER, V1832, DOI 10.1088/1742-6596/1832/1/012024 Saritas O, 2021, SCIENTOMETRICS, V126, P1553, DOI 10.1007/s11192-020-03807-9 Sobihah A.H. M., 2014, INT J BUSINESS MANAG, V9, P56, DOI [10.5539/ijbm.v9n1p56, DOI 10.5539/IJBM.V9N1P56] Sobihah A. H. M., 2015, MEDITERR J SOC SCI, V6, P61, DOI DOI 10.5901/MJSS.2015.V6N2P61 Statista, US MOB RET COMM REV Statista, SHAR AD US WHO US IN Tang AKY, 2019, ELECTRON COMMER R A, V37, DOI 10.1016/j.elerap.2019.100885 Thakur R, 2019, EUR J MARKETING, V53, P1278, DOI 10.1108/EJM-11-2017-0895 United States Census Bureau (USCB), EST ANN US RET TRAD United States Census Bureau (USCB), EST Q US RET SAL TOT Wu JH, 2006, ELECTRON COMMER R A, V5, P192, DOI 10.1016/j.elerap.2005.09.004 Wu QQ, 2017, IEEE WIREL COMMUN, V24, P72, DOI 10.1109/MWC.2017.1600343 Wurmser Y., MOBILE SHOPPING GAIN Xu, 2013, P 34 INT C INF SYST, P2591 Yakubu MN, 2020, EDUC INF TECHNOL, V25, P3515, DOI 10.1007/s10639-020-10110-w Zarmpou T, 2012, ELECTRON COMMER RES, V12, P225, DOI 10.1007/s10660-012-9092-x Zhang SQ, 2017, IEEE COMMUN SURV TUT, V19, P33, DOI 10.1109/COMST.2016.2594120 Zhu K, 2005, INFORM SYST RES, V16, P61, DOI 10.1287/isre.1050.0045 NR 66 TC 15 Z9 14 U1 3 U2 60 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD SEP PY 2021 VL 16 IS 6 BP 2304 EP 2318 DI 10.3390/jtaer16060127 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA UV7DF UT WOS:000699633400001 OA gold DA 2024-03-27 ER PT J AU Sarkar, JG Mukherjee, T Lahiri, I AF Sarkar, Juin Ghosh Mukherjee, Tuhin Lahiri, Isita TI Deep Learning-Based Classification of Customers Towards Online Purchase Behaviour: A Recent Empirical Study for Home Appliances SO INTERNATIONAL JOURNAL OF ONLINE MARKETING LA English DT Article DE Consumer Behaviour; E-Commerce; Home Appliances; Neural Network; Online Shopping; Technology AB Online shopping is the new trend and is quickly becoming an integral part of our lifestyle. Due to the internet revolution and massive e-commerce usage by traders, online shopping has seen mammoth growth in recent years. In today's intensely competitive and dynamic environment with technological innovation in every sphere, knowing the consumer mind is the most daunting task for the success of any business. In this backdrop, the researchers have developed a neural network model. They have also made an attempt to classify the customers into two disjoint classes that are interested and uninterested online customers regarding purchase of home appliances through internet in and around Kolkata based on five demographic attributes, namely age, gender, place of residence, occupation, and income. The paper also focuses to optimise the parameters of the proposed neural network and test the efficiency of the constructed model and compare the result by reviewing the existing literatures on the related topic. C1 [Sarkar, Juin Ghosh] MCKV Inst Engn, Howrah, W Bengal, India. [Mukherjee, Tuhin] Univ Kalyani, Dept Business Adm, Kalyani, W Bengal, India. [Lahiri, Isita] Univ Kalyani, Kalyani, W Bengal, India. C3 Kalyani University; Kalyani University RP Sarkar, JG (autor correspondiente), MCKV Inst Engn, Howrah, W Bengal, India. OI Ghosh Sarkar, Juin/0000-0001-6158-0975 CR Awan P D. A. G., 2015, European Journal of Business and Management, V7, P96 Isita L., 2018, INT J BUSINESS MANAG, V7, P1 Iyer R, 2006, J MARKET THEORY PRAC, V14, P57, DOI 10.2753/MTP1069-6679140104 JAMES L, 2003, IEEE T FUZZY SYST, V11, P223, DOI DOI 10.1109/TFUZZ.2003.809900 Kanimozhi M. K, 2016, FACTORS INFLUENCING Kiplangat R. J., 2015, INT J SCI RES PUBLIC, V5, P1 Kotler P., 2011, FRAMEWORK MARKETING, V5th Lee GG, 2005, INT J RETAIL DISTRIB, V33, P161, DOI 10.1108/09590550510581485 Lin BS, 1995, J COMPUT INFORM SYST, V36, P15 Manisha, 2016, INT J INNOVATION APP, V14, P218 Misha K., 2013, INT J SOFT COMPUTING, V3, P99 Mo W., 2002, BUILDING ONLINE PURC Mokhtar NF., 2015, INT J BUSINESS SOCIA, V6, P59 Niharika, 2015, INT J SCI TECHNOLOGY, V4, P15 Nisha G., 2017, INT C REC DEV ENG SC, V3, P56 Nittala R, 2015, INT J ONLINE MARKET, V5, P38, DOI 10.4018/IJOM.2015010103 Punj G, 2012, J BUS RES, V65, P634, DOI 10.1016/j.jbusres.2011.03.003 Saha A., 2015, IOSR J BUSINESS MANA, V2, P74 Sen R. A., 2014, INT J MANAGEMENT COM, V2, P44 Sheth J.N., 1999, CUSTOMER BEHAV CONSU Thakur P, 2019, INT J ONLINE MARKET, V9, P13, DOI 10.4018/IJOM.2019040102 Vasudeva S, 2019, INT J ONLINE MARKET, V9, P1, DOI 10.4018/IJOM.2019100101 Wu S. I., 2003, MARKETING INTELLIGEN Zhou, 2004, DECIS SUPPORT SYST, V41, P514 NR 24 TC 3 Z9 3 U1 2 U2 8 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2156-1753 EI 2156-1745 J9 INT J ONLINE MARKET JI Int. J. Online Market PD OCT-DEC PY 2020 VL 10 IS 4 BP 74 EP 86 DI 10.4018/IJOM.2020100105 PG 13 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA PC1OT UT WOS:000596779400005 DA 2024-03-27 ER PT J AU Payne, EM Peltier, JW Barger, VA AF Payne, Elizabeth Manser Peltier, James W. Barger, Victor A. TI Mobile banking and AI-enabled mobile banking The differential effects of technological and non-technological factors on digital natives' perceptions and behavior SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE Mobile marketing; Financial services; Services marketing; Human-computer interaction; Online consumer behavior; Young consumers ID SELF-SERVICE TECHNOLOGY; CUSTOMER SATISFACTION; EMPIRICAL-EXAMINATION; CONSUMER ADOPTION; INITIAL TRUST; ONLINE; ACCEPTANCE; INTERNET; INTENTION; QUALITY AB Purpose The rapid growth of technology, including artificial intelligence (AI), in the banking industry has played a disrupting role in traditional banking channels. This study aims to investigate factors that influence the attitudes and perceptions of digital natives pertaining to mobile banking and comfort interacting with AI-enabled mobile banking activities. Design/methodology/approach Data were collected from 218 digital natives. This paper uses multivariate regression and two separate multiple regression analyses to examine the differential effects of technology-based (i.e. attitudes toward AI, relative advantage, perceived trust and security in specific mobile banking activities) and non-technology based (i.e. need for service, quality of service) factors on mobile banking usage and AI-enabled mobile banking services. Findings This study identifies determining factors for mobile banking and AI-enabled mobile banking services. Results indicate a divide in how digital natives perceive relative advantage between our two dependent variables. Consistent with previous studies, the relative advantage construct has the most impact on mobile banking usage. However, relative advantage was not significant for AI-enabled mobile banking, suggesting an extra layer of complexity that goes beyond convenient fast banking. Research limitations/implications A limitation of this study is that it does not incorporate age groups outside of digital natives. Further research is needed to test for differential effects between age groups. In addition, the discovery of no significant impact of relative advantage on AI mobile banking warrants more research on the similarities and differences between mobile banking and AI-enabled mobile banking. Practical implications To better appeal to digital natives, it is suggested that the banking industry emphasize mobile banking's anywhere/anytime access to financial accounts, as this is important to college-age customers who may not live near their local banking institution. Moreover, the paper suggests that improvement to mobile banking features for one-on-one interpersonal contact with bank employees is needed. Originality/value This study addresses the gap in the understanding of how digital natives perceive mobile banking in comparison to AI-enabled mobile banking services. C1 [Payne, Elizabeth Manser] Marian Univ, Sch Business, Fond Du Lac, WI USA. [Payne, Elizabeth Manser; Peltier, James W.; Barger, Victor A.] Univ Wisconsin Whitewater, Coll Business & Econ, Dept Mkt, Whitewater, WI 53190 USA. C3 University of Wisconsin System; University of Wisconsin Whitewater RP Peltier, JW (autor correspondiente), Univ Wisconsin Whitewater, Coll Business & Econ, Dept Mkt, Whitewater, WI 53190 USA. EM peltierj@uww.edu RI Payne, Elizabeth Manser/AAF-6338-2021; Barger, Victor A/B-2102-2009 OI Manser Payne, Elizabeth/0000-0002-7734-2282 CR Al-Jabri IM, 2012, J ELECTRON COMMER RE, V13, P373 [Anonymous], INT J RES MARKETING, DOI [DOI 10.1016/0167-8116(95)00027-5, DOI 10.1016/0167-8116%2895%2900027-5] [Anonymous], 2018, STRATEGIC FINANCE [Anonymous], 2018, Mobile Fact Sheet Ariff MSM, 2013, PROCD SOC BEHV, V81, P469, DOI 10.1016/j.sbspro.2013.06.462 Babin BJ, 1998, J BUS RES, V42, P271, DOI 10.1016/S0148-2963(97)00124-0 Bhatt A., 2016, Journal of Internet Banking and Commerce, V21, P1 Brown I, 2003, INT J INFORM MANAGE, V23, P381, DOI 10.1016/S0268-4012(03)00065-3 Burleigh TJ, 2013, COMPUT HUM BEHAV, V29, P759, DOI 10.1016/j.chb.2012.11.021 Chen LD, 2002, INFORM MANAGE-AMSTER, V39, P705, DOI 10.1016/S0378-7206(01)00127-6 Choudhury V, 2008, MIS QUART, V32, P179 Choudrie J, 2018, J BUS RES, V88, P449, DOI 10.1016/j.jbusres.2017.11.029 Colgate M, 2001, J CONSUM MARK, V18, P332, DOI 10.1108/07363760110393001 Cruz P, 2010, INT J BANK MARK, V28, P342, DOI 10.1108/02652321011064881 Cummins S, 2014, J RES INTERACT MARK, V8, P169, DOI 10.1108/JRIM-04-2013-0019 Cunningham LF, 2009, J SERV MARK, V23, P11, DOI 10.1108/08876040910933057 Curran J.M., 2003, Journal of Service Research, V5, P209, DOI [10.1177/1094670502238916, DOI 10.1177/1094670502238916] Dabholkar P.A., 1999, HDB SERVICES MARKETI Dabholkar PA, 2002, J ACAD MARKET SCI, V30, P184, DOI 10.1177/0092070302303001 Dahl A.J., 2018, J RES INTERACTIVE MA DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Davis FD, 1996, INT J HUM-COMPUT ST, V45, P19, DOI 10.1006/ijhc.1996.0040 Deb M, 2014, MARK INTELL PLAN, V32, P475, DOI 10.1108/MIP-07-2013-0119 Digital Banking Report, 2017, INN RET BANK Federal Reserve Board, 2016, CONS MOB FIN SERV 20 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Grabner-Kraeuter S, 2002, J BUS ETHICS, V39, P43, DOI 10.1023/A:1016323815802 Gu ZY, 2017, MIS QUART, V41, P583, DOI 10.25300/MISQ/2017/41.2.11 Guo YS, 2013, J FINANC SERV MARK, V18, P27, DOI 10.1057/fsm.2013.3 Haridasan AC, 2018, J RES INTERACT MARK, V12, P215, DOI 10.1108/JRIM-07-2017-0060 Harrison T, 2017, J FINANC SERV MARK, V22, P139, DOI 10.1057/s41264-017-0038-1 Hausman A., 2014, J RES INTERACTIVE MA, V8 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Iberahim H, 2015, PROC ECON FINANC, V37, P13, DOI 10.1016/S2212-5671(16)30086-7 Illia A., 2015, Journal of Management Information and Decision Sciences, V18, P111 Karthikeyan P., 2016, J INTERNET BANKING C, V21, P1 Kim G, 2009, INFORM SYST J, V19, P283, DOI 10.1111/j.1365-2575.2007.00269.x Kleijnen M., 2004, J FINANC SERV MARK, V8, P206, DOI [DOI 10.1057/PALGRAVE.FSM.4770120, 10.1057/palgrave.fsm.4770120] Klein Micheal., 2011, Policy Research Working Paper 5664 - The World Bank, Financial and Private Sector Development Kolodinsky J.M., 2004, INT J BANK MARK, V22, P238, DOI DOI 10.1108/02652320410542536 Korzeniowski P., 2017, CRM MAGAZINE Kumar A., 2008, J SERVICE MARKETING, V22, P568, DOI 10.1108/08876040810909695 Langeard E., 1981, Services Marketing: New Insights from Consumers and Managers Laukkanen T, 2007, BUS PROCESS MANAG J, V13, P788, DOI 10.1108/14637150710834550 Laukkanen T, 2016, J BUS RES, V69, P2432, DOI 10.1016/j.jbusres.2016.01.013 Lee HJ, 2017, J RES INTERACT MARK, V11, P214, DOI 10.1108/JRIM-04-2016-0036 Lee HJ, 2016, COMPUT HUM BEHAV, V60, P322, DOI 10.1016/j.chb.2016.02.051 Lee KC, 2009, INTERACT COMPUT, V21, P385, DOI 10.1016/j.intcom.2009.06.004 Lee MC, 2009, ELECTRON COMMER R A, V8, P130, DOI 10.1016/j.elerap.2008.11.006 Lepkowska-White E., 2015, J MARKETING THEORY P, V12, P36 Lin HF, 2011, INT J INFORM MANAGE, V31, P252, DOI 10.1016/j.ijinfomgt.2010.07.006 Luarn P, 2005, COMPUT HUM BEHAV, V21, P873, DOI 10.1016/j.chb.2004.03.003 Luo X, 2010, DECIS SUPPORT SYST, V49, P222, DOI 10.1016/j.dss.2010.02.008 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McKnight D. H., 2002, Information Systems Research, V13, P334, DOI 10.1287/isre.13.3.334.81 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Mistry D., 2018, Chatbots in banking can play the role of 'financial concierge' Mittal B, 1996, J RETAILING, V72, P95, DOI 10.1016/S0022-4359(96)90007-X Muggleton S, 2014, AI COMMUN, V27, P3, DOI 10.3233/AIC-130579 NEWELL A, 1958, PSYCHOL REV, V65, P151, DOI 10.1037/h0048495 Ngo VM, 2016, J COMPETITIVENESS, V8, P103, DOI 10.7441/joc.2016.02.08 Nijssen EJ, 2016, J SERV MANAGE, V27, P276, DOI 10.1108/JOSM-08-2015-0233 Oblinger D., 2005, ED NET GENERATION Orenga-Roglá S, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3128-y PARASURAMAN A, 1988, J RETAILING, V64, P12 Payne EM, 2017, J RES INTERACT MARK, V11, P185, DOI 10.1108/JRIM-08-2016-0091 Prensky M., 2001, HORIZON, V9, P1, DOI [10.1108/10748120110424816, DOI 10.1108/10748120110424816, 10.1108/10748120110424843] Pueschel J, 2010, INT J BANK MARK, V28, P389, DOI 10.1108/02652321011064908 Reeves M, 2013, J ENTERP COMMUNITIES, V7, P155, DOI 10.1108/17506201311325805 Rogers E., 2005, Diffusion of Innovations, V4th ed., DOI DOI 10.1007/978-3-642-79868-9_2 Rogers E. M., 1995, DIFFUSION INNOVATION Russell S. J., 1995, ARTIFICIAL INTELLIGE Rust RT, 2014, MARKET SCI, V33, P206, DOI 10.1287/mksc.2013.0836 Shaikh AA, 2015, TELEMAT INFORM, V32, P129, DOI 10.1016/j.tele.2014.05.003 Shankar A., 2016, Journal of Internet Banking and Commerce, V21, P1 Shareef MA, 2018, J RETAIL CONSUM SERV, V43, P54, DOI 10.1016/j.jretconser.2018.03.003 Shen YC, 2010, BEHAV INFORM TECHNOL, V29, P497, DOI 10.1080/01449290903490658 Shin S., 2014, Journal of Applied Business Research, V30, P1365, DOI DOI 10.19030/JABR.V30I5.8793 Silva B., 2013, INT J MANAGEMENT SCI, V1, P27 Singer D.D., 2012, Journal of Internet Banking and Commerce, V17, P1 Singh S, 2014, ENERGY SUSTAIN DEV, V19, P1, DOI 10.1016/j.esd.2014.01.007 Smith T.J., 2015, The Journal of Business Diversity, V15, P39 So KKF, 2016, J SERV MANAGE, V27, P170, DOI 10.1108/JOSM-05-2015-0176 Statista, 2016, DISTR MOB BANK US US Sureshchandar G., 2002, J SERV MARK, V16, P363, DOI [10.1108/08876040210433248, DOI 10.1108/08876040210433248] Tan E, 2016, YOUNG CONSUM, V17, P18, DOI 10.1108/YC-07-2015-00537 TORNATZKY LG, 1982, IEEE T ENG MANAGE, V29, P28, DOI 10.1109/TEM.1982.6447463 Trudeau C., 2017, IUP J BUSINESS STRAT, V14, P20 Turing A.M.I., 1950, MIND, VLIX, P433, DOI [10.1093/mind/LIX.236.433, DOI 10.1093/MIND/LIX.236.433] Wang SW, 2014, J MARK CHANNELS, V21, P43, DOI 10.1080/1046669X.2013.832466 Yalif G., 2018, How chime bank is using ai to drive growth and open more accounts Yousafzai SY, 2010, J APPL SOC PSYCHOL, V40, P1172, DOI 10.1111/j.1559-1816.2010.00615.x Zainuddin N, 2016, J SERV MARK, V30, P586, DOI 10.1108/JSM-02-2016-0075 Zhou T, 2012, INFORM TECHNOL MANAG, V13, P27, DOI 10.1007/s10799-011-0111-8 Zhou T, 2011, INTERNET RES, V21, P527, DOI 10.1108/10662241111176353 NR 95 TC 53 Z9 57 U1 22 U2 167 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PY 2018 VL 12 IS 3 BP 328 EP 346 DI 10.1108/JRIM-07-2018-0087 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA GX1SD UT WOS:000447497600005 DA 2024-03-27 ER PT J AU Ruan, YY Mezei, J AF Ruan, Yanya Mezei, Jozsef TI When do AI chatbots lead to higher customer satisfaction than human frontline employees in online shopping assistance? Considering product attribute type SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Customer satisfaction; AI chatbots; Human FLEs; Product attribute type ID COGNITIVE-AFFECTIVE MODEL; SELF-SERVICE TECHNOLOGY; MODERATING ROLE; INFORMATION QUALITY; WAITING TIME; CONSUMER SATISFACTION; CONSUMPTION EMOTIONS; USER SATISFACTION; EXPERIENCE; SMILE AB The increasing adoption of AI chatbots in online shopping assistance, as a complement or substitute for human frontline employees (HFLEs), leads to the question whether HFLEs perform better than AI service robots and why. From the perspective of product attribute type (experiential/functional) and focusing on customer satisfaction, this study explores how the impact of service agent on customer satisfaction varies along with product attribute type. A scenario-based experiment was designed and completed by 567 participants. Although HFLEs lead to higher customer satisfaction when the product attribute is experiential, AI chatbots perform better than HFLEs when the product attribute is functional. We make use of perceived information quality, perceived waiting time, and positive emotions, three determinants of customer satisfaction, to explain the variation of the role of different service agent types. The findings offer useful implications for companies when selecting service agent types in online shopping assistance. C1 [Ruan, Yanya] Guangzhou Univ, Higher Educ Mega Ctr, Sch Management, 230 Outer Ring West Rd, Guangzhou 510006, Peoples R China. [Mezei, Jozsef] Abo Akad Univ, Fac Social Sci Business & Econ, Vanrikinkatu 3 B, FI-20500 Turku, Finland. C3 Guangzhou University; Abo Akademi University RP Mezei, J (autor correspondiente), Abo Akad Univ, Fac Social Sci Business & Econ, Vanrikinkatu 3 B, FI-20500 Turku, Finland. EM ruanyy@gzhu.edu.cn; jmezei@abo.fi OI Ruan, Yanya/0000-0003-3339-3640 FU Humanities and Social Sciences Research Project of Ministry of Education in China [18YJCZH144] FX Acknowledgements This work was supported by the Humanities and Social Sciences Research Project of Ministry of Education in China (Grant No.18YJCZH144) . CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Ahearne M, 2007, J ACAD MARKET SCI, V35, P603, DOI 10.1007/s11747-006-0013-1 Anderson KC, 2014, J RETAIL CONSUM SERV, V21, P773, DOI 10.1016/j.jretconser.2014.05.007 Antonides G, 2002, J CONSUM PSYCHOL, V12, P193, DOI 10.1207/S15327663JCP1203_02 Arnold MJ, 2012, J RETAILING, V88, P399, DOI 10.1016/j.jretai.2011.12.004 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Babin BarryJ., 1995, ACAD MARKETING SCI J, V23, P94 Bae S, 2011, ELECTRON MARK, V21, P255, DOI 10.1007/s12525-011-0072-0 Bagozzi RP, 1999, J ACAD MARKET SCI, V27, P184, DOI 10.1177/0092070399272005 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Baker J., 1996, J ACAD MARKET SCI, V24, P338, DOI 10.1177/0092070396244005 Baltas G, 2017, J CONSUM BEHAV, V16, pE1, DOI 10.1002/cb.1649 Barbopoulos I, 2016, J CONSUM MARK, V33, P75, DOI 10.1108/JCM-08-2014-1091 Barney C, 2020, J BUS RES, V108, P401, DOI 10.1016/j.jbusres.2019.11.061 Bigne J.E., 2008, J SERV MARK, V22, P303, DOI [10.1108/08876040810881704, DOI 10.1108/08876040810881704] Bock DE, 2020, J SERV MARK, V34, P317, DOI 10.1108/JSM-01-2019-0047 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 Boukis A, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.103997 Brakus JJ, 2014, J BUS RES, V67, P2291, DOI 10.1016/j.jbusres.2014.06.017 Brakus JJ, 2009, J MARKETING, V73, P52, DOI 10.1509/jmkg.73.3.52 Branco-Illodo I, 2020, EUR J MARKETING, V54, P857, DOI 10.1108/EJM-05-2018-0309 Chang EC, 2014, J BUS RES, V67, P1368, DOI 10.1016/j.jbusres.2013.08.016 Chattaraman V, 2010, J CONSUM BEHAV, V9, P18, DOI 10.1002/cb.290 Chatterjee S, 2021, J BUS RES, V131, P815, DOI 10.1016/j.jbusres.2020.10.043 Cheng FF, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2018.10.018 Chi T, 2018, J INTERNET COMMER, V17, P189, DOI 10.1080/15332861.2018.1451970 Choi S, 2019, INT J HOSP MANAG, V82, P32, DOI 10.1016/j.ijhm.2019.03.026 Christ-Brendemühl S, 2020, J BUS RES, V117, P378, DOI 10.1016/j.jbusres.2020.06.021 CLORE GL, 1987, J PERS SOC PSYCHOL, V53, P751, DOI 10.1037/0022-3514.53.4.751 Coursaris CK, 2016, INFORM MANAGE-AMSTER, V53, P252, DOI 10.1016/j.im.2015.10.003 Couwenberg LE, 2017, INT J RES MARK, V34, P355, DOI 10.1016/j.ijresmar.2016.10.005 Crolic C, 2022, J MARKETING, V86, P132, DOI 10.1177/00222429211045687 Das G, 2019, J BUS RES, V96, P147, DOI 10.1016/j.jbusres.2018.11.007 Das G, 2017, J RETAIL CONSUM SERV, V38, P177, DOI 10.1016/j.jretconser.2017.06.008 Deloitte, REP GLOB DEV Demoulin N, 2019, J BUS RES, V104, P295, DOI 10.1016/j.jbusres.2019.07.004 Djelassi S, 2018, DECIS SUPPORT SYST, V111, P38, DOI 10.1016/j.dss.2018.04.004 Eren BA, 2021, INT J BANK MARK, V39, P294, DOI 10.1108/IJBM-02-2020-0056 Ertekin N, 2020, PROD OPER MANAG, V29, P1232, DOI 10.1111/poms.13077 Estes Z, 2018, J BUS RES, V85, P396, DOI 10.1016/j.jbusres.2017.10.017 Farrell A.M., 2001, J MARKET MANAG, V17, P577, DOI DOI 10.1362/026725701323366944 Fergurson JR, 2021, J CONSUM MARK, V38, P652, DOI 10.1108/JCM-09-2020-4126 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Geebren A, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106584 Ghasemaghaei M, 2015, INFORM MANAGE-AMSTER, V52, P965, DOI 10.1016/j.im.2015.07.001 Giroux M, 2022, J BUS ETHICS, V178, P1027, DOI 10.1007/s10551-022-05056-7 Guido G, 2007, INT J MARKET RES, V49, P365, DOI 10.1177/147078530704900307 Gunarathne P, 2018, MIS QUART, V42, P489, DOI 10.25300/MISQ/2018/14290 Hämmerli A, 2012, INT J COSMETIC SCI, V34, P161, DOI 10.1111/j.1468-2494.2011.00696.x Hatfield C., 1994, STUDIES EMOTION SOCI Henkel AP, 2020, J SERV MANAGE, V31, P247, DOI 10.1108/JOSM-05-2019-0160 Hochstein B, 2021, J RETAILING, V97, P336, DOI 10.1016/j.jretai.2020.10.003 Hochstein B, 2019, J ACAD MARKET SCI, V47, P118, DOI 10.1007/s11747-018-0609-2 Holmqvist J, 2019, J RETAILING, V95, P115, DOI 10.1016/j.jretai.2019.03.004 Hong SJ, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101917 Hsieh SH, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102482 Hughes DE, 2019, J RETAILING, V95, P130, DOI 10.1016/j.jretai.2019.03.003 Hunneman A, 2017, J BUS RES, V78, P133, DOI 10.1016/j.jbusres.2017.05.012 Kalra A, 2021, J SERV RES-US, V24, P269, DOI 10.1177/1094670520958070 Kastenholz E, 2018, J TRAVEL TOUR MARK, V35, P189, DOI 10.1080/10548408.2017.1350617 Keiningham T, 2017, J SERV MARK, V31, P148, DOI 10.1108/JSM-09-2016-0337 Keller P.A., 1994, J CONSUM PSYCHOL, V3, P29 Kim M, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102562 Kong DM, 2020, J CONSUM BEHAV, V19, P80, DOI 10.1002/cb.1796 Krampf R., 2003, MARK MANAG, V13, P32 Ladhari R, 2017, J RETAIL CONSUM SERV, V34, P10, DOI 10.1016/j.jretconser.2016.09.005 Le D, 2020, INT J HOSP MANAG, V88, DOI 10.1016/j.ijhm.2020.102542 Lechner AT, 2019, J BUS RES, V94, P195, DOI 10.1016/j.jbusres.2017.06.009 Lee D, 2021, MANAGE SCI, V67, P524, DOI 10.1287/mnsc.2019.3546 Lee EJ, 2016, COMPUT HUM BEHAV, V64, P152, DOI 10.1016/j.chb.2016.06.017 Lee S, 2011, J BUS RES, V64, P1195, DOI 10.1016/j.jbusres.2011.06.022 Lee Y, 2012, MIS QUART, V36, P365 Lee YW, 2002, INFORM MANAGE-AMSTER, V40, P133, DOI 10.1016/S0378-7206(02)00043-5 Lehdonvirta V, 2009, ELECTRON COMMER RES, V9, P97, DOI 10.1007/s10660-009-9028-2 LEHMANN DR, 1974, J MARKETING, V38, P36, DOI 10.2307/1250195 Li CZE, 2020, J PHYS CONF SER, V1575, DOI 10.1088/1742-6596/1575/1/012192 Li JJ, 2020, J MARKETING, V84, P127, DOI 10.1177/0022242920911628 Li ML, 2021, INT J HOSP MANAG, V95, DOI 10.1016/j.ijhm.2021.102930 Li XS, 2019, J CONSUM RES, V45, P973, DOI 10.1093/jcr/ucy016 Liljander V, 1997, INT J SERV IND MANAG, V8, P148, DOI 10.1108/09564239710166272 Lin CY, 2017, J SERV MANAGE, V28, P107, DOI 10.1108/JOSM-08-2015-0251 Lin IY, 2016, J SERV MARK, V30, P692, DOI 10.1108/JSM-08-2015-0258 Lin JSC, 2011, J SERV MANAGE, V22, P183, DOI 10.1108/09564231111124217 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Ma RJ, 2021, J BUS RES, V134, P443, DOI 10.1016/j.jbusres.2021.05.057 Maguire L, 2015, J SERV MARK, V29, P211, DOI 10.1108/JSM-02-2014-0047 Malhotra N, 2013, J BUS RES, V66, P1338, DOI 10.1016/j.jbusres.2012.02.034 Marques C, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104293 Caro LM, 2007, J BUS RES, V60, P108, DOI 10.1016/j.jbusres.2006.10.008 Matthews L, 2020, J BUS RES, V114, P111, DOI 10.1016/j.jbusres.2020.04.002 McLean G, 2017, COMPUT HUM BEHAV, V76, P494, DOI 10.1016/j.chb.2017.08.005 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 Moliner-Velázquez B, 2019, SERV BUS, V13, P199, DOI 10.1007/s11628-018-0378-5 Nunally J.C., 1978, Psychometric theory Nunkoo R, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2019.102414 OLIVER RL, 1993, J CONSUM RES, V20, P418, DOI 10.1086/209358 Otterbring T, 2017, J SERV MANAGE, V28, P284, DOI 10.1108/JOSM-11-2015-0372 Palcu J, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00881 Pantano E, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102096 Pelau C, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106855 Peng L, 2019, J ACAD MARKET SCI, V47, P960, DOI 10.1007/s11747-019-00662-w Ponte EB, 2015, TOURISM MANAGE, V47, P286, DOI 10.1016/j.tourman.2014.10.009 Prentic C, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102186 Prentice C, 2020, INT J HOSP MANAG, V90, DOI 10.1016/j.ijhm.2020.102629 Pruyn A, 1998, INT J RES MARK, V15, P321, DOI 10.1016/S0167-8116(98)00008-1 Puzakova M, 2013, J MARKETING, V77, P81, DOI 10.1509/jm.11.0510 Rhim J, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.107034 Richins ML, 1997, J CONSUM RES, V24, P127, DOI 10.1086/209499 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Rod M, 2016, J RETAIL CONSUM SERV, V30, P212, DOI 10.1016/j.jretconser.2016.02.005 Román S, 2010, J BUS ETHICS, V95, P373, DOI 10.1007/s10551-010-0365-9 Ryu K, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13179549 Salem MZ, 2018, MANAGE DECIS, V56, P1748, DOI 10.1108/MD-04-2017-0363 Sang Yong Kim, 2001, Electronic Markets, V11, P148, DOI 10.1080/101967801681007988 Schill M, 2022, J SERV MARK, V36, P769, DOI 10.1108/JSM-11-2020-0472 Sela A, 2012, J MARKETING RES, V49, P942, DOI 10.1509/jmr.11.0142 Setia P, 2013, MIS QUART, V37, P565, DOI 10.25300/MISQ/2013/37.2.11 Slevitch L, 2010, INT J HOSP MANAG, V29, P559, DOI 10.1016/j.ijhm.2009.09.004 Song J, 2017, INT J HOSP MANAG, V66, P66, DOI 10.1016/j.ijhm.2017.06.015 SPIELMAN LA, 1988, AM BEHAV SCI, V31, P296, DOI 10.1177/000276488031003003 Stein A, 2020, J SERV MANAGE, V31, P51, DOI 10.1108/JOSM-04-2019-0113 Steinhoff L, 2021, J BUS RES, V129, P70, DOI 10.1016/j.jbusres.2021.02.016 Sun XY, 2019, DECIS SUPPORT SYST, V124, DOI 10.1016/j.dss.2019.113099 Tueanrat Y, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102550 Turel O, 2013, INFORM MANAGE-AMSTER, V50, P98, DOI 10.1016/j.im.2013.02.004 Vigolo V, 2020, PSYCHOL MARKET, V37, P408, DOI 10.1002/mar.21307 Wang CY, 2015, INT J HOSP MANAG, V51, P96, DOI 10.1016/j.ijhm.2015.09.001 Wang QZ, 2017, ELECTRON COMMER RES, V17, P609, DOI 10.1007/s10660-016-9237-4 Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 Wang SS, 2018, J MARKETING RES, V55, P524, DOI 10.1509/jmr.16.0453 Wang YR, 2018, ELECTRON COMMER R A, V29, P1, DOI 10.1016/j.elerap.2018.03.003 Weijters B, 2007, J SERV RES-US, V10, P3, DOI 10.1177/1094670507302990 Wien AH, 2021, J BUS RES, V137, P13, DOI 10.1016/j.jbusres.2021.08.016 Wilcox K, 2011, J CONSUM RES, V38, P763, DOI 10.1086/660702 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wixom BH, 2005, INFORM SYST RES, V16, P85, DOI 10.1287/isre.1050.0042 Wong IA, 2013, J TRAVEL RES, V52, P29, DOI 10.1177/0047287512457263 Xiao L, 2021, J SERV RES-US, V24, P9, DOI 10.1177/1094670519878881 Xu XY, 2020, J ELECTRON COMMER RE, V21, P144 Yan RN, 2011, INT J RETAIL DISTRIB, V39, P346, DOI 10.1108/09590551111130775 Ying J., 2006, Journal of Services Marketing, V20 Iss, P211, DOI DOI 10.1108/08876040610674562 Zablah AR, 2017, J SERV RES-US, V20, P76, DOI 10.1177/1094670516675405 Zhang M, 2021, J SERV MARK, V35, P312, DOI 10.1108/JSM-01-2020-0009 Zhou RG, 2019, ELECTRON COMMER RES, V19, P477, DOI 10.1007/s10660-018-9301-3 NR 145 TC 31 Z9 31 U1 66 U2 225 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD SEP PY 2022 VL 68 AR 103059 DI 10.1016/j.jretconser.2022.103059 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 2V1DD UT WOS:000823591800007 OA Green Published DA 2024-03-27 ER PT J AU Chaturvedi, AR Choubey, AK Roan, J AF Chaturvedi, AR Choubey, AK Roan, J TI Active replication and update of content in electronic commerce SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE client-server computing; distributed systems; electronic commerce; intelligent agents ID DISTRIBUTED DATABASE-SYSTEMS; FILE ALLOCATION AB This paper describes a strategy for actively replicating and updating content for electronic commerce. Active replication and updating of content is achieved by intelligent agents (IA) using a time-invariant fragmentation approach to partitioning and replicating data in a distributed computing environment. Taking into account the time-sensitivity property of data, IAs derive time-invariant fragments for their respective nodes from the query history. A time-invariant fragment (TIF) is that portion of the database whose values do not change during a specified time interval. The algorithm that IAs use in creating TIFs for each node, for a given time interval, is presented. The active replication approach is compared with three other approaches, Full-replication, nonreplication, and materialized view, in terms of data transmission costs. Results indicate that the active approach can be most effective for electronic commerce because of the high percentage of modification queries, the large sire of the network, and the greet number of transactions. C1 Purdue Univ, Krannert Grad Sch Management, SEAS Lab, W Lafayette, IN 47907 USA. C3 Purdue University System; Purdue University RP Purdue Univ, Krannert Grad Sch Management, SEAS Lab, W Lafayette, IN 47907 USA. EM alok@mgmt.purdue.edu; achoubey@lucent.com; jsroan@mail.nsysu.edu.tw OI Chaturvedi, Alok/0000-0003-4666-0197 CR ADIBA ME, 1980, P 6 INT C VER LARG D, P86 ALONSO R, 1990, ACM T DATABASE SYST, V15, P359, DOI 10.1145/88636.87848 ALONSO R, 1988, LECT NOTES COMPUT SC, V303, P443 APERS PMG, 1988, ACM T DATABASE SYST, V13, P263, DOI 10.1145/44498.45063 Blakeley J.A., 1986, Proceedings of Special Interest Group on Management of Data (SIGMOD'86), Washington, P61 BONABEAU FH, INTELLIGENT AGENTS T CHATURVEDI AR, 1993, EXPERT SYST APPL, V6, P23, DOI 10.1016/0957-4174(93)90016-Y CHATURVEDI AR, 1994, IEEE T ENG MANAGE, V41, P194, DOI 10.1109/17.293386 CHESS CH, 1997, LECT NOTES COMPUTER, V1222 CHU WW, 1969, IEEE T COMPUT, VC 18, P885, DOI 10.1109/T-C.1969.222542 Di Caro G, 1998, P ANN HICSS, P74, DOI 10.1109/HICSS.1998.649179 DOWDY LW, 1982, COMPUT SURV, V14, P287, DOI 10.1145/356876.356883 DUTTA A, 1985, INT J COMPUT INF SCI, V14, P29, DOI 10.1007/BF00990899 HANSON EN, 1987, P SIGMOD C SAN FRANC, P440 HSIAO HI, 1993, DISTRIB PARALLEL DAT, V1, P53, DOI 10.1007/BF01277520 Kahler B., 1987, Proceedings of the Thirteenth International Conference on Very Large Data Bases: 1987 13th VLDB, P389 Lange DB, 1999, COMMUN ACM, V42, P88, DOI 10.1145/295685.298136 MINAR N, 1999, SOFTWARE AGENTS FUTU, pCH12 RAKES TR, 1984, COMPUT OPER RES, V11, P387, DOI 10.1016/0305-0548(84)90039-X RAM S, 1989, J SYST SOFTWARE, V10, P77, DOI 10.1016/0164-1212(89)90021-6 RAM S, 1989, INFORM MANAGE, V17, P169, DOI 10.1016/0378-7206(89)90018-9 ROUSSOPOULOS N, 1986, COMPUTER, V19, P19, DOI 10.1109/MC.1986.1663124 SACCA D, 1983, P INT C VLDB, P242 Saharia AN, 1990, INFORM SYST RES, V1, P277, DOI 10.1287/isre.1.3.277 Samaras G, 1996, INT CON DISTR COMP S, P683, DOI 10.1109/ICDCS.1996.508020 Segev A., 1989, IEEE Transactions on Knowledge and Data Engineering, V1, P173, DOI 10.1109/69.87958 YU PS, 1994, P IEEE, V82, P140, DOI 10.1109/5.259432 NR 27 TC 0 Z9 0 U1 0 U2 2 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1086-4415 EI 1557-9301 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD SPR PY 2000 VL 4 IS 3 BP 45 EP 67 DI 10.1080/10864415.2000.11518371 PG 23 WC Business; Computer Science, Software Engineering WE Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 323GJ UT WOS:000087557500004 DA 2024-03-27 ER PT J AU Kim, D Benbasat, I AF Kim, Dongmin Benbasat, Izak TI The effects of trust-assuring arguments on consumer trust in Internet stores: Application of Toulmin's model of argumentation SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE trust-assuring arguments; trust; electronic commerce; Toulmin; model of argumentation; claim; data; backing; human-computer interaction ID E-COMMERCE; IMPACT; INVOLVEMENT; ACCEPTANCE; SYSTEMS; SCALE AB A trust-assuring argument refers to "a claim and its supporting statements used in an Internet store to address trust-related issues." Although trust-assuring arguments often appear in Internet stores, little research has been conducted to understand their effects on consumer trust in an Internet store. The goals of this study are (1) to investigate whether or not the provision of trust-assuring arguments on the website of an Internet store increase consumer trust in that Internet store and (2) to identify the most effective form of trust-assuring arguments to provide guidelines for their implementation. Toulmin's (1958) model of argumentation is proposed as a basis to identify the elements of an argument and to strengthen the effects of trust-assuring arguments on consumer trust in an Internet store. Based on Toulmin's (1958) model of argumentation, three elements of arguments that commonly appear in daily communication; namely, claim, data, and backing, are identified. Data refers to the grounds for a claim, while backing is used for providing reasons for why the data should be accepted. By combining these three elements, three forms of trust-assuring arguments (claim only, claim plus data, and claim plus data and backing) are developed. The effects of these three forms of trust-assuring arguments on consumer trust in an Internet store are tested by comparing them to a no trust-assuring argument condition in a laboratory experiment with 112 participants. The results indicate (1) providing trust-assuring arguments that consist of claim plus data or claim plus data and backing increases consumers' trusting belief but displaying arguments that contain claim only does not and (2) trust-assuring arguments that include claim plus data and backing lead to the highest level of trusting belief among the three forms of arguments examined in this study. Based on the results, we argue that Toulmin's (1958) model of argumentation is an effective basis for website designers to develop convincing trust-assuring arguments and to improve existing trust-assuring arguments in Internet stores. C1 Univ New Brunswick, Fac Business, St John, NB E2L 4L5, Canada. Univ British Columbia, Sauder Sch Business, Vancouver, BC V6T 1Z2, Canada. C3 University of New Brunswick; University of British Columbia RP Kim, D (autor correspondiente), Univ New Brunswick, Fac Business, POB 5050, St John, NB E2L 4L5, Canada. EM dongmin@unbsj.ca; izak.benbasat@ubc.ca CR [Anonymous], 1958, THE USE OF ARGUMENT [Anonymous], J GLOBAL INFORM MANA, DOI DOI 10.4018/JGIM.2004010102 [Anonymous], 2002, US TODAY [Anonymous], 1964, ADAPTION LEVEL THEOR [Anonymous], 1999, eCommerce trust study [Anonymous], 1999, P INT C INF SYST [Anonymous], 2000, P 21 INT C INF SYST Ba SL, 2002, MIS QUART, V26, P243, DOI 10.2307/4132332 Bakker AB, 2006, J SOC PSYCHOL, V146, P31, DOI 10.3200/SOCP.146.1.31-50 Bhattacherjee A, 2002, J MANAGE INFORM SYST, V19, P211 Cook D.P., 2003, Eservice Journal, V2, P71 Cooper D., 1995, BUSINESS RES METHODS, V5th DEIGHTON J, 1985, ADV CONSUM RES, V12, P432 Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Fogg B. J., 1999, C HUM FACT COMP SYST, P15 FOGG BJ, 2001, CHI, V3, P61 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Gefen D., 1997, Building users' trust in freeware providers and the effects of this trust on users' perceptions of usefulness, ease of use and intended use Gefen D., 2000, COMMUN ASSOC INF SYS, V4, P407, DOI DOI 10.17705/1CAIS.00407 Gefen D., 2003, e-Service Journal, V2, P7, DOI DOI 10.2979/ESJ.2003.2.2.7 Gregor S, 1999, MIS QUART, V23, P497, DOI 10.2307/249487 HEAD M, 2002, Q J ELECT COMMERCE, V2, P307 Hoffman DL, 1999, COMMUN ACM, V42, P80, DOI 10.1145/299157.299175 Jarvenpaa S. L., 2000, Information Technology & Management, V1, P45, DOI 10.1023/A:1019104520776 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Kaplan S. E., 2003, International Journal of Accounting Information Systems, V4, P95, DOI 10.1016/S1467-0895(03)00005-8 Kim D., 2003, J ELECTRON COMMER RE, V4, P49 Kim H., 2004, J ASSOC INF SYST, V5, P392, DOI [10.17705/1jais.00056, DOI 10.17705/1JAIS.00056] Kimery K., 2002, J INFORM TECHNOLOGY, V4, P63 Kirk R.E., 1995, EXPT DESIGN, V3rd Kovar S.E., 2000, Review of Accounting Information Systems, V4, P39 Lee MKO, 2001, INT J ELECTRON COMM, V6, P75, DOI 10.1080/10864415.2001.11044227 Lim KH, 2000, MIS QUART, V24, P449, DOI 10.2307/3250969 LIM KH, 2006, IN PRESS J MANAGEMEN MACKENZIE SB, 1992, J CONSUM RES, V18, P519, DOI 10.1086/209278 MAHESWARAN D, 1990, J MARKETING RES, V27, P361, DOI 10.2307/3172593 Malhotra NK, 2004, INFORM SYST RES, V15, P336, DOI 10.1287/isre.1040.0032 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McKinney V, 2002, INFORM SYST RES, V13, P296, DOI 10.1287/isre.13.3.296.76 Mcknight DH, 1998, ACAD MANAGE REV, V23, P473, DOI 10.5465/AMR.1998.926622 McKnight DH, 2001, INT J ELECTRON COMM, V6, P35, DOI 10.1080/10864415.2001.11044235 McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 MUNCH JM, 1993, J CONSUM RES, V20, P294, DOI 10.1086/209350 NOTEBERG A, 1999, P 20 INT C INF SYST, P472 O'Keefe D.J., 2002, Persuasion: Theory and research, V2 Pavlou PA, 2004, INFORM SYST RES, V15, P37, DOI 10.1287/isre.1040.0015 Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Pennington R, 2003, J MANAGE INFORM SYST, V20, P197, DOI 10.1080/07421222.2003.11045777 Petty R.E., 1981, ADV CONSUM RES, V8, P20 Petty R.E., 1986, The Elaboration Likelihood Model of Persuasion, DOI DOI 10.1007/978-1-4612-4964-1_1 PETTY RE, 1984, J PERS SOC PSYCHOL, V46, P69, DOI 10.1037/0022-3514.46.1.69 Rousseau DM, 1998, ACAD MANAGE REV, V23, P393, DOI 10.5465/AMR.1998.926617 SMITH GF, 1991, ORGAN BEHAV HUM DEC, V48, P291, DOI 10.1016/0749-5978(91)90016-M Stewart KJ, 2003, ORGAN SCI, V14, P5, DOI 10.1287/orsc.14.1.5.12810 Suh B, 2003, INT J ELECTRON COMM, V7, P135 Verlinden J.G., 1998, Verifiers in everyday argument: An expansion of the Toulmin model Wang SJ, 2004, J INTERACT MARK, V18, P53, DOI 10.1002/dir.10071 WANG W, 2004, IMPACT EXPLANATIONS WETSCH L, 2000, P MARK PUBL POL C AM YE LR, 1995, MIS QUART, V19, P157, DOI 10.2307/249686 ZAICHKOWSKY JL, 1994, J ADVERTISING, V23, P59, DOI 10.1080/00913367.1943.10673459 NR 61 TC 139 Z9 155 U1 4 U2 75 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD SEP PY 2006 VL 17 IS 3 BP 286 EP 300 DI 10.1287/isre.1060.0093 PG 15 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA 085LY UT WOS:000240606800006 DA 2024-03-27 ER PT J AU Liang, TP Doong, HS AF Liang, TP Doong, HS TI Effect of bargaining in electronic commerce SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE electronic commerce; intelligent agents; price bargaining ID COMPUTER SELF-EFFICACY; COGNITIVE-STYLE; INDIVIDUAL-DIFFERENCES; DECISION-MAKING; INFORMATION; BEHAVIOR; NEGOTIATION; PERSUASION; PERCENTAGE; JUDGMENT AB Internet business has grown at an unprecedented rate in the post several years. Recent research has found that the functions provided by a store have a significant impact on customer purchase decisions. Price bargaining is a common practice in traditional businesses, and this study investigates its effect in electronic commerce, Focusing on three different bargaining strategies. An intelligent agent that allows customers to bargain for a better price was implemented and integrated into experimental stores. The results show that consumers prefer shopping at bargaining stores even when there is no financial gain. Different bargaining strategies and customer personalities may also affect the outcome and customer satisfaction. RI liang, ting/JFB-4960-2023 CR [Anonymous], STRUCTURE EQUATIONS [Anonymous], J BUSINESS, DOI DOI 10.1086/296365 [Anonymous], 1982, MODELS BOUNDED RATIO ARNDT J, 1979, J MARKETING, V43, P69, DOI 10.2307/1250272 Barry B, 1996, ORGAN BEHAV HUM DEC, V67, P127, DOI 10.1006/obhd.1996.0069 BARTOS OJ, 1967, J CONFLICT RESOLUT, V11, P481, DOI 10.1177/002200276701100406 BENBASAT I, 1985, MANAGE SCI, V31, P1348, DOI 10.1287/mnsc.31.11.1348 BRUGGEN GH, 1998, MANAGE SCI, V44, P545 CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116 CHAIKEN S, 1989, P212 CHAIKEN S, 1980, J PERS SOC PSYCHOL, V39, P752, DOI 10.1037/0022-3514.39.5.752 Chaiken S., 1987, Social influence: The Ontario symposium, V5 COLE CA, 1990, J MARKETING RES, V27, P175, DOI 10.2307/3172844 COMPEAU DR, 1995, MIS QUART, V19, P189, DOI 10.2307/249688 DARKE PR, 1993, J APPL PSYCHOL, V78, P960, DOI 10.1037/0021-9010.78.6.960 DARKE PR, 1995, J APPL SOC PSYCHOL, V25, P1597, DOI 10.1111/j.1559-1816.1995.tb02635.x DARKE PR, 1995, J APPL PSYCHOL, V80, P580 DOLL WJ, 1988, MIS QUART, V12, P259, DOI 10.2307/248851 DORRIS JW, 1972, J PERS SOC PSYCHOL, V22, P387, DOI 10.1037/h0032871 Epstein S, 1996, J PERS SOC PSYCHOL, V71, P390, DOI 10.1037/0022-3514.71.2.390 Fouraker L., 1963, BARGAINING BEHAV GALBRAITH S, 1993, J BUS ETHICS, V8, P234 HAMMER WC, 1969, EC BARGAINING HAMMER WC, 1974, J PERS SOC PSYCHOL, V30, P458 Harnett D.L., 1980, Bargaining behavior: An international study HENDERSON JC, 1980, MANAGE SCI, V26, P371, DOI 10.1287/mnsc.26.4.371 HUBER GP, 1983, MANAGE SCI, V29, P567, DOI 10.1287/mnsc.29.5.567 HUYSMANS JHBM, 1970, MANAGE SCI, V17, P92, DOI 10.1287/mnsc.17.1.92 IVES B, 1983, COMMUN ACM, V26, P785, DOI 10.1145/358413.358430 KAHNEMAN D, 1984, AM PSYCHOL, V39, P341, DOI 10.1037/0003-066X.39.4.341 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 Kalakota R., 1996, FRONTIERS ELECT COMM Kerlinger F.N., 1978, Foundations of Behavioral Research KOMORITA SS, 1968, J PERS SOC PSYCHOL, V9, P15, DOI 10.1037/h0025700 LUSK EJ, 1979, MANAGE SCI, V25, P787, DOI 10.1287/mnsc.25.8.787 Maes P, 1999, COMMUN ACM, V42, P81, DOI 10.1145/295685.295716 MAHESWARAN D, 1991, J PERS SOC PSYCHOL, V61, P13, DOI 10.1037/0022-3514.61.1.13 Marakas GM, 1998, INFORM SYST RES, V9, P126, DOI 10.1287/isre.9.2.126 Oliver J. R., 1996, Journal of Management Information Systems, V13, P83 Osgood CharlesE., 1962, ALTERNATIVE WAR SURR Powell M, 1997, J ECON PSYCHOL, V18, P605, DOI 10.1016/S0167-4870(97)00026-3 QUALLS WJ, 1987, J CONSUM RES, V14, P264, DOI 10.1086/209111 Raiffa Howard., 1982, ART SCI NEGOTIATION Rangaswamy A, 1997, MANAGE SCI, V43, P1147, DOI 10.1287/mnsc.43.8.1147 RATNESHWAR S, 1991, J CONSUM RES, V18, P52, DOI 10.1086/209240 ROTH AE, 1988, AM ECON REV, V78, P806 Rubin Jeffrey, 1975, The Social Psychology of Bargaining and Negotiation RUSSELL T, 1985, AM ECON REV, V75, P1071 Sandholm T, 1999, COMMUN ACM, V42, P84, DOI 10.1145/295685.295866 Schelling Thomas C., 1960, The Strategy of Conflict Siegel S., 1960, BARGAINING GROUP DEC SIMON HA, 1986, J BUS, V59, P209 Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 STIGLER GJ, 1961, J POLIT ECON, V69, P213, DOI 10.1086/258464 THALER R, 1980, J ECON BEHAV ORGAN, V1, P39, DOI 10.1016/0167-2681(80)90051-7 Thaler RH, 2008, MARKET SCI, V27, P15, DOI 10.1287/mksc.1070.0330 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 TVERSKY A, 1981, SCIENCE, V211, P251 VISWANATHAN M, 1993, J APPL PSYCHOL, V78, P741, DOI 10.1037/0021-9010.78.5.741 WEBSTER J, 1992, MIS QUART, V16, P201, DOI 10.2307/249576 Winer R.S., 1988, Issues in Pricing. Theory and Research Witkin H.A., 1971, A manual for the embedded figures tests NR 62 TC 25 Z9 27 U1 2 U2 17 PU M E SHARPE INC PI ARMONK PA 80 BUSINESS PARK DR, ARMONK, NY 10504 USA SN 1086-4415 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD SPR PY 2000 VL 4 IS 3 BP 23 EP 43 DI 10.1080/10864415.2000.11518370 PG 21 WC Business; Computer Science, Software Engineering WE Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 323GJ UT WOS:000087557500003 DA 2024-03-27 ER PT J AU McLean, G Osei-Frimpong, K AF McLean, Graeme Osei-Frimpong, Kofi TI Chat now... Examining the variables influencing the use of online live chat SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Live chat; Human computer interaction; Online customer support; Online service encounter ID WEB SITE DESIGN; CUSTOMER EXPERIENCE; INFORMATION-TECHNOLOGY; MEASUREMENT INVARIANCE; SOCIAL SUPPORT; E-COMMERCE; SERVICE; SATISFACTION; ACCEPTANCE; CREDIBILITY AB This paper advances our theoretical understanding of online service delivery with regard to live chat technology. Online customer support via live chat offers customers a way in which they can interact with service personnel in the online environment. Through the use of an online questionnaire and conducing structural equation modelling, the aim of this research is to understand the variables directly influencing the use of a live chat function with a customer service representative during use of a website. The findings outline eight variables that motivate the use of live chat, accounting for 71% explained variance. The research illustrates the variables influencing such use is dependent on the context for initiating the chat discussion, namely for search/navigation support or decision support. This paper offers key managerial implications, highlighting the importance of offering customers a live chat function and why website users are motivated to use live chat. The paper illustrates the role of online live chat as a service recovery tool and a service feedback tool. C1 [McLean, Graeme] Univ Strathclyde, Business Sch, Stenhouse Wing, Glasgow G4 0QU, Lanark, Scotland. [Osei-Frimpong, Kofi] GIMPA Business Sch, Room 1,D Block, Achimota, Accra, Ghana. C3 University of Strathclyde RP McLean, G (autor correspondiente), Univ Strathclyde, Business Sch, Stenhouse Wing, Glasgow G4 0QU, Lanark, Scotland. EM graeme.mclean@strath.ac.uk; Kosei-frimpong@gimpa.edu.gh RI Osei-Frimpong, Kofi/JPX-4096-2023; Osei-Frimpong, Kofi/JCR-4418-2023 OI Osei-Frimpong, Kofi/0000-0002-3956-2495; McLean, Graeme/0000-0003-3758-5279 CR Abbattista F., 2002, 1 INT JOINT C AAMAS Agarwal R, 2000, MIS QUART, V24, P665, DOI 10.2307/3250951 Alexa, 2016, COMPL WEB AN TOOLK [Anonymous], 2018, J BUS RES [Anonymous], INT J MAN MACHINE ST [Anonymous], HUMAN FACTORS WEB DE [Anonymous], 2004, SEEKING MEANING PROC Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 Azab C, 2017, J BUS RES, V72, P57, DOI 10.1016/j.jbusres.2016.11.012 Bitner M J., 2000, Handbook of Services Marketing and Management, P37 Brehm J.W., 1996, THEORY PSYCHOL REACT Byrne A, 2013, PALGRAVE STUD CULT, P3 Carter J, 2015, WHY LIVE CHAT COULD Cassell J., 2000, EMBODIED CONVERSATIO Chattaraman V, 2019, COMPUT HUM BEHAV, V90, P315, DOI 10.1016/j.chb.2018.08.048 Chattaraman V, 2012, COMPUT HUM BEHAV, V28, P2055, DOI 10.1016/j.chb.2012.06.009 Cheung CMK, 2006, J AM SOC INF SCI TEC, V57, P479, DOI 10.1002/asi.20312 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Coughlan J., 2008, STRUCTURAL EQUATION, V9, P233 Cox J., 2001, Managing Service Quality: An International Journal, V11, P121, DOI [10.1108/09604520110387257, DOI 10.1108/09604520110387257] DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 Dailey L, 2004, J BUS RES, V57, P795, DOI 10.1016/S0148-2963(02)00364-8 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DeLone WH, 2003, J MANAGE INFORM SYST, V19, P9, DOI 10.1080/07421222.2003.11045748 Dennis AR, 2006, DECIS SUPPORT SYST, V42, P810, DOI 10.1016/j.dss.2005.05.032 Dixon M, 2013, J OPER MANAG, V31, P138, DOI 10.1016/j.jom.2012.12.002 Edvardsson B., 2005, MANAG SERV QUAL, V15, P127, DOI DOI 10.1108/09604520510585316 Etemad-Sajadi R, 2014, INT J QUAL RELIAB MA, V31, P419, DOI 10.1108/IJQRM-05-2013-0077 Faiola A, 2013, COMPUT HUM BEHAV, V29, P1113, DOI 10.1016/j.chb.2012.10.003 Fan WS, 2010, TOTAL QUAL MANAG BUS, V21, P1141, DOI 10.1080/14783363.2010.529335 Flanagin AJ, 2000, JOURNALISM MASS COMM, V77, P515, DOI 10.1177/107769900007700304 Flanagin AJ, 2007, NEW MEDIA SOC, V9, P319, DOI 10.1177/1461444807075015 Flavián-Blanco C, 2011, COMPUT HUM BEHAV, V27, P540, DOI 10.1016/j.chb.2010.10.002 Fogg B. J., 1999, P SIGCHI C HUM FACT, P80, DOI [10.1145/302979.303001, DOI 10.1145/302979.303001, 10.1145/302979.303001.3] FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gefen D, 2003, IEEE T ENG MANAGE, V50, P307, DOI 10.1109/TEM.2003.817277 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Gummerus J., 2004, J SERV MARK, V18, P175, DOI [DOI 10.1108/08876040410536486, 10.1108/08876040410536486] Guo X., 2012, ASIAN SOCIAL SCI, V8, P40, DOI [10.5539/ass.v8n13p40, DOI 10.5539/ASS.V8N13P40] Ha S, 2009, J BUS RES, V62, P565, DOI 10.1016/j.jbusres.2008.06.016 Hair J.F., 2009, Multivariate data analysis Hajli N, 2015, TECHNOL FORECAST SOC, V96, P232, DOI 10.1016/j.techfore.2015.03.014 Hoffman DL, 2009, J INTERACT MARK, V23, P23, DOI 10.1016/j.intmar.2008.10.003 Hong WY, 2013, MIS QUART, V37, P383, DOI 10.25300/MISQ/2013/37.2.04 Hopkins CD, 2009, J INTERNET COMMER, V8, P23, DOI 10.1080/15332860903182487 HORN JL, 1992, EXP AGING RES, V18, P117, DOI 10.1080/03610739208253916 Hsu CL, 2004, INFORM MANAGE-AMSTER, V41, P853, DOI 10.1016/j.im.2003.08.014 Hulland J, 1999, STRATEGIC MANAGE J, V20, P195, DOI 10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.3.CO;2-Z Katerattanakul P, 2002, INFOR, V40, P57 Kim H.Y, 2017, INT J FASHION DESIGN, V10 Kim M., 2006, Managing Service Quality, V16, P51 Klaus P, 2013, J SERV MARK, V27, P443, DOI 10.1108/JSM-02-2012-0030 Kuhlthau C.C., 1994, Advances in Librarianship, V18, P57, DOI 10.1108/S0065-2830(1994)0000018004 Kuhlthau CC, 2008, INFORM RES, V13 Lee A. S., 2010, J HOSP TOUR MANAG, V3, P47 Lee CH, 2011, TOURISM MANAGE, V32, P987, DOI 10.1016/j.tourman.2010.08.011 Lee G, 2005, MANAGE DECIS, V43, P171 Lee Y., 2010, MIS Q, V36, P365 Legris P, 2003, INFORM MANAGE-AMSTER, V40, P191, DOI 10.1016/S0378-7206(01)00143-4 Lew Z, 2018, J COMPUT-MEDIAT COMM, V23, P201, DOI 10.1093/jcmc/zmy009 Li C.Y, 2017, TECHNOL FORECAST SOC Li S, 2019, TECHNOL FORECAST SOC, V139, P303, DOI 10.1016/j.techfore.2018.11.018 Liljander V, 1997, INT J SERV IND MANAG, V8, P148, DOI 10.1108/09564239710166272 Liu C, 2000, INFORM MANAGE, V38, P23, DOI 10.1016/S0378-7206(00)00049-5 Liu X, 2008, INT J RETAIL DISTRIB, V36, P919, DOI 10.1108/09590550810911683 Loiacono E.T., 2002, MARKETING EDUCATORS, V13, P432 Loiacono ET, 2007, INT J ELECTRON COMM, V11, P51, DOI 10.2753/JEC1086-4415110302 Lucassen T, 2013, J AM SOC INF SCI TEC, V64, P254, DOI 10.1002/asi.22743 Lucassen T, 2011, J AM SOC INF SCI TEC, V62, P1232, DOI 10.1002/asi.21545 Lv ZP, 2018, ELECTRON COMMER R A, V28, P102, DOI 10.1016/j.elerap.2018.01.003 Martin J, 2015, J RETAIL CONSUM SERV, V25, P81, DOI 10.1016/j.jretconser.2015.03.008 Mathwick C, 2001, J RETAILING, V77, P39, DOI 10.1016/S0022-4359(00)00045-2 McKinney L.N., 2004, INT J CONSUMER STUDI, V28, P268 McLean G, 2017, MARK INTELL PLAN, V35 McLean G, 2018, J BUS RES, V85, P325, DOI 10.1016/j.jbusres.2018.01.018 McLean G, 2017, COMPUT HUM BEHAV, V76, P494, DOI 10.1016/j.chb.2017.08.005 McLean G, 2016, COMPUT HUM BEHAV, V60, P602, DOI 10.1016/j.chb.2016.02.084 McMillan SJ, 2002, J ADVERTISING, V31, P29, DOI 10.1080/00913367.2002.10673674 Mero J, 2018, ELECTRON MARK, V28, P205, DOI 10.1007/s12525-017-0281-2 Metzger MJ, 2007, J AM SOC INF SCI TEC, V58, P2078, DOI 10.1002/asi.20672 Metzger MJ, 2013, J PRAGMATICS, V59, P210, DOI 10.1016/j.pragma.2013.07.012 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Micu AE, 2019, INT ENTREP MANAG J, V15, P651, DOI 10.1007/s11365-019-00564-x Oliver RL, 1999, J MARKETING, V63, P33, DOI 10.2307/1252099 Osei-Frimpong K, 2018, TECHNOL FORECAST SOC, V126, P14, DOI 10.1016/j.techfore.2016.04.009 Pallant J., 2016, SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS Parasuraman A, 2005, J SERV RES-US, V7, P213, DOI 10.1177/1094670504271156 Petzer DJ, 2017, INT J BANK MARK, V35, P241, DOI 10.1108/IJBM-04-2016-0047 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Ranaweera C, 2014, J BUS RES, V67, P2645, DOI 10.1016/j.jbusres.2014.04.002 Reinecke K., 2013, P SIGCHI C HUM FACT, P2049, DOI [10, https://doi.org/10.1145/2470654.2481281, DOI 10.1145/2470654.2481281, 10.1145/2470654.2481281] Rieh S.Y., 2009, ENCY LIB INFORM SCI, P1337, DOI [10.1081/e-elis3-120044103, DOI 10.1081/E-ELIS3-120044103] Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 SHUMAKER SA, 1984, J SOC ISSUES, V40, P11, DOI 10.1111/j.1540-4560.1984.tb01105.x SOLOMON MR, 1985, J MARKETING, V49, P99, DOI 10.2307/1251180 Song JH, 2008, J MARKETING, V72, P99, DOI 10.1509/jmkg.72.2.99 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 Sundar S. S., 2008, Digital media, youth, and credibility, P73, DOI DOI 10.1162/DMAL.9780262562324.073 Pham TSH, 2017, TECHNOL FORECAST SOC, V124, P332, DOI 10.1016/j.techfore.2017.04.003 THOITS PA, 1986, J CONSULT CLIN PSYCH, V54, P416, DOI 10.1037/0022-006X.54.4.416 Tombs A., 2003, Marketing Theory, V3, P447, DOI DOI 10.1177/1470593103040785 Torkzadeh G, 2002, INFORM SYST RES, V13, P187, DOI 10.1287/isre.13.2.187.87 Turel O, 2013, INT J INFORM MANAGE, V33, P674, DOI 10.1016/j.ijinfomgt.2013.03.005 Turel O, 2013, INFORM MANAGE-AMSTER, V50, P98, DOI 10.1016/j.im.2013.02.004 Vandenberg RJ, 2000, ORGAN RES METHODS, V3, P4, DOI 10.1177/109442810031002 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2008, DECIS SCI, V39 Venkatesh V, 2012, MIS QUART, V36, P157 Verhagen T, 2015, COMPUT HUM BEHAV, V48, P340, DOI 10.1016/j.chb.2015.01.061 Verhagen T, 2014, J COMPUT-MEDIAT COMM, V19, P529, DOI 10.1111/jcc4.12066 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Wang XH, 2011, J SERV RES-US, V14, P149, DOI 10.1177/1094670511400722 WeAreSocial, 2019, DIG 2019 SPORTL E CO Westerwick A, 2013, J COMPUT-MEDIAT COMM, V18, P80, DOI 10.1111/jcc4.12006 Whiting A, 2006, J SERV RES-US, V8, P234, DOI 10.1177/1094670505281703 Wünderlich NV, 2013, J SERV RES-US, V16, P3, DOI 10.1177/1094670512448413 Yang Z, 2001, P EMAC C MAY 2001 BE Yang Zhilin., 2003, Journal of Services Marketing, V17, P685, DOI DOI 10.1108/08876040310501241 [杨祖元 Yang Zuyuan], 2002, [重庆大学学报, Journal of Chongqing University], V25, P19 Yoo B., 2001, Q J ELECT COMMERCE, V2, P31, DOI DOI 10.1007/978-3-319-11885-7_129 Yoon C, 2007, ELECTRON COMMER R A, V6, P102, DOI 10.1016/j.elerap.2006.06.009 Yoon C, 2010, COMPUT HUM BEHAV, V26, P1296, DOI 10.1016/j.chb.2010.04.001 Yu YT, 2001, INT J SERV IND MANAG, V12, P234, DOI 10.1108/09564230110393239 Zeithaml V.A., 2000, Implications for Future Research and Managerial Practice, P1 NR 126 TC 40 Z9 41 U1 6 U2 44 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD SEP PY 2019 VL 146 BP 55 EP 67 DI 10.1016/j.techfore.2019.05.017 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA JR9FS UT WOS:000499922800006 DA 2024-03-27 ER PT J AU Ekelik, H Emir, S AF Ekelik, Haydar Emir, Senol TI A Comparison of Machine Learning Classifiers for Evaluation of Remarketing Audiences in E-Commerce SO ESKISEHIR OSMANGAZI UNIVERSITESI IIBF DERGISI-ESKISEHIR OSMANGAZI UNIVERSITY JOURNAL OF ECONOMICS AND ADMINISTRATIVE SCIENCES LA English DT Article DE Remarketing; Google Analytics; Artificial Neural Networks; CART; Random Forest ID FRAMEWORK AB In this study, user data of an e-commerce site operating in Turkey is examined. Users are those who have visited the site before, that is, they are in the remarketing audience pool. The main goal is to make accurate predictions for remarketing and thus offer customized ad packages for new visitors. Visitors are labeled as "Shoppers" and "Non-shoppers" based on their previous visits. The data set is divided into two portions that do not intersect with each other as training and test sets. Three classification models based on artificial neural networks, classification and regression trees (CART), and random forest are built to make predictions and then classification performances of these models are compared. C1 [Ekelik, Haydar; Emir, Senol] Istanbul Univ, Iktisat Fak, Ekonometri Bolumu, Istanbul, Turkey. C3 Istanbul University RP Ekelik, H (autor correspondiente), Istanbul Univ, Iktisat Fak, Ekonometri Bolumu, Istanbul, Turkey. EM haydar.ekelik@istanbul.edu.tr; senol.emir@istanbul.edu.tr RI Ekelik, Haydar/AAS-4275-2020; Emir, Şenol/GLU-3691-2022 OI Ekelik, Haydar/0000-0002-0661-4164; Emir, Senol/0000-0002-6762-9351 CR Breiman, 1984, CHAPMAN HALLCRC TEXT Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Charlesworth A., 2018, Digital Marketing: A Practical Approach Ciaburro GiuseppeBalaji Venkateswaran., 2017, Neural Networks with R Derevitskii I, 2019, 2019 SIXTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), P321, DOI [10.1109/snams.2019.8931852, 10.1109/SNAMS.2019.8931852] Devi, 2020, SOLID STATE TECHNOL, V63, P6251 Dogan, 2020, INTELLIGENT FUZZY TE, P39 Gupta R, 2014, PROCEDIA COMPUT SCI, V36, P599, DOI 10.1016/j.procs.2014.09.060 Haykin S., 2008, NEURAL NETWORKS LEAR, V3 Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601 Jäger G, 2019, BIG DATA COGN COMPUT, V3, DOI 10.3390/bdcc3040051 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Lee SS, 2000, COMPUT STAT DATA AN, V34, P165, DOI 10.1016/S0167-9473(99)00095-X Levin N., 2001, J INTERACT MARK, V15, P2, DOI DOI 10.1002/DIR.1007 Mitchell Tom M, 1980, NEED BIASES LEARNING Niu X, 2017, AMCIS 2017 PROCEEDINGS Oztemel E., 2006, Yapay Sinir Aglari Patrutiu-Baltes L., 2016, B TRANSILVANIA U BRA, V9, P61 Rokach L., 2010, Pattern Classification Using Ensemble Methods Rokach Lior., 2015, Data Mining with Decision Trees: Theory and Applications, V2nd Safa NS, 2014, MALAYS J COMPUT SCI, V27, P171 Silva I.N. da., 2017, Artificial Neural Networks Ballestar MT, 2018, J BUS RES, V88, P407, DOI 10.1016/j.jbusres.2017.11.047 Therneau B., 2019, RPART RECURSIVE PART Venables W.N., 2002, Modern Applied Statistics with S Fourth, DOI DOI 10.2307/2685660 Wolpert DavidH., 1995, No free lunch theorems for search, V10 Yasmin A., 2015, INT J MANAG SCI BUS, V1, P69 Zhu G., 2019, Science Journal of Business and Management, V7, P33, DOI DOI 10.11648/J.SJBM.20190701.15 NR 29 TC 1 Z9 1 U1 0 U2 7 PU ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION PI ESKISEHIR PA ESKISEHIR OSMANGAZI UNIV, FAC EDUCATION, ESKISEHIR, 26480, TURKEY SN 1306-6730 J9 ESKISEH OSMAN UNIV I JI Eskiseh. Osman. Univ. IIBF Derg. PD AUG PY 2021 VL 16 IS 2 BP 341 EP 359 DI 10.17153/oguiibf.879105 PG 19 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA SU7JP UT WOS:000663309100004 OA gold, Green Submitted DA 2024-03-27 ER PT J AU Ferreira, KJ Lee, BHA Simchi-Levi, D AF Ferreira, Kris Johnson Lee, Bin Hong Alex Simchi-Levi, David TI Analytics for an Online Retailer: Demand Forecasting and Price Optimization SO M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT LA English DT Article DE online retailing; flash sales; initial pricing; revenue management; price optimization; machine learning; regression trees; demand forecasting; demand interdependency; model implementation ID DECISION-SUPPORT-SYSTEM; SUBSTITUTABLE PRODUCTS; SALES; LINE AB We present our work with an online retailer, Rue La La, as an example of how a retailer can use its wealth of data to optimize pricing decisions on a daily basis. Rue La La is in the online fashion sample sales industry, where they offer extremely limited-time discounts on designer apparel and accessories. One of the retailer's main challenges is pricing and predicting demand for products that it has never sold before, which account for the majority of sales and revenue. To tackle this challenge, we use machine learning techniques to estimate historical lost sales and predict future demand of new products. The nonparametric structure of our demand prediction model, along with the dependence of a product's demand on the price of competing products, pose new challenges on translating the demand forecasts into a pricing policy. We develop an algorithm to efficiently solve the subsequent multiproduct price optimization that incorporates reference price effects, and we create and implement this algorithm into a pricing decision support tool for Rue La La's daily use. We conduct a field experiment and find that sales does not decrease because of implementing tool recommended price increases for medium and high price point products. Finally, we estimate an increase in revenue of the test group by approximately 9.7% with an associated 90% confidence interval of [2.3%, 17.8%]. C1 [Ferreira, Kris Johnson] Harvard Univ, Sch Business, Technol & Operat Management Unit, Boston, MA 02163 USA. [Lee, Bin Hong Alex] MIT, Engn Syst Div, Cambridge, MA 02193 USA. [Simchi-Levi, David] MIT, Engn Syst Div, Dept Civil & Environm Engn, Inst Data Syst & Soc, Cambridge, MA 02193 USA. [Simchi-Levi, David] MIT, Ctr Operat Res, Cambridge, MA 02193 USA. C3 Harvard University; Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT); Massachusetts Institute of Technology (MIT) RP Ferreira, KJ (autor correspondiente), Harvard Univ, Sch Business, Technol & Operat Management Unit, Boston, MA 02163 USA.; Lee, BHA (autor correspondiente), MIT, Engn Syst Div, Cambridge, MA 02193 USA.; Simchi-Levi, D (autor correspondiente), MIT, Engn Syst Div, Dept Civil & Environm Engn, Inst Data Syst & Soc, Cambridge, MA 02193 USA.; Simchi-Levi, D (autor correspondiente), MIT, Ctr Operat Res, Cambridge, MA 02193 USA. EM kferreira@hbs.edu; binhong@mit.edu; dslevi@mit.edu FU Accenture through the MIT Alliance in Business Analytics FX The authors thank Murali Narayanaswamy, the vice president of pricing and operations strategy at Rue La La; Jonathan Waggoner, the former chief operating officer at Rue La La; and Philip Roizin, the former chief financial officer at Rue La La, for their continuing support and for sharing valuable business expertise through numerous discussions and providing a considerable amount of time and resources to ensure a successful project. The integration of the authors' pricing decision support tool with their ERP system could not have been done without the help of Hemant Pariawala and Debadatta Mohanty. The authors also thank the numerous other Rue La La executives and employees for their assistance and support throughout this project. This research also benefitted from discussions with Roy Welsch (MIT), Ozalp Ozer (University of Texas at Dallas), Matt O'Kane (Accenture), Andy Fano (Accenture), Paul Mahler (Accenture), Marjan Baghaie (Accenture), and students in D. Simchi-Levi's research group at MIT. Finally, the authors thank the referees and area editor, whose comments significantly helped the presentation and analysis in this paper. This work was supported by Accenture through the MIT Alliance in Business Analytics. CR Anupindi R, 1998, MARKET SCI, V17, P406, DOI 10.1287/mksc.17.4.406 BERRY S, 1995, ECONOMETRICA, V63, P841, DOI 10.2307/2171802 Birge JR, 1998, INT J FLEX MANUF SYS, V10, P407, DOI 10.1023/A:1008061605260 Bitran G., 2003, Manufacturing & Service Operations Management, V5, P203, DOI 10.1287/msom.5.3.203.16031 Caro F, 2012, OPER RES, V60, P1404, DOI 10.1287/opre.1120.1102 Choi TM, 2007, INT J PROD ECON, V106, P146, DOI 10.1016/j.ijpe.2006.05.009 Corder GW., 2014, NONPARAMETRIC STAT S Du D.-Z., 1998, Handbook of Combinatorial Optimization, V1 Elmaghraby W, 2003, MANAGE SCI, V49, P1287, DOI 10.1287/mnsc.49.10.1287.17315 Emery F., 1970, Pricing Strategy, P98 EVERITT B. S., 2011, CLUSTER ANAL Ferreira K. J., 2015, WORKING PAPER Garro A, 2011, THESIS MIT CAMBRIDGE Gaur V, 2005, PROD OPER MANAG, V14, P377, DOI 10.1111/j.1937-5956.2005.tb00227.x Hastie T., 2009, ELEMENTS STAT LEARNI, V2, P1, DOI DOI 10.1007/978-0-387-84858-7 LAU L. C., 2011, Iterative Methods in Combinatorial Optimization, V46 Levy M, 2004, J RETAILING, V80, pXIII, DOI 10.1016/j.jretai.2004.08.003 LITTLE JDC, 1980, J BUS, V53, pS199, DOI 10.1086/296112 Local Offer Network, 2011, DAIL DEAL PHEN YEAR, P11 Maddah B, 2007, NAV RES LOG, V54, P315, DOI 10.1002/nav.20209 Mazumdar T, 2005, J MARKETING, V69, P84, DOI 10.1509/jmkg.2005.69.4.84 McKitterick W, 2015, ONLINE FASHION SAMPL Musalem A, 2010, MANAGE SCI, V56, P1180, DOI 10.1287/mnsc.1100.1170 Natter M, 2007, MARKET SCI, V26, P576, DOI 10.1287/mksc.1060.0217 Ostapenko N., 2013, INT J BUSINESS SOCIA, V3, P60 Ozer O ., 2012, The Oxford handbook of pricing management REIBSTEIN DJ, 1984, J MARKETING RES, V21, P259, DOI 10.2307/3151602 Rice J.A., 2006, Mathematical Statistics and Data Analysis Sen A, 2008, INT J PROD ECON, V114, P571, DOI 10.1016/j.ijpe.2007.05.022 Smith SA, 1998, MANAGE SCI, V44, P285, DOI 10.1287/mnsc.44.3.285 Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307 Subrahmanyan Saroja., 2000, Journal of Product and Brand Management, V9, P304, DOI DOI 10.1108/10610420010347100 Talluri K, 2005, THEORY PRACTICE REVE Vulcano G, 2012, OPER RES, V60, P313, DOI 10.1287/opre.1110.1012 Winer Russell., 1985, MARKET SCI, V4, P74, DOI [10.1287/mksc.4.1.74, DOI 10.1287/MKSC.4.1.74] Wolverson R, 2012, TIME MAGAZINE, V180, P9 Wu JH, 2014, DECIS SUPPORT SYST, V58, P43, DOI 10.1016/j.dss.2013.01.015 NR 37 TC 192 Z9 240 U1 26 U2 454 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1523-4614 EI 1526-5498 J9 M&SOM-MANUF SERV OP JI M&SOM-Manuf. Serv. Oper. Manag. PD WIN PY 2016 VL 18 IS 1 SI SI BP 69 EP 88 DI 10.1287/msom.2015.0561 PG 20 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA DL4JT UT WOS:000375601500006 OA Green Submitted DA 2024-03-27 ER PT J AU Park, J Ahn, H Kim, D Park, E AF Park, Jinhee Ahn, Hyeongjin Kim, Dongjae Park, Eunil TI GNN-IR: Examining graph neural networks for influencer recommendations in social media marketing SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Influencer marketing; Recommendation; Link prediction; Bipartite graph; YouTube commercial AB With the notable growth of the Internet, a number of platforms have emerged and attracted an enormous number of users. Based on the impact of these platforms, some 'influencers' are highlighted. These influencers wield significant power, shaping consumer behavior. This influence spawned the concept of influencer marketing, where companies leverage these personalities to advertise their products. YouTube stands out as a prominent platform in this trend. However, considering the limited number of influencers and their concepts, the majority of companies, which hope to conduct their marketing campaigns with influencers face challenges in identifying suitable influencers for their campaigns. With this trend, we introduce GNN-IR, a graph neural network for influencer recommendation, based on the connections between companies and influencers of YouTube, one of the largest content platforms. In developing GNN-IR, we adopted a data -driven methodology utilizing a meticulously curated dataset collected in-house. Our dataset comprises a total of 25,174 relationship entries between advertisers and influencers, involving 1,886 distinct advertisers and 3,812 unique YouTube influencers. It encompasses diverse data modalities, including images, text, and assorted metadata. The data was sourced from two primary platforms: YouTube and ugwanggi. Ugwanggi provided valuable insights into the relationships between advertisers and influencers via their information. Meanwhile, YouTube offered more comprehensive and detailed influencer -centric information. We employed PyTorch Geometric to construct a bipartite graph representing interconnected data. Our recommendation system operates via link prediction, suggesting the Topk influencers to advertisers based on the calculated connection probability between nodes. To assess GNN-IR's performance, we employed a range of evaluation metrics. For link prediction, we measured Accuracy, Precision, Recall, and F1 -score. Additionally, in the recommendation phase, we evaluated Precision@k, Recall@k, and F1-score@k. Using GNN-IR and incorporating profile images from YouTube, keyword features, metadata, and sentiment gleaned from YouTube comments, we achieved Precision levels of 96.51% at k=1 and 93.68% at k=10. Based on the experimental results, several implications and limitations are presented. C1 [Park, Jinhee; Ahn, Hyeongjin; Kim, Dongjae; Park, Eunil] Sungkyunkwan Univ, Dept Appl Artificial Intelligence, Seoul 03063, South Korea. [Park, Jinhee; Kim, Dongjae] Univ Toronto, Toronto, ON M5S 1A8, Canada. [Park, Eunil] Teach Co, Seoul 03063, South Korea. C3 Sungkyunkwan University (SKKU); University of Toronto RP Park, E (autor correspondiente), 310 Int Hall,25-2 Sungkyunkwan Ro, Seoul 03063, South Korea. EM eunilpark@skku.edu OI Ahn, Hyeongjin/0000-0001-8545-7867 FU Institute of Information & communi-cations Technology Planning & Evaluation (IITP) - Korea government (MSIT) [RS-2023-00254129]; MSIT, Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) [IITP-2023-RS-2023-00259497] FX This work was supported by Institute of Information & communi-cations Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-2023-00254129, Graduate School of Metaverse Convergence (Sungkyunkwan University) ) . This research was also supported by the MSIT, Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) support program (IITP-2023-RS-2023-00259497) supervised by the IITP. CR Acikgoz F, 2021, INT J INTERNET MARK, V15, P201, DOI 10.1504/IJIMA.2021.114331 Adamic LA, 2003, SOC NETWORKS, V25, P211, DOI 10.1016/S0378-8733(03)00009-1 Alamäki A, 2019, INFORM PROCESS MANAG, V56, P756, DOI 10.1016/j.ipm.2019.01.003 Andonopoulos V, 2023, J RETAIL CONSUM SERV, V75, DOI 10.1016/j.jretconser.2023.103521 Aum J, 2023, BEHAV INFORM TECHNOL, V42, P775, DOI 10.1080/0144929X.2022.2042737 Bakshy E., 2011, P 4 ACM INT C WEB SE, P65, DOI DOI 10.1145/1935826.1935845 Barabási AL, 1999, SCIENCE, V286, P509, DOI 10.1126/science.286.5439.509 Barman Sanket, 2023, 2023 8th International Conference on Communication and Electronics Systems (ICCES), P626, DOI 10.1109/ICCES57224.2023.10192645 Barta S, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103149 Behera RK, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.026 Belanche D, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102585 Bhattacharya A, 2023, NMIMS MANAG REV, V31, P203, DOI 10.1177/09711023231205509 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Carter A.E., 2018, Ph.D. thesis Cha J, 2022, HUM SOC SCI COMMUN, V9, DOI 10.1057/s41599-022-01313-2 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Clark K., 2020, INT C LEARN REPR Das Debashis, 2017, International Journal of Computer Applications, V160, P7, DOI [10.5120/ijca2017913081, DOI 10.5120/IJCA2017913081] DataReporter, 2022, Dital 2022: YouTube's AD reach passes 2.5 billion DataReporter, 2023, Global social media statistics Daud NN, 2020, J NETW COMPUT APPL, V166, DOI 10.1016/j.jnca.2020.102716 De Veirman M, 2017, INT J ADVERT, V36, P798, DOI 10.1080/02650487.2017.1348035 Demandsage, 2023, YouTube statistics for 2023 (demographics & usage) Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Dimitrieska Savica., 2021, Economics and Management, V18, P109 Farivar S, 2022, J RETAIL CONSUM SERV, V67, DOI 10.1016/j.jretconser.2022.103026 Grover A, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P855, DOI 10.1145/2939672.2939754 Hamilton WL, 2017, ADV NEUR IN, V30 Hearst MA, 1998, IEEE INTELL SYST APP, V13, P18, DOI 10.1109/5254.708428 Hu XJ, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103142 Huang X, 2017, P 2017 SIAM INT C DA, P633, DOI DOI 10.1137/1.9781611974973.71 Hudders L, 2023, INT J ADVERT, V42, P151, DOI 10.1080/02650487.2022.2137318 Hwang S, 2023, INT J MACH LEARN CYB, V14, P3205, DOI 10.1007/s13042-023-01828-3 Isinkaye FO, 2015, EGYPT INFORM J, V16, P261, DOI 10.1016/j.eij.2015.06.005 Jeong D, 2022, EXPERT SYST APPL, V210, DOI 10.1016/j.eswa.2022.118375 Jiang Hongyun, 2022, 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC), P660, DOI 10.1109/ICNISC57059.2022.00135 Kaya B, 2020, J INF SCI, V46, P53, DOI 10.1177/0165551518824577 Kim D, 2024, COMPUT VIS IMAGE UND, V238, DOI 10.1016/j.cviu.2023.103879 Kim S, 2021, WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P319, DOI 10.1145/3437963.3441803 Kipf T. N., 2017, INT C LEARN REPRESEN, DOI DOI 10.48550/ARXIV.1609.02907 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Kurtin K.S., 2018, J SOCIAL MEDIA SOC, V7, P233 Lee J, 2023, TELEMAT INFORM, V85, DOI 10.1016/j.tele.2023.102066 Lee MY, 2023, IEEE T AUTOM SCI ENG, DOI 10.1109/TASE.2023.3251383 Lee S, 2022, KNOWL-BASED SYST, V242, DOI 10.1016/j.knosys.2022.108437 Lee S, 2023, APPL MATH COMPUT, V458, DOI 10.1016/j.amc.2023.128219 Lee S, 2023, TELEMAT INFORM, V78, DOI 10.1016/j.tele.2023.101948 Li Y, 2021, MARK INTELL PLAN, V39, P960, DOI 10.1108/MIP-04-2021-0104 Liang ZH, 2016, IEEE INT C BIOINFORM, P493, DOI 10.1109/BIBM.2016.7822567 Liben-Nowell D, 2007, J AM SOC INF SCI TEC, V58, P1019, DOI 10.1002/asi.20591 Lin ZH, 2022, PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), P2320, DOI 10.1145/3485447.3512104 Liu GG, 2022, ALEX ENG J, V61, P905, DOI 10.1016/j.aej.2021.04.081 Lou C., 2019, Journal of Interactive Advertising, V19, P58, DOI DOI 10.1080/15252019.2018.1533501 Martensen A, 2018, J FASH MARK MANAG, V22, P335, DOI 10.1108/JFMM-09-2017-0095 Masuda H, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121246 Molazadeh Farsangi A., 2021, Ph.D. thesis BCE Kommunikacio es Szociologia Intezet Nagarnaik P, 2015, 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), P1603, DOI 10.1109/ECS.2015.7124857 Newman MEJ, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.025102 Niwattanakul Suphakit, 2013, IMECS 2013 Proceedings of International Multiconference of Engineers and Computer Scientists, P380 Pan Shirui, 2016, NETWORK, P1895 Park C., 2023, Int. J. Adv. Smart Converg., V12, P1 Park E, 2023, J BIG DATA-GER, V10, DOI 10.1186/s40537-022-00674-4 Perozzi B, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P701, DOI 10.1145/2623330.2623732 Peterson L. E., 2009, SCHOLARPEDIA, V4, P1883, DOI DOI 10.4249/SCHOLARPEDIA.1883 Polatidis N, 2017, COMPUT STAND INTER, V51, P14, DOI 10.1016/j.csi.2016.10.014 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Rieder B, 2023, SOC MEDIA SOC, V9, DOI 10.1177/20563051231180628 Rish I, 2001, IJCAI 2001 workshop on empirical methods in artificial intelligence, V3, P41, DOI DOI 10.1039/B104835J Scarselli F, 2009, IEEE T NEURAL NETWOR, V20, P61, DOI 10.1109/TNN.2008.2005605 Shang KK, 2019, CHAOS, V29, DOI 10.1063/1.5107440 Sharma S, 2022, EDUC INF TECHNOL, V27, P1523, DOI 10.1007/s10639-021-10643-8 Shi Y., 2021, P 30 INT JOINT C ART, P1548, DOI 10.24963/ijcai.2021/214 Singh R. H., 2020, International Journal of Engineering and Advanced Technology, V9, P556, DOI 10.35940/ijeat.E9666.069520 Sodeinde O.A., 2022, SAU J. Manag. Soc. Sci., V5, P15 Sokolova K, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.01.011 Srivastava A, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.02.018 Statistia, 2023, Number of YouTubers creators and influencers in the United States as of June 2023, by follower count Statistia, 2023, Influencer marketing platform market size worldwide from 2022 to 2025 Statistia, 2022, Hours of video uploaded to YouTube every minute as of February 2022 Statistia, 2023, Number of influencers brands worked with worldwide as of February 2023 Sun X., 2021, Acad. J. Bus. Manag., V3, P1 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Tran GA, 2019, PSYCHOL MARKET, V36, P923, DOI 10.1002/mar.21245 Velickovic P., 2017, ARXIV, DOI DOI 10.48550/ARXIV.1710.10903 Venciute D, 2023, J RETAIL CONSUM SERV, V75, DOI 10.1016/j.jretconser.2023.103506 Victoria priscilla C., 2022, Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021. Lecture Notes on Data Engineering and Communications Technologies (117), P383, DOI 10.1007/978-981-19-0898-9_30 Wang SH, 2016, CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, P1753, DOI 10.1145/2983323.2983756 Wu SW, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3535101 Xiao M., 2023, J. Interact. Advert., V23, P166 Yang C, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P2111 Zhang LL, 2020, MULTIMED TOOLS APPL, V79, P13197, DOI 10.1007/s11042-019-08451-x Zhang MH, 2018, ADV NEUR IN, V31 Zhou T, 2009, EUR PHYS J B, V71, P623, DOI 10.1140/epjb/e2009-00335-8 Zhou Z., 2023, INT C MACHINE LEARNI, P42644 Zhu ZW, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P3483, DOI 10.1145/3308558.3313678 NR 95 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAY PY 2024 VL 78 AR 103705 DI 10.1016/j.jretconser.2024.103705 EA JAN 2024 PG 14 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA JA5N5 UT WOS:001170446300001 DA 2024-03-27 ER PT J AU Tinyakova, VI Lavrinenko, YB Evlaev, AN Sulyan, GS Tusova, AA AF Tinyakova, Viktoriya, I Lavrinenko, Yaroslav B. Evlaev, Andrey N. Sulyan, Gagik S. Tusova, Alexandra A. TI Specific Features and Trends in the Field of Application of Artificial Neural Networks in Marketing SO TURISMO-ESTUDOS E PRATICAS LA English DT Article DE marketing; artificial neural network; marketing strategy; example artificial neural network; retargeting in marketing AB Purpose: The purpose of the article is to demonstrate the applied capabilities of neural networks in relation to the up-to-date task of marketing - predicting the effectiveness of buying a banner space for retargeting. Design/methodology/approach: The authors evaluate the development of neural networks, which are more and more involved in people's lives. They are becoming an essential tool in modern marketing, as well. The article considers the history of the development of neural networks and identifies the prerequisites for their wide use. The effectiveness of the use of neural networks in solving the tasks of a marketer in the following subject areas was evaluated: marketing analysis, the formation of ideas and strategies, content creation, automation of technical work and work with clients. The influence of neural networks and digitalization of marketing leads to the fact that for the marketer it is no longer important whether it is "a consumer or a person" as such. Findings: Modern marketing has been shown to increase its effectiveness with the help of neural networks. However, neural network marketing, considering all its advantages, has several disadvantages. The authors identified the following: the impossibility of creating new approaches by neural networks, the content of unpredictable cognitive distortions by neural networks. As a result of the use of neural networks, marketers will become less in demand, and their work will become significantly accelerated and simplified. Therefore, for marketers to remain competitive, it is necessary to study related areas. Originality / value: An example of the effective use of neural networks in marketing is the retargeting of site visitors through advertising sites. The neural network selects and estimates the price for displaying an advertising banner based on basic functions and preliminary deep training. The neural network presented in the article offers optimal solutions, evaluating a significant number of factors. C1 [Tinyakova, Viktoriya, I] State Univ Management, Moscow, Russia. [Lavrinenko, Yaroslav B.] Voronezh State Tech Univ, Voronezh, Russia. [Evlaev, Andrey N.] Russian Univ Transport, Moscow, Russia. [Sulyan, Gagik S.] Gubkin Russian State Univ Oil & Gas, Natl Res Univ, Moscow, Russia. [Tusova, Alexandra A.] Russian State Social Univ, Moscow, Russia. C3 State University of Management; Voronezh State Technical University; Russian University of Transport; Gubkin Russian State University of Oil & Gas; Russian State Social University (RSSU) RP Tinyakova, VI (autor correspondiente), State Univ Management, Moscow, Russia. EM tviktoria@yandex.ru; yaroslav_lav1@bk.ru; acadra@yandex.ru; zirmanya@mail.ru; dance-fresh@rambler.ru RI Evlaev, Andrey/AAQ-9115-2021; Tusova, Aleksandra/AAL-3773-2021; Lavrinenko, Yaroslav Borisovich/Q-9593-2018 OI Evlaev, Andrey/0000-0002-4114-7645 CR Chang CC, 2015, COGENT ENG, V2, DOI 10.1080/23311916.2014.995785 De Tienne K. B., 2017, POLISH J MANAGEMENT, V25, P289 DeTienne KB, 2017, J STRATEG MARK, V25, P289, DOI 10.1080/0965254X.2015.1076881 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Lavrinenko Y., 2018, MODERN EC PROBLEMS S, V3, P77 Lavrinenko Y., 2014, MARKETING RUSSIA ABR, V3, P125 Leong L. Y., 2018, J ELECT COMMERCE RES, V19 Luiz M., 2015, QUANTITATIVE MODELLI Metcalf L, 2019, CALIF MANAGE REV, V61, P84, DOI 10.1177/0008125619862256 Paschen J., 2019, Journal of Business Industrial Marketing Sitokina N., 2018, REGION SYSTEMS EC MA, V3, P31 Tinyakova V, 2018, EC SOC DEVELOP, P907 NR 12 TC 0 Z9 0 U1 0 U2 1 PU UNIV ESTADO RIO GRANDE NORTE PI MOSSORO PA RUA ANTONIO VICTOR 116, BAIRRO RINCAO, MOSSORO, RN CEP59626-310, BRAZIL SN 2316-1493 J9 TURISMO JI Turismo PD SEP PY 2020 SU 4 PG 9 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA NE6AP UT WOS:000562682200012 DA 2024-03-27 ER PT J AU Bui, MT Tran, TTH AF Bui, My-Trinh Tran, Thi-Thanh-Huyen TI The internal and external effect of environmental complexity on business responses: a PLS-SEM and artificial neural network approach SO JOURNAL OF HOSPITALITY AND TOURISM INSIGHTS LA English DT Article; Early Access DE Creativity; Traditionality; Mimetic pressure; Status certainty; Digital technology speed; Business response; Performance ID EMPLOYEE CREATIVITY; KNOWLEDGE TRANSFER; INNOVATION; FIRM; REPLICATION; UNCERTAINTY; MODEL; ORGANIZATIONS; ENTRAINMENT; PERFORMANCE AB PurposeIn the wake of severe socio-economic damage, many firms have made creative and technological progress in their responses to the COVID-19 crisis. This paper examines internal and external environmental complexity elements as antecedents of business responses and builds a framework for tourism firms to respond to the pandemic crisis.Design/methodology/approachThis study obtained survey data from 395 respondents in the Vietnamese tourism and hospitality industry. A partial least squares structural equation modeling-artificial neural network approach was used to examine various combinations of internal and external environmental complexity elements that have different impacts on business responses and firms' performance.FindingsThe knowledge and practice created by the firm's employees (individual creativity), obtained from traditional contexts (traditionality) were identified as internal environmental complexity factors while practice learned from other firms (mimetic pressure), information processing (status certainty) and digital transformation (digital technology speed) were treated as external environmental complexity factors. Internal and external environmental complexity factors influence business responses and firms' performance positively but differently.Practical implicationsThis study demonstrates that firms should integrate their internal environment of creativity and traditionality with external environmental factors of mimetic pressure, status certainty and digital technology speed to create better business responses, and thus firm performance in the COVID-19 era.Originality/valueThis investigation contributes to environmental research and narrows the existing research gap relating to the association between types of environmental complexity and firms' responsive action, which then influence firms' performance in terms of sustainable competitiveness. C1 [Bui, My-Trinh] Vietnam Natl Univ Hanoi, Int Sch, Hanoi, Vietnam. [Tran, Thi-Thanh-Huyen] Banking Acad Vietnam, Hanoi, Vietnam. C3 Vietnam National University Hanoi; Banking Academy of Vietnam RP Bui, MT (autor correspondiente), Vietnam Natl Univ Hanoi, Int Sch, Hanoi, Vietnam. EM buimytrinh@gmail.com RI Bui, My-Trinh/ABC-8687-2021 OI Bui, My-Trinh/0000-0001-9125-5655; Tran, Thi-Thanh-Huyen/0009-0001-4909-4832 FU Vietnam National Foundation for Science and Technology Development (NAFOSTED) [502.02-2019.310] FX "This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 502.02-2019.310." CR Albert D, 2015, ACAD MANAGE REV, V40, P210, DOI 10.5465/amr.2012.0177 Amabile TM, 2016, RES ORGAN BEHAV, V36, P157, DOI 10.1016/j.riob.2016.10.001 Ancona D, 1996, RES ORGAN BEHAV, V18, P251 Ansong A, 2023, J HOSP TOUR INSIGHTS, V6, P1890, DOI 10.1108/JHTI-06-2022-0218 Argote L, 2000, ORGAN BEHAV HUM DEC, V82, P150, DOI 10.1006/obhd.2000.2893 Battram A., 1999, Navigating complexity Becker JM, 2023, INT J CONTEMP HOSP M, V35, P321, DOI 10.1108/IJCHM-04-2022-0474 Capaldo A, 2017, J MANAGE, V43, P503, DOI 10.1177/0149206314535442 Carson SJ, 2006, ACAD MANAGE J, V49, P1058, DOI 10.2307/20159816 Chen GZ, 2020, J TRAVEL RES, V59, P864, DOI 10.1177/0047287519861170 Chen MJ, 2015, STRATEGIC MANAGE J, V36, P758, DOI 10.1002/smj.2245 Cheng TM, 2023, J HOSP TOUR RES, V47, P590, DOI 10.1177/10963480211012459 Choi M, 2023, INT J CONTEMP HOSP M, V35, P469, DOI 10.1108/IJCHM-02-2022-0157 DAFT RL, 1984, ACAD MANAGE REV, V9, P284, DOI 10.2307/258441 De Massis A, 2016, ACAD MANAGE PERSPECT, V30, P93, DOI 10.5465/amp.2015.0017 Dedeoglu BB, 2023, J HOSP TOUR INSIGHTS, V6, P191, DOI 10.1108/JHTI-02-2021-0048 Dibrell C, 2015, J BUS RES, V68, P19, DOI 10.1016/j.jbusres.2014.05.012 Su DN, 2021, CURR ISSUES TOUR, V24, P3189, DOI 10.1080/13683500.2020.1863930 DIMAGGIO PJ, 1983, AM SOCIOL REV, V48, P147, DOI 10.2307/2095101 Du J, 2021, INT J HOSP MANAG, V98, DOI 10.1016/j.ijhm.2021.103034 Elgarhy SD, 2023, INT J CONTEMP HOSP M, V35, P1986, DOI 10.1108/IJCHM-04-2022-0508 Fadaee A., 2014, International Journal of Economy, Management and Social Sciences, V3, P1, DOI DOI 10.1177/1938965510393723 Ferreira J, 2020, TECHNOVATION, V92-93, DOI 10.1016/j.technovation.2018.11.004 Franco S, 2022, J KNOWL MANAG, V26, P486, DOI 10.1108/JKM-05-2021-0356 Galunic DC, 1998, STRATEGIC MANAGE J, V19, P1193, DOI 10.1002/(SICI)1097-0266(1998120)19:12<1193::AID-SMJ5>3.3.CO;2-6 González-González T, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102877 Gulati R, 1998, ADMIN SCI QUART, V43, P781, DOI 10.2307/2393616 Guo H, 2020, FRONT BUS RES CHINA, V14, DOI 10.1186/s11782-020-00087-1 Han MS, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121146 Ho GKS, 2023, J HOSP TOUR INSIGHTS, V6, P835, DOI 10.1108/JHTI-09-2021-0242 Hon AHY, 2011, CORNELL HOSP Q, V52, P125, DOI 10.1177/1938965511403921 Hossain MS, 2022, J HOSP TOUR INSIGHTS, V5, P79, DOI 10.1108/JHTI-08-2020-0152 Houchin K, 2005, BRIT J MANAGE, V16, P149, DOI 10.1111/j.1467-8551.2005.00427.x Jeong M, 2022, INT J CONTEMP HOSP M, V34, P836, DOI 10.1108/IJCHM-07-2021-0831 Johannessen JA, 1999, INT J INFORM MANAGE, V19, P121, DOI 10.1016/S0268-4012(99)00004-3 Kahveci E, 2023, J HOSP TOUR INSIGHTS, V6, P1569, DOI 10.1108/JHTI-08-2021-0232 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Kodama M, 2001, INT J HUM RESOUR MAN, V12, P1062 KOGUT B, 1992, ORGAN SCI, V3, P383, DOI 10.1287/orsc.3.3.383 Kruesi MA, 2023, J HOSP TOUR INSIGHTS, V6, P549, DOI 10.1108/JHTI-10-2021-0270 Lee C, 2016, TOURISM MANAGE, V53, P215, DOI 10.1016/j.tourman.2015.09.017 Lee RP, 2004, J MARKETING, V68, P157, DOI 10.1509/jmkg.68.4.157.42730 Li YX, 2018, ACAD MANAGE J, V61, P2000, DOI 10.5465/amj.2015.1101 Li Z, 2018, TOURISM MANAGE, V69, P23, DOI 10.1016/j.tourman.2018.05.004 Liang HG, 2007, MIS QUART, V31, P59 Lin Y, 2019, J MANAGE, V45, P3114, DOI 10.1177/0149206318777589 Liu D, 2017, ACAD MANAGE J, V60, P1164, DOI 10.5465/amj.2015.0230 Liu Y, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2022.102458 Luo CY, 2022, J HOSP TOUR MANAG, V51, P491, DOI 10.1016/j.jhtm.2022.05.006 Ma JN, 2023, TOURISM MANAGE, V95, DOI 10.1016/j.tourman.2022.104664 Mai NK, 2023, J HOSP TOUR INSIGHTS, V6, P1253, DOI 10.1108/JHTI-02-2022-0083 Mair S., 2020, The ConversationMarch 30 Marinova SV, 2019, J MANAGE, V45, P2045, DOI 10.1177/0149206318755301 Matsuno K, 2019, LONG RANGE PLANN, V52, P236, DOI 10.1016/j.lrp.2018.02.006 Meeus MTH, 2000, RES POLICY, V29, P41, DOI 10.1016/S0048-7333(99)00032-3 Mehran J, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101954 MILLIKEN FJ, 1987, ACAD MANAGE REV, V12, P133, DOI 10.2307/257999 Najar AH, 2023, J HOSP TOUR INSIGHTS, V6, P1357, DOI 10.1108/JHTI-03-2022-0100 Parente R, 2019, J INT BUS STUD, V50, P275, DOI 10.1057/s41267-018-0179-z Park S, 2023, INT J HOSP MANAG, V114, DOI 10.1016/j.ijhm.2023.103568 Petruzzelli AM, 2014, LONG RANGE PLANN, V47, P224, DOI 10.1016/j.lrp.2012.09.001 Preko A, 2023, J HOSP TOUR INSIGHTS, V6, P779, DOI 10.1108/JHTI-10-2021-0294 Qi H, 2023, MANAGE DECIS, V61, P144, DOI 10.1108/MD-09-2021-1158 Ramus T, 2017, ACAD MANAGE J, V60, P1253, DOI 10.5465/amj.2015.0394 Ranucci R., 2022, Long. Range Plan, DOI [10.1016/j.lrp.2022.102268, DOI 10.1016/J.LRP.2022.102268] SCOTT SG, 1994, ACAD MANAGE J, V37, P580, DOI 10.5465/256701 Shahzad M, 2020, J CLEAN PROD, V275, DOI 10.1016/j.jclepro.2020.124163 Sharma P, 2020, J BUS RES, V116, P188, DOI 10.1016/j.jbusres.2020.05.026 Sigala M, 2020, J BUS RES, V117, P312, DOI 10.1016/j.jbusres.2020.06.015 Silver M. S., 1988, Journal of Management Information Systems, V5, P51 Singh SH, 2021, TECHNOL FORECAST SOC, V164, DOI 10.1016/j.techfore.2019.02.002 Su F, 2023, LONG RANGE PLANN, V56, DOI 10.1016/j.lrp.2022.102292 Sun KA, 2021, J HOSP TOUR MANAG, V46, P468, DOI 10.1016/j.jhtm.2021.02.002 Tewari A, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2022.102938 Thompson JD., 2017, Organizations in Action, DOI [DOI 10.4324/9781315125930, https://doi.org/10.4324/9781315125930] Tuomi A, 2023, J HOSP TOUR INSIGHTS, V6, P151, DOI 10.1108/JHTI-07-2021-0175 van Knippenberg D, 2017, ANNU REV ORGAN PSYCH, V4, P211, DOI 10.1146/annurev-orgpsych-032516-113240 Vatankhah S, 2023, J BUS RES, V155, DOI 10.1016/j.jbusres.2022.113350 Wang JY, 2024, LONG RANGE PLANN, V57, DOI 10.1016/j.lrp.2021.102140 Wang Z, 2023, INT J CONTEMP HOSP M, DOI 10.1108/IJCHM-11-2022-1498 Williams AM, 2022, ANN TOURISM RES, V92, DOI 10.1016/j.annals.2021.103346 Williams AM, 2021, J TRAVEL RES, V60, P293, DOI 10.1177/0047287519896012 Williams C, 2007, STRATEG MANAGE J, V28, P867, DOI 10.1002/smj.614 Williams TA, 2017, ACAD MANAG ANN, V11, P733, DOI 10.5465/annals.2015.0134 Winter SG, 2001, ORGAN SCI, V12, P730, DOI 10.1287/orsc.12.6.730.10084 WOODMAN RW, 1993, ACAD MANAGE REV, V18, P293, DOI 10.2307/258761 Wu B, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121214 Xie XM, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121548 Yang EJ, 2023, TOURISM MANAGE, V95, DOI 10.1016/j.tourman.2022.104661 Yang M, 2021, INT J CONTEMP HOSP M, V33, P1230, DOI 10.1108/IJCHM-08-2020-0920 Zaki K, 2022, INT J CONTEMP HOSP M, V34, P1768, DOI 10.1108/IJCHM-08-2021-1043 Zhang JM, 2019, J MANAGE, V45, P2635, DOI 10.1177/0149206318761575 Zhang WZ, 2022, TOURISM MANAGE, V91, DOI 10.1016/j.tourman.2022.104525 Zhang XY, 2022, INT J CONTEMP HOSP M, V34, P2004, DOI 10.1108/IJCHM-10-2021-1262 NR 94 TC 0 Z9 0 U1 3 U2 3 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2514-9792 EI 2514-9806 J9 J HOSP TOUR INSIGHTS JI J. Hosp. Tour. Insights PD 2023 DEC 19 PY 2023 DI 10.1108/JHTI-03-2023-0147 EA DEC 2023 PG 21 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA DA7A5 UT WOS:001129365800001 DA 2024-03-27 ER PT J AU Rettie, R AF Rettie, R TI An exploration of flow during Internet use SO INTERNET RESEARCH-ELECTRONIC NETWORKING APPLICATIONS AND POLICY LA English DT Article DE consumer behaviour; internet; electronic commerce; human-computer interaction; Web design ID COMPUTER; EXPERIENCE AB Several authors have suggested that the concept of flow is useful for understanding consumer behaviour in computer-mediated environments. Previous Internet flow research has used self-completion questionnaires. This research uses focus groups to facilitate the identification and discussion of respondents' Internet experience. Explores respondents' awareness and experience of flow. Finds that half of the respondents recognised Internet flow experience and that Internet flow seems to prolong Internet and Web site usage. Identifies several factors that promote or inhibit Internet flow. These factors may help practitioners design Web sites that stimulate Row and encourage users to stay on the site. C1 Kingston Univ, Surrey, England. C3 Kingston University RP Rettie, R (autor correspondiente), Kingston Univ, Surrey, England. CR [Anonymous], 1988, OPTIMAL EXPERIENCE CHEN H, 1998, 9 INF RES MAN ASS IN Chen HS, 1999, ACTA PHYS-CHIM SIN, V15, P454, DOI 10.3866/PKU.WHXB19990513 CSIKSZENTMIHALY.M, 1990, FLOW PSYCHOL OPTIMAL CSIKSZENTMIHALY.M, 1993, EVOLVING SELF PSYCHO CSIKSZENTMIHALYI M, 1989, J PERS SOC PSYCHOL, V56, P815, DOI 10.1037/0022-3514.56.5.815 Csikszentmihalyi M., 1975, Beyond Boredom And Anxiety Csikszentmihalyi M., 1982, REV PERSONALITY SOCI, V3, P13 Delle FaveA., 1988, OPTIMAL EXPERIENCE P, P193, DOI DOI 10.1017/CBO9780511621956.012 Dreze X., 1999, INTERNET ADVERTISING GHANI JA, 1994, J PSYCHOL, V128, P381, DOI 10.1080/00223980.1994.9712742 Gordon W., 1988, Qualitative market research: A practitioner and buyers guide Hoffman D. L., 1997, Information Society, V13, P43, DOI 10.1080/019722497129278 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 JENNER B, 2000, THESIS KINGSTON U Larson R, 1983, NATURALISTIC APPROAC, V15 Mariampolski Hy., 1984, PUBLIC RELAT J, V40, P21 Morgan D.L., 1998, The Focus group kit NEL V, 1999, INTERNET RES, V9 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 QUELCH JA, 1996, SLOAN MANAGEMENT SPR, P60 Schlosser AE, 1999, J INTERACT MARK, V13, P34, DOI 10.1002/(SICI)1520-6653(199922)13:3<34::AID-DIR3>3.0.CO;2-R TREVINO LK, 1992, COMMUN RES, V19, P539, DOI 10.1177/009365092019005001 WEBSTER J, 1993, COMPUT HUM BEHAV, V9, P411, DOI 10.1016/0747-5632(93)90032-N NR 24 TC 120 Z9 128 U1 2 U2 31 PU MCB U P LIMITED PI BRADFORD PA 60/62 TOLLER LANE, BRADFORD BD8 9BY, W YORKSHIRE, ENGLAND SN 1066-2243 J9 INTERNET RES JI Internet Res.-Electron. Netw. Appl. Policy PY 2001 VL 11 IS 2 BP 103 EP 113 DI 10.1108/10662240110695070 PG 11 WC Business; Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science; Telecommunications GA 437RG UT WOS:000169006900002 OA Green Submitted, Green Accepted DA 2024-03-27 ER PT J AU Biswas, B Sanyal, MK Mukherjee, T AF Biswas, Biswajit Sanyal, Manas Kumar Mukherjee, Tuhin TI AI-Based Sales Forecasting Model for Digital Marketing SO INTERNATIONAL JOURNAL OF E-BUSINESS RESEARCH LA English DT Article DE Artificial Neural Network; Digital Marketing; Sales Prediction AB Sales prediction with minute accuracy plays a crucial role for an organization to sustain amidst the global competitive business environment. The use of artificial intelligence (AI) on top of the existing information technology environment has become one of the most exciting and promising area for any organizations in the current era of digital marketing. E-marketing provides customers to share their views with other customers. In this paper, the authors proposed a model which will be helpful to the digital marketers to find out the potential customers to extract value from customer feedback. The proposed model is based on artificial neural network and will make it possible to identify the customer demand depending on previous feedback and to predict the future sales volume of the product. The authors tried to utilize AI, mainly neural networks (NNs), to construct an intelligent sales prediction and also to apply ANNs for prediction regarding sales of mobile phone (Redmi, Note 6 Pro) one month ahead depending on customer feedback on two e-commerce platform, namely Amazon.in and Snapdeal.in. C1 [Biswas, Biswajit; Sanyal, Manas Kumar; Mukherjee, Tuhin] Univ Kalyani, Dept Business Adm, Kalyani, India. C3 Kalyani University RP Biswas, B (autor correspondiente), Univ Kalyani, Dept Business Adm, Kalyani, India. RI BISWAS, BISWAJIT/JFJ-0418-2023 OI BISWAS, BISWAJIT/0000-0002-5302-7675 CR Al-Imam A, 2019, A Gateway Towards Machine Learning: Predictive Analytics and Neural Networks in IBM-SPSS (SPSS v. 24) Altman DG, 2000, STAT MED, V19, P453, DOI 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5 Aydin G, 2022, INT J E-BUS RES, V18, DOI 10.4018/IJEBR.309397 Baba N., 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, P565, DOI 10.1109/IJCNN.2000.859455 Bazerman M.H., 2012, Judgment in Managerial Decision Making, Veighth Biswas B, 2021, INT J ONLINE MARKET, V11, P78, DOI 10.4018/IJOM.2021010105 Biswas B, 2019, 2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), P432, DOI [10.1109/confluence.2019.8776921, 10.1109/CONFLUENCE.2019.8776921] Cheriyan S, 2018, 2018 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE), P53, DOI 10.1109/iCCECOME.2018.8659115 Chong AYL, 2014, INT J PROD ECON, V154, P48, DOI 10.1016/j.ijpe.2014.04.005 Choudhary R., 2018, 2018 4 INT C COMP CO, DOI [10.1109/CCAA.2018.8777620, DOI 10.1109/CCAA.2018.8777620] Collins G., 1988, IEEE INT C NEUR NETW, DOI [10.1109/ICNN.1988.23960, DOI 10.1109/ICNN.1988.23960] Dreiseitl S, 2002, J BIOMED INFORM, V35, P352, DOI 10.1016/S1532-0464(03)00034-0 Floyd K, 2014, J RETAILING, V90, P217, DOI 10.1016/j.jretai.2014.04.004 Frank C, 2003, INT J CLOTH SCI TECH, V15, P107, DOI DOI 10.1108/09556220310470097 Gustriansyah R, 2022, EXPERT SYST APPL, V207, DOI 10.1016/j.eswa.2022.118043 Jagielska I., 1993, Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, P284, DOI 10.1109/ANNES.1993.323024 Kantasa-ard A, 2021, INT J PROD RES, V59, P7491, DOI 10.1080/00207543.2020.1844332 Kreutzer T., 2009, GENERATION MOBILE ON Kumari JJA, 2022, INT J E-BUS RES, V18, DOI 10.4018/IJEBR.309388 Liu N, 2013, MATH PROBL ENG, V2013, DOI 10.1155/2013/738675 Mediavilla Mario Angos, 2022, Procedia CIRP, P1126, DOI 10.1016/j.procir.2022.05.119 Mitra A, 2022, IETE J RES, V3, DOI [10.1007/s43069-022-00166-4, DOI 10.1007/S43069-022-00166-4] Naveen P, 2021, P 4 NAT C CURR EM PR, V2387, P14, DOI [10.1063/5.0068655, DOI 10.1063/5.0068655] Penpece D., 2014, International Journal of Trade, Economics and Finance, V5, P435, DOI DOI 10.7763/IJTEF.2014.V5.411 Seyedan M, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00329-2 Sharma SK, 2019, INF SYST E-BUS MANAG, V17, P261, DOI 10.1007/s10257-019-00438-3 Sun ZL, 2008, DECIS SUPPORT SYST, V46, P411, DOI 10.1016/j.dss.2008.07.009 Vapnik VN., 2000, NATURE STAT LEARNING, P1, DOI DOI 10.1007/978-1-4757-3264-1 Yuan FC, 2020, SOFT COMPUT, V24, P2033, DOI 10.1007/s00500-019-04036-w NR 29 TC 0 Z9 0 U1 3 U2 3 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1548-1131 EI 1548-114X J9 INT J E-BUS RES JI Int. J. E-Bus. Res. PD JAN-JUN PY 2023 VL 19 IS 1 AR 88 DI 10.4018/IJEBR.317888 PG 14 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA FF0C7 UT WOS:001144221100005 OA gold DA 2024-03-27 ER PT J AU Mahnke, R Benlian, A Hess, T AF Mahnke, Rolf Benlian, Alexander Hess, Thomas TI A Grounded Theory of Online Shopping Flow SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE Flow theory; digital service innovation; user experience; human-computer interaction; e-tail; grounded theory ID WEB SITE; EXPERIENCE; MODEL; BEHAVIOR; COMMUNICATION; ENVIRONMENTS; ACCEPTANCE; USAGE AB With the increasing number of websites that have found their way into our daily lives, substantial resources are invested in enhancing user experience beyond mere functionality. Optimizing flow-the psychological state of deep focus while conducting a fluent activity-seems a promising approach, resulting in a win-win situation for both users and website operators. Flow has been found to result in "optimal" user experience leading to intrinsically motivated behavior, engagement, and loyalty. However, to date, there is little concrete knowledge of or advice on how to design a website for flow. This study develops a grounded theory of flow experiences in the context of online shopping, and sheds light on the theoretical relationships between concrete realizable website design options, corresponding latent constructs, and flow experience. Based on our findings we derive theoretical as well as practical implications for understanding and designing flow experience on the web. C1 [Mahnke, Rolf] Univ Munich, Informat Syst, D-81377 Munich, Germany. [Benlian, Alexander] Tech Univ Darmstadt, Informat Syst, Especially Elect Serv, Darmstadt, Germany. [Hess, Thomas] Univ Munich, Informat Syst & Management, D-81377 Munich, Germany. [Hess, Thomas] Univ Munich, Informat Syst & Management, Inst Informat Syst & New Media, D-81377 Munich, Germany. [Hess, Thomas] Univ Munich, Informat Syst & Management, Ctr Internet Res & Media Integrat, D-81377 Munich, Germany. C3 University of Munich; Technical University of Darmstadt; University of Munich; University of Munich; University of Munich RP Mahnke, R (autor correspondiente), Univ Munich, Informat Syst, Marchioninistr 15, D-81377 Munich, Germany. EM mahnke@bwl.lmu.de; benlian@ise.tu-darmstadt.de; thess@bwl.lmu.de RI Hess, Thomas K/A-1774-2016 OI Hess, Thomas/0000-0003-3969-7477 CR Adelaar T, 2003, J INF TECHNOL-UK, V18, P247, DOI 10.1080/0268396032000150799 Agarwal R, 2000, MIS QUART, V24, P665, DOI 10.2307/3250951 Bardhan IR, 2010, J MANAGE INFORM SYST, V26, P13, DOI 10.2753/MIS0742-1222260402 Birks DF, 2013, EUR J INFORM SYST, V22, P1, DOI 10.1057/ejis.2012.48 Bridges E, 2008, J BUS RES, V61, P309, DOI 10.1016/j.jbusres.2007.06.017 Brown T, 2008, HARVARD BUS REV, V86, P84 Cai S, 2011, INT J ELECTRON COMM, V15, P159, DOI 10.2753/JEC1086-4415150405 Carroll J. M., 1988, SIGCHI Bulletin, V19, P21, DOI 10.1145/49108.1045604 Chang HH, 2008, COMPUT HUM BEHAV, V24, P2336, DOI 10.1016/j.chb.2008.01.001 Charmaz K., 2014, Constructing grounded theory Chen H, 1999, COMPUT HUM BEHAV, V15, P585, DOI 10.1016/S0747-5632(99)00038-2 Childers TL, 2001, J RETAILING, V77, P511, DOI 10.1016/S0022-4359(01)00056-2 Choi DH, 2007, INT J HUM-COMPUT ST, V65, P223, DOI 10.1016/j.ijhcs.2006.10.002 Csikszentmihalyi M, 2008, Flow the psychology of optimal experience Csikszentmihalyi M., 1975, Beyond Boredom And Anxiety Csikszentmihalyi M., 1994, The evolving self: A psychology for the third millennium Dailey L, 2004, J BUS RES, V57, P795, DOI 10.1016/S0148-2963(02)00364-8 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Deng LQ, 2010, EUR J INFORM SYST, V19, P60, DOI 10.1057/ejis.2009.50 Engeser S, 2008, MOTIV EMOTION, V32, P158, DOI 10.1007/s11031-008-9102-4 Fishbein M., 1975, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research Ghani J. A., 1991, Proceedings of the Twelfth International Conference on Information Systems, P229 GHANI JA, 1995, HUMAN COMPU, P291 GHANI JA, 1994, J PSYCHOL, V128, P381, DOI 10.1080/00223980.1994.9712742 Glaser B. G., 1967, BRIT J SOCIOLOGY, V20 Glaser B.G., 1992, EMERGENCE VS FORCING Glaser B. G., 1967, The Discovery of Grounded Theory: Strategies for Qualitative Research Grots A., 2009, MARKETING REV ST GAL, V26, P18, DOI [10.1007/s11621-009-0027-4, DOI 10.1007/S11621-009-0027-4] Guru A, 2001, MANAGING INTERNET AND INTRANET TECHNOLOGIES IN ORGANIZATIONS: CHALLENGES AND OPPORTUNITIES, P50 Hampton-Sosa W, 2005, INT J ELECTRON COMM, V10, P55, DOI 10.1080/10864415.2005.11043965 Hoffman D. L., 1997, Information Society, V13, P43, DOI 10.1080/019722497129278 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 Hsiang Chen, 2000, Information Technology & People, V13, P263, DOI 10.1108/09593840010359473 Hsu CL, 2004, INFORM MANAGE-AMSTER, V41, P853, DOI 10.1016/j.im.2003.08.014 Huang MH, 2003, COMPUT HUM BEHAV, V19, P425, DOI 10.1016/S0747-5632(02)00080-8 Hutchison A.J., 2011, Qualitative Research in Psychology, V8, P247, DOI DOI 10.1080/14780880903304527 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Kelle U., 1999, EINZELFALL TYPUS FAL Klein LR, 2003, J INTERACT MARK, V17, P41, DOI 10.1002/dir.10046 Koh J, 2003, INT J ELECTRON COMM, V8, P75, DOI 10.1080/10864415.2003.11044295 Korzaan ML, 2003, J COMPUT INFORM SYST, V43, P25 Koufaris M, 2001, INT J ELECTRON COMM, V6, P115, DOI 10.1080/10864415.2001.11044233 Koufaris M, 2002, INFORM SYST RES, V13, P205, DOI 10.1287/isre.13.2.205.83 Kurz Andrea., 2007, Qualitative Marktforschung: Konzepte - Methoden - Analysen, V1, P463, DOI DOI 10.1007/978-3-8349-9258-1_29 Lamnek Siegfried., 2005, Qualitative Sozialforschung: Lehrbuch Laugwitz B, 2008, LECT NOTES COMPUT SC, V5298, P63, DOI 10.1007/978-3-540-89350-9_6 Leonard Dorothy., 1995, WELLSPRINGS KNOWLEDG Lin CS, 2005, INFORM MANAGE-AMSTER, V42, P683, DOI 10.1016/j.im.2004.04.003 Lindgaard G., 1999, P OZCHI 99 WAGG WAGG, P149 Liu SH, 2009, COMPUT EDUC, V52, P599, DOI 10.1016/j.compedu.2008.11.002 Lombard M., 1997, J COMPUT-MEDIAT COMM, DOI [DOI 10.1111/J.10836101.1997.TB00072.X, 10.1111/j.1083, 10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X] Luna D, 2003, ADV CONSUM RES, V30, P280 Luna D, 2002, J ACAD MARKET SCI, V30, P397, DOI 10.1177/009207002236913 Mahnke R., 2012, 20 EUR C INF SYST EC, P1 Massimini F., 1991, AUSSERGEWOHNLICHE ER, P291 Mey G., 1999, ADOLESCENZ IDENTITAT Minichiello V., 2008, IN DEPTH INTERVIEWIN Nel D, 1999, INTERNET RES, V9, P109, DOI 10.1108/10662249910264873 Novak T.P., 1997, INFORMS MARK SCI INT, P1 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Novak TP, 2003, J CONSUM PSYCHOL, V13, P3, DOI 10.1207/S15327663JCP13-1&2_01 Ostrom AL, 2010, J SERV RES-US, V13, P4, DOI 10.1177/1094670509357611 Pace S, 2004, INT J HUM-COMPUT ST, V60, P327, DOI 10.1016/j.ijhcs.2003.08.005 Pace S., 2004, Issues in Informing Science Information Technology, V1, P341 Park S.R., 2008, Journal of Virtual Worlds Research, V1, P1 Pöyry E, 2013, ELECTRON COMMER R A, V12, P224, DOI 10.1016/j.elerap.2013.01.003 Reinhardt C, 2006, Z SPORTPSYCHOL, V13, P140, DOI 10.1026/1612-5010.13.4.140 Rettie R, 2001, INTERNET RES, V11, P103, DOI 10.1108/10662240110695070 Rheinberg F, 2003, Z PSYCHOL, V211, P161, DOI 10.1026//0044-3409.211.4.161 Rheinberg F., 2003, TESTS TRENDS ED, V16, P261 Rheinberg F., 2008, MOTIVATION, V7 Rheinberg F., 2010, Motivation und Handeln, P365, DOI [10.1007/978-3-642-12693-2_14, DOI 10.1007/978-3-642-12693-2_14] Rheinberg F., 2008, MOTIVATION ACTION, P329 Richard MO, 2005, J BUS RES, V58, P1019, DOI 10.1016/j.jbusres.2004.04.001 Sánchez-Franco MJ, 2006, BEHAV INFORM TECHNOL, V25, P19, DOI 10.1080/01449290500124536 Siekpe J.S., 2005, J ELECTRON COMMER RE, V6, P31 Skadberg YX, 2004, COMPUT HUM BEHAV, V20, P403, DOI 10.1016/S0747-5632(03)00050-5 Smith DN, 2004, J BUS RES, V57, P1199, DOI 10.1016/S0148-2963(02)00330-2 Stoll O., 2005, J SPORT PSYCHOL, V12, P75 TREVINO LK, 1992, COMMUN RES, V19, P539, DOI 10.1177/009365092019005001 van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660 WEBSTER J, 1993, COMPUT HUM BEHAV, V9, P411, DOI 10.1016/0747-5632(93)90032-N Witzel A., 1996, TRUE STORIES THEORY, P49 WITZEL A, 1989, QUALITATIVE FORSCHUN, P227 Witzel A., 2000, Forum: Qualitative Social Research (Online Journal) NR 85 TC 39 Z9 44 U1 7 U2 141 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1086-4415 EI 1557-9301 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD SPR PY 2015 VL 19 IS 3 BP 54 EP 89 DI 10.1080/10864415.2015.1000222 PG 36 WC Business; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA CE1RR UT WOS:000351590100005 DA 2024-03-27 ER PT J AU Zhang, M Chen, YG Zhang, S Zhang, WY Li, YX Yang, SQ AF Zhang, Miao Chen, Yuangao Zhang, Shuai Zhang, Wenyu Li, Yixiao Yang, Shuiqing TI Understanding mobile learning continuance from an online-cum-offline learning perspective: a SEM-neural network method SO INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS LA English DT Article DE mobile learning; perceived integration; gratifications; neural network; multi-analytic method ID HIGHER-EDUCATION; GRATIFICATIONS; STUDENTS; ADOPTION; MODEL; DETERMINANTS; TECHNOLOGY; ACCEPTANCE; UNIVERSITY; INTERNET AB Based on uses, gratifications theory and literature related to perceived integration, this study investigated the factors that influence college students' mobile learning continuance from an online-cum-offline learning perspective. A research model was developed and tested against data collected from 261 college students who are the mobile learning users of an online flipped learning platform in China. A multi-analytic method was employed whereby the proposed model was first tested using structural equation modelling (SEM), and the results of the SEM were used as inputs for a neural network approach to explain mobile learning continuance. The results show that perceived integration affects mobile learning continuance directly and indirectly via students' extrinsic gratification (social need) and intrinsic gratifications (affective need and entertainment need). According to the normalised importance, affective need is the most significant factor affecting mobile learning continuance, following by social need and entertainment need. C1 [Zhang, Miao] Zhejiang Univ Technol, Sch Educ Sci & Technol, Hangzhou 310014, Peoples R China. [Chen, Yuangao; Zhang, Shuai; Zhang, Wenyu; Li, Yixiao; Yang, Shuiqing] Zhejiang Univ Finance & Econ, Sch Informat Management & Artificial Intelligence, 18 XueYuan St, Hangzhou 310018, Peoples R China. C3 Zhejiang University of Technology; Zhejiang University of Finance & Economics RP Yang, SQ (autor correspondiente), Zhejiang Univ Finance & Econ, Sch Informat Management & Artificial Intelligence, 18 XueYuan St, Hangzhou 310018, Peoples R China. EM miranda.zhangm@foxmail.com; chenyg@zufe.edu.cn; zs760914@sina.com; wyzhang@e.ntu.edu.sg; yxli@zufe.edu.cn; yangshuiqing@zufe.edu.cn RI Chen, Yuangao/AAU-9505-2020; yang, sq/AAA-5465-2022 OI Chen, Yuangao/0000-0002-5960-9932; yang, sq/0000-0003-1864-814X FU Key Project of Zhejiang University of Finance and Economics Ideological and Political Excellence Project [2019SZ008]; National Natural Science Foundation of China [61502414, 71472163]; Zhejiang Provincial Natural Science Foundation of China [LY18G020013, LY18G020014] FX This work was funded by Key Project of Zhejiang University of Finance and Economics Ideological and Political Excellence Project, Grant No. 2019SZ008. This research was also funded by the National Natural Science Foundation of China, Grant Nos. 61502414 and 71472163, and by Zhejiang Provincial Natural Science Foundation of China, Grant Nos. LY18G020013 and LY18G020014. CR Cao LL, 2015, J RETAILING, V91, P198, DOI 10.1016/j.jretai.2014.12.005 Chee KN, 2017, EDUC TECHNOL SOC, V20, P113 Chen YC, 2014, COMPUT HUM BEHAV, V31, P159, DOI 10.1016/j.chb.2013.10.040 Cheon J, 2012, COMPUT EDUC, V59, P1054, DOI 10.1016/j.compedu.2012.04.015 Cheung CMK, 2011, COMPUT HUM BEHAV, V27, P1337, DOI 10.1016/j.chb.2010.07.028 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Chung CJ, 2019, COMPUT EDUC, V129, P1, DOI 10.1016/j.compedu.2018.10.010 Chunmei Gan, 2015, Journal of Systems and Information Technology, V17, P351, DOI 10.1108/JSIT-06-2015-0052 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Delgado-Ballester E, 2008, INT J ELECTRON COMM, V12, P81, DOI 10.2753/JEC1086-4415120305 Gallego MD, 2016, COMPUT EDUC, V100, P81, DOI 10.1016/j.compedu.2016.05.001 Gefen D., 2000, COMMUN ASSOC INF SYS, V4, P407, DOI DOI 10.17705/1CAIS.00407 Guo ZX, 2010, COMMUN ASSOC INF SYS, V27, P339 Gwo-Jen Hwang, 2014, International Journal of Mobile Learning and Organisation, V8, P83, DOI 10.1504/IJMLO.2014.062346 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hamidi H, 2018, TELEMAT INFORM, V35, P1053, DOI 10.1016/j.tele.2017.09.016 Hashim KF, 2015, BRIT J EDUC TECHNOL, V46, P381, DOI 10.1111/bjet.12148 Haykin S., 1994, NEURAL NETWORKS COMP Heflin H, 2017, COMPUT EDUC, V107, P91, DOI 10.1016/j.compedu.2017.01.006 Hew TS, 2016, J COMPUT INFORM SYST, V56, P352, DOI 10.1080/08874417.2016.1164497 Holbrook MB, 2006, J BUS RES, V59, P714, DOI 10.1016/j.jbusres.2006.01.008 Hsiao CH, 2016, TELEMAT INFORM, V33, P342, DOI 10.1016/j.tele.2015.08.014 Huang YM, 2015, BRIT J EDUC TECHNOL, V46, P437, DOI 10.1111/bjet.12147 Joo YJ, 2016, ETR&D-EDUC TECH RES, V64, P611, DOI 10.1007/s11423-016-9436-7 Karimi S, 2016, COMPUT HUM BEHAV, V63, P769, DOI 10.1016/j.chb.2016.06.014 Katz E., 1973, PUBLIC OPIN QUART, V37, DOI [10.1086/268109, DOI 10.1086/268109] Kim DJ, 2012, INFORM SYST FRONT, V14, P409, DOI 10.1007/s10796-010-9267-8 Kim HW, 2007, DECIS SUPPORT SYST, V43, P111, DOI 10.1016/j.dss.2005.05.009 Kim HJ, 2017, COMPUT EDUC, V113, P108, DOI 10.1016/j.compedu.2017.05.015 Lee HH, 2010, J MARK CHANNELS, V17, P281, DOI 10.1080/1046669X.2010.512859 Liang HG, 2007, MIS QUART, V31, P59 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Mondi M, 2008, EDUC TECHNOL SOC, V11, P241 Motiwalla LF, 2007, COMPUT EDUC, V49, P581, DOI 10.1016/j.compedu.2005.10.011 Nie J, 2020, COMPUT EDUC, V156, DOI 10.1016/j.compedu.2020.103942 Nunnally J.C., 1978, Psychometric Theory, P86 Park SY, 2012, BRIT J EDUC TECHNOL, V43, P592, DOI 10.1111/j.1467-8535.2011.01229.x Phua J, 2017, COMPUT HUM BEHAV, V72, P115, DOI 10.1016/j.chb.2017.02.041 Pimmer C, 2016, COMPUT HUM BEHAV, V63, P490, DOI 10.1016/j.chb.2016.05.057 PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Punyanunt-Carter NM, 2017, COMPUT HUM BEHAV, V75, P870, DOI 10.1016/j.chb.2017.06.034 Sarrab M, 2016, COMPUT HUM BEHAV, V55, P100, DOI 10.1016/j.chb.2015.09.003 Sharma SK, 2017, BEHAV INFORM TECHNOL, V36, P1053, DOI 10.1080/0144929X.2017.1340973 Shi N, 2010, P ANN HICSS, P3049 Shi S, 2016, COMPUT HUM BEHAV, V62, P578, DOI 10.1016/j.chb.2016.04.017 Shu H, 2018, INTERNET HIGH EDUC, V39, P13, DOI 10.1016/j.iheduc.2018.05.003 Sorebo O, 2009, COMPUT EDUC, V53, P1177, DOI 10.1016/j.compedu.2009.06.001 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Wang YS, 2009, BRIT J EDUC TECHNOL, V40, P92, DOI 10.1111/j.1467-8535.2007.00809.x Wang YM, 2007, EXPERT SYST APPL, V32, P336, DOI 10.1016/j.eswa.2005.11.029 Wu JH, 2010, COMPUT HUM BEHAV, V26, P1862, DOI 10.1016/j.chb.2010.07.033 Wu WH, 2012, COMPUT EDUC, V59, P817, DOI 10.1016/j.compedu.2012.03.016 Yang SQ, 2019, BRIT J EDUC TECHNOL, V50, P626, DOI 10.1111/bjet.12634 Yang SQ, 2018, COMPUT HUM BEHAV, V89, P16, DOI 10.1016/j.chb.2018.07.032 Yang SQ, 2016, COMPUT HUM BEHAV, V64, P486, DOI 10.1016/j.chb.2016.07.010 Yang SQ, 2016, INTERNET RES, V26, P982, DOI 10.1108/IntR-01-2015-0010 Yang SQ, 2015, BEHAV INFORM TECHNOL, V34, P1135, DOI 10.1080/0144929X.2014.988176 Zhang LZ, 2013, COMPUT HUM BEHAV, V29, P2712, DOI 10.1016/j.chb.2013.07.009 Zydney JM, 2016, COMPUT EDUC, V94, P1, DOI 10.1016/j.compedu.2015.11.001 NR 59 TC 8 Z9 8 U1 5 U2 30 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1470-949X EI 1741-5217 J9 INT J MOB COMMUN JI Int. J. Mob. Commun. PY 2022 VL 20 IS 1 BP 105 EP 127 DI 10.1504/IJMC.2022.119995 PG 23 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA YC2KP UT WOS:000739525400005 DA 2024-03-27 ER PT J AU Naysary, B AF Naysary, Babak TI A game theory-based analysis of merchants' mobile payment adoption using hybrid SEM-neural network approach SO COMPETITIVENESS REVIEW LA English DT Article; Early Access DE Mobile payment; Merchants' perspective; Trust; Opportunism; Malaysia; G23; G41 ID INTERFIRM RELATIONSHIPS; CONSUMER ADOPTION; PERCEIVED RISKS; FIT INDEXES; TRUST; DETERMINANTS; OPPORTUNISM; SERVICES; SYSTEMS; PERSPECTIVES AB PurposeDriven by the evidence from the literature on the significance of mobile (m-)payment in economic growth and productivity and at the same time the relative dismal adoption of this service, the purpose of present paper is to elucidate the merchants' m-payment adoption from the perspective of trust, drawing upon the game theory framework, in the Malaysian context. Design/methodology/approachAn online survey consisting of 302 respondents was carried out to investigate the impact of trust and opportunism on merchants' perceived trustworthiness using a two-staged structural equation modeling-neural network approach to determine the significance and relative importance of variables. This study also applies a game-theoretic approach to analyze the impact of trust on the relationship between merchants and m-payment service providers. FindingsThe results indicate a positive and statistically significant relationship between merchant trust, merchant opportunism and perceived trustworthiness, and a statistically significant negative relationship was found between m-payment provider opportunism and perceived trustworthiness. The findings from the prisoner's dilemma two-player model indicate that the scenarios of mutual trust and mutual opportunism as paradigmatic of cooperation and defection produce the best and worse outcomes, respectively. An intriguing result was the positive impact of merchant opportunism on perceived trustworthiness, which indicates a very calculative orientation of merchants in m-payment contracting. Originality/valueTo the best of the authors' knowledge, this is among the first attempts to propose a game theory approach to the interaction between merchants and m-payment providers under the framework of trust and opportunism. A game theory study in the context of m-payment adoption can contribute to the theoretical literature by providing insights into the decision-making processes of merchants. By incorporating trust and opportunism into the game theory model, we can gain a better understanding of how they affect the decision-making process and overall adoption rates. The conclusions and implications provide useful insights for managers of both m-payment platforms and merchants in this relational exchange. The results of the present research can provide insights into the factors that influence merchant decisions and guide them toward suitable partnerships for successful adoption and can guide authorities for policy interventions and supporting adoption efforts. C1 [Naysary, Babak] Birmingham City Univ, Business Sch, Birmingham, England. C3 Birmingham City University RP Naysary, B (autor correspondiente), Birmingham City Univ, Business Sch, Birmingham, England. EM bnaysary@hotmail.com RI Naysary, Babak/D-8911-2014 OI Naysary, Babak/0000-0003-0464-7402 CR Ahani A, 2017, COMPUT HUM BEHAV, V75, P560, DOI 10.1016/j.chb.2017.05.032 Al Momani K.M.D.K., 2021, BIG DATA DRIVEN DIGI, P59 Al-Bakri A., 2014, SMALL, V10, P49 Al-Sartawi A.M.A.M., 2022, INTERNET THINGS INTE Apanasevic T, 2016, INT J BANK MARK, V34, P37, DOI 10.1108/IJBM-06-2014-0064 Arsenyan J, 2015, EXPERT SYST APPL, V42, P2073, DOI 10.1016/j.eswa.2014.10.010 Aryadoust V., 2014, CaMLA Work. Pap, V2, P1 Asa'd Israa Aref Abu, 2023, From the Internet of Things to the Internet of Ideas: The Role of Artificial Intelligence: Proceedings of EAMMIS 2022. Lecture Notes in Networks and Systems (557), P529, DOI 10.1007/978-3-031-17746-0_42 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Baidoo S.T., 2019, International Social Science Journal, V69, P63, DOI [DOI 10.1111/ISSJ.12200, 10.1111/issj.12200] Barkhordari M, 2017, INF SYST E-BUS MANAG, V15, P89, DOI 10.1007/s10257-016-0311-1 BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238 BENTLER PM, 1990, PSYCHOL BULL, V107, P238, DOI 10.1037/0033-2909.107.2.238 Cao Q., 2019, INTEGRATING CONTEXT Capgemini, 2016, TOP 10 TRENDS PAYM 2 Carbo-Valverde S., 2013, 26 AUSTRALASIAN FINA, DOI DOI 10.2139/SSRN.2310273 Chandra S, 2010, COMMUN ASSOC INF SYS, V27, P561 Chiles TH, 1996, ACAD MANAGE REV, V21, P73, DOI 10.2307/258630 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Cooper R, 1996, GAME ECON BEHAV, V12, P187, DOI 10.1006/game.1996.0013 Dahlberg T, 2015, ELECTRON COMMER R A, V14, P265, DOI 10.1016/j.elerap.2015.07.006 Dahlstrom R, 2014, INT J BANK MARK, V32, P268, DOI 10.1108/IJBM-03-2014-0042 Dasgupta P., 1988, Trust: Making and Breaking Cooperative Relations, P49 de Kerviler G, 2016, J RETAIL CONSUM SERV, V31, P334, DOI 10.1016/j.jretconser.2016.04.011 Elsharnouby, 2013, Journal of Relationship Marketing, vol, V12, P141, DOI DOI 10.1080/15332667.2013.794103 Esmaeili M, 2009, EUR J OPER RES, V195, P442, DOI 10.1016/j.ejor.2008.02.026 Guiso L., 2000, ROLE SOCIAL CAPITAL, P1 Guo J, 2016, TELECOMMUN POLICY, V40, P147, DOI 10.1016/j.telpol.2015.09.008 Gupta S, 2023, INT J HUM-COMPUT INT, V39, P3745, DOI 10.1080/10447318.2022.2104408 Hannoon A., 2021, RELATIONSHIP FINANCI, V974, P337 Hansen T, 2012, J SERV RES-US, V15, P280, DOI 10.1177/1094670512439105 HARRINGTON JE, 1995, GAME ECON BEHAV, V8, P364, DOI 10.1016/S0899-8256(05)80006-5 Hedayati A., 2019, J MONEY EC, V12, P419 HEIDE JB, 1992, J MARKETING, V56, P32, DOI 10.2307/1252040 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Jabarin M., 2019, Investment Management and Financial Innovations, V16, P156, DOI [10.21511/imfi.16(4).2019.14, DOI 10.21511/IMFI.16(4).2019.14] Jap SD, 2001, INT J RES MARK, V18, P19, DOI 10.1016/S0167-8116(01)00028-3 Johnson VL, 2018, COMPUT HUM BEHAV, V79, P111, DOI 10.1016/j.chb.2017.10.035 Joshi AW, 1999, CAN J ADM SCI, V16, P334 Jurisic M., 2012, 2012 35th International Convention on Information and Communication Technology, Electronics and Microelectronics, P1093 Kapoor KK, 2015, INFORM SYST FRONT, V17, P1039, DOI 10.1007/s10796-014-9484-7 Kaur P, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102059 Kim C, 2010, COMPUT HUM BEHAV, V26, P310, DOI 10.1016/j.chb.2009.10.013 Koshel N.V., 2018, EUROPEAN RES STUDIES, V21, P144 Kreps D., 1990, PERSPECTIVES POSITIV, P90, DOI [DOI 10.1017/CBO9780511571657.006, 10.1017/CBO9780511571657.006, 10.1017/cbo9780511571657.006] Lado AA, 2008, STRATEGIC MANAGE J, V29, P401, DOI 10.1002/smj.667 Leong LY, 2022, INTERNET RES, V32, P1757, DOI 10.1108/INTR-06-2021-0348 Liébana-Cabanillas F, 2017, TECHNOL FORECAST SOC, V120, P32, DOI 10.1016/j.techfore.2017.04.002 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Mallat N, 2005, ICMB 2005: International Conference on Mobile Business, P347, DOI 10.1109/ICMB.2005.58 Mallat N., 2008, EXPLORING MERCHANT A, P347 March J.G., 1989, REDISCOVERING I ORG, P227 Meyers L.S., 2005, APPL MULTIVARIATE RE, P722 Mishra V, 2022, EUR J INFORM SYST, V31, P74, DOI 10.1080/0960085X.2021.1978338 Moghavvemi S, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102364 Najjar M, 2023, J SUSTAIN FINANC INV, V13, P744, DOI 10.1080/20430795.2022.2030663 Nguyen TDA, 2020, 2020 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA '20), P29, DOI 10.1145/3373087.3375305 Nour A., 2020, AN NAJAH U J RES B H, V36, P2181, DOI 10.35552/0247-036-010-006 Nour A., 2022, AN NAJAH U J RES, V36, P2180 Peters Hans J.M., 2015, Game theory: A Multileveled approach, V2nd Pham TTT, 2015, TECHNOL SOC, V43, P159, DOI 10.1016/j.techsoc.2015.05.004 Pidugu K., 2015, GORDON I BUSINESS SC, V14449316, P1 Pu XD, 2020, INT J MOB COMMUN, V18, P343, DOI 10.1504/IJMC.2020.107145 Rouibah K, 2016, ELECTRON COMMER R A, V19, P33, DOI 10.1016/j.elerap.2016.07.001 Sachova R., 2016, SECURITY MOBILE PAYM, P487 Shao Z, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.100823 Sharma SK, 2019, INFORM SYST FRONT, V21, P815, DOI 10.1007/s10796-017-9775-x Singh N, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101894 Singh S, 2020, MANAGE DECIS, V58, P1675, DOI 10.1108/MD-09-2019-1318 Sirdeshmukh D, 2002, J MARKETING, V66, P15, DOI 10.1509/jmkg.66.1.15.18449 van Witteloostuijn A., 2003, INT STUD MANAG ORG, V33, P53 Wathne KH, 2000, J MARKETING, V64, P36, DOI 10.1509/jmkg.64.4.36.18070 WILLIAMSON OE, 1993, J LAW ECON, V36, P453, DOI 10.1086/467284 Xin H, 2015, J COMPUT INFORM SYST, V55, P1, DOI 10.1080/08874417.2015.11645781 Xu XY, 2020, FINANC RES LETT, V35, DOI 10.1016/j.frl.2019.101310 Yang YQ, 2015, IND MANAGE DATA SYST, V115, P253, DOI 10.1108/IMDS-08-2014-0243 Yeboah E., 2020, Conference on e-business, e-services and e-society, P204 NR 77 TC 0 Z9 0 U1 2 U2 2 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1059-5422 EI 2051-3143 J9 COMPET REV JI Compet. Rev. PD 2023 AUG 15 PY 2023 DI 10.1108/CR-04-2023-0074 EA AUG 2023 PG 21 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA O6WY1 UT WOS:001045198300001 DA 2024-03-27 ER PT J AU Camilleri, MA Troise, C AF Camilleri, Mark Anthony Troise, Ciro TI Live support by chatbots with artificial intelligence: A future research agenda SO SERVICE BUSINESS LA English DT Article DE Conversational agents; Online customer services; Customer experience; Anthropomorphism; Artificial intelligence ID ENGAGEMENT; COMMUNICATION; FRAMEWORK; RESPONSES; MACHINES; TRUST; USAGE AB This research uses a Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) protocol to investigate the utility of artificially intelligent (AI) conversational chatbots in service business settings. The findings shed light on key theoretical underpinnings focussed on human-computer interactions and clarify the benefits and costs of using responsive chatbot technologies. This contribution implies that, for the time being, works are still in progress for interactive, anthropomorphic chatbots to mimic human customer services agents' verbal, vocal and visual cues, when they respond to online queries. In conclusion it puts forward plausible research avenues in this promising area of study. C1 [Camilleri, Mark Anthony] Univ Malta, Fac Media & Knowledge Sci, Dept Corp Commun, Msida 2080, Malta. [Camilleri, Mark Anthony] Univ Edinburgh, Business Sch, Bucchleuch Pl, Edinburgh EH8 9JS, Midlothian, Scotland. [Troise, Ciro] Univ Turin, Dept Management, Turin, Italy. C3 University of Malta; University of Edinburgh; University of Turin RP Camilleri, MA (autor correspondiente), Univ Malta, Fac Media & Knowledge Sci, Dept Corp Commun, Msida 2080, Malta.; Camilleri, MA (autor correspondiente), Univ Edinburgh, Business Sch, Bucchleuch Pl, Edinburgh EH8 9JS, Midlothian, Scotland. EM mark.a.camilleri@um.edu.mt RI Camilleri, Mark Anthony/R-4574-2016; Troise, Ciro/GRO-0940-2022; Paleja, Heer/IQT-1538-2023 OI Camilleri, Mark Anthony/0000-0003-1288-4256; Troise, Ciro/0000-0002-8899-8949; CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Adamopoulou E., 2020, MACHINE LEARNING APP, V2, DOI DOI 10.1016/J.MLWA.2020.100006 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Becker M, 2023, SERV BUS, V17, P137, DOI 10.1007/s11628-022-00499-4 Belanche D, 2021, PSYCHOL MARKET, V38, P2357, DOI 10.1002/mar.21532 Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 Belanche D, 2020, J SERV MANAGE, V31, P267, DOI 10.1108/JOSM-05-2019-0156 Belanche D, 2021, ELECTRON MARK, V31, P477, DOI 10.1007/s12525-020-00432-5 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Borau S, 2021, PSYCHOL MARKET, V38, P1052, DOI 10.1002/mar.21480 Brachten F, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102375 Buhalis D., 2020, Information and Communication Technologies in Tourism 2020, P231, DOI [DOI 10.1007/978-3-030-36737-4_19, 10.1007/978-3-030-36737-4_19] Caldarini G, 2022, INFORMATION, V13, DOI 10.3390/info13010041 Camilleri M.A., 2020, INT J BIG DATA MANAG, V1, P50, DOI DOI 10.1504/IJBDM.2020.106876 Camilleri MA, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102098 Camilleri MA, 2022, J STRATEGY MANAG, V15, P377, DOI 10.1108/JSMA-02-2021-0045 Capriotti P, 2021, STRATEGIC CORPORATE COMMUNICATION IN THE DIGITAL AGE, P33, DOI 10.1108/978-1-80071-264-520211003 Castillo D, 2021, SERV IND J, V41, P900, DOI 10.1080/02642069.2020.1787993 Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Cheng Y, 2020, J CONTING CRISIS MAN, V28, P339, DOI 10.1111/1468-5973.12319 Chong T, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102735 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Crolic C, 2022, J MARKETING, V86, P132, DOI 10.1177/00222429211045687 De Cicco R, 2020, INT J RETAIL DISTRIB, V48, P1213, DOI 10.1108/IJRDM-12-2019-0406 Dippold D, 2020, DISCOURSE CONTEXT ME, V37, DOI 10.1016/j.dcm.2020.100432 Eren BA, 2021, INT J BANK MARK, V39, P294, DOI 10.1108/IJBM-02-2020-0056 Flavian C, 2021, SERV IND J, V41, P853, DOI 10.1080/02642069.2021.1989177 Flavián C, 2022, J SERV MANAGE, V33, P293, DOI 10.1108/JOSM-10-2020-0378 Forgas-Coll S, 2022, SERV BUS, V16, P359, DOI 10.1007/s11628-022-00492-x Grimes GM, 2021, DECIS SUPPORT SYST, V144, DOI 10.1016/j.dss.2021.113515 Hajarian M, 2021, STRATEGIC CORPORATE COMMUNICATION IN THE DIGITAL AGE, P235, DOI 10.1108/978-1-80071-264-520211014 Hildebrand C, 2021, J ACAD MARKET SCI, V49, P659, DOI 10.1007/s11747-020-00753-z Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Huang JW, 2011, COMPUT HUM BEHAV, V27, P1963, DOI 10.1016/j.chb.2011.05.003 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang YS, 2021, SERV IND J, V41, P964, DOI 10.1080/02642069.2021.1957845 Hung SC, 2019, SUN YAT-SEN J HUMANI, P1, DOI 10.1007/s11628-018-0364-y Iovine A, 2020, DECIS SUPPORT SYST, V131, DOI 10.1016/j.dss.2020.113250 Jiménez-Barreto J, 2021, INT J CONTEMP HOSP M, V33, P3860, DOI 10.1108/IJCHM-10-2020-1244 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kull AJ, 2021, J BUS RES, V135, P840, DOI 10.1016/j.jbusres.2021.03.005 Kushwaha AK, 2021, IND MARKET MANAG, V98, P207, DOI 10.1016/j.indmarman.2021.08.011 Lalicic L, 2021, J BUS RES, V129, P891, DOI 10.1016/j.jbusres.2020.11.005 Lee SM, 2020, SERV BUS, V14, P1, DOI 10.1007/s11628-019-00408-2 Leung XY, 2020, J HOSP TOUR MANAG, V45, P377, DOI 10.1016/j.jhtm.2020.09.004 Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147 Li L, 2021, ELECTRON MARK, V31, P575, DOI 10.1007/s12525-020-00454-z Lou C, 2022, INT J ADVERT, V41, P655, DOI 10.1080/02650487.2021.1951510 Lucia-Palacios L, 2021, SERV BUS, V15, P253, DOI 10.1007/s11628-021-00442-z Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Matiatou, 2019, STRAT PERSP DEST MKT, P174 McLean G, 2020, INT J CONTEMP HOSP M, V32, P1795, DOI 10.1108/IJCHM-07-2019-0605 Melián-González S, 2021, CURR ISSUES TOUR, V24, P192, DOI 10.1080/13683500.2019.1706457 Mero J, 2018, ELECTRON MARK, V28, P205, DOI 10.1007/s12525-017-0281-2 Moher D, 2010, INT J SURG, V8, P658, DOI [10.1016/j.ijsu.2010.07.299, 10.1136/bmj.b2700, 10.1371/journal.pmed.1000097, 10.1136/bmj.b2535, 10.1186/2046-4053-4-1, 10.1016/j.ijsu.2010.02.007, 10.1136/bmj.i4086] Moon Y, 1996, COMMUN RES, V23, P651, DOI 10.1177/009365096023006002 Moriuchi E, 2021, J STRATEG MARK, V29, P375, DOI 10.1080/0965254X.2020.1740766 Mostafa RB, 2022, EUR J MARKETING, V56, P1748, DOI 10.1108/EJM-02-2020-0084 Mozafari N, 2022, J SERV MANAGE, V33, P221, DOI 10.1108/JOSM-10-2020-0380 Murtarelli G, 2021, J BUS RES, V129, P927, DOI 10.1016/j.jbusres.2020.09.018 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 NASS C, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P72, DOI 10.1145/191666.191703 Neuburger L., 2018, TOURISM PLANNING DES, P183, DOI DOI 10.1108/978-1-78756-291-220181009 Ngai EWT, 2021, ELECTRON COMMER R A, V50, DOI 10.1016/j.elerap.2021.101098 Nuruzzaman M, 2020, KNOWL-BASED SYST, V196, DOI 10.1016/j.knosys.2020.105810 Orden-Mejía M, 2022, CURR ISSUES TOUR, V25, P2854, DOI 10.1080/13683500.2021.1997942 Pantano E, 2022, J SERV RES-US, V25, P583, DOI 10.1177/10946705221103538 Pantano E, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102096 Paschou T, 2020, IND MARKET MANAG, V89, P278, DOI 10.1016/j.indmarman.2020.02.012 Pfeuffer N, 2019, BUS INFORM SYST ENG+, V61, P523, DOI 10.1007/s12599-019-00599-y Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Ranoliya BR, 2017, 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), P1525, DOI 10.1109/ICACCI.2017.8126057 Rese A., 2020, Journal of Retailing and Consumer Services, V56, P1, DOI DOI 10.1016/J.JRETCONSER.2020.102176 Rha JS, 2022, SERV BUS, V16, P77, DOI 10.1007/s11628-022-00481-0 Riikkinen M, 2018, INT J BANK MARK, V36, P1145, DOI 10.1108/IJBM-01-2017-0015 Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Rutschi C, 2020, DATA BASE ADV INF SY, V51, P104, DOI 10.1145/3380799.3380808 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Schanke S, 2021, INFORM SYST RES, V32, P736, DOI 10.1287/isre.2021.1015 Schepers J, 2022, J SERV RES-US, V25, P565, DOI 10.1177/10946705221107704 Schuetzler RM, 2020, J MANAGE INFORM SYST, V37, P875, DOI 10.1080/07421222.2020.1790204 Seering Joseph, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274426 Selamat MA, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101685 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shum HY, 2018, FRONT INFORM TECH EL, V19, P10, DOI 10.1631/FITEE.1700826 Sidaoui K, 2020, J SERV MANAGE, V31, P745, DOI 10.1108/JOSM-11-2019-0341 Stoeckli E, 2020, ELECTRON MARK, V30, P369, DOI 10.1007/s12525-019-00359-6 Thomaz F, 2020, J ACAD MARKET SCI, V48, P43, DOI 10.1007/s11747-019-00704-3 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 Van Pinxteren MME, 2020, J SERV MANAGE, V31, P203, DOI 10.1108/JOSM-06-2019-0175 Wang HS, 2019, J ACAD MARKET SCI, V47, P919, DOI 10.1007/s11747-019-00664-8 Wei W, 2021, ACM T INFORM SYST, V39, DOI 10.1145/3456414 Wilkinson D, 2021, ACM T INFORM SYST, V39, DOI 10.1145/3441715 Zhang JJY, 2023, J INTERNET COMMER, V22, P122, DOI 10.1080/15332861.2021.1966723 NR 96 TC 11 Z9 11 U1 21 U2 78 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1862-8516 EI 1862-8508 J9 SERV BUS JI Serv. Bus. PD MAR PY 2023 VL 17 IS 1 SI SI BP 61 EP 80 DI 10.1007/s11628-022-00513-9 EA NOV 2022 PG 20 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 9V4LT UT WOS:000881556200001 DA 2024-03-27 ER PT J AU Abubakar, AM Namin, BH Harazneh, I Arasli, H Tunç, T AF Abubakar, A. Mohammed Namin, Boshra Hejraty Harazneh, Ibrahim Arasli, Huseyin Tunc, Tugba TI Does gender moderates the relationship between favoritism/nepotism, supervisor incivility, cynicism and workplace withdrawal: A neural network and SEM approach SO TOURISM MANAGEMENT PERSPECTIVES LA English DT Article DE Favoritism/nepotism; Employee cynicism; Supervisor incivility; Gender; Work withdrawal; Northern Cyprus ID HUMAN-RESOURCE MANAGEMENT; JOB DEMANDS; ORGANIZATIONAL JUSTICE; EMOTIONAL EXHAUSTION; WORKGROUP INCIVILITY; EMPLOYEE CYNICISM; HOTEL EMPLOYEES; TOP MANAGEMENT; MEDIATING ROLE; WORK AB Organizational politics and workplace victimization are social stressors with significant implications on the wellbeing of employees. Applying Job Demand Resources framework, this study examines the impact of favoritism/nepotism, supervisor incivility on employee cynicism, and work withdrawal, and the moderating role of gender. Utilizing a cross-sectional design, data were gathered from frontline employees working in 3-star hotels in Northern Cyprus. Results from structural equation modeling and artificial neural network revealed that: (1) favoritism/nepotism has a positive impact on employee cynicism and work withdrawal; (2) employee cynicism has a positive impact on work withdrawal; (3) employee cynicism mediates the relationship between favoritism/nepotism, and work withdrawal; (4) the impact of employee cynicism on work withdrawal was about 6.7 times stronger for women; (5) the impact of favoritism/nepotismon work withdrawal was about 2.1 times stronger for men. Strategies to reduce this unwanted practices and how to keep employees productive are discussed. (C) 2017 Elsevier Ltd. All rights reserved. C1 [Abubakar, A. Mohammed; Tunc, Tugba] Aksaray Univ, Dept Management Informat Syst, Aksaray, Turkey. [Harazneh, Ibrahim] Girne Amer Univ, Hospitality & Tourism Dept, Via Mersin 10, Kyrenia, North Cyprus, Turkey. [Namin, Boshra Hejraty; Arasli, Huseyin] Eastern Mediterranean Univ, Fac Tourism, POB 95,Via Mersin 10, Famagusta, North Cyprus, Turkey. C3 Aksaray University; Girne American University; Eastern Mediterranean University RP Abubakar, AM (autor correspondiente), Aksaray Univ, Dept Management Informat Syst, Aksaray, Turkey. EM Me@mohammedabubakar.com; huseyin.arasli@emu.edu.tr RI arasli, huseyin/D-5503-2019; harazneh, ibrahim/IVU-7675-2023; harazneh, ibrahim/I-2684-2018; ABUBAKAR, A Mohammed/L-7214-2018; harazneh, ibrahim/AAA-3784-2020 OI harazneh, ibrahim/0000-0001-6572-1333; ABUBAKAR, A Mohammed/0000-0002-1163-0185; CR Abdalla HF, 1998, INT J MANPOWER, V19, P554, DOI 10.1108/01437729810242235 Abubakar AM, 2016, J MANAG DEV, V35, P1266, DOI 10.1108/JMD-11-2015-0164 Aladwan K, 2014, INT J ISLAMIC MIDDLE, V7, P126, DOI 10.1108/IMEFM-09-2013-0104 Altinay L., 2002, International Journal of Contemporary Hospitality Management, V14, P176, DOI 10.1108/09596110210427021 Andersson LM, 1997, J ORGAN BEHAV, V18, P449, DOI 10.1002/(SICI)1099-1379(199709)18:5<449::AID-JOB808>3.0.CO;2-O [Anonymous], 2010, J INT BUSINESS ETHIC [Anonymous], MIS Q [Anonymous], 2015, STAT YB Anwar M. N., 2011, INT ED STUDIES, V4 Arasli H, 2006, INT J SOCIOL SOC POL, V26, P295, DOI 10.1108/01443330610680399 Arasli H, 2008, SOC BEHAV PERSONAL, V36, P1237, DOI 10.2224/sbp.2008.36.9.1237 Aslan S., 2014, CLUT I INT AC C Babakus E, 2008, INT J HOSP TOUR ADM, V9, P384, DOI 10.1080/15256480802427339 Bakker A.B., 2003, European Journal of Work and Organizational Psychology, V12, P393417, DOI 10.1080/13594320344000165 Bakker A. B., 2007, J Manag Psychol, V22, P309, DOI DOI 10.1108/02683940710733115 Bakker AB, 2004, HUM RESOUR MANAGE-US, V43, P83, DOI 10.1002/hrm.20004 Bedeian AG, 2007, ACAD MANAG LEARN EDU, V6, P9, DOI 10.5465/AMLE.2007.24401700 Belenky M., 1986, WOMENS WAY KNOWING BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238 Berry C. M., 2010, J ORGAN BEHAV, V33, P678 Bodla M. A., 2008, INT J KNOWLEDGE CULT, V8, P9 Bommer WH, 2005, J ORGAN BEHAV, V26, P733, DOI 10.1002/job.342 Britton AR, 2012, PERS INDIV DIFFER, V52, P712, DOI 10.1016/j.paid.2011.12.038 Browne M.W., 1993, SOCIOL METHOD RES, P445 Burke R.J., 2009, Equal Opportunities International, V28, P452, DOI DOI 10.1108/02610150910980765 Chen CY, 2014, INT J HOSP MANAG, V37, P21, DOI 10.1016/j.ijhm.2013.10.006 Chiaburu DS, 2013, J VOCAT BEHAV, V83, P181, DOI 10.1016/j.jvb.2013.03.007 Cole MS, 2010, J MANAGE STUD, V47, P367, DOI 10.1111/j.1467-6486.2009.00864.x Colquitt JA, 2001, J APPL PSYCHOL, V86, P425, DOI 10.1037//0021-9010.86.3.425 Cortina LM, 2002, LAW SOCIAL INQUIRY, V27, P235, DOI 10.1111/j.1747-4469.2002.tb00804.x Cropanzano R, 2003, J APPL PSYCHOL, V88, P160, DOI 10.1037/0021-9010.88.1.160 Daskin M., 2013, J MANAGEMENT RES, V5, P1941 Daskin M, 2013, ANATOLIA, V24, P452, DOI 10.1080/13032917.2013.807396 Daskin M, 2012, TOURISM, V60, P273 Davidson M., 2006, LABOR TURNOVER COSTS Dean JW, 1998, ACAD MANAGE REV, V23, P341, DOI 10.2307/259378 Deloitte, 2010, HOSP 2015 GAM CHANG Demerouti E, 2001, J APPL PSYCHOL, V86, P499, DOI 10.1037//0021-9010.86.3.499 DRORY A, 1991, J ORGAN BEHAV, V12, P249, DOI 10.1002/job.4030120307 Eagly A. H., 1986, SEX DIFFERENCES SOCI, P128 Eagly A.H., 1987, JOHN M MACEACHRAN ME, DOI [10.1037/0022-3514.65.5.1010, DOI 10.4324/] Erdogan B., 2002, HUM RESOUR MANAGE R, V12, P555, DOI [10.1016/S1053-4822(02)00070-0, DOI 10.1016/S1053-4822(02)00070-0] Escartín J, 2011, J PERS PSYCHOL, V10, P157, DOI 10.1027/1866-5888/a000048 Ghosh R, 2011, ADV DEV HUM RESOUR, V13, P22, DOI 10.1177/1523422311410639 Glendinning PM, 2001, PUBLIC PERS MANAGE, V30, P269, DOI 10.1177/009102600103000301 Greenglass ER, 2001, J COMMUNITY APPL SOC, V11, P211, DOI 10.1002/casp.614 Griepentrog BK, 2012, PERS PSYCHOL, V65, P723, DOI 10.1111/peps.12000 Hair J. F., 1998, Multivariate data analysis with readings, V5th ed. HANISCH KA, 1990, J VOCAT BEHAV, V37, P60, DOI 10.1016/0001-8791(90)90007-O HANISCH KA, 1991, J VOCAT BEHAV, V39, P110, DOI 10.1016/0001-8791(91)90006-8 Hitlan R.T., 2006, North American Journal of Psychology, V8, P217 Holm K., 2015, MODELS WORKPLACE INC Jaja S. A., 2004, ENTREPRENEURSHIP PAR Jung J, 2012, INT J HUM RESOUR MAN, V23, P3636, DOI 10.1080/09585192.2012.654806 Kao FH, 2014, J OCCUP ORGAN PSYCH, V87, P755, DOI 10.1111/joop.12073 Kara D, 2012, INT J CONTEMP HOSP M, V24, P1047, DOI 10.1108/09596111211258919 Karadal H, 2009, SOC BEHAV PERSONAL, V37, P175, DOI 10.2224/sbp.2009.37.2.175 Karatepe OM, 2015, INT J CONTEMP HOSP M, V27, P4, DOI 10.1108/IJCHM-09-2013-0417 Karatepe OM, 2014, ECON RES-EKON ISTRAZ, V27, P414, DOI 10.1080/1331677X.2014.967533 Karatepe OM, 2011, INT J CONTEMP HOSP M, V23, P44, DOI 10.1108/09596111111101661 Karatepe OM, 2008, INT J TOUR RES, V10, P111, DOI 10.1002/jtr.645 Karimi L, 2008, COMMIMITY WORK FAM, V11, P283, DOI 10.1080/13668800802133958 Kim P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0094333 Kim TY, 2009, HUM RELAT, V62, P1435, DOI 10.1177/0018726709340822 Kocoglu M., 2014, Global Business and Management Research: An International Journal, V6, P24 Kurt I., 2016, BUSINESS CHALLENGES, V2 Kwon I., 2006, BE J THEOR ECON, V6, P1 Leiter MP, 2015, RES OCCUP STRESS WEL, V13, P107, DOI 10.1108/S1479-355520150000013004 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Leung K, 2010, APPL PSYCHOL-INT REV, V59, P318, DOI 10.1111/j.1464-0597.2009.00392.x Li J, 2016, INT J HOSP MANAG, V55, P1, DOI 10.1016/j.ijhm.2016.02.010 Li L., 2001, International Journal of Contemporary Hospitality Management, V13, P189, DOI 10.1108/09596110110389511 Lim S, 2005, J APPL PSYCHOL, V90, P483, DOI 10.1037/0021-9010.90.3.483 Lim S, 2008, J APPL PSYCHOL, V93, P95, DOI 10.1037/0021-9010.93.1.95 Lim VKG, 2009, INFORM MANAGE-AMSTER, V46, P419, DOI 10.1016/j.im.2009.06.006 Lisaniler G. F., 2012, 8 INT C CYPR STUD FA Loi NM, 2015, J MANAG DEV, V34, P169, DOI 10.1108/JMD-12-2012-0152 Loo R., 2003, Women in Management Review, V18, P169, DOI DOI 10.1108/09649420310479372 Magley VJ, 2010, PSYCHOL BEHAV ASPECT, P239 MARSH HW, 1985, PSYCHOL BULL, V97, P562, DOI 10.1037/0033-2909.97.3.562 McCuddy MichaelK., 2010, Proceedings of ASBBS Annual Conference, Las Vegas, V17, P479 MCDONALD RP, 1990, PSYCHOL BULL, V107, P247, DOI 10.1037/0033-2909.107.2.247 Miner-Rubino K, 2010, J APPL SOC PSYCHOL, V40, P3148, DOI 10.1111/j.1559-1816.2010.00695.x Murphy K. A., 1986, PSYCHOL BULL, V99, P128, DOI DOI 10.1037/0033-2909.99.1.133 Namazie P, 2007, INT J HUM RESOUR MAN, V18, P159, DOI 10.1080/09585190601068573 Olabimitan B., 2014, NIGERIAN J APPL BEHA, V2, P137 Paliaga M, 2011, ECON RES-EKON ISTRAZ, V24, P107, DOI 10.1080/1331677X.2011.11517448 Panwar S., 2012, VSRD INT J BUSINESS, V2, P81 Pearson CM, 2000, ORGAN DYN, V29, P123, DOI 10.1016/S0090-2616(00)00019-X Pearson CM, 2001, HUM RELAT, V54, P1387, DOI 10.1177/00187267015411001 Pinar M, 2011, INT J HOSP MANAG, V30, P73, DOI 10.1016/j.ijhm.2010.06.007 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Porath CL, 2010, ORGAN DYN, V39, P64, DOI 10.1016/j.orgdyn.2009.10.006 Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553 Reio TG, 2011, ADV DEV HUM RESOUR, V13, P54, DOI 10.1177/1523422311410648 Reio TG, 2009, HUM RESOUR DEV Q, V20, P237, DOI 10.1002/hrdq.20020 Rogelberg SG, 2007, ORGAN RES METHODS, V10, P195, DOI 10.1177/1094428106294693 Rotundo M, 2001, J APPL PSYCHOL, V86, P914, DOI 10.1037//0021-9010.86.5.914 Schaap JI, 2008, INT J HOSP MANAG, V27, P87, DOI 10.1016/j.ijhm.2007.07.004 Schaufeli WB, 2004, J ORGAN BEHAV, V25, P293, DOI 10.1002/job.248 Shrout PE, 2002, PSYCHOL METHODS, V7, P422, DOI 10.1037//1082-989X.7.4.422 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Skalpe O, 2007, TOURISM MANAGE, V28, P845, DOI 10.1016/j.tourman.2006.06.005 Sliter M, 2012, J ORGAN BEHAV, V33, P121, DOI 10.1002/job.767 Smidt O, 2016, SA J IND PSYCHOL, V42 Spence HK, 2009, J NURS MANAGE, V17, P302, DOI 10.1111/j.1365-2834.2009.00999.x Sulea C., 2012, Cognition, Brain, Behavior: An Interdisciplinary Journal, V16, P553 Sweeney PD, 1997, J ORGAN BEHAV, V18, P83, DOI 10.1002/(SICI)1099-1379(199701)18:1<83::AID-JOB779>3.0.CO;2-3 TANAKA JS, 1985, BRIT J MATH STAT PSY, V38, P197, DOI 10.1111/j.2044-8317.1985.tb00834.x Töyry S, 2004, STRESS HEALTH, V20, P213, DOI 10.1002/smi.1009 Tracey JB, 2008, CORNELL HOSP Q, V49, P12, DOI 10.1177/0010880407310191 van Dolen WM, 2012, PSYCHOL MARKET, V29, P306, DOI 10.1002/mar.20523 Wan YKP, 2010, INT J HOSP MANAG, V29, P62, DOI 10.1016/j.ijhm.2009.06.002 Wang SH, 2012, INT J CROSS CULT MAN, V12, P211, DOI 10.1177/1470595812439871 West C, 1987, GENDER SOC, V1, P125, DOI 10.1177/0891243287001002002 Williams KD, 2007, ANNU REV PSYCHOL, V58, P425, DOI 10.1146/annurev.psych.58.110405.085641 Yavas U., 2004, Journal of Hospitality & Leisure Marketing, V11, P31, DOI 10.1300/J150v11n02_04 Yirik S., 2015, International Review of Management and Marketing, V5, P52 NR 118 TC 81 Z9 93 U1 9 U2 54 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2211-9736 EI 2211-9744 J9 TOUR MANAG PERSPECT JI Tour. Manag. Perspect. PD JUL PY 2017 VL 23 BP 129 EP 139 DI 10.1016/j.tmp.2017.06.001 PG 11 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA FK7JT UT WOS:000413682800015 DA 2024-03-27 ER PT J AU Gupta, P Prashar, S Parsad, C Vijay, TS AF Gupta, Priyanka Prashar, Sanjeev Parsad, Chandan Vijay, T. Sai TI Role of Shopping App Attributes in Creating Urges for Impulse Buying: An Empirical Investigation Using SEM and Neural Network Technique SO JOURNAL OF ELECTRONIC COMMERCE IN ORGANIZATIONS LA English DT Article DE App Layout; Effort Expectancy; Impulse Buying; Impulse Buying Intention; Mobile Applications (Apps); User Experience; User Satisfaction ID CONSUMER SATISFACTION; MOBILE APPLICATION; PRICE DISCOUNTS; CUSTOMER VALUE; MEDIATING ROLE; STORE LAYOUT; WEB SITE; IN-STORE; PURCHASE; BEHAVIOR AB With high speed internet, the retailers are continually engaged in upgrading mobile apps that facilitate shoppers in shopping anywhere-anytime and arousing their sudden urges to buy impulsively. The present study endeavors to decipher the antecedents of mobile app-based impulsive buying behavior and determining their relative significance in triggering impulsive urges. Using structural equation modeling, causal analysis was undertaken to identify the role of effort expectancy, price and discounts, atmosphere and layout of app, and user experience and satisfaction in creating impulsive buying intentions. It was observed that price and discounts and user experience didn't have any influence in stirring the consumer for impulsive buying. To determine the relative significance of remaining four, artificial neural network modeling was undertaken. Effort expectancy was noted to have highest influence in creating impulsive urges, followed by atmosphere and layout of an app. User satisfaction had minimum impact. The paper concludes with practical implications for m-commerce players. C1 [Gupta, Priyanka] Indian Inst Management, Raipur, Madhya Pradesh, India. [Prashar, Sanjeev] Indian Inst Management, Area Mkt, Raipur, Madhya Pradesh, India. [Parsad, Chandan] Indian Inst Management IIM, Bodh Gaya, India. [Vijay, T. Sai] Indian Inst Management, Ranchi, Bihar, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Raipur; Indian Institute of Management (IIM System); Indian Institute of Management Raipur; Indian Institute of Management (IIM System); Indian Institute of Management Bodh Gaya; Indian Institute of Management (IIM System); Indian Institute of Management Ranchi RP Gupta, P (autor correspondiente), Indian Inst Management, Raipur, Madhya Pradesh, India. RI Sai Vijay, Tata/IUQ-5585-2023 OI Parsad, Chandan/0000-0002-2616-6362 CR Agrawal D, 1996, J RETAILING, V72, P383, DOI 10.1016/S0022-4359(96)90020-2 Alnawas I, 2016, J RETAIL CONSUM SERV, V31, P313, DOI 10.1016/j.jretconser.2016.04.004 Arnold MJ, 2003, J RETAILING, V79, P77, DOI 10.1016/S0022-4359(03)00007-1 BABIN BJ, 1994, J CONSUM RES, V20, P644, DOI 10.1086/209376 Baker J., 1994, J ACAD MARKET SCI, V22, P328, DOI [DOI 10.1177/0092070394224002, 10.1177/0092070394224002] Beatty SE, 1998, J RETAILING, V74, P169, DOI 10.1016/S0022-4359(99)80092-X Bellman S, 2011, J INTERACT MARK, V25, P191, DOI 10.1016/j.intmar.2011.06.001 Brasel SA, 2014, J CONSUM PSYCHOL, V24, P226, DOI 10.1016/j.jcps.2013.10.003 Chan FTS, 2012, DECIS SUPPORT SYST, V54, P621, DOI 10.1016/j.dss.2012.08.009 Chan TKH, 2017, INFORM MANAGE-AMSTER, V54, P204, DOI 10.1016/j.im.2016.06.001 Chang TY, 2012, J SYST SOFTWARE, V85, P1157, DOI 10.1016/j.jss.2011.12.044 Chiang WYK, 2006, DECIS SUPPORT SYST, V41, P514, DOI 10.1016/j.dss.2004.08.016 Chiou WB, 2008, TOURISM MANAGE, V29, P146, DOI 10.1016/j.tourman.2007.03.016 Chong AYL, 2014, EXPERT SYST APPL, V41, P221, DOI 10.1016/j.eswa.2013.07.023 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 Dholakia UM, 2000, PSYCHOL MARKET, V17, P955, DOI 10.1002/1520-6793(200011)17:11<955::AID-MAR3>3.0.CO;2-J Drossos DA, 2014, ELECTRON COMMER R A, V13, P423, DOI 10.1016/j.elerap.2014.08.003 E-marketer, 2014, SMARTPH US WORLDW W E-marketer, 2015, URB IND SMARTPH POP Engelbrecht AP, 1996, IEEE IJCNN, P1274, DOI 10.1109/ICNN.1996.549081 EROGLU SA, 1993, ADV CONSUM RES, V20, P34 Éthier J, 2006, INFORM MANAGE-AMSTER, V43, P627, DOI 10.1016/j.im.2006.03.004 Farag S, 2007, TRANSPORT RES A-POL, V41, P125, DOI 10.1016/j.tra.2006.02.003 Flanagin AJ, 2001, HUM COMMUN RES, V27, P153, DOI 10.1093/hcr/27.1.153 Floh A, 2013, ELECTRON COMMER R A, V12, P425, DOI 10.1016/j.elerap.2013.06.001 Furner C.P., 2014, The Marketing Review, V14, P163, DOI [DOI 10.1362/146934714X14024778816913, 10.1362/146934714X14024778816913] Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hardesty DM, 2003, J RETAILING, V79, P17, DOI 10.1016/S0022-4359(03)00004-6 Harris MA, 2016, INT J INFORM MANAGE, V36, P441, DOI 10.1016/j.ijinfomgt.2016.02.004 Hassenzahl M., 2008, P IHM 08 20 INT C AS, DOI [10.1145/1512714.1512717, DOI 10.1145/1512714.1512717] Heilman CM, 2002, J MARKETING RES, V39, P242, DOI 10.1509/jmkr.39.2.242.19081 Herabadi AG, 2009, ASIAN J SOC PSYCHOL, V12, P20, DOI 10.1111/j.1467-839X.2008.01266.x Hew JJ, 2015, IND MANAGE DATA SYST, V115, P1269, DOI 10.1108/IMDS-01-2015-0028 Huang MH, 2003, INFORM MANAGE-AMSTER, V41, P39, DOI 10.1016/S0378-7206(03)00024-7 Hwang J, 2018, ASIA PAC J TOUR RES, V23, P359, DOI 10.1080/10941665.2018.1444648 Islam R., 2010, International Journal of Engineering Technology, V10, P104 KAHN BE, 1993, J CONSUM RES, V20, P257, DOI 10.1086/209347 Kang JW, 2018, INT J CONTEMP HOSP M, V30, P797, DOI 10.1108/IJCHM-09-2016-0537 Keng CJ, 2011, INTERNET RES, V21, P408, DOI 10.1108/10662241111158308 Khalifa M, 2007, EUR J INFORM SYST, V16, P780, DOI 10.1057/palgrave.ejis.3000711 Kim E., 2013, Journal of Interactive Advertising, V13, P53, DOI [10.1080/15252019.2013.782780, DOI 10.1080/15252019.2013.782780] Kim SC., 2016, J MARK COMMUN, V22, P653, DOI DOI 10.1080/13527266.2014.951065 Kim SJ, 2015, J INTERACT MARK, V31, P28, DOI 10.1016/j.intmar.2015.05.004 KOTLER P, 1974, J RETAILING, V49, P48 Krasonikolakis I, 2018, EUR J MARKETING, V52, P1223, DOI 10.1108/EJM-03-2015-0183 Lane P. L., 2019, J INFORM SYSTEMS ED, V26, P3 Lee JA, 2008, J BUS RES, V61, P265, DOI 10.1016/j.jbusres.2007.06.006 Lee JE, 2018, FASH TEXT, V5, DOI 10.1186/s40691-018-0128-2 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Lester D.H., 2005, SERVICES MARKETING Q, V27, P123, DOI [10.1300/J396v27n02_08, DOI 10.1300/J396V27N02_08] Li HR, 2002, J ADVERTISING, V31, P43, DOI 10.1080/00913367.2002.10673675 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liu Y, 2013, DECIS SUPPORT SYST, V55, P829, DOI 10.1016/j.dss.2013.04.001 Malhotra N., 2007, Marketing research: An applied approach Mazaheri E, 2010, J GLOB SCHOLARS MARK, V20, P123 Nikou SA, 2017, COMPUT HUM BEHAV, V68, P83, DOI 10.1016/j.chb.2016.11.020 O'Cass A., 2003, J RETAIL CONSUM SERV, V10, P81, DOI DOI 10.1016/S0969-6989(02)00004-8 Olaru D, 2008, J BUS IND MARK, V23, P554, DOI 10.1108/08858620810913362 Pandya P.R., 2018, IUP J MANAGEMENT RES, V17, P45 Parsad C., 2017, Journal of Business and Management, V23, P1, DOI [DOI 10.6347/JBM.201709_23(1_2).0001, 10.1108/eemcs-06-2016-0106] Powers David Martin, 2011, Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation Prashar Sanjeev, 2017, International Journal of Manufacturing Technology and Management, V31, P494 Prashar S., 2016, International Journal of Business Information, V11, P175, DOI DOI 10.1016/J.TOURMAN.2015.01.028 Prashar S., 2016, ASIAN ACAD MANAGEMEN, V21 Prashar S, 2015, INT J INDIAN CULT BU, V11, P219, DOI 10.1504/IJICBM.2015.071308 Prashar S, 2015, DECISION-INDIA, V42, P403, DOI 10.1007/s40622-015-0109-x Puri Radhika., 1996, Journal of Consumer Psychology, V5, P87, DOI DOI 10.1207/S15327663JCP0502_01 Pynoo B, 2011, COMPUT HUM BEHAV, V27, P568, DOI 10.1016/j.chb.2010.10.005 Rook DW, 1995, J CONSUM RES, V22, P305, DOI 10.1086/209452 Rose, 2017, BUSINESS COM TAP SUC Ruiter RAC, 2001, HEALTH EDUC RES, V16, P307, DOI 10.1093/her/16.3.307 Saifi R, 2017, 2017 MOBILE APP MARK Shaikh AA, 2018, INT J E-BUS RES, V14, P39, DOI 10.4018/IJEBR.2018040103 Sheehan D, 2019, J RETAIL CONSUM SERV, V51, P129, DOI 10.1016/j.jretconser.2019.06.001 Sherman E, 1997, PSYCHOL MARKET, V14, P361, DOI 10.1002/(SICI)1520-6793(199707)14:4<361::AID-MAR4>3.0.CO;2-7 Statista, 2017, NUMB SMARTPH US IND Statista, 2016, COUNTR EXC GLOB AV P statista, 2019, Global smartphone penetration rate as share of population from 2016 to 2022 STERN H, 1962, J MARKETING, V26, P59, DOI 10.2307/1248439 Sundström M, 2019, J RETAIL CONSUM SERV, V47, P150, DOI 10.1016/j.jretconser.2018.11.006 Tandon U., 2018, International Journal of Electronic Business, V14, P212, DOI DOI 10.1504/IJEB.2018.095959 Techcrunch, 2014, MOB APP US INCR 2014 TREVINO LK, 1992, COMMUN RES, V19, P539, DOI 10.1177/009365092019005001 Venkatesh V, 2012, MIS QUART, V36, P157 Vohs KD, 2007, J CONSUM RES, V33, P537, DOI 10.1086/510228 Vrechopoulos AP, 2004, J RETAILING, V80, P13, DOI 10.1016/j.jretai.2004.01.006 Web, 2015, IMPULSE ECOMMERCE 3 West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122 Westland JC, 2010, ELECTRON COMMER R A, V9, P476, DOI 10.1016/j.elerap.2010.07.003 Wolin LD, 2003, INTERNET RES, V13, P375, DOI 10.1108/10662240310501658 Wood M, 1998, J ECON PSYCHOL, V19, P295, DOI 10.1016/S0167-4870(98)00009-9 Wu WY, 2013, INT J RETAIL DISTRIB, V42, P4, DOI 10.1108/IJRDM-01-2013-0035 Xu CY, 2015, DECIS SUPPORT SYST, V79, P171, DOI 10.1016/j.dss.2015.08.008 Xu RH, 2016, COMPUT HUM BEHAV, V62, P244, DOI 10.1016/j.chb.2016.04.011 Xu Y, 2014, SOC BEHAV PERSONAL, V42, P1293, DOI 10.2224/sbp.2014.42.8.1293 Yan Bo., 2011, P 9 INT C MOBILE SYS, P113 Yang HL, 2014, INFORM TECHNOL PEOPL, V27, P21, DOI 10.1108/ITP-11-2012-0130 Yang S. B., 1970, J INTERNET BANKING C, V20, P1 Yi S, 2020, J HOSP MARKET MANAG, V29, P662, DOI 10.1080/19368623.2020.1692267 Zhang GQ, 1998, INT J FORECASTING, V14, P35, DOI 10.1016/S0169-2070(97)00044-7 Zhang KZK, 2018, INTERNET RES, V28, P522, DOI 10.1108/IntR-12-2016-0377 NR 101 TC 0 Z9 1 U1 2 U2 29 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1539-2937 EI 1539-2929 J9 J ELECTRON COMMER OR JI J. Electron. Commer. Organ. PD JAN-MAR PY 2021 VL 19 IS 1 BP 43 EP 64 DI 10.4018/JECO.2021010103 PG 22 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA PS5JI UT WOS:000607956900003 DA 2024-03-27 ER PT J AU Cao, MK Hu, Q Kiang, MY Hong, H AF Cao, Mukun Hu, Qing Kiang, Melody Y. Hong, Hong TI A Portfolio Strategy Design for Human-Computer Negotiations in e-Retail SO INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE LA English DT Article DE Electronic commerce; automated negotiation; negotiation strategy; human-computer interaction; design science; human-computer negotiation; software agents; online negotiation ID SCIENCE RESEARCH; TASK COMPLEXITY; SOFTWARE AGENT; DECEPTION; COMMERCE; SYSTEMS; MODEL; AUCTIONS; BEHAVIOR; TACTICS AB Human-computer negotiation has the potential to play an important role in today's highly dynamic online environment, especially in business-to-consumer e-commerce transactions. However, the lack of research on effective automated negotiation algorithms to respond to human buyers' strategic and/or tactic offers has limited the development of automated human-computer negotiation systems for real-world applications. Intelligent software agents that are capable of dynamically adjusting their negotiation strategy in response to human buyers' offers can greatly improve the negotiation experience of human buyers. In this study, guided by design science principles, we design a portfolio strategy model, which implements four negotiation strategies (i.e., time-dependent, behavior-dependent, dynamic time-dependent, and impasse resolution) as the core of our software agent for negotiating with human buyers. To evaluate this novel model, we implement a prototype of the system and compare it with three benchmark single-strategy models (i.e., competitive, collaborative, and selection) in human-computer negotiation experiments. The results show that our model not only enables the software agent to outperform its human counterpart but also significantly increases the settlement ratio and the joint outcome of both parties. C1 [Cao, Mukun] Xiamen Univ, Sch Management, Xiamen, Peoples R China. [Hu, Qing] CUNY, Baruch Coll, Zicklin Sch Business, New York, NY 10021 USA. [Kiang, Melody Y.] Calif State Univ Long Beach, Coll Business, Informat Syst Dept, 1250 Bellflower Blvd, Long Beach, CA 90840 USA. [Hong, Hong] Harbin Inst Technol, Sch Management, Harbin, Heilongjiang, Peoples R China. C3 Xiamen University; City University of New York (CUNY) System; Baruch College (CUNY); California State University System; California State University Long Beach; Harbin Institute of Technology RP Kiang, MY (autor correspondiente), Calif State Univ Long Beach, Coll Business, Informat Syst Dept, 1250 Bellflower Blvd, Long Beach, CA 90840 USA. EM Melody.kiang@csulb.edu FU China Scholarship Council [201706315032]; Natural Science Foundation of China [71671154]; Fundamental Research Funds for the Central Universities of China [20720161052] FX This work was supported by the China Scholarship Council (Grant#201706315032), and the Natural Science Foundation of China (Grant#71671154), and the Fundamental Research Funds for the Central Universities of China (Grant#20720161052). CR Adam MTP, 2017, INT J ELECTRON COMM, V21, P363, DOI 10.1080/10864415.2016.1319222 Adomavicius G, 2009, INFORM SYST RES, V20, P507, DOI 10.1287/isre.1080.0172 Axelrod R., 1984, The Evolution of Cooperation Aydogan R., 2017, MODERN APPROACHES AG, P153, DOI [10.1007/978-3-319-51563-2, 10.1007/978-3-319-51563-2_10, DOI 10.1007/978-3-319-51563-2_10] Baarslag T, 2013, ARTIF INTELL, V198, P73, DOI 10.1016/j.artint.2012.09.004 Bichler M, 2010, INFORM SYST RES, V21, P688, DOI 10.1287/isre.1100.0316 Bosse T, 2005, RRS 2005: RATIONAL, ROBUST, AND SECURE NEGOTIATION MECHANISMS IN MULTI-AGENT SYSTEMS, PROCEEDINGS, P11, DOI 10.1109/RRS.2005.8 Cao M, 2016, OPEN J SOC SCI, V4, P64 Cao MK, 2016, P ANN HICSS, P369, DOI 10.1109/HICSS.2016.52 Cao MK, 2015, FOURTEENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, P111 Cao MK, 2015, DECIS SUPPORT SYST, V73, P1, DOI 10.1016/j.dss.2015.02.012 Carbonneau RA, 2014, EXPERT SYST APPL, V41, P4035, DOI 10.1016/j.eswa.2013.12.029 Chohra A, 2011, LECT NOTES ARTIF INT, V6923, P352, DOI 10.1007/978-3-642-23938-0_36 FARATIN P, 1998, INT J ROB AUTON SYST, V24, P3 Fatima SS, 2004, ARTIF INTELL, V152, P1, DOI 10.1016/S0004-3702(03)00115-2 Gaspar JP, 2016, NEGOTIATION J, V32, P213, DOI 10.1111/nejo.12157 Giordano G.A., 2007, J COMPUT-MEDIAT COMM, V12, P23 GODE DK, 1993, J POLIT ECON, V101, P119, DOI 10.1086/261868 Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Hinz O, 2011, MIS QUART, V35, P81 Huang SL, 2006, INT J ELECTRON COMM, V11, P85, DOI 10.2753/JEC1086-4415110104 Ilany L, 2016, AUTON AGENT MULTI-AG, V30, P697, DOI 10.1007/s10458-015-9302-8 Jain BA, 2000, INFORM MANAGE, V37, P161, DOI 10.1016/S0378-7206(99)00049-X Jonker CM, 2007, AUTON AGENT MULTI-AG, V15, P221, DOI 10.1007/s10458-006-9009-y Kersten GE, 2007, GROUP DECIS NEGOT, V16, P553, DOI 10.1007/s10726-007-9095-5 Ketter W, 2012, INFORM SYST RES, V23, P1263, DOI 10.1287/isre.1110.0415 KRAUS S, 1995, COMPUT INTELL, V11, P132, DOI 10.1111/j.1467-8640.1995.tb00026.x Kraus S, 2008, ARTIF INTELL, V172, P1, DOI 10.1016/j.artint.2007.05.007 Lee CF, 2008, GROUP DECIS NEGOT, V17, P515, DOI 10.1007/s10726-008-9109-y Lewicki R.J., 2003, NEGOTIATION, V4th Lin R, 2008, ARTIF INTELL, V172, P823, DOI 10.1016/j.artint.2007.09.007 Lin R, 2014, DECIS SUPPORT SYST, V60, P1, DOI 10.1016/j.dss.2013.05.015 Lin R, 2014, COMPUT INTELL-US, V30, P48, DOI 10.1111/j.1467-8640.2012.00463.x Lin R, 2010, COMMUN ACM, V53, P78, DOI 10.1145/1629175.1629199 Lopes F, 2008, ARTIF INTELL REV, V29, P1, DOI 10.1007/s10462-009-9107-8 Lumineau F, 2012, J OPER MANAG, V30, P382, DOI 10.1016/j.jom.2012.03.005 Luo XD, 2003, ARTIF INTELL, V148, P53, DOI 10.1016/S0004-3702(03)00041-9 Mell J, 2016, AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P1510 MICHELMAN JH, 1983, J BUS ETHICS, V2, P255, DOI 10.1007/BF00383182 Moukas A, 2000, INT J ELECTRON COMM, V4, P5, DOI 10.1080/10864415.2000.11518369 Nadler J, 2003, MANAGE SCI, V49, P4 Pak J, 2014, DECIS SUPPORT SYST, V63, P95, DOI 10.1016/j.dss.2013.08.010 Pan L, 2013, COMPUT INTELL-US, V29, P577, DOI 10.1111/j.1467-8640.2012.00434.x Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Pruitt D., 2004, SOCIAL CONFLICT ESCA Pruitt D.G., 1981, NEGOTIATION BEHAV Putnam L.L., 1990, Research on negotiation in organizations, V2, P3 Raiffa Howard., 1982, ART SCI NEGOTIATION Ren FH, 2014, DECIS SUPPORT SYST, V60, P29, DOI 10.1016/j.dss.2013.05.018 Resinas M, 2010, INT J ELECTRON COMM, V14, P93, DOI 10.2753/JEC1086-4415140305 Ribbink D, 2014, J OPER MANAG, V32, P114, DOI 10.1016/j.jom.2014.01.004 Ros R, 2006, AUTON AGENT MULTI-AG, V12, P163, DOI 10.1007/s10458-006-5837-z SMITH VL, 1976, AM ECON REV, V66, P274 Thompson L., 2004, MIND HEART NEGOTIATO, V3rd Vahidov R, 2017, ELECTRON COMMER R A, V26, P50, DOI 10.1016/j.elerap.2017.09.007 Vahidov R, 2014, DECIS SUPPORT SYST, V66, P135, DOI 10.1016/j.dss.2014.06.009 VANDEVLIERT E, 1997, COMPLEX INTERPERSONA Walls JG, 1992, INFORM SYST RES, V3, P36, DOI 10.1287/isre.3.1.36 Wang KJ, 2003, ROBOT AUTON SYST, V43, P1, DOI 10.1016/S0921-8890(02)00359-7 Yang YP, 2014, IEEE INTELL SYST, V29, P36, DOI 10.1109/MIS.2013.106 Yang YP, 2012, J MANAGE INFORM SYST, V29, P223, DOI 10.2753/MIS0742-1222290307 NR 62 TC 7 Z9 7 U1 11 U2 69 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1086-4415 EI 1557-9301 J9 INT J ELECTRON COMM JI Int. J. Electron. Commer. PD JUL 2 PY 2020 VL 24 IS 3 BP 305 EP 337 DI 10.1080/10864415.2020.1767428 PG 33 WC Business; Computer Science, Software Engineering WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA MT6SE UT WOS:000555101800003 DA 2024-03-27 ER PT J AU Shen, PY Wan, DM Li, JX AF Shen, Pengyi Wan, Demin Li, Jinxiong TI How human-computer interaction perception affects consumer well-being in the context of online retail: from the perspective of autonomy SO NANKAI BUSINESS REVIEW INTERNATIONAL LA English DT Article DE Human-computer interaction; Consumer well-being; Autonomy; Psychological resistance; Experiential purchase ID PSYCHOLOGICAL REACTANCE; HAPPINESS; MOTIVATION; RECOMMENDATIONS; EXPERIENCES; VALIDATION; PREFERENCE; PURCHASES; PRODUCT; ENHANCE AB Purpose In recent years, the application of artificial intelligence and digital technology has increasingly become a priority for online retailers. It is crucial to choose a way to make use of human-computer interaction (HCI) design to exert the positive influence of intelligent technology on consumer welfare. Despite the increasing use of HCI design in online retail context, there remain limitations in their effect of consumer well-being improvement. Although there is extensive literature in the field of consumer well-being improvement, few studies have empirically examined how HCI design drives the improvement of consumer well-being in the online retail context. Therefor, this study aims to deeply and systematically analyze the psychological mechanism between HCI and consumer well-being in the online retail environment. Design/methodology/approach The empirical analysis is based on data collection of 476 samples of online shoppers through the online survey method. From the perspective of autonomy, this study deeply analyzes the influence mechanism of different dimensions of HCI perception on consumer well-being. Findings The results indicated that autonomy plays a positive intermediary role in the impact of perceived connectivity, perceived personalization, perceived control and perceived responsiveness on the eudaimonia and hedonic enjoyment. Also, it revealed that psychological resistance negatively regulates the impact of perceived connectivity, perceived personalization and perceived control on autonomy, while experience purchase positively regulates the impact of autonomy on hedonic enjoyment. Originality/value This paper expands the research situation of consumer well-being by making integration of the dual structure of subjective well-being and psychological well-being to define the psychological mechanism and boundary conditions of the impact of HCI perception on consumer well-being. The main contribution of this study is to provide enlightenment for online retail enterprises to improve HCI design and help consumers enhance long-term well-being. C1 [Shen, Pengyi; Wan, Demin; Li, Jinxiong] Jiangxi Univ Finance & Econ, Sch Business Adm, Nanchang, Jiangxi, Peoples R China. C3 Jiangxi University of Finance & Economics RP Shen, PY (autor correspondiente), Jiangxi Univ Finance & Econ, Sch Business Adm, Nanchang, Jiangxi, Peoples R China. EM pengyis2008@163.com FU National Natural Science Foundation of China [71762011, 71972082]; Jiangxi Social Science Foundation Project [20GL13, 21GL56D] FX The research is supported by National Natural Science Foundation of China (Project No. 71762011; Project No.71972082), and Jiangxi Social Science Foundation Project (Project No. 20GL13; Project No. 21GL56D). CR Amoura C, 2014, MOTIV EMOTION, V38, P323, DOI 10.1007/s11031-013-9379-9 Andre Q., 2018, Customer Needs and Solutions, V5, P28, DOI 10.1007/s40547-017-0085-8 Brehm S.S., 1981, PSYCHOL REACTANCE Calvo R.A., 2016, CHI 16 HUM FACT COMP Caprariello PA, 2013, J PERS SOC PSYCHOL, V104, P199, DOI 10.1037/a0030953 Chan C, 2017, J CONSUM RES, V43, P913, DOI 10.1093/jcr/ucw067 Cho CH, 2004, J ADVERTISING, V33, P89, DOI 10.1080/00913367.2004.10639175 Christman Z, 2015, GISCI REMOTE SENS, V52, P543, DOI 10.1080/15481603.2015.1067859 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Deci EL, 2008, CAN PSYCHOL, V49, P14, DOI 10.1037/0708-5591.49.1.14 Deci EL, 2000, PSYCHOL INQ, V11, P227, DOI 10.1207/S15327965PLI1104_01 Dholakia R.R., 2000, INTERACTIVITY REVISI Diener E, 2000, AM PSYCHOL, V55, P34, DOI 10.1037/0003-066X.55.1.34 Diener E, 2017, CAN PSYCHOL, V58, P87, DOI 10.1037/cap0000063 Donnell AJ, 2001, J SOC PSYCHOL, V141, P679, DOI 10.1080/00224540109600581 Fitzsimons GJ, 2004, MARKET SCI, V23, P82, DOI 10.1287/mksc.1030.0033 Gaggioli A, 2017, EMOTIONS AND AFFECT IN HUMAN FACTORS AND HUMAN-COMPUTER INTERACTION, P477, DOI 10.1016/B978-0-12-801851-4.00018-5 Gao Q, 2010, BEHAV INFORM TECHNOL, V29, P35, DOI 10.1080/01449290802666770 Gilovich Thomas., 2020, CONSUMER PSYCHOL REV, V3, P20, DOI [DOI 10.1002/ARCP.1053, 10.1002/arcp.1053] He Y., 2016, RES STATUS PROSPECT, V38, P49 Hilken T, 2017, J ACAD MARKET SCI, V45, P884, DOI 10.1007/s11747-017-0541-x Howell RT, 2012, J POSIT PSYCHOL, V7, P57, DOI 10.1080/17439760.2011.626791 Huang MH, 2017, J ACAD MARKET SCI, V45, P906, DOI 10.1007/s11747-017-0545-6 Hwang K, 2018, J BUS ETHICS, V151, P579, DOI 10.1007/s10551-016-3236-1 Kari T., 2016, 29 BLED ECONFERENCE Kim J, 2016, SELF IDENTITY, V15, P727, DOI 10.1080/15298868.2016.1208623 Kumar A, 2016, J CONSUM PSYCHOL, V26, P169, DOI 10.1016/j.jcps.2015.06.013 Lee G, 2009, INFORM MANAGE-AMSTER, V46, P448, DOI 10.1016/j.im.2009.07.005 Lee JC, 2018, PSYCHOL SCI, V29, P1031, DOI 10.1177/0956797617736386 Lee T., 2005, J ELECTRON COMMER RE, V6, P165, DOI DOI 10.1145/1964921.1964953 Liu YP, 2002, J ADVERTISING, V31, P53, DOI 10.1080/00913367.2002.10673685 Newhagen JE, 2004, INFORM SOC, V20, P395, DOI 10.1080/01972240490508108 Ong CS, 2015, J BUS RES, V68, P591, DOI 10.1016/j.jbusres.2014.09.002 Pchelin P, 2014, J POSIT PSYCHOL, V9, P322, DOI 10.1080/17439760.2014.898316 Peterson C., 2005, Journal of Happiness Studies, V6, P25, DOI [10.1007/s10902-004-1278-z, DOI 10.1007/S10902-004-1278-Z] Proshansky H.M., 1970, Environmental Psychology: Man and his physical setting Rigoni D, 2012, CONSCIOUS COGN, V21, P1482, DOI 10.1016/j.concog.2012.04.004 RYAN RM, 1989, J PERS SOC PSYCHOL, V57, P749, DOI 10.1037/0022-3514.57.5.749 Ryan RM, 2001, ANNU REV PSYCHOL, V52, P141, DOI 10.1146/annurev.psych.52.1.141 Schneider S, 2018, LEARN INSTR, V58, P161, DOI 10.1016/j.learninstruc.2018.06.006 Sirgy MJ, 2001, SOC INDIC RES, V56, P125, DOI 10.1023/A:1012254826324 Sohn D, 2011, NEW MEDIA SOC, V13, P1320, DOI 10.1177/1461444811405806 Telfer E., 1980, Happiness Thomas R, 2013, J PSYCHOL, V147, P345, DOI 10.1080/00223980.2012.694378 Van Boven L, 2003, J PERS SOC PSYCHOL, V85, P1193, DOI 10.1037/0022-3514.85.6.1193 Verduyn P, 2017, SOC ISS POLICY REV, V11, P274, DOI 10.1111/sipr.12033 Vogel J, 2015, J RETAIL CONSUM SERV, V27, P126, DOI 10.1016/j.jretconser.2015.07.007 Walz S.P., 2015, GAMEFUL WORLD APPROA WATERMAN AS, 1993, J PERS SOC PSYCHOL, V64, P678, DOI 10.1037/0022-3514.64.4.678 Wheatley D, 2019, BRIT J SOCIOL, V70, P1971, DOI 10.1111/1468-4446.12644 Wu G., 2006, Journal of Current Issues and Research in Adverting, V28, P87 Xiao B, 2018, DECIS SUPPORT SYST, V110, P46, DOI 10.1016/j.dss.2018.03.005 Yoo WS, 2010, J RETAIL CONSUM SERV, V17, P89, DOI 10.1016/j.jretconser.2009.10.003 NR 53 TC 3 Z9 3 U1 11 U2 48 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-8749 EI 2040-8757 J9 NANKAI BUS REV NT JI Nankai Bus. Rev. Int. PD MAR 16 PY 2023 VL 14 IS 1 SI SI BP 102 EP 127 DI 10.1108/NBRI-03-2022-0034 EA JUN 2022 PG 26 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA A0OV6 UT WOS:000804057200001 DA 2024-03-27 ER PT J AU Mishra, AK Bansal, R Maurya, PK Kar, SK Bakshi, PK AF Mishra, Anand Kumar Bansal, Rohit Maurya, Prince Kumar Kar, Sanjay Kumar Bakshi, Palvinder Kaur TI Predicting the antecedents of consumers' intention toward purchase of mutual funds: A hybrid PLS-SEM-neural network approach SO INTERNATIONAL JOURNAL OF CONSUMER STUDIES LA English DT Article DE behavioural finance; consumer behaviour; COVID-19; financial awareness; mutual funds; theory of planned behaviour ID FINANCIAL LITERACY; SOCIAL MEDIA; INVESTMENT KNOWLEDGE; BEHAVIORAL INTENTION; EMPIRICAL-ANALYSIS; SERVICE QUALITY; SELF-EFFICACY; IMPACT; RISK; SATISFACTION AB The current study intends to identify the behavioural antecedents of investors' attitude and investment intention toward mutual funds using a robust SEM-ANN approach. It focuses on novel factors in the purview of the COVID-19 pandemic, increasing digitalization and social media usage. The research outcome indicates that attitude (ATB), awareness (AW) and investment decision involvement (IDI) have a significant positive relation with investment intention (BI). In contrast, perceived barrier (PBR) negatively relates to investment intention. Herd behaviour (HB) and social media influence (SMI) do not influence investment intention toward mutual funds. Moreover, all the tested predictors share direct relation with the attitude toward mutual fund investment, barring perceived risk (PR), which has an inverse relationship. As per the outcome of ANN sensitivity analysis, attitude is the most crucial determinant of investment intention. It is followed by awareness (AW), perceived barriers (PBR) and investment decision involvement (IDI). Among the significant determinants of attitude, self-efficacy (SE) is the most important determinant, followed by perceived usefulness (PU), perceived emergency (PEMER), subjective norms (SN) and perceived risk (PR). C1 [Mishra, Anand Kumar; Bansal, Rohit; Maurya, Prince Kumar; Kar, Sanjay Kumar] Rajiv Gandhi Inst Petr Technol, Dept Management Studies, Jais, Uttar Pradesh, India. [Bakshi, Palvinder Kaur] Univ Delhi, New Delhi, India. C3 University of Delhi RP Bansal, R (autor correspondiente), Rajiv Gandhi Inst Petr Technol, Dept Management Studies, Amethi 229304, Uttar Pradesh, India. EM rbansal@rgipt.ac.in RI Maurya, Prince/HTN-7002-2023; Kar, Sanjay K/A-2971-2017; Maurya, Prince/IXW-4855-2023; Mishra, Anand Kumar/HTS-7433-2023 OI Maurya, Prince/0000-0002-9657-8987; Mishra, Anand Kumar/0000-0003-0256-4857; Kaur, Palvinder/0000-0002-4436-2842; bansal, rohit/0000-0002-9914-9109 CR Abid AA, 2011, PERCEIVED BENEFITS B, V2011, P1 Agnew J.R., 2005, J BEHAV FINANC, V6, P57, DOI DOI 10.1207/S15427579JPFM0602_2 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T AJZEN I, 1974, HUM RELAT, V27, P1, DOI 10.1177/001872677402700101 Ajzen I., 2000, EUR REV SOC PSYCHOL, P1, DOI [https://doi.org/10.1080/14792779943000116, DOI 10.1080/14792779943000116, 10.1080/14792779943000116] Albuquerque R.A., 2021, 7822021 ECGI FIN, DOI [10.2139/ssrn.3908464, DOI 10.2139/SSRN.3908464] Alexander GJ., 2001, The Quarterly Review of Economics and Finance, V41, P387, DOI [10.1016/S1062-9769(00)00080-6, DOI 10.1016/S1062-9769(00)00080-6] Alqadhib H, 2022, COGENT ECON FINANC, V10, DOI 10.1080/23322039.2022.2056361 Nguyen AN, 2018, J ECON STUD, V45, P1288, DOI 10.1108/JES-07-2017-0175 Anong ST, 2010, FAM CONSUM SCI RES J, V38, P405, DOI 10.1111/j.1552-3934.2010.00035.x BANDURA A, 1977, PSYCHOL REV, V84, P191, DOI 10.1037/0033-295X.84.2.191 Barber B. M., 2013, Handb. Econ. Finance, V2, P1533, DOI [10.1016/B978-0-44-459406-8.00022-6, DOI 10.1016/B978-0-44-459406-8.00022-6] Bashir I, 2015, J INDIAN BUS RES, V7, P67, DOI 10.1108/JIBR-02-2014-0013 Beik I.S., 2019, J CONSUM SCI, V4, P37, DOI DOI 10.29244/JCS.4.1.37-47 Bialowolski P, 2022, INT J CONSUM STUD, V46, P88, DOI 10.1111/ijcs.12646 Bora D, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2623 Bouri E, 2019, FINANC RES LETT, V29, P216, DOI 10.1016/j.frl.2018.07.008 Brahmana R, 2018, S E ASIAN J MANAGE, V12, P43, DOI 10.21002/seam.v12i1.7465 Buehler P, 2018, INT J BANK MARK, V36, P1073, DOI 10.1108/IJBM-12-2016-0182 Cade NL, 2018, ACCOUNT ORG SOC, V68-69, P63, DOI 10.1016/j.aos.2018.03.004 Calcagno R, 2015, J BANK FINANC, V50, P363, DOI 10.1016/j.jbankfin.2014.03.013 Cao C, 2008, J BANK FINANC, V32, P2111, DOI 10.1016/j.jbankfin.2007.12.035 Caparrelli F., 2004, J BEHAV FINANC, V5, P222, DOI [10.1207/s15427579jpfm0504_5, DOI 10.1207/S15427579JPFM0504_5] Carhart MM, 1997, J FINANC, V52, P57, DOI 10.2307/2329556 Cashman G., 2014, J ECON FINANC-US, V38, P541 Chakraborty D, 2023, TECHNOVATION, V120, DOI 10.1016/j.technovation.2022.102481 Chan WS, 2003, J FINANC ECON, V70, P223, DOI 10.1016/S0304-405X(03)00146-6 Chang J, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2020.102452 Chase S., 2011, COMING CASH PINCH EM, DOI DOI 10.1162/003355397555109 Chawla D, 2014, GLOB BUS REV, V15, P493, DOI 10.1177/0972150914535136 Chiang TF, 2017, INT J CONSUM STUD, V41, P484, DOI 10.1111/ijcs.12356 Cho SH, 2014, INT J CONSUM STUD, V38, P701, DOI 10.1111/ijcs.12143 Chopdar PK, 2022, J BUS RES, V140, P657, DOI 10.1016/j.jbusres.2021.11.031 Chopdar PK, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121249 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 COX R, 1976, J MARKETING RES, V13, P320, DOI 10.2307/3150760 Cude BJ, 2019, INT J CONSUM STUD, V43, P503, DOI 10.1111/ijcs.12535 D'Arcangelis AM, 2021, J BUS RES, V129, P679, DOI 10.1016/j.jbusres.2019.11.016 Del Giudice A, 2017, RES INT BUS FINANC, V41, P600, DOI 10.1016/j.ribaf.2017.05.004 Dholakia UtpalM., 2001, EUR J MARKETING, V35, P1340, DOI DOI 10.1108/EUM0000000006479 Diacon S., 2004, International Journal of Bank Marketing, V22, P180, DOI [10.1108/02652320410530304, DOI 10.1108/02652320410530304] Engelberg E., 2007, International Journal of Consumer Studies, V31, P95, DOI DOI 10.1111/J.1470-6431.2005.00494.X Fama EF, 2010, J FINANC, V65, P1915, DOI 10.1111/j.1540-6261.2010.01598.x Fernandez-Perez A, 2021, J BEHAV EXP FINANC, V29, DOI 10.1016/j.jbef.2020.100454 Ferriani F, 2021, J INT FINANC MARK I, V74, DOI 10.1016/j.intfin.2021.101391 Forbes J, 2010, J ECON PSYCHOL, V31, P435, DOI 10.1016/j.joep.2010.01.012 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Foxall G.R., 1998, INT J BANK MARK, V16, P180 Franck A., 2012, KREDIT KAPITAL, V45, P343, DOI DOI 10.3790/KUK.45.3.343 Frey S, 2014, J INT FINANC MARK I, V32, P219, DOI 10.1016/j.intfin.2014.05.006 FURNHAM A, 1985, J APPL SOC PSYCHOL, V15, P354, DOI 10.1111/j.1559-1816.1985.tb00912.x Furnham A, 1999, J ECON PSYCHOL, V20, P677, DOI 10.1016/S0167-4870(99)00030-6 GEISSER S, 1974, BIOMETRIKA, V61, P101, DOI 10.2307/2334290 GINTER JL, 1979, J MARKETING RES, V16, P600, DOI 10.2307/3150840 Goodell JW, 2020, FINANC RES LETT, V35, DOI 10.1016/j.frl.2020.101512 Gordon-Wilson S, 2022, INT J CONSUM STUD, V46, P575, DOI 10.1111/ijcs.12701 Goyal K, 2021, INT J CONSUM STUD, V45, P80, DOI 10.1111/ijcs.12605 Guan C., 2021, Annals of Data Science, DOI DOI 10.1007/S40745-021-00353-W Guan R, 2021, J SYST SCI SYST ENG, V30, P748, DOI 10.1007/s11518-021-5514-4 Gutsche G, 2020, SCHMALENBACH BUS REV, V72, P111, DOI 10.1007/s41464-020-00085-z Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hira TK, 2013, INT J CONSUM STUD, V37, P29, DOI 10.1111/ijcs.12003 Hira TK, 2012, INT J CONSUM STUD, V36, P502, DOI 10.1111/j.1470-6431.2012.01115.x Ho CS, 2017, DECIS SUPPORT SYST, V101, P69, DOI 10.1016/j.dss.2017.06.001 Hoffmann A, 2018, INT J CONSUM STUD, V42, P241, DOI 10.1111/ijcs.12412 Hogarth J.M., 2003, Financial Counseling and Planning, V14, P1, DOI [10.4324/9781315081816, DOI 10.4324/9781315081816] Hsieh MF, 2011, QUANT FINANC, V11, P423, DOI 10.1080/14697688.2010.506882 Hwang YJ, 2007, DECIS SUPPORT SYST, V43, P746, DOI 10.1016/j.dss.2006.12.008 Jain M, 2019, INT J RES ANALYTICAL, V6, P1 Jank S, 2012, J BANK FINANC, V36, P3060, DOI 10.1016/j.jbankfin.2012.07.004 Jia DK, 2021, EMERG MARK FINANC TR, V57, P2153, DOI 10.1080/1540496X.2019.1643319 Jiang H, 2022, J FINANC ECON, V143, P277, DOI 10.1016/j.jfineco.2021.05.022 Jonsson S, 2017, MANAG FINANC, V43, P282, DOI 10.1108/MF-10-2015-0269 Jonsson S, 2009, STRATEGIC MANAGE J, V30, P517, DOI 10.1002/smj.739 Kale JR, 2012, IIMB MANAG REV, V24, P245, DOI 10.1016/j.iimb.2012.05.004 Kan M.P.H., 2017, ENCY PERSONALITY IND, P1, DOI DOI 10.1007/978-3-319-28099-8_1191-1 Kaniel R, 2017, J FINANC ECON, V123, P337, DOI 10.1016/j.jfineco.2016.11.003 Kaur I, 2018, QUAL RES FINANC MARK, V10, P395, DOI 10.1108/QRFM-09-2017-0084 Kaur I, 2016, J INDIAN BUS RES, V8, P19, DOI 10.1108/JIBR-04-2015-0051 Kautish P, 2019, J CLEAN PROD, V228, P1425, DOI 10.1016/j.jclepro.2019.04.389 Kengatharan L., 2014, ASIAN J FINANCE ACCO, DOI [DOI 10.5296/AJFA.V6I1.4893, 10.5296/ajfa.v6i1.4893] Kennickell, 2005, FRANKFURT GERMANY GO Kim J, 2008, INT J CONSUM STUD, V32, P619, DOI 10.1111/j.1470-6431.2008.00689.x Kim MJ, 2022, INT J CONSUM STUD, V46, P449, DOI 10.1111/ijcs.12692 Klapper Leora., 2004, EMERG MARK REV, V5, P1, DOI DOI 10.1016/J.EMEMAR.2003.12.001 Kling L, 2023, J BANK FINANC, V154, DOI 10.1016/j.jbankfin.2022.106489 Kock N., 2020, Data Analysis Perspectives Journal, V2, P1 Kock N., 2017, In partial least squares path modeling, P245, DOI [10.1007/978-3-319-64069-3_11, DOI 10.1007/978-3-319-64069-3] Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015040101 Kozup J, 2008, J CONSUM AFF, V42, P37, DOI 10.1111/j.1745-6606.2007.00093.x Laroche M., 2004, J SERV RES-US, V6, P373, DOI DOI 10.1177/1094670503262955 Lee JM, 2019, INT J FINANC STUD, V7, DOI 10.3390/ijfs7030053 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2018, J ELECTRON COMMER RE, V19, P75 Li DF, 2019, J ASSOC INF SCI TECH, V70, P1000, DOI 10.1002/asi.24173 Lim TS, 2018, J BEHAV EXP FINANC, V20, P74, DOI 10.1016/j.jbef.2018.08.001 Lim X.J., 2017, ASIAN J BUSINESS RES, V7, P19, DOI [DOI 10.14707/AJBR.170035, 10.14707/ajbr.170035] Liu F, 2019, INT J CONSUM STUD, V43, P23, DOI 10.1111/ijcs.12480 LIVINGSTONE S, 1993, HUM RELAT, V46, P963, DOI 10.1177/001872679304600804 Lobao J, 2017, CUAD ECON-SPAIN, V40, P268, DOI 10.1016/j.cesjef.2016.10.005 Lopes EL, 2022, INT J CONSUM STUD, V46, P803, DOI 10.1111/ijcs.12729 Lowry PB, 2014, IEEE T PROF COMMUN, V57, P123, DOI 10.1109/TPC.2014.2312452 Lusardi A., 2020, Mind Society, P20181, DOI DOI 10.1007/S11299-020-00246-0 Ma TJ, 2017, J INF TECHNOL-UK, V32, P234, DOI 10.1057/s41265-017-0037-7 Maheen MS, 2021, FUTUR BUS J, V7, DOI 10.1186/s43093-021-00081-w Meesala A, 2018, J RETAIL CONSUM SERV, V40, P261, DOI 10.1016/j.jretconser.2016.10.011 Michaelidou Nina., 2008, Marketing Review, V8, P83, DOI DOI 10.1362/146934708X290403 Milakovic IK, 2021, INT J CONSUM STUD, V45, P1425, DOI 10.1111/ijcs.12672 Mirza N, 2020, FINANC RES LETT, V36, DOI 10.1016/j.frl.2020.101657 Mishra, 2012, IUP J BEHAV FINANCE, VIX, P27 Misra R, 2022, QUAL RES FINANC MARK, V14, P602, DOI 10.1108/QRFM-12-2020-0232 Montford W, 2016, INT J CONSUM STUD, V40, P101, DOI 10.1111/ijcs.12219 Mou J, 2017, BEHAV INFORM TECHNOL, V36, P125, DOI 10.1080/0144929X.2016.1203024 Murendo C, 2017, INT J CONSUM STUD, V41, P95, DOI 10.1111/ijcs.12318 Nanda AP, 2021, INT J CONSUM STUD, V45, P750, DOI 10.1111/ijcs.12668 Nayal P, 2022, J CONSUM AFF, V56, P359, DOI 10.1111/joca.12399 Nocetti D, 2010, BE J ECON ANAL POLI, V10 Nur AiniN S., 2019, J EC BUSINESS ACCOUN, V21, P401, DOI DOI 10.14414/JEBAV.V21I3.1663 O'Neill B, 2007, J FAM ECON ISS, V28, P321, DOI 10.1007/s10834-007-9063-x Ortmann R, 2020, FINANC RES LETT, V37, DOI 10.1016/j.frl.2020.101717 Padmavathy C, 2019, J RETAIL CONSUM SERV, V51, P19, DOI 10.1016/j.jretconser.2019.05.014 Paliwal, 2018, PURUSHARTHA, V11, P39, DOI DOI 10.21844/PAJMES.V11I1.14608 Panigrahi S., 2018, INDIAN J MARKETING, V48, P28, DOI DOI 10.17010/IJOM/2018/V48/I1/120734 Pástor L, 2020, REV ASSET PRICING ST, V10, P791, DOI 10.1093/rapstu/raaa015 Paul J, 2021, INT J CONSUM STUD, V45, P937, DOI 10.1111/ijcs.12727 Paul J, 2020, J STRATEG MARK, V28, P681, DOI 10.1080/0965254X.2019.1569111 Paul J, 2016, INT J CONSUM STUD, V40, P635, DOI 10.1111/ijcs.12279 Paul J, 2016, INT J BANK MARK, V34, P606, DOI 10.1108/IJBM-03-2015-0030 Paul J, 2016, J RETAIL CONSUM SERV, V29, P123, DOI 10.1016/j.jretconser.2015.11.006 Paul J, 2012, J CONSUM MARK, V29, P412, DOI 10.1108/07363761211259223 Pellinen A, 2015, J FINANC SERV MARK, V20, P62, DOI 10.1057/fsm.2014.32 Pellinen A, 2011, INT J BANK MARK, V29, P107, DOI 10.1108/02652321111107611 PRATHER Laurie., 2004, REV FINANC ECON, V13, P305, DOI [10.1016/j.rfe.2003.11.002, DOI 10.1016/J.RFE.2003.11.002] Purohit S, 2022, J CONSUM BEHAV, V21, P523, DOI 10.1002/cb.2017 Segarra-Moliner JR, 2016, J BUS RES, V69, P4694, DOI 10.1016/j.jbusres.2016.04.017 Rana J, 2020, INT J CONSUM STUD, V44, P162, DOI 10.1111/ijcs.12556 Rayburn SW, 2022, INT J CONSUM STUD, V46, P524, DOI 10.1111/ijcs.12698 Raza SA, 2020, J ISLAMIC MARK, V11, P1497, DOI 10.1108/JIMA-03-2019-0047 Reyers M, 2019, INT J CONSUM STUD, V43, P335, DOI 10.1111/ijcs.12520 Ribbinket D., 2004, Managing Service Quality, V14, P446, DOI [DOI 10.1108/09604520410569784, 10.1108/09604520410569784] Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Rizvi SKA, 2020, J ASSET MANAG, V21, P281, DOI 10.1057/s41260-020-00172-3 Robb C.A., 2009, Journal of Financial Counseling and Planning, V20, P25 Roszkiewicz M, 2014, INT J CONSUM STUD, V38, P602, DOI 10.1111/ijcs.12129 Samadi M., 2009, BUSINESS INTELLIGENC, V2, P261 Samira, 2020, MATER TODAY-PROC, DOI [10.1016/j.matpr.2020.11.134, DOI 10.1016/J.MATPR.2020.11.134] Schmitt N, 2010, RES PRACT APPL LINGU, P1, DOI 10.1057/9780230293977 Shah, 2021, SOCIAL MEDIA ANAL MU, DOI [10.1007/978-981-15-5077-5_26, DOI 10.1007/978-981-15-5077-5_26] Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sharma GD, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100786 Sherif M, 2020, J BEHAV EXP FINANC, V28, DOI 10.1016/j.jbef.2020.100403 Shim GY, 2008, J BUS RES, V61, P47, DOI 10.1016/j.jbusres.2006.05.008 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Sias R.W., 1997, REV QUANT FINANC ACC, V8, P245, DOI DOI 10.1023/A:1008262905223 Sivaramakrishnan S, 2017, INT J BANK MARK, V35, P818, DOI 10.1108/IJBM-01-2016-0012 Soon HT, 2017, INTERNET RES, V27, P942, DOI 10.1108/IntR-08-2016-0256 STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Tajurahim NNS, 2020, INT J CONSUM STUD, V44, P511, DOI 10.1111/ijcs.12585 Talwar M, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102341 Tan GWH, 2014, COMPUT HUM BEHAV, V36, P198, DOI 10.1016/j.chb.2014.03.052 Taneja A, 2019, INT J INFORM MANAGE, V45, P132, DOI 10.1016/j.ijinfomgt.2018.10.010 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 Teo AC, 2015, IND MANAGE DATA SYST, V115, P311, DOI 10.1108/IMDS-08-2014-0231 Teo Timothy, 2011, Campus-Wide Information Systems, V28, P124, DOI 10.1108/10650741111117824 Tong SC, 2018, J FINANC SERV MARK, V23, P179, DOI 10.1057/s41264-018-0054-9 Vaidyanathan R., 2000, J PRODUCT BRAND MANA, V9, P179, DOI [10.1108/10610420010332449, DOI 10.1108/10610420010332449] Venkataramani R, 2023, MACROECON FINANC EME, V16, P157, DOI 10.1080/17520843.2021.1969086 Vörös Z, 2021, INT J CONSUM STUD, V45, P1292, DOI 10.1111/ijcs.12734 Vrontis D, 2021, INT J CONSUM STUD, V45, P617, DOI 10.1111/ijcs.12647 Waweru NelsonMaina., 2008, International Journal of Business and Emerging Markets, V1, P24, DOI [10.1504/IJBEM.2008.019243, DOI 10.1504/IJBEM.2008.019243, 10.1504/ijbem.2008.019243] WOOD R, 1989, ACAD MANAGE REV, V14, P361, DOI 10.2307/258173 Xiao JJ, 2014, INT J CONSUM STUD, V38, P394, DOI 10.1111/ijcs.12106 Yao J, 2014, INT REV ECON FINANC, V29, P12, DOI 10.1016/j.iref.2013.03.002 Yap SAF, 2021, INT J CONSUM STUD, V45, P1239, DOI 10.1111/ijcs.12724 Yuh Y, 2010, J CONSUM AFF, V44, P70, DOI 10.1111/j.1745-6606.2010.01158.x Zhu T, 2022, INT J CONSUM STUD, V46, P56, DOI 10.1111/ijcs.12643 NR 179 TC 11 Z9 11 U1 8 U2 38 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-6423 EI 1470-6431 J9 INT J CONSUM STUD JI Int. J. Consum. Stud. PD MAR PY 2023 VL 47 IS 2 BP 563 EP 587 DI 10.1111/ijcs.12850 EA AUG 2022 PG 25 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 8U9YE UT WOS:000837331800001 DA 2024-03-27 ER PT J AU Payne, EHM Peltier, J Barger, VA AF Payne, Elizabeth H. Manser Peltier, James Barger, Victor A. TI Enhancing the value co-creation process: artificial intelligence and mobile banking service platforms SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE Mobile marketing; Web 2.0; Customer value; Services marketing; Service quality; Information technology; Structural equation modeling; Eservice quality; Human-computer interaction; Computer-mediated environments; Digitalizations ID SELF-SERVICE; CUSTOMER EXPERIENCE; AUGMENTED REALITY; CONSUMER ADOPTION; ONLINE; TECHNOLOGY; INNOVATION; INTERNET; QUALITY; IMPACT AB Purpose - The purpose of this study is to investigate the relationships that influence the value co-creation process and lead to consumer comfort with artificial intelligence (AI) and mobile banking (AIMB) service platforms. Design/methodology/approach - A conceptual model was developed to investigate the value-in-use perceptions of AI-based mobile banking applications via five antecedents: baseline perceptions of current bank service delivery; service delivery configuration benefits; general data security; safety perceptions of specific mobile banking services; and perceptions of AI service delivery. Data were collected from 218 respondents and analyzed using structural equation modeling. Findings - This study highlights the role and importance of the sequential relationships that impact the assessment of AIMB. The findings suggest that service delivery and the customer's role in value co-creation change as AI is introduced into a digital self-service technology channel. Furthermore, AIMB offers transaction-oriented (utilitarian) value propositions more so than relationship-oriented (hedonic) value propositions. Research limitations/implications - The sample consisted on digital natives. Additional age cohorts are needed. Practical implications - As financial institutions redirect their business models toward digital self-service technology channels, the need for customers to feel comfortable while interacting with an AI agent will be critical for enhancing the customer experience and firm performance. Originality/value - The authors extend the service-dominant logic (SDL) literature by showing that value co-creation is a function of both firms' technologies and consumers' value-in-use, a finding that appears to be unique in the literature. The authors advance the digital transformation literature by evaluating AIMB as an interactive process that requires an understanding of key technology constructs, including perceptions of baseline service relationships, desired service configurations, security and safety issues and whether AI is useful for value co-creation. To the best of the authors' knowledge, this is the first SDL framework that investigates interactive and structural relationships to explain value-in-use perceptions of AIMB. C1 [Payne, Elizabeth H. Manser] Univ South Dakota, Dept Mkt, Vermillion, SD USA. [Payne, Elizabeth H. Manser; Barger, Victor A.] Univ Wisconsin, Coll Business & Econ, Dept Mkt, Whitewater, WI 53190 USA. [Peltier, James] Univ Wisconsin, Dept Mkt, Whitewater, WI 53190 USA. C3 University of South Dakota; University of Wisconsin System; University of Wisconsin System RP Peltier, J (autor correspondiente), Univ Wisconsin, Dept Mkt, Whitewater, WI 53190 USA. EM peltierj@uww.edu RI Barger, Victor A/B-2102-2009 OI Manser Payne, Elizabeth/0000-0002-7734-2282 CR Adapa S, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101901 Åkesson M, 2014, J SERV MANAGE, V25, P677, DOI 10.1108/JOSM-01-2013-0016 Akhter SH, 2015, J INT CONSUM MARK, V27, P207, DOI 10.1080/08961530.2014.994086 Albashrawi M, 2020, INFORM SYST MANAGE, V37, P16, DOI 10.1080/10580530.2020.1696530 Alzaydi ZM, 2018, BUS PROCESS MANAG J, V24, P295, DOI 10.1108/BPMJ-09-2016-0185 [Anonymous], 2019, EXPLORING OMNICHANNE Arcand M, 2017, INT J BANK MARK, V35, P1066, DOI 10.1108/IJBM-10-2015-0150 Baabdullah AM, 2019, INT J INFORM MANAGE, V44, P38, DOI 10.1016/j.ijinfomgt.2018.09.002 Balapour A, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102063 BITNER MJ, 1992, J MARKETING, V56, P57, DOI 10.2307/1252042 Boateng SL, 2019, INT J BANK MARK, V37, P226, DOI 10.1108/IJBM-01-2018-0009 Boonlertvanich K, 2019, INT J BANK MARK, V37, P278, DOI 10.1108/IJBM-02-2018-0021 Brown I, 2003, INT J INFORM MANAGE, V23, P381, DOI 10.1016/S0268-4012(03)00065-3 Cambra-Fierro J, 2017, J RETAIL CONSUM SERV, V34, P219, DOI 10.1016/j.jretconser.2016.10.007 Castelli M, 2016, COMPUT INTEL NEUROSC, V2016, DOI 10.1155/2016/9139380 Chang HH, 2016, INFORM TECHNOL PEOPL, V29, P496, DOI 10.1108/ITP-08-2014-0171 Chaouali W, 2017, J RETAIL CONSUM SERV, V35, P57, DOI 10.1016/j.jretconser.2016.11.009 Chepurna M, 2018, J RES INTERACT MARK, V12, P452, DOI 10.1108/JRIM-01-2018-0018 Choudrie J, 2018, J BUS RES, V88, P449, DOI 10.1016/j.jbusres.2017.11.029 Veríssimo JMC, 2018, J BUS RES, V89, P442, DOI 10.1016/j.jbusres.2017.12.026 Curran JamesM., 2005, J SERV MARK, V19, P103, DOI [10.1108/08876040510591411, DOI 10.1108/08876040510591411] Dabholkar PA, 2002, J ACAD MARKET SCI, V30, P184, DOI 10.1177/0092070302303001 Dahl A.J., 2020, J BUSINESS RES Dahl AJ, 2019, J RES INTERACT MARK, V13, P47, DOI 10.1108/JRIM-11-2018-0153 Dahl AJ, 2018, J CONSUM AFF, V52, P562, DOI 10.1111/joca.12176 Dahl AJ, 2018, J RES INTERACT MARK, V12, P258, DOI 10.1108/JRIM-04-2018-0051 Dwivedi Y.K., 2020, J RETAIL CONSUM SERV, V53, P1 Elsharnouby TH, 2015, J RES INTERACT MARK, V9, P313, DOI 10.1108/JRIM-06-2014-0038 Fernandes T, 2019, J RETAIL CONSUM SERV, V50, P30, DOI 10.1016/j.jretconser.2019.01.018 Finsterwalder J, 2018, J RETAIL CONSUM SERV, V40, P276, DOI 10.1016/j.jretconser.2016.08.005 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Galindo-Martín MA, 2019, J BUS RES, V101, P522, DOI 10.1016/j.jbusres.2018.12.014 Ghosh D., 2017, IUP Journal of Management Research, V16, P34 Gronroos C., 2006, Marketing Theory, V6, P317 Grönroos C, 2011, J SERV MANAGE, V22, P5, DOI 10.1108/09564231111106893 Grönroos C, 2008, EUR BUS REV, V20, P298, DOI 10.1108/09555340810886585 Gummerus J, 2019, J SERV MARK, V33, P44, DOI 10.1108/JSM-10-2018-0292 Gupta S, 2017, INFORM TECHNOL DEV, V23, P127, DOI 10.1080/02681102.2016.1233855 Gustafsson A, 2012, J SERV MANAGE, V23, P311, DOI 10.1108/09564231211248426 Hair J., 2006, MULTIVARIATE DATA AN Hallikainen H, 2019, J RETAIL CONSUM SERV, V50, P386, DOI 10.1016/j.jretconser.2018.07.014 Herhausen D, 2015, J RETAILING, V91, P309, DOI 10.1016/j.jretai.2014.12.009 Hilken T, 2018, J RES INTERACT MARK, V12, P509, DOI 10.1108/JRIM-01-2018-0023 Hossain TMT, 2019, J RETAIL CONSUM SERV, V49, P154, DOI 10.1016/j.jretconser.2019.03.019 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Izogo EE, 2018, J RES INTERACT MARK, V12, P193, DOI 10.1108/JRIM-02-2017-0015 Jacobson J, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.001 Jaksic M, 2019, RISK MANAG-UK, V21, P1, DOI 10.1057/s41283-018-0039-y Johnson VL, 2018, COMPUT HUM BEHAV, V79, P111, DOI 10.1016/j.chb.2017.10.035 Khrais LT., 2020, International Journal of Applied Engineering Research, V15, P12, DOI DOI 10.1016/J.BIOPHA.2018.11.108 Korzeniowski P., 2017, CUSTOMER RELATIONSHI Kristensson P, 2019, J SERV MARK, V33, P502, DOI 10.1108/JSM-01-2019-0031 Kucharska W, 2019, J RES INTERACT MARK, V13, P437, DOI 10.1108/JRIM-05-2018-0063 Laukkanen T, 2007, BUS PROCESS MANAG J, V13, P788, DOI 10.1108/14637150710834550 Laukkanen T, 2016, J BUS RES, V69, P2432, DOI 10.1016/j.jbusres.2016.01.013 Lee HJ, 2017, J RES INTERACT MARK, V11, P214, DOI 10.1108/JRIM-04-2016-0036 Lee J, 2019, J RETAIL CONSUM SERV, V48, P7, DOI 10.1016/j.jretconser.2019.01.007 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Lin HF, 2011, INT J INFORM MANAGE, V31, P252, DOI 10.1016/j.ijinfomgt.2010.07.006 Lin WR, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0227852 Lusch RF, 2008, IBM SYST J, V47, P5, DOI 10.1147/sj.471.0005 Manser Payne E., 2021, J RES INTERACTIVE MA Markos E, 2017, J PUBLIC POLICY MARK, V36, P79, DOI 10.1509/jppm.15.159 Marous J., 2017, INNOVATION RETAIL BA Mbama CI, 2018, J RES INTERACT MARK, V12, P432, DOI 10.1108/JRIM-01-2018-0026 Mistry D., 2018, Chatbots in banking can play the role of 'financial concierge' Mondres T., 2019, ABA BANK J Nijssen EJ, 2016, J SERV MANAGE, V27, P276, DOI 10.1108/JOSM-08-2015-0233 Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Park J, 2016, J RETAIL CONSUM SERV, V28, P310, DOI 10.1016/j.jretconser.2015.01.003 Patrício L, 2018, J SERV RES-US, V21, P3, DOI 10.1177/1094670517746780 Payne EM, 2018, J RES INTERACT MARK, V12, P328, DOI 10.1108/JRIM-07-2018-0087 Peltier J, 2020, J RES INTERACT MARK, V14, P239, DOI 10.1108/JRIM-01-2020-0010 Peltier JW, 2020, J BUS RES, V121, P724, DOI 10.1016/j.jbusres.2020.03.020 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Pueschel J, 2010, INT J BANK MARK, V28, P389, DOI 10.1108/02652321011064908 ROGERS E. M., 2003, DIFFUSION INNOVATION, V5th Sandstrom S., 2008, Managing Service Quality, V18, P112, DOI [10.1108/09604520810859184, DOI 10.1108/09604520810859184] Saunila M, 2019, INFORM TECHNOL PEOPL, V32, P627, DOI 10.1108/ITP-10-2016-0224 Sengupta R., 2019, EC REV FEDERAL RESER, V104, P43 Shankar A., 2016, JOURNAL, V21, P1 Shen YC, 2010, BEHAV INFORM TECHNOL, V29, P497, DOI 10.1080/01449290903490658 Shin S., 2014, Journal of Applied Business Research, V30, P1365, DOI DOI 10.19030/JABR.V30I5.8793 Sihi D, 2018, J RES INTERACT MARK, V12, P398, DOI 10.1108/JRIM-01-2018-0019 Silva B., 2013, International Journal of Management Science and Technology Information, V1, P1 Sklyar A, 2019, J BUS RES, V104, P450, DOI 10.1016/j.jbusres.2019.02.012 Souiden N, 2019, J RETAIL CONSUM SERV, V50, P286, DOI 10.1016/j.jretconser.2018.07.023 Sripalawat J, 2011, J COMPUT INFORM SYST, V51, P67 Srivastava S.K., 2018, JISTEM J INFORM SYST, V15 Straker K, 2015, J RES INTERACT MARK, V9, P110, DOI 10.1108/JRIM-06-2014-0039 Swan EL, 2019, J RES INTERACT MARK, V13, P602, DOI 10.1108/JRIM-03-2019-0039 Tarn M., 2019, J INF SYST TECHNOL M, V16, P1 Turetken O, 2019, BUS INFORM SYST ENG+, V61, P9, DOI 10.1007/s12599-018-0565-x Vargo SL, 2004, J MARKETING, V68, P1, DOI 10.1509/jmkg.68.1.1.24036 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Yousafzai SY, 2010, J APPL SOC PSYCHOL, V40, P1172, DOI 10.1111/j.1559-1816.2010.00615.x Zainuddin N, 2016, J SERV MARK, V30, P586, DOI 10.1108/JSM-02-2016-0075 NR 98 TC 88 Z9 90 U1 72 U2 342 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PD MAY 19 PY 2021 VL 15 IS 1 BP 68 EP 85 DI 10.1108/JRIM-10-2020-0214 EA FEB 2021 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA SF3GR UT WOS:000614172200001 HC Y HP N DA 2024-03-27 ER PT J AU Jin, E Eastin, MS AF Jin, Eunjoo Eastin, Matthew S. TI Birds of a feather flock together: matched personality effects of product recommendation chatbots and users SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE E-commerce; Computer mediated communication; Human-computer interaction ID ATTITUDE SIMILARITY; INTERPERSONAL-ATTRACTION; MANIFEST PERSONALITY; SOCIAL RESPONSES; RECOGNITION; TRAITS; PEER; CUES; COMMUNICATION; CONSISTENCY AB Purpose - AI-driven product recommendation chatbots have markedly reduced operating costs and increased sales for marketers. However, previous literature has paid little attention to the effects of the personality of e-commerce chatbots. This study aimed to examine the ways that the interplay between the chatbot's and the user's personality can increase favorable product attitudes and future intentions to use the chatbot. Based on prior literature, we specifically focused on the degree of extroversion of both chatbot and user. Design/methodology/approach - A total of 291 individuals participated in this study. Two different versions of chatbot were created for this study (i.e. extroversion: high vs. low). Participants self-reported their degree of extroversion. The PROCESS macro Model 1 and Model 7 with the Johnson-Neyman technique were employed to test the hypotheses. Findings - The results showed that the high extroversion chatbot elicited greater user satisfactions and perceptions of chatbot friendliness among users with a high level of extroversion. On the contrary, the low extroversion chatbot resulted in greater user satisfactions and perceived chatbot friendliness among users with a low level of extroversion. This study further found that user satisfactions and perceived chatbot friendliness mediated the effects of the chatbot on greater intentions to use the chatbot and more favorable product attitudes. Originality/value - By showing the effects of matching the personality of the chatbot and user, this study revealed that similarity-attraction effects also apply to human-chatbot interaction in e-commerce. Future studies would benefit by investigating the similarity-attraction effects in different characteristics, such as appearance, opinion and preference. This study also provides useful information for e-commerce marketers and chatbot UX/UI designers. C1 [Jin, Eunjoo; Eastin, Matthew S.] Univ Texas Austin, Stan Richards Sch Advertising & Publ Relat, Austin, TX 78712 USA. C3 University of Texas System; University of Texas Austin RP Jin, E (autor correspondiente), Univ Texas Austin, Stan Richards Sch Advertising & Publ Relat, Austin, TX 78712 USA. EM Eunjoo1125@utexas.edu OI Jin, Eunjoo/0000-0003-4058-922X CR [Anonymous], MARKET ANAL REPORT 2 Aquino A, 2020, COGN AFFECT BEHAV NE, V20, P536, DOI 10.3758/s13415-020-00784-7 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Barelds DPH, 2007, J SOC PERS RELAT, V24, P479, DOI 10.1177/0265407507079235 Baris A., 2020, GSI Journals Serie B: Advancements in Business and Economics, V3, P31 Batra R., 1990, MARKET LETT, V2, P159, DOI [DOI 10.1007/BF00436035, 10.1007/BF00436035] Berger C.R., 1974, Hum. Commun. Res., V1, P99, DOI DOI 10.1111/J.1468-2958.1975.TB00258.X Bernier Emily P., 2010, 2010 IEEE 9th International Conference on Development and Learning (ICDL 2010), P286, DOI 10.1109/DEVLRN.2010.5578828 BERNTSON GG, 1995, PSYCHOPHYSIOLOGY, V32, P162, DOI 10.1111/j.1469-8986.1995.tb03308.x Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 BUSCH P, 1976, J MARKETING RES, V13, P3, DOI 10.2307/3150896 Business Insider, 2021, Drone market outlook in 2021: industry growth trends, market stats and forecast BYRNE D, 1969, J EXP RES PERS, V3, P179 Byrne D., 1970, PERSONALITY INT J, V1, P103 Byrne D. E., 1971, ATTRACTION PARADIGM Cemalcilar Z, 2018, J RES PERS, V76, P139, DOI 10.1016/j.jrp.2018.07.009 CHAIKEN S, 1980, J PERS SOC PSYCHOL, V39, P752, DOI 10.1037/0022-3514.39.5.752 Chaves AP, 2021, INT J HUM-COMPUT INT, V37, P729, DOI 10.1080/10447318.2020.1841438 Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 CONDON JW, 1988, J PERS SOC PSYCHOL, V54, P789, DOI 10.1037/0022-3514.54.5.789 Craenen B, 2018, IEEE ROMAN, P626, DOI 10.1109/ROMAN.2018.8525672 CRITES SL, 1994, PERS SOC PSYCHOL B, V20, P619, DOI 10.1177/0146167294206001 Cuperman R, 2009, J PERS SOC PSYCHOL, V97, P667, DOI 10.1037/a0015741 Doroszuk M., 2019, ENCY PERSONALITY IND, DOI DOI 10.1007/978-3-319-28099-8_712-1 Edwards C, 2019, COMPUT HUM BEHAV, V90, P357, DOI 10.1016/j.chb.2018.08.027 Evans FB., 1963, American Behavioral Scientist, V6, P76, DOI DOI 10.1177/000276426300600922 Feine Jasper, 2020, Chatbot Research and Design. Third International Workshop, CONVERSATIONS 2019. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 11970), P79, DOI 10.1007/978-3-030-39540-7_6 Fogg B. J., 2002, UBIQUITY, V2002, P5, DOI [DOI 10.1145/764008.763957, 10.1145/763955.763957] Foster JK, 2022, J RES INTERACT MARK, V16, P237, DOI 10.1108/JRIM-01-2020-0007 Galitsky Boris, 2021, HumanComputer Interaction Series, P93, DOI [10.1007/978-3-030-61641-0_3, DOI 10.1007/978-3-030-61641-0_3] Gaur SS, 2012, INT REV RETAIL DISTR, V22, P315, DOI 10.1080/09593969.2012.682597 GEER JH, 1968, J PERS SOC PSYCHOL, V10, P148, DOI 10.1037/h0026293 Goldberg CB, 2005, GROUP ORGAN MANAGE, V30, P597, DOI 10.1177/1059601104267661 Goldberg L. R., 1992, Psychological Assessment, P26, DOI [10.1037/1040-3590.4.1.26, DOI 10.1037/1040-3590.4.1.26] Hampton AJ, 2019, J SOC PERS RELAT, V36, P2221, DOI 10.1177/0265407518790411 HOGAN R, 1972, J COUNS PSYCHOL, V19, P238, DOI 10.1037/h0032707 Hsieh SH, 2021, J RES INTERACT MARK, V15, P267, DOI 10.1108/JRIM-11-2019-0179 Isbister K, 2000, INT J HUM-COMPUT ST, V53, P251, DOI 10.1006/ijhc.2000.0368 Ischen C, 2020, J BROADCAST ELECTRON, V64, P615, DOI 10.1080/08838151.2020.1834297 IZARD CE, 1960, J ABNORM SOC PSYCH, V61, P47, DOI 10.1037/h0040056 JAMIESON DW, 1987, J PERS SOC PSYCHOL, V53, P1052, DOI 10.1037/0022-3514.53.6.1052 Jin SV, 2018, COMPUT HUM BEHAV, V81, P31, DOI 10.1016/j.chb.2017.11.042 Lee KM, 2006, J COMMUN, V56, P754, DOI 10.1111/j.1460-2466.2006.00318.x Lee SY, 2017, INT J HUM-COMPUT ST, V103, P95, DOI 10.1016/j.ijhcs.2017.02.005 Lim WM, 2023, J RES INTERACT MARK, V17, P232, DOI 10.1108/JRIM-11-2021-0276 Liu BJ, 2018, CYBERPSYCH BEH SOC N, V21, P625, DOI 10.1089/cyber.2018.0110 Liu D, 2017, J RES PERS, V70, P229, DOI 10.1016/j.jrp.2017.08.004 Lou C., 2021, INT J ADVERT, P1 Mairesse F, 2007, J ARTIF INTELL RES, V30, P457, DOI 10.1613/jair.2349 McDonnell M, 2019, INTERACT COMPUT, V31, P116, DOI 10.1093/iwc/iwz007 Mou Y, 2020, INT J HUM-COMPUT INT, V36, P591, DOI 10.1080/10447318.2019.1663008 Nass C, 1996, INT J HUM-COMPUT ST, V45, P669, DOI 10.1006/ijhc.1996.0073 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Nass C, 2001, J EXP PSYCHOL-APPL, V7, P171, DOI 10.1037//1076-898X.7.3.171 Ohadi J, 2018, COMPUT HUM BEHAV, V78, P126, DOI 10.1016/j.chb.2017.08.048 Pennebaker JW, 1999, J PERS SOC PSYCHOL, V77, P1296, DOI 10.1037/0022-3514.77.6.1296 Pratt JA, 2007, INTERACT COMPUT, V19, P512, DOI 10.1016/j.intcom.2007.02.003 Rapp A, 2021, INT J HUM-COMPUT ST, V151, DOI 10.1016/j.ijhcs.2021.102630 Reeves B, 2000, COMMUN ACM, V43, P65, DOI 10.1145/330534.330542 Reeves B., 1996, MEDIA EQUATION PEOPL Robert LP, 2018, AMCIS 2018 PROCEEDINGS Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Ruane E., 2020, INT WORKSH CHATB RES, P32 Ruijten PAM, 2021, BEHAV INFORM TECHNOL, V40, P734, DOI 10.1080/0144929X.2020.1723701 Santamaria Tricia, 2017, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, V61, P853, DOI 10.1177/1541931213601686 Schmitt DP, 2002, BRIT J SOC PSYCHOL, V41, P589, DOI 10.1348/014466602321149894 Seddon PB, 1997, INFORM SYST RES, V8, P240, DOI 10.1287/isre.8.3.240 Selfhout M, 2009, J PERS SOC PSYCHOL, V96, P1152, DOI 10.1037/a0014468 SETA JJ, 1979, J PERS SOC PSYCHOL, V37, P462, DOI 10.1037/0022-3514.37.3.462 Singh R, 2017, PERS RELATIONSHIP, V24, P203, DOI 10.1111/pere.12178 Strauss JP, 2001, J OCCUP ORGAN PSYCH, V74, P637, DOI 10.1348/096317901167569 STRODTBECK FL, 1959, AM SOCIOL REV, V24, P437, DOI 10.2307/2089421 Sundar SS, 2015, HBK COMMUN MEDIA, P47 Teeny JD, 2021, J CONSUM PSYCHOL, V31, P382, DOI 10.1002/jcpy.1198 Teo HH, 2003, INT J HUM-COMPUT ST, V58, P281, DOI 10.1016/S1071-5819(03)00008-9 TOUHEY JC, 1972, J PERS SOC PSYCHOL, V23, P8, DOI 10.1037/h0032886 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 Van den Broeck E, 2019, COMPUT HUM BEHAV, V98, P150, DOI 10.1016/j.chb.2019.04.009 van Noort G, 2020, J ADVERTISING, V49, P411, DOI 10.1080/00913367.2020.1795954 Wang CL, 2021, J RES INTERACT MARK, V15, P1, DOI 10.1108/JRIM-03-2021-270 Xu K, 2017, COMPUT HUM BEHAV, V74, P152, DOI 10.1016/j.chb.2017.04.043 Yorita A, 2019, IEEE SYS MAN CYBERN, P4094, DOI 10.1109/SMC.2019.8914583 Youyou Wu, 2017, Psychol Sci, V28, P276, DOI 10.1177/0956797616678187 ZAICHKOWSKY JL, 1985, J CONSUM RES, V12, P341, DOI 10.1086/208520 NR 86 TC 6 Z9 6 U1 62 U2 166 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PD MAY 3 PY 2023 VL 17 IS 3 BP 416 EP 433 DI 10.1108/JRIM-03-2022-0089 EA JUN 2022 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA F2RD9 UT WOS:000810497900001 DA 2024-03-27 ER PT J AU Srivastava, G Bag, S Rahman, MS Pretorius, JHC Gani, MO AF Srivastava, Gautam Bag, Surajit Rahman, Muhammad Sabbir Pretorius, Jan Harm Christiaan Gani, Mohammad Osman TI Examining the dark side of using gamification elements in online community engagement: an application of PLS-SEM and ANN modeling SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article DE Adverse effects; Gamification; Marketing; Cyberbullying; Fatigue; PLS-SEM; Artificial neural network ID SOCIAL NETWORKING; PRIVACY; IMPACT; BIAS AB Purpose The negative influence of gamification on online communities has received little attention in the available literature. The study examines the adverse effects of gamification during engaging in online communities. Design/methodology/approach Gap-spotting methods were used to develop the research questions, followed by model development using the social exchange and social-network theories. Data were collected from 429 samples. The study applied partial least squares structural equation modeling to test the research hypotheses followed by ANN application. Findings The study identified five factors related to gamification that have a significant adverse effect on the mental and emotional well-being of the users. Furthermore, the results of PLS-SEM were then compared through an artificial neural network (ANN) analytic process, revealing consistency for the model. This research presents a theoretical contribution by providing critical insights into online gamers' mental and emotional health. It implies that gamification can even bring mental and emotional disturbance. The resulting situation might lead to undesirable social consequences. Practical implications The result highlights the managerial and social relevance from the perspective of a developing country. As respondents are becoming more engrossed in online gaming, managers and decision-makers need to take preventive measures to overcome the dark side of online gaming. Originality/value The present study shows that the dark side of gamification has some adverse effects on human mental and emotional health. The study's findings can be used to improve gamification strategies while engaging online communities. C1 [Srivastava, Gautam] GL Bajaj Inst Management & Res, Dept Management Studies, Greater Noida, India. [Bag, Surajit] Inst Management Technol Ghaziabad, Ctr Data Sci, Ghaziabad, India. [Rahman, Muhammad Sabbir] North South Univ, Sch Business & Econ, Dept Mkt & Int Business, Dhaka, Bangladesh. [Pretorius, Jan Harm Christiaan] Univ Johannesburg, Fac Engn & Built Environm, Auckland Pk,Kingsway Campus, Johannesburg, South Africa. [Gani, Mohammad Osman] Bangladesh Univ Profess, Dhaka, Bangladesh. C3 Institute of Management Technology, Ghaziabad; North South University (NSU); University of Johannesburg RP Bag, S (autor correspondiente), Inst Management Technol Ghaziabad, Ctr Data Sci, Ghaziabad, India. EM gautamshrivastav@gmail.com; surajit.bag@gmail.com; rahman.sabbir@northsouth.edu; jhcpretorius@uj.ac.za; osman@bup.edu.bd RI Srivastava, Gautam/N-5668-2019; Rahman, Muhammad/G-3968-2018 OI Srivastava, Gautam/0000-0001-9851-4103; Rahman, Muhammad/0000-0003-1613-7944; BAG, SURAJIT/0000-0002-2344-9551; GANI, MOHAMMAD OSMAN/0000-0002-9724-4006; Pretorius, Jan Harm Christiaan/0000-0002-2023-749X CR Abaido GM, 2020, INT J ADOLESC YOUTH, V25, P407, DOI 10.1080/02673843.2019.1669059 Andrade FRH, 2016, LECT NOTES COMPUT SC, V9684, P176, DOI 10.1007/978-3-319-39583-8_17 [Anonymous], 2011, The Straits Times ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Bag S, 2022, BENCHMARKING, V29, P2074, DOI 10.1108/BIJ-07-2021-0415 Bandara R, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101947 Behl A, 2021, AUSTRALAS J INF SYST, V25, DOI 10.3127/ajis.v25i0.2979 Behl A, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102140 Bleier A, 2020, INT J RES MARK, V37, P466, DOI 10.1016/j.ijresmar.2020.03.006 Bodhi R, 2022, BENCHMARKING, V29, P2450, DOI 10.1108/BIJ-03-2021-0152 Bonanno RA, 2013, J YOUTH ADOLESCENCE, V42, P685, DOI 10.1007/s10964-013-9937-1 Bradshaw J.L., 2020, COMPUTERS COMPOSITIO, V56, P1 Burt R. S., 1992, Structural holes Cardador MT, 2017, HUM RESOUR MANAGE R, V27, P353, DOI 10.1016/j.hrmr.2016.09.014 Chun J, 2020, COMPUT HUM BEHAV, V113, DOI 10.1016/j.chb.2020.106485 Cook E.S., 2003, HDB SOCIAL PSYCHOL, P53, DOI [10.1007/978-94-007-6772-0_3, DOI 10.1007/978-94-007-6772-0_3] Cortez RM, 2020, IND MARKET MANAG, V88, P125, DOI 10.1016/j.indmarman.2020.05.004 Craig W, 2020, J ADOLESCENT HEALTH, V66, pS100, DOI 10.1016/j.jadohealth.2020.03.006 Cruz AGB, 2018, INFORM SOC, V34, P15, DOI 10.1080/01972243.2017.1391909 D'Alessio FA, 2019, THINK SKILLS CREAT, V31, P275, DOI 10.1016/j.tsc.2019.02.002 de-Marcos L, 2014, COMPUT EDUC, V75, P82, DOI 10.1016/j.compedu.2014.01.012 Durnell E, 2020, INT J HUM-COMPUT INT, V36, P1834, DOI 10.1080/10447318.2020.1794626 Fabris MA, 2020, ADDICT BEHAV, V106, DOI 10.1016/j.addbeh.2020.106364 Faizan Ali Faizan Ali, 2014, Asia-Pacific Journal of Innovation in Hospitality and Tourism, V3, P175 Fazeli Sara, 2020, Addict Behav Rep, V12, P100307, DOI [10.1016/j.abrep.2020.100322, 10.1016/j.abrep.2020.100307] Ferm LEC, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102584 Foo PY, 2018, EXPERT SYST APPL, V107, P1, DOI 10.1016/j.eswa.2018.04.013 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Franco JA, 2020, HUM BEHAV EMERG TECH, V2, P227, DOI 10.1002/hbe2.205 Graciyal DG, 2021, ASIA PAC MEDIA EDUC, V31, P99, DOI 10.1177/1326365X211003737 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Groening C, 2021, INT J HUM-COMPUT INT, V37, P1130, DOI 10.1080/10447318.2020.1870828 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hammedi W, 2021, J BUS RES, V122, P256, DOI 10.1016/j.jbusres.2020.08.032 Harman H.H., 1967, Modern Factor Analysis Harwood T, 2015, J SERV MARK, V29, P533, DOI 10.1108/JSM-01-2015-0045 Hilvert-Bruce Z, 2020, COMPUT HUM BEHAV, V102, P303, DOI 10.1016/j.chb.2019.09.003 Hofacker CF, 2016, J INTERACT MARK, V34, P25, DOI 10.1016/j.intmar.2016.03.001 HOUSE JS, 1988, SCIENCE, V241, P540, DOI 10.1037/0003-066X.59.8.676 Huotari K, 2017, ELECTRON MARK, V27, P21, DOI 10.1007/s12525-015-0212-z Jia HY, 2022, COMPUT SECUR, V115, DOI 10.1016/j.cose.2022.102614 Juzwin M., 2014, Proceedings of the 2014 Multimedia, Interaction, Design and Innovation International Conference on Multimedia, Interaction, Design and Innovation 2014, P1, DOI [DOI 10.1145/2643572.2643587C, 10.1145/2643572, DOI 10.1145/2643572] Kaur P, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121039 Kim H, 2020, INT J HOSP MANAG, V89, DOI 10.1016/j.ijhm.2020.102577 Kim HJ, 2015, TECHNOL FORECAST SOC, V100, P255, DOI 10.1016/j.techfore.2015.07.009 Kim TW, 2016, ETHICS INF TECHNOL, V18, P157, DOI 10.1007/s10676-016-9401-5 Klosowski, 2020, NEW YORK TIMES Koivisto J, 2019, INT J INFORM MANAGE, V45, P191, DOI 10.1016/j.ijinfomgt.2018.10.013 Lamb Y, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102198 Landers RN, 2019, J MANAGE INQUIRY, V28, P137, DOI 10.1177/1056492618790913 Lapierre KR, 2020, COMPUT HUM BEHAV, V113, DOI 10.1016/j.chb.2020.106497 Leclercq T, 2020, J MARKET MANAG-UK, V36, P550, DOI 10.1080/0267257X.2020.1736604 Leclercq T, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.07.007 Leclercq T, 2018, J INTERACT MARK, V44, P82, DOI 10.1016/j.intmar.2018.04.004 Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Li K, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102128 Lim A, 2022, SUPPLY CHAIN MANAG, V27, P611, DOI 10.1108/SCM-03-2021-0129 Lin KY, 2011, COMPUT HUM BEHAV, V27, P1152, DOI 10.1016/j.chb.2010.12.009 Lo PS, 2022, J BUS RES, V147, P325, DOI 10.1016/j.jbusres.2022.04.013 MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 Maghsoudi R, 2020, COMPUT HUM BEHAV, V113, DOI 10.1016/j.chb.2020.106488 Marengo D, 2020, ADDICT BEHAV, V102, DOI 10.1016/j.addbeh.2019.106150 Marín-López I, 2020, CHILD YOUTH SERV REV, V116, DOI 10.1016/j.childyouth.2020.105144 Maturo AntonioFrancesco., 2018, Digital Health and the Gamification of Life: How Apps Can Promote a Positive Medicalization Mheidly N, 2020, FRONT PUBLIC HEALTH, V8, DOI 10.3389/fpubh.2020.574969 Mitchell M.S., 2012, HDB SOCIAL RESOURCE, P99, DOI [DOI 10.1007/978-1-4614-4175-5_6, 10.1007/978-1-4614-4175-5_6] Mitchell R, 2020, J BUS RES, V106, P323, DOI 10.1016/j.jbusres.2018.11.022 Moge CE, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e05340 Moqbel M, 2018, INFORM MANAGE-AMSTER, V55, P109, DOI 10.1016/j.im.2017.05.001 Mulcahy RF, 2021, EUR J MARKETING, V55, P2593, DOI 10.1108/EJM-05-2020-0341 Muñoz-Fernández N, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106191 Neeli B.K., 2015, Gamification in education and business, P489, DOI DOI 10.1007/978-3-319-10208-5_25 Ng FZX, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102851 Ngien A, 2022, HEALTH COMMUN, V37, P1337, DOI 10.1080/10410236.2021.1888438 Nystrom T., 2021, Intelligent Computing, V285, P491, DOI DOI 10.1007/978-3-030-80129-8_35 Paciello M, 2020, COMPUT HUM BEHAV, V103, P190, DOI 10.1016/j.chb.2019.09.024 PARENT WA, 1983, LAW PHILOS, V2, P305, DOI 10.1007/BF00144949 Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186 Pizzi G, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102160 Rahi S, 2019, INT J INF LEARN TECH, V36, P2, DOI 10.1108/IJILT-05-2018-0045 Rahman MS, 2022, INFORM TECHNOL PEOPL, V35, P316, DOI 10.1108/ITP-12-2019-0621 Rahman MS, 2021, TOUR REV, V76, P358, DOI 10.1108/TR-12-2019-0505 Rasheed MI, 2020, COMPUT EDUC, V159, DOI 10.1016/j.compedu.2020.104002 Richter NF, 2016, EUR MANAG J, V34, P589, DOI 10.1016/j.emj.2016.08.001 Rigdon E., 2017, Marketing: ZFP-Journal of Research and Management, V39, P4, DOI [DOI 10.15358/0344-1369-2017-3-4, 10.15358/0344-1369-2017-3-4] Sarstedt M, 2014, LONG RANGE PLANN, V47, P132, DOI 10.1016/j.lrp.2014.02.008 Schoffstall CL, 2011, SOC DEV, V20, P587, DOI 10.1111/j.1467-9507.2011.00609.x Seiffert-Brockmann J, 2018, J COMMUN MANAG, V22, P67, DOI 10.1108/JCOM-12-2016-0096 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Smith C, 2020, ORGANIZATION, V27, P840, DOI 10.1177/1350508419867201 Sohaib O, 2021, J GLOB INF MANAG, V29, P23, DOI 10.4018/JGIM.2021030102 Srivastava G., 2021, INT J TECHNOLOGY MAR, V15, P354 Srivastava G., 2021, INT J TECHNOLOGY MAR, V15, P143 Tajvidi M, 2020, J BUS RES, V121, P476, DOI 10.1016/j.jbusres.2018.06.008 Thorpe AS, 2019, J BUS ETHICS, V155, P597, DOI 10.1007/s10551-017-3501-y Toda AM, 2018, COMM COM INF SC, V832, P143, DOI 10.1007/978-3-319-97934-2_9 Urbonavicius S, 2021, J BUS RES, V136, P76, DOI 10.1016/j.jbusres.2021.07.031 van der Lubbe LM, 2021, ENTERTAIN COMPUT, V38, DOI 10.1016/j.entcom.2020.100402 Wang C, 2022, IND MANAGE DATA SYST, V122, P1499, DOI 10.1108/IMDS-09-2021-0600 Wang GQ, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121345 Whelan E, 2020, INTERNET RES, V30, P869, DOI 10.1108/INTR-03-2019-0112 Wong LPW, 2023, INT J EDUC VOCAT GUI, V23, P719, DOI 10.1007/s10775-022-09525-3 Wright MF, 2020, J INTERPERS VIOLENCE, V35, P1719, DOI 10.1177/0886260517696858 Xi NN, 2019, INT J INFORM MANAGE, V46, P210, DOI 10.1016/j.ijinfomgt.2018.12.002 Yang HL, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102649 Yang HL, 2021, TECHNOL FORECAST SOC, V169, DOI 10.1016/j.techfore.2021.120839 Zabukovsek SS, 2019, CENT EUR J OPER RES, V27, P703, DOI 10.1007/s10100-018-0592-1 NR 108 TC 4 Z9 4 U1 10 U2 37 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD DEC 1 PY 2023 VL 30 IS 9 BP 2921 EP 2947 DI 10.1108/BIJ-03-2022-0160 EA JUL 2022 PG 27 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HA7V4 UT WOS:000825366600001 DA 2024-03-27 ER PT J AU Pallud, J Straub, DW AF Pallud, Jessie Straub, Detmar W. TI Effective website design for experience-influenced environments: The case of high culture museums SO INFORMATION & MANAGEMENT LA English DT Article DE User experience; Esthetics; Human computer interaction; Microsoft usability guidelines; Museums; Website design ID USER EXPERIENCE; WEB ACCEPTANCE; USABILITY; QUALITY; PARTICIPATION; DIMENSIONS; AESTHETICS; FRAMEWORK; BEHAVIOR; ADOPTION AB While most research on website has focused on functional tasks, the Internet offers many opportunities for leisure as well as experiential activities. Because of the evolution of developed society toward an experience economy, analyzing the role of technologies in the presence of prior user experiences makes sense. This research identifies variables that play a role and influence online behaviors in a specific experiential environment, namely the high culture museum website. Relying on the literature on experience, we propose a research model tested with two different websites. The results of the free simulation experiment indicates that (1) esthetics is the most important design criteria for experiential interfaces and (2) that website design influences intentions to visit a physical place. (C) 2014 Elsevier B.V. All rights reserved. C1 [Pallud, Jessie] EM Strasbourg Business Sch, F-67085 Strasbourg, France. [Straub, Detmar W.] J Mack Robinson Coll Business, Dept Comp Informat Syst, Atlanta, GA 30302 USA. [Straub, Detmar W.] Korea Univ, Sch Business, Seoul 136701, South Korea. C3 Korea University RP Pallud, J (autor correspondiente), EM Strasbourg Business Sch, 61 Av Foret Noire, F-67085 Strasbourg, France. EM jessie.pallud@em-strasbourg.eu; dstraub@gsu.edu CR Addis M, 2005, EUR J MARKETING, V39, P729, DOI 10.1108/03090560510601734 Agarwal R, 2002, INFORM SYST RES, V13, P168, DOI 10.1287/isre.13.2.168.84 Agarwal R, 2000, MIS QUART, V24, P665, DOI 10.2307/3250951 AJZEN I, 1992, J LEISURE RES, V24, P207, DOI 10.1080/00222216.1992.11969889 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 2006, CONSTRUCTING TPB QUE Allen J, 2020, ARCHAEOL OCEAN, V55, P1, DOI 10.1002/arco.5207 Anderson Gail., 2004, Reinventing the Museum: Historical and Contemporary Perspectives on the Paradigm Shift [Anonymous], 2002, DIG REP TECHN LANDSC [Anonymous], FUTURE INTERACTION D [Anonymous], 2008, INTERCONNECTIONS IML Bélanger F, 2006, COMMUN ACM, V49, P114, DOI 10.1145/1183236.1183256 Blas N. D., 2002, P MUS WEB 2002 Blythe M.A., 2003, Funology: From usability to enjoyment Bourdieu P., 1990, LOVE ART EUROPEAN AR Bourgeon D, 2006, INT J ARTS MANAG, V9, P35 Bryan J, 2012, URBAN STUD, V49, P133, DOI 10.1177/0042098010396242 Burton C., 2003, International Journal of Arts Management, V5, P56 Castañeda JA, 2007, INFORM MANAGE-AMSTER, V44, P384, DOI 10.1016/j.im.2007.02.003 Cenfetelli RT, 2009, MIS QUART, V33, P689 Chin WW, 2003, INFORM SYST RES, V14, P189, DOI 10.1287/isre.14.2.189.16018 Chin WW, 1998, MIS QUART, V22, pVII Chin WW, 1998, QUANT METH SER, P295 Chiou WC, 2010, INFORM MANAGE-AMSTER, V47, P282, DOI 10.1016/j.im.2010.06.002 Chonchúir MN, 2008, PERS UBIQUIT COMPUT, V12, P401, DOI 10.1007/s00779-007-0157-0 Cunliffe D., 2001, CURATOR, V19, P229 Cyr D, 2006, INFORM MANAGE-AMSTER, V43, P950, DOI 10.1016/j.im.2006.08.009 Debenedetti S., 2003, International Journal of Arts Management, V5, P52 Deng LQ, 2010, EUR J INFORM SYST, V19, P60, DOI 10.1057/ejis.2009.50 DESVALLEES Andre., 1992, Vagues: une anthologie de la nouvelle museologie Dewey J., 1938, ART EXPERIENCE DiMaggio P, 2004, POETICS, V32, P169, DOI 10.1016/j.poetic.2004.02.005 Falk J.H., 1992, MUSEUM EXPERIENCE Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Flavián C, 2006, J RETAIL CONSUM SERV, V13, P363, DOI 10.1016/j.jretconser.2005.11.003 Forbes J.D., 1941, J AESTHET ART CRITIC, V1, P3 Fromkin H.L., 1976, Handbook of industrial and organizational psychology Gefen D., 2000, J ASSOC INF SYST, V1, DOI [10.17705/1jais.00008, DOI 10.17705/1JAIS.00008] Gefen D., 2000, COMMUN ASSOC INF SYS, V4, P407, DOI DOI 10.17705/1CAIS.00407 Gombault A., 2007, GRATUITE MUSEES MONU Goodhue D.L., 2006, SYSTEM SCI, V8, p202b, DOI DOI 10.1109/HICSS.2006.381 Hassenzahl M, 2006, BEHAV INFORM TECHNOL, V25, P91, DOI 10.1080/01449290500330331 Hassenzahl M, 2004, HUM-COMPUT INTERACT, V19, P319, DOI 10.1207/s15327051hci1904_2 Hassenzahl M, 2001, INT J HUM-COMPUT INT, V13, P481, DOI 10.1207/S15327590IJHC1304_07 Hassenzahl M., 2007, Interfaces, V72, P10 Henning B, 2001, J COMMUN, V51, P100, DOI 10.1093/joc/51.1.100 Hoffman D. L., 1995, J COMPUT MEDIAT COMM, V3 Holbrook M. B., 2000, J CONSUM RES, V2, P178 HOLBROOK MB, 1982, J CONSUM RES, V9, P132, DOI 10.1086/208906 Hsu CL, 2004, INFORM MANAGE-AMSTER, V41, P853, DOI 10.1016/j.im.2003.08.014 ICOM, 2002, ICOM STAT IMLS, 2008, IMLS NAT STUD US LIB Institute of Museum and Library Services, 2006, STAT TECHN DIG NAT M Jacques R., 1995, Canadian Journal of Educational Communication, V24, P49 Jain R, 2003, COMMUN ACM, V46, P48, DOI 10.1145/792704.792729 Jain R, 2001, COMMUN ACM, V44, P38, DOI 10.1145/365181.365186 Jin B, 2010, BEHAV INFORM TECHNOL, V29, P85, DOI 10.1080/01449290701497202 KEA European Affairs, 2009, IMP CULT CRAT STUDY Kotler N., 2001, MUS MANAGE CURATOR, V19, P417 Kravchyna V., 2002, 1 MONDAY Kuan H.H., 2003, 7th Pacific Asia Conference on Information Systems, Adelaide, South Australia, 2003, P369 Lagrosen S., 2003, Information Technology & People, V16, P132, DOI 10.1108/09593840310478667 LAHIRE Bernard., 2004, CULTURE INDIVIDUS DI Lavie T, 2004, INT J HUM-COMPUT ST, V60, P269, DOI 10.1016/j.ijhcs.2003.09.002 Law ELC, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P719 Lee AS, 2003, INFORM SYST RES, V14, P221, DOI 10.1287/isre.14.3.221.16560 Limayem M., 2003, J ASSOC INF SYST, V4, P65, DOI 10.17705/1jais.00030 Lin A.C. H., 2006, International Review of Research in Open and Distance Learning, V7, P1, DOI DOI 10.19173/IRR0DL.V7I3.364 Lochon P., 2012, MUSEES MONDIAUX RESE LOHMOLLER JB, 1988, MULTIVAR BEHAV RES, V23, P125, DOI 10.1207/s15327906mbr2301_7 Lu J, 2005, J COMPUT INFORM SYST, V46, P17 Mandryk RL, 2006, BEHAV INFORM TECHNOL, V25, P141, DOI 10.1080/01449290500331156 Martin A., 2002, CULT TRENDS, V12, P3 Marty P., 2004, CHANGING ROLE MUSEUM Marty P.F., 2004, 1 MONDAY, V9 McCarthy J, 2004, INTERACTIONS, V11, P42 McCarthy J, 2006, PERS UBIQUIT COMPUT, V10, P369, DOI 10.1007/s00779-005-0055-2 McLellan H, 2000, CYBERPSYCHOL BEHAV, V3, P59, DOI 10.1089/109493100316238 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 O'Brien HL, 2008, J AM SOC INF SCI TEC, V59, P938, DOI 10.1002/asi.20801 Orlikowski WJ, 2001, INFORM SYST RES, V12, P121, DOI 10.1287/isre.12.2.121.9700 Park JY, 2007, DIGIT CREAT, V18, P175, DOI 10.1080/14626260701532066 Pavlou PA, 2006, MIS QUART, V30, P115 Pavlou PA, 2004, INFORM SYST RES, V15, P37, DOI 10.1287/isre.1040.0015 Petter S, 2008, EUR J INFORM SYST, V17, P236, DOI 10.1057/ejis.2008.15 Petter S, 2007, MIS QUART, V31, P623 Pine BJ., 1999, The experience economy: work is theatre every business a stage Poulot Dominique, 2005, MUSEE MUSEOLOGIE Ringle C.M., 2005, SMART PLS Rosen S., 2001, Communication World, V18, P36 Ross Max., 2004, Museum and Society, V2, P84, DOI DOI 10.29311/MAS.V2I2.43 Sánchez-Franco MJ, 2005, INTERNET RES, V15, P21, DOI 10.1108/10662240510577059 Sauvage L., 2005, LOUVRE OFFRE NOUVELL Schaupp C., 2006, P 39 INT C SYST SCI Schuster JM, 2007, CULT TRENDS, V16, P99, DOI 10.1080/09548960701299815 Shin DH, 2009, INT J HUM-COMPUT INT, V25, P530, DOI 10.1080/10447310902963951 Soren BJ, 2005, MUS MANAGE CURATOR, V20, P131, DOI 10.1016/j.musmancur.2005.03.001 Straub D., 2004, ISWORLD QUANTIATIVE Tractinsky N, 2000, INTERACT COMPUT, V13, P127, DOI 10.1016/S0953-5438(00)00031-X Treiblmaier H, 2007, COMMUN ASSOC INF SYS, V19, P806 Tussyadiah IP, 2009, ANN TOURISM RES, V36, P24, DOI 10.1016/j.annals.2008.10.001 Valacich JS, 2007, COMMUN ACM, V50, P84, DOI 10.1145/1284621.1284624 van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660 Venkatesan R, 2007, J MARKETING, V71, P114, DOI 10.1509/jmkg.71.2.114 Venkatesh V, 2006, MIS QUART, V30, P181 Venkatesh V, 2006, MANAGE SCI, V52, P367, DOI 10.1287/mnsc.1050.0442 Vergo Peter, 1989, The New Museology Wilson B., 2007, Australian and New Zealand Marketing Academy Conference, Otago, Australia, P791 Zhang P., 2005, J ASS INFORM SYSTEMS, V6, P227, DOI DOI 10.17705/1JAIS.00070 Zhang YX, 2011, INFORM MANAGE-AMSTER, V48, P192, DOI 10.1016/j.im.2011.05.003 NR 110 TC 91 Z9 99 U1 6 U2 123 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-7206 EI 1872-7530 J9 INFORM MANAGE-AMSTER JI Inf. Manage. PD APR PY 2014 VL 51 IS 3 BP 359 EP 373 DI 10.1016/j.im.2014.02.010 PG 15 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA AH1HO UT WOS:000335871400006 DA 2024-03-27 ER PT J AU Hew, JJ Lee, VH Leong, LY AF Hew, Jun-Jie Lee, Voon-Hsien Leong, Lai-Ying TI Why do mobile consumers resist mobile commerce applications? A hybrid fsQCA-ANN analysis SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Mobile commerce; Mobile consumers; Active innovation resistance; Resistance behaviours; fsQCA; Artificial neural network ID ACTIVE INNOVATION RESISTANCE; TECHNOLOGY ADOPTION; INFORMATION-TECHNOLOGY; BANKING ADOPTION; USER ACCEPTANCE; SOCIAL COMMERCE; INTERNET; BARRIERS; MECHANISMS; POSTPONERS AB Since its inception, mobile commerce (m-commerce) has introduced many disruptive changes to the business world via various types of m-commerce applications, which refer to the novel applications of m-commerce in conducting tasks that require mobility, for instance, mobile payment and mobile shopping. In view that not all mobile consumers around the world are keen to adopt mobile commerce applications, this study seeks to clarify the roles of active innovation resistance barriers (comprising functional and psychological barriers) on three distinct forms of resistance behaviour exhibited by mobile consumers (i.e., rejection, postponement, or opposition) towards m-commerce applications through the theoretical lens of Innovation Resistance Theory. For this purpose, an asymmetric and non-linear model was built and analysed through a configurational approach complemented by machine learning. The results indicate that all active innovation resistance barriers matter but are not equally important in triggering the resistance behaviours. Theoretically, this study has advanced the Innovation Resistance Theory and enriched the existing literature on m-commerce applications resistance. Practically, to lower the resistance behaviours of mobile consumers towards m-commerce applications, practitioners are advised to prioritise strategies that could overcome the psychological barriers. C1 [Hew, Jun-Jie; Lee, Voon-Hsien; Leong, Lai-Ying] Univ Tunku Abdul Rahman, Fac Business & Finance, Kampar, Malaysia. C3 Universiti Tunku Abdul Rahman (UTAR) RP Lee, VH (autor correspondiente), Univ Tunku Abdul Rahman, Fac Business & Finance, Kampar, Malaysia. EM hew.jun.jie@gmail.com; leevoonhsien@gmail.com; lyennlly@gmail.com RI Lai-Ying, Leong/S-5659-2017; Lee, Voon-Hsien/S-6123-2017 OI Lai-Ying, Leong/0000-0001-7283-0300; Lee, Voon-Hsien/0000-0002-8723-8219; Hew, Jun-Jie/0000-0003-4957-1050 CR Abu-Shanab Emad, 2012, International Journal of Technology Diffusion, V3, P36, DOI 10.4018/jtd.2012040104 Al-Janabi Samaher, 2020, Big Data and Networks Technologies. Lecture Notes in Networks and Systems (LNNS 81), P231, DOI 10.1007/978-3-030-23672-4_18 Alexa, 2020, TOP SIT MAL Almeida Lucas G., 2023, ELECTRON COMMER R A [Anonymous], 2020, LOW NET RUL REG App Annie, 2020, APP ANN APP STOR STA Aw ECX, 2023, SERV IND J, V43, P185, DOI 10.1080/02642069.2022.2161528 Benitez J, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.003 Benou P, 2012, INFORM TECHNOL MANAG, V13, P91, DOI 10.1007/s10799-012-0120-2 Benou P, 2010, ELECTRON COMMER RES, V10, P139, DOI 10.1007/s10660-010-9050-4 Buhalis D, 2023, TOURISM MANAGE, V97, DOI 10.1016/j.tourman.2023.104724 Chaouali W, 2019, J RETAIL CONSUM SERV, V50, P342, DOI 10.1016/j.jretconser.2018.07.009 Chen CC, 2022, J RETAIL CONSUM SERV, V67, DOI 10.1016/j.jretconser.2022.102974 Chen Q, 2019, INT J INFORM MANAGE, V47, P274, DOI 10.1016/j.ijinfomgt.2018.07.012 Chhonker MS, 2018, BOTTOM LINE, V31, P208, DOI 10.1108/BL-04-2018-0020 Chhonker MS, 2017, PROCEDIA COMPUT SCI, V122, P888, DOI 10.1016/j.procs.2017.11.451 Cornescu V, 2013, PROC ECON FINANC, V6, P457, DOI 10.1016/S2212-5671(13)00163-9 Dastane O, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102074 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Degirmenci K, 2020, INT J INFORM MANAGE, V50, P261, DOI 10.1016/j.ijinfomgt.2019.05.010 Desmal Abdulla Jaafar, 2019, Emerging Technologies in Computing. Second International Conference, iCETiC 2019. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 285), P203, DOI 10.1007/978-3-030-23943-5_15 Diwanji VS, 2023, INT J CONSUM STUD, V47, P2767, DOI 10.1111/ijcs.12889 Du S, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11061580 Eze UC, 2013, J ELECTRON COMMER OR, V11, P46, DOI 10.4018/jeco.2013070103 Fiss PC, 2011, ACAD MANAGE J, V54, P393, DOI 10.5465/AMJ.2011.60263120 Ghasemy M, 2020, HIGH EDUC, V80, P1121, DOI 10.1007/s10734-020-00534-1 Ghazali EM, 2018, ASIA PAC J MARKET LO, V30, P1064, DOI 10.1108/APJML-05-2017-0093 Gligor D, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101929 Gligor DM, 2022, J BUS IND MARK, V37, P1542, DOI 10.1108/JBIM-09-2020-0436 Gong X, 2020, INT J ELECTRON COMM, V24, P279, DOI 10.1080/10864415.2020.1767427 Hadiana A, 2016, 2016 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT) Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Hair J.F., 2016, ESSENTIALS BUSINESS, DOI DOI 10.4324/9781315716862 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hanafizadeh P, 2010, EXPERT SYST APPL, V37, P8879, DOI 10.1016/j.eswa.2010.06.008 Haque Mehruba, 2022, International Journal of Electronic Marketing and Retailing, V13, P259, DOI 10.1504/IJEMR.2022.123938 Heidenreich S, 2016, J BUS RES, V69, P2440, DOI 10.1016/j.jbusres.2016.01.014 Heidenreich S, 2013, INT J INNOV MANAG, V17, DOI 10.1142/S1363919613500217 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Hew JJ, 2018, TOURISM MANAGE, V66, P121, DOI 10.1016/j.tourman.2017.10.005 Hew JJ, 2017, TELEMAT INFORM, V34, P34, DOI 10.1016/j.tele.2016.12.009 Hew JJ, 2017, TELEMAT INFORM, V34, P43, DOI 10.1016/j.tele.2016.04.003 Hew JJ, 2015, IND MANAGE DATA SYST, V115, P1269, DOI 10.1108/IMDS-01-2015-0028 Hossain M.A., 2022, ANN OPER RES Hossain MA, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102537 Hult GTM, 2018, J INT MARKETING, V26, P1, DOI 10.1509/jim.17.0151 Insider Intelligence, 2022, MCOMM REP STAT MARK Joachim V, 2018, IND MARKET MANAG, V71, P95, DOI 10.1016/j.indmarman.2017.12.011 Katsumata S, 2022, COMPUT HUM BEHAV REP, V5, DOI 10.1016/j.chbr.2022.100168 Kaur P, 2021, J ENTERP INF MANAG, V34, P1746, DOI 10.1108/JEIM-03-2020-0091 Kaur P, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102059 Khanra S, 2021, J HOSP TOUR MANAG, V46, P26, DOI 10.1016/j.jhtm.2020.11.004 Khaw KW, 2022, INT J HUM-COMPUT INT, V38, P1529, DOI 10.1080/10447318.2021.2004700 Kleijnen M, 2009, J ECON PSYCHOL, V30, P344, DOI 10.1016/j.joep.2009.02.004 Kock F, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104330 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Laukkanen P, 2008, INT J BANK MARK, V26, P440, DOI 10.1108/02652320810902451 Laukkanen T, 2016, J BUS RES, V69, P2432, DOI 10.1016/j.jbusres.2016.01.013 Laukkanen T, 2007, J CONSUM MARK, V24, P419, DOI 10.1108/07363760710834834 Laukkanen T, 2009, INT J INFORM MANAGE, V29, P111, DOI 10.1016/j.ijinfomgt.2008.05.008 Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Lee ZWY, 2021, INFORM SYST J, V31, P33, DOI 10.1111/isj.12292 Leite FP, 2022, J MARKET THEORY PRAC, V30, P295, DOI 10.1080/10696679.2021.1935275 Leong LY, 2023, IND MANAGE DATA SYST, V123, P967, DOI 10.1108/IMDS-11-2021-0671 Leong LY, 2021, IND MANAGE DATA SYST, V121, P1784, DOI 10.1108/IMDS-12-2020-0741 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Li F, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103039 Lian JW, 2013, COMPUT HUM BEHAV, V29, P665, DOI 10.1016/j.chb.2012.10.009 Lou ZK, 2022, J BUS RES, V139, P81, DOI 10.1016/j.jbusres.2021.09.045 Luceri B, 2022, J RETAILING, V98, P178, DOI 10.1016/j.jretai.2022.02.002 Ma L, 2020, ONLINE INFORM REV, V44, P671, DOI 10.1108/OIR-06-2019-0203 Ma L, 2019, J EDUC COMPUT RES, V57, P571, DOI 10.1177/0735633118757732 MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 Malaysia Communication and Multimedia Commission, 2020, Communications and Multimedia: Facts andfigures, 1Q 2020 Malaysian Communication and Multimedia Commission, 2021, Hand Phone User Survey 2021 Malaysian Communications and Multimedia Commission, 2022, COMMUNICATIONS MULTI, P2021 Matsuo M, 2018, J RETAIL CONSUM SERV, V45, P42, DOI 10.1016/j.jretconser.2018.08.005 Mattke J, 2022, COMMUN ASSOC INF SYS, V50, P208, DOI 10.17705/1CAIS.05008 Mzoughi N, 2013, INT J BANK MARK, V31, P388, DOI 10.1108/IJBM-10-2012-0105 Naicker V, 2018, INFORM TECHNOL PEOPL, V31, P507, DOI 10.1108/ITP-09-2016-0212 Nel J, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102368 Nikou S, 2022, J SMALL BUS MANAGE, DOI 10.1080/00472778.2022.2147190 Oliveira T, 2014, INT J INFORM MANAGE, V34, P689, DOI 10.1016/j.ijinfomgt.2014.06.004 Olya HGT, 2016, J BUS RES, V69, P2791, DOI 10.1016/j.jbusres.2015.11.015 Omar S, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102468 Ooi KB, 2021, IND MANAGE DATA SYST, V121, P312, DOI 10.1108/IMDS-04-2020-0239 Ooi KB, 2018, BEHAV INFORM TECHNOL, V37, P575, DOI 10.1080/0144929X.2018.1465997 Ooi KB, 2018, EXPERT SYST APPL, V93, P376, DOI 10.1016/j.eswa.2017.10.009 Pappas IO, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102310 Pappas IO, 2019, INTERNET RES, V29, P293, DOI 10.1108/IntR-12-2017-0479 Pappas IO, 2016, J BUS RES, V69, P794, DOI 10.1016/j.jbusres.2015.07.010 Park K, 2017, COMPUT HUM BEHAV, V69, P142, DOI 10.1016/j.chb.2016.12.017 Park Y, 2020, MIS QUART, V44, P1493, DOI 10.25300/MISQ/2020/13879 RAM S, 1987, ADV CONSUM RES, V14, P208 Ram S., 1989, J CONSUM MARK, V6, P5, DOI [10.1108/eum0000000002542, DOI 10.1108/EUM0000000002542, 10.1108/EUM0000000002542] Rogers, 2003, DIFFUSION INNOVATION Rogers E. M., 1962, Diffusion of Innovations Salman A, 2023, ENVIRON DEV SUSTAIN, V25, P10261, DOI 10.1007/s10668-022-02488-z Sham R, 2023, J RETAIL CONSUM SERV, V75, DOI 10.1016/j.jretconser.2023.103478 Sun Y, 2022, ASIA PAC J MARKET LO, V34, P1849, DOI 10.1108/APJML-12-2020-0865 Szmigin I, 1998, TECHNOVATION, V18, P459, DOI 10.1016/S0166-4972(98)00030-3 Talebian A, 2018, TRANSPORT RES C-EMER, V95, P363, DOI 10.1016/j.trc.2018.06.005 Talke K, 2014, J PROD INNOVAT MANAG, V31, P894, DOI 10.1111/jpim.12130 Talwar S, 2020, AUSTRALAS MARK J, V28, P286, DOI 10.1016/j.ausmj.2020.06.014 Turban E., 2018, ELECT COMMERCE 2018, P205 Turban E., 2015, ELECT COMMERCE MANAG, V8th, DOI DOI 10.1007/978-3-319-10091-3 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2021, IND MANAGE DATA SYST, V121, P30, DOI 10.1108/IMDS-08-2020-0506 Venkatesh V, 2012, MIS QUART, V36, P157 Xiao M, 2018, J MEDIA BUS STUD, V15, P188, DOI 10.1080/16522354.2018.1501146 Yang XP, 2023, J BUS RES, V155, DOI 10.1016/j.jbusres.2022.113406 Yu C.-S., 2016, International Journal of Electronic Commerce Studies, V7, P21, DOI [10.7903/ijecs.1375, DOI 10.7903/IJECS.1375] Zhu B, 2022, INT J RETAIL DISTRIB, V50, P479, DOI 10.1108/IJRDM-05-2020-0174 NR 116 TC 5 Z9 5 U1 44 U2 46 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD NOV PY 2023 VL 75 AR 103526 DI 10.1016/j.jretconser.2023.103526 EA AUG 2023 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA Q5KP9 UT WOS:001057912600001 DA 2024-03-27 ER PT J AU Chong, AYL Li, BY Ngai, EWT Ch'ng, E Lee, F AF Chong, Alain Yee Loong Li, Boying Ngai, Eric W. T. Ch'ng, Eugene Lee, Filbert TI Predicting online product sales via online reviews, sentiments, and promotion strategies A big data architecture and neural network approach SO INTERNATIONAL JOURNAL OF OPERATIONS & PRODUCTION MANAGEMENT LA English DT Article DE Big data; Neural network; Online reviews; Product demands; Valence; Promotional marketing; Online marketplace ID WORD-OF-MOUTH; USER-GENERATED CONTENT; GENETIC ALGORITHM; CONSUMER REVIEWS; EMOTIONAL CONTAGION; CHAIN MANAGEMENT; IMPACT; DYNAMICS; COMMUNICATION; DETERMINANTS AB Purpose - The purpose of this paper is to investigate if online reviews (e.g. valence and volume), online promotional strategies (e.g. free delivery and discounts) and sentiments from user reviews can help predict product sales. Design/methodology/approach - The authors designed a big data architecture and deployed Node. js agents for scraping the Amazon.com pages using asynchronous input/output calls. The completed web crawling and scraping data sets were then preprocessed for sentimental and neural network analysis. The neural network was employed to examine which variables in the study are important predictors of product sales. Findings - This study found that although online reviews, online promotional strategies and online sentiments can all predict product sales, some variables are more important predictors than others. The authors found that the interplay effects of these variables become more important variables than the individual variables themselves. For example, online volume interactions with sentiments and discounts are more important than the individual predictors of discounts, sentiments or online volume. Originality/value - This study designed big data architecture, in combination with sentimental and neural network analysis that can facilitate future business research for predicting product sales in an online environment. This study also employed a predictive analytic approach (e.g. neural network) to examine the variables, and this approach is useful for future data analysis in a big data environment where prediction can have more practical implications than significance testing. This study also examined the interplay between online reviews, sentiments and promotional strategies, which up to now have mostly been examined individually in previous studies. C1 [Chong, Alain Yee Loong; Li, Boying] Univ Nottingham Ningbo China, Univ Nottingham, Business Sch China, Ningbo, Zhejiang, Peoples R China. [Ngai, Eric W. T.] Hong Kong Polytech Univ, Management & Mkt Dept, Hong Kong, Hong Kong, Peoples R China. [Ch'ng, Eugene] Univ Nottingham Ningbo China, Big Data & Visual Analyt Lab, Ningbo, Zhejiang, Peoples R China. [Lee, Filbert] Univ Nottingham Ningbo China, Int Studies Dept, Ningbo, Zhejiang, Peoples R China. C3 University of Nottingham Ningbo China; Hong Kong Polytechnic University; University of Nottingham Ningbo China; University of Nottingham Ningbo China RP Chong, AYL (autor correspondiente), Univ Nottingham Ningbo China, Univ Nottingham, Business Sch China, Ningbo, Zhejiang, Peoples R China. EM alain.chong@gmail.com RI Ngai, Eric/ABC-2167-2020; Chong, Alain/ABD-6916-2021; Ch´ng, Eugene/Q-8277-2019; Ngai, Eric W.T./L-8152-2015 OI Ch´ng, Eugene/0000-0003-3992-8335; Ngai, Eric W.T./0000-0002-7278-7434; NGAI, WT Eric/0000-0001-6891-6750; Chong, Alain/0000-0002-0881-1612 FU National Natural Science Foundation of China (NSFC); International Doctoral Innovation Centre; Ningbo Education Bureau; Ningbo Science and Technology Bureau; China's MoST; University of Nottingham; NSFC [71402076]; NBSTB [2012B10055] FX "The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC), International Doctoral Innovation Centre, Ningbo Education Bureau, Ningbo Science and Technology Bureau, China's MoST and The University of Nottingham. The project is partially supported by NSFC No. 71402076 and NBSTB Project 2012B10055." CR Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Ayat S, 2014, J MATH COMPUT SCI-JM, V8, P215, DOI 10.22436/jmcs.08.03.04 Baker BM, 2003, COMPUT OPER RES, V30, P787, DOI 10.1016/S0305-0548(02)00051-5 Bakos Y, 2011, MANAGE SCI, V57, P1944, DOI 10.1287/mnsc.1110.1390 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bolduc MC, 2010, EUR J OPER RES, V202, P122, DOI 10.1016/j.ejor.2009.05.008 Ch'ng E., 2014, 3 ASE BIG DAT SCI 20, P1 Ch'ng E, 2015, IND MANAGE DATA SYST, V115, P612, DOI 10.1108/IMDS-11-2014-0332 Chakravarty A, 2010, J INTERACT MARK, V24, P185, DOI 10.1016/j.intmar.2010.04.001 Chen SFS, 1998, J RETAILING, V74, P353, DOI 10.1016/S0022-4359(99)80100-6 Cheung CMK, 2012, DECIS SUPPORT SYST, V54, P461, DOI 10.1016/j.dss.2012.06.008 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chiang WYK, 2006, DECIS SUPPORT SYST, V41, P514, DOI 10.1016/j.dss.2004.08.016 Chong A.Y.-L., 2013, PACIS 2013 P PAC AS Chong AYL, 2008, IND MANAGE DATA SYST, V108, P529, DOI [10.1108/026355708110868371, 10.1108/02635570810868371] Chong AYL, 2014, INT J PROD ECON, V154, P48, DOI 10.1016/j.ijpe.2014.04.005 Chong AYL, 2013, INT J PROD RES, V51, P2006, DOI 10.1080/00207543.2012.701776 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 Chong AYL, 2009, INT J PROD ECON, V122, P150, DOI 10.1016/j.ijpe.2009.05.012 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Croom SR, 2005, INT J OPER PROD MAN, V25, P55, DOI 10.1108/01443570510572240 Cui G, 2012, INT J ELECTRON COMM, V17, P39, DOI 10.2753/JEC1086-4415170102 Davis Alanah, 2008, Electronic Markets, V18, P130, DOI 10.1080/10196780802044776 Dellarocas C., 2004, Working Paper, DOI [10.2139/ssrn.620821, DOI 10.2139/SSRN.620821] Doern RR, 2006, J WORLD BUS, V41, P315, DOI 10.1016/j.jwb.2006.08.001 Drozdenko R, 2005, J PROD BRAND MANAG, V14, P264, DOI 10.1108/10610420510609285 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 East R, 2008, INT J RES MARK, V25, P215, DOI 10.1016/j.ijresmar.2008.04.001 EHRENBERG ASC, 1994, J ADVERTISING RES, V34, P11 Erenturk S, 2007, J FOOD ENG, V78, P905, DOI 10.1016/j.jfoodeng.2005.11.031 Floyd K, 2014, J RETAILING, V90, P217, DOI 10.1016/j.jretai.2014.04.004 Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007 Garcia D., 2011, Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and IEEE Third International Conference on Social Computing (PASSAT/SocialCom 2011), P483, DOI 10.1109/PASSAT/SocialCom.2011.219 Gardner MW, 1998, ATMOS ENVIRON, V32, P2627, DOI 10.1016/S1352-2310(97)00447-0 Garson G.D., 1998, NEURAL NETWORKS INTR Gen MS, 2005, COMPUT IND ENG, V48, P799, DOI 10.1016/j.cie.2004.12.012 Gendall P, 2006, J PROD BRAND MANAG, V15, P458, DOI 10.1108/10610420610712847 George G, 2014, ACAD MANAGE J, V57, P321, DOI 10.5465/amj.2014.4002 Gevrey M, 2003, ECOL MODEL, V160, P249, DOI 10.1016/S0304-3800(02)00257-0 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 GUPTA S, 1992, J CONSUM RES, V19, P401, DOI 10.1086/209310 Hancock JT, 2008, CSCW: 2008 ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK, CONFERENCE PROCEEDINGS, P295 Hatfield E., 1994, EMOTIONAL CONTAGION Haykin S., 1994, NEURAL NETWORKS COMP Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Hu Nan., 2006, Proceedings of the 7th ACM Conference on Electronic Commerce. EC '06, P324, DOI DOI 10.1145/1134707.1134743 Hu Nan, 2016, ANN OPERATIONS RES Huang YY, 2015, INT J OPER PROD MAN, V35, P2, DOI 10.1108/IJOPM-07-2013-0341 Ito TA, 1998, J PERS SOC PSYCHOL, V75, P887, DOI 10.1037/0022-3514.75.4.887 Jensen T, 2003, J INTERACT MARK, V17, P20, DOI 10.1002/dir.10052 Kramer ADI, 2014, P NATL ACAD SCI USA, V111, P8788, DOI 10.1073/pnas.1320040111 Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 Li Y, 1998, INT J PROD ECON, V54, P65, DOI 10.1016/S0925-5273(97)00124-2 Liau BY, 2014, IND MANAGE DATA SYST, V114, P1344, DOI 10.1108/IMDS-07-2014-0225 LICHTENSTEIN DR, 1990, J MARKETING, V54, P54, DOI 10.2307/1251816 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Lopez L, 1998, EUR J OPER RES, V106, P317, DOI 10.1016/S0377-2217(97)00277-4 Lu XH, 2013, INFORM SYST RES, V24, P596, DOI 10.1287/isre.1120.0454 Luca M., 2011, WORKING PAPER Marshall R., 2002, Journal of Product Brand Management, V11, P147, DOI DOI 10.1108/10610420210430042 McNeill L, 2013, ASIA PAC J MARKET LO, V25, P48, DOI 10.1108/13555851311290939 Mudambi SM, 2010, MIS QUART, V34, P185 Ng CSP, 2013, INFORM MANAGE-AMSTER, V50, P609, DOI 10.1016/j.im.2013.08.002 Ou CX, 2014, MIS QUART, V38, P209, DOI 10.25300/MISQ/2014/38.1.10 Pugh SD, 2001, ACAD MANAGE J, V44, P1018, DOI 10.5465/3069445 Ramanathan U, 2012, INT J OPER PROD MAN, V32, P676, DOI 10.1108/01443571211230925 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Smith AD, 2003, ONLINE INFORM REV, V27, P418, DOI 10.1108/14684520310510055 Sonnier GP, 2011, MARKET SCI, V30, P702, DOI 10.1287/mksc.1110.0642 Sparks BA, 2011, TOURISM MANAGE, V32, P1310, DOI 10.1016/j.tourman.2010.12.011 Suri R., 2000, Journal of Product Brand Management, V9, P193, DOI DOI 10.1108/10610420010332458 Tang TY, 2014, J MARKETING, V78, P41, DOI 10.1509/jm.13.0301 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 Tsai WC, 2001, J MANAGE, V27, P497, DOI 10.1177/014920630102700406 Tyagi RK, 2010, J PROD INNOVAT MANAG, V27, P83, DOI 10.1111/j.1540-5885.2009.00701.x Vermeulen IE, 2009, TOURISM MANAGE, V30, P123, DOI 10.1016/j.tourman.2008.04.008 Wang HW, 2014, IND MANAGE DATA SYST, V114, P1301, DOI 10.1108/IMDS-05-2014-0159 Wen C, 2014, INT J OPER PROD MAN, V34, P1506, DOI 10.1108/IJOPM-07-2013-0352 Yang J, 2012, EUR J MARKETING, V46, P1523, DOI 10.1108/03090561211259961 Ye QA, 2011, COMPUT HUM BEHAV, V27, P634, DOI 10.1016/j.chb.2010.04.014 Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 Yip L., 2002, Asia Pacific Journal of Tourism Research, V7, P36, DOI 10.1080/10941660208722108 Yu XH, 2012, IEEE T KNOWL DATA EN, V24, P720, DOI 10.1109/TKDE.2010.269 Zhang JQ, 2010, J BUS RES, V63, P1336, DOI 10.1016/j.jbusres.2009.12.011 Zhao CW, 2000, INT J PROD RES, V38, P385, DOI 10.1080/002075400189473 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 87 TC 97 Z9 112 U1 11 U2 171 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0144-3577 EI 1758-6593 J9 INT J OPER PROD MAN JI Int. J. Oper. Prod. Manage. PY 2016 VL 36 IS 4 BP 358 EP + DI 10.1108/IJOPM-03-2015-0151 PG 27 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA DR1PN UT WOS:000379677500001 OA Green Accepted DA 2024-03-27 ER PT J AU Talwar, M Corazza, L Bodhi, R Malibari, A AF Talwar, Manish Corazza, Laura Bodhi, Rahul Malibari, Areej TI Why do consumers resist digital innovations? An innovation resistance theory perspective SO INTERNATIONAL JOURNAL OF EMERGING MARKETS LA English DT Article; Early Access DE Artificial neural network; Consumer resistance; Digital marketing; Financial products; Functional barriers; Psychological barriers ID INFORMATION-TECHNOLOGY; INTERNET BANKING; ADOPTION; MODEL; ACCEPTANCE; EXPERIENCE; BARRIERS; MEDIA; TRUST AB PurposeDespite the efforts of governments and firms, consumer resistance toward digital innovations in the retail finance space continues to manifest rather visibly. Yet, the causes of consumer resistance toward innovations such as online procurement of financial products continue to remain under-explored. The present study attempts to address this gap by examining barriers that may constitute Indian consumers' resistance to buying financial products marketed digitally, using insurance as an exemplar. Precisely, the study measures five classic innovation resistance theory (IRT) barriers constituting consumers' resistance toward procuring digitally marketed insurance and examines the influence of consumers' demographic characteristics, measured through age and gender.Design/methodology/approachThe conceptual model, resting on the theoretical proposition of IRT, was tested using data collected from 420 smartphone users. Given that, the data did not satisfy the multivariate assumptions of normality, homoscedasticity and linearity, artificial neural network approach was used for analysis. The analysis served as the basis for determining the relative importance of the five barriers in influencing consumer resistance.FindingsThe results indicated that the image barrier was the most influential barrier impacting consumer resistance, followed by usage, tradition, risk and value barriers. Moreover, as revealed by the values of correlations, the direction of influence was positive. Notably, the relationship of all barriers except tradition with consumer resistance was found to be nonlinear.Originality/valueThe study makes a novel contribution in two ways - one by extending IRT to a new area, i.e., resistance to buying financial products online, thereby further enhancing its applicability, and the other by exploring consumer resistance to e-procurement of life and nonlife insurance, which to the best of the authors' knowledge, has not been examined so far despite the established exigency. C1 [Talwar, Manish] Univ Mumbai, Alkesh Dinesh Mody Inst Financial & Management Stu, Mumbai, India. [Corazza, Laura] Univ Turin, Dept Management, Turin, Italy. [Bodhi, Rahul] Sch Business, UPES, Dehra Dun, India. [Malibari, Areej] Princess Nourah Bint Abdulrahman Univ, Dept Coll Engn, Riyadh, Saudi Arabia. [Malibari, Areej] King Abdulaziz Univ, Fac Comp NF & IT, Dept Comp Sci, Jeddah, Saudi Arabia. C3 University of Mumbai; University of Turin; University of Petroleum & Energy Studies (UPES); Princess Nourah bint Abdulrahman University; King Abdulaziz University RP Talwar, M (autor correspondiente), Univ Mumbai, Alkesh Dinesh Mody Inst Financial & Management Stu, Mumbai, India. EM talwars25@gmail.com; laura.corazza@unito.it; rahulbodhi@outlook.com; aamalibari@pnu.edu.sa RI Bodhi, Rahul/B-9954-2019 OI Bodhi, Rahul/0000-0002-3015-9704; Talwar, Manish/0000-0002-7266-3300 CR Abbas M, 2017, COGENT BUS MANAG, V4, DOI 10.1080/23311975.2017.1312058 Accenture, 2022, DIG INS TRENDS OPP K Antioco M, 2010, EUR J MARKETING, V44, P1700, DOI 10.1108/03090561011079846 Artur Lugmayr., 2012, PROCEEDING 16 INT AC, P231 Bhattacherjee A, 2007, EUR J INFORM SYST, V16, P725, DOI 10.1057/palgrave.ejis.3000717 Chakraborty A., 2022, J ASIAN FINANC ECON, V1, P1, DOI [10.1504/ijmef.2022.10045060, DOI 10.1504/IJMEF.2022.10045060] Chemingui H, 2013, INT J BANK MARK, V31, P574, DOI 10.1108/IJBM-12-2012-0124 Cheng S, 2014, INT J SECUR APPL, V8, P167, DOI 10.14257/ijsia.2014.8.2.17 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dhir A, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102398 Do Cho S, 2008, IND MARKET MANAG, V37, P841, DOI 10.1016/j.indmarman.2008.04.004 Dutta M.M., 2020, VILAKSHAN XIMB J MAN, V17, P97, DOI [10.1108/xjm-07-2020-0021, DOI 10.1108/XJM-07-2020-0021] Elbadrawy R., 2011, International Journal of Managing Information Technology, V3, P9, DOI DOI 10.5121/IJMIT.2011.3402 Gurtner S., 2014, 22 EUR C INF SYST, P1 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Heidenreich S, 2016, J PROD INNOVAT MANAG, V33, P277, DOI 10.1111/jpim.12273 Heidenreich S, 2013, INT J INNOV MANAG, V17, DOI 10.1142/S1363919613500217 Hennig-Thurau T, 2010, J SERV RES-US, V13, P311, DOI 10.1177/1094670510375460 Hongxia P., 2011, 2011 International Conference on E-Business and E-Government (ICEE), P1, DOI DOI 10.1109/ICEBEG.2011.5887081 Hosseini M.H., 2016, INT J ASIAN SOCIAL S, V6, P497, DOI DOI 10.18488/JOURNAL.1/2016.6.9/1.9.497.509 IBEF, 2022, INS IND REP Ilyas AM, 2022, INT J EMERG MARK, V17, P1446, DOI 10.1108/IJOEM-10-2019-0869 Ilyas AM, 2020, INT J PRODUCT PERFOR, V69, P633, DOI 10.1108/IJPPM-04-2019-0147 Kaesler S., 2020, REVOLUTION MULTIACCE Kapoor S., 2022, EXPLAINED CHALLENGE Kaur P, 2021, J ENTERP INF MANAG, V34, P1746, DOI 10.1108/JEIM-03-2020-0091 Kaur P, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102059 Khalil A, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3202485 Khanra S, 2021, J HOSP TOUR MANAG, V46, P26, DOI 10.1016/j.jhtm.2020.11.004 Kim J, 2021, J BUS RES, V130, P552, DOI 10.1016/j.jbusres.2019.09.043 Kleijnen M, 2009, J ECON PSYCHOL, V30, P344, DOI 10.1016/j.joep.2009.02.004 Kuisma T, 2007, INT J INFORM MANAGE, V27, P75, DOI 10.1016/j.ijinfomgt.2006.08.006 Kumar S, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102444 Lapointe L, 2005, MIS QUART, V29, P461 Laukkanen P, 2008, INT J BANK MARK, V26, P440, DOI 10.1108/02652320810902451 Laukkanen T., 2007, INT C MANAGEMENT MOB, P42, DOI [10.1109/ICMB.2007.57, DOI 10.1109/ICMB.2007.57] Laukkanen T, 2016, J BUS RES, V69, P2432, DOI 10.1016/j.jbusres.2016.01.013 Laukkanen T, 2007, J CONSUM MARK, V24, P419, DOI 10.1108/07363760710834834 Leeflang PSH, 2014, EUR MANAG J, V32, P1, DOI 10.1016/j.emj.2013.12.001 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Lian J., 2012, Computer Techology and Application, V3, P188 Lian JW, 2013, COMPUT HUM BEHAV, V29, P665, DOI 10.1016/j.chb.2012.10.009 Lombardi P., 2011, D11 IST STREP Mahatanankoon P, 2007, J INTERNET COMMER, V6, P113, DOI 10.1080/15332860802086367 Mani Z, 2018, J PROD INNOVAT MANAG, V35, P780, DOI 10.1111/jpim.12463 Mani Z, 2017, J MARKET MANAG-UK, V33, P76, DOI 10.1080/0267257X.2016.1245212 Tiago MTPMB, 2014, BUS HORIZONS, V57, P703, DOI 10.1016/j.bushor.2014.07.002 Mullen M.R., 2010, 35 MACR C WYOM 2010 Nel J, 2019, J RETAIL CONSUM SERV, V47, P282, DOI 10.1016/j.jretconser.2018.12.003 Poddar P., 2019, DIGITAL INSURANCE CH Ram S., 1989, J CONSUM MARK, V6, P5, DOI [10.1108/eum0000000002542, DOI 10.1108/EUM0000000002542, 10.1108/EUM0000000002542] Rogers, 2003, DIFFUSION INNOVATION Rogers E. M., 1995, DIFFUSION INNOVATION Seth H, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102071 Simply Digital Marketing, 2012, WHAT IS DIGITAL MARK Spreer P, 2016, J PERS SELL SALES M, V36, P240, DOI 10.1080/08853134.2016.1208100 Statista Research Department, 2022, INS IND IND STAT FAC Sundjaja A. M., 2019, INT J SCI TECHNOLOGY, V8, P511 Talke K, 2014, J PROD INNOVAT MANAG, V31, P894, DOI 10.1111/jpim.12130 Talwar M, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2020.102396 Talwar M, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102341 Talwar S, 2021, AUSTRALAS J INF SYST, V25, DOI 10.3127/ajis.v25i0.3201 Talwar S, 2021, PSYCHOL MARKET, V38, P2142, DOI 10.1002/mar.21550 Talwar S, 2020, AUSTRALAS MARK J, V28, P286, DOI 10.1016/j.ausmj.2020.06.014 Talwar S, 2020, INT J HOSP MANAG, V89, DOI 10.1016/j.ijhm.2020.102593 Tandon A, 2021, FOOD QUAL PREFER, V88, DOI 10.1016/j.foodqual.2020.104077 Tansuhaj P., 1991, International Marketing Review, V8 van Offenbeek M, 2013, EUR J INFORM SYST, V22, P434, DOI 10.1057/ejis.2012.29 Yadav Chette Srinivas., 2018, IUP Journal of Management Research, V17, P35 Zheng YM, 2019, J PUBLIC POLICY MARK, V38, P246, DOI 10.1177/0743915618812453 Zhou T, 2011, INTERNET RES, V21, P527, DOI 10.1108/10662241111176353 NR 72 TC 1 Z9 1 U1 10 U2 25 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1746-8809 EI 1746-8817 J9 INT J EMERG MARK JI Int. J. Emerg. Mark. PD 2023 FEB 28 PY 2023 DI 10.1108/IJOEM-03-2022-0529 EA FEB 2023 PG 16 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA C1NA4 UT WOS:000959657500001 DA 2024-03-27 ER PT J AU Subramaniyaswamy, V Logesh, R Abejith, M Umasankar, S Umamakeswari, A AF Subramaniyaswamy, V. Logesh, R. Abejith, M. Umasankar, Sunil Umamakeswari, A. TI Sentiment Analysis of Tweets for Estimating Criticality and Security of Events SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Artificial Intelligence; Human-Computer Interaction; Lexicon Based Sentimental Analysis; Security; Social Aspects; Social Media Analytics AB Social Media has become one of the major industries in the world. It has been noted that almost three fourth of the world's population use social media. This has instigated many researches towards social media. One such useful application is the sentimental analysis of real time social media data for security purposes. The insights that are generated can be used by law enforcement agencies and for intelligence purposes. There are many types of analyses that have been done for security purposes. Here, the authors propose a comprehensive software application which will meticulously scrape data from Twitter and analyse them using the lexicon based analysis to look for possible threats. They propose a methodology to obtain a quantitative result called criticality to assess the level of threat for a public event. The results can be used to understand people's opinions and comments with regard to specific events. The proposed system combines this lexicon based sentimental analysis along with deep data collection and segregates the emotions into different levels to analyse the threat for an event. C1 [Subramaniyaswamy, V.; Logesh, R.; Abejith, M.; Umasankar, Sunil] SASTRA Univ, Sch Comp, Thanjavur, India. [Umamakeswari, A.] SASTRA Univ, Sch Comp, Dept Comp Sci & Engn, Thanjavur, India. C3 Shanmugha Arts, Science, Technology & Research Academy (SASTRA); Shanmugha Arts, Science, Technology & Research Academy (SASTRA) RP Subramaniyaswamy, V (autor correspondiente), SASTRA Univ, Sch Comp, Thanjavur, India. OI A, Umamakeswari/0000-0001-9724-1115; R, Logesh/0000-0002-0034-4714; , Subramaniyaswamy/0000-0001-5328-7672 FU Science and Engineering Research Board (SERB), Department of Science & Technology, New Delhi [YSS/2014/000718/ES] FX The authors are grateful to Science and Engineering Research Board (SERB), Department of Science & Technology, New Delhi, for the financial support (No. YSS/2014/000718/ES). Authors also thank SASTRA University, Thanjavur, for providing the infrastructural facilities to carry out this research work. CR Abdulla N., 2013, 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), P1, DOI [DOI 10.1109/AEECT.2013.6716448, 10.1109/AEECT.2013.6716448] Avanço LV, 2014, 2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), P277, DOI 10.1109/BRACIS.2014.57 Basave A. E. C., 2013, P 6 INT JOINT C NAT, P109 Colbaugh Richard, 2013, 2013 European Intelligence and Security Informatics Conference (EISIC), P45, DOI 10.1109/EISIC.2013.14 Colbaugh R., 2011, 2011 European Intelligence and Security Informatics Conference, P327, DOI 10.1109/EISIC.2011.65 Esuli Andrea., 2006, SENTIWORDNET PUBLICL Glass K., 2012, CORRABS12126810 Go A., 2009, TWITTER SENTIMENT CL Jurek A, 2014, 2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), P48, DOI 10.1109/JISIC.2014.17 Jurek Anna., 2015, Security Informatics, V4, P9, DOI DOI 10.1186/S13388-015-0024-X Ngoc PT, 2014, 2014 INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2014), P444, DOI 10.1109/ICOIN.2014.6799721 Spitters M, 2014, 2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), P216, DOI 10.1109/JISIC.2014.39 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 NR 13 TC 17 Z9 18 U1 3 U2 71 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PD OCT-DEC PY 2017 VL 29 IS 4 BP 51 EP 71 DI 10.4018/JOEUC.2017100103 PG 21 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA FE1ZH UT WOS:000408015600004 DA 2024-03-27 ER PT J AU Xia, ML Zhang, Y AF Xia, Menglong Zhang, Yang TI Linear and nonlinear relationships: a hybrid SEM-neural network approach to verify the links of online experience with luxury hotel branding SO JOURNAL OF HOSPITALITY AND TOURISM INSIGHTS LA English DT Article DE SOR framework; Online experience; Mobile hotel branding; Brand image; SEM-ANN analysis ID CUSTOMER SATISFACTION; BEHAVIORAL INTENTION; PERCEIVED USEFULNESS; TRAVELER ACCEPTANCE; WEBSITE QUALITY; MODEL; IMPACT; IMAGE; DETERMINANTS; INFORMATION AB Purpose - Mobile technologies have recently come to serve as the primary reservation option for the hospitality industry. This study examines the role of online experience in determining potential consumers' perceived hotel brand image, through a three-stage model based on the stimulus-organism-response (SOR) framework. Design/methodology/approach - A dual-stage analytical procedure, including structural equation modeling (SEM) and an artificial neural network (ANN) approach, was adopted to test the hypotheses. Findings - Online experience of mobile applications (apps) can be influenced by perceived usefulness. As the indivisible component of consumers' cognitive beliefs, perceived ease of use exerts a positive impact on online experience. The online experience of mobile apps positively influenced brand awareness and satisfaction, further contributing to potential consumers' brand image formation. Research limitations/implications - This study empirically verified the relationships among potential hotel consumers' perceptions of official hotel mobile app quality, online experience and brand image. Practical implications - This study reiterates the importance of official hotel apps in implementing online marketing strategies, suggesting that hoteliers should pay attention to enhancing the quality of their official apps. Originality/value - This study is one of the first to combine machine learning techniques with the traditional SEM approach to assess linear and nonlinear relationships in consumers' perceptual models. Additionally, the findings provide theoretical insights into the online experience of mobile apps and reveal the perceived brand image formation process of potential consumers. C1 [Xia, Menglong; Zhang, Yang] Macau Univ Sci & Technol, Fac Hospitality & Tourism Management, Taipa, Macao, Peoples R China. C3 Macau University of Science & Technology RP Zhang, Y (autor correspondiente), Macau Univ Sci & Technol, Fac Hospitality & Tourism Management, Taipa, Macao, Peoples R China. EM yangzhang@must.edu.mo CR Alrawadieh Z, 2019, J HOSP TOUR TECHNOL, V10, P107, DOI [10.1108/jhtt-09-2017-0093, 10.1108/JHTT-09-2017-0093] Andreassen T., 1998, J SERV RES-US, V1, P82, DOI [10.1177/109467059800100107, DOI 10.1177/109467059800100107] Back K.J., 2005, J HOSPITALITY TOURIS, V29, P448, DOI 10.1177/1096348005276497 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Bai B, 2008, INT J HOSP MANAG, V27, P391, DOI 10.1016/j.ijhm.2007.10.008 Barreda AA, 2016, TOURISM MANAGE, V57, P180, DOI 10.1016/j.tourman.2016.06.007 Barreda AA, 2015, COMPUT HUM BEHAV, V50, P600, DOI 10.1016/j.chb.2015.03.023 Bazi S, 2020, J BUS RES, V112, P223, DOI 10.1016/j.jbusres.2020.02.032 Benslimane Y, 2007, MATH COMPUT MODEL, V46, P1191, DOI 10.1016/j.mcm.2006.12.008 Bilgihan A, 2014, INF TECHNOL TOUR, V14, P49, DOI 10.1007/s40558-013-0003-3 Boyer KK, 2006, J OPER MANAG, V24, P124, DOI 10.1016/j.jom.2005.04.002 Cenfetelli RT, 2008, INFORM SYST RES, V19, P161, DOI 10.1287/isre.1070.0163 Choi EK, 2016, J HOSP MARKET MANAG, V25, P771, DOI 10.1080/19368623.2016.1100102 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Esch FR, 2006, J PROD BRAND MANAG, V15, P98, DOI 10.1108/10610420610658938 Gu HM, 2012, TOUR MANAG PERSPECT, V4, P56, DOI 10.1016/j.tmp.2012.02.001 Ha H., 2005, Journal of Consumer Behavior, V4, P438, DOI DOI 10.1002/CB.29 Hair J.F., 2009, Multivariate data analysis Herrero A, 2012, INT J HOSP MANAG, V31, P1178, DOI 10.1016/j.ijhm.2012.02.005 Homburg C, 2010, INT J RES MARK, V27, P201, DOI 10.1016/j.ijresmar.2010.03.004 Jani D, 2014, INT J HOSP MANAG, V37, P11, DOI 10.1016/j.ijhm.2013.10.007 Jeong M., 2003, International Journal of Hospitality Management, V22, P161, DOI 10.1016/S0278-4319(03)00016-1 JEONG M, 2020, J HOSPITALITY TOURIS Joshi, 2018, BUSINESS PERSPECTIVE, V6, P13 Kandampully J., 2007, International Journal of Contemporary Hospitality Management, V19, P435, DOI 10.1108/09596110710775101 Kanje P, 2020, J HOSP TOUR INSIGHTS, V3, P273, DOI 10.1108/JHTI-04-2019-0074 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Kim DY, 2008, INT J TOUR RES, V10, P393, DOI 10.1002/jtr.669 Kim J, 2013, J RES INTERACT MARK, V7, P33, DOI 10.1108/17505931311316734 Kim J, 2016, INT J CONTEMP HOSP M, V28, P1535, DOI 10.1108/IJCHM-06-2015-0289 Kim M, 2014, INT J CONTEMP HOSP M, V26, P225, DOI 10.1108/IJCHM-09-2012-0165 Kim MJ, 2020, J TRAVEL RES, V59, P69, DOI 10.1177/0047287518818915 Lai IKW, 2015, J HOSP TOUR RES, V39, P401, DOI 10.1177/1096348013491596 Law R., 2008, Asia Pacific Journal of Tourism Research, V13, P435, DOI 10.1080/10941660802420994 Law R, 2019, INT J HOSP MANAG, V76, P2, DOI 10.1016/j.ijhm.2018.06.005 Lee H, 2021, J VACAT MARK, V27, P237, DOI 10.1177/1356766720987872 Lee JS, 2008, TOURISM MANAGE, V29, P331, DOI 10.1016/j.tourman.2007.03.002 Lee S, 2014, INT J HOSP MANAG, V40, P49, DOI 10.1016/j.ijhm.2014.03.008 Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Leong ChoonChiang Leong ChoonChiang, 2003, Asia Pacific Journal of Tourism Research, V8, P38, DOI 10.1080/10941660308725467 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Loureiro S.M., 2013, INT J ELECT COMMERCE, V4, P139, DOI DOI 10.7903/IJECS.1000 MacCallum RC, 1996, PSYCHOL METHODS, V1, P130, DOI 10.1037/1082-989X.1.2.130 Maditinos DI, 2010, INFORM TECHNOL PEOPL, V23, P312, DOI 10.1108/09593841011087789 Matthews D.R., 2014, J BUSINESS RETAIL MA, V9, P26 Mehrabian A., 1974, APPROACH ENV PSYCHOL Morgan-Thomas A, 2013, J BUS RES, V66, P21, DOI 10.1016/j.jbusres.2011.07.019 Morosan C, 2008, INT J HOSP MANAG, V27, P284, DOI 10.1016/j.ijhm.2007.07.023 Morosan C, 2015, INT J HOSP MANAG, V47, P120, DOI 10.1016/j.ijhm.2015.03.008 Nam J, 2011, ANN TOURISM RES, V38, P1009, DOI 10.1016/j.annals.2011.01.015 Nambisan P, 2011, J BUS RES, V64, P889, DOI 10.1016/j.jbusres.2010.09.006 No E, 2014, INT J TOUR RES, V16, P534, DOI 10.1002/jtr.1945 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 O'Loughlin D., 2004, INT J BANK MARK, V22, P522 Ozturk AB, 2016, INT J INFORM MANAGE, V36, P1350, DOI 10.1016/j.ijinfomgt.2016.04.005 Rodrigues LF, 2016, COMPUT HUM BEHAV, V61, P114, DOI 10.1016/j.chb.2016.03.015 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 ROTH MS, 1995, J MARKETING RES, V32, P163, DOI 10.2307/3152045 Seric M, 2020, J HOSP TOUR INSIGHTS, V3, P451, DOI 10.1108/JHTI-11-2019-0119 Sharma SK, 2017, BEHAV INFORM TECHNOL, V36, P1053, DOI 10.1080/0144929X.2017.1340973 SHIH C.F., 1998, EUR J MARKETING, V32, P655 Su CT, 2002, AM J OCCUP THER, V56, P581, DOI 10.5014/ajot.56.5.581 Ul Islam J, 2017, TELEMAT INFORM, V34, P96, DOI 10.1016/j.tele.2017.01.004 Voorveld HAM, 2013, J BRAND MANAG, V20, P608, DOI 10.1057/bm.2013.3 Wang D, 2016, J TRAVEL RES, V55, P52, DOI 10.1177/0047287514535847 Wang D, 2014, ANN TOURISM RES, V48, P11, DOI 10.1016/j.annals.2014.04.008 Wang L, 2015, INT J HOSP MANAG, V47, P108, DOI 10.1016/j.ijhm.2015.03.012 Wu, 2018, INT J HOSP MANAG, V83, P247 Xia ML, 2018, J DESTIN MARK MANAGE, V8, P259, DOI 10.1016/j.jdmm.2017.05.002 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Zhang JJ, 2012, J HOSP MARKET MANAG, V21, P113, DOI 10.1080/19368623.2011.615017 NR 73 TC 1 Z9 1 U1 7 U2 39 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2514-9792 EI 2514-9806 J9 J HOSP TOUR INSIGHTS JI J. Hosp. Tour. Insights PD DEC 7 PY 2022 VL 5 IS 5 BP 1062 EP 1079 DI 10.1108/JHTI-02-2021-0039 EA JUL 2021 PG 18 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA 6S9HB UT WOS:000673195600001 DA 2024-03-27 ER PT J AU Zhou, LC Zhang, Q AF Zhou, Lichun Zhang, Qian TI RETRACTADO: Recognition of false comments in E-commerce based on deep learning confidence network algorithm (Retracted Article) SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article; Retracted Publication DE E-commerce; False comment recognition; Deep confidence network; Multi-dimensional features; Convolutional neural network AB Out of commercial interests, merchants will hire professional writers to write good reviews for their products or write bad reviews for competitors, which has a serious adverse impact on the ecological development of e-commerce platforms. This article uses the feature set of product reviews as an entry point, and uses a deep-confidence network algorithm based on deep learning to analyze and identify the credibility of product reviews for e-commerce transactions. According to the model recognition, the characteristics of normal consumers' comments are analyzed. A DBN (Deep Belief Network) model that uses deep learning methods to identify false reviews is constructed. The model uses LSTM (Long Short Term Memory) and bidirectional GRU (Gated Recurrent Unit) to mine deep semantic features, and uses CNN (Convolutional Neural Network) to process the traditional discrete features extracted in this paper, which is multi-dimensional. We connect semantic features with traditional features to establish a DBN model. By verifying the accuracy of the model and comparing with other shallow machine learning algorithms, it is found that the recognition accuracy of the deep confidence network for comment data is significantly higher than that of other shallow machine learning algorithms. This verifies the effectiveness of the model proposed in this paper. C1 [Zhou, Lichun; Zhang, Qian] Shangqiu Normal Univ, Sch Media & Commun, Shangqiu 476000, Henan, Peoples R China. C3 Shangqiu Normal University RP Zhou, LC (autor correspondiente), Shangqiu Normal Univ, Sch Media & Commun, Shangqiu 476000, Henan, Peoples R China. EM zhoulc666@163.com; 31427693@qq.com FU Humanities and Social Science project of Henan Provincial Department of Education [2021-ZZJH-287] FX This work is supported by the Humanities and Social Science project of Henan Provincial Department of Education (2021-ZZJH-286); Humanities and Social Science project of Henan Provincial Department of Education (2021-ZZJH-287). CR Asghar MZ, 2020, SOFT COMPUT, V24, P3475, DOI 10.1007/s00500-019-04107-y Bhargava R, 2019, J INTELL SYST, V28, P409, DOI 10.1515/jisys-2017-0501 Cheung M, 2019, ACM T MULTIM COMPUT, V15, DOI 10.1145/3311785 Gainsbury SM, 2019, NEW MEDIA SOC, V21, P1232, DOI 10.1177/1461444818815442 Hussain N, 2019, ADCAIJ-ADV DISTRIB C, V8, P61, DOI 10.14201/ADCAIJ2019826171 Jiang LL, 2019, J AMB INTEL HUM COMP, V10, P3023, DOI 10.1007/s12652-018-0928-7 Lee J, 2019, INT J ELECTRON COMM, V23, P595, DOI 10.1080/10864415.2019.1655207 Mahbub S, 2019, INT J WEB GRID SERV, V15, P139, DOI 10.1504/IJWGS.2019.099561 Mou J, 2019, ELECTRON COMMER RES, V19, P749, DOI 10.1007/s10660-019-09338-7 Nanduri J, 2020, INFORMS J APPL ANAL, V50, P64, DOI 10.1287/inte.2019.1017 Olukemi, 2019, J COMPUT SCI-NETH, V7, P49, DOI DOI 10.15640/JCSIT.V7N2A67,2 Shinde, 2019, INT J ENG MANAG RES, V9, P107, DOI [10.31033/ijemr.9.2.12, DOI 10.31033/IJEMR.9.2.12] Tran V., 2020, INT J DATA NETW SCI, V4, P115, DOI [10.5267/j.ijdns.2020.2.005, DOI 10.5267/J.IJDNS.2020.2.005] Ullrich, 2019, MAASTRICHT J EUR COM, V26, P558, DOI DOI 10.1177/1023263X19855073 Wang, 2019, CHINA EC, V14, P56, DOI [10.1080/10971475.2018.1523859, DOI 10.1080/10971475.2018.1523859] Wang WC, 2019, INFORM MANAGE-AMSTER, V56, P418, DOI 10.1016/j.im.2018.08.002 Yaghoubi, 2019, INT J WEB RES, V2, P51 Yu CM, 2019, INFORM TECHNOL MANAG, V20, P123, DOI 10.1007/s10799-018-0288-1 Zhang W, 2019, J SYST SCI SYST ENG, V28, P731, DOI 10.1007/s11518-019-5438-4 NR 19 TC 15 Z9 16 U1 4 U2 49 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD AUG PY 2023 VL 21 IS SUPPL 1 SU 1 BP 7 EP 7 DI 10.1007/s10257-021-00503-w EA JAN 2021 PG 1 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA T4NO4 UT WOS:000608090600001 DA 2024-03-27 ER PT J AU Roy, S Moorthi, YLR AF Roy, Subhadip Moorthi, Y. L. R. TI Technology readiness, perceived ubiquity and M-commerce adoption The moderating role of privacy SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE Consumer behavior; M-commerce; Structural equation modelling; E-commerce; Technology readiness; Human-computer interaction; perceived ubiquity ID MOBILE COMMERCE; USAGE INTENTION; BEHAVIORAL INTENTIONS; ACCEPTANCE MODEL; USER ACCEPTANCE; SERVICE QUALITY; SPECIAL-ISSUE; CONSUMER; INTERNET; ONLINE AB Purpose - The purpose of this study is to draw concepts from marketing and information systems research and integrate them in the context of M-commerce. The authors develop a conceptual model of technology readiness (TR) affecting perceived ubiquity (PQ) (of smartphones) and PQ affecting M-commerce adoption (MA) incorporating the moderating effect of privacy concerns (PC) on the relation between PQ and MA along with the constructs perceived usefulness (PU) and perceived ease of use (PEU). Methodology - The conceptual model was formulated using a set of qualitative research procedures (four focus group discussions) and tested using two questionnaire-based surveys (with 372 and 431 respondents each) in India. Exploratory and confirmatory factor analyses were conducted followed by structural equation modeling for the quantitative data. Findings - Results from the quantitative study indicate a significant effect of TR on PQ, PU and PEU. All three latter constructs had a significant effect on MA. A significant moderating effect of PC on the relation between PQ and MA was also observed. Research implications - The study findings enhance the literature on the antecedents of successful adoption of M-commerce and establish the role of PQ as a significant influencer of MA. Practical implications - The study findings would enable service providers with a new and relevant model of M-commerce adoption. Originality - The major contribution of the study is the development and validation of a model that has attitudinal variables related to technology usage and their relations to M-commerce adoption. C1 [Roy, Subhadip] Indian Inst Management Udaipur, Dept Mkt, Udaipur, India. [Moorthi, Y. L. R.] Indian Inst Management Bangalore, Bangalore, Karnataka, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Udaipur (IIMU); Indian Institute of Management (IIM System); Indian Institute of Management Bangalore RP Roy, S (autor correspondiente), Indian Inst Management Udaipur, Dept Mkt, Udaipur, India. EM subhadip.roy@iimu.ac.in CR Akesson M., 2007, 6 ANN GLOB MOB ROUND, P19 [Anonymous], 2014, MULTIPLE LINEAR REGR Assocham. com, 2016, E COMM IND GEN 2 5 L Balasubramanian S, 2002, J ACAD MARKET SCI, V30, P348, DOI 10.1177/009207002236910 Barnes S. J., 2002, Electronic Markets, V12, P14, DOI 10.1080/101967802753433227 Barnes SJ, 2002, INT J INFORM MANAGE, V22, P91, DOI 10.1016/S0268-4012(01)00047-0 Bigne E., 2005, J ELECTRON COMMER RE, V6, P193, DOI DOI 10.1509/JMKG.64.4.65.18071 Bitner MJ, 2000, J ACAD MARKET SCI, V28, P138, DOI 10.1177/0092070300281013 Boadi R.A., 2007, INFORM DEV, V23, P253, DOI [10.1177/0266666907084761, DOI 10.1177/0266666907084761] Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987 Boritz JE, 2011, J INF SYST, V25, P11, DOI 10.2308/isys-10090 Buckingham D., 2008, YOUTH IDENTITY DIGIT, V1, P24 Burke RR, 2002, J ACAD MARKET SCI, V30, P411, DOI 10.1177/009207002236914 Carlsson C., 2002, 15 BLED INT C E COMM, P463 Chen Jengchung V., 2008, Info, V10, P30, DOI 10.1108/14636690810887526 Chen SC, 2013, CYBERPSYCH BEH SOC N, V16, P604, DOI 10.1089/cyber.2012.0606 Chen SC, 2009, IND MANAGE DATA SYST, V109, P1248, DOI 10.1108/02635570911002306 Chin WW, 1998, QUANT METH SER, P295 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 Chong AYL, 2012, DECIS SUPPORT SYST, V53, P34, DOI 10.1016/j.dss.2011.12.001 Chopra A., 2017, Number of Internet users in India could cross 450 million by June: report - Livemint CHURCHILL GA, 1979, J MARKETING RES, V16, P64, DOI 10.2307/3150876 Clarke I.I., 2001, J BUSINESS STRATEGIE, V18, P133, DOI [10.54155/jbs.18.2.133-148, DOI 10.54155/JBS.18.2.133-148] Colby C. L., 2003, ROCKBRIDGE NEWS, P2 Constantiou ID, 2010, J ELECTRON COMMER RE, V11, P127 Constantiou ID, 2009, DATA BASE ADV INF SY, V40, P132 Culnan MJ, 2000, J PUBLIC POLICY MARK, V19, P20, DOI 10.1509/jppm.19.1.20.16944 Dai H, 2009, DATA BASE ADV INF SY, V40, P43 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dazeinfo. com, 2016, MOB INT US IND 2016 Dhapola S., 2016, INDIAN EXPRESS Diehl S., 2013, Media and convergence management Eastin MS, 2016, COMPUT HUM BEHAV, V58, P214, DOI 10.1016/j.chb.2015.12.050 Elliot K.M., 2005, Marketing Management Journal, V15, P98 Elliott K., 2012, Services Marketing Quarterly, V33, P311, DOI DOI 10.1080/15332969.2012.715049 Fishbein M., 1975, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research FORNELL C, 1981, J MARKETING RES, V18, P382, DOI 10.2307/3150980 Fouskas K. G., 2005, International Journal of Mobile Communications, V3, P350, DOI 10.1504/IJMC.2005.007023 FRIED C, 1968, YALE LAW J, V77, P475, DOI 10.2307/794941 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 GIST ME, 1992, ACAD MANAGE REV, V17, P183, DOI 10.2307/258770 Gupta UG, 1996, TECHNOL FORECAST SOC, V53, P185, DOI 10.1016/S0040-1625(96)00094-7 Hair J.F., 1995, MULTIVARIATE DATA AN Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Hayes AF, 2015, MULTIVAR BEHAV RES, V50, P1, DOI 10.1080/00273171.2014.962683 Hsu CI, 2009, EXPERT SYST APPL, V36, P11760, DOI 10.1016/j.eswa.2009.04.010 Jaradat M.-I., 2013, INT J BUSINESS MANAG, V8, P102 Junglas I., 2006, COMMUNICATIONS ASS I, V17, P369 Junglas I. A., 2003, ICIS 2003 P Kang HM, 2006, PSYCHOL MARKET, V23, P841, DOI 10.1002/mar.20136 Kao DT, 2009, CYBERPSYCHOL BEHAV, V12, P225, DOI 10.1089/cpb.2008.0212 Kim S, 2009, INFORM SYST FRONT, V11, P323, DOI 10.1007/s10796-008-9073-8 Kini R., 2006, ENCY MOBILE COMPUTIN Kline R. B., 2015, PRINCIPLES PRACTICE Koenig-Lewis N, 2010, INT J BANK MARK, V28, P410, DOI 10.1108/02652321011064917 Kourouthanassis PE, 2012, INT J ELECTRON COMM, V16, P5, DOI 10.2753/JEC1086-4415160401 Kumar S., 2003, International Journal of Mobile Communications, V1, P180, DOI 10.1504/IJMC.2003.002465 Kurup R., 2015, HINDU BUSINESSLINE Langendoerfer P., 2002, M COMMERCE WHY IT DO Larivière B, 2013, J SERV MANAGE, V24, P268, DOI 10.1108/09564231311326996 LAUFER RS, 1977, J SOC ISSUES, V33, P22, DOI 10.1111/j.1540-4560.1977.tb01880.x Lee FH, 2011, EXPERT SYST APPL, V38, P7766, DOI 10.1016/j.eswa.2010.12.131 Lee YK, 2012, J BUS RES, V65, P1590, DOI 10.1016/j.jbusres.2011.02.044 Lewis BR, 2005, EUR J INFORM SYST, V14, P388, DOI 10.1057/palgrave.ejis.3000552 Liljander V, 2006, J RETAIL CONSUM SERV, V13, P177, DOI 10.1016/j.jretconser.2005.08.004 Limayem M, 2000, IEEE T SYST MAN CY A, V30, P421, DOI 10.1109/3468.852436 Lin CH, 2007, PSYCHOL MARKET, V24, P641, DOI 10.1002/mar.20177 Lin JSC, 2007, COMPUT HUM BEHAV, V23, P1597, DOI 10.1016/j.chb.2005.07.006 Lu HP, 2009, INTERNET RES, V19, P442, DOI 10.1108/10662240910981399 Lu J, 2005, J STRATEGIC INF SYST, V14, P245, DOI 10.1016/j.jsis.2005.07.003 Lwin M, 2007, J ACAD MARKET SCI, V35, P572, DOI 10.1007/s11747-006-0003-3 Maity M., 2010, INT J MOBILE MARKETI, V5 Malhotra NK, 2005, INT MARKET REV, V22, P256, DOI 10.1108/02651330510602204 Malhotra NK, 2004, INFORM SYST RES, V15, P336, DOI 10.1287/isre.1040.0032 Massey AP, 2007, DECISION SCI, V38, P277, DOI 10.1111/j.1540-5915.2007.00159.x Meeker M., 2012, INTERNET TRENDS PRES Meng J, 2009, J INT CONSUM MARK, V22, P19, DOI 10.1080/08961530902844915 Meuter ML, 2003, J BUS RES, V56, P899, DOI 10.1016/S0148-2963(01)00276-4 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Mishra S., 2014, J INTERNET BANKING C, V19, P1 MMA Global. com, 2009, MMA UPD DEF MOB MARK Monroe KentB., 2003, PRICING MAKING PROFI Nepomuceno MV, 2014, J RETAIL CONSUM SERV, V21, P619, DOI 10.1016/j.jretconser.2013.11.006 Netemeyer R.G., 2003, SCALE DEV SOCIAL SCI Ngai EWT, 2007, DECIS SUPPORT SYST, V43, P3, DOI 10.1016/j.dss.2005.05.003 Nielsen, 2014, REPORT UNSTOPPABLE S O'Donnell J., 2007, J THEOR APPL EL COMM, V2, P1 Okazaki S, 2013, J INTERACT MARK, V27, P98, DOI 10.1016/j.intmar.2012.10.001 Okazaki S, 2012, ELECTRON MARK, V22, P169, DOI 10.1007/s12525-012-0087-1 Okazaki S, 2009, J ADVERTISING, V38, P63, DOI 10.2753/JOA0091-3367380405 Okazaki S, 2009, INT J ADVERT, V28, P77, DOI 10.2501/S026504870909043X PARASURAMAN A, 1988, J RETAILING, V64, P12 Parasuraman A., 2004, QUIS 9 Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Park J., 2007, Journal of Electronic Commerce Research, V8, P196 Pousttchi K, 2015, INT J ELECTRON COMM, V19, P1, DOI 10.1080/10864415.2015.1029351 Pymnts. com, 2015, GLOB M COMM SET LEAV Roger E.M., 1995, DIFFUSION INNOVATION, V4th Sadeh N., 2003, M COMMERCE TECHNOLOG Martín SS, 2012, IND MANAGE DATA SYST, V112, P946, DOI 10.1108/02635571211238536 Sarker S, 2003, COMMUN ACM, V46, P35, DOI 10.1145/953460.953484 Sen S., 2015, The Financial Express Shankar V, 2010, J INTERACT MARK, V24, P111, DOI 10.1016/j.intmar.2010.02.006 Shankar V, 2009, J INTERACT MARK, V23, P118, DOI 10.1016/j.intmar.2009.02.002 Sharma SK, 2014, J INDIAN BUS RES, V6, P155, DOI 10.1108/JIBR-02-2013-0013 Smith HJ, 1996, MIS QUART, V20, P167, DOI 10.2307/249477 Sraeel H., 2006, BANK TECHNOLOGY NEWS Sultan F, 2009, J INTERACT MARK, V23, P308, DOI 10.1016/j.intmar.2009.07.003 Taylor R.E., 1994, Tourism Marketing and Management Handbook, V2nd, P535 Thakur R, 2013, J INDIAN BUS RES, V5, P52, DOI 10.1108/17554191311303385 Tscherning H., 2010, J INFORM TECHNOLOGY, V11, P24 Varnali K, 2010, INT J INFORM MANAGE, V30, P144, DOI 10.1016/j.ijinfomgt.2009.08.009 Varshney G., 2010, CURIE J, V3, P60 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 1996, DECISION SCI, V27, P451, DOI 10.1111/j.1540-5915.1996.tb01822.x Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x Venkatesh V, 2007, J ASSOC INF SYST, V8, P267, DOI 10.17705/1jais.00120 Vogt H, 2003, MOBILE NETW APPL, V8, P127, DOI 10.1023/A:1022276913209 Vrechopoulos A. P., 2002, P 15 BLED EL COMM C, P17 Watson RT, 2002, J ACAD MARKET SCI, V30, P333, DOI 10.1177/009207002236909 Wei TT, 2009, IND MANAGE DATA SYST, V109, P370, DOI 10.1108/02635570910939399 Wessels B, 2012, NEW MEDIA SOC, V14, P1251, DOI 10.1177/1461444812450679 Westin A.F., 1967, PRIVACY FREEDOM Wright D., 2005, INFO, V7, P35 Wu JH, 2005, INFORM MANAGE-AMSTER, V42, P719, DOI 10.1016/j.im.2004.07.001 Xu H., 2012, Proceedings of 33rd International Conference on Information Systems, Orlando, Florida, P1 Yadav R, 2016, J ENTERP INF MANAG, V29, P222, DOI 10.1108/JEIM-04-2015-0034 Yang HE, 2009, PROD PLAN CONTROL, V20, P370, DOI 10.1080/09537280902843755 Yang K. C. C., 2005, Telematics and Informatics, V22, P257, DOI 10.1016/j.tele.2004.11.003 Yen HR, 2005, SERV IND J, V25, P641, DOI 10.1080/02642060500100833 Zeithaml V.A., 2006, SERVICES MARKETING I Zhang RD, 2013, J COMPUT INFORM SYST, V53, P31, DOI 10.1080/08874417.2013.11645648 NR 134 TC 25 Z9 29 U1 1 U2 42 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PY 2017 VL 11 IS 3 BP 268 EP 295 DI 10.1108/JRIM-01-2016-0005 PG 28 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA FE0TN UT WOS:000407932700004 DA 2024-03-27 ER PT J AU Salminen, J Yoganathan, V Corporan, J Jansen, BJ Jung, SG AF Salminen, Joni Yoganathan, Vignesh Corporan, Juan Jansen, Bernard J. Jung, Soon-Gyo TI Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Machine learning; Auto-tagging; Web content; Content marketing; Neural network; Digital marketing ID RESPONSE MODELS; CLASSIFICATION; NETWORKS; SUPPORT; INFORMATION; PERFORMANCE; DISCOVERY; SYSTEMS; TOPICS; IMPACT AB As complex data becomes the norm, greater understanding of machine learning (ML) applications is needed for content marketers. Unstructured data, scattered across platforms in multiple forms, impedes performance and user experience. Automated classification offers a solution to this. We compare three state-of-the-art ML techniques for multilabel classification - Random Forest, K-Nearest Neighbor, and Neural Network - to automatically tag and classify online news articles. Neural Network performs the best, yielding an F1 Score of 70% and provides satisfactory cross-platform applicability on the same organisation's YouTube content. The developed model can automatically label 99.6% of the unlabelled website and 96.1% of the unlabelled YouTube content. Thus, we contribute to marketing literature via comparative evaluation of ML models for multilabel content classification, and cross-channel validation for a different type of content. Results suggest that organisations may optimise ML to auto-tag content across various platforms, opening avenues for aggregated analyses of content performance. C1 [Salminen, Joni; Jansen, Bernard J.; Jung, Soon-Gyo] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Doha, Qatar. [Salminen, Joni] Univ Turku, Turku Sch Econ, Turku, Finland. [Yoganathan, Vignesh] Univ Bradford, Sch Management, Emm Lane, Bradford BD9 4JL, W Yorkshire, England. [Corporan, Juan] Banco Santa Cruz RD, Santo Domingo, Dominican Rep. C3 Qatar Foundation (QF); Hamad Bin Khalifa University-Qatar; Qatar Computing Research Institute; University of Turku; University of Bradford RP Yoganathan, V (autor correspondiente), Univ Bradford, Sch Management, Emm Lane, Bradford BD9 4JL, W Yorkshire, England. EM vj.yoganathan@gmail.com CR Abu-Salih B, 2018, J KNOWL MANAG, V22, P949, DOI 10.1108/JKM-11-2016-0489 [Anonymous], International conference on machine learning Antons D, 2018, J SERV RES-US, V21, P17, DOI 10.1177/1094670517738373 Balducci B, 2018, J ACAD MARKET SCI, V46, P557, DOI 10.1007/s11747-018-0581-x Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Cates S, 2017, J INVEST MANAG, V15, P39 Chun SH, 2018, ADV SCI LETT, V24, P5474, DOI 10.1166/asl.2018.11760 Cui DP, 2005, MARKET SCI, V24, P595, DOI 10.1287/mksc.1050.0123 Cui G, 2006, MANAGE SCI, V52, P597, DOI 10.1287/mnsc.1060.0514 Cui G, 2004, INT J MARKET RES, V46, P235, DOI 10.1177/147078530404600204 Davis DF, 2013, J BUS RES, V66, P1245, DOI 10.1016/j.jbusres.2012.02.020 de Oliveira R., 2006, US INT C PERV SYST C, P37 Deng N, 2018, TOURISM MANAGE, V65, P267, DOI 10.1016/j.tourman.2017.09.010 Dhaoui C, 2017, J CONSUM MARK, V34, P480, DOI 10.1108/JCM-03-2017-2141 Evans MP, 2007, INTERNET RES, V17, P21, DOI 10.1108/10662240710730470 Flake G. W., 2004, ACM T INTERNET TECHN, V4, P341 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 Ha K, 2005, J INTERACT MARK, V19, P17, DOI 10.1002/dir.20028 Hofacker CF, 2012, J INTERACT MARK, V26, P1, DOI 10.1016/j.intmar.2011.10.001 Ilhan BE, 2018, J INTERACT MARK, V43, P33, DOI 10.1016/j.intmar.2018.01.003 Janardan SM, 2017, PROCEDIA COMPUT SCI, V122, P804, DOI 10.1016/j.procs.2017.11.440 Jansen BJ, 2017, J RES INTERACT MARK, V11, P142, DOI 10.1108/JRIM-07-2016-0073 Kilgour M, 2015, CORP COMMUN, V20, P326, DOI 10.1108/CCIJ-07-2014-0046 Klapdor S, 2014, J INTERACT MARK, V28, P285, DOI 10.1016/j.intmar.2014.07.001 Kumar V, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.82.41 Kutlu M, 2018, INFORM PROCESS MANAG, V54, P37, DOI 10.1016/j.ipm.2017.09.002 Lee HJ, 2010, J INTERACT MARK, V24, P42, DOI 10.1016/j.intmar.2009.10.004 Li XM, 2018, INFORM PROCESS MANAG, V54, P1345, DOI 10.1016/j.ipm.2018.05.009 Machedon R., 2013, INT C SOC COMP 8 14 Martínez-López FJ, 2009, IND MARKET MANAG, V38, P714, DOI 10.1016/j.indmarman.2008.02.003 Mencia E. L., 2008, EFFICIENT PAIRWISE M Montgomery AL, 2009, J INTERACT MARK, V23, P130, DOI 10.1016/j.intmar.2009.02.001 Moon S, 2014, EUR J MARKETING, V48, P2176, DOI 10.1108/EJM-06-2013-0291 Na JC, 2009, J INF SCI, V35, P709, DOI 10.1177/0165551509104233 Newman D, 2011, ADV NEURAL INFORM PR, V24, P496 Orriols-Puig A, 2013, J BUS RES, V66, P1332, DOI 10.1016/j.jbusres.2012.02.033 Pan B, 2011, J TRAVEL RES, V50, P365, DOI 10.1177/0047287510369558 Pandey L, 2018, INTERSPEECH, P112 Papagiannopoulou E, 2018, INFORM PROCESS MANAG, V54, P888, DOI 10.1016/j.ipm.2018.06.004 Pereira RB, 2018, INFORM PROCESS MANAG, V54, P359, DOI 10.1016/j.ipm.2018.01.002 Ramos Juan., 2003, USING TF IDF DETERMI, V242, P29, DOI DOI 10.15804/TNER.2015.42.4.03 Read J, 2011, MACH LEARN, V85, P333, DOI 10.1007/s10994-011-5256-5 Rowley J, 2008, J MARKET MANAG-UK, V24, P517, DOI 10.1362/026725708X325977 Salminen J., 2018, P INT AAAI C WEB SOC SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008 Sterne J., 2018, APPL MARKETING ANAL, V3, P298 Svetnik V, 2003, J CHEM INF COMP SCI, V43, P1947, DOI 10.1021/ci034160g Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 Trohidis K, 2011, EURASIP J AUDIO SPEE, DOI 10.1186/1687-4722-2011-426793 Tsai CF, 2013, KYBERNETES, V42, P357, DOI 10.1108/03684921311323626 Uchinaka S, 2019, TOURISM MANAGE, V71, P137, DOI 10.1016/j.tourman.2018.10.008 Vázquez S, 2014, NEURAL NETWORKS, V58, P68, DOI 10.1016/j.neunet.2014.05.026 Vogrincic S, 2011, COMPUT SCI INF SYST, V8, P101, DOI 10.2298/CSIS100420034V Wallach H. M., 2009, P 26 ANN INT C MACH Xu J., 2018, Topic Modeling with LSA, PLSA, LDA lda2Vec Zarrinkalam F, 2018, INFORM PROCESS MANAG, V54, P339, DOI 10.1016/j.ipm.2017.12.003 Zhang H, 2005, INFORM PROCESS MANAG, V41, P691, DOI 10.1016/j.ipm.2003.12.002 Zhang MM, 2011, ELECTRON MARK, V21, P161, DOI 10.1007/s12525-011-0065-z Zhao WY, 2018, INFORM PROCESS MANAG, V54, P203, DOI 10.1016/j.ipm.2017.11.005 NR 60 TC 50 Z9 52 U1 8 U2 92 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD AUG PY 2019 VL 101 BP 203 EP 217 DI 10.1016/j.jbusres.2019.04.018 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA IF8YK UT WOS:000473379000019 OA Green Submitted, Green Accepted DA 2024-03-27 ER PT J AU Ballestar, MT Grau-Carles, P Sainz, J AF Teresa Ballestar, Maria Grau-Carles, Pilar Sainz, Jorge TI Predicting customer quality in e-commerce social networks: a machine learning approach SO REVIEW OF MANAGERIAL SCIENCE LA English DT Article; Proceedings Paper CT 8th Global-Innovation-and-Knowledge-Academy (GIKA) Conference on Digital Innovation and Venturing CY JUN 25-27, 2018 CL Cathol Univ ValenciaSan Vicente Martir, Valencia, SPAIN SP Global Innovat & Knowledge Acad HO Cathol Univ ValenciaSan Vicente Martir DE Cashback; Social network; E-commerce; Machine learning; Artificial neural network; Predictive model ID ARTIFICIAL NEURAL-NETWORKS; EVOLUTION; FUTURE; MODELS AB The digital transformation of companies is having a major impact on all business areas, especially marketing, where audiences are most volatile and loyalty is at its scarcest. Many large retail brands try to keep their client base interested by becoming partners in cashback websites. These websites are based on a specific type of affiliate marketing whereby customers access a wide range of merchants and obtain financial rewards based on their activities. Besides using this mix of traditional marketing strategies, cashback websites attract new target customers and increase existing customers' loyalty through recommendations, using a word-of-mouth marketing strategy built on economic incentives for users who refer others to these sites. The literature shows that this strategy is one of the major areas of success of this business model because customers who join following recommendation are more active and are therefore more profitable and loyal to the brand. Nevertheless, the new users who are referred to these sites vary considerably in terms of the number of transactions they make on the site. This study advances research on the design of recommendation-based digital marketing strategies by providing companies with a predictive model. This model uses data science, including machine learning methods and big data, to personalize financial incentives for users based on the quality of the new customers they refer to the cashback website. Companies can thus optimize and maximize the return on their marketing investment. C1 [Teresa Ballestar, Maria] ESIC Business & Mkt Sch, Madrid, Spain. [Grau-Carles, Pilar; Sainz, Jorge] Rey Juan Carlos Univ, Madrid, Spain. [Sainz, Jorge] Univ Bath, Inst Policy Res, Bath, Avon, England. C3 ESIC; ESIC Business & Marketing School; Universidad Rey Juan Carlos; University of Bath RP Ballestar, MT (autor correspondiente), ESIC Business & Mkt Sch, Madrid, Spain. EM mariateresa.ballestar@esic.edu; pilar.grau@urjc.es; jorge.sainz@urjc.es RI SAINZ, JORGE/AAG-5379-2021; Sainz, jorge/AGW-3813-2022; sainz, jorge/T-9791-2019; Grau, Pilar/F-1288-2016 OI SAINZ, JORGE/0000-0001-8491-3154; Grau, Pilar/0000-0003-3917-1096; Ballestar de las Heras, Maria Teresa/0000-0001-8526-7561 CR Altinkemer K, 2009, INF SYST E-BUS MANAG, V7, P39, DOI 10.1007/s10257-007-0062-0 [Anonymous], 2017, SSRN ELECT J, DOI DOI 10.4283/JKMS.2017.27.1.001 Brynjolfsson E., 2017, The Economics of Artificial Intelligence: An Agenda Chen YL, 2008, LECT NOTES COMPUT SC, V5385, P556, DOI 10.1007/978-3-540-92185-1_62 Chung P, 2016, P 10 INT S COMP SCI Duffy DL, 2005, J CONSUM MARK, V22, P161, DOI 10.1108/07363760510595986 Dzelihodzic A., 2016, Modeling of Artificial Intelligence, V3, P140, DOI DOI 10.13187/MAI.2016.11.140 Eggers F, 2017, J SMALL BUS MANAGE, V55, P270, DOI 10.1111/jsbm.12313 Flexer A., 1996, Cybernetics and Systems '96. Proceedings of the Thirteenth European Meeting on Cybernetics and Systems Research, P1005 Fu T, 2013, PHYSICA A, V392, P2807, DOI 10.1016/j.physa.2013.02.018 Ganganwar V., 2012, International Journal of Emerging Technology and Advanced Engineering, V2, P42, DOI DOI 10.46338/IJETAE0412_13 García-Fernández J, 2018, ECON RES-EKON ISTRAZ, V31, P1042, DOI 10.1080/1331677X.2018.1436455 Guo H., 2004, ACM SIGKDD Explorations Newsl, V6, P30, DOI DOI 10.1145/1007730.1007736 Harmeling CM, 2017, J ACAD MARKET SCI, V45, P312, DOI 10.1007/s11747-016-0509-2 Ho Y.C.C., 2013, P 34 INT C INF SYST Ho YC, 2017, INFORM SYST RES, V28, P250, DOI 10.1287/isre.2017.0693 Hoge P, 2011, SAN FRANCISCO BUSINE Homburg C, 2008, J MARKETING, V72, P110, DOI 10.1509/jmkg.72.5.110 Hosmer DW, 2013, APPL LOGISTIC REGRES Hu XF, 2009, REMOTE SENS ENVIRON, V113, P2089, DOI 10.1016/j.rse.2009.05.014 Jahng J, 2007, EUR J INFORM SYST, V16, P254, DOI 10.1057/palgrave.ejis.3000665 Jensen HL., 1992, Manag. Financ, V18, P15, DOI [10.1108/eb013696, DOI 10.1108/EB013696] Kavzoglu T, 2003, INT J REMOTE SENS, V24, P4907, DOI 10.1080/0143116031000114851 Kumar V, 2016, J ADVERTISING, V45, P302, DOI 10.1080/00913367.2016.1199335 Lamberton C, 2016, J MARKETING, V80, P146, DOI 10.1509/jm.15.0415 Li Z, 2006, P SPIE INT SOC OPTIC Libai B., 2016, J SERV RES-US Mahmood A, 2017, J INTERACT MARK, V37, P117, DOI 10.1016/j.intmar.2016.10.003 Monaghan S, 2018, IND INNOV, V25, P242, DOI 10.1080/13662716.2017.1315562 Moustafa A.A., 2017, COMPUTATIONAL MODELS Paliwal M, 2009, EXPERT SYST APPL, V36, P2, DOI 10.1016/j.eswa.2007.10.005 Roig-Tierno N, 2018, REV MANAG SCI, V12, P379, DOI 10.1007/s11846-017-0266-8 Rust RT, 2006, MARKET SCI, V25, P560, DOI 10.1287/mksc.1050.0139 Shaffer G, 1995, MARKET SCI, V14, P395, DOI 10.1287/mksc.14.4.395 Spitzer J, 2018, INT J ENTREP BEHAV R Suchánek P, 2018, ECON RES-EKON ISTRAZ, V31, P1330, DOI 10.1080/1331677X.2018.1484786 Sun YM, 2009, INT J PATTERN RECOGN, V23, P687, DOI 10.1142/S0218001409007326 Ballestar MT, 2018, J BUS RES, V88, P407, DOI 10.1016/j.jbusres.2017.11.047 Ballestar MT, 2016, PSYCHOL MARKET, V33, P1039, DOI 10.1002/mar.20937 Ballestar MT, 2016, J BUS RES, V69, P2101, DOI 10.1016/j.jbusres.2015.12.015 Tu JV, 1996, J CLIN EPIDEMIOL, V49, P1225, DOI 10.1016/S0895-4356(96)00002-9 Vana P, 2018, J MARKET RES Wang Jun., 2000, Computational intelligence in manufacturing handbook Yin LZ, 2013, NEUROCOMPUTING, V105, P3, DOI 10.1016/j.neucom.2012.04.039 NR 44 TC 40 Z9 41 U1 8 U2 116 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1863-6683 EI 1863-6691 J9 REV MANAG SCI JI Rev. Manag. Sci. PD JUN PY 2019 VL 13 IS 3 SI SI BP 589 EP 603 DI 10.1007/s11846-018-0316-x PG 15 WC Management WE Social Science Citation Index (SSCI); Conference Proceedings Citation Index - Social Science & Humanities (CPCI-SSH) SC Business & Economics GA HY6BS UT WOS:000468214100006 DA 2024-03-27 ER PT J AU Binder, M Heinrich, B Hopf, M Schiller, A AF Binder, Markus Heinrich, Bernd Hopf, Marcus Schiller, Alexander TI Global reconstruction of language models with linguistic rules - Explainable AI for online consumer reviews SO ELECTRONIC MARKETS LA English DT Article DE Explainable AI; Text analytics; Language models; BERT; Linguistic rules; Online consumer reviews AB Analyzing textual data by means of AI models has been recognized as highly relevant in information systems research and practice, since a vast amount of data on eCommerce platforms, review portals or social media is given in textual form. Here, language models such as BERT, which are deep learning AI models, constitute a breakthrough and achieve leading-edge results in many applications of text analytics such as sentiment analysis in online consumer reviews. However, these language models are "black boxes ": It is unclear how they arrive at their predictions. Yet, applications of language models, for instance, in eCommerce require checks and justifications by means of global reconstruction of their predictions, since the decisions based thereon can have large impacts or are even mandatory due to regulations such as the GDPR. To this end, we propose a novel XAI approach for global reconstructions of language model predictions for token-level classifications (e.g., aspect term detection) by means of linguistic rules based on NLP building blocks (e.g., part-of-speech). The approach is analyzed on different datasets of online consumer reviews and NLP tasks. Since our approach allows for different setups, we further are the first to analyze the trade-off between comprehensibility and fidelity of global reconstructions of language model predictions. With respect to this trade-off, we find that our approach indeed allows for balanced setups for global reconstructions of BERT's predictions. Thus, our approach paves the way for a thorough understanding of language model predictions in text analytics. In practice, our approach can assist businesses in their decision-making and supports compliance with regulatory requirements. C1 [Binder, Markus; Heinrich, Bernd; Hopf, Marcus; Schiller, Alexander] Univ Regensburg, Fac Informat & Data Sci, Regensburg, Germany. C3 University of Regensburg RP Heinrich, B (autor correspondiente), Univ Regensburg, Fac Informat & Data Sci, Regensburg, Germany. EM Markus1.Binder@ur.de; bernd.heinrich@ur.de; Marcus.Hopf@ur.de; Alexander.Schiller@ur.de FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052 Ali A., 2022, PREPRINT, DOI DOI 10.48550/ARXIV.2202.07304 Askira-Gelman I, 1998, P ANN HICSS, P247, DOI 10.1109/HICSS.1998.648319 Augasta M. G., 2012, Proceedings of the 2012 International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME), P404, DOI 10.1109/ICPRIME.2012.6208380 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Binder M., 2019, P EUR C INF SYST, P1 Bowman Samuel R., 2019, INT C LEARNING REPRE, P1 Brasoveanu A. M. P., 2022, INTEGRATING ARTIFICI, P213 Casey B, 2019, Berkeley Technol Law J., P143 Chatterjee S, 2021, J BUS RES, V131, P815, DOI 10.1016/j.jbusres.2020.10.043 Chatterjee S, 2019, DECIS SUPPORT SYST, V119, P14, DOI 10.1016/j.dss.2019.02.008 Coenen A, 2019, ADV NEUR IN, V32 Coheur L, 2020, INFORM PROCESSING MA, V1237, P29 Dai HL, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P5268 Danilevsky M., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2010.00711 Dastin J., 2018, Reuters9 October Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Doran D., 2017, ARXIV, P2071, DOI DOI 10.48550/ARXIV.1710.00794 Fan ZF, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P2509 Fellbaum C., 2012, The encyclopedia of applied linguistics, DOI 10.1002/9781405198431.wbeal1285/abstract Forster M., 2021, P 54 HAW INT C SYST, P1274 Forster M., 2020, P 28 EUROPEAN C INFO Forster M., 2020, ICIS 2020 P Fortune Business Insights, 2021, NATURAL LANGUAGE PRO Gardner M., 2018, ARXIV, DOI DOI 10.48550/ARXIV.1803.07640 Geng ZQ, 2021, NEUROCOMPUTING, V429, P132, DOI 10.1016/j.neucom.2020.12.037 Gilpin LH, 2018, PR INT CONF DATA SC, P80, DOI 10.1109/DSAA.2018.00018 Goeken T., 2020, ECIS 2020 P Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009 Heidari M, 2020, 2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), P142, DOI 10.1109/SNAMS52053.2020.9336575 Heinrich B., 2022, ECIS 2022 P Heinrich B, 2021, ELECTRON MARK, V31, P389, DOI 10.1007/s12525-019-00366-7 Heinrich B, 2022, INFORM SYST FRONT, V24, P267, DOI 10.1007/s10796-020-10071-y Hewitt J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4129 Jumelet Jaap, 2018, P 2018 EMNLP WORKSH, P222, DOI [10.18653/v1/W18-5424, DOI 10.18653/V1/W18-5424] Kamps J., 2004, P 4 INT C LANG RES E, V4, P1115 Kim N., 2019, 8 JOINT C LEX COMP S Kokalj E., 2021, EACL HACKASHOP NEWS, P16 Kovaleva O, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P4365 Lan Z., 2019, ARXIV, DOI DOI 10.48550/ARXIV.1909.11942 Liu Q, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P1291 Liu SZ, 2021, IEEE INT CONF BIG DA, P1193, DOI 10.1109/BigData52589.2021.9671639 Lundberg SM, 2017, ADV NEUR IN, V30 Luo B, 2022, WIRES DATA MIN KNOWL, V12, DOI 10.1002/widm.1434 Malkiel I, 2022, PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), P3259, DOI 10.1145/3485447.3512045 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Ni JM, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P188 O'Donovan J, 2019, REV FINANC STUD, V32, P4117, DOI 10.1093/rfs/hhz017 Peters M, 2018, STUD LATEINAMERIKA, V32, P1, DOI 10.5771/9783845286846 Peters M. E., P 2018 C EMPIRICAL M Potnis, 2018, ILLUMINATING INSIGHT Qi P, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020): SYSTEM DEMONSTRATIONS, P101 Ramon Y., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2003.04792 Repke T., 2021, SPRINGER EBOOK COLLE, P241, DOI [10.1007/978-3-030-66891-4_11, DOI 10.1007/978-3-030-66891-4_11] Ribeiro MT, 2018, AAAI CONF ARTIF INTE, P1527 Schiller A., 2019, P 14 INT C BUSINESS Shrestha YR, 2021, J BUS RES, V123, P588, DOI 10.1016/j.jbusres.2020.09.068 Steur AJ, 2022, ELECTRON MARK, V32, P1187, DOI 10.1007/s12525-022-00525-3 Sun C, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P380 Sushil M., 2018, P 2018 EMNLP WORKSH, P82 Szczepanski M, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-03100-6 Tenney I, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P4593 van Aken B, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1823, DOI 10.1145/3357384.3358028 Vilone G, 2021, FRONT ARTIF INTELL, V4, DOI 10.3389/frai.2021.717899 Wang Alex, 2019, INT C LEARN REPR ICL Xu H, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P2324 Xu SZ, 2020, ADV INTELL SYST COMP, V1130, P270, DOI 10.1007/978-3-030-39442-4_21 Yan H., 2022, PREPRINT, DOI DOI 10.48550/ARXIV.2202.09792 Yang Y, 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2006.08097 Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 Young T, 2018, IEEE COMPUT INTELL M, V13, P55, DOI 10.1109/MCI.2018.2840738 Zafar M. B., 2021, PREPRINT, DOI DOI 10.48550/ARXIV.2112.12444 Zhang R., 2020, PREPRINT, DOI DOI 10.48550/ARXIV.2002.01861 NR 73 TC 2 Z9 2 U1 15 U2 45 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD DEC PY 2022 VL 32 IS 4 BP 2123 EP 2138 DI 10.1007/s12525-022-00612-5 EA DEC 2022 PG 16 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 8P0YF UT WOS:000898635000001 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Miralles-Pechuán, L Ponce, H Martínez-Villaseñor, L AF Miralles-Pechuan, Luis Ponce, Hiram Martinez-Villasenor, Lourdes TI A novel methodology for optimizing display advertising campaigns using genetic algorithms SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Display advertising campaigns; Direct response; Optimization; Genetic algorithms; Micro-targeting; Machine learning ID OPTIMIZATION; ECONOMICS; INTERNET; MEDIA AB Online advertising campaigns have attracted the attention of many advertisers willing to promote their business on the Internet. One of the main problems faced by advertisers, especially by those who have little experience in Internet advertising, is configuring their campaigns in an efficient way. To configure a campaign properly it is required to select the appropriate target, so it is guaranteed a high acceptance of users to adverts. It is also required that the number of visits that satisfy the configuration requirements is high enough to cover the advertisers' campaigns. Thus, this paper presents a novel methodology for optimizing the micro-targeting technique in direct response display advertising campaigns by using genetic algorithms as the basis optimization model and a machine-learning based click-through rate (CTR) model. We implement our methodology to optimize display advertising campaigns on mobile devices using a real dataset. Results show that our methodology is feasible to optimize the campaigns by selecting the set of the best features required. Also, customization of the advertising campaign selecting some features by an advertiser, e.g. applying micro-targeting, can be optimized efficiently. (C) 2017 Elsevier B.V. All rights reserved. C1 [Miralles-Pechuan, Luis] Univ Coll Dublin, Ctr Appl Data Analyt Res CeADAR, Dublin 4, Ireland. [Ponce, Hiram; Martinez-Villasenor, Lourdes] Univ Panamericana, Fac Ingn, Augusto Rodin 498, Ciudad De Mexico 03920, Mexico. C3 University College Dublin RP Ponce, H (autor correspondiente), Univ Panamericana, Fac Ingn, Augusto Rodin 498, Ciudad De Mexico 03920, Mexico. EM luis.miralles@ucd.ie; hponce@up.edu.mx; lmartine@up.edu.mx RI Ponce, Hiram/K-7593-2019; Miralles, Luis/O-2472-2016; Martinez-Villasenor, Lourdes/N-7607-2018 OI Ponce, Hiram/0000-0002-6559-7501; Martinez-Villasenor, Lourdes/0000-0002-9038-7821 CR Aksakalli V, 2012, ELECTRON COMMER R A, V11, P229, DOI 10.1016/j.elerap.2011.11.002 Aronowich M., 2014, US Patent App, Patent No. [14/314,151, 14314151] Balseiro SR, 2014, MANAGE SCI, V60, P2886, DOI 10.1287/mnsc.2014.2017 Chapelle Olivier, 2014, ACM Transactions on Intelligent Systems and Technology, V5, DOI 10.1145/2532128 Chen G, 2016, IEEE COMMUN SURV TUT, V18, P2124, DOI 10.1109/COMST.2016.2519912 Chin WS, 2015, LECT NOTES ARTIF INT, V9077, P442, DOI 10.1007/978-3-319-18038-0_35 Danaher PJ, 2010, MARKET SCI, V29, P336, DOI 10.1287/mksc.1090.0507 Edelman B, 2007, DECIS SUPPORT SYST, V43, P192, DOI 10.1016/j.dss.2006.08.008 Evans DS, 2009, J ECON PERSPECT, V23, P37, DOI 10.1257/jep.23.3.37 Evans DS, 2008, REV NETW ECON, V7, P359 Goldfarb A, 2014, REV IND ORGAN, V44, P115, DOI 10.1007/s11151-013-9399-3 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 IAB, 2016, INT ADV BUR Lee K, 2013, P 7 INT WORKSH DAT M, P1 Lee K.-C., 2012, P 18 ACM SIGKDD INT Li P., 2011, ADV NEURAL INFORM PR, P2672 Liu Y., 2012, Proc. 5th ACM Int. Conf. Web Search and Data Mining, P473, DOI [10.1145/2124295.2124353, DOI 10.1145/2124295.2124353] Lucier B., 2012, P 21 INT C WORLD WID, P361, DOI [10.1145/2187836.2187886, DOI 10.1145/2187836.2187886] McMahan HB, 2013, 19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), P1222 Miralles-Pechuán L, 2017, SOFT COMPUT, V21, P651, DOI 10.1007/s00500-016-2468-4 Muthukrishnan S, 2007, LECT NOTES COMPUT SC, V4858, P131 Pandey S, 2017, INTERFACES, V47, P195, DOI 10.1287/inte.2017.0886 Perlich C., 2012, P 18 ACM SIGKDD INT, P804 Provost F, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P707 Richardson M., 2007, P 16 INT C WORLD WID, P521, DOI DOI 10.1145/1242572.1242643 Scrucca L, 2013, J STAT SOFTW, V53, P1 Shan LL, 2016, ELECTRON COMMER R A, V16, P30, DOI 10.1016/j.elerap.2016.01.004 Sivadas E, 1998, J BUS RES, V41, P179, DOI 10.1016/S0148-2963(97)00060-X Wilbur KC, 2009, MARKET SCI, V28, P293, DOI 10.1287/mksc.1080.0397 Yuan S., 2013, P 7 INT WORKSH DAT M, P3 NR 30 TC 15 Z9 17 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JAN-FEB PY 2018 VL 27 BP 39 EP 51 DI 10.1016/j.elerap.2017.11.004 PG 13 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA FX8NU UT WOS:000426352300004 DA 2024-03-27 ER PT J AU Krishnan, K Wan, Y AF Krishnan, Kavita Wan, Yun TI The Detection of Fake Reviews in Bestselling Books: Exploration and Findings SO JOURNAL OF ELECTRONIC COMMERCE IN ORGANIZATIONS LA English DT Article DE Clustering; E-Commerce; Manipulation; Neural Network; Online Reviews ID WORD-OF-MOUTH; ONLINE CONSUMER REVIEWS; PRODUCT; SALES; IMPACT; DYNAMICS; TRUST AB This study detected the possible manipulation of reviews for bestseller books. The authors first used clustering analysis to identify the cluster of bestselling books and patterns of manipulated reviews and ratings. They then used an artificial neural network to predict the possibility of review manipulation in bestselling books based on the patterns identified. The prediction outcome has an accuracy rate of 89%. They found that fake or manipulated reviews for bestselling books could be identified by analyzing abnormal rating fluctuations. The findings could help e-commerce platforms identify review manipulations and thereby help customers make prudent purchase decisions. C1 [Krishnan, Kavita] Univ Houston Victoria, Victoria, TX 77901 USA. [Wan, Yun] Univ Houston Victoria, Comp Informat Syst, Victoria, TX USA. C3 University of Houston System; University of Houston Victoria; University of Houston; University of Houston System; University of Houston; University of Houston Victoria RP Krishnan, K (autor correspondiente), Univ Houston Victoria, Victoria, TX 77901 USA. RI Wan, Yun/A-2531-2008; Wan, Chuyun/JXM-1785-2024 OI Wan, Yun/0000-0002-9038-5607; CR Anderson E.W., 1998, J SERVICE RES, V1, P5, DOI DOI 10.1177/109467059800100102 [Anonymous], 2012, International Journal of Emerging Technology and Advanced Engineering [Anonymous], 2013, 2013 IEEE JORD C APP, DOI DOI 10.1109/AEECT.2013.6716442 ARNDT J, 1967, J MARKETING RES, V4, P291, DOI 10.1177/002224376700400308 Balan U. M., 2015, 2015 IEEE WORKSH COM, P1, DOI DOI 10.1109/WCI.2015.7495517 Barbado R, 2019, INFORM PROCESS MANAG, V56, P1234, DOI 10.1016/j.ipm.2019.03.002 Bazaarvoice, 2014, BAZAARVOICE Bernard H. Russell, 2017, RES METHODS ANTHR QU Bughin Jacques., 2010, McKinsey Quarterly, P113 Chatterjee P, 2001, ADV CONSUM RES, V28, P129 Chen YH, 2007, IND MANAGE DATA SYST, V107, P21, DOI 10.1108/02635570710719034 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Cones JohnW., 1992, FILM FINANCE DISTRIB Dawson J, 2016, WHAT ARE BENEFITS E Dellarocas C., 2006, WISE Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Dematis I, 2018, LECT NOTES COMPUT SC, V10706, P581, DOI 10.1007/978-3-319-73117-9_41 Dhar V, 2009, J INTERACT MARK, V23, P300, DOI 10.1016/j.intmar.2009.07.004 Doh SJ, 2009, CYBERPSYCHOL BEHAV, V12, P193, DOI 10.1089/cpb.2008.0109 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Fayyad U, 1996, COMMUN ACM, V39, P27, DOI 10.1145/240455.240464 Fei Geli., 2013, ICWSM Feng S., 2012, ICWSM, V12, P98 Fontanarava J, 2017, PR INT CONF DATA SC, P658, DOI 10.1109/DSAA.2017.51 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Goddard W.Melville., 2004, RES METHODOLOGY INTR, V2nd Gurun UG, 2012, J FINANC, V67, P561, DOI 10.1111/j.1540-6261.2012.01725.x Hajek P, 2020, NEURAL COMPUT APPL, V32, P17259, DOI 10.1007/s00521-020-04757-2 He RN, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P507, DOI 10.1145/2872427.2883037 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Hu N, 2012, DECIS SUPPORT SYST, V52, P674, DOI 10.1016/j.dss.2011.11.002 Jeff Bezon, 2017, DEFINITION AMAZON BE Jindal Nitin., 2010, Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM '10, P1549 King RA, 2014, J INTERACT MARK, V28, P167, DOI 10.1016/j.intmar.2014.02.001 Kohavi R., 1995, IJCAI-95. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, P1137 Kornish L.J., 2009, Are user reviews systematically manipulated? Kotthoff L, 2019, SPRING SER CHALLENGE, P81, DOI 10.1007/978-3-030-05318-5_4 Lackermair Georg, 2013, Adv. Econ. Bus., V1, P1, DOI [10.13189/aeb.2013.010101, DOI 10.13189/AEB.2013.010101] Laliberte M., 2017, READERS DIGEST Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 Li HY, 2014, IEEE DATA MINING, P899, DOI 10.1109/ICDM.2014.47 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Luca M, 2016, MANAGE SCI, V62, P3412, DOI 10.1287/mnsc.2015.2304 Mayzlin D, 2006, MARKET SCI, V25, P155, DOI 10.1287/mksc.1050.0137 Merriam-Webster, 2017, DEF MAN Morris, 2016, CALCULATE MANY BOOKS Mudambi SM, 2010, MIS QUART, V34, P185 Nielson, 2013, NIELS BOOK RES MEAS Otis Chandler, 2017, DEFINITION BESTSELLE Ott M., 2011, P 49 ANN M ASS COMPU, V1, P309, DOI DOI 10.1145/2567948.2577293 Park DH, 2008, ELECTRON COMMER R A, V7, P386, DOI 10.1016/j.elerap.2007.11.004 Patel N.A., 2018, 2018 4 INT C COMPUTI, P1, DOI DOI 10.1109/CCAA.2018.8777594 SHETH JN, 1971, J ADVERTISING RES, V11, P15 White M. C., 2015, 6 CLUES ONLINE REV M Williams Roger, 2010, TQM Journal, V22, P117, DOI 10.1108/17542731011024246 Wu X, 2017, IEEE INT CONF BIG DA, P494, DOI 10.1109/BigData.2017.8257963 Wu YY, 2020, DECIS SUPPORT SYST, V132, DOI 10.1016/j.dss.2020.113280 Xie S., 2012, P 18 ACM SIGKDD INT, P823, DOI DOI 10.1145/2339530.2339662 Xu Q, 2014, COMPUT HUM BEHAV, V33, P136, DOI 10.1016/j.chb.2014.01.027 Yubo Chen., 2003, Business Week, V7150, P1 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 61 TC 2 Z9 2 U1 0 U2 7 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1539-2937 EI 1539-2929 J9 J ELECTRON COMMER OR JI J. Electron. Commer. Organ. PD OCT-DEC PY 2021 VL 19 IS 4 BP 64 EP 79 DI 10.4018/JECO.2021100104 PG 16 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA UM9LL UT WOS:000693645600004 DA 2024-03-27 ER PT J AU Tung, VWS Au, NM AF Tung, Vincent Wing Sun Au, Norman TI Exploring customer experiences with robotics in hospitality SO INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT LA English DT Article DE Embodiment; Human-robot interaction; Emotions; Experience co-creation; User experience; Consumer reviews ID TOURISM; ANTHROPOMORPHISM; WORD; MANAGEMENT; ANIMACY; SERVICE; TRUST AB Purpose - The purpose of this study is to explore consumer reviews with robotics based on the five dimensions for evaluating user experiences (i.e. embodiment, emotion, human-oriented perception, feeling of security and co-experience), as derived from research in human-robot interactions (HRI). Design/methodology/approach - The study first reviews the five dimensions for evaluating user experiences in HRI and then analyzes user experiences with robotics at four hotels (i.e. Yotel New York, Aloft Cupertino, Henn-na Hotel Japan and Marriott Residence Inn LAX) based on reviews on TripAdvisor, Agoda, Yelp and Booking.com. Findings - The findings highlight the influence of robotic embodiment and human-oriented perceptions on consumer experiences. The findings also suggest that users and robots can co-create novel experiences, with some guests even proactively seeking new opportunities to interact and communicate with robots to develop a certain level of relationship with them. Research limitations/implications - An understanding of user experiences from HRIs can inform future hospitality and tourism research and management. Practical implications - This study contributes to hospitality and tourism management by highlighting current practices with robotics to suggest areas of improvements for enhancing future consumer experiences. Social implications - Consumer experiences will change rapidly as hospitality and tourism management deploys robotics in the future. Originality/value - This is one of the early studies in the field to explore consumer experiences with robotics based on the five dimensions for evaluating user experiences from research in HRI. In doing so, this study provides a number of theoretical and managerial implications relevant for hospitality and tourism research and practice. C1 [Tung, Vincent Wing Sun; Au, Norman] Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China. C3 Hong Kong Polytechnic University RP Tung, VWS (autor correspondiente), Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China. EM vincent.tung@polyu.edu.hk RI Tung, Vincent/K-9179-2019; Tung, Vincent/E-3876-2016; Paleja, Heer/IQT-1538-2023 OI Tung, Vincent/0000-0001-9560-8761; CR Adams B, 2000, IEEE INTELL SYST APP, V15, P25, DOI 10.1109/5254.867909 Alben L., 1996, INTERACTIONS, V3, P11, DOI DOI 10.1145/235008.235010 [Anonymous], ROBOT2013 [Anonymous], 2016, CHECK VELOCIRAPTOR W [Anonymous], INT J SOCIAL ROBOTIC [Anonymous], 2017, J THERM STRESS [Anonymous], INT J CONT HOSPITALI Bainbridge WA, 2011, INT J SOC ROBOT, V3, P41, DOI 10.1007/s12369-010-0082-7 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Battarbee K., 2005, CoDesign, V1, P5, DOI 10.1080/15710880412331289917 Battarbee K., 2003, DPPI 03, P109 Brakus JJ, 2009, J MARKETING, V73, P52, DOI 10.1509/jmkg.73.3.52 Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Broekens J, 2007, LECT NOTES COMPUT SC, V4451, P113 Buchmann A, 2017, CURR ISSUES TOUR, V20, P261, DOI 10.1080/13683500.2014.887058 Buchner R, 2012, ACMIEEE INT CONF HUM, P115 Chathoth PK, 2016, INT J CONTEMP HOSP M, V28, P222, DOI 10.1108/IJCHM-10-2014-0526 Cox C, 2009, J HOSP MARKET MANAG, V18, P743, DOI 10.1080/19368620903235753 Dautenhahn K., 2006, 1st Annual Conference on Human-Robot Interaction, P172 Dautenhahn K, 1998, APPL ARTIF INTELL, V12, P573, DOI 10.1080/088395198117550 de Graaf MMA, 2013, ROBOT AUTON SYST, V61, P1476, DOI 10.1016/j.robot.2013.07.007 Dickinger A, 2017, INT J CONTEMP HOSP M, V29, P803, DOI [10.1108/ijchm-10-2015-0597, 10.1108/IJCHM-10-2015-0597] Dieck MCT, 2017, INT J CONTEMP HOSP M, V29, P530, DOI 10.1108/IJCHM-10-2015-0552 Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3 Eyssel F, 2011, ACMIEEE INT CONF HUM, P61, DOI 10.1145/1957656.1957673 Eyssel F, 2010, 2010 IEEE RO-MAN, P646, DOI 10.1109/ROMAN.2010.5598687 Filieri R, 2015, TOURISM MANAGE, V51, P174, DOI 10.1016/j.tourman.2015.05.007 Fong T, 2003, ROBOT AUTON SYST, V42, P143, DOI 10.1016/S0921-8890(02)00372-X Gibson E.Pick., 2000, ECOLOGICAL APPROACH Golden F., 2014, ROYAL CARIBBEANS QUA Hassenzahl M, 2006, BEHAV INFORM TECHNOL, V25, P91, DOI 10.1080/01449290500330331 Iglesias O, 2011, J BRAND MANAG, V18, P570, DOI 10.1057/bm.2010.58 Inversini A., 2009, Information Technology and Tourism, V11, P221, DOI 10.3727/109830509X12596187863991 Jindai M., 2007, 2007 IEEEASME INT C, P1 Klug M, 2013, IEEE 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS (ICCC 2013), P365, DOI 10.1109/ICCCyb.2013.6617620 Kuo CM, 2017, INT J CONTEMP HOSP M, V29, P1305, DOI [10.1108/ijchm-08-2015-0414, 10.1108/IJCHM-08-2015-0414] Lin YZ, 2015, SMART SENSOR MEAS IN, V15, P321, DOI 10.1007/978-3-319-18191-2_14 Lisetti C.L., 2000, Pragmatics cognition, V8, P185 Luczak H, 2003, ERGONOMICS, V46, P1361, DOI 10.1080/00140130310001610883 McNamara N., 2006, Interactions, V13, P26, DOI 10.1145/1167948.1167972 Mitsui T, 2001, IROS 2001: PROCEEDINGS OF THE 2001 IEEE/RJS INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, P1189, DOI 10.1109/IROS.2001.976330 Murphy J, 2017, EUR J TOUR RES, V15, P104 Nardi B. A., 2000, CSCW 2000. ACM 2000 Conference on Computer Supported Cooperative Work, P79, DOI 10.1145/358916.358975 Niculescu Andreea I., 2014, Mobile Web Information Systems. 11th International Conference (MobiWIS 2014). Proceedings: LNCS 8640, P153, DOI 10.1007/978-3-319-10359-4_13 Nieto Diego, 2014, Ubiquitous Computing and Ambient Intelligence. Personalisation and User Adapted Services. 8th International Conference, UCAmI 2014. Proceedings: LNCS 8867, P21, DOI 10.1007/978-3-319-13102-3_5 Nowak KL, 2003, PRESENCE-TELEOP VIRT, V12, P481, DOI 10.1162/105474603322761289 Okita SY, 2006, INT J HUM ROBOT, V3, P393, DOI 10.1142/S0219843606000795 Pfeifer R, 2007, SCIENCE, V318, P1088, DOI 10.1126/science.1145803 Ritchie JRB, 2011, INT J CONTEMP HOSP M, V23, P419, DOI 10.1108/09596111111129968 Rossi A, 2017, ACMIEEE INT CONF HUM, P375, DOI 10.1145/3029798.3034822 Salem M, 2015, ACMIEEE INT CONF HUM, P141, DOI 10.1145/2696454.2696497 Silvera-Tawil D, 2015, ROBOT AUTON SYST, V63, P230, DOI 10.1016/j.robot.2014.09.008 Steinfeld A., 2006, 1st Annual Conference on Human-Robot Interaction, P33 Stock R.M., 2016, Emotion Transfer from Frontline Social Robots to Human Customers Torres EN, 2016, INT J CONTEMP HOSP M, V28, P2132, DOI 10.1108/IJCHM-02-2015-0065 Tung VWS, 2017, INT J CONTEMP HOSP M, V29, P2498, DOI 10.1108/IJCHM-09-2016-0520 Tung VWS, 2017, J TRAVEL TOUR MARK, V34, P853, DOI 10.1080/10548408.2016.1260521 Tung VWS, 2011, ANN TOURISM RES, V38, P1367, DOI 10.1016/j.annals.2011.03.009 Viglia G, 2016, INT J CONTEMP HOSP M, V28, P2035, DOI 10.1108/IJCHM-05-2015-0238 Wada K, 2004, P IEEE, V92, P1780, DOI 10.1109/JPROC.2004.835378 Weiss Astrid., 2009, AISB2009 P S NEW FRO, V4, P11 Wu MY, 2017, INT J CONTEMP HOSP M, V29, P1096, DOI [10.1108/ijchm-01-2015-0014, 10.1108/IJCHM-01-2015-0014] Yang SB, 2017, INT J CONTEMP HOSP M, V29, P817, DOI [10.1108/ijchm-11-2015-0643, 10.1108/IJCHM-11-2015-0643] Yeoman I., 2012, 2050 Tomorrow's Tourism Young JE, 2011, INT J SOC ROBOT, V3, P53, DOI 10.1007/s12369-010-0081-8 Yu YX, 2017, INT J CONTEMP HOSP M, V29, P1340, DOI [10.1108/IJCHM-07-2015-0371, 10.1108/ijchm-07-2015-0371] Zanbaka C., 2006, Conference on Human Factors in Computing Systems. CHI2006, P1153 Ziemke T, 2014, FRONT ARTIF INTEL AP, V273, P49, DOI 10.3233/978-1-61499-480-0-49 NR 68 TC 215 Z9 230 U1 54 U2 317 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-6119 EI 1757-1049 J9 INT J CONTEMP HOSP M JI Int. J. Contemp. Hosp. Manag. PY 2018 VL 30 IS 7 BP 2680 EP 2697 DI 10.1108/IJCHM-06-2017-0322 PG 18 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA GT1NS UT WOS:000444238200006 HC Y HP N DA 2024-03-27 ER PT J AU Arora, M Prakash, A Mittal, A Singh, S AF Arora, Meenal Prakash, Anshika Mittal, Amit Singh, Swati TI Examining the slow acceptance of HR analytics in the Indian engineering and construction industry: a SEM-ANN-based approach SO ENGINEERING CONSTRUCTION AND ARCHITECTURAL MANAGEMENT LA English DT Article; Early Access DE Technology adoption; HR analytics; Structural equation modeling (SEM); Data availability; Quantitative self-efficacy; Artificial neural network (ANN) ID INFORMATION-TECHNOLOGY; ADOPTION; ISSUES AB PurposeDespite the extensive benefits of human resource (HR) analytics, the intention to adopt such technology is still a matter of concern in the engineering and construction sectors. This study aims to examine the slow adoption of HR analytics among HR professionals in the engineering and construction sector.Design/methodology/approachA cross-sectional online survey including 376 HR executives working in Indian-based engineering and construction firms was conducted. Hierarchal regression, structural equation modeling and artificial neural networks (ANN) were applied to evaluate the relative importance of HR analytics predictors.FindingsThe results reveal that hedonic motivation (HM), data availability (DA) and performance expectancy (PE) influence the behavioral intention (BI) to use HR analytics, whereas effort expectancy (EE), quantitative self-efficacy (QSE), habit (HA) and social influence (SI) act as barriers to its adoption. Moreover, PE was the most influential predictor of BI.Practical implicationsBased on the findings of this study, engineering and construction industry managers can formulate strategies for the implementation and promotion of HR analytics to enhance organizational performance.Originality/valueThis study draws attention to evidence-based decision-making, emphasizing barriers to the adoption of HR analytics. This study also emphasizes the concept of DA and QSE to enhance adoption among HR professionals, specifically in the engineering and construction industry. C1 [Arora, Meenal] New Delhi Inst Management, New Delhi, India. [Prakash, Anshika] KR Mangalam Univ, Sch Management & Commerce, Gurugram, India. [Mittal, Amit] Chitkara Univ, Chitkara Business Sch, Rajpura, India. [Singh, Swati] Bhavans Usha & Lakshmi Mittal Inst Management BULM, New Delhi, India. C3 Chitkara University, Punjab RP Mittal, A (autor correspondiente), Chitkara Univ, Chitkara Business Sch, Rajpura, India. EM meenal.bajaj20@gmail.com; anshika.prakash@krmangalam.edu.in; amit.mittal@chitkara.edu.in; swatisingh@bulmim.ac.in RI MITTAL, AMIT/AAD-2112-2019; Singh, Swati/JWQ-0018-2024; Arora, Meenal/ADH-7267-2022 OI MITTAL, AMIT/0000-0002-1191-4620; Singh, Swati/0000-0002-3131-5203; Arora, Meenal/0000-0001-7670-6948; Prakash, Dr. Anshika/0000-0001-9052-7188 CR Ahmed V, 2018, ENG CONSTR ARCHIT MA, V25, P1436, DOI 10.1108/ECAM-01-2018-0035 Ajzen I., 2000, EUR REV SOC PSYCHOL, P1, DOI [https://doi.org/10.1080/14792779943000116, DOI 10.1080/14792779943000116, 10.1080/14792779943000116] Al-Ajlouni M.I., 2020, J INF KNOWL MANAG, V18, P1 Anouze ALM, 2020, INT J BANK MARK, V38, P86, DOI 10.1108/IJBM-10-2018-0271 Aoun C., 2010, P 21 AUSTR C INF SYS Arora M, 2021, 2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), DOI 10.1109/DASA53625.2021.9682325 BANDURA A, 1977, PSYCHOL REV, V84, P191, DOI 10.1037/0033-295X.84.2.191 Bassi L., 2011, PeopleStrategy, V34/2, P14 Beath C, 2012, MIT SLOAN MANAGE REV, V53, P18 Brown K., 2015, 5 BAD HABITS HR NEED Chen XC, 2022, ENG CONSTR ARCHIT MA, V29, P3181, DOI 10.1108/ECAM-02-2021-0172 Chen YL, 2019, ENG CONSTR ARCHIT MA, V26, P1878, DOI 10.1108/ECAM-11-2017-0246 Chin WW, 1998, MIS QUART, V22, pVII Deloitte, 2021, 2022 ENG CONSTR IND Deloitte, 2019, 2019 DEL GLOB HUM CA Dubey R, 2019, TECHNOL FORECAST SOC, V144, P534, DOI 10.1016/j.techfore.2017.06.020 El Idrissi T, 2019, INT J INFORM MANAGE, V46, P263, DOI 10.1016/j.ijinfomgt.2018.09.011 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Fernandez V, 2021, COMPET REV, V31, P162, DOI 10.1108/CR-12-2019-0163 Fishbein M., 1975, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gleeds India I&A, 2022, IND CONSTR COSTS BIA GUADAGNOLI E, 1988, PSYCHOL BULL, V103, P265, DOI 10.1037/0033-2909.103.2.265 Hair J.F., 2009, Multivariate data analysis Haykin S., 2009, Neural Networks and Learning Machines, V3rd Hernández B, 2008, TECHNOVATION, V28, P112, DOI 10.1016/j.technovation.2007.11.002 Hew TS, 2016, IND MANAGE DATA SYST, V116, P1557, DOI 10.1108/IMDS-11-2015-0475 Hooper D., 2008, Electron J Bus Res Methods, V6, P53, DOI [DOI 10.21427/D7CF7R, 10.21427/D7CF7R] IBEF, 2022, INFR IND REP James G., 2013, SPRINGER TEXTS STAT Johnston A.C., 2006, THESIS Johnston AC, 2010, MIS QUART, V34, P549 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 KPMG, 2019, The Future of HR 2019: In the Know or in the No Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Lu YS, 2022, ENG CONSTR ARCHIT MA, V29, P3574, DOI 10.1108/ECAM-01-2021-0005 Ma GF, 2022, ENG CONSTR ARCHIT MA, V29, P3948, DOI 10.1108/ECAM-05-2021-0456 MacKenzie SB, 2011, MIS QUART, V35, P293 Manzoor B, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18116135 Marler JH, 2017, INT J HUM RESOUR MAN, V28, P3, DOI 10.1080/09585192.2016.1244699 McCartney S, 2022, MANAGE DECIS, V60, P25, DOI 10.1108/MD-12-2020-1581 Okoro CS, 2023, ENG CONSTR ARCHIT MA, V30, P2645, DOI 10.1108/ECAM-06-2021-0476 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 OrgVue, 2019, MAK PEOPL COUNT 2019 Ozgen K., 2008, Kastamonu Education Journal, V16, P517 Ozgen K., 2013, Journal of International Education Research, V9, P305 Qamar Y, 2022, PERS REV, V51, P251, DOI 10.1108/PR-04-2020-0247 Raman A., 2013, International Education Studies, V6, P157, DOI DOI 10.5539/IES.V6N7P157 Sang LH, 2021, ENG CONSTR ARCHIT MA, V28, P706, DOI 10.1108/ECAM-02-2020-0135 Sangwan S., 2022, INT J ELECT MARKETIN, V13, P391 Saxena Mansi, 2021, Int J Inf Technol, V13, P1649, DOI 10.1007/s41870-021-00677-z Sharma SK, 2019, INT J INFORM MANAGE, V44, P65, DOI 10.1016/j.ijinfomgt.2018.09.013 Spector PE, 2019, J MANAGE, V45, P855, DOI 10.1177/0149206316687295 Spector PE, 2010, ORGAN RES METHODS, V13, P403, DOI 10.1177/1094428110366303 Tabachnick B. G., 2007, Using Multivariate Statistics, V5, P481, DOI DOI 10.1037/022267 Tan GWH, 2014, TELEMAT INFORM, V31, P292, DOI 10.1016/j.tele.2013.06.002 Tandon U, 2022, ENG CONSTR ARCHIT MA, V29, P4287, DOI 10.1108/ECAM-05-2021-0376 Tarhini A, 2017, J INT EDUC BUS, V10, P164, DOI 10.1108/JIEB-09-2016-0032 Teo AC, 2015, IND MANAGE DATA SYST, V115, P311, DOI 10.1108/IMDS-08-2014-0231 Uddin MA, 2020, EUR J INNOV MANAG, V23, P877, DOI 10.1108/EJIM-06-2019-0168 Uluskan M, 2023, TQM J, V35, P1048, DOI 10.1108/TQM-01-2022-0001 Vargas R., 2015, THESIS NOVA SO U Vargas R, 2018, INT J HUM RESOUR MAN, V29, P3046, DOI 10.1080/09585192.2018.1446181 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Watson Willis Towers, 2018, STATE TALENT ANAL IN Williams LJ, 2009, ACAD MANAG ANN, V3, P543, DOI 10.1080/19416520903065683 NR 68 TC 2 Z9 2 U1 12 U2 77 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0969-9988 EI 1365-232X J9 ENG CONSTR ARCHIT MA JI Eng. Constr. Archit. Manag. PD 2022 DEC 22 PY 2022 DI 10.1108/ECAM-09-2021-0795 EA DEC 2022 PG 21 WC Engineering, Industrial; Engineering, Civil; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Engineering; Business & Economics GA 7E1VU UT WOS:000900965600001 DA 2024-03-27 ER PT J AU Lovlie, AS AF Lovlie, Anders Sundnes TI CONSTRUCTIVE COMMENTS? Designing an online debate system for the Danish Broadcasting Corporation SO JOURNALISM PRACTICE LA English DT Article DE Constructive journalism; design; human-computer interaction; interaction design; media design; online comments; participatory journalism; user experience ID NEWSPAPER WEBSITES; NEWS; DELIBERATION; INCIVILITY; PATTERNS AB This article brings together two strands of research that have the potential to inform the development of constructive forms of journalism: online comments and media design. Through a threeyear-long case study of the development of new formats for online comments on the website of the Danish Broadcasting Corporation, I explore the challenges encountered from two perspectives: the design features of the commenting system and the design process. While the broadcaster has emphasized developing features for strengthening editorial control, user engagement has faltered. A lack of attention to users in the design process seems to have contributed to the problems. These findings have implications for constructive journalism's ambitions to facilitate audience engagement, in particular when tied to online platforms. C1 [Lovlie, Anders Sundnes] IT Univ Copenhagen, Digital Design Dept, Copenhagen, Denmark. C3 IT University Copenhagen RP Lovlie, AS (autor correspondiente), IT Univ Copenhagen, Digital Design Dept, Copenhagen, Denmark. EM asun@itu.dk CR Ahva Laura, 2017, C NORDM 2017 MED REA [Anonymous], 2014, CONSTRUCTIVE NEWS [Anonymous], 2013, NORSK MEDIETIDSSKRIF Bardzell J., 2015, SYNTHESIS LECT HUMAN, V8, P1, DOI [DOI 10.2200/S00664ED1V01Y201508HCI031, 10.2200/S00664ED1V01Y201508HCI031] Beyer Hugh, 2010, USER CTR AGILE METHO Birchall C., 2015, HDB DIGITAL POLITICS, P264, DOI DOI 10.4337/9781782548768.00025 Bodker S, 2006, P 4 NORDIC C HUMAN C, P1, DOI [DOI 10.1145/1182475.1182476, 10.1145/1182475.1182476] Bolter Jay David, 2013, Interactions, V20, P36, DOI 10.1145/2405716.2405726 Bolter JD, 2003, ELOQUENT IMAGES: WORD AND IMAGE IN THE AGE OF NEW MEDIA, P19 Boyd D, 2012, COMMUN ACM, V55, P29, DOI 10.1145/2240236.2240247 Canter L, 2013, JOURNAL PRACT, V7, P604, DOI 10.1080/17512786.2012.740172 Carlson C.R., 2006, INNOVATION 5 DISCIPL Chung DS, 2008, J COMPUT-MEDIAT COMM, V13, P658, DOI 10.1111/j.1083-6101.2008.00414.x Coe K, 2014, J COMMUN, V64, P658, DOI 10.1111/jcom.12104 Coleman R., 2007, Journalism, V8, P25, DOI DOI 10.1177/1464884907072418 Dahlgren P, 2005, POLIT COMMUN, V22, P147, DOI 10.1080/10584600590933160 Davies Todd., 2009, ONLINE DELIBERATION Domingo D., 2011, Participatory journalism: Guarding open gates at online newspapers, P76 Domingo David., 2011, Participatory Journalism, P76 Elgesem Dag, 2016, JOURNALISM REEXAMINE, P141 Fagerjord A., 2015, J MEDIA INNOVATIONS, V2, P107 Figenschou T., 2016, JOURNAL PRACT, P1, DOI DOI 10.1080/17512786.2016.1220258 Harrison S., 2007, ALT CHI SESS SIGCHI, P1, DOI DOI 10.1234/12345678 Hartson R., 2012, The UX Book: Process and guidelines for ensuring a quality user experience Hedemann Ole, 2010, IDEUTVIKLING MEDIEHU Karasti Helena., 2004, P 8 C PARTICIPATORY, V1, P20, DOI DOI 10.1145/1011870.1011874 Karlsen J, 2017, DIGIT CREAT, V28, P224, DOI 10.1080/14626268.2017.1351992 Kies R, 2010, PROMISES AND LIMITS OF WEB-DELIBERATION, P1, DOI 10.1057/9780230106376 Koskinen I., 2006, NORDICOM REV, V27, P35 Krippendorf K., 2016, The international encyclopedia of communication theory and philosophy, P1, DOI [10.1002/9781118766804.wbiect264, DOI 10.1002/9781118766804.WBIECT264] Krippendorff K., 2006, The semantic turn: A new foundation for design Larsson AO, 2011, NEW MEDIA SOC, V13, P1180, DOI 10.1177/1461444811401254 Le Dantec CA, 2013, SOC STUD SCI, V43, P241, DOI 10.1177/0306312712471581 Lee EJ, 2017, HUM COMMUN RES, V43, P436, DOI 10.1111/hcre.12123 Lovlie AS, 2018, JOURNAL PRACT, V12, P362, DOI 10.1080/17512786.2017.1293490 Lovlie AS, 2011, INT J ARTS TECHNOL, V4, P234, DOI 10.1504/IJART.2011.041479 Lovlie Anders Sundnes, 2011, THESIS Lovlie Anders Sundnes, 2016, J MEDIA INNOVATIONS, V3, DOI [10.5617/jmi.v3i2.2486, DOI 10.5617/JMI.V3I2.2486] Lowgren J., 2013, Challenges, V4, P86, DOI [10.3390/challe4010086, DOI 10.3390/CHALLE4010086] Lowgren J., 2013, Collaborative Media: Production, Consumption, and Design Interventions Lunenfeld P, 2004, NEW MEDIA SOC, V6, P65, DOI 10.1177/1461444804039909 McCarthy J., 2004, TECHNOLOGY EXPERIENC, DOI [10.1145/1015530.1015549, DOI 10.1145/1015530.1015549] Mclntyre Karen Elizabeth, 2015, THESIS Morrison Andrew., 2011, INSIDE MULTIMODAL CO Muddiman A, 2017, J COMMUN, V67, P586, DOI 10.1111/jcom.12312 Nyre L, 2012, CONVERGENCE-US, V18, P297, DOI 10.1177/1354856512441151 OIE KV, 2015, J MEDIA PRACTICE, V16, P245, DOI DOI 10.1080/14682753.2015.1116763 Reich Zvi, 2011, PARTICIPATORY JOURNA, P2424 Rogers Y., 2011, INTERACTION DESIGN H Rowe I, 2015, J BROADCAST ELECTRON, V59, P539, DOI 10.1080/08838151.2015.1093482 Ruiz C, 2011, INT J PRESS/POLIT, V16, P463, DOI 10.1177/1940161211415849 Santana AD, 2014, JOURNAL PRACT, V8, P18, DOI 10.1080/17512786.2013.813194 Schwaber K., 2002, AGILE SOFTWARE DEV S Simon H. A., 2019, The Sciences of the Artificial Skjulstad Synne, 2008, THESIS Sobieraj S, 2011, POLIT COMMUN, V28, P19, DOI 10.1080/10584609.2010.542360 Springer N, 2015, INFORM COMMUN SOC, V18, P798, DOI 10.1080/1369118X.2014.997268 Stroud NJ, 2015, J COMPUT-MEDIAT COMM, V20, P188, DOI 10.1111/jcc4.12104 Sunstein Cass., 2017, #Republic: Divided democracy in the age of social media The Coral Project, RESEARCH Toepfl F, 2018, NEW MEDIA SOC, V20, P2844, DOI 10.1177/1461444817733710 Wright S, 2007, NEW MEDIA SOC, V9, P849, DOI 10.1177/1461444807081230 Ziegele M, 2018, INFORM COMMUN SOC, V21, P1419, DOI 10.1080/1369118X.2017.1324505 NR 63 TC 6 Z9 6 U1 0 U2 19 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1751-2786 EI 1751-2794 J9 JOURNAL PRACT JI Journal. Pract. PY 2018 VL 12 IS 6 SI SI BP 781 EP 798 DI 10.1080/17512786.2018.1473042 PG 18 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA GM6OQ UT WOS:000438290800009 DA 2024-03-27 ER PT J AU Lin, CH Lin, IC Roan, JS AF Lin, Chi-Hung Lin, I. Chun Roan, Jinsheng TI To evaluate interface usability of an e-course platform: User perspective SO AFRICAN JOURNAL OF BUSINESS MANAGEMENT LA English DT Article DE System usability; usability goals; user experience goals; human-computer interaction; user perspective ID E-LEARNING SYSTEMS; PSYCHOMETRIC EVALUATION; PERCEIVED USEFULNESS; TECHNOLOGY; INFORMATION; ACCEPTANCE; EDUCATION; CONTEXT; EASE; TASK AB As a core term in Human-Computer Interaction (HCI), the analysis of system usability continues to be one of priority focuses of HCI researchers. Through users' evaluation, a system's inherent problems can be learned and its design be improved. This research was conducted to obtain the overall evaluation from the participants over the e-Course platform based on the data gathered from questionnaires, interviews and scenario simulations. This study recruited five participants, three of whom were professors and the rest were teacher's assistant. We used nine constructs to evaluate interface usability of the system. The research results showed that the average scores of three scenarios from high to low were S1a, S1b and S2. In terms of usability goals, efficiency, learn ability, utility, effectiveness, their average score is high than 3. In terms of user's experiences goals, the average score is less then 3, but near to 3. Overall, the interface of e-Course platform is ease to use and acceptable. Finally, we organized interview results and provided nine suggestions for a director of computer department and system designer. These suggestions can let them to know about the priority of system improvement, and provide a useful reference for practice. C1 [Lin, I. Chun] Hung Kuang Univ, Dept Comp Sci & Informat Management, Shalu 43302, Taichung, Taiwan. [Lin, Chi-Hung; Roan, Jinsheng] Natl Chung Cheng Univ, Dept Informat Management, Taipei, Taiwan. C3 National Chung Cheng University RP Lin, IC (autor correspondiente), Hung Kuang Univ, Dept Comp Sci & Informat Management, Shalu 43302, Taichung, Taiwan. EM caviar_lin@hk.edu.tw CR Agarwal R, 2002, INFORM SYST RES, V13, P168, DOI 10.1287/isre.13.2.168.84 Alam GM, 2010, AFR J BUS MANAGE, V4, P534 Alam GM, 2009, SCI RES ESSAYS, V4, P1260 [Anonymous], P HUM FACT COMP SYST ARDITO M, 2004, P WORK C ADV VIS INT, P25 Carroll JM, 2000, INTERACT COMPUT, V13, P41, DOI 10.1016/S0953-5438(00)00022-9 Chang HH, 2010, INT J HUM-COMPUT ST, V68, P69, DOI 10.1016/j.ijhcs.2009.09.010 Chen TY, 2010, INT J HUM-COMPUT ST, V68, P138, DOI 10.1016/j.ijhcs.2009.10.003 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Hashim F, 2010, INT J PHYS SCI, V5, P383 Henderson R, 2003, INT J HUM-COMPUT ST, V59, P383, DOI 10.1016/S1071-5819(03)00079-X Hiltz SR, 2002, COMMUN ACM, V45, P56, DOI 10.1145/505248.505273 Hornbæk K, 2006, INT J HUM-COMPUT ST, V64, P79, DOI 10.1016/j.ijhcs.2005.06.002 Kihlstrom J.F., 2004, The Sage handbook of methods in social psychology, P195 Kim DJ, 2009, INT J HUM-COMPUT INT, V25, P134, DOI 10.1080/10447310802629561 Kopcha TJ, 2007, ETR&D-EDUC TECH RES, V55, P627, DOI 10.1007/s11423-006-9011-8 Lewis JR, 2002, INT J HUM-COMPUT INT, V14, P463, DOI 10.1080/10447318.2002.9669130 LEWIS JR, 1995, INT J HUM-COMPUT INT, V7, P57, DOI 10.1080/10447319509526110 MINE J, 2001, P HUM INT S, P413 Mullens J., 1999, VALIDATING ITEM RESP Nielsen J., 1994, Heuristic evaluation Norman D., 2004, EMOTIONAL DESIGN WHY Norman D. A., 1993, THINGS MAKE US SMART Norman D. A., 2013, DESIGN EVERYDAY THIN, DOI DOI 10.15358/9783800648108 Ruiz MDP, 2008, COMPUT STAND INTER, V30, P62, DOI 10.1016/j.csi.2007.07.006 Preece J., 2002, INTERACTION DESIGN Rubin J., 1994, HDB USABILITY TESTIN SALEEN JJ, 2007, J AM MED INFORM ASSN, V14, P684 Wang YS, 2007, COMPUT HUM BEHAV, V23, P1792, DOI 10.1016/j.chb.2005.10.006 Zhang DS, 2006, INFORM MANAGE-AMSTER, V43, P15, DOI 10.1016/j.im.2005.01.004 NR 30 TC 1 Z9 5 U1 2 U2 6 PU ACADEMIC JOURNALS PI VICTORIA ISLAND PA P O BOX 5170-00200 NAIROBI, VICTORIA ISLAND, LAGOS 73023, NIGERIA SN 1993-8233 J9 AFR J BUS MANAGE JI Afr. J. Bus. Manag. PD JAN 4 PY 2011 VL 5 IS 1 BP 196 EP 202 PG 7 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 713GY UT WOS:000286724700023 DA 2024-03-27 ER PT J AU Sharma, SK Chakraborti, S Jha, T AF Sharma, Satyendra Kumar Chakraborti, Swapnajit Jha, Tanaya TI Analysis of book sales prediction at Amazon marketplace in India: a machine learning approach SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article DE E-commerce; Sentiment analysis; Neural network; Decision tree; Regression analysis; Predictive model ID WORD-OF-MOUTH; ONLINE CONSUMER REVIEWS; PRODUCT REVIEWS; PROMOTION; IMPACT; DETERMINANTS; STRATEGIES; DISCOUNTS AB Prediction of customer demand is an important part of Supply Chain Management, as it helps to avoid over or under production and reduces delivery time. In the context of e-commerce, accurate prediction of customer demand, typically captured by sales volume, requires careful analysis of multiple factors, namely, type of product, country of purchase, price, discount rate, free delivery option, online review sentiment etc., and their interactions. For e-tailers such as, Amazon, this kind of prediction capability is also extremely important in order to manage the supply chain efficiently as well as ensure customer satisfaction. This study investigates the efficacy of various modeling techniques, namely, regression analysis, decision-tree analysis and artificial neural network, for predicting the sales of books at amazon.in, using various relevant factors and their interactions as predictor variables. Sentiment analysis is carried out to measure the polarity of online reviews, which are included as predictors in these models. The importance of each independent predictor variable, such as discount rate, review sentiment etc., is analyzed based on the outcome of each model to determine top significant predictors which can be controlled by the marketer to influence sales. In terms of accuracy of prediction, the artificial neural network model is found to perform better than the decision-tree based model. In addition, the regression analysis, with and without sentiment and interaction factors, generates comparable results. The comparative analysis of these models reveals several significant findings. Firstly, all three models confirm that review volume is the most important and significant predictor of sales of books at amazon.in. Secondly, discount rate, discount amount and average ratings have minimal or insignificant effect on sales prediction. Thirdly, both negative sentiment and positive sentiment of the reviews are individually significant predictors as per regression and decision-tree model, but they are not significant at all as per neural network model. This observation from the neural network model is contrary to the extant research which claims that both negative and positive sentiment are significant with the former having more influence in predicting sales. Finally, the interaction effects of review volume with negative and positive sentiment are also found to be significant predictors as per all three models. Hence, overall, out of various factors used for sales prediction of books, review volume, negative sentiment, positive sentiment and their interactions are found to be the most significant ones across all models. The results of this study can be utilized by online sellers to accurately predict the sales volume by adjusting these significant factors, thereby managing the supply chain effectively. C1 [Sharma, Satyendra Kumar] Birla Inst Technol & Sci BITS Pilani, Dept Management, Pilani 333031, Rajasthan, India. [Chakraborti, Swapnajit] SPJIMR, Informat Management, Mumbai, Maharashtra, India. [Jha, Tanaya] Birla Inst Technol & Sci BITS Pilani, Dept Comp Sci, Pilani 333031, Rajasthan, India. C3 Birla Institute of Technology & Science Pilani (BITS Pilani); S. P. Jain Institute of Management & Research (SPJIMR); Birla Institute of Technology & Science Pilani (BITS Pilani) RP Chakraborti, S (autor correspondiente), SPJIMR, Informat Management, Mumbai, Maharashtra, India. EM satyendrasharma@pilani.bits-pilan.ac.in; swapnajit.chakraborti@spjimr.org; f2013304@pilani.bits-pilan.ac.in RI Chakraborty, Swapnajit/AAU-3478-2021 OI Chakraborty, Swapnajit/0000-0002-5127-3733 CR [Anonymous], 2017, NATURAL LANGUAGE PRO [Anonymous], 2012, SOCIAL MEDIA REPORT [Anonymous], 2011, ONLINE INFLUENCE TRE Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Beautiful Soup, 2017, BEAUTIFUL SOUP DOCUM Chen SFS, 1998, J RETAILING, V74, P353, DOI 10.1016/S0022-4359(99)80100-6 Cheung CMK, 2012, DECIS SUPPORT SYST, V54, P461, DOI 10.1016/j.dss.2012.06.008 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chong AYL, 2017, INT J PROD RES, V55, P5142, DOI 10.1080/00207543.2015.1066519 Chong AYL, 2016, INT J OPER PROD MAN, V36, P358, DOI 10.1108/IJOPM-03-2015-0151 Chong AYL, 2014, INT J PROD ECON, V154, P48, DOI 10.1016/j.ijpe.2014.04.005 Chong AYL, 2013, EXPERT SYST APPL, V40, P523, DOI 10.1016/j.eswa.2012.07.068 Chong AYL, 2009, INT J PROD ECON, V122, P150, DOI 10.1016/j.ijpe.2009.05.012 Cui G, 2012, INT J ELECTRON COMM, V17, P39, DOI 10.2753/JEC1086-4415170102 Davis Alanah, 2008, Electronic Markets, V18, P130, DOI 10.1080/10196780802044776 DELLAROCAS CN, 2004, SSRN ELECT J Doern RR, 2006, J WORLD BUS, V41, P315, DOI 10.1016/j.jwb.2006.08.001 Drozdenko R, 2005, J PROD BRAND MANAG, V14, P264, DOI 10.1108/10610420510609285 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Faryabi M., 2012, JOUNAL BUSINESS STUD, V4, P197 Floyd K, 2014, J RETAILING, V90, P217, DOI 10.1016/j.jretai.2014.04.004 Gaikar D., 2015, International Journal of Computer Science and Information Technologies, V6, P2303 Gendall P, 2006, J PROD BRAND MANAG, V15, P458, DOI 10.1108/10610420610712847 Ghose A., 2006, P 16 ANN WORKSH INF Gong J, 2015, J RETAILING, V91, P343, DOI 10.1016/j.jretai.2015.02.002 GUPTA S, 1992, J CONSUM RES, V19, P401, DOI 10.1086/209310 Hancock JT, 2008, CSCW: 2008 ACM CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK, CONFERENCE PROCEEDINGS, P295 Hu N, 2012, DECIS SUPPORT SYST, V57, P42 Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Ito TA, 1998, J PERS SOC PSYCHOL, V75, P887, DOI 10.1037/0022-3514.75.4.887 Jain R, 2015, INT J ADV RES COMPUT, V3, P80 Kramer ADI, 2014, P NATL ACAD SCI USA, V111, P8788, DOI 10.1073/pnas.1320040111 Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 Leino J, 2007, RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P137 Li XX, 2010, MIS QUART, V34, P809 LICHTENSTEIN DR, 1990, J MARKETING, V54, P54, DOI 10.2307/1251816 Lu XH, 2013, INFORM SYST RES, V24, P596, DOI 10.1287/isre.1120.0454 Ludwig S, 2013, J MARKETING, V77, P87, DOI 10.1509/jm.11.0560 Marshall R., 2002, Journal of Product Brand Management, V11, P147, DOI DOI 10.1108/10610420210430042 McNeill L, 2013, ASIA PAC J MARKET LO, V25, P48, DOI 10.1108/13555851311290939 Mudambi SM, 2010, MIS QUART, V34, P185 NLTK, NAT LANG TOOLK DOC Pang Bo, 2008, INFORM RETRIEVAL, V2, P1, DOI DOI 10.1561/1500000011 Python Software Foundation, 2017, REQ HTTP HUM Salehan M, 2016, DECIS SUPPORT SYST, V81, P30, DOI 10.1016/j.dss.2015.10.006 Santibanez SF, 2015, CASE STUDY REAL ESTA Schneider MJ, 2016, INT J FORECASTING, V32, P243, DOI 10.1016/j.ijforecast.2015.08.005 Tang TY, 2014, J MARKETING, V78, P41, DOI 10.1509/jm.13.0301 Tsai WC, 2001, J MANAGE, V27, P497, DOI 10.1177/014920630102700406 Xu N, 2017, ELECTRON COMMER R A, V21, P27, DOI 10.1016/j.elerap.2016.12.001 Yang J, 2012, EUR J MARKETING, V46, P1523, DOI 10.1108/03090561211259961 Yao R, 2013, 2013 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC), P396, DOI 10.1109/GrC.2013.6740443 Yu XH, 2012, IEEE T KNOWL DATA EN, V24, P720, DOI 10.1109/TKDE.2010.269 Zhou ZH, 2004, IEEE T KNOWL DATA EN, V16, P770, DOI 10.1109/TKDE.2004.11 Zhou ZH, 2002, ARTIF INTELL, V137, P239, DOI 10.1016/S0004-3702(02)00190-X Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 56 TC 10 Z9 11 U1 2 U2 61 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD DEC PY 2019 VL 17 IS 2-4 BP 261 EP 284 DI 10.1007/s10257-019-00438-3 PG 24 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA JR4UJ UT WOS:000499621600003 DA 2024-03-27 ER PT J AU Yüksel, D AF Yuksel, Dogus TI Investigation of Web-Based Eye-Tracking System Performance under Different Lighting Conditions for Neuromarketing SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE web-based eye tracking; neuromarketing; e-commerce; human computer interaction; lighting conditions ID MOVEMENTS; BEHAVIOR; ATTENTION; LAMPS AB The increasing popularity of neuromarketing has led to the emergence of various measurement methods, such as webcam-based eye-tracking technology. Webcam-based eye-tracking technology is noteworthy not only for its use in laboratories but also for its ability to be applied to participants online in their natural environments through a link. However, the complexity of e-commerce interfaces necessitates high performance in eye-tracking methods. This complexity and the applicability of webcam-based eye-tracking technology in various environments have raised research questions about how its performance changes depending on the type and location of lighting. To answer these questions, experiments were conducted with 30 users in two different experimental environments illuminated by artificial and natural methods, with the lighting from the left, right, and front. Participants were asked to focus on targets located in specially prepared graphics for the experiment. In the heatmaps obtained in the eye-tracking tests, the distance and angular difference between the focal point and the target point were measured using the polar coordinate system. The findings indicate that measurements taken with lighting coming from the center were more efficient in both natural and artificial lighting types and measurements taken under natural lighting performed 24% better than artificial ones. Web camera-based eye-tracking technology is a promising method. However, detailed statistical analyses have demonstrated that for complex interfaces like e-commerce, the position and type of lighting are crucial parameters. C1 [Yuksel, Dogus] OSTIM Tech Univ, Ind Engn Dept, TR-06374 Ankara, Turkiye. C3 Ostim Technical University RP Yüksel, D (autor correspondiente), OSTIM Tech Univ, Ind Engn Dept, TR-06374 Ankara, Turkiye. EM dogus.yuksel@ostimteknik.edu.tr FU Commission of Scientific Research Projects in Ostim Technical University [202216] FX This work was supported by the Commission of Scientific Research Projects in Ostim Technical University. Project Number: 202216. CR Abdrabou Y., 2023, P USABLE SECURITY MI Adams A.L., 2023, Public Serv. Q, V19, P38, DOI [10.1080/15228959.2022.2155756, DOI 10.1080/15228959.2022.2155756] Aldayel M, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10041525 Allopenna PD, 1998, J MEM LANG, V38, P419, DOI 10.1006/jmla.1997.2558 [Anonymous], 2023, Top websites ranking Babcock J.S., 2004, ETRA 2004, P109, DOI DOI 10.1145/968363.968386 Baker J., 1994, J ACAD MARKET SCI, V22, P328, DOI [DOI 10.1177/0092070394224002, 10.1177/0092070394224002] Beach P, 2019, INT J RES METHOD EDU, V42, P485, DOI 10.1080/1743727X.2018.1496415 Bojko A., 2013, Eye Tracking the User Experience: A Practical Guide to Research, P12 Bojko A., 2005, P UPA 2005 C MONTR Q Brugarolas M, 2017, SENSORY AND AROMA MARKETING, P61, DOI 10.3920/978-90-8686-841-4_3 Bulling A, 2010, IEEE PERVAS COMPUT, V9, P8, DOI 10.1109/MPRV.2010.86 Carter BT, 2020, INT J PSYCHOPHYSIOL, V155, P49, DOI 10.1016/j.ijpsycho.2020.05.010 Chang WL, 2010, AFR J BUS MANAGE, V4, P3344 Chapman P., 2002, TRANSPORT RES F-TRAF, V5, P157, DOI DOI 10.1016/S1369-8478(02)00014-1 Cheung YM, 2015, IEEE T HUM-MACH SYST, V45, P419, DOI 10.1109/THMS.2015.2400442 Chua HF, 2005, P NATL ACAD SCI USA, V102, P12629, DOI 10.1073/pnas.0506162102 Colaço R, 2021, TRANSPORT RES REC, V2675, P379, DOI 10.1177/0361198121990672 Dalmaijer E.S., 2014, PeerJ Prepr, V4, P1, DOI [DOI 10.7287/PEERJ.PREPRINTS.141V2, 10.7287/peerj.preprints.585v1, 10. 7287/peerj. preprints. 585v1] Dalmaijer ES, 2014, BEHAV RES METHODS, V46, P913, DOI 10.3758/s13428-013-0422-2 Demangeot C, 2007, INT J RETAIL DISTRIB, V35, P878, DOI 10.1108/09590550710828218 Duchowski AndrewT., 2017, Eye Tracking Methodology: Theory and Practice, P3, DOI DOI 10.1007/978-3-319-57883-5_1 Funke G., 2016, Proc Hum Factors Ergon Soc Annu Meet, P1240, DOI [DOI 10.1177/1541931213601289, 10.1177/1541931213601289] Giraldo-Romero YI, 2021, J THEOR APPL EL COMM, V16, P1165, DOI 10.3390/jtaer16050066 Gómez-Carmona D, 2021, J THEOR APPL EL COMM, V16, P1648, DOI 10.3390/jtaer16050093 Hammou K.A., 2013, Journal of Management Research, V5, P20, DOI [10.5296/jmr.v5i4.4023, DOI 10.5296/JMR.V5I4.4023] Hansen DW, 2005, COMPUT VIS IMAGE UND, V98, P155, DOI 10.1016/j.cviu.2004.07.013 Hoffman J.E., 2016, Attention, P119 Holmqvist K., 2017, Eye tracking: A Comprehensive Guide to Methods, Paradigms and Measures, V2nd ed., P5 Hsiao MH, 2009, TRANSPORT RES E-LOG, V45, P86, DOI 10.1016/j.tre.2008.06.002 Hulten B., 2009, What Is Sensory Marketing?, P1 Jacob RJK, 2003, MIND'S EYE: COGNITIVE AND APPLIED ASPECTS OF EYE MOVEMENT RESEARCH, P573, DOI 10.1016/B978-044451020-4/50031-1 JUST MA, 1980, PSYCHOL REV, V87, P329, DOI 10.1037/0033-295X.87.4.329 Kaufman A. E., 1993, Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality (Cat. No.93TH0585-0), P120, DOI 10.1109/VRAIS.1993.378254 Kauppinen-Räisänen H, 2014, PACKAG TECHNOL SCI, V27, P663, DOI 10.1002/pts.2061 Kiefer P, 2017, SPAT COGN COMPUT, V17, P1, DOI 10.1080/13875868.2016.1254634 King AJ, 2019, COMMUN METHODS MEAS, V13, P149, DOI 10.1080/19312458.2018.1558194 Krishna A, 2012, J CONSUM PSYCHOL, V22, P332, DOI 10.1016/j.jcps.2011.08.003 Kumar JA, 2023, EDUC INF TECHNOL, V28, P7877, DOI 10.1007/s10639-022-11504-8 ledbenchmark, FAQ-Comparision of LED and CFL Light Warm up Times Li C, 2019, TELEMAT INFORM, V44, DOI 10.1016/j.tele.2019.101267 Lin YT, 2013, MULTIMED TOOLS APPL, V65, P543, DOI 10.1007/s11042-012-1202-1 Majaranta P, 2019, STUD NEUROSCI, P971, DOI 10.1007/978-3-030-20085-5_23 Manganari EE, 2009, EUR J MARKETING, V43, P1140, DOI 10.1108/03090560910976401 McDermott SL, 2008, OPT LASER TECHNOL, V40, P487, DOI 10.1016/j.optlastec.2007.07.013 Meissner M, 2019, ORGAN RES METHODS, V22, P590, DOI 10.1177/1094428117744882 Meng CN, 2017, IEEE ACCESS, V5, P19581, DOI 10.1109/ACCESS.2017.2754299 Mielczarski W, 1998, INT C HARMON QUAL PO, P1200, DOI 10.1109/ICHQP.1998.760210 Morin C, 2011, SOCIETY, V48, P131, DOI 10.1007/s12115-010-9408-1 Mormann M, 2020, MARKET LETT, V31, P381, DOI 10.1007/s11002-020-09520-0 Mounica MS, 2019, PROCEEDINGS OF THE 2019 3RD INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2019), P79, DOI [10.1109/iccmc.2019.8819645, 10.1109/ICCMC.2019.8819645] Najjar LJ, 2011, LECT NOTES COMPUT SC, V6772, P292, DOI 10.1007/978-3-642-21669-5_35 Nakayasu H, 2011, J ADV COMPUT INTELL, V15, P1039, DOI 10.20965/jaciii.2011.p1039 Nichifor E, 2021, J THEOR APPL EL COMM, V16, P2319, DOI 10.3390/jtaer16060128 Othman Y, 2020, IEEE INT CONF INF VI, P729, DOI 10.1109/IV51561.2020.00128 Polonio L, 2015, GAME ECON BEHAV, V94, P80, DOI 10.1016/j.geb.2015.09.003 Rayner K, 2009, Q J EXP PSYCHOL, V62, P1457, DOI 10.1080/17470210902816461 ROBINSON DA, 1963, IEEE T BIO-MED ENG, VBM10, P137, DOI 10.1109/TBMEL.1963.4322822 Schifferstein HNJ, 2006, ACTA PSYCHOL, V121, P41, DOI 10.1016/j.actpsy.2005.06.004 Semmelmann K, 2018, BEHAV RES METHODS, V50, P451, DOI 10.3758/s13428-017-0913-7 Singh H., 2012, INT J SCI RES PUBLIC, V2, P1, DOI DOI 10.1371/J0URNAL.P0NE.0029319 Smilek D, 2010, PSYCHOL SCI, V21, P786, DOI 10.1177/0956797610368063 Solnais C, 2013, J ECON PSYCHOL, V36, P68, DOI 10.1016/j.joep.2013.02.011 Spence C, 2014, PSYCHOL MARKET, V31, P472, DOI 10.1002/mar.20709 Takemura K, 2014, IEEE T HUM-MACH SYST, V44, P531, DOI 10.1109/THMS.2014.2318324 tobii, Dark and Bright Pupil Tracking TOPALIS FV, 1993, IEEE T POWER DELIVER, V8, P2038, DOI 10.1109/61.248319 Valenti R, 2012, INT J COMPUT VISION, V98, P324, DOI 10.1007/s11263-011-0511-6 Wade N., 2005, The Moving Tablet of the Eye: The Origins of Modern Eye Movement Research, P14 Wedel M., 2008, Review of marketing research, V4, P123, DOI [10.1108/S1548-6435(2008)0000004009, DOI 10.1108/S1548-6435(2008)0000004009] Wedel M, 2006, FOUND TRENDS MARKET, V1, P231, DOI 10.1561/1700000011 Wiederhold BK, 2020, CYBERPSYCH BEH SOC N, V23, P437, DOI 10.1089/cyber.2020.29188.bkw Xi GL, 2020, TRANSP LETT, V12, P157, DOI 10.1080/19427867.2018.1546797 Yuksel D., 2023, Bus. Econ. Res. J, V14, P433, DOI [10.20409/berj.2023.424, DOI 10.20409/BERJ.2023.424] Yuksel D., 2023, Noro Logo Marka Yonetimi Bakis Acisiyla Logo Oranlarinin Goz Izleme Teknigiyle Incelenmesi, P65 Yuksel D., 2023, Isletme Arastirmalari Derg, V15, P2113 Zhaowei Li, 2021, Journal of Physics: Conference Series, V1802, DOI 10.1088/1742-6596/1802/4/042066 Zurawicki L., 2010, Neuromarketing: Exploring the Brain of the Consumer, P12 NR 78 TC 0 Z9 0 U1 2 U2 2 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD DEC PY 2023 VL 18 IS 4 BP 2092 EP 2106 DI 10.3390/jtaer18040105 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA DF7L3 UT WOS:001130678700001 OA gold DA 2024-03-27 ER PT J AU van Esch, P Black, JS AF van Esch, Patrick Black, J. Stewart TI Artificial Intelligence (AI): Revolutionizing Digital Marketing SO AUSTRALASIAN MARKETING JOURNAL LA English DT Article DE artificial intelligence; digital marketing; AI in digital marketing; marketing; AI in marketing ID WORLD AB Artificial intelligence (AI)-enabled digital marketing is revolutionizing the way organizations create content for campaigns, generate leads, reduce customer acquisition costs, manage customer experiences, market themselves to prospective employees, and convert their reachable consumer base via social media. Real-world examples of organizations who are using AI in digital marketing abound. For example, Red Balloon and Harley Davidson used AI to automate their digital advertising campaigns. However, we are early in the process of both the practical application of AI by firms broadly and by their marketing functions in particular. One could argue that we are even earlier in the research process of conceptualizing, theorizing, and researching the use and impact of AI. Importantly, as with most technologies of significant potential, the application of AI in marketing engenders not just practical considerations but ethical questions as well. The ability of AI to automate activities, that in the past people did, also raises the issue of whether marketing professionals will embrace AI as a means to free them from more mundane tasks to spend time on higher value activities, or will they view AI as a threat to their employment? Given the nascent nature of research on AI at this point, the full capabilities and limitations of AI in marketing are unknown. This special edition takes an important step in illuminating both what we know and what we yet need to research. C1 [van Esch, Patrick] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Black, J. Stewart] INSEAD, San Francisco, CA USA. C3 University System of Georgia; Kennesaw State University RP van Esch, P (autor correspondiente), Kennesaw State Univ, Dept Mkt & Profess Sales, Michael J Coles Coll Business, 560 Parliament Garden Way NW, Kennesaw, GA 30144 USA. EM pvanesch@kennesaw.edu RI van Esch, Patrick/ABE-9472-2021 OI van Esch, Patrick/0000-0002-0541-9340 CR Black, 2020, HARVARD BUS REV Black JS, 2021, BUS HORIZONS, V64, P513, DOI 10.1016/j.bushor.2021.02.015 Black JS, 2020, BUS HORIZONS, V63, P215, DOI 10.1016/j.bushor.2019.12.001 Camilleri M.A., 2018, TRAVEL MARKETING TOU, P69, DOI [10.1007/978-3-319-49849-2, 10.1007/978-3-319-49849-2_4, DOI 10.1007/978-3-319-49849-2_4] Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Cui YY, 2022, EUR J MARKETING, V56, P1650, DOI 10.1108/EJM-02-2020-0122 De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 Feng CM, 2021, AUSTRALAS MARK J, V29, P252, DOI 10.1016/j.ausmj.2020.07.006 Floridi L., 2020, Philosophy & Technology, V33, P1, DOI DOI 10.1007/S13347-020-00396-6 Hanssens D.M., 2020, FUTURE MANAGEMENT AI Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Kietzmann J, 2020, BUS HORIZONS, V63, P135, DOI 10.1016/j.bushor.2019.11.006 Krafft M, 2020, J INTERACT MARK, V51, P1, DOI 10.1016/j.intmar.2020.06.001 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Maeng K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101327 Mogaji E, 2021, AUSTRALAS MARK J, V29, P235, DOI 10.1016/j.ausmj.2020.05.003 Narain K, 2019, J ADV MANAG RES, V16, P698, DOI 10.1108/JAMR-01-2019-0006 Neff G, 2016, INT J COMMUN-US Oosthuizen K, 2021, AUSTRALAS MARK J, V29, P264, DOI 10.1016/j.ausmj.2020.07.007 Paschen J, 2021, AUSTRALAS MARK J, V29, P243, DOI 10.1016/j.ausmj.2020.06.004 Paschen J, 2020, BUS HORIZONS, V63, P403, DOI 10.1016/j.bushor.2020.01.003 Plotkina D, 2016, J RETAIL CONSUM SERV, V29, P1, DOI 10.1016/j.jretconser.2015.11.002 Reinartz W, 2019, INT J RES MARK, V36, P350, DOI 10.1016/j.ijresmar.2018.12.002 Robertson J, 2021, AUSTRALAS MARK J, V29, P215, DOI 10.1177/1839334921999487 Roggeveen AL, 2020, J RETAILING, V96, P299, DOI 10.1016/j.jretai.2020.08.0O1 Sharp M, 2018, J MANUF SYST, V48, P170, DOI 10.1016/j.jmsy.2018.02.004 Steward MD, 2018, J ACAD MARKET SCI, V46, P173, DOI 10.1007/s11747-017-0556-3 Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022 Tong SL, 2020, J ACAD MARKET SCI, V48, P64, DOI 10.1007/s11747-019-00693-3 van Esch P, 2021, AUSTRALAS MARK J, V29, P225, DOI 10.1016/j.ausmj.2020.04.003 van Esch P, 2021, J ADVERTISING, V50, P63, DOI 10.1080/00913367.2020.1832939 van Esch P, 2019, BUS HORIZONS, V62, P729, DOI 10.1016/j.bushor.2019.07.004 van Esch P, 2019, COMPUT HUM BEHAV, V90, P215, DOI 10.1016/j.chb.2018.09.009 Verhoef PC, 2017, J INTERACT MARK, V40, P1, DOI 10.1016/j.intmar.2017.06.001 Whittaker L, 2021, AUSTRALAS MARK J, V29, P204, DOI 10.1177/1839334921999479 Whittaker L, 2020, IT PROF, V22, P90, DOI 10.1109/MITP.2020.2985492 Wilkins Jonathan, 2018, Network Security, V2018, P18, DOI 10.1016/S1353-4858(18)30046-1 Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Xu YZ, 2020, AUSTRALAS MARK J, V28, P189, DOI 10.1016/j.ausmj.2020.03.005 NR 40 TC 13 Z9 14 U1 196 U2 601 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1441-3582 EI 1839-3349 J9 AUSTRALAS MARK J JI Australas. Mark. J. PD AUG PY 2021 VL 29 IS 3 BP 199 EP 203 AR 18393349211037684 DI 10.1177/18393349211037684 EA AUG 2021 PG 5 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA UJ5KG UT WOS:000685076700001 DA 2024-03-27 ER PT J AU Chistyakov, A Soto-Sanfiel, MT Igarashi, T Sakamoto, D Carrabina, J AF Chistyakov, Alexey Soto-Sanfiel, Maria T. Igarashi, Takeo Sakamoto, Daisuke Carrabina, Jordi TI 3D DISPLAY INTERFACES IN E-COMERCE WEB APPLICATIONS: AN EXPLORATORY STUDY SO PROFESIONAL DE LA INFORMACION LA English DT Article DE 3D displays; Usability; Human-computer interaction; Stereoscopic effect; E-commerce; Web; Web applications ID STEREO VISION; USABILITY; VISUALIZATION AB The objective of the present research is to observe to what extent the stereoscopic effect presents a solution for enhancement of user interactions in the Web context. This paper describes an experiment conducted to detect differences in perception between 2D and 3D graphical user interfaces of an e-Commerce web application. The results of the conducted user study among 39 participants indicate significantly higher performance of the 2D interface in terms of efficiency, satisfaction, and, consequently, overall usability. Therefore, for the studied sample, the stereoscopic effect had mostly negative impact on user interactions. C1 [Chistyakov, Alexey] Univ Autonoma Barcelona, Dept Comp Sci, Barcelona, Spain. [Soto-Sanfiel, Maria T.] Univ Autonoma Barcelona, Audiovisual Commun & Advertising Dept, Barcelona, Spain. [Igarashi, Takeo] Univ Tokyo, Dept Comp Sci, Tokyo, Japan. [Sakamoto, Daisuke] Hokkaido Univ, Div Comp Sci & Informat Technol, Sapporo, Hokkaido, Japan. [Carrabina, Jordi] Univ Autonoma Barcelona, Cephis, Escola Engn, Ctr Prototips & Soluc Hardware Software Cephis, Barcelona, Spain. C3 Autonomous University of Barcelona; Autonomous University of Barcelona; University of Tokyo; Hokkaido University; Autonomous University of Barcelona RP Chistyakov, A (autor correspondiente), Univ Autonoma Barcelona, Dept Comp Sci, Barcelona, Spain. EM alexey.chistyakov@e-campus.uab.cat; mariateresa.soto@uab.es; takeo@acm.org; sakamoto@ist.hokudai.ac.jp; jordi.carrabina@uab.cat RI Soto-Sanfiel, María T./L-9833-2014; Igarashi, Takeo/ITT-5921-2023; Sakamoto, Daisuke/AAA-5428-2022; Carrabina, Jordi/K-7916-2014 OI Soto-Sanfiel, María T./0000-0002-1364-8821; Sakamoto, Daisuke/0000-0002-2219-4198; Carrabina, Jordi/0000-0002-9540-8759 FU Spanish government [MEF3\_IRX/SIRX-MMT (TEC2014-59679)]; Catalan government [2014-SGR-01452] FX We are especially grateful to the directorship and staff of the CMP Group that donated their time and facilities for the experimentation. We thank Dr. Jerome C. Foo for assistance with editing of the manuscript. This work was partially done with the support of the Spanish government project MEF3\_IRX/SIRX-MMT (TEC2014-59679) and the Catalan government Grant 2014-SGR-01452. CR [Anonymous], USABILITY ENG [Anonymous], AUSTR C INF SYST HOB [Anonymous], EXTENSIONS STEREOSCO [Anonymous], HUMAN COMPUTER INTER [Anonymous], HUMAN COMPUTER INTER [Anonymous], P 29 ANN ACM S APPL Chistyakov Alexey, 2013, Human-Computer Interaction. 6th Latin American Conference, CLIHC 2013. Proceedings: LNCS 8278, P22, DOI 10.1007/978-3-319-03068-5_5 Chistyakov A, 2016, LECT NOTES COMPUT SC, V10069, P503, DOI 10.1007/978-3-319-48746-5_52 Chistyakov A, 2016, J MED SYST, V40, DOI 10.1007/s10916-016-0616-0 Chittaro L., 2000, Adaptive Hypermedia and Adaptive Web-Based Systems. International Conference, AH 2000. Proceedings (Lecture Notes in Computer Science Vol.1892), P86 Chittaro L., 2002, P 7 INT C 3D WEB TEC, P145 Escobar MM, 2015, COMPUT BIOL MED, V61, P138, DOI 10.1016/j.compbiomed.2015.03.026 Fiorentino M, 2002, INTERNATIONAL SYMPOSIUM ON MIXED AND AUGMENTED REALITY, PROCEEDINGS, P86, DOI 10.1109/ISMAR.2002.1115077 Gediga G, 1999, BEHAV INFORM TECHNOL, V18, P151, DOI 10.1080/014492999119057 Gonzalez-Zuniga Diego, 2013, Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction. 7th International Conference, UCAmI 2013. Proceedings: LNCS 8276, P26, DOI 10.1007/978-3-319-03176-7_4 Hayashi H, 2000, IEEE SYS MAN CYBERN, P1289, DOI 10.1109/ICSMC.2000.886031 Heath MD, 2012, BRIT J NEUROSURG, V26, P662, DOI 10.3109/02688697.2012.672057 Holliman NS, 2011, IEEE T BROADCAST, V57, P362, DOI 10.1109/TBC.2011.2130930 Hornbæk K, 2006, INT J HUM-COMPUT ST, V64, P79, DOI 10.1016/j.ijhcs.2005.06.002 Ilgner J, 2006, PROC SPIE, V6055, DOI 10.1117/12.647591 Johnson A, 2006, IEEE COMPUT GRAPH, V26, P10, DOI 10.1109/MCG.2006.127 Johnston S, 2013, PROC SPIE, V8649, DOI 10.1117/12.2007594 KIRAKOWSKI J, 1993, BRIT J EDUC TECHNOL, V24, P210, DOI 10.1111/j.1467-8535.1993.tb00076.x Kirakowski J, 1998, HUM FAC ERG SOC P, P424, DOI 10.1177/154193129804200405 Kline P., 2013, HDB PSYCHOL TESTING, DOI DOI 10.4324/9781315812274 LEWIS JR, 1995, INT J HUM-COMPUT INT, V7, P57, DOI 10.1080/10447319509526110 McIntire JP, 2014, DISPLAYS, V35, P18, DOI 10.1016/j.displa.2013.10.004 McIntire JP, 2012, PROC SPIE, V8383, DOI 10.1117/12.920017 Murray D, 2000, AUTON ROBOT, V8, P161, DOI 10.1023/A:1008987612352 Murray D, 1997, IEEE INT CONF ROBOT, P1694, DOI 10.1109/ROBOT.1997.614387 Oliveira C., 2000, Workshop on Application of Virtual Reality Technologies for Future Telecommunication Systems, IEEE Globecom, P288 Ortiz S, 2010, COMPUTER, V43, P14, DOI 10.1109/MC.2010.15 Padayachee I., 2010, ISO 9126 external systems quality characteristics, sub-characteristics and domain specific criteria for evaluating e-Learning systems Perakakis E, 2015, IEEE T HUM-MACH SYST, V45, P534, DOI 10.1109/THMS.2015.2401975 Schild Jonas., 2013, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems-CHI '13, page, P169 Schild Jonas., 2012, Proceedings of the 2012 Association for Computing Machinery annual conference on Human Factors in Computing Systems, P89, DOI [10.1145/2207676.2207690, DOI 10.1145/2207676.2207690] SCHNEIDEWIND NF, 1992, IEEE T SOFTWARE ENG, V18, P410, DOI 10.1109/32.135774 Seffah A, 2001, SECOND ASIA-PACIFIC CONFERENCE ON QUALITY SOFTWARE, PROCEEDINGS, P311, DOI 10.1109/APAQS.2001.990036 Seuntiens Pieter J. H., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V6016, P1, DOI 10.1117/12.627515 Shackel B., 1991, HUMAN FACTORS INFORM, P21, DOI DOI 10.1016/J.INTCOM.2009.04.007 van Beurden MHPH, 2012, 3D RES, V3, DOI 10.1007/3DRes.01(2012)3 Vonkeman C, 2017, INFORM MANAGE-AMSTER, V54, P1038, DOI 10.1016/j.im.2017.02.008 Wheatstone C., 1838, Philosophical Transactions of the Royal Society of London, V128, P371, DOI [10.1098/rstl.1838.0019, DOI 10.1098/RSTL.1838.0019] Yim MYC, 2012, J ADVERTISING, V41, P113, DOI 10.2753/JOA0091-3367410208 NR 44 TC 0 Z9 0 U1 0 U2 22 PU EDICIONES PROFESIONALES INFORMACION SL-EPI PI BARCELONA PA MISTRAL, 36, BARCELONA, ALBOLOTE, SPAIN SN 1386-6710 EI 1699-2407 J9 PROF INFORM JI Prof. Inf. PD SEP-OCT PY 2018 VL 27 IS 5 BP 1116 EP 1127 DI 10.3145/epi.2018.sep.15 PG 12 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA GU7VV UT WOS:000445537400015 OA Bronze, Green Published DA 2024-03-27 ER PT J AU Xia, YF Guo, XY Li, YG He, LY Chen, XY AF Xia, Yufei Guo, Xinyi Li, Yinguo He, Lingyun Chen, Xueyuan TI Deep learning meets decision trees: An application of a heterogeneous deep forest approach in credit scoring for online consumer lending SO JOURNAL OF FORECASTING LA English DT Article DE credit scoring; deep learning; financial regulation; gradient boosting decision tree; macroeconomic variable; online consumer lending ID GENETIC ALGORITHM; RISK-ASSESSMENT; MODEL; CLASSIFICATION; CLASSIFIERS; INFERENCE; BUSINESS; COST AB Online consumer lending has recently been growing rapidly, but it faces high credit risk. For this problem, developing powerful credit scoring models has become an effective solution and can be achieved from three aspects: modeling approach, data source, and evaluation measure. This paper proposes a novel model that departs from those in previous studies in threefold. First, a heterogeneous deep forest model that combines deep learning architecture and tree-based ensemble classifiers is proposed as the modeling approach. Second, a Bayesian-based macroeconomic variable optimization method is developed to determine the macroeconomic variables and the corresponding lag term, and the selected macroeconomic variables are used as supplementary data source for modeling. Lastly, a series of capital charge error measures is proposed to evaluate credit scoring models from a regulatory perspective. The proposal is evaluated on multiple large datasets under performance measures on predictive accuracy, profitability, and capital charge errors. Frequentist and Bayesian nonparametric significance tests are used to examine the statistical significance of heterogeneous deep forest and benchmarks. Three main conclusions can be reached from the comparison. First, heterogeneous deep forest significantly outperforms the industry benchmarks over all the evaluation measures. Second, the predictive performance is enhanced after incorporating the selected macroeconomic variables and the corresponding lag, and the result remains robust under cross-validation and forward-chaining validation. Third, the capital charge errors reflect the model performance from a regulatory perspective and thus lead to different rankings from those when evaluating predictive accuracy and profitability. C1 [Xia, Yufei; Guo, Xinyi; Li, Yinguo; Chen, Xueyuan] Jiangsu Normal Univ, Business Sch, Xuzhou 221116, Jiangsu, Peoples R China. [He, Lingyun] China Univ Min & Technol, Sch Econ & Management, Xuzhou, Jiangsu, Peoples R China. C3 Jiangsu Normal University; China University of Mining & Technology RP Li, YG (autor correspondiente), Jiangsu Normal Univ, Business Sch, Xuzhou 221116, Jiangsu, Peoples R China. EM yinguo.li@jsnu.edu.cn RI HE, Ling-Yun/K-2346-2012 OI Xia, Yufei/0000-0001-7805-8091 FU National Natural Science Foundation of China [72103082, 71874185]; National Social Science Foundation of China [15BTJ033]; Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province [2020SJA1018]; National Training Program of Innovation and Entrepreneurship for Undergraduates [202110320012] FX National Natural Science Foundation of China, Grant/Award Number: 72103082; 71874185; National Social Science Foundation of China, Grant/Award Number: 15BTJ033; Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province, Grant/Award Number: 2020SJA1018; National Training Program of Innovation and Entrepreneurship for Undergraduates, Grant/Award Number: 202110320012 CR Ala'raj M, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00461-7 Ala'raj M, 2016, KNOWL-BASED SYST, V104, P89, DOI 10.1016/j.knosys.2016.04.013 Bellotti T, 2009, J OPER RES SOC, V60, P1699, DOI 10.1057/jors.2008.130 Benavoli A, 2014, PR MACH LEARN RES, V32, P1026 Bensic M, 2005, INTELL SYST ACCOUNT, V13, P133, DOI 10.1002/isaf.261 Berg T, 2020, REV FINANC STUD, V33, P2845, DOI 10.1093/rfs/hhz099 Berger J, 2014, PHILOS PSYCHOL, V27, P829, DOI 10.1080/09515089.2013.771241 Bertsch C, 2020, J BANK FINANC, V116, DOI 10.1016/j.jbankfin.2020.105822 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Buchak G, 2018, J FINANC ECON, V130, P453, DOI 10.1016/j.jfineco.2018.03.011 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Dastile X, 2020, APPL SOFT COMPUT, V91, DOI 10.1016/j.asoc.2020.106263 de Andrade FWM, 2007, EUR J OPER RES, V183, P1569, DOI 10.1016/j.ejor.2006.07.049 Demsar J, 2006, J MACH LEARN RES, V7, P1 Di Maggio M., 2020, Fintech borrowers: lax-screening or cream-skimming? Dirick L, 2019, J BUS ECON STAT, V37, P40, DOI 10.1080/07350015.2016.1260471 Djeundje VB, 2021, EXPERT SYST APPL, V163, DOI 10.1016/j.eswa.2020.113766 Djeundje VB, 2018, EUR J OPER RES, V271, P697, DOI 10.1016/j.ejor.2018.05.040 Dorogush A. V., 2018, ARXIV181011363, DOI DOI 10.48550/ARXIV.1810.11363 Einav L, 2013, RAND J ECON, V44, P249, DOI 10.1111/1756-2171.12019 EISENBEIS RA, 1977, J FINANC, V32, P875, DOI 10.2307/2326320 Feng XD, 2019, APPL INTELL, V49, P555, DOI 10.1007/s10489-018-1253-8 Feng XD, 2018, APPL SOFT COMPUT, V65, P139, DOI 10.1016/j.asoc.2018.01.021 Frazier P.I., 2018, TUTORIAL BAYESIAN OP Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 García S, 2010, INFORM SCIENCES, V180, P2044, DOI 10.1016/j.ins.2009.12.010 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Gordy MB, 2003, J FINANC INTERMED, V12, P199, DOI 10.1016/S1042-9573(03)00040-8 Gunnarsson BR, 2021, EUR J OPER RES, V295, P292, DOI 10.1016/j.ejor.2021.03.006 Hand DJ, 2009, MACH LEARN, V77, P103, DOI 10.1007/s10994-009-5119-5 He HL, 2018, EXPERT SYST APPL, V98, P105, DOI 10.1016/j.eswa.2018.01.012 He N, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121371 Hurlin C, 2018, EUR J OPER RES, V268, P348, DOI 10.1016/j.ejor.2018.01.020 Jadhav S, 2018, APPL SOFT COMPUT, V69, P541, DOI 10.1016/j.asoc.2018.04.033 Ke G., 2017, Advances in Neural Information Processing Systems, V30, P3146, DOI DOI 10.5555/3294996.3295074 Kruschke JK, 2018, PSYCHON B REV, V25, P178, DOI 10.3758/s13423-016-1221-4 Lee E, 2012, ELECTRON COMMER R A, V11, P495, DOI 10.1016/j.elerap.2012.02.001 Lessmann S, 2015, EUR J OPER RES, V247, P124, DOI 10.1016/j.ejor.2015.05.030 Li K, 2021, APPL SOFT COMPUT, V107, DOI 10.1016/j.asoc.2021.107485 Liu WA, 2021, ENG APPL ARTIF INTEL, V97, DOI 10.1016/j.engappai.2020.104036 Lohmann C, 2019, J FORECASTING, V38, P375, DOI 10.1002/for.2545 Maldonado S, 2020, INFORM SCIENCES, V507, P700, DOI 10.1016/j.ins.2018.08.001 Malekipirbazari M, 2015, EXPERT SYST APPL, V42, P4621, DOI 10.1016/j.eswa.2015.02.001 Melo L, 2020, EXPERT SYST APPL, V152, DOI 10.1016/j.eswa.2020.113351 Messai A.S., 2013, International Journal of Economics and Financial Issues, V3, P852, DOI 10.14706/jecoss11312 Moosa IA, 2010, J BANK REGUL, V11, P95, DOI 10.1057/jbr.2010.2 Oskarsdóttir M, 2019, APPL SOFT COMPUT, V74, P26, DOI 10.1016/j.asoc.2018.10.004 Ozili PK, 2018, BORSA ISTANB REV, V18, P329, DOI 10.1016/j.bir.2017.12.003 Plawiak P, 2020, INFORM SCIENCES, V516, P401, DOI 10.1016/j.ins.2019.12.045 Plawiak P, 2019, APPL SOFT COMPUT, V84, DOI 10.1016/j.asoc.2019.105740 Roa L, 2021, EXPERT SYST APPL, V169, DOI 10.1016/j.eswa.2020.114486 Schotten PC, 2019, FINANC INNOV, V5, DOI 10.1186/s40854-019-0126-4 Serrano-Cinca C, 2016, DECIS SUPPORT SYST, V89, P113, DOI 10.1016/j.dss.2016.06.014 Shen F, 2021, APPL SOFT COMPUT, V98, DOI 10.1016/j.asoc.2020.106852 Shen F, 2020, TECHNOL ECON DEV ECO, V26, P405, DOI 10.3846/tede.2019.11337 Snoek H., 2012, ADV NEURAL INFORM PR, P2951, DOI DOI 10.48550/ARXIV.1206.2944 Tang LX, 2019, TECHNOL FORECAST SOC, V144, P563, DOI 10.1016/j.techfore.2018.03.007 Thomas LC, 2000, INT J FORECASTING, V16, P149, DOI 10.1016/S0169-2070(00)00034-0 Tian Y, 2018, APPL SOFT COMPUT, V73, P96, DOI 10.1016/j.asoc.2018.08.021 Wang CR, 2019, IEEE ACCESS, V7, P2161, DOI 10.1109/ACCESS.2018.2887138 Wang HM, 2021, J OPER RES SOC, V72, P923, DOI 10.1080/01605682.2019.1705193 Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Xia YF, 2021, ELECTRON COMMER R A, V49, DOI 10.1016/j.elerap.2021.101095 Xia YF, 2021, INT J FORECASTING, V37, P1590, DOI 10.1016/j.ijforecast.2021.03.002 Xia YF, 2021, TECHNOL ECON DEV ECO, V27, P96, DOI 10.3846/tede.2020.13997 Xia YF, 2020, J FORECASTING, V39, P260, DOI 10.1002/for.2625 Xia YF, 2018, ELECTRON COMMER R A, V30, P111, DOI 10.1016/j.elerap.2018.05.011 Xia YF, 2018, EXPERT SYST APPL, V93, P182, DOI 10.1016/j.eswa.2017.10.022 Xia YF, 2017, ELECTRON COMMER R A, V24, P30, DOI 10.1016/j.elerap.2017.06.004 Xia YF, 2017, EXPERT SYST APPL, V78, P225, DOI 10.1016/j.eswa.2017.02.017 Xu DY, 2019, INT J FINANC ECON, V24, P903, DOI 10.1002/ijfe.1698 Yu L, 2008, EXPERT SYST APPL, V34, P1434, DOI 10.1016/j.eswa.2007.01.009 Yu LA, 2015, FINANC INNOV, V1, DOI 10.1186/s40854-015-0005-6 Zhang WY, 2021, EXPERT SYST APPL, V165, DOI 10.1016/j.eswa.2020.113872 Zhang WY, 2019, EXPERT SYST APPL, V121, P221, DOI 10.1016/j.eswa.2018.12.020 Zhou Z.-H., 2012, Ensemble Methods: Foundations and Algorithms Zhou ZH, 2019, NATL SCI REV, V6, P74, DOI 10.1093/nsr/nwy108 NR 77 TC 7 Z9 7 U1 6 U2 20 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0277-6693 EI 1099-131X J9 J FORECASTING JI J. Forecast. PD DEC PY 2022 VL 41 IS 8 BP 1669 EP 1690 DI 10.1002/for.2891 EA JUL 2022 PG 22 WC Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 5N7LT UT WOS:000827794700001 DA 2024-03-27 ER PT J AU Cao, Q Schniederjans, MJ AF Cao, Qing Schniederjans, Marc J. TI Agent-mediated architecture for reputation-based electronic tourism systems: A neural network approach SO INFORMATION & MANAGEMENT LA English DT Article DE E-commerce; multiple agent system; neural networks; management information systems; tourism ID BUSINESS; COMMERCE; SUPPORT; WEB AB Agent technology can be used in searching and selecting a good e-tourism system. However, most such systems focus mainly on price and avoid important purchasing decision-making factors such as quality and reputation. Here we define a reputation-based architecture for an e-tourism system that we have called 'reputation-based electronic tourism' (RET). An artificial neural network model was created for a reputation agent to evaluate capabilities for selecting products and services in an e-tourism setting. The classification performance of the model was compared to another method. The results indicated that RET could outperform and be more accurate in classifying perspective products and services for consumers. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Nebraska, Coll Business Adm, Lincoln, NE 68588 USA. Univ Missouri, Henry W Bloch Sch Business & Publ Adm, Kansas City, MO 64110 USA. C3 University of Nebraska System; University of Nebraska Lincoln; University of Missouri System; University of Missouri Kansas City RP Schniederjans, MJ (autor correspondiente), Univ Nebraska, Coll Business Adm, Lincoln, NE 68588 USA. EM Mschniederjans1@unl.edu CR BELLIFERNINE F, 2000, DEV MULT SYST JADE 7, P89 BO KW, 1995, INFORM MANAGE, V29, P141, DOI 10.1016/0378-7206(95)00023-P Boyer KK, 2002, J OPER MANAG, V20, P357, DOI 10.1016/S0272-6963(02)00004-9 Brynjolfsson E, 2000, MANAGE SCI, V46, P563, DOI 10.1287/mnsc.46.4.563.12061 Bui T, 1999, DECIS SUPPORT SYST, V25, P225, DOI 10.1016/S0167-9236(99)00008-1 Camacho D, 2001, AUTON AGENT MULTI-AG, V4, P387, DOI 10.1023/A:1012767210241 CHEN KCW, 1992, AUDITING-J PRACT TH, V11, P30 Dellaert BGC, 2000, SPRING COMP SCI, P293 Dube L., 1999, Cornell Hotel and Restaurant Administration Quarterly, V40, P89, DOI 10.1016/S0010-8804(99)80237-7 Finin T., 1994, P 3 INT C INF KNOWL Guttman RH, 1998, KNOWL ENG REV, V13, P147, DOI 10.1017/S0269888998002082 HOWDEN N, 2001, 5 INT C AUT AG MONTR Hudson S., 2002, Journal of Vacation Marketing, V8, P155, DOI 10.1177/135676670200800205 Jain AK, 1999, COMMUN ACM, V42, P62, DOI 10.1145/295685.295702 JENNINGS NR, 1998, INT J AUTONOMOUS AGE, V1, P7 Joo J, 2002, INFORM SYST MANAGE, V19, P58, DOI 10.1201/1078/43201.19.3.20020601/37171.8 Klassen RD, 2001, J OPER MANAG, V19, P713, DOI 10.1016/S0272-6963(01)00071-7 Lau KinNam Lau KinNam, 2001, Cornell Hotel and Restaurant Administration Quarterly, V42, P55, DOI 10.1016/S0010-8804(01)81008-9 Lemire D, 2005, INFORM RETRIEVAL, V8, P129, DOI 10.1023/B:INRT.0000048492.50961.a6 LI EY, 1994, INFORM MANAGE, V27, P303, DOI 10.1016/0378-7206(94)90024-8 Maes P, 1999, COMMUN ACM, V42, P81, DOI 10.1145/295685.295716 MORRIS J, 2000, P 2 ACM C EL COMM NE Nwana HS, 1999, APPL ARTIF INTELL, V13, P129, DOI 10.1080/088395199117513 Papazoglou MP, 2001, COMMUN ACM, V44, P71, DOI 10.1145/367211.367268 Partovi FY, 2002, COMPUT IND ENG, V41, P389, DOI 10.1016/S0360-8352(01)00064-X SABATER J, 2000, REPORT ARTIFICIAL IN SANTOS BLD, 1998, INFORMATION MANAGEME, V34, P175 Schniederjans M.J., 2002, E COMMERCE OPERATION Sikora R, 1998, MANAGE SCI, V44, pS65, DOI 10.1287/mnsc.44.11.S65 TAM KY, 1992, MANAGE SCI, V38, P926, DOI 10.1287/mnsc.38.7.926 Wong BK, 1998, INFORM MANAGE-AMSTER, V34, P129, DOI 10.1016/S0378-7206(98)00050-0 NR 31 TC 14 Z9 16 U1 1 U2 34 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0378-7206 EI 1872-7530 J9 INFORM MANAGE-AMSTER JI Inf. Manage. PD JUL PY 2006 VL 43 IS 5 BP 598 EP 606 DI 10.1016/j.im.2006.03.001 PG 9 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 069VY UT WOS:000239478200004 DA 2024-03-27 ER PT J AU Theerthaana, P Manohar, HL AF Theerthaana, P. Manohar, Hansa Lysander TI How a doer persuade a donor? Investigating the moderating effects of behavioral biases in donor acceptance of donation crowdfunding SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE Internet marketing; E-commerce; Consumer behavior internet; Human-computer interaction; Donation crowdfunding; Regret aversion bias; Herding bias; Optimum bias; Overconfidence bias ID CONSUMER TRUST; UNIFIED THEORY; ADOPTION; PERSPECTIVE; UTAUT; INHIBITORS; STUDENTS; OPTIMISM; BANKING AB Purpose The concept of donation crowdfunding has been drawing enormous attention as it connects donors worldwide in a shorter time at a relatively lower cost. This paper aims to integrate two unified theories, namely, behavioral finance and unified theory of acceptance and use of technology model, to investigate on the motivators and deterrents that influence prospective donors to adopt and use donation crowdfunding. The study also substantiates the significance of donors' behavioral biases through the moderating effect in the crowdfunding adoption process. Design/methodology/approach The study used survey method for data collection and the data set was obtained from the sample of respondents belonging to India and Bangladesh. The proposed structural equation modeling is tested using SPSS 23.0 and AMOS 23.0. Findings The study reveals that performance expectancy, effort expectancy, facilitating conditions and trust significantly enhance the intention to adopt donation crowdfunding. Also, biases including overconfidence bias, herding bias and regret aversion bias are found to have significant moderating effects on the relationship between the behavioral intention to adopt donation crowdfunding and use behavior. Practical implications By investigating motivators and deterrents of the adoption of donation crowdfunding, the study renders lucrative insights for the donation crowdfunders in devising a donation fundraising campaign that motivates the prospective donors to provide financial contribution. Originality/value The study establishes its novelty in explaining the adoption behavior of donation crowdfunding with behavioral bias moderators as a theoretical paradigm. Furthermore, the unified theory of acceptance and use of technology model is extended by introducing, the variable "trust," while studying the adoption behavior of donation crowdfunding. C1 [Theerthaana, P.] Loyola Inst Business Adm LIBA, MBA Dept, Chennai, Tamil Nadu, India. [Manohar, Hansa Lysander] Anna Univ, Dept Management Studies, Chennai, Tamil Nadu, India. C3 Loyola Institute of Business Administration (LIBA); Anna University; Anna University Chennai RP Theerthaana, P (autor correspondiente), Loyola Inst Business Adm LIBA, MBA Dept, Chennai, Tamil Nadu, India. EM sahanatheerthee@gmail.com; auhansa@gmail.com RI P, Theerthaana/AAU-7577-2020 OI P, Theerthaana/0000-0003-4475-7606 CR Akinkoye E., 2020, INT J BUSINESS MANAG, V4, P33 Al-Saedi K, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101293 Andreev P, 2012, INT J E-BUS RES, V8, P50, DOI 10.4018/jebr.2012070104 Annan-Diab F, 2017, INT J MANAG EDUC-OXF, V15, P73, DOI 10.1016/j.ijme.2017.03.006 [Anonymous], 2017, EC TIMES Antony A, 2020, J PUBLIC AFF, V20, DOI 10.1002/pa.1996 Ariguzo G. C., 2006, International Journal of Business Information Systems, V1, P239, DOI 10.1504/IJBIS.2006.008598 Ba ZC, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102322 BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 Bao ZS, 2021, J RES INTERACT MARK, V15, P10, DOI 10.1108/JRIM-02-2019-0027 Baptista G, 2015, COMPUT HUM BEHAV, V50, P418, DOI 10.1016/j.chb.2015.04.024 Barney-McNamara B, 2021, J RES INTERACT MARK, V15, P147, DOI 10.1108/JRIM-05-2020-0108 Behl A, 2023, TQM J, V35, P292, DOI 10.1108/TQM-06-2020-0139 Belleflamme P, 2014, J BUS VENTURING, V29, P585, DOI 10.1016/j.jbusvent.2013.07.003 Bhatia V, 2020, J RES INTERACT MARK, V14, P51, DOI 10.1108/JRIM-07-2018-0088 Biucky S.T., 2017, INT J ELECT COMMERCE, V8, P173, DOI DOI 10.7903/IJECS.1538 Bonney L, 2020, IND MARKET MANAG, V88, P339, DOI 10.1016/j.indmarman.2020.05.012 Brown R, 2019, IND MARKET MANAG, V80, P115, DOI 10.1016/j.indmarman.2018.02.003 Butticè V, 2020, INT SMALL BUS J, V38, P111, DOI 10.1177/0266242619883984 Camacho N, 2019, J MARKETING, V83, P138, DOI 10.1177/0022242918809673 Chandra S, 2010, COMMUN ASSOC INF SYS, V27, P561 Charoensukmongkol P., 2019, J GLOB MARK, V33, P141, DOI [DOI 10.1080/08911762.2019.1654586, 10.1080/08911762.2019] CHURCHILL GA, 1979, J MARKETING RES, V16, P64, DOI 10.2307/3150876 Cimperman M, 2016, INT J MED INFORM, V90, P22, DOI 10.1016/j.ijmedinf.2016.03.002 Clement MB, 2005, J FINANC, V60, P307, DOI 10.1111/j.1540-6261.2005.00731.x Compeau D. R., 1995, Management Information Systems Quarterly, V19, P189, DOI 10.2307/249688 Corrêa SCH, 2020, J RES INTERACT MARK, V14, P173, DOI 10.1108/JRIM-09-2019-0154 Costello A. B., 2005, PRACTICAL ASSESSMENT, V10, P7, DOI [10.7275/jyj1-4868, DOI 10.7275/JYJ1-4868] Davvetas V, 2020, J INT MARKETING, V28, P40, DOI 10.1177/1069031X20910112 Dennis AR, 2020, J MANAGE INFORM SYST, V37, P39, DOI 10.1080/07421222.2019.1705505 Dickason-Koekemoer Z., 2020, INT J BUSINESMANAG, V10 Ding AW, 2019, J ACAD MARKET SCI, V47, P460, DOI 10.1007/s11747-018-0619-0 Engin A, 2020, ELECTRON COMMER R A, V40, DOI 10.1016/j.elerap.2020.100937 Fang YL, 2014, MIS QUART, V38, P407, DOI 10.25300/MISQ/2014/38.2.04 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gleason CA, 2003, ACCOUNT REV, V78, P193, DOI 10.2308/accr.2003.78.1.193 Goudarzi S., 2013, AUST J BASIC APPL SC, V7, P334 Graham JR, 1999, J FINANC, V54, P237, DOI 10.1111/0022-1082.00103 Guangming Y., 2011, E BUS E GOV ICEE 201, P1, DOI [10.1109/ICEBEG.2011.5881264, DOI 10.1109/ICEBEG.2011.5881264] Handarkho YD, 2020, J RES INTERACT MARK, V14, P305, DOI 10.1108/JRIM-10-2018-0137 Hashim H., 2016, Creative Education, V7, P1147, DOI [DOI 10.4236/CE.2016.78119, 10.4236/ce.2016.78119] Heerink M., 2009, Proceedings of the 2009 Bristish Computer Society Conference on Human-Computer Interaction, P430, DOI [10.14236/ewic/hci2009.54, DOI 10.14236/EWIC/HCI2009.54] Helo P. T., 2003, International Journal of Mobile Communications, V1, P233, DOI 10.1504/IJMC.2003.003491 Hirschleifer D., 2003, EUR FINANC MANAG, V9, P25, DOI DOI 10.1111/1468-036X.00207 Hu Y., 2021, Customer Needs and Solutions, V8, P27, DOI [10.1007/s40547-020-00111-8, DOI 10.1007/S40547-020-00111-8] Il Im, 2011, Information & Management, V48, P1, DOI 10.1016/j.im.2010.09.001 Izogo EE, 2020, J RES INTERACT MARK, V14, P431, DOI 10.1108/JRIM-09-2019-0145 Jayashree, 2014, INT J BUSINESS MANAG, V2, P24 Jeon HM, 2020, SERV BUS, V14, P533, DOI 10.1007/s11628-020-00425-6 Josefy M, 2017, ENTREP THEORY PRACT, V41, P161, DOI 10.1111/etap.12263 Kabra G, 2017, TELEMAT INFORM, V34, P1250, DOI 10.1016/j.tele.2017.05.010 Konietzny J., 2020, DEV MARKETING SCI P, P527, DOI [10.1007/978-3-030-42545-6_183, DOI 10.1007/978-3-030-42545-6_183] Langley P, 2020, GEOFORUM, V115, P11, DOI 10.1016/j.geoforum.2020.06.014 Leech N.L., 2014, IBM SPSS INTERMEDIAT Liang C.C., 2018, INT J ELECTRON COMM, V9, P71, DOI DOI 10.7903/IJECS.1556 Liao JY, 2020, J RES INTERACT MARK, V14, P413, DOI 10.1108/JRIM-07-2019-0115 Liu Y, 2011, COMPUT HUM BEHAV, V27, P890, DOI 10.1016/j.chb.2010.11.014 Maldonado UPT, 2009, ICCIT: 2009 FOURTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, VOLS 1 AND 2, P1431 Malik M., 2020, J Internet Bank Commer, V25, P1 Marcatto F, 2008, JUDGM DECIS MAK, V3, P87 Martins C, 2014, INT J INFORM MANAGE, V34, P1, DOI 10.1016/j.ijinfomgt.2013.06.002 Mochkabadi K, 2020, SMALL BUS ECON, V54, P75, DOI 10.1007/s11187-018-0081-x Munim, 2020, ADV CROWDFUNDING, P297 Munyoka W, 2019, S AFR J INFORM MANAG, V21, DOI 10.4102/sajim.v21i1.983 Niemand T, 2018, INT J ENTREP BEHAV R, V24, P911, DOI 10.1108/IJEBR-07-2017-0256 Pando-Garcia J, 2016, J BUS RES, V69, P1731, DOI 10.1016/j.jbusres.2015.10.046 Pappas N, 2016, J RETAIL CONSUM SERV, V29, P92, DOI 10.1016/j.jretconser.2015.11.007 Patil P, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102144 Peltier J.W., 1995, Journal of Direct Marketing, V9, P72, DOI [10.1002/dir.4000090309, DOI 10.1002/DIR.4000090309] Peltier J, 2020, J RES INTERACT MARK, V14, P239, DOI 10.1108/JRIM-01-2020-0010 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Pompian M.M., 2011, BEHAV FINANCE WEALTH, V667 Qin YS, 2020, J RES INTERACT MARK, V14, P337, DOI 10.1108/JRIM-08-2019-0138 Raut RK, 2020, GLOB BUS REV, V21, P818, DOI 10.1177/0972150918778915 Raza SA, 2021, J EDUC COMPUT RES, V59, P183, DOI 10.1177/0735633120960421 Raza SA, 2019, J ISLAMIC MARK, V10, P357, DOI 10.1108/JIMA-04-2017-0038 Raza SA, 2017, J EDUC COMPUT RES, V55, P295, DOI 10.1177/0735633116667357 Rey-Moreno M, 2017, J INNOV KNOWL, V2, P172, DOI 10.1016/j.jik.2017.01.001 Riaz T., 2015, Research Journal of Finance and Accounting, V6, P110 Rijanto A, 2018, J GEN MANAGE, V43, P79, DOI 10.1177/0306307017748125 Robiady ND, 2021, INT J RES MARK, V38, P492, DOI 10.1016/j.ijresmar.2020.03.001 Sair S., 2018, PAKISTAN J COMMERCE, V12, P501 SCHARFSTEIN DS, 1990, AM ECON REV, V80, P465 Schaupp LudwigChristian., 2010, P 43 HAWAII INT C SY, P1, DOI [10.1109/HICSS.2010.177, DOI 10.1109/HICSS.2010.177] SCHEIER MF, 1994, J PERS SOC PSYCHOL, V67, P1063, DOI 10.1037/0022-3514.67.6.1063 Schibrowsky JohnA., 1995, Journal of Direct Marketing, V9, P8, DOI DOI 10.1002/DIR.4000090103 Slade EL, 2015, PSYCHOL MARKET, V32, P860, DOI 10.1002/mar.20823 Statista.,, 2020, DISTR UNS FUND PROJ STRAUB DW, 1989, MIS QUART, V13, P147, DOI 10.2307/248922 Sultana J, 2020, EDUC INF TECHNOL, V25, P223, DOI 10.1007/s10639-019-09969-1 Sung H., 2015, International Journal of u-and e-Service, Science and Technology, V8, P197, DOI [10.14257/ijunesst.2015.8.9.21, DOI 10.14257/IJUNESST.2015.8.9.21] Tan P.J. B., 2013, AM J COMPUTER TECHNO, V1, P14 Theerthaana P, 2020, J SIMUL, V14, P169, DOI 10.1080/17477778.2019.1664263 TORKZADEH G, 1992, BEHAV INFORM TECHNOL, V11, P99, DOI 10.1080/01449299208924324 Vazquez-Casielles R., 2018, INT J VOLUNTARY NONP, P1, DOI [10.1007/s11266-020-00213-w, DOI 10.1007/S11266-020-00213-W] Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Wang GY, 2020, FOODS, V9, DOI 10.3390/foods9111588 Wang KY, 2020, J ADV TRANSPORT, V2020, DOI 10.1155/2020/8849356 Wash R., 2013, 7 INT AAAI C WEBL SO Welch I, 2000, J FINANC ECON, V58, P369, DOI 10.1016/S0304-405X(00)00076-3 Wojciechowski A, 2009, LECT NOTES COMPUT SC, V5872, P454, DOI 10.1007/978-3-642-05290-3_58 Xin H, 2015, J COMPUT INFORM SYST, V55, P1, DOI 10.1080/08874417.2015.11645781 Yegoryan, 2020, J ACAD MARKET SCI, P1 Zhang B., 2017, HDB GEOGRAPHIES MONE, DOI [10.4337/9781784719005, DOI 10.4337/9781784719005] Zhang YL, 2020, COMPUT HUM BEHAV, V112, DOI 10.1016/j.chb.2020.106470 NR 107 TC 11 Z9 12 U1 7 U2 44 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PD JUN 21 PY 2021 VL 15 IS 2 BP 243 EP 266 DI 10.1108/JRIM-06-2019-0097 EA MAY 2021 PG 24 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA SW1CO UT WOS:000649442300001 DA 2024-03-27 ER PT J AU Chahal, J Dagar, V Dagher, L Rao, AM Udemba, EN AF Chahal, Jyoti Dagar, Vishal Dagher, Leila Rao, Amar Udemba, Edmund Ntom TI The crisis effect in TPB as a moderator for post-pandemic entrepreneurial intentions among higher education students: PLS-SEM and ANN approach SO INTERNATIONAL JOURNAL OF MANAGEMENT EDUCATION LA English DT Article DE Entrepreneurial intentions; Crisis-effect; Self-efficacy; Artificial neural network (ANN); PLS-SEM; Post-pandemic ID SELF-EFFICACY; PLANNED BEHAVIOR; MODELS; ATTITUDES; GENDER AB This research examines college students' entrepreneurial inclinations using TPB, self-efficacy, and the crisis effect. It also examines the crisis effect's moderating influence post-pandemic. A unique analytical technique using Structural Equation Modeling (SEM) and Artificial Neural Network (ANN) was used to evaluate the model's resilience. 310 Indian university students were surveyed online. Self-efficacy is a crucial predictor of entrepreneurial tendencies among higher education students. ANN analysis confirms SEM findings that self-efficacy and perceived behaviour control shape entrepreneurial desires. Despite its negative impact, the crisis effect doesn't appear to affect entrepreneurs' objectives. The crisis impact moderates all exogenous and endogenous factors except subjective norms and entrepreneurial goals, the research finds. The research also shows that students' education and geography affect their entrepreneurial inclinations. Gender, however, has little control. Policymakers and higher education administrators could boost entrepreneurial ambitions by fostering students' self-efficacy and perceived behaviour control. Understanding these elements allows higher education stakeholders to create targeted interventions and support systems to foster college student entrepreneurship. C1 [Chahal, Jyoti] Govt Coll Women, Dept Geog, Sonipat 131301, Haryana, India. [Dagar, Vishal] Great Lakes Inst Management Gurgaon, Dept Econ & Publ Policy, Gurugram 122413, Haryana, India. [Dagher, Leila] Lebanese Amer Univ, Beirut 10000, Lebanon. [Rao, Amar] BML Munjal Univ, Gurugram 122413, Haryana, India. [Udemba, Edmund Ntom] Shanxi Technol & Business Coll, Business Sch, Taiyuan 030000, Peoples R China. [Udemba, Edmund Ntom] Istanbul Nisantasi Univ, Istanbul, Turkiye. [Udemba, Edmund Ntom] Ctr Econ Policy & Dev Res CEPDeR, Ota, Nigeria. C3 Lebanese American University; BML Munjal University RP Chahal, J (autor correspondiente), Govt Coll Women, Dept Geog, Sonipat 131301, Haryana, India. EM jc4202@gmail.com; vishal.d@greatlakes.edu.in; leiladagher@gmail.com; amarydvrao@gmail.com; eddy.ntom@gmail.com RI Dagar, Vishal/U-8877-2018; dagher, leila/AAZ-4049-2021 OI Dagar, Vishal/0000-0001-5032-1783; dagher, leila/0000-0002-9355-2773; , Amar Rao/0000-0002-8787-7061; Chahal, Jyoti/0000-0001-9398-3584 CR Agarwal V, 2023, SOCIO-ECON PLAN SCI, V89, DOI 10.1016/j.seps.2023.101703 Agu AG, 2022, AFR J ECON MANAG STU, V13, P89, DOI 10.1108/AJEMS-05-2021-0227 Agu AG, 2021, INT J SUST HIGHER ED, V22, P659, DOI 10.1108/IJSHE-07-2020-0277 Ahmad R, 2019, 2019 13TH INTERNATIONAL CONFERENCE ON MATHEMATICS, ACTUARIAL SCIENCE, COMPUTER SCIENCE AND STATISTICS (MACS-13), DOI 10.1109/macs48846.2019.9024788 Ajzen I, 2002, J APPL SOC PSYCHOL, V32, P665, DOI 10.1111/j.1559-1816.2002.tb00236.x AJZEN I, 1987, ADV EXP SOC PSYCHOL, V20, P1, DOI 10.1016/S0065-2601(08)60411-6 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Akhtar S, 2022, DISCRETE DYN NAT SOC, V2022, DOI 10.1155/2022/6767580 Akour I.A., 2022, Computers and Education: Artificial Intelligence, V3, P100052, DOI DOI 10.1016/J.CAEAI.2022.100052 Al-Ghani A., 2022, Theory of Planned Behaviour (TPB), V13, P10 Al-Jubari I, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019853467 Al-Qadasi N, 2023, FRONT PSYCHOL, V14, DOI 10.3389/fpsyg.2023.1111934 Alam MMD, 2021, J BIOMED INFORM, V116, DOI 10.1016/j.jbi.2021.103722 Ali J, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2399 Almohammad D, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158602 Amofah K., 2022, Journal of Innovation and Entrepreneurship, V11, DOI DOI 10.1186/S13731-022-00197-5 Andreea Mortan Roxana, 2014, Rev. psicol. trab. organ., V30, P97 Anjum T, 2023, EDUC TRAIN, V65, P587, DOI 10.1108/ET-01-2021-0020 Ansell C, 2019, ADMIN SOC, V51, P1079, DOI 10.1177/0095399717747655 Armitage CJ, 2001, BRIT J SOC PSYCHOL, V40, P471, DOI 10.1348/014466601164939 Arrighetti A, 2016, INT J ENTREP BEHAV R, V22, P835, DOI 10.1108/IJEBR-12-2015-0326 BANDURA A, 1977, PSYCHOL REV, V84, P191, DOI 10.1037/0033-295X.84.2.191 Bandura A., 1978, Advances in Behaviour Research and Therapy, V1, P139, DOI [10.1016/0146-6402(78)90002-4, DOI 10.1016/0146-6402(78)90002-4] Batista-Canino RM, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e13046 Behroozi M, 2012, PROCD SOC BEHV, V46, P2414, DOI 10.1016/j.sbspro.2012.05.495 Bosnjak M, 2020, EUR J PSYCHOL, V16, P352, DOI 10.5964/ejop.v16i3.3107 Bouarir H, 2023, ADM SCI, V13, DOI 10.3390/admsci13020033 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Chin WW, 1997, INFORM SYST RES, V8, P342, DOI 10.1287/isre.8.4.342 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Dagher L, 2023, ENERG POLICY, V183, DOI 10.1016/j.enpol.2023.113783 Davies J., 2002, J MARKET THEORY, V2, P29, DOI [10.1177/1470593102002001645, DOI 10.1177/1470593102002001645] Dogan B, 2023, ENVIRON SCI POLLUT R, V30, P92162, DOI 10.1007/s11356-023-28770-9 Douglas E.J., 2002, Entrepreneurship Theory Practice, V26, P8190, DOI [10.1177/104225870202600305, DOI 10.1177/104225870202600305] Easterby-Smith M., 2012, Management research Elnadi M, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100458 Evermann J, 2016, J BUS RES, V69, P4565, DOI 10.1016/j.jbusres.2016.03.050 Fassott G, 2016, IND MANAGE DATA SYST, V116, P1887, DOI 10.1108/IMDS-06-2016-0248 Fayolle A, 2015, J SMALL BUS MANAGE, V53, P75, DOI 10.1111/jsbm.12065 Fishbein M., 1980, UNDERSTANDING ATTITU Foo PY, 2018, EXPERT SYST APPL, V107, P1, DOI 10.1016/j.eswa.2018.04.013 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gupta RK, 2022, Promoting entrepreneurship to reduce graduate unemployment, P149 Guru S, 2023, MANAGE DECIS, V61, P1634, DOI 10.1108/MD-03-2022-0407 Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Hair J.F., 2009, Multivariate data analysis Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Jena RK, 2020, COMPUT HUM BEHAV, V107, DOI 10.1016/j.chb.2020.106275 Kakran S, 2023, COGENT ECON FINANC, V11, DOI 10.1080/23322039.2023.2254560 Krueger NF, 2000, J BUS VENTURING, V15, P411, DOI 10.1016/S0883-9026(98)00033-0 Kumar P, 2024, SUSTAIN DEV, V32, P795, DOI 10.1002/sd.2644 Kumar R, 2022, GLOB BUS REV, V23, P101, DOI 10.1177/0972150919844395 Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Liguori E., 2020, ENTREPRENEURSHIP ED, P346, DOI [DOI 10.1177/2515127420916738, 10.1177/2515127420916738] Linan F., 2008, INT ENTREP MANAG J, V4, P257, DOI [10.1007/s11365-008-0093-0, DOI 10.1007/S11365-008-0093-0] Liñán F, 2009, ENTREP THEORY PRACT, V33, P593, DOI 10.1111/j.1540-6520.2009.00318.x Lotfi H, 2023, DATA BRIEF, V49, DOI 10.1016/j.dib.2023.109410 Maheshwari G, 2022, INT J MANAG EDUC-OXF, V20, DOI 10.1016/j.ijme.2021.100553 Maritz A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12114612 Mawardi M. K., 2020, P 2 ANN INT C BUS PU, DOI [10.2991/aebmr.k.201116.010, DOI 10.2991/AEBMR.K.201116.010] Miriti D. G. M., 2020, An exploration of entrepreneurial intentions among university students in Kenya, V4, P9 Mohammed B. S, 2017, American Journal of Economics, V10 Mouselli S, 2017, BUS MANAGE ED, V15, P159, DOI 10.3846/bme.2017.386 Mwiya B., 2017, SSRN scholarly paper ID 3023294, DOI [10.2139/ssrn.3023294, DOI 10.2139/SSRN.3023294] Na-Allah SR, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14094904 Nabi G, 2018, STUD HIGH EDUC, V43, P452, DOI 10.1080/03075079.2016.1177716 Nabil A.Q, 2020, Open Journal of Business and Management, V9, P114, DOI [10.4236/ojbm.2021.91007, DOI 10.4236/OJBM.2021.91007] Nabil A.Q., 2020, African Journal of Business Management, V14, P196, DOI DOI 10.5897/AJBM2020.9017 Najafabadi MO, 2016, J EDUC BUS, V91, P338, DOI 10.1080/08832323.2016.1218318 Nawi NC, 2022, SAGE OPEN, V12, DOI 10.1177/21582440211069144 Nguyen PH, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9233075 Nithya D. N, 2022, 5. A psychology analysis of entrepreneurial intention among Indian students: A metadata analysis towards building a conceptual framework, V20, P25 Nunnally J. C, 1967, Psychometric theory, Vxiii Paray ZA, 2020, J INT EDUC BUS, V13, P55, DOI 10.1108/JIEB-02-2019-0009 Parkinson J, 2017, J CONSUM BEHAV, V16, P413, DOI 10.1002/cb.1641 Piwowar-Sulej K, 2023, J BUS ETHICS, DOI 10.1007/s10551-023-05456-3 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Qasem YAM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144905 Rahmawati N., 2022, Journal Manajemen Universitas Bung Hatta, V17, P24, DOI [10.37301/jmubh.v17i1.19967, DOI 10.37301/JMUBH.V17I1.19967] Rao AM, 2023, FINANC RES LETT, V56, DOI 10.1016/j.frl.2023.104093 Ratten V, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2020.100432 Ratten V, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2020.100431 Ratten V, 2020, J ENTERP COMMUNITIES, V14, P753, DOI 10.1108/JEC-06-2020-0121 Rehan M. F., 2021, Sustainable Business and Society in Emerging Economies, V3, P485, DOI [10.26710/sbsee.v3i4.2006, DOI 10.26710/SBSEE.V3I4.2006] Roy R, 2022, INT J TECHNOL DES ED, V32, P555, DOI 10.1007/s10798-020-09596-9 Ruiz-Rosa I, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176970 Santos FJ, 2016, J SMALL BUS MANAGE, V54, P49, DOI 10.1111/jsbm.12129 Sharma PN, 2021, DECISION SCI, V52, P567, DOI 10.1111/deci.12329 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Solesvik MZ, 2013, EDUC TRAIN, V55, P253, DOI 10.1108/00400911311309314 Soper D.S., 2022, A-priori Sample Size Calculator for Structural Equation Models Tang M., 2014, Journal of Entrepreneurship in Emerging Economies, V6, P163, DOI [DOI 10.1108/JEEE-02-2014-0002, 10.1108/JEEE-02-2014-0002] Tavousi M., 2009, European Journal of Scientific Research, V30, P146 Teo AC, 2015, IND MANAGE DATA SYST, V115, P311, DOI 10.1108/IMDS-08-2014-0231 Teo TSH, 2008, J MANAGE INFORM SYST, V25, P99, DOI 10.2753/MIS0742-1222250303 Thompson R., 2006, Journal of Organizational and End User Computing, V18, P25, DOI 10.4018/joeuc.2006070102 Westland JC, 2010, ELECTRON COMMER R A, V9, P476, DOI 10.1016/j.elerap.2010.07.003 Wilson F, 2007, ENTREP THEORY PRACT, V31, P387, DOI 10.1111/j.1540-6520.2007.00179.x Yeh CH, 2021, INT J MANAG EDUC-OXF, V19, DOI 10.1016/j.ijme.2021.100565 Zhang JP, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.643184 Zhao H, 2005, J APPL PSYCHOL, V90, P1265, DOI 10.1037/0021-9010.90.6.1265 NR 104 TC 2 Z9 2 U1 11 U2 11 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 1472-8117 EI 2352-3565 J9 INT J MANAG EDUC-OXF JI Int. J. Manag. Educ. PD NOV PY 2023 VL 21 IS 3 AR 100878 DI 10.1016/j.ijme.2023.100878 EA SEP 2023 PG 18 WC Business; Education & Educational Research; Management WE Social Science Citation Index (SSCI) SC Business & Economics; Education & Educational Research GA W0JW8 UT WOS:001088588800001 DA 2024-03-27 ER PT J AU Triantoro, T Gopal, R Benbunan-Fich, R Lang, GD AF Triantoro, Tamilla Gopal, Ram Benbunan-Fich, Raquel Lang, Guido TI Personality and games: enhancing online surveys through gamification SO INFORMATION TECHNOLOGY & MANAGEMENT LA English DT Article DE Gamification; Big Five personality traits; Online surveys; User experience design; Human computer interaction ID 5-FACTOR MODEL; JOB-PERFORMANCE; CAREER SUCCESS; ENGAGEMENT; PREDICTORS; DIMENSIONS; INTERESTS; MOBILITY; TRAITS; DESIGN AB In this research, we evaluate the moderating role of personality on enjoyment and attention associated with a gamified data collection instrument, and the attractiveness of a surveying organization. In an online experiment, we compare a gamified survey with a traditional survey. The results suggest that gamified surveys are more enjoyable and users are more attentive when filling out gamified surveys. Specific personality traits moderate the effect of attention and enjoyment related to gamification, and the enjoyment associated with gamification increases the attractiveness of a surveying organization. These findings have theoretical and practical implications to improve the design of existing online surveys. C1 [Triantoro, Tamilla; Lang, Guido] Quinnipiac Univ, Sch Business, Dept Comp Informat Syst, 275 Mt Carmel Ave, Hamden, CT 06518 USA. [Gopal, Ram] Univ Warwick, Warwick Business Sch, Informat Syst & Management, Coventry CV4 7AL, W Midlands, England. [Benbunan-Fich, Raquel] CUNY, Paul H Chook Dept Informat Syst & Stat, Zicklin Sch Business, Baruch College, One Bernard Baruch Way, New York, NY 10010 USA. C3 Quinnipiac University; University of Warwick; City University of New York (CUNY) System; Baruch College (CUNY) RP Triantoro, T (autor correspondiente), Quinnipiac Univ, Sch Business, Dept Comp Informat Syst, 275 Mt Carmel Ave, Hamden, CT 06518 USA. EM tamilla.triantoro@qu.edu; ram.gopal@wbs.ac.uk; rbfich@baruch.cuny.edu; guido.lang@qu.edu RI Triantoro, Tamilla/AAV-2323-2020 OI Triantoro, Tamilla/0000-0002-9964-6543 CR Ackerman PL, 1997, PSYCHOL BULL, V121, P219, DOI 10.1037/0033-2909.121.2.219 Adamopoulos P, 2018, INFORM SYST RES, V29, P612, DOI 10.1287/isre.2017.0768 Alcivar I, 2016, COMPUT HUM BEHAV, V58, P109, DOI 10.1016/j.chb.2015.12.018 Almlund M, 2011, HBK ECON, V4, P1 [Anonymous], 2014, GAME DESIGN WORKSHOP, DOI DOI 10.1201/B16671 Ashton MC, 2002, J PERS SOC PSYCHOL, V83, P245, DOI 10.1037//0022-3514.83.1.245 Bailey P, 2015, INT J MARKET RES, V57, P17, DOI 10.2501/IJMR-2015-003 BARRICK MR, 1991, PERS PSYCHOL, V44, P1, DOI 10.1111/j.1744-6570.1991.tb00688.x Barrick MR, 2002, J APPL PSYCHOL, V87, P43, DOI 10.1037//0021-9010.87.1.43 Bendersky C, 2013, ACAD MANAGE J, V56, P387, DOI 10.5465/amj.2011.0316 Blohm I, 2013, BUS INFORM SYST ENG+, V5, P275, DOI 10.1007/s12599-013-0273-5 Boudreau JW, 2001, J VOCAT BEHAV, V58, P53, DOI 10.1006/jvbe.2000.1755 Brownell B., 2015, GAMIFICATION ED BUSI, P569, DOI DOI 10.1007/978-3-319-10208-5_29 Buettner R, 2017, ELECTRON MARK, V27, P247, DOI 10.1007/s12525-016-0228-z Carter P, 2007, IQ APTITUDE TESTS Cechanowicz J., 2013, Proceedings of the First International Conference on Gameful Design, Research, and Applications, Gamification'13, (New York, NY, USA), P58, DOI DOI 10.1145/2583008.2583016 Christy KR, 2014, COMPUT EDUC, V78, P66, DOI 10.1016/j.compedu.2014.05.005 de-Marcos L, 2014, COMPUT EDUC, V75, P82, DOI 10.1016/j.compedu.2014.01.012 Downes-Le Guin T, 2012, INT J MARKET RES, V54, P613, DOI 10.2501/IJMR-54-5-613-633 Fang RL, 2015, ORGAN SCI, V26, P1243, DOI 10.1287/orsc.2015.0972 Feldman DC, 2007, J MANAGE, V33, P350, DOI 10.1177/0149206307300815 GATTIKER UE, 1988, HUM RELAT, V41, P569, DOI 10.1177/001872678804100801 GOTTFREDSON GD, 1993, J COUNS PSYCHOL, V40, P518, DOI 10.1037/0022-0167.40.4.518 Hamari J, 2015, INT J INFORM MANAGE, V35, P419, DOI 10.1016/j.ijinfomgt.2015.04.006 Harms J, 2018, HUMAN COMPUTER INTER, P219 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 John O. P., 1999, HDB PERSONALITY THEO Jones BA, 2014, PREV MED, V68, P76, DOI 10.1016/j.ypmed.2014.04.015 Judge TA, 2002, J APPL PSYCHOL, V87, P530, DOI 10.1037//0021-9010.87.3.530 Judge TA, 2002, J APPL PSYCHOL, V87, P765, DOI 10.1037/0021-9010.87.4.765 Kashdan TB, 2011, J PERS, V79, P1067, DOI 10.1111/j.1467-6494.2010.00697.x Keusch F, 2017, SOC SCI COMPUT REV, V35, P147, DOI 10.1177/0894439315608451 Lee JJ, 2013, SIMULAT GAMING, V44, P349, DOI 10.1177/1046878112470539 Li MX, 2014, J MANAGE INFORM SYST, V30, P115, DOI 10.2753/MIS0742-1222300405 Lister C, 2014, JMIR SERIOUS GAMES, V2, P51, DOI 10.2196/games.3413 Liu D, 2017, MIS QUART, V41, P1011 Mavletova A, 2015, SOC SCI COMPUT REV, V33, P372, DOI 10.1177/0894439314545316 MCCRAE RR, 1992, J PERS, V60, P175, DOI 10.1111/j.1467-6494.1992.tb00970.x Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622 Ng TWH, 2005, PERS PSYCHOL, V58, P367, DOI 10.1111/j.1744-6570.2005.00515.x Niess C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0131115 Noftle EE, 2007, J PERS SOC PSYCHOL, V93, P116, DOI 10.1037/0022-3514.93.1.116 O'Brien HL, 2010, J AM SOC INF SCI TEC, V61, P50, DOI 10.1002/asi.21229 Podsakoff NP, 2013, J APPL PSYCHOL, V98, P863, DOI 10.1037/a0032588 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Saucier G., 2015, Handbook of Personality and Social Psychology, V4, P283 Seibert SE, 2001, J VOCAT BEHAV, V58, P1, DOI 10.1006/jvbe.2000.1757 Selfhout M, 2010, J PERS, V78, P509, DOI 10.1111/j.1467-6494.2010.00625.x Suh A, 2017, J MANAGE INFORM SYST, V34, P268, DOI 10.1080/07421222.2017.1297642 Tang Jian, 2019, International Journal of Crowd Science, V3, DOI 10.1108/IJCS-09-2018-0025 Tolmie P, 2014, PERS UBIQUIT COMPUT, V18, P1763, DOI 10.1007/s00779-013-0755-y Wayne JH, 2004, J VOCAT BEHAV, V64, P108, DOI 10.1016/S0001-8791(03)00035-6 Werbach K, 2012, WIN GAME THINKING CA Wille B, 2010, J VOCAT BEHAV, V76, P547, DOI 10.1016/j.jvb.2010.01.007 Xi N, 2019, P 52 ANN HAW INT C S NR 55 TC 10 Z9 10 U1 5 U2 57 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1385-951X EI 1573-7667 J9 INFORM TECHNOL MANAG JI Inf. Technol. Manag. PD SEP PY 2020 VL 21 IS 3 BP 169 EP 178 DI 10.1007/s10799-020-00314-4 EA APR 2020 PG 10 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA OD4GK UT WOS:000558398900001 OA Green Accepted DA 2024-03-27 ER PT J AU Chen, JS Le, TTY Florence, D AF Chen, Ja-Shen Le, Tran-Thien-Y Florence, Devina TI Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing SO INTERNATIONAL JOURNAL OF RETAIL & DISTRIBUTION MANAGEMENT LA English DT Article DE Chatbot adoption; Online customer experience; Customer satisfaction; Personality; e-retailing ID AMAZONS MECHANICAL TURK; PERSONALITY-TRAITS; SERVICE; ENGAGEMENT; SATISFACTION; CONVENIENCE; INTERNET; INTEGRATION; SUCCESS; WEBSITE AB Purpose The rapid evolution in artificial intelligence (AI) has redefined the customer experience and created huge opportunities for companies to interact with customers using chatbots. This study explores the role of AI chatbots in influencing the online customer experience and customer satisfaction in e-retailing. Design/methodology/approach A research model based on the technology acceptance model and information system success model is proposed to describe the interrelationships among chatbot adoption, online customer experience and customer satisfaction. Personality is a moderator in the model. The authors used a quantitative approach to collect 425 useable online questionnaires and Statistical Product and Service Solutions (SPSS) and SmartPLS to analyze the measurement model and proposed hypotheses. Findings The usability of the chatbot had a positive influence on extrinsic values of customer experience, whereas the responsiveness of the chatbot had a positive impact on intrinsic values of customer experience. Furthermore, online customer experience had a positive relationship with customer satisfaction, and personality influenced the relationship between the usability of the chatbot and extrinsic values of customer experience. Originality/value This research extends understanding of the online customer experience with chatbots in e-retailing and provides empirical evidence by showing that extrinsic and intrinsic values of online customer experience are enhanced by chatbot adoption. C1 [Chen, Ja-Shen; Le, Tran-Thien-Y; Florence, Devina] Yuan Ze Univ, Coll Management, Taoyuan, Taiwan. [Le, Tran-Thien-Y] Can Tho Univ, Sch Econ, Can Tho, Vietnam. C3 Yuan Ze University; Can Tho University RP Chen, JS (autor correspondiente), Yuan Ze Univ, Coll Management, Taoyuan, Taiwan. EM jchen@saturn.yzu.edu.tw OI Florence, Devina/0000-0001-9272-4556; Chen, Ja-Shen/0000-0001-9099-1810 FU Ministry of Science and Technology, Taiwan [MoST 107-2410-H-155 -037 -MY3] FX This work was partially supported by Ministry of Science and Technology, Taiwan with grant number: MoST 107-2410-H-155 -037 -MY3. CR Adamopoulou E., 2020, MACHINE LEARNING APP, V2, DOI DOI 10.1016/J.MLWA.2020.100006 Agichtein E, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P897, DOI 10.1145/3336191.3371882 Alt R, 2019, ELECTRON MARK, V29, P79, DOI 10.1007/s12525-019-00340-3 Amiel T, 2004, COMPUT HUM BEHAV, V20, P711, DOI 10.1016/j.chb.2004.09.002 An M., 2018, ARTIFICIAL INTELLIGE Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Buhrmester M, 2011, PERSPECT PSYCHOL SCI, V6, P3, DOI 10.1177/1745691610393980 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Correa T, 2010, COMPUT HUM BEHAV, V26, P247, DOI 10.1016/j.chb.2009.09.003 Da Cunha AD, 2007, COMMUN ACM, V50, P109, DOI 10.1145/1230819.1241672 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 De Cicco R, 2020, INT J RETAIL DISTRIB, V48, P1213, DOI 10.1108/IJRDM-12-2019-0406 DeLone WH, 2004, INT J ELECTRON COMM, V9, P31, DOI 10.1080/10864415.2004.11044317 Duarte P, 2018, J RETAIL CONSUM SERV, V44, P161, DOI 10.1016/j.jretconser.2018.06.007 Fazel-e-Hasan SM, 2019, INT J RETAIL DISTRIB, V47, P836, DOI 10.1108/IJRDM-10-2018-0235 Finstad K, 2010, INTERACT COMPUT, V22, P323, DOI 10.1016/j.intcom.2010.04.004 Flavián C, 2006, INFORM MANAGE-AMSTER, V43, P1, DOI 10.1016/j.im.2005.01.002 Follmer DJ, 2017, EDUC RESEARCHER, V46, P329, DOI 10.3102/0013189X17725519 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Gallarza MG, 2017, J CONSUM BEHAV, V16, pE76, DOI 10.1002/cb.1661 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Hair JF, 2012, J ACAD MARKET SCI, V40, P414, DOI 10.1007/s11747-011-0261-6 Harrigan P, 2017, TOURISM MANAGE, V59, P597, DOI 10.1016/j.tourman.2016.09.015 Hollebeek LD, 2021, J SERV RES-US, V24, P3, DOI 10.1177/1094670520975110 Hu Tianran., 2018, P 2018 CHI C HUMAN F, P1, DOI DOI 10.1109/ICC.2018.8422598 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Irfan W, 2019, INT J RETAIL DISTRIB, V47, P350, DOI 10.1108/IJRDM-03-2018-0045 Jadin T, 2013, COMPUT HUM BEHAV, V29, P210, DOI 10.1016/j.chb.2012.08.007 John O. P., 1999, HDB PERSONALITY THEO Joyce M, 2015, INT J HUM-COMPUT INT, V31, P506, DOI 10.1080/10447318.2015.1064657 Judge TA, 1999, PERS PSYCHOL, V52, P621, DOI 10.1111/j.1744-6570.1999.tb00174.x Kang G.D., 2006, MANAG SERV QUAL, V16, P37, DOI [DOI 10.1108/09604520610639955, 10.1108/09604520610639955] Kees J, 2017, J ADVERTISING, V46, P159, DOI 10.1080/00913367.2017.1281781 Kokkinou A, 2013, INT J HOSP MANAG, V33, P435, DOI 10.1016/j.ijhm.2012.11.003 Kraus D., 2019, VOICE CAN CHANGE CUS, V14, P23 Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Li L, 2021, ELECTRON MARK, V31, P575, DOI 10.1007/s12525-020-00454-z Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 M?nster A., 2017, INT J RETAIL DISTRIB, V45, P122 Mason W, 2012, BEHAV RES METHODS, V44, P1, DOI 10.3758/s13428-011-0124-6 Mathwick C, 2001, J RETAILING, V77, P39, DOI 10.1016/S0022-4359(00)00045-2 McLean G, 2019, TECHNOL FORECAST SOC, V146, P55, DOI 10.1016/j.techfore.2019.05.017 Meuter ML, 2005, J MARKETING, V69, P61, DOI 10.1509/jmkg.69.2.61.60759 Molla A., 2011, Journal of Electronic Commerce Research, V2, P131, DOI DOI 10.1111/0033-3352.00196 Okuda T, 2018, FUJITSU SCI TECH J, V54, P4 Pappas IO, 2014, INT J RETAIL DISTRIB, V42, P187, DOI 10.1108/IJRDM-03-2012-0034 Peterson RA, 2014, J BUS RES, V67, P1035, DOI 10.1016/j.jbusres.2013.08.010 Petre M, 2006, BEHAV INFORM TECHNOL, V25, P189, DOI 10.1080/01449290500331198 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Pratt R., 2006, AC MAN M ATL GA Prentice C, 2019, J RETAIL CONSUM SERV, V47, P339, DOI 10.1016/j.jretconser.2018.12.014 Pricilla C, 2018, 2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), P244, DOI 10.1109/ICAICTA.2018.8541320 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Quintino A.R.P., 2019, THESIS Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 Roy SK, 2018, J RETAIL CONSUM SERV, V44, P293, DOI 10.1016/j.jretconser.2018.07.018 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Sanny L., 2020, Management Science Letters, V10, P1225, DOI [https://doi.org/10.5267/j.msl.2019.11.036, DOI 10.5267/J.MSL.2019.11.036] Sidaoui K, 2020, J SERV MANAGE, V31, P745, DOI 10.1108/JOSM-11-2019-0341 Sotolongo N., 2018, Applied Marketing Analytics, V4, P6 Sousa MJ, 2019, J BUS RES, V94, P257, DOI 10.1016/j.jbusres.2017.12.051 Stoeckli E, 2020, ELECTRON MARK, V30, P369, DOI 10.1007/s12525-019-00359-6 Tiwana A., 1998, Journal of Retailing and Consumer Services, P245, DOI DOI 10.1016/S0969-6989(97)00038-6 Tsao W., 2013, INT J MANAGEMENT, V30, P374 Ul Islam J, 2019, J RETAIL CONSUM SERV, V50, P277, DOI 10.1016/j.jretconser.2019.05.018 Ul Islam J, 2017, MARK INTELL PLAN, V35, P510, DOI 10.1108/MIP-10-2016-0193 Van den Broeck E, 2019, COMPUT HUM BEHAV, V98, P150, DOI 10.1016/j.chb.2019.04.009 van Griethuijsen RALF, 2015, RES SCI EDUC, V45, P581, DOI 10.1007/s11165-014-9438-6 Vassinen R., 2018, Journal of Brand Strategy, V7, P13 Wei W, 2016, INT J HOSP MANAG, V59, P105, DOI 10.1016/j.ijhm.2016.09.004 Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Xi NN, 2019, INT J INFORM MANAGE, V46, P210, DOI 10.1016/j.ijinfomgt.2018.12.002 Youn S, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106721 Zarouali B, 2018, CYBERPSYCH BEH SOC N, V21, P491, DOI 10.1089/cyber.2017.0518 Zhang ML, 2017, INTERNET RES, V27, P839, DOI 10.1108/IntR-06-2016-0148 NR 79 TC 74 Z9 76 U1 71 U2 315 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-0552 EI 1758-6690 J9 INT J RETAIL DISTRIB JI Int. J. Retail Distrib. Manag. PD OCT 6 PY 2021 VL 49 IS 11 BP 1512 EP 1531 DI 10.1108/IJRDM-08-2020-0312 EA MAY 2021 PG 20 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA WC0HS UT WOS:000647812800001 DA 2024-03-27 ER PT J AU Steinhoff, L Arli, D Weaven, S Kozlenkova, IV AF Steinhoff, Lena Arli, Denni Weaven, Scott Kozlenkova, Irina V. TI Online relationship marketing SO JOURNAL OF THE ACADEMY OF MARKETING SCIENCE LA English DT Article DE Relationship marketing; Relationship selling; Online relationships; E-commerce; Online shopping; Online retailing; Social media; Mobile shopping; Virtual assistants ID WORD-OF-MOUTH; AUGMENTED-REALITY; PRIVACY CONCERNS; PARASOCIAL INTERACTION; FLOW EXPERIENCE; MEDIA RICHNESS; CUSTOMERS; IMPACT; TRUST; WEB AB Online interactions have emerged as a dominant exchange mode for companies and customers. Cultivating online relationshipsdefined as relational exchanges that are mediated by Internet-based channelspresents firms with challenges and opportunities. In lockstep with exponential advancements in computing technology, a rich and ever-evolving toolbox is available to relationship marketers to manage customer relationships online, in settings including e-commerce, social media, online communities, mobile, big data, artificial intelligence, and augmented reality. To advance academic knowledge and guide managerial decision making, this study offers a comprehensive analysis of online relationship marketing in terms of its conceptual foundations, evolution in business practice, and empirical insights from academic research. The authors propose an evolving theory of online relationship marketing, characterizing online relationships as uniquely seamless, networked, omnichannel, personalized, and anthropomorphized. Based on these five essential features, six tenets and 11 corresponding propositions parsimoniously predict the performance effects of the manifold online relationship marketing strategies. C1 [Steinhoff, Lena] Univ Rostock, Fac Business & Social Sci, Inst Mkt & Serv Res, Ulmenstr 69, D-18057 Rostock, Germany. [Arli, Denni] Griffith Univ, Griffith Business Sch, Dept Mkt, 170 Kessels Rd, Nathan, Qld 4111, Australia. [Weaven, Scott] Griffith Univ, Griffith Business Sch, Dept Mkt, Parklands Dr, Southport, Qld 4222, Australia. [Kozlenkova, Irina V.] Univ Virginia, McIntire Sch Commerce, Mkt Dept, 125 Ruppel Dr, Charlottesville, VA 22903 USA. C3 University of Rostock; Griffith University; Griffith University; Griffith University - Gold Coast Campus; University of Virginia RP Steinhoff, L (autor correspondiente), Univ Rostock, Fac Business & Social Sci, Inst Mkt & Serv Res, Ulmenstr 69, D-18057 Rostock, Germany. EM lena.steinhoff@uni-rostock.de; d.arli@griffith.edu.au; s.weaven@griffith.edu.au; irinak@virginia.edu RI Arli, Denni/AAK-4715-2021; weaven, scott K/C-9937-2016 OI Weaven, Scott/0000-0001-9150-7111; Arli, Denni/0000-0002-6320-3994 CR Achen R.M., 2016, Journal of Relationship Marketing, V15, P247, DOI [DOI 10.1080/15332667.2016.1209054, https://doi.org/10.1080/15332667.2016.1209054] Adjei MT, 2010, J ACAD MARKET SCI, V38, P634, DOI 10.1007/s11747-009-0178-5 Aguirre E, 2015, J RETAILING, V91, P34, DOI 10.1016/j.jretai.2014.09.005 Andrews M, 2016, MARKET SCI, V35, P218, DOI 10.1287/mksc.2015.0905 [Anonymous], 2011, SCVNGRS 1 NATL BRAND [Anonymous], 2015, HARVARD BUSINESS REV [Anonymous], 2015, UNDERSTANDING ALIBAB [Anonymous], MY STARBUCKS IDEA ST [Anonymous], BUILD STRONG CUSTOME [Anonymous], 2017, MOBILE APP SUCCESS S [Anonymous], LOYALT DEC HOW EM DR [Anonymous], 2017, 8FIT HLTH FITNESS AP [Anonymous], WHAT AM TEACH US CRM [Anonymous], 2017, MCDONALDS MONOPOLY P [Anonymous], J MARKETING [Anonymous], WORST DATA BREACHES [Anonymous], 2013, MCKINSEY Q [Anonymous], 2017, GOOGLE STILL DOESNT [Anonymous], ANNA IKEA IS INTELLE [Anonymous], OREAL CASE STUDY AUG [Anonymous], 2017, TOPOLOGY LETS YOU TR [Anonymous], 2018, ROBOT HUMAN CONSUMER [Anonymous], CASE STUDY GAME LAYE [Anonymous], 2017, NIKE USE SOCIAL MEDI [Anonymous], RESPOND TOMORROWS CU [Anonymous], 2017, ALIBABA SMASHES ITS [Anonymous], MARKETING SCI I WORK [Anonymous], MOB MARK CAS STUD OR [Anonymous], 2018, NUMB ACT CONS AL ONL [Anonymous], GOOGLES NEW PRIVACY [Anonymous], ABI RES [Anonymous], 10 SUPERMARKETS 10 V [Anonymous], VIRTUAL BECOMING VIA [Anonymous], HARVARD BUSINESS REV [Anonymous], WHAT IS UBERS COMPET [Anonymous], P C COMP HUM FACT CO [Anonymous], NUMB UN VIS WORLDW T [Anonymous], MEDIUM [Anonymous], CISC VIRT NETW IND F [Anonymous], INTERNATIONAL JOURNA [Anonymous], CUST HOM WORK APP HL [Anonymous], ONL SHOPP FREQ INT U [Anonymous], EMARKETER REPOR 0618 Ansari A, 2008, J MARKETING RES, V45, P60, DOI 10.1509/jmkr.45.1.60 Arli D, 2018, IND MARKET MANAG, V69, P169, DOI 10.1016/j.indmarman.2017.07.018 Armerding Taylor., 2018, 17 BIGGEST DATA BREA Arora N, 2008, MARKET LETT, V19, P305, DOI 10.1007/s11002-008-9056-z Ascarza E, 2017, J MARKETING RES, V54, P347, DOI 10.1509/jmr.15.0442 Ballantine PW, 2005, ADV CONSUM RES, V32, P197 Barnes NoraGanim., 2016, Use of Popular Tools Remains Constant as Use of Instagram Expands Quickly Among the 2016 Fortune 500 Bart Y, 2005, J MARKETING, V69, P133, DOI 10.1509/jmkg.2005.69.4.133 Ben Mimoun MS, 2012, J RETAIL CONSUM SERV, V19, P605, DOI 10.1016/j.jretconser.2012.07.006 BI Intelligence, 2016, AM CUST LOYALT EATS Bleier A, 2015, J RETAILING, V91, P390, DOI 10.1016/j.jretai.2015.04.001 Brehm J. W., 1966, THEORY PSYCHOL REACT Brown Morgan, 2014, AIRBNB GROWTH STORY Burgoon JK, 2000, COMPUT HUM BEHAV, V16, P553, DOI 10.1016/S0747-5632(00)00029-7 Burke RR, 2002, J ACAD MARKET SCI, V30, P411, DOI 10.1177/009207002236914 Cassell J., 2000, EMBODIED CONVERSATIO Castelo N., 2018, Consumer adoption of algorithms that blur the line between human and machine Chan KW, 2010, J BUS RES, V63, P1033, DOI 10.1016/j.jbusres.2008.08.009 Chang YP, 2012, COMPUT HUM BEHAV, V28, P995, DOI 10.1016/j.chb.2012.01.001 Csikszentmihalyi M., 2008, FLOW PSYCHOL OPTIMAL Csikzentimihalyi M., 1975, BOREDOM ANXIETY EXPE DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 Dans E., 2018, Forbes Danziger Pamela N., 2018, AMAZONS CUSTOMER LOY Darrow B., 2016, Fortune de Haan E, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.17.0113 DiSalvo C., 2003, Proceedings of the Conference on Designing Pleasurable Products and interfaces DPPI'03, P67, DOI DOI 10.1145/782896.782913 Duan JY, 2017, J CONSUM MARK, V34, P404, DOI 10.1108/JCM-07-2016-1871 Dubey A., 2007, MCKIN Q, V6, P1 DWYER FR, 1987, J MARKETING, V51, P11, DOI 10.2307/1251126 Eastlick MA, 2006, J BUS RES, V59, P877, DOI 10.1016/j.jbusres.2006.02.006 eMarketer, 2017, WORLDW RET EC SAL EM Fischer E, 1996, ADV CONSUM RES, V23, P178 Fruend Melissa, 2017, 2017 COLLOQUY LOYALT Gartner, 2011, GARTN CUST 360 SUMM Gensler S, 2012, MARKET LETT, V23, P987, DOI 10.1007/s11002-012-9199-9 Giles DC, 2002, MEDIA PSYCHOL, V4, P279, DOI 10.1207/S1532785XMEP0403_04 GRANOVETTER MS, 1973, AM J SOCIOL, V78, P1360, DOI 10.1086/225469 Gray K, 2012, COGNITION, V125, P125, DOI 10.1016/j.cognition.2012.06.007 Grégoire Y, 2009, J MARKETING, V73, P18, DOI 10.1509/jmkg.73.6.18 Gwinner KP, 1998, J ACAD MARKET SCI, V26, P101, DOI 10.1177/0092070398262002 Henderson CM, 2011, J CONSUM PSYCHOL, V21, P256, DOI 10.1016/j.jcps.2011.02.007 Hilken T, 2017, J ACAD MARKET SCI, V45, P884, DOI 10.1007/s11747-017-0541-x Hoerner J, 1999, ADVERT CONS, P135 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Huang TL, 2017, INTERNET RES, V27, P449, DOI 10.1108/IntR-11-2015-0321 Hume David., 1957, NATURAL HIST RELIG Iacobucci D., 1996, Journal of Retailing and Consumer Services, V3, P195 Iyengar R, 2011, MARKET SCI, V30, P195, DOI 10.1287/mksc.1100.0566 Javornik A, 2016, J RETAIL CONSUM SERV, V30, P252, DOI 10.1016/j.jretconser.2016.02.004 Johnson JL, 2003, J ACAD MARKET SCI, V31, P74, DOI 10.1177/0092070302238603 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Keeling K, 2013, J BUS RES, V66, P847, DOI 10.1016/j.jbusres.2011.06.010 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Kim H, 2013, INFORM MANAGE-AMSTER, V50, P169, DOI 10.1016/j.im.2013.02.003 Kim SJ, 2015, J INTERACT MARK, V31, P28, DOI 10.1016/j.intmar.2015.05.004 Koch OF, 2015, J INTERACT MARK, V32, P37, DOI 10.1016/j.intmar.2015.09.005 Koda T, 1996, RO-MAN '96 - 5TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN COMMUNICATION, PROCEEDINGS, P189, DOI 10.1109/ROMAN.1996.568812 Koetsier J., 2018, FORBES Kozinets RV, 2010, J MARKETING, V74, P71, DOI 10.1509/jmkg.74.2.71 Kozlenkova IV, 2017, J MARKETING, V81, P21, DOI 10.1509/jm.15.0430 KPMG, 2017, The truth about online consumers: 2017 Global Online Consumer Report Krafft M, 2017, J INTERACT MARK, V39, P39, DOI 10.1016/j.intmar.2017.03.001 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Kumar V, 2005, J INTERACT MARK, V19, P44, DOI 10.1002/dir.20034 Kushwaha T, 2013, J MARKETING, V77, P67, DOI 10.1509/jm.11.0297 Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Lee MC, 2010, INT J HUM-COMPUT INT, V26, P601, DOI 10.1080/10447311003781318 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Liu SX, 2015, INFORM SCIENCES, V306, P34, DOI 10.1016/j.ins.2015.01.034 Liu SH, 2009, COMPUT EDUC, V52, P599, DOI 10.1016/j.compedu.2008.11.002 Living Actor, 2016, YOK TOSH VIRT HELPD Luna D, 2002, J ACAD MARKET SCI, V30, P397, DOI 10.1177/009207002236913 Lunden Ingrid, 2017, TECHCRUNCH MacDorman K.F., 2005, COGSCI 2005 WORKSHOP, P106, DOI DOI 10.1016/J.CHB.2012.11.021 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 Martin KD, 2017, J ACAD MARKET SCI, V45, P135, DOI 10.1007/s11747-016-0495-4 Martin KD, 2017, J MARKETING, V81, P36, DOI 10.1509/jm.15.0497 Mathwick C., 2002, Journal of Interactive Marketing, V16, P40, DOI DOI 10.1002/DIR.10003 McKenna KYA, 2002, J SOC ISSUES, V58, P9, DOI 10.1111/1540-4560.00246 MORGAN RM, 1994, J MARKETING, V58, P20, DOI 10.2307/1252308 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Mothersbaugh DL, 2012, J SERV RES-US, V15, P76, DOI 10.1177/1094670511424924 Mukherjee A, 2007, EUR J MARKETING, V41, P1173, DOI 10.1108/03090560710773390 Nakamura Jeanne., 2001, HDB POSITIVE PSYCHOL, P195 Naylor RW, 2012, J MARKETING, V76, P105, DOI 10.1509/jm.11.0105 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Olson P., 2018, Forbes. Palmatier RW, 2007, J MARKETING, V71, P172, DOI 10.1509/jmkg.71.4.172 Palmatier RW, 2007, J MARKETING RES, V44, P185, DOI 10.1509/jmkr.44.2.185 Palmatier RW, 2006, J MARKETING, V70, P136, DOI 10.1509/jmkg.70.4.136 Palmatier RW, 2009, J MARKETING, V73, P1, DOI 10.1509/jmkg.73.5.1 Palmatier RobertW., 2008, Relationship Marketing Phan TQ, 2018, MARKET SCI, V37, P259, DOI 10.1287/mksc.2017.1077 Phelps J, 2000, J PUBLIC POLICY MARK, V19, P27, DOI 10.1509/jppm.19.1.27.16941 Rafaeli A, 2017, J SERV RES-US, V20, P91, DOI 10.1177/1094670516679275 Reeves B, 1996, MEDIA EQUATION PEOPL Researchscape International, 2018, 2018 TRENDS PERS Riquelme IP, 2016, J INTERACT MARK, V35, P16, DOI 10.1016/j.intmar.2016.01.002 Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212 Rosario AB, 2016, J MARKETING RES, V53, P297, DOI 10.1509/jmr.14.0380 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 Saad S.B., 2016, J MARKET MANAG, V4, P63 Serenko A, 2007, COMPUT HUM BEHAV, V23, P478, DOI 10.1016/j.chb.2004.10.042 Shah DV, 2015, ANN AM ACAD POLIT SS, V659, P6, DOI 10.1177/0002716215572084 Shankar V, 2003, INT J RES MARK, V20, P153, DOI 10.1016/S0167-8116(03)00016-8 Sherman L., 2018, Forbes Sheth J.N., 1995, INT BUS REV, V4, P397, DOI [DOI 10.1016/0969-5931, 10.1016/0969-5931(95)00018-6, DOI 10.1016/0969-5931(95)00018-6] Son JY, 2008, MIS QUART, V32, P503 Statista, 2021, NUMBER APPS AVAILABL Statista I., 2018, Number of social media users worldwide from 2010 to 2021 Steinhoff L, 2016, J ACAD MARKET SCI, V44, P88, DOI 10.1007/s11747-014-0405-6 Tam KY, 2006, MIS QUART, V30, P865 Taylor DG, 2009, ELECTRON COMMER RES, V9, P203, DOI 10.1007/s10660-009-9036-2 Thomas JS, 2005, J MARKETING, V69, P239, DOI 10.1509/jmkg.2005.69.4.239 Toker-Yildiz K, 2017, J MARKETING RES, V54, P364, DOI 10.1509/jmr.13.0482 Tolido Ron, 2016, TECHNOVISION 2016 NO van Den Bulte Christophe., 2007, Social Networks and Marketing van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Venkatesan R, 2007, J RETAILING, V83, P309, DOI 10.1016/j.jretai.2006.04.002 Verhoef PC, 2015, J RETAILING, V91, P174, DOI 10.1016/j.jretai.2015.02.005 Verma V, 2016, J ACAD MARKET SCI, V44, P206, DOI 10.1007/s11747-015-0429-6 Viglia G, 2018, J BUS RES, V89, P404, DOI 10.1016/j.jbusres.2017.12.029 Wakefield Jane, 2016, WOULD YOU WANT TALK Wallace DW, 2004, J RETAILING, V80, P249, DOI 10.1016/j.jretai.2004.10.002 Walsh G, 2010, J RETAIL CONSUM SERV, V17, P130, DOI 10.1016/j.jretconser.2009.11.003 Wang RJH, 2015, J RETAILING, V91, P217, DOI 10.1016/j.jretai.2015.01.002 Waytz A, 2010, PERSPECT PSYCHOL SCI, V5, P219, DOI 10.1177/1745691610369336 Yadav MS, 2014, J MARKETING, V78, P20, DOI 10.1509/jm.12.0020 Yazdani E, 2018, MARKET SCI, V37, P838, DOI 10.1287/mksc.2018.1101 Yoon D, 2008, PSYCHOL MARKET, V25, P602, DOI 10.1002/mar.20227 Zhang YC, 2017, J MARKETING, V81, P24, DOI 10.1509/jm.14.0344 Zhou T, 2011, COMPUT HUM BEHAV, V27, P883, DOI 10.1016/j.chb.2010.11.013 Zhu R, 2012, J MARKETING RES, V49, P394, DOI 10.1509/jmr.08.0499 NR 178 TC 171 Z9 198 U1 92 U2 766 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0092-0703 EI 1552-7824 J9 J ACAD MARKET SCI JI J. Acad. Mark. Sci. PD MAY PY 2019 VL 47 IS 3 BP 369 EP 393 DI 10.1007/s11747-018-0621-6 PG 25 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HV5NS UT WOS:000466031200001 HC Y HP N DA 2024-03-27 ER PT J AU Mühlhoff, R AF Muehlhoff, Rainer TI Human-aided artificial intelligence: Or, how to run large computations in human brains? Toward a media sociology of machine learning SO NEW MEDIA & SOCIETY LA English DT Article DE Artificial intelligence; audience labor; commercial content moderation; cybernetics; deep learning; human computation; human-computer interaction; social media; tracking; training data; user experience design ID COMPUTER AB Today, artificial intelligence (AI), especially machine learning, is structurally dependent on human participation. Technologies such as deep learning (DL) leverage networked media infrastructures and human-machine interaction designs to harness users to provide training and verification data. The emergence of DL is therefore based on a fundamental socio-technological transformation of the relationship between humans and machines. Rather than simulating human intelligence, DL-based AIs capture human cognitive abilities, so they are hybrid human-machine apparatuses. From a perspective of media philosophy and social-theoretical critique, I differentiate five types of "media technologies of capture" in AI apparatuses and analyze them as forms of power relations between humans and machines. Finally, I argue that the current hype about AI implies a relational and distributed understanding of (human/artificial) intelligence, which I categorize under the term "cybernetic AI." This form of AI manifests in socio-technological apparatuses that involve new modes of subjectivation, social control, and digital labor. C1 [Muehlhoff, Rainer] Tech Univ Berlin, Cluster Sci Intelligence, Philosophy, Eth Design AI & Robot, Berlin, Germany. C3 Technical University of Berlin RP Mühlhoff, R (autor correspondiente), Tech Univ Berlin, Excellence Cluster Sci Intelligence, Str 17 Juni 135, D-10623 Berlin, Germany. EM mail@rmuehlhoff.de FU Collaborative Research Center SFB1171 Affective Societies, project B05, at Freie Universitat Berlin - Deutsche Forschungsgemeinschaft (DFG) FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research of this article has in part been supportet by the Collaborative Research Center SFB1171 Affective Societies, project B05, at Freie Universitat Berlin, funded by the Deutsche Forschungsgemeinschaft (DFG), 2015-2019. CR Ahn L-V, 2004, P SIGCHI C HUM FACT, P319, DOI DOI 10.1145/985692.985733 [Anonymous], COMPUTER ALS MEDIUM Ashby W. R, 1957, INTRO CYBERNETICS Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006 Brooks R.A., 1991, INTELLIGENCE REASON Copeland BJ, 2000, MIND MACH, V10, P519, DOI 10.1023/A:1011285919106 Deterding S., 2011, 15 INT AC MINDTREK C, V12, P9, DOI [DOI 10.1145/2181037.2181040, 10.1145/2181037.2181040] Eubanks V., 2018, AUTOMATING INEQUALIT, DOI DOI 10.5555/3208509 Fisher E, 2015, DYN VIRTUAL WORK, P1, DOI 10.1057/9781137478573 Fisher E, 2015, DYN VIRTUAL WORK, P115 Fuchs C, 2010, INFORM SOC, V26, P179, DOI 10.1080/01972241003712215 Galloway A.R., 2007, The Exploit: A Theory of Networks Geyer F, 1995, KYBERNETES, V24, P6, DOI 10.1108/03684929510089321 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Haugeland J, 1981, MIND DESIGN, P34 Haugeland J, 1989, Artificial Intelligence: The Very Idea, DOI DOI 10.7551/MITPRESS/1170.001.0001 Hutchins E., 2001, INT ENCY SOCIAL BEHA, P2068, DOI 10.1016/B0-08-043076-7/01636-3 Lanier Jaron., 2014, WHO OWNS FUTURE LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Leonard TC, 2008, CONST POLITICAL ECON, V19, P356, DOI 10.1007/s10602-008-9056-2 Levitt GeraldM., 2000, TURK CHESS AUTOMATON Little Greg., 2010, Proceedings of the 23nd annual ACM symposium on User interface software and technology, P57, DOI DOI 10.1145/1866029.1866040 Muhlhoff R, 2019, ZFM Z MEDIENWISSENSC, V11, P56 Muhlhoff R, 2019, AFFEKT MACHT NETZ WE, P81 Muhlhoff R., 2018, Leviathan, V46, P551, DOI [10.5771/0340-0425-2018-4-551, DOI 10.5771/0340-0425-2018-4-551] NEWELL A, 1976, COMMUN ACM, V19, P113, DOI 10.1145/360018.360022 Ng AY, 2017, COMMUNICATION 0125 Noble Safiya Umoja, 2018, Algorithms of Oppression: How Search Engines Reinforce Racism, DOI DOI 10.2307/J.CTT1PWT9W5 Norman D., 1988, PSYCHOL EVERYDAY THI ONeil Cathy, 2016, WEAPONS MATH DESTRUC OReilly T., 2005, WHAT IS WEB 2 0 DESI Roberts S. T., 2016, MEDIA STUDIES PUBLIC, V12 Roberts ST., WI J MOBILE MEDIA, V10, P1 Rosenblueth A., 1943, Philos. Sci., V10, P18, DOI DOI 10.1086/286788 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Rumelhart DE., 1985, LEARNING INTERNAL RE, DOI [DOI 10.7551/MITPRESS/5236.001.0001, 10.1016/b978-1-4832-1446-7.50035-2] Scholz Trebor., 2013, Digital Labor: The Internet As Playground and Factory Sudmann A, 2018, MACHINE LEARNING MED, P9 Sun R, 2014, CAMBRIDGE HANDBOOK OF ARTIFICIAL INTELLIGENCE, P108 Terranova Tiziana., 2000, SOC TEXT, V18, P33, DOI DOI 10.1215/01642472-18-2_63-33 Turing A. M., 1996, Philos. Math., V4, P256, DOI [10.1093/philmat/4.3.256, DOI 10.1093/PHILMAT/4.3.256] Turing AM, 1937, P LOND MATH SOC, V42, P230, DOI 10.1112/plms/s2-42.1.230 Turing AM., 1950, Mind, VLIX, P433, DOI 10.1093/mind/LIX.236.433 von Ahn L, 2003, LECT NOTES COMPUT SC, V2656, P294 von Ahn L, 2006, COMMUNICATION 0726 VON AHN L., 2006, SIGCHI C HUMAN FACTO, P55, DOI DOI 10.1145/1124772.1124782 Von Ahn L, 2005, THESIS von Ahn L, 2008, SCIENCE, V321, P1465, DOI 10.1126/science.1160379 von Ahn L, 2006, COMPUTER, V39, P92, DOI 10.1109/MC.2006.196 WEISER M, 1991, SCI AM, V265, P94, DOI 10.1038/scientificamerican0991-94 WEIZENBAUM J, 1966, COMMUN ACM, V9, P36, DOI 10.1145/357980.357991 Wiener N., 1954, HUMAN USE HUMAN BEIN Woodcock J, 2018, SOCIOL REV, V66, P542, DOI 10.1177/0038026117728620 NR 53 TC 28 Z9 31 U1 8 U2 74 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1461-4448 EI 1461-7315 J9 NEW MEDIA SOC JI New Media Soc. PD OCT PY 2020 VL 22 IS 10 BP 1868 EP 1884 AR 1461444819885334 DI 10.1177/1461444819885334 EA NOV 2019 PG 17 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA NM8FH UT WOS:000496074600001 OA hybrid DA 2024-03-27 ER PT J AU Arpaci, I AF Arpaci, Ibrahim TI A Multianalytical SEM-ANN Approach to Investigate the Social Sustainability of AI Chatbots Based on Cybersecurity and Protection Motivation Theory SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE AI chatbots; artificial intelligence (AI); confidentiality; structural equation modeling and artificial neural network (SEM-ANN) approach; sustainability ID INFORMATION SECURITY; FEAR APPEALS; BEHAVIORS; ADOPTION AB With a primary focus on cybersecurity risks, this study endeavors to explore the sustainable deployment of artificial intelligence (AI) chatbots and, ultimately, to promote their social sustainability. The study introduces an enhanced model built upon the "Protection Motivation Theory" (PMT) to explore the factors that predict the social sustainability of AI chatbots. The proposed model is evaluated using both "structural equation modeling" and "artificial neural network" (ANN) analyses, leveraging data obtained from 1741 participants. The findings reveal that PMT factors significantly predict the sustainable use of AI chatbots. Moreover, cybersecurity concerns, including confidentiality and privacy, have emerged as significant predictors of sustainable use, impacting the social sustainability of AI chatbots. The indicated paths in the model explain 70% and 74% of the variance in sustainable use and social sustainability, respectively. The results from the ANN analysis also emphasize the critical role of confidentiality as the primary predictor. The significance of this study lies in the development of a unified model that integrates cybersecurity and PMT, offering a distinctive framework. In addition to its theoretical contributions, the study offers practical insights for service providers, application developers, and decision-makers in the field, thereby influencing the future of AI chatbots. C1 [Arpaci, Ibrahim] Bandirma Onyedi Eylul Univ, Fac Engn & Nat Sci, Dept Software Engn, TR-10250 Balikesir, Turkiye. C3 Bandirma Onyedi Eylul University RP Arpaci, I (autor correspondiente), Bandirma Onyedi Eylul Univ, Fac Engn & Nat Sci, Dept Software Engn, TR-10250 Balikesir, Turkiye. EM iarpaci@bandirma.edu.tr RI ARPACI, Ibrahim/AAC-2389-2019 OI ARPACI, Ibrahim/0000-0001-6513-4569 CR Abbasi GA, 2023, J MARKET THEORY PRAC, DOI 10.1080/10696679.2023.2218098 Al-Emran M, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3237789 Al-Emran M, 2021, J ENTERP INF MANAG, V34, P1229, DOI 10.1108/JEIM-02-2020-0052 Al-Sharafi MA, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107708 Al-Sharafi MA, 2023, INT J HUM-COMPUT INT, V39, P2673, DOI 10.1080/10447318.2022.2084036 Alkaissi H, 2023, CUREUS J MED SCIENCE, V15, DOI 10.7759/cureus.35179 [Anonymous], 2023, ChatGPT: Optimizing Language Models for Dialogue Ariyaratne S, 2023, SKELETAL RADIOL, V52, P1755, DOI 10.1007/s00256-023-04340-5 Arpaci I, 2023, TECHNOL FORECAST SOC, V196, DOI 10.1016/j.techfore.2023.122858 Arpaci I, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107678 Arpaci I, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102120 Arpaci I, 2022, INFORM DEV, V38, P218, DOI 10.1177/0266666921997512 Arpaci I, 2019, COMPUT HUM BEHAV, V90, P181, DOI 10.1016/j.chb.2018.09.005 Arpaci I, 2016, COMPUT HUM BEHAV, V58, P150, DOI 10.1016/j.chb.2015.12.067 Assefa G, 2007, TECHNOL SOC, V29, P63, DOI 10.1016/j.techsoc.2006.10.007 Belk R, 2021, SERV IND J, V41, P860, DOI 10.1080/02642069.2020.1727892 Bender EM, 2021, PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, P610, DOI 10.1145/3442188.3445922 Bijani M, 2022, GLOB ECOL CONSERV, V39, DOI 10.1016/j.gecco.2022.e02303 Boerman SC, 2021, COMMUN RES, V48, P953, DOI 10.1177/0093650218800915 Boucher EM, 2021, EXPERT REV MED DEVIC, V18, P37, DOI 10.1080/17434440.2021.2013200 Bouschery SG, 2023, J PROD INNOVAT MANAG, V40, P139, DOI 10.1111/jpim.12656 Breidbach CF, 2020, J SERV MANAGE, V31, P163, DOI 10.1108/JOSM-03-2019-0073 Chen TC, 2009, PROC EUR SOLID-STATE, P1 Chen Y, 2023, INFORM SYST FRONT, V25, P161, DOI 10.1007/s10796-022-10291-4 Corallo A, 2023, IEEE T ENG MANAGE, V70, P3745, DOI 10.1109/TEM.2021.3084687 Daragmeh A., 2021, J. Open Innov. Technol. Market Complexity., V7 Doane AN, 2016, COMPUT HUM BEHAV, V60, P508, DOI 10.1016/j.chb.2016.02.010 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Faraz NA, 2021, CORP SOC RESP ENV MA, V28, P1171, DOI 10.1002/csr.2115 Floyd DL, 2000, J APPL SOC PSYCHOL, V30, P407, DOI 10.1111/j.1559-1816.2000.tb02323.x Gao YW, 2015, IND MANAGE DATA SYST, V115, P1704, DOI 10.1108/IMDS-03-2015-0087 Graf A, 2023, NEUROSCIENCE, V515, P71, DOI 10.1016/j.neuroscience.2023.02.008 Gumasing MJJ, 2022, INT J DISAST RISK RE, V70, DOI 10.1016/j.ijdrr.2021.102759 Hair JF., 2022, MULTIVARIATE DATA AN Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 Homolak J, 2023, CROAT MED J, V64, P1, DOI 10.3325/cmj.2023.64.1 Hooda A, 2021, INT J ELECTRON GOV R, V17, P44, DOI 10.4018/IJEGR.2021070103 Hsieh HL, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14010008 Hutson M, 2021, NATURE, V591, P22, DOI 10.1038/d41586-021-00530-0 Ifinedo P, 2012, COMPUT SECUR, V31, P83, DOI 10.1016/j.cose.2011.10.007 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Johnston AC, 2010, MIS QUART, V34, P549 Jorzik P, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3275643 Kalinic Z, 2021, EXPERT SYST APPL, V175, DOI 10.1016/j.eswa.2021.114803 Karatas K, 2023, EDUC URBAN SOC, V55, P674, DOI 10.1177/00131245221087999 Kasneci E, 2023, LEARN INDIVID DIFFER, V103, DOI 10.1016/j.lindif.2023.102274 Keith MJ, 2015, INFORM SYST J, V25, P637, DOI 10.1111/isj.12082 King MR, 2023, CELL MOL BIOENG, V16, P1, DOI 10.1007/s12195-022-00754-8 Kretzschmar K, 2019, BIOMED INFORM INSIGH, V11, DOI 10.1177/1178222619829083 Lee Y, 2011, DECIS SUPPORT SYST, V50, P361, DOI 10.1016/j.dss.2010.07.009 Liu MQ, 2022, HUM VACC IMMUNOTHER, V18, DOI 10.1080/21645515.2022.2026136 Lund Brady D., 2023, Library Hi Tech News, P26, DOI 10.1108/LHTN-01-2023-0009 Lund BD, 2023, J ASSOC INF SCI TECH, V74, P570, DOI 10.1002/asi.24750 McGreevey JD, 2020, JAMA-J AM MED ASSOC, V324, P552, DOI 10.1001/jama.2020.2724 McTear M., 2021, Synthesis Lectures on Human Language Technologies. Méndez-Suárez M, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3258686 Miorandi D, 2012, AD HOC NETW, V10, P1497, DOI 10.1016/j.adhoc.2012.02.016 Mou J, 2022, J ASSOC INF SYST, V23, P196, DOI 10.17705/1jais.00723 Alshabib HN, 2022, IEEE T ENG MANAGE, V69, P3664, DOI 10.1109/TEM.2021.3083330 Nguyen TH, 2022, INFORM SYST FRONT, V24, P797, DOI 10.1007/s10796-021-10212-x Paul J, 2023, INT J CONSUM STUD, V47, P1213, DOI 10.1111/ijcs.12928 Picoto WN, 2023, INT J E-BUS RES, V19, DOI 10.4018/IJEBR.321647 PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Qin F, 2020, BRIT J EDUC TECHNOL, V51, P1693, DOI 10.1111/bjet.12994 Rainear AM, 2017, COMMUN RES REP, V34, P239, DOI 10.1080/08824096.2017.1286472 Roberts H, 2021, AI SOC, V36, P59, DOI 10.1007/s00146-020-00992-2 ROGERS RW, 1975, J PSYCHOL, V91, P93, DOI 10.1080/00223980.1975.9915803 Rogers RW., 1997, HDB HLTH BEHAV RES Sedlakova J, 2023, AM J BIOETHICS, V23, P4, DOI 10.1080/15265161.2022.2048739 Sergueeva K, 2017, LECT NOTES COMPUT SC, V10293, P209, DOI 10.1007/978-3-319-58481-2_17 Shore A, 2022, COMPUT HUM BEHAV, V130, DOI 10.1016/j.chb.2022.107188 Siponen M, 2007, INT FED INFO PROC, V232, P133 Stokel-Walker C, 2023, NATURE, V614, P214, DOI 10.1038/d41586-023-00340-6 Tsai HYS, 2016, COMPUT SECUR, V59, P138, DOI 10.1016/j.cose.2016.02.009 Vance A, 2012, INFORM MANAGE-AMSTER, V49, P190, DOI 10.1016/j.im.2012.04.002 Verkijika SF, 2018, COMPUT SECUR, V77, P860, DOI 10.1016/j.cose.2018.03.008 von Solms R, 2013, COMPUT SECUR, V38, P97, DOI 10.1016/j.cose.2013.04.004 White GRT, 2022, IEEE T ENG MANAGE, V69, P3826, DOI 10.1109/TEM.2020.2994981 Wu DM, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106229 Zhou J, 2024, FRONT INFORM TECH EL, V25, P6, DOI 10.1631/FITEE.2300089 NR 81 TC 0 Z9 0 U1 12 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 1714 EP 1725 DI 10.1109/TEM.2023.3339578 PG 12 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA DT2F1 UT WOS:001134252100004 DA 2024-03-27 ER PT J AU Kim, YS Hwangbo, H Lee, HJ Lee, WS AF Kim, Yang Sok Hwangbo, Hyunwoo Lee, Hee Jun Lee, Won Seok TI Sequence aware recommenders for fashion E-commerce SO ELECTRONIC COMMERCE RESEARCH LA English DT Article; Early Access DE Recommendation system; Sequence-aware recommendation; Deep learning; Fashion E-commerce; Fashion product recommendation; Recurrent neural network ID ALGORITHM; SYSTEMS; SUPPORT; CLOTHES AB In recent years, fashion e-commerce has become more and more popular. Since there are so many fashion products provided by e-commerce retailers, it is necessary to provide recommendation services to users to minimize information overload. When users look for a product on an e-commerce website, they usually click the product information sequentially. Previous recommenders, such as content-based recommenders and collaborative filtering recommenders, do not consider this important behavioral characteristic. To take advantage of this important characteristic, this study proposes sequence-aware recommenders for fashion product recommendation using a gated recurrent unit (GRU) algorithm. We conducted an experiment using a dataset collected from an e-commerce website of a Korean fashion company. Experimental results show that sequence aware recommenders outperform non-sequence aware recommender, and multiple sequence-based recommenders outperform a single sequence-based recommender because they consider the attributes of fashion products. Finally, we discuss the implications of our study on fashion recommendations and propose further research topics. C1 [Kim, Yang Sok; Lee, Hee Jun; Lee, Won Seok] Keimyung Univ, Dept Management Informat Syst, Daegu 42061, South Korea. [Hwangbo, Hyunwoo] Hana Financial Grp, Seoul 04523, South Korea. C3 Keimyung University RP Hwangbo, H (autor correspondiente), Hana Financial Grp, Seoul 04523, South Korea. EM scotthwangbo@gmail.com FU Keimyung University [20180731, 20190760, 20200589] FX This research was supported by the Bisa Research Grant of Keimyung University in 2018, 2019, and 2020 (No. 20180731, No. 20190760, and No. 20200589). CR [Anonymous], 2010, RECSYS, DOI [DOI 10.1145/1864708.1864770, 10.1145/1864708.1864770.] Aryabarzan N, 2018, EXPERT SYST APPL, V105, P129, DOI 10.1016/j.eswa.2018.03.041 Ay B., 2021, GENERATIVE ADVERSARI, P185 Bernhardsson E., 2014, RECURRENT NEURAL NET Campos PG, 2014, USER MODEL USER-ADAP, V24, P67, DOI 10.1007/s11257-012-9136-x Cheng WH, 2021, ACM COMPUT SURV, V54, DOI [10.1145/3552468.3554360, 10.1145/3447239] Cho KYHY, 2014, Arxiv, DOI arXiv:1409.1259 Cunha T, 2018, INFORM SCIENCES, V423, P128, DOI 10.1016/j.ins.2017.09.050 Da'u A, 2020, ARTIF INTELL REV, V53, P2709, DOI 10.1007/s10462-019-09744-1 Devooght R., 2016, arXiv Devooght R, 2017, PROCEEDINGS OF THE 25TH CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION (UMAP'17), P13, DOI 10.1145/3079628.3079670 Ding Y., 2005, PROC 14 ACM INT C IN, P485, DOI DOI 10.1145/1099554.1099689 Fang H, 2020, ACM T INFORM SYST, V39, DOI 10.1145/3426723 Fukuda M, 2011, LECT NOTES ENG COMP, P349 Glauber R, 2019, Arxiv, DOI arXiv:1912.08932 Gu SD, 2017, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON COMMUNICATION AND INFORMATION PROCESSING (ICCIP 2017), P185, DOI 10.1145/3162957.3162982 Hidasi B, 2016, Arxiv, DOI arXiv:1511.06939 Hidasi B, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P241, DOI 10.1145/2959100.2959167 Hwangbo H, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123336 Iwata T., 2011, IJCAI, V3, P2262 Jagadeesh V, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1925, DOI 10.1145/2623330.2623332 Jannach D, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P306, DOI 10.1145/3109859.3109872 Kolstad A., 2017, P RECSYSKTL WORKSHOP Kuhn T, 2019, Arxiv, DOI arXiv:1908.09493 Lin YR, 2019, CACS INT AUTOMAT CON, DOI 10.1109/cacs47674.2019.9024361 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Liu K, 2017, INT CONF DAT MIN WOR, P773, DOI 10.1109/ICDMW.2017.107 Lu J, 2015, DECIS SUPPORT SYST, V74, P12, DOI 10.1016/j.dss.2015.03.008 Meena S., 2018, FORRESTER ANAL ONLIN Moreira GDP, 2018, PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), P15, DOI 10.1145/3270323.3270328 Quadrana M., 2017, ALGORITHM SEQUENCE A Quadrana M, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P539, DOI 10.1145/3240323.3241621 Quadrana M, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3190616 Quanping H., 2015, INT J U AND E SERVIC, V8, P159, DOI 10.14257/ijunesst.2015.8.10.16 Rendle S., 2009, P 25 C UNCERTAINTY A, P452, DOI DOI 10.5555/1795114.1795167 Sato Ayaka, 2013, Human-Computer Interaction. Towards Intelligent and Implicit Interaction. 15th International Conference, HCI International 2013. Proceedings: LNCS 8008, P112, DOI 10.1007/978-3-642-39342-6_13 Shani G, 2005, J MACH LEARN RES, V6, P1265 Sherstinsky A, 2020, PHYSICA D, V404, DOI 10.1016/j.physd.2019.132306 Shewalkar A, 2019, J ARTIF INTELL SOFT, V9, P235, DOI 10.2478/jaiscr-2019-0006 Shi Y, 2014, ACM COMPUT SURV, V47, DOI 10.1145/2556270 Smirnova E., 2017, P 2 WORKSH DEEP LEAR, P2 Sottocornola G, 2018, COMPANION PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2018 (WWW 2018), P1395, DOI 10.1145/3184558.3191582 Soysal ÖM, 2015, EXPERT SYST APPL, V42, P2582, DOI 10.1016/j.eswa.2014.10.049 Stan C, 2019, I C CONTR SYS COMP S, P210, DOI 10.1109/CSCS.2019.00042 Tan Y K, 2016, P 1 WORKSH DEEP LEAR, P17, DOI DOI 10.1145/2988450.2988452 Tavakol M, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P33, DOI 10.1145/2645710.2645739 Tran T, 2016, INFORM SCIENCES, V369, P221, DOI 10.1016/j.ins.2016.06.027 Wang SY, 2021, APPL SOFT COMPUT, V110, DOI 10.1016/j.asoc.2021.107753 Wu C. Y., 2017, INT C LEARNING REPRE Wu CY, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P495, DOI 10.1145/3018661.3018689 Xin Wang, 2019, Journal of Physics: Conference Series, V1325, DOI 10.1088/1742-6596/1325/1/012089 Yin RP, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P3434, DOI 10.1145/3308558.3313739 Yonezawa Y, 2009, LECT NOTES COMPUT SC, V5617, P323, DOI 10.1007/978-3-642-02556-3_37 Yu WH, 2018, WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), P649, DOI 10.1145/3178876.3186146 Yuan WH, 2020, INFORM SCIENCES, V510, P122, DOI 10.1016/j.ins.2019.09.007 Zhang YY, 2014, AAAI CONF ARTIF INTE, P1369 Zhou C, 2017, Arxiv, DOI arXiv:1711.06632 Zhu QN, 2019, AAAI CONF ARTIF INTE, P5973 Zhu T., 2021, IEEE T KNOWL DATA EN NR 59 TC 1 Z9 2 U1 12 U2 22 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD 2022 NOV 11 PY 2022 DI 10.1007/s10660-022-09627-8 EA NOV 2022 PG 21 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 6C2VR UT WOS:000881879200001 OA hybrid DA 2024-03-27 ER PT J AU Hettler, FM Schumacher, JP Anton, E Eybey, B Teuteberg, F AF Hettler, Fabia Marie Schumacher, Jan-Philip Anton, Eduard Eybey, Berna Teuteberg, Frank TI Understanding the user perception of digital nudging in platform interface design SO ELECTRONIC COMMERCE RESEARCH LA English DT Article; Early Access DE e-commerce; User perception; Digital nudging; Platform interface design; Human-computer interaction; Choice architecture ID EXPERIMENTAL VIGNETTE; E-COMMERCE; ELECTRONIC COMMERCE; PERCEIVED RISK; STATUS-QUO; TRUST; TECHNOLOGY; ACCEPTANCE; MODEL; SYSTEMS AB Given the nascent understanding of user perceptions toward digital nudges in e-commerce, our study examines key factors: perceived usefulness, ease of use, trust, and privacy risks. Via an online experiment of 273 participants, we examined the influence of digital nudging interventions - social norms, defaults, and scarcity warnings - against a control group. Employing descriptive and inferential statistics, notable trust variations were found between default and scarcity warning groups versus controls. To assess these findings, we interviewed 11 information systems and psychology experts. This research enriches our understanding of digital nudges in e-commerce and provides design insights. Theoretical implications span from providing propositions in order to enhance user involvement, conducting narrative accompanying research, analyzing diverse time points of nudging. Practical implications focus on emphasizing to users their choice autonomy and the highlighting that defaults and scarcity warnings are designed to mitigate inherent heuristics and biases for combining nudging with boosting elements. C1 [Hettler, Fabia Marie; Anton, Eduard; Eybey, Berna; Teuteberg, Frank] Osnabruck Univ, Dept Accounting & Informat Syst, Katharinenstr 3, D-49074 Osnabruck, Germany. [Schumacher, Jan-Philip] Osnabruck Univ, Work & Org Psychol, Lise Meitner Str 3, D-49076 Osnabruck, Germany. C3 University Osnabruck; University Osnabruck RP Hettler, FM (autor correspondiente), Osnabruck Univ, Dept Accounting & Informat Syst, Katharinenstr 3, D-49074 Osnabruck, Germany. EM fabia.hettler@uos.de; jan.schumacher@uos.de; eduard.anton@uos.de; beybey@uos.de; frank.teuteberg@uos.de FU Universitt Osnabrck (3158) FX No Statement Available CR Aguinis H, 2014, ORGAN RES METHODS, V17, P351, DOI 10.1177/1094428114547952 Atzmüller C, 2010, METHODOLOGY-EUR, V6, P128, DOI 10.1027/1614-2241/a000014 Auf der Landwehr M., 2021, 29 EUR C INF SYST EC Baldassarri D, 2017, ANNU REV SOCIOL, V43, P41, DOI 10.1146/annurev-soc-073014-112445 Barev T., 2021, Proceedings of the 54th Hawaii International Conference on System Sciences (HICSS), DOI [10.24251/hicss.2021.500, DOI 10.24251/HICSS.2021.500] Barev Torben Jan, 2021, The Next Wave of Sociotechnical Design: 16th International Conference on Design Science Research in Information Systems and Technology, DESRIST 2021, Proceedings. Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI (12807), P299, DOI 10.1007/978-3-030-82405-1_30 Benamati J, 2010, IEEE T ENG MANAGE, V57, P380, DOI 10.1109/TEM.2009.2023111 Benbasat I, 2005, Journal of the Association for Information Systems, V6, P4, DOI [DOI 10.17705/1JAIS.00065, 10.17705/1jais.00065] Berger M., 2020, 44ST INT C INF SYST, P1 Bhatia J, 2018, ACM T COMPUT-HUM INT, V25, DOI 10.1145/3267808 Bongard-Blanchy K, 2021, PROCEEDINGS OF THE 2021 ACM DESIGNING INTERACTIVE SYSTEMS CONFERENCE (DIS 2021), P763, DOI 10.1145/3461778.3462086 Brehm JW., 1966, A theory of psychological reactance Brignull H., 2023, Deceptive design Brusilovsky P., 2007, The Adaptive Web. Methods and Strategies of Web Personalization, P263 Calefato F, 2015, ELECTRON COMMER RES, V15, P453, DOI 10.1007/s10660-015-9194-3 Campos P, 2023, ELECTRON COMMER RES, DOI 10.1007/s10660-023-09725-1 Caraban A, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300733 Castagnos S., 2009, P 3 ACM C REC SYST, P361, DOI [10.1145/1639714.1639788, DOI 10.1145/1639714.1639788] Chen S. C., 2003, Information Technology & Management, V4, P303, DOI 10.1023/A:1022962631249 Cialdini RB, 2004, ANNU REV PSYCHOL, V55, P591, DOI 10.1146/annurev.psych.55.090902.142015 Clavien C, 2018, J MORAL EDUC, V47, P366, DOI 10.1080/03057240.2017.1408577 Costello F. J., 2022, 55 HAW INT C SYST SC, DOI [10.24251/hicss.2022.531, DOI 10.24251/HICSS.2022.531] Dalecke Sandor, 2020, WIMS 2020: Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, P139, DOI 10.1145/3405962.3405975 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 Dennis AR, 2020, J MANAGE INFORM SYST, V37, P39, DOI 10.1080/07421222.2019.1705505 DiCosola BM, 2020, CHI'20: EXTENDED ABSTRACTS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3334480.3382877 Dinev T, 2006, INFORM SYST RES, V17, P61, DOI 10.1287/isre.1060.0080 Djurica D., 2017, 23 AM C INF SYST AMC, P1 Eigenbrod L., 2018, 26 EUR C INF SYST EC, P1 Esposito G, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0173333 European Commission, 2021, Directorate-General for Communications Networks, Content and Technology. Analytical paper on the structure of the online platform economy post COVID-19 outbreak: Analytical paper 6, DOI [10.2759/234588, DOI 10.2759/234588] Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Fechner Wim, 2021, UMAP '21: Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, P284, DOI 10.1145/3450614.3464620 Franzoi S., 2022, 13 EUR C INF SYST EC, P1 Friedrich T., 2018, 39 INT C INF SYST IC, P1 FRIESTAD M, 1994, J CONSUM RES, V21, P1, DOI 10.1086/209380 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Glaser J., 2010, Experteninterviews und qualitative Inhaltsanalyse, V4th, DOI DOI 10.1007/978-3-531-91538-8 Gottschewski P. O., 2022, WIRTSCH 2022 P, V18 Gray CM, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174108 Greenberg S., 2014, C DES INT SYST, P523, DOI DOI 10.1145/2598510.2598541 Grose CR, 2014, ANNU REV POLIT SCI, V17, P355, DOI 10.1146/annurev-polisci-072012-174350 Hauser DJ, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00998 Heinemann G., 2021, Der Neue Online-Handel: Geschaftsmodelle, Geschaftssysteme und Benchmarks Im E-Commerce Hertwig R, 2017, PERSPECT PSYCHOL SCI, V12, P973, DOI 10.1177/1745691617702496 Ingendahl M, 2021, J CONSUM BEHAV, V20, P324, DOI 10.1002/cb.1861 Jachimowicz J. M., 2019, Behavioural Public Policy, V3, P159, DOI DOI 10.1017/BPP.2018.43 Jaekel M., 2017, Die Macht Der Digitalen Plattformen: Wegweiser Im Zeitalter Einer Expandierenden Digitalsphare und kunstlicher Intelligenz Jesse M, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.729589 Jesse M, 2021, COMPUT HUM BEHAV REP, V3, DOI 10.1016/j.chbr.2020.100052 Johnson EJ, 2012, MARKET LETT, V23, P487, DOI 10.1007/s11002-012-9186-1 Josselson R., 2007, Handbook of narrative inquiry, P537, DOI [10.4135/9781452226552, DOI 10.4135/9781452226552, 10.4135/9781452226552.n21, DOI 10.4135/9781452226552.N21] KAHNEMAN D, 1991, J ECON PERSPECT, V5, P193, DOI 10.1257/jep.5.1.193 Kahneman D., 2011, Thinking, Fast and Slow Katner K, 2019, CHI EA '19 EXTENDED ABSTRACTS: EXTENDED ABSTRACTS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290607.3313065 Kim DJ, 2008, DECIS SUPPORT SYST, V44, P544, DOI 10.1016/j.dss.2007.07.001 Kim Y, 2017, J INTERACT MARK, V38, P44, DOI 10.1016/j.intmar.2017.01.001 Kissmer T., 2018, P 24 AM C INF SYST A Klepsch M, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01997 Kretzer M, 2018, J ASSOC INF SYST, V19, P1145, DOI 10.17705/1jais.00523 Kroll T, 2021, BEHAV INFORM TECHNOL, V40, P1, DOI 10.1080/0144929X.2019.1584644 Lankton NK, 2015, J ASSOC INF SYST, V16, P880, DOI 10.17705/1jais.00411 Lee MKO, 2001, INT J ELECTRON COMM, V6, P75, DOI 10.1080/10864415.2001.11044227 Lembcke T. B., 2019, P 27 EUR C INF SYST Leonard TC, 2008, CONST POLITICAL ECON, V19, P356, DOI 10.1007/s10602-008-9056-2 Li Y., 2016, IBusiness, P48, DOI DOI 10.4236/IB.2016.83006 Lieberman A, 2020, CURR OPIN PSYCHOL, V31, P16, DOI 10.1016/j.copsyc.2019.06.022 Limayem M, 2000, IEEE T SYST MAN CY A, V30, P421, DOI 10.1109/3468.852436 Maier M., 2020, Human Technology, V16, P170, DOI [10.17011/ht/urn.202008245641, DOI 10.17011/HT/URN.202008245641] Maier M, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2200300119 McKnight D.H., 2011, ACM T MANAG INF SYST, V2, P1, DOI [10.1145/1985347.1985353, DOI 10.1145/1985347.1985353] McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 Mertens S, 2022, P NATL ACAD SCI USA, V119, DOI 10.1073/pnas.2107346118 Meske C., 2020, WI2020 Zentrale Tracks, P1203, DOI DOI 10.30844/WI_2020_K5-MESKE Meske C., 2017, 25 EUR C INF SYST EC, P2587 Meske C, 2020, COMMUN ASSOC INF SYS, V46, P402, DOI 10.17705/1CAIS.04617 Michels L., 2022, Proceedings of the 55th Hawaii International Conference on System Sciences, DOI [10.24251/hicss.2022.574, DOI 10.24251/HICSS.2022.574] Michels L, 2023, EUR J INFORM SYST, DOI 10.1080/0960085X.2023.2229787 Mirbabaie M, 2023, PAC ASIA J ASSOC INF, V15, P65, DOI 10.17705/1pais.15303 Mirsch T., 2018, 39 INT C INF SYST IC, P1 Mirsch T., 2017, P 13 INT TAG WIRTSCH, P634 Münscher R, 2016, J BEHAV DECIS MAKING, V29, P511, DOI 10.1002/bdm.1897 Neslin SA, 2006, J SERV RES-US, V9, P95, DOI 10.1177/1094670506293559 Parker Geoffrey G., 2016, Platform Revolution: How Networked Markets are Transforming the Economy and How to Make Them Work for You Pathak B, 2010, J MANAGE INFORM SYST, V27, P159, DOI 10.2753/MIS0742-1222270205 Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Pavlou PA, 2007, MIS QUART, V31, P105 Ren SN, 2022, INFORM TECHNOL MANAG, DOI 10.1007/s10799-022-00371-x Rohden SF, 2023, ELECTRON COMMER RES, V23, P2035, DOI 10.1007/s10660-022-09626-9 Román S, 2007, J BUS ETHICS, V72, P131, DOI 10.1007/s10551-006-9161-y Saadé R, 2005, INFORM MANAGE-AMSTER, V42, P317, DOI 10.1016/j.im.2003.12.013 Sanchez-Loor DA, 2023, ELECTRON COMMER RES, V23, P1971, DOI 10.1007/s10660-021-09525-5 Schöning C, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P4395 Selinger E, 2011, SOCIOL COMPASS, V5, P923, DOI 10.1111/j.1751-9020.2011.00413.x Shen Y, 2020, DECIS SUPPORT SYST, V137, DOI 10.1016/j.dss.2020.113365 Shipman M.D., 2014, LIMITATIONS SOCIAL R Shopify, 2023, Shop ify Shopify, Ultimate Sales Boost Stanovich KE, 2000, BEHAV BRAIN SCI, V23, P645, DOI 10.1017/S0140525X00003435 Steffel M, 2016, J MARKETING RES, V53, P865, DOI 10.1509/jmr.14.0421 Steiner PM, 2006, KOLNER Z SOZIOL SOZ, V58, P117, DOI 10.1007/s11575-006-0006-9 Sunstein C.R., 2014, Why Nudge? The Politics of Libertarian Paternalism Sunstein CR, 2016, DUKE LAW J, V66, P121 SurveyCircle, 2023, Research website SurveyCircle Thaler R. H., 2013, Choice Architecture. The Behavioral Foundations of Public Policy, P428, DOI [10.2307/j.ctv550cbm.31, DOI 10.2307/J.CTV550CBM.31, 10.1515/9781400845347-029] Thaler RH, 2003, AM ECON REV, V93, P175, DOI 10.1257/000282803321947001 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 Valta M., 2022, P C COMP PEOPL RES, P1, DOI [10.1145/3510606.3550211, DOI 10.1145/3510606.3550211] van der Heijden H, 2003, INFORM MANAGE-AMSTER, V40, P541, DOI 10.1016/S0378-7206(02)00079-4 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Wambsganss Thiemo, 2022, Proceedings of the ACM on Human-Computer Interaction, DOI 10.1145/3555633 Wambsganss T, 2022, COMPUT EDUC, V191, DOI 10.1016/j.compedu.2022.104644 Weiming Huang, 2019, Journal of Physics: Conference Series, V1325, DOI 10.1088/1742-6596/1325/1/012087 Weinmann M, 2016, BUS INFORM SYST ENG+, V58, P433, DOI 10.1007/s12599-016-0453-1 Wong MS, 2015, BMC PUBLIC HEALTH, V15, DOI 10.1186/s12889-015-2626-0 Xu H, 2005, Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol 5, P897 Xu JJ, 2013, MIS QUART, V37, P777, DOI 10.25300/MISQ/2013/37.3.05 Yadav M, 2017, TELEMAT INFORM, V34, P1294, DOI 10.1016/j.tele.2017.06.001 Zanker M., 2012, P 6 ACM C REC SYST, P269, DOI [10.1145/2365952.2366011, DOI 10.1145/2365952.2366011] Zhang B, 2014, S US PRIV SEC SOUPS, P159 NR 120 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD 2024 MAR 18 PY 2024 DI 10.1007/s10660-024-09825-6 EA MAR 2024 PG 38 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LI2N7 UT WOS:001186096400001 OA hybrid DA 2024-03-27 ER PT J AU Grange, C Barki, H AF Grange, Camille Barki, Henri TI The Nature and Role of User Beliefs Regarding a Website's Design Quality SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Design Quality Beliefs; Human-Computer Interaction; IT Acceptance; Navigation Quality; Page Layout Quality; User Experience; Visual Quality; Web Design ID INFORMATION-SYSTEMS SUCCESS; WEB SITE DESIGN; EMPIRICAL-EXAMINATION; MCLEAN MODEL; TECHNOLOGY; ACCEPTANCE; USABILITY; TRUST; SATISFACTION; ANTECEDENTS AB Researchers and practitioners have long been interested in identifying the criteria that users consider important in assessing whether a system is worth using. However, past research in this domain has not taken into account the characteristics of a system's design and their quality in a systematic and comprehensive manner, which is likely to have limited the development of actionable design guidelines. The article addresses this issue by suggesting a research model that links user beliefs-which have traditionally been used in IT acceptance and success research (i.e., information quality, system quality, usefulness, and ease of use)-to their beliefs regarding the quality of three categories of a system's design (i.e., visual quality, page layout quality, and navigation quality) and testing it in the context of organizational intranets. The analysis of data collected from 159 intranet website users in three organizations supported the model, suggesting that the three categories of design quality beliefs significantly influenced users' assessment of their system's information quality and system quality. C1 [Grange, Camille; Barki, Henri] HEC Montreal, Informat Technol, Montreal, PQ, Canada. C3 Universite de Montreal; HEC Montreal RP Grange, C (autor correspondiente), HEC Montreal, Informat Technol, Montreal, PQ, Canada. CR Agarwal R, 2002, INFORM SYST RES, V13, P168, DOI 10.1287/isre.13.2.168.84 Al-Natour S, 2009, J ASSOC INF SYST, V10, P661 Alavi M, 2001, MIS QUART, V25, P107, DOI 10.2307/3250961 Barnes S.J., 2002, Journal of Electronic commerce Quality, V3, P114, DOI DOI 10.1016/J.IM.2006.06.001 Barnes SJ, 2001, INT J ELECTRON COMM, V6, P11, DOI 10.1080/10864415.2001.11044225 Barnes SJ, 2012, INFORM MANAGE-AMSTER, V49, P164, DOI 10.1016/j.im.2012.02.002 Bearden WilliamO., 1999, Handbook of Marketing Scales: Multi- Item Measures for Marketing and Consumer Behavior Research Benbasat I, 2007, J ASSOC INF SYST, V8, P211, DOI 10.17705/1jais.00126 Bergkvist L, 2007, J MARKETING RES, V44, P175, DOI 10.1509/jmkr.44.2.175 Burton-Jones A, 2013, INFORM SYST RES, V24, P632, DOI 10.1287/isre.1120.0444 Cenfetelli RT, 2008, INFORM SYST RES, V19, P161, DOI 10.1287/isre.1070.0163 Cyr D, 2008, J MANAGE INFORM SYST, V24, P47, DOI 10.2753/MIS0742-1222240402 Cyr D, 2014, J INF TECHNOL-UK, V29, P1, DOI 10.1057/jit.2013.25 DAVIS FD, 1993, INT J MAN MACH STUD, V38, P475, DOI 10.1006/imms.1993.1022 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DeLone WH, 2003, J MANAGE INFORM SYST, V19, P9, DOI 10.1080/07421222.2003.11045748 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 Evermann J., 2009, P 30 INT C INF SYST Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Garrett J., 2011, The elements of user experience: user-centered design for the web and beyond GOODHUE DL, 1995, MIS QUART, V19, P213, DOI 10.2307/249689 Gregg DG, 2010, ELECTRON COMMER RES, V10, P1, DOI 10.1007/s10660-010-9044-2 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hartson HR, 2003, BEHAV INFORM TECHNOL, V22, P315, DOI 10.1080/01449290310001592587 Hassan S, 2005, J ELECTRON COMMER OR, V3, P46, DOI 10.4018/jeco.2005040104 Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Hoehle H, 2015, MIS QUART, V39, P435, DOI 10.25300/MISQ/2015/39.2.08 Hong W, 2001, J MANAGE INFORM SYST, V18, P97, DOI 10.1080/07421222.2002.11045692 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Kim G, 2010, MIS QUART, V34, P345 Lee Y, 2003, COM ASS INFORM SYST, V12, P752, DOI [DOI 10.17705/1CAIS.01250, 10.17705/1CAIS.01250] Liang HG, 2007, MIS QUART, V31, P59 Loiacono ET, 2007, INT J ELECTRON COMM, V11, P51, DOI 10.2753/JEC1086-4415110302 McKinney V, 2002, INFORM SYST RES, V13, P296, DOI 10.1287/isre.13.3.296.76 Morville P., 2006, Information Architecture for the World Wide Web, V3rd Nelson RR, 2005, J MANAGE INFORM SYST, V21, P199, DOI 10.1080/07421222.2005.11045823 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Palmer JW, 2002, INFORM SYST RES, V13, P151, DOI 10.1287/isre.13.2.151.88 Petter S, 2008, EUR J INFORM SYST, V17, P236, DOI 10.1057/ejis.2008.15 Petter S, 2013, J MANAGE INFORM SYST, V29, P7, DOI 10.2753/MIS0742-1222290401 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Rai A, 2002, INFORM SYST RES, V13, P50, DOI 10.1287/isre.13.1.50.96 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Ronkko M., 2011, INT C INF SYST Seddon PB, 1997, INFORM SYST RES, V8, P240, DOI 10.1287/isre.8.3.240 Sonderegger A, 2010, APPL ERGON, V41, P403, DOI 10.1016/j.apergo.2009.09.002 Tan CW, 2013, MIS QUART, V37, P77 Tan CW, 2009, COMMUN ASSOC INF SYS, V24, P175 Tarafdar M, 2005, INF RESOUR MANAG J, V18, P62, DOI 10.4018/irmj.2005100104 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 Toms EG, 2002, J AM SOC INF SCI TEC, V53, P855, DOI 10.1002/asi.10094 Tractinsky N, 2000, INTERACT COMPUT, V13, P127, DOI 10.1016/S0953-5438(00)00031-X Tractinsky N, 2018, HUM-COMPUT INTERACT, V33, P131, DOI 10.1080/07370024.2017.1298038 Vance A, 2008, J MANAGE INFORM SYST, V24, P73, DOI 10.2753/MIS0742-1222240403 Venkatesh V, 2006, MIS QUART, V30, P181 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x Venkatesh V, 2007, J ASSOC INF SYST, V8, P267, DOI 10.17705/1jais.00120 Walczak Steven, 2009, J. theor. appl. electron. commer. res., V4, P17, DOI 10.4067/S0718-18762009000300003 Wixom BH, 2001, MIS QUART, V25, P17, DOI 10.2307/3250957 Xu D. J., 2013, MIS Q, P777, DOI DOI 10.25300/MISQ/2013/37.3.05 Yamaguchi J., 1997, RASCH MEASUREMENT T, V11, P567 Yoo B., 2001, Q J ELECT COMMERCE, V2, P31, DOI DOI 10.1007/978-3-319-11885-7_129 NR 64 TC 20 Z9 20 U1 4 U2 28 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PD JAN-MAR PY 2020 VL 32 IS 1 BP 75 EP 96 DI 10.4018/JOEUC.2020010105 PG 22 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA KH2NL UT WOS:000510484400005 OA Bronze DA 2024-03-27 ER PT J AU Maeng, Y Lee, CC Yun, H AF Maeng, Yunho Lee, Choong C. Yun, Haejung TI Understanding Antecedents That Affect Customer Evaluations of Head-Mounted Display VR Devices through Text Mining and Deep Neural Network SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE e-commerce; consumer behavior; big data; customer review; HMD VR; neural network; text mining; sentiment analysis ID SENTIMENT ANALYSIS; CONSUMER PERCEPTIONS; EMOTION; TWITTER; MODEL AB Although the market for Head-Mounted Display Virtual Reality (HMD VR) devices has been growing along with the metaverse trend, the product has not been as widespread as initially expected. As each user has different purposes for use and prefers different features, various factors are expected to influence customer evaluations. Therefore, the present study aims to: (1) analyze customer reviews of hands-on HMD VR devices, provided with new user experience (UX), using text mining, and artificial neural network techniques; (2) comprehensively examine variables that affect user evaluations of VR devices; and (3) suggest major implications for the future development of VR devices. The research procedure consisted of four steps. First, customer reviews on HMD VR devices were collected from Amazon.com. Second, candidate variables were selected based on a literature review, and sentiment scores were extracted. Third, variables were determined through topic modeling, in-depth interviews, and a review of previous studies. Fourth, an artificial neural network analysis was performed by setting customer evaluation as a dependent variable, and the influence of each variable was checked through feature importance. The results indicate that feature importance can be derived from variables, and actionable implications can be identified, unlike in general sentiment analysis. C1 [Maeng, Yunho; Lee, Choong C.] Yonsei Univ, Grad Sch Informat, Seoul 03722, South Korea. [Yun, Haejung] Ewha Womans Univ, Coll Sci & Ind Convergence, Dept Int Off Adm, Seoul 03760, South Korea. C3 Yonsei University; Ewha Womans University RP Yun, H (autor correspondiente), Ewha Womans Univ, Coll Sci & Ind Convergence, Dept Int Off Adm, Seoul 03760, South Korea. EM yunhj@ewha.ac.kr RI Maeng, Yunho/KAM-2880-2024; Yun, Haejung/R-7767-2019 OI Yun, Haejung/0000-0002-8977-2044; Maeng, Yunho/0000-0003-1010-7840 CR Abarja R.A., 2020, Int. J, V8, P2156, DOI [10.30534/ijeter/2020/109852020, DOI 10.30534/IJETER/2020/109852020] Ahmed AZ, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031184 Ahmed N., 2005, P ACM S VIRT REAL SO, P257 Badenhausen K., 2015, ABOUT US Balakrishnan V, 2022, J SUPERCOMPUT, V78, P7206, DOI 10.1007/s11227-021-04169-6 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bloomberg, 2022, Virtual Reality Market Size Worth $87.0 Billion by 2030 Boas Yuri Antonio Goncalves Vilas, OVERVIEW VIRTUAL REA Çalli L, 2023, INT J BANK MARK, V41, P428, DOI 10.1108/IJBM-08-2022-0351 Çalli L, 2023, TRANSPORT RES REC, V2677, P656, DOI 10.1177/03611981221112096 Chand S., 2003, GEOFLUIDS, V3, P275, DOI [10.1016/S0969-6989(02) 00062-0, DOI 10.1016/S0969-6989(02)00062-0] Choi J., 2016, Master's Thesis Chuang J, 2012, PROCEEDINGS OF THE INTERNATIONAL WORKING CONFERENCE ON ADVANCED VISUAL INTERFACES, P74, DOI 10.1145/2254556.2254572 Cohen MA, 2020, P NATL ACAD SCI USA, V117, P13821, DOI 10.1073/pnas.1922294117 Conneau A, 2016, arXiv, DOI DOI 10.48550/ARXIV.1606.01781 Ferreira FGDC, 2021, IEEE ACCESS, V9, P30898, DOI 10.1109/ACCESS.2021.3058133 Gogineni S., 2020, 2020 5th International Conference on Communication and Electronics Systems (ICCES), P1139, DOI 10.1109/ICCES48766.2020.9137994 Google Cloud, Best Practices for Creating Tabular Training Data|Vertex AI| Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Horváth I, 2021, FRONT COMP SCI-SWITZ, V3, DOI 10.3389/fcomp.2021.673826 Imran AS, 2020, IEEE ACCESS, V8, P181074, DOI 10.1109/ACCESS.2020.3027350 Jo Y., 2011, P 4 ACM INT C WEB SE, P815, DOI [10.1145/1935826.1935932, DOI 10.1145/1935826.1935932] John J., Virtual Reality Market Size Forecast to Reach Khan ZY, 2021, ARTIF INTELL REV, V54, P95, DOI 10.1007/s10462-020-09892-9 Kim G., 2016, Master's Thesis Kim HW, 2007, DECIS SUPPORT SYST, V43, P111, DOI 10.1016/j.dss.2005.05.009 Kim Y, 2014, P 2014 C EMP METH NA, DOI [DOI 10.3115/V1/D14-1181, 10.3115/v1/d14-1181, 10.3115/V1/D14-1181] Korolov M., 2016, 98% of VR Headsets Sold This Year Are for Mobile Phones-Hypergrid Business Kuyucuk T., 2022, Sak. Univ. J. Comput. Inf. Sci, V5, P371, DOI [10.35377/saucis ... 1121830 ..., DOI 10.35377/SAUCIS ... 1121830 ...] La Viola J. J. Jr., 2000, SIGCHI Bulletin, V32, P47, DOI 10.1145/333329.333344 Lee Chungah, 2015, [The Journal of Society for e-Business Studies, 한국전자거래학회지], V20, P117, DOI 10.7838/jsebs.2015.20.1.117 Lee JH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082221 Lee S, 2019, PROCESSES, V7, DOI 10.3390/pr7120917 Legard R., 2003, Qualitative research practice, V1st, DOI DOI 10.1080/09687637.2016.1189876 Liu ZF, 2020, Arxiv, DOI arXiv:2012.06690 Lucini FR, 2020, J AIR TRANSP MANAG, V83, DOI 10.1016/j.jairtraman.2019.101760 Lundberg SM, 2017, ADV NEUR IN, V30 McCauley Michael E, 1992, Presence, V1, P311, DOI [DOI 10.1162/PRES.1992.1.3.311, 10.1162/pres.1992.1.3.311] Mishev K, 2020, IEEE ACCESS, V8, P131662, DOI 10.1109/ACCESS.2020.3009626 Mudambi SM, 2010, MIS QUART, V34, P185 Nadeem W, 2020, TECHNOL FORECAST SOC, V151, DOI 10.1016/j.techfore.2019.119786 Ning XD, 2020, PATTERN RECOGN LETT, V132, P12, DOI 10.1016/j.patrec.2018.07.028 Park M.J., 2004, J. Commun. Res, V41, P29 Pezoa-Fuentes C, 2023, J THEOR APPL EL COMM, V18, P765, DOI 10.3390/jtaer18020039 Pouransari H., CS224N Proj, P1 Rohan, Virtual Reality Market Worth $15.89 Billion by 2020 Sagiroglu S, 2013, PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON COLLABORATION TECHNOLOGIES AND SYSTEMS (CTS), P42 Sharma AK, 2020, PROCEDIA COMPUT SCI, V167, P1139, DOI 10.1016/j.procs.2020.03.416 Shirani-Mehr H., 2014, Applications of deep learning to sentiment analysis of movie reviews Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [DOI 10.3115/V1/W14-3110, 10.3115/v1/W14-3110] Simons DJ, 1999, PERCEPTION, V28, P1059, DOI 10.1068/p2952 Suh KS, 2006, BEHAV INFORM TECHNOL, V25, P99, DOI 10.1080/01449290500330398 Suh KS, 2005, MIS QUART, V29, P673 Tan A.-H., 1999, Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, P65 Ullah K, 2022, COMPLEXITY, V2022, DOI 10.1155/2022/5217491 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Yang C, 2021, J THEOR APPL EL COMM, V16, P1598, DOI 10.3390/jtaer16050090 Yang YX, 2022, J THEOR APPL EL COMM, V17, P1493, DOI 10.3390/jtaer17040075 ZEITHAML VA, 1988, J MARKETING, V52, P2, DOI 10.2307/1251446 Zhao JQ, 2017, IEEE ACCESS, V5, P2870, DOI 10.1109/ACCESS.2017.2672677 Zhao ZH, 2022, J THEOR APPL EL COMM, V17, P1, DOI 10.3390/jtaer17010001 NR 61 TC 1 Z9 1 U1 18 U2 18 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD SEP PY 2023 VL 18 IS 3 BP 1238 EP 1256 DI 10.3390/jtaer18030063 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA S8NK9 UT WOS:001073679500001 OA gold DA 2024-03-27 ER PT J AU Wang, GQ Tan, GWH Yuan, YP Ooi, KB Dwivedi, YK AF Wang, Guoqiang Tan, Garry Wei-Han Yuan, Yunpeng Ooi, Keng-Boon Dwivedi, Yogesh K. TI Revisiting TAM2 in behavioral targeting advertising: A deep learning-based dual-stage SEM-ANN analysis SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Mobile advertising; Behavioral targeting advertising; Mobile commerce; TAM; TAM2; Artificial neural network ID TECHNOLOGY ACCEPTANCE MODEL; MOBILE CREDIT CARD; INFORMATION-TECHNOLOGY; PERCEIVED USEFULNESS; SOCIAL MEDIA; INTENTION; ONLINE; TRUST; RISK; DETERMINANTS AB The study investigates the antecedents that affect consumers' acceptance of behavioral targeting advertising (BTA) services by extending technology acceptance Model 2 (TAM2) with perceived risk. A two-stage PLS-SEM-artificial-neural-network (ANN) predictive analytic approach was adopted to analyze the collected data, of which PLS-SEM was first applied to test the hypotheses, followed by the ANN technique to detect the nonlinear effect on the model. A total of 475 usable self-administered questionnaires were collected, and the results showed that only the relationship between the image and perceived usefulness (PU) was not supported. As per Model B, the ranking of subjective norms (SN) and PU between the PLS-SEM and ANN model does not match each other, implying that hidden attributes may exist in affecting the role of SN and PU under the practical context of which the relationship between variables may not fully be explained by a linear perspective. The finding is beneficial for advertising practitioners and software developers who wish to optimize BTA results. Theoretically, the study extends TAM2 in the context of advertising, which is a neglected research area. Methodologically, the study is the first to apply TAM2 using the hybrid PLS-SEM-ANN in the context of advertising. C1 [Wang, Guoqiang; Tan, Garry Wei-Han; Yuan, Yunpeng; Ooi, Keng-Boon] UCSI Univ, UCSI Grad Business Sch, 1 Jalan Menara Gading, Cheras 56000, Wilayah Perseku, Malaysia. [Tan, Garry Wei-Han] Nanchang Inst Technol, Sch Finance & Econ, Nanchang, Jiangxi, Peoples R China. [Ooi, Keng-Boon] Chang Jung Christian Univ, Coll Management, Tainan, Guiren District, Taiwan. [Dwivedi, Yogesh K.] Swansea Univ, Emerging Markets Res Ctr EMaRC, Sch Management, Room 323,Bay Campus, Swansea SA1 8EN, W Glam, Wales. [Dwivedi, Yogesh K.] Symbiosis Inst Business Management, Pune, Maharashtra, India. [Dwivedi, Yogesh K.] Symbiosis Int Deemed Univ, Pune, Maharashtra, India. C3 UCSI University; Nanchang Institute Technology; Chang Jung Christian University; Swansea University; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune; Symbiosis International University RP Dwivedi, YK (autor correspondiente), Swansea Univ, Emerging Markets Res Ctr EMaRC, Sch Management, Room 323,Bay Campus, Swansea SA1 8EN, W Glam, Wales.; Dwivedi, YK (autor correspondiente), Symbiosis Inst Business Management, Pune, Maharashtra, India.; Dwivedi, YK (autor correspondiente), Symbiosis Int Deemed Univ, Pune, Maharashtra, India. EM y.k.dwivedi@swansea.ac.uk RI Dwivedi, Yogesh Kumar/A-5362-2008; Tan Wei Han, Garry/C-6565-2011; OOI, Keng-Boon/I-4143-2019 OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Tan Wei Han, Garry/0000-0003-2974-2270; OOI, Keng-Boon/0000-0002-3384-1207 CR Agarwal R, 1997, DECISION SCI, V28, P557, DOI 10.1111/j.1540-5915.1997.tb01322.x AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Al-Omoush KS, 2021, J BUS RES, V132, P765, DOI 10.1016/j.jbusres.2020.10.056 Alwabel ASA, 2021, EXPERT SYST APPL, V185, DOI 10.1016/j.eswa.2021.115584 [Anonymous], 2009, P 18 INT C WORLD WID [Anonymous], 2019, J RETAIL CONSUM SERV, DOI DOI 10.1016/j.jretconser.2017.11.001 Bagozzi RP, 2007, J ASSOC INF SYST, V8, P243 Barki H, 2001, MIS QUART, V25, P195, DOI 10.2307/3250929 Baudier P, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.06.043 Belanche D, 2012, J RETAIL CONSUM SERV, V19, P124, DOI 10.1016/j.jretconser.2011.11.001 Benbasat I, 2007, J ASSOC INF SYST, V8, P211, DOI 10.17705/1jais.00126 Bilgihan A, 2014, INT J CONTEMP HOSP M, V26, P349, DOI 10.1108/IJCHM-11-2012-0220 Bittner JV, 2014, J CONSUM MARK, V31, P391, DOI 10.1108/JCM-04-2014-0945 Chatterjee S, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120880 Cheung MFY, 2017, COMPUT HUM BEHAV, V76, P102, DOI 10.1016/j.chb.2017.07.011 China Internet Network Information Center (CINIC), 2021, 47 CHIN STAT REP INT Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Davis FD, 1996, INT J HUM-COMPUT ST, V45, P19, DOI 10.1006/ijhc.1996.0040 de Vries L, 2017, J MARKETING, V81, P1, DOI 10.1509/jm.15.0178 Dong L., 2021, INT J INF MANAGE, V61, P1 Dwivedi YK, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102211 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Elwalda A., 2016, J CUSTOMER BEHAV, V15, P123 Estrada-Jiménez J, 2017, COMPUT COMMUN, V100, P32, DOI 10.1016/j.comcom.2016.12.016 Fidriani A.P., 2019, ICORE, V5, P190 Fortune Business Insights.,, 2020, MOB ADV MARK SIZ SHA Gan CM, 2018, COMPUT HUM BEHAV, V78, P306, DOI 10.1016/j.chb.2017.10.003 Ghosh T, 2021, J INTERACT MARK, V55, P52, DOI 10.1016/j.intmar.2021.01.002 GOODHUE DL, 1995, MIS QUART, V19, P213, DOI 10.2307/249689 Halkola V, 2017, THESIS HARTWICK J, 1994, MANAGE SCI, V40, P440, DOI 10.1287/mnsc.40.4.440 Haykin S, 1994, NEURAL NETWORKS COMP Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Ismagilova E, 2021, EUR J MARKETING, V55, P1067, DOI 10.1108/EJM-07-2018-0472 Izuagbe R, 2017, LIBR REV, V66, P679, DOI 10.1108/LR-09-2016-0086 Jaradat Mohammed-Issa Riad Mousa, 2014, International Journal of Business Information Systems, V16, P271, DOI 10.1504/IJBIS.2014.063768 Jin B, 2008, INT MARKET REV, V25, P324, DOI 10.1108/02651330810877243 Karjaluoto H, 2019, INT J INFORM MANAGE, V47, P252, DOI 10.1016/j.ijinfomgt.2018.08.014 Kemp, 2020, DIGITAL 2020 GLOBAL Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Kiat YapChing., 2017, International Journal of Business and Social Science, V8, P92 Kim N.Y., 2017, J PROMOT MANAG, V24, P845 Knoesen Henri, 2019, SACJ, V31, P117, DOI 10.18489/sacj.v31i2.690 Kovco Ante, 2018, WSEAS Transactions on Business and Economics, V15, P73 Krishen AS, 2021, J BUS RES, V131, P183, DOI 10.1016/j.jbusres.2021.03.061 Kuo YF, 2009, COMPUT HUM BEHAV, V25, P103, DOI 10.1016/j.chb.2008.07.007 Lee YC, 2010, EXPERT SYST APPL, V37, P1745, DOI 10.1016/j.eswa.2009.07.034 Legris P, 2003, INFORM MANAGE-AMSTER, V40, P191, DOI 10.1016/S0378-7206(01)00143-4 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Lew SS, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101430 Li H, 2020, J CONSUM POLICY, V43, P723, DOI 10.1007/s10603-020-09469-7 Liang HG, 2007, MIS QUART, V31, P59 Lim A, 2022, SUPPLY CHAIN MANAG, V27, P611, DOI 10.1108/SCM-03-2021-0129 Lin CA, 2016, COMPUT HUM BEHAV, V64, P710, DOI 10.1016/j.chb.2016.07.027 Lin CW, 2017, INT J MOB COMMUN, V15, P104, DOI 10.1504/IJMC.2017.080580 Lin PJ, 2009, J HOSP MARKET MANAG, V18, P782, DOI 10.1080/19368620903235803 Loh XM, 2021, INTERNET RES, V31, P376, DOI 10.1108/INTR-04-2020-0175 Loh XM, 2022, J COMPUT INFORM SYST, V62, P39, DOI 10.1080/08874417.2019.1688733 Long Z, 2019, TRANSPORT RES A-POL, V129, P185, DOI 10.1016/j.tra.2019.08.006 Lu XH, 2016, ACM TRANS MANAG INF, V7, DOI 10.1145/2883816 Magni D, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121022 Martins J, 2019, J BUS RES, V94, P378, DOI 10.1016/j.jbusres.2017.12.047 McLean G, 2020, J BUS RES, V106, P139, DOI 10.1016/j.jbusres.2019.08.032 Mei-ying Wu, 2011, WSEAS Transactions on Business and Economics, V8, P133 Mishra A., 2021, INT J INF MANAG Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192 Muk A, 2015, J BUS RES, V68, P1, DOI 10.1016/j.jbusres.2014.06.001 Mun-Wai Siah, 2015, International Journal of Modelling in Operations Management, V5, P177 Narang U, 2019, REV MARKET RES, V16, P97, DOI 10.1108/S1548-643520190000016008 Nepomuceno MV, 2014, J RETAIL CONSUM SERV, V21, P619, DOI 10.1016/j.jretconser.2013.11.006 Nill A., 2014, J CURRENT ISSUES RES, V35, P126, DOI [10.1080/10641734.2014.899529, DOI 10.1080/10641734.2014.899529] Nwagwu WE, 2016, ELECTRON LIBR, V34, P265, DOI 10.1108/EL-09-2014-0169 Ooi KB, 2021, IND MANAGE DATA SYST, V121, P312, DOI 10.1108/IMDS-04-2020-0239 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Ozcelik AB, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.11.006 Paramaeswari Rr Putri Intan, 2020, 2020 International Seminar on Application for Technology of Information and Communication (iSemantic), P505, DOI 10.1109/iSemantic50169.2020.9234271 Pfeffer J., 1982, ORG ORG THEORY Martínez-Ruiz MP, 2017, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.02018 Ringle CM, 2016, IND MANAGE DATA SYST, V116, P1865, DOI 10.1108/IMDS-10-2015-0449 Saba T.B., 2017, INT J ELECT COMMERCE, V8, P134 Saura J.R., BIG DATA RES Saura JR, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102331 Schnall R, 2015, STUD HEALTH TECHNOL, V216, P467, DOI 10.3233/978-1-61499-564-7-467 Sharifzadeh MS, 2017, CROP PROT, V96, P88, DOI 10.1016/j.cropro.2017.01.014 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Sreejesh S, 2021, J BUS RES, V132, P88, DOI 10.1016/j.jbusres.2021.04.007 Statista, 2019, TOP MOB INT US WORLD Tan GWH, 2018, TELEMAT INFORM, V35, P2270, DOI 10.1016/j.tele.2018.09.005 Tan GWH, 2018, TELEMAT INFORM, V35, P1617, DOI 10.1016/j.tele.2018.04.009 Tan GWH, 2014, TELEMAT INFORM, V31, P292, DOI 10.1016/j.tele.2013.06.002 Teo T, 2014, J COMPUT HIGH EDUC, V26, P124, DOI 10.1007/s12528-014-9080-3 Tew HT, 2022, J COMPUT INFORM SYST, V62, P527, DOI 10.1080/08874417.2020.1858731 TikTok, 2020, TIKT REC VID FOR Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2012, MIS QUART, V36, P157 Wang L, 2019, INFORM MANAGE-AMSTER, V56, DOI 10.1016/j.im.2019.02.005 Wang ZN, 2019, IND MANAGE DATA SYST, V119, P1625, DOI 10.1108/IMDS-01-2019-0011 Wei M, 2020, PROCEEDINGS OF THE 29TH USENIX SECURITY SYMPOSIUM, P145 Wilson RD, 2019, J BUS IND MARK, V35, P495, DOI 10.1108/JBIM-01-2019-0060 Wong CH, 2015, ONLINE INFORM REV, V39, P762, DOI 10.1108/OIR-05-2015-0152 Wong CH, 2015, TELEMAT INFORM, V32, P720, DOI 10.1016/j.tele.2015.03.003 Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005 Xia HS, 2016, FINANC INNOV, V2, DOI 10.1186/s40854-016-0041-x Yan LY, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102300 Younas M., 2019, COMMUN COMPUT INF SC, V1054, P32 Yu CP, 2020, IND MARKET MANAG, V90, P481, DOI 10.1016/j.indmarman.2019.05.001 Zhang JQ, 2019, OMEGA-INT J MANAGE S, V89, P136, DOI 10.1016/j.omega.2018.10.007 Zhang XT, 2017, BMC MED INFORM DECIS, V17, DOI 10.1186/s12911-017-0470-0 NR 113 TC 39 Z9 40 U1 50 U2 66 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD FEB PY 2022 VL 175 AR 121345 DI 10.1016/j.techfore.2021.121345 EA JAN 2022 PG 15 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 0D4DC UT WOS:000775946700037 HC Y HP N DA 2024-03-27 ER PT J AU Hsieh, SH Lee, CT AF Hsieh, Sara H. Lee, Crystal T. TI Hey Alexa: examining the effect of perceived socialness in usage intentions of AI assistant-enabled smart speaker SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE AI assistant; Smart speaker; Social response; Media richness; Parasocial interaction; Trust; TAM; Mobile marketing; Online marketing; Online consumer behavior; Quantitative research; Consumer behavior; Structural equation modeling; Human-computer interaction AB Purpose Artificially intelligent (AI) assistant-enabled smart speaker not only can provide assistance by navigating the massive amount of product and brand information on the internet but also can facilitate two-way conversations with individuals, thus resembling a human interaction. Although smart speakers have substantial implications for practitioners, the knowledge of the underlying psychological factors that drive continuance usage remains limited. Drawing on social response theory and the technology acceptance model, this study aims to elucidate the adoption process of smart speakers. Design/methodology/approach A field survey of 391 smart speaker users were obtained. Partial least squares structural equation modeling was used to analyze the data. Findings Media richness (social cues) and parasocial interactions (social role) are key determinants affecting the establishment of trust, perceived usefulness and perceived ease of use, which, in turn, affect attitude, continuance usage intentions and online purchase intentions through AI assistants. Originality/value AI assistant-enabled smart speakers are revolutionizing how people interact with smart products. Studies of smart speakers have mainly focused on functional or technical perspectives. This study is the first to propose a comprehensive model from both functional and social perspectives of continuance usage intention of the smart speaker and online purchase intentions through AI assistants. C1 [Hsieh, Sara H.] Tunghai Univ, Dept Business Adm, Taichung, Taiwan. [Lee, Crystal T.] Shantou Univ, Dept Business Sch, Shantou, Peoples R China. C3 Tunghai University; Shantou University RP Lee, CT (autor correspondiente), Shantou Univ, Dept Business Sch, Shantou, Peoples R China. EM crystal.ty.lee@gmail.com RI Lee, Crystal T./KFA-4668-2024 OI Lee, Crystal T./0000-0002-2451-1353 FU Ministry of Science and Technology of Taiwan, R.O.C. [MOST 108-2410-H-029-054] FX The research was supported by grant MOST 108-2410-H-029-054, from the Ministry of Science and Technology of Taiwan, R.O.C. CR Aljukhadar M, 2010, INT J ELECTRON COMM, V14, P103, DOI 10.2753/JEC1086-4415140404 [Anonymous], 2019, eMarketer Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Balaji MS, 2010, J INTERACT ONLINE LE, V9, P1 Bandura A, 2001, ANNU REV PSYCHOL, V52, P1, DOI 10.1146/annurev.psych.52.1.1 Barney-McNamara B, 2021, J RES INTERACT MARK, V15, P147, DOI 10.1108/JRIM-05-2020-0108 Ben Mimoun MS, 2017, INFORM MANAGE-AMSTER, V54, P545, DOI 10.1016/j.im.2016.11.008 Benbasat I., 2005, J ASSOC INF SYST, V6, P1 Brill TM, 2019, J MARKET MANAG-UK, V35, P1401, DOI 10.1080/0267257X.2019.1687571 Burgoon JK, 2002, J COMMUN, V52, P657, DOI 10.1093/joc/52.3.657 Castellano S, 2018, MANAGE DECIS, V56, P1232, DOI 10.1108/MD-04-2017-0444 Chandler J, 2014, BEHAV RES METHODS, V46, P112, DOI 10.3758/s13428-013-0365-7 Chattaraman V, 2014, J RES INTERACT MARK, V8, P144, DOI 10.1108/JRIM-08-2013-0054 Chen C.W., 2019, INT J BUSINESS EC, V18, P347 Chen CC, 2018, TELEMAT INFORM, V35, P1512, DOI 10.1016/j.tele.2018.03.019 Chérif E, 2019, RECH APPL MARKET-ENG, V34, P28, DOI 10.1177/2051570719829432 Chouk I, 2019, J SERV MARK, V33, P449, DOI 10.1108/JSM-01-2018-0046 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Coursaris CK, 2012, NEW MEDIA SOC, V14, P1128, DOI 10.1177/1461444812439552 DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 DAFT RL, 1987, MIS QUART, V11, P355, DOI 10.2307/248682 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 Dawar N, 2018, HARVARD BUS REV, V96, P80 Edlund J, 2008, SPEECH COMMUN, V50, P630, DOI 10.1016/j.specom.2008.04.002 eMarketer, 2018, EMARKETER Etemad-Sajadi R, 2016, COMPUT HUM BEHAV, V61, P227, DOI 10.1016/j.chb.2016.03.045 Fang YH, 2017, PSYCHOL MARKET, V34, P40, DOI 10.1002/mar.20972 Fogg BJ, 1997, INT J HUM-COMPUT ST, V46, P551, DOI 10.1006/ijhc.1996.0104 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gefen D, 2004, OMEGA-INT J MANAGE S, V32, P407, DOI 10.1016/j.omega.2004.01.006 Gefen D, 2000, OMEGA-INT J MANAGE S, V28, P725, DOI 10.1016/S0305-0483(00)00021-9 GIFFIN K, 1967, PSYCHOL BULL, V68, P104, DOI 10.1037/h0024833 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Goodman JK, 2013, J BEHAV DECIS MAKING, V26, P213, DOI 10.1002/bdm.1753 Goudey A, 2016, RECH APPL MARKET-ENG, V31, P2, DOI 10.1177/2051570716643961 Grewal D, 1998, J RETAILING, V74, P331, DOI 10.1016/S0022-4359(99)80099-2 Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Handarkho YD, 2020, J RES INTERACT MARK, V14, P305, DOI 10.1108/JRIM-10-2018-0137 Hanus MD, 2015, INT J HUM-COMPUT ST, V84, P33, DOI 10.1016/j.ijhcs.2015.07.004 Hashim KF, 2015, INT J INFORM MANAGE, V35, P145, DOI 10.1016/j.ijinfomgt.2014.11.001 Hassanein K, 2005, INT J ELECTRON COMM, V10, P31, DOI 10.2753/JEC1086-4415100202 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hoffman DL, 2018, J CONSUM RES, V44, P1178, DOI 10.1093/jcr/ucx105 Hong A, 2020, TELECOMMUN POLICY, V44, DOI 10.1016/j.telpol.2019.101867 HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Hsiao CC, 2012, INFORM MANAGE-AMSTER, V49, P292, DOI 10.1016/j.im.2012.09.002 Jin SAA, 2009, CYBERPSYCHOL BEHAV, V12, P723, DOI 10.1089/cpb.2008.0289 Kakalejcík L, 2020, J RES INTERACT MARK, V14, P17, DOI 10.1108/JRIM-01-2019-0012 Karahanna E, 2000, J ORG COMP ELECT COM, V10, P49, DOI 10.1207/S15327744JOCE100103 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Kowalczuk P, 2018, J RES INTERACT MARK, V12, P418, DOI 10.1108/JRIM-01-2018-0022 Kwee-Meier ST, 2016, BEHAV INFORM TECHNOL, V35, P394, DOI 10.1080/0144929X.2016.1141986 Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Landwehr JR, 2011, J MARKETING, V75, P132, DOI 10.1509/jmkg.75.3.132 Lee H, 2020, TELEMAT INFORM, V49, DOI 10.1016/j.tele.2020.101377 Lee K, 2020, INFORM SYST FRONT, V22, P563, DOI 10.1007/s10796-019-09975-1 Lee MKO, 2007, J AM SOC INF SCI TEC, V58, P2066, DOI 10.1002/asi.20670 Lee MKO, 2005, INFORM MANAGE-AMSTER, V42, P1095, DOI 10.1016/j.im.2003.10.007 Lee SY, 2017, INT J HUM-COMPUT ST, V103, P95, DOI 10.1016/j.ijhcs.2017.02.005 LEVY MR, 1979, J BROADCASTING, V23, P69, DOI 10.1080/08838157909363919 Lim KH, 2000, MIS QUART, V24, P449, DOI 10.2307/3250969 Lin HX, 2020, J HOSP MARKET MANAG, V29, P530, DOI 10.1080/19368623.2020.1685053 Liu SH, 2009, COMPUT EDUC, V52, P599, DOI 10.1016/j.compedu.2008.11.002 Louie WYG, 2014, ASSIST TECHNOL, V26, P140, DOI 10.1080/10400435.2013.869703 Lowry PB, 2006, SMALL GR RES, V37, P631, DOI 10.1177/1046496406294322 Lu Y, 2014, COMPUT HUM BEHAV, V41, P40, DOI 10.1016/j.chb.2014.08.012 Lunney A, 2016, COMPUT HUM BEHAV, V65, P114, DOI 10.1016/j.chb.2016.08.007 Mamonov S, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2020.102091 Mani Z, 2019, J MARKET MANAG-UK, V35, P1460, DOI 10.1080/0267257X.2019.1667856 Moon Y, 2000, J CONSUM RES, V26, P323, DOI 10.1086/209566 Moriuchi E, 2019, PSYCHOL MARKET, V36, P489, DOI 10.1002/mar.21192 Mulcahy R, 2019, J MARKET MANAG-UK, V35, P1370, DOI 10.1080/0267257X.2019.1680568 NASS C, 1993, HUM COMMUN RES, V19, P504, DOI 10.1111/j.1468-2958.1993.tb00311.x Nass C, 1996, INT J HUM-COMPUT ST, V45, P669, DOI 10.1006/ijhc.1996.0073 Nass C, 1999, J APPL SOC PSYCHOL, V29, P1093, DOI 10.1111/j.1559-1816.1999.tb00142.x Nass C, 1997, J APPL SOC PSYCHOL, V27, P864, DOI 10.1111/j.1559-1816.1997.tb00275.x Nguyen QN, 2019, INT J HUM-COMPUT INT, V35, P1362, DOI 10.1080/10447318.2018.1525023 Oppenheimer DM, 2009, J EXP SOC PSYCHOL, V45, P867, DOI 10.1016/j.jesp.2009.03.009 Park K, 2018, TELEMAT INFORM, V35, P2118, DOI 10.1016/j.tele.2018.07.013 Payne EHM, 2021, J RES INTERACT MARK, V15, P68, DOI 10.1108/JRIM-10-2020-0214 Peltier J, 2020, J RES INTERACT MARK, V14, P239, DOI 10.1108/JRIM-01-2020-0010 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Qin YS, 2020, J RES INTERACT MARK, V14, P337, DOI 10.1108/JRIM-08-2019-0138 Reeves B, 1996, MEDIA EQUATION PEOPL Shin J, 2018, TECHNOL FORECAST SOC, V134, P246, DOI 10.1016/j.techfore.2018.06.029 Shum HY, 2018, FRONT INFORM TECH EL, V19, P10, DOI 10.1631/FITEE.1700826 Statista, 2018, GLOB INT ASS MARK SH Stern SE, 2006, INT J HUM-COMPUT ST, V64, P43, DOI 10.1016/j.ijhcs.2005.07.002 Verhoef PC, 2017, J INTERACT MARK, V40, P1, DOI 10.1016/j.intmar.2017.06.001 Wagner K., 2019, P 52 HI INT C SYST S, P10 Wang EST, 2012, COMPUT HUM BEHAV, V28, P570, DOI 10.1016/j.chb.2011.11.002 Wang LC, 2007, J MARKETING, V71, P143, DOI 10.1509/jmkg.71.3.143 Wei CW, 2012, ETR&D-EDUC TECH RES, V60, P529, DOI 10.1007/s11423-012-9234-9 Wolkenfelt MRJ, 2020, J RES INTERACT MARK, V14, P89, DOI 10.1108/JRIM-11-2018-0141 Wu JT, 2017, J MARKET MANAG-UK, V33, P61, DOI 10.1080/0267257X.2016.1233132 Yang H, 2019, INF SYST E-BUS MANAG, V17, P65, DOI 10.1007/s10257-018-0375-1 Yang K. C. C., 2006, Telematics and Informatics, V23, P38, DOI 10.1016/j.tele.2005.03.001 Zhao SY, 2006, NEW MEDIA SOC, V8, P401, DOI 10.1177/1461444806061951 Zhao YM, 2020, COMPUT EDUC, V144, DOI 10.1016/j.compedu.2019.103721 NR 101 TC 45 Z9 46 U1 47 U2 239 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PD JUN 21 PY 2021 VL 15 IS 2 BP 267 EP 294 DI 10.1108/JRIM-11-2019-0179 EA MAY 2021 PG 28 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA SW1CO UT WOS:000647757100001 DA 2024-03-27 ER PT J AU Hewapathirana, IU AF Hewapathirana, Isuru Udayangani TI Advancing tourism demand forecasting in Sri Lanka: evaluating the performance of machine learning models and the impact of social media data integration SO JOURNAL OF TOURISM FUTURES LA English DT Article; Early Access DE Tourism demand forecasting; Social media analytics; Machine learning; Support vector regression; Random forest; Artificial neural network; Sri Lanka ID ARRIVALS; ARIMA AB PurposeThis study explores the pioneering approach of utilising machine learning (ML) models and integrating social media data for predicting tourist arrivals in Sri Lanka.Design/methodology/approachTwo sets of experiments are performed in this research. First, the predictive accuracy of three ML models, support vector regression (SVR), random forest (RF) and artificial neural network (ANN), is compared against the seasonal autoregressive integrated moving average (SARIMA) model using historical tourist arrivals as features. Subsequently, the impact of incorporating social media data from TripAdvisor and Google Trends as additional features is investigated.FindingsThe findings reveal that the ML models generally outperform the SARIMA model, particularly from 2019 to 2021, when several unexpected events occurred in Sri Lanka. When integrating social media data, the RF model performs significantly better during most years, whereas the SVR model does not exhibit significant improvement. Although adding social media data to the ANN model does not yield superior forecasts, it exhibits proficiency in capturing data trends.Practical implicationsThe findings offer substantial implications for the industry's growth and resilience, allowing stakeholders to make accurate data-driven decisions to navigate the unpredictable dynamics of Sri Lanka's tourism sector.Originality/valueThis study presents the first exploration of ML models and the integration of social media data for forecasting Sri Lankan tourist arrivals, contributing to the advancement of research in this domain. C1 [Hewapathirana, Isuru Udayangani] Univ Kelaniya, Fac Sci, Kelaniya, Sri Lanka. C3 University Kelaniya RP Hewapathirana, IU (autor correspondiente), Univ Kelaniya, Fac Sci, Kelaniya, Sri Lanka. EM ihewapathirana@kln.ac.lk OI Hewapathirana, Isuru/0000-0003-4843-0993 FU University of Kelaniya [RP/03/02/09/01/2022] FX The author extends her sincere gratitude to the reviewers for their valuable feedback and acknowledges the significant contributions made in improving the manuscript. The author also acknowledges the financial support received for this study by the University Research Grant RP/03/02/09/01/2022 from the University of Kelaniya. The support provided by this grant has been instrumental in conducting and completing the research. CR Adil M, 2021, PROCESSES, V9, DOI 10.3390/pr9101759 Andariesta DT, 2022, J TOUR FUTURES, DOI 10.1108/JTF-10-2021-0239 Arlot S, 2010, STAT SURV, V4, P40, DOI 10.1214/09-SS054 Aslanargun A, 2007, J STAT COMPUT SIM, V77, P29, DOI 10.1080/10629360600564874 Balabaeva K, 2019, PROCEDIA COMPUT SCI, V156, P87, DOI 10.1016/j.procs.2019.08.183 Basnayake BRPM, 2022, STAT APPL, V20, P103 Biau G, 2016, TEST-SPAIN, V25, P197, DOI 10.1007/s11749-016-0481-7 BOX GEP, 1974, ROY STAT SOC C-APP, V23, P158, DOI 10.2307/2346997 Colladon AF, 2019, DECIS SUPPORT SYST, V123, DOI 10.1016/j.dss.2019.113075 Diunugala Hemantha Premakumara, 2020, Journal of Tourism, Heritage & Services Marketing, V6, P3, DOI 10.5281/zenodo.4055960 DIXON WJ, 1946, J AM STAT ASSOC, V41, P557, DOI 10.2307/2280577 Fiesler C., 2020, P INT AAAI C WEB SOC, V14, P187 Gunter U, 2016, ANN TOURISM RES, V61, P199, DOI 10.1016/j.annals.2016.10.007 Hadavandi E, 2011, TOURISM MANAGE, V32, P1196, DOI 10.1016/j.tourman.2010.09.015 Höpken W, 2021, J TRAVEL RES, V60, P998, DOI 10.1177/0047287520921244 Hu MM, 2021, TOURISM MANAGE, V84, DOI 10.1016/j.tourman.2020.104263 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Jassim R.S.Al., 2023, EAI Endorsed Transactions on Creative Technologies, V9, pe1, DOI [10.4108/eetct.v9i31.2986, DOI 10.4108/EETCT.V9I31.2986] Jiang ZX, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1965 Kodippili A., 2017, An International Peer-Reviewed Journal, V29 Konarasinghe K.M.U.B., 2016, Review of Integrative Business and Economics ResearchOnlineCDROM, V5, P161 Kurukulasooriya N., 2014, Time Series Behaviour of Burgeoning, V1, P1 Li HY, 2020, ANN TOURISM RES, V83, DOI 10.1016/j.annals.2020.102912 Li X, 2021, J TRAVEL RES, V60, P1213, DOI 10.1177/0047287520934871 Li X, 2017, TOURISM MANAGE, V59, P57, DOI 10.1016/j.tourman.2016.07.005 Li Y., 2022, Journal of Digital Economy, V1, P32, DOI [10.1016/j.jdec.2022.08.006, DOI 10.1016/J.JDEC.2022.08.006] Lutkepohl H., 2004, APPL TIME SERIES ECO Marutho D., 2022, 2022 international Seminar on intelligent Technology and its applications (ISITIA), P98, DOI [10.1109/ISITIA56226.2022.9855341, DOI 10.1109/ISITIA56226.2022.9855341] Mishra RK, 2021, INT J ADV COMPUT SC, V12, P55 Moreno MA, 2013, CYBERPSYCH BEH SOC N, V16, P708, DOI 10.1089/cyber.2012.0334 Park S, 2017, J TRAVEL TOUR MARK, V34, P357, DOI 10.1080/10548408.2016.1170651 Plevris V., 2022, INT J COAL PREP UTIL, P1, DOI [10.23967/eccomas.2022.155, DOI 10.23967/ECCOMAS.2022.155] Priyangika J., 2016, S STAT COMP MOD APPL Rajangam V., 2022, 2022 4 INT C BIOM EN, P7, DOI [10.1109/IBIOMED56408.2022.9988439, DOI 10.1109/IBIOMED56408.2022.9988439] Reda O., 2023, Bulletin of Electrical Engineering and Informatics, V12, P1115, DOI [10.11591/eei.v12i2.4588, DOI 10.11591/EEI.V12I2.4588] Samarathunga W., 2020, Available at SSRN 3581509, DOI [10.2139/ssrn.3581509, DOI 10.2139/SSRN.3581509] Smola AJ, 2004, STAT COMPUT, V14, P199, DOI 10.1023/B:STCO.0000035301.49549.88 Song H., 2008, Tourism demand modelling and forecasting A review of recent research Song HY, 2010, TOURISM ECON, V16, P63, DOI 10.5367/000000010790872213 Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020 Tealab Ahmed, 2018, Future Computing and Informatics Journal, V3, P334, DOI 10.1016/j.fcij.2018.10.003 Thushara SC, 2019, COGENT ECON FINANC, V7, DOI 10.1080/23322039.2019.1699884 Thushara S.C., 2016, Forecasting international tourist arrivals to Sri Lanka using sarima approach, V1 Tofallis C, 2015, J OPER RES SOC, V66, P1352, DOI 10.1057/jors.2014.103 Wickramasinghe K, 2021, CURR ISSUES TOUR, V24, P2740, DOI 10.1080/13683500.2020.1849049 Wolfram H., 2017, Information and Communication Technologies in Tourism 2017, P187, DOI DOI 10.1007/978-3-319-51168-9_14 Yu G. M., 2006, Journal of Travel Research, V45, P194, DOI 10.1177/0047287506291594 Zhang YS, 2021, J TRAVEL RES, V60, P981, DOI 10.1177/0047287520919522 NR 48 TC 0 Z9 0 U1 1 U2 1 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2055-5911 EI 2055-592X J9 J TOUR FUTURES JI J. Tour. Futures PD 2023 DEC 15 PY 2023 DI 10.1108/JTF-06-2023-0149 EA DEC 2023 PG 25 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA CR3L3 UT WOS:001126930000001 OA hybrid DA 2024-03-27 ER PT J AU McAfee, RP AF McAfee, R. Preston TI The Design of Advertising Exchanges SO REVIEW OF INDUSTRIAL ORGANIZATION LA English DT Article DE Auctions; Winner's curse; Machine learning; Display advertising; Internet advertising ID AUCTION AB Internet advertising exchanges possess three characteristics-fast delivery, low values, and automated systems-that influence market design. Automated learning systems induce the winner's curse when several pricing types compete. Bidders frequently compete with different data, which induces randomization in equilibrium. Machine learning causes the value of information to leak across participants. Discrimination may be used to induce efficient exploration, although publishers (websites) may balk at participating. The creation of "learning accounts," which divorce payments from receipts, may be used to internalize learning externalities. Under some learning mechanisms the learning account eventually shows a surplus. The solution is illustrated computationally. C1 Yahoo Res, Burbank, CA 91504 USA. C3 Yahoo! Inc; Yahoo! Inc United States RP McAfee, RP (autor correspondiente), Yahoo Res, 3333 Empire Blvd, Burbank, CA 91504 USA. EM preston@mcafee.cc CR ABDULKADIROGLU A, 2005, AEA PAPERS P, P368 Abraham I., 2011, Peaches, lemons, and cookies: Designing auction markets with dispersed information BAX E, 2011, COMPARING PREDICTED Edelman B, 2007, AM ECON REV, V97, P242, DOI 10.1257/aer.97.1.242 HENDRICKS K, 1988, AM ECON REV, V78, P865 KENNEY RW, 1983, J LAW ECON, V26, P497, DOI 10.1086/467048 Li SM, 2010, LECT NOTES COMPUT SC, V6484, P294, DOI 10.1007/978-3-642-17572-5_24 Luenberger D. G., 1979, Introduction to Dynamic Systems: Theory, Models, and Applications Manne H.G., 1966, Insider trading and the stock market MCAFEE P, 2010, BETTER LIVING EC, P168 MCAFEE P, 2010, MAXIMALLY REPR UNPUB MCMILLAN J, 1994, J ECON PERSPECT, V8, P145, DOI 10.1257/jep.8.3.145 Milgrom P, 2000, J POLIT ECON, V108, P245, DOI 10.1086/262118 ROTH A, 2010, BETTER LIVING EC, P206 Roth AE, 2005, AM ECON REV, V95, P376, DOI 10.1257/000282805774669989 Tietenberg T., 2010, Better Living Through Economics, P42 Varian HR, 2007, INT J IND ORGAN, V25, P1163, DOI 10.1016/j.ijindorg.2006.10.002 Wilson R, 2002, ECONOMETRICA, V70, P1299, DOI 10.1111/1468-0262.00334 WILSON RB, 1969, MANAGE SCI, V15, P446, DOI 10.1287/mnsc.15.7.446 NR 19 TC 19 Z9 23 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0889-938X EI 1573-7160 J9 REV IND ORGAN JI Rev. Ind. Organ. PD NOV PY 2011 VL 39 IS 3 BP 169 EP 185 DI 10.1007/s11151-011-9300-1 PG 17 WC Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 826DT UT WOS:000295332300001 OA Green Submitted DA 2024-03-27 ER PT J AU Kowalczuk, P AF Kowalczuk, Pascal TI Consumer acceptance of smart speakers: a mixed methods approach SO JOURNAL OF RESEARCH IN INTERACTIVE MARKETING LA English DT Article DE Qualitative research; SEM; Consumer behaviour; Twitter; Data mining; Human-computer interaction ID USER ACCEPTANCE; INFORMATION-TECHNOLOGY; SOCIAL MEDIA; MODEL; NETNOGRAPHY; ADOPTION; FUTURE; USAGE; TAM AB Purpose Voice-activated smart speakers such as Amazon Echo and Google Home were recently developed and are gaining popularity. Understanding and theorizing the underlying mechanisms that encourage or impede consumers to use smart speakers is fundamental for enhancing acceptance and future development of these new devices. Therefore, building on technology acceptance research, this study aims to develop and test an acceptance model for investigating consumers' intention to use smart speakers. Design/methodology/approach First, antecedents that may significantly affect the usage intention of smart speakers were identified through an explorative approach by a netnographic analysis of customer reviews (N = 2,186) and Twitter data (N = 899). Afterward, these results and contemporary literature were used to develop and validate an acceptance model for smart speakers. Structural equation modeling (SEM) was used to test the proposed hypotheses on data collected from 293 participants of an online survey. Findings Besides perceived ease of use and perceived usefulness, the quality and diversity of a system, its enjoyment, consumer's technology optimism and risk (surveillance anxiety and security/privacy risk) strongly affect the acceptance of smart speakers. Among these variables, enjoyment had the strongest effect on behavioral intention to use smart speakers. Originality/value This is the first study that incorporates netnography and SEM for investigating technology acceptance and applies it to the field of interactive smart devices. C1 [Kowalczuk, Pascal] Univ Duisburg Essen, Chair Mkt, Duisburg, Germany. C3 University of Duisburg Essen RP Kowalczuk, P (autor correspondiente), Univ Duisburg Essen, Chair Mkt, Duisburg, Germany. EM pascal.kowalczuk@uni-due.de RI Kowalczuk, Pascal/AAV-7791-2021 CR Ahn T., 2004, Electronic Commerce Research and Applications, V3, P405, DOI DOI 10.1016/J.ELERAP.2004.05.001 Belz FM, 2010, CREAT INNOV MANAG, V19, P304, DOI 10.1111/j.1467-8691.2010.00571.x Brem A, 2015, J ENG TECHNOL MANAGE, V37, P40, DOI 10.1016/j.jengtecman.2015.08.004 Bruner GC, 2005, J BUS RES, V58, P553, DOI 10.1016/j.jbusres.2003.08.002 Chalmers RP, 2012, J STAT SOFTW, V48, P1 Childers TL, 2001, J RETAILING, V77, P511, DOI 10.1016/S0022-4359(01)00056-2 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Fishbein M., 1980, UNDERSTANDING ATTITU Fishbein M., 1975, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Ha S, 2009, J BUS RES, V62, P565, DOI 10.1016/j.jbusres.2008.06.016 Hair J., 2014, Multivariate data analysis, V7 Hennessy J, 1999, COMPUTER, V32, P27, DOI 10.1109/2.781631 Joo J, 2013, COMPUT HUM BEHAV, V29, P2512, DOI 10.1016/j.chb.2013.06.002 Kim KJ, 2015, INTERNET RES, V25, P527, DOI 10.1108/IntR-05-2014-0126 King WR, 2006, INFORM MANAGE-AMSTER, V43, P740, DOI 10.1016/j.im.2006.05.003 Kozinets RV, 2002, J MARKETING RES, V39, P61, DOI 10.1509/jmkr.39.1.61.18935 Kummer TF, 2017, INFORM MANAGE-AMSTER, V54, P73, DOI 10.1016/j.im.2016.04.002 Lee MC, 2009, ELECTRON COMMER R A, V8, P130, DOI 10.1016/j.elerap.2008.11.006 Maxwell J.A., 2009, SAGE HDB APPL SOCIAL, V2nd, DOI DOI 10.4135/9781483348858.N7 MILES MB, 1979, ADMIN SCI QUART, V24, P590, DOI 10.2307/2392365 Miorandi D, 2012, AD HOC NETW, V10, P1497, DOI 10.1016/j.adhoc.2012.02.016 Moon JW, 2001, INFORM MANAGE-AMSTER, V38, P217, DOI 10.1016/S0378-7206(00)00061-6 Muniz AM, 2001, J CONSUM RES, V27, P412, DOI 10.1086/319618 Nunnally J., 1978, PSYCHOMETRIC METHODS Pagani M, 2004, J INTERACT MARK, V18, P46, DOI 10.1002/dir.20011 Pak A., 2010, COMPUTER, V10, P1320, DOI [DOI 10.1371/J0URNAL.P0NE.0026624, DOI 10.1371/JOURNAL.PONE.0026624] Parasuraman A., 2001, TECHNO READY MARKETI Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Park E, 2015, BEHAV INFORM TECHNOL, V34, P741, DOI 10.1080/0144929X.2014.963672 Park E, 2013, PROGRAM-ELECTRON LIB, V47, P188, DOI 10.1108/00330331311313762 Perry A, 2016, J RETAIL CONSUM SERV, V33, P171, DOI 10.1016/j.jretconser.2016.08.018 Rauniar R, 2014, J ENTERP INF MANAG, V27, P6, DOI 10.1108/JEIM-04-2012-0011 Satorra A., 1994, LATENT VARIABLES ANA, P399, DOI DOI 10.2307/2291370 Sinkovics RR, 2005, QUAL MARK RES, V8, P9, DOI 10.1108/13522750510575426 Tong X, 2010, INT J RETAIL DISTRIB, V38, P742, DOI 10.1108/09590551011076524 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x Venkatesh V, 2012, MIS QUART, V36, P157 Walczuch R, 2007, INFORM MANAGE-AMSTER, V44, P206, DOI 10.1016/j.im.2006.12.005 Yang H, 2017, IND MANAGE DATA SYST, V117, P68, DOI 10.1108/IMDS-01-2016-0017 Yang H, 2016, TELEMAT INFORM, V33, P256, DOI 10.1016/j.tele.2015.08.007 NR 45 TC 87 Z9 91 U1 30 U2 133 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2040-7122 EI 2040-7130 J9 J RES INTERACT MARK JI J. Res. Interact. Mark. PY 2018 VL 12 IS 4 SI SI BP 418 EP 431 DI 10.1108/JRIM-01-2018-0022 PG 14 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HA4CW UT WOS:000450206500002 DA 2024-03-27 ER PT J AU Sun, Y Shao, X Li, XT Guo, Y Nie, K AF Sun, Yuan Shao, Xiang Li, Xiaotong Guo, Yue Nie, Kun TI A 2020 perspective on "How live streaming influences purchase intentions in social commerce: An IT affordance perspective" SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Human-computer interaction; Live-streaming shopping; User behavior; User experience; Social commerce AB Live-streaming shopping has become increasingly popular in social commerce. Reviewing recent research on live-streaming shopping, we find that most papers about this topic have focused on user behavior and user experience. While these previous studies, including Sun et al. (2019), have provided useful insights into different aspects of live-streaming in social commerce, most of them have used cross-sectional surveys as the primary research method. Therefore, limitations such as the self-reporting bias or the common research method bias may hinder our understanding of the real effect of live-streaming on consumer purchase behavior. The actual causal relationship between live-streaming and consumer purchases should be further examined using more robust econometric models, natural experiments, or longitudinal studies. C1 [Sun, Yuan; Shao, Xiang; Nie, Kun] Zhejiang Gongshang Univ, Sch Business Adm, Hangzhou, Zhejiang, Peoples R China. [Sun, Yuan] Zhejiang Gongshang Univ, Zheshang Res Inst, Hangzhou, Zhejiang, Peoples R China. [Li, Xiaotong] Univ Alabama, Coll Business, Huntsville, AL 35899 USA. [Guo, Yue] Southern Univ Sci & Technol, Shenzhen, Peoples R China. C3 Zhejiang Gongshang University; Zhejiang Gongshang University; University of Alabama System; University of Alabama Huntsville; Southern University of Science & Technology RP Li, XT (autor correspondiente), Univ Alabama, Coll Business, Huntsville, AL 35899 USA. EM d05sunyuan@zju.edu.cn; lixi@uah.edu; niekun@mail.zjgsu.edu.cn RI Li, xiaotong/GYV-4890-2022 OI SUN, Yuan/0000-0002-8659-1870 FU National Natural Science Foundation of China [71772162, 71872061]; Contemporary Business and Trade Research Center; Zhejiang Gongshang University [2019SMYJ12ZC]; Zhejiang Provincial Philosophy and Social Sciences Project [20NDJC102YB] FX This work was supported by grants awarded by the National Natural Science Foundation of China (71772162, 71872061), the Contemporary Business and Trade Research Center, and the Zhejiang Gongshang University (2019SMYJ12ZC), the Zhejiang Provincial Philosophy and Social Sciences Project (20NDJC102YB). CR Bengio Samy, 2019, ARXIV190710247 Cai J, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P2548 Diwanji V, 2020, COMPUT HUM BEHAV, V105, DOI 10.1016/j.chb.2019.106221 Park HJ, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101934 Sun Y, 2019, ELECTRON COMMER R A, V37, DOI 10.1016/j.elerap.2019.100886 Wang X, 2019, PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), P266, DOI [10.1109/ITNEC.2019.8729444, 10.1109/itnec.2019.8729444] Zhou JL, 2019, ELECTRON COMMER R A, V34, DOI 10.1016/j.elerap.2018.11.002 NR 7 TC 37 Z9 37 U1 34 U2 424 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD MAR-APR PY 2020 VL 40 AR 100958 DI 10.1016/j.elerap.2020.100958 PG 2 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA LH7CR UT WOS:000528943600031 DA 2024-03-27 ER PT J AU Caleb-Solly, P Dogramadzi, S Huijnen, CAGJ van den Heuvel, H AF Caleb-Solly, Praminda Dogramadzi, Sanja Huijnen, Claire A. G. J. van den Heuvel, Herjan TI Exploiting ability for human adaptation to facilitate improved human-robot interaction and acceptance SO INFORMATION SOCIETY LA English DT Article DE Assistive robotics; Human-Robot Interaction; Usability and User Experience Evaluation; Socially assistive robots AB This article reports findings from a usability and user experience evaluations conducted in the last 2 years of a 4-year assistive robotics research project using the Kompai robot. It focuses on the evaluations that were conducted with older adults in an assisted living studio in the United Kingdom (which was arranged as an open plan studio apartment), a UK residential care home, and an older couple's own home in the Netherlands over 2 days. It examines emergent adaptive human behaviour in human-robot interaction (HRI) to consider whether we are approaching the embodiment and functionality of service robots correctly. It discusses possible improvements that could be made at the systems level that better exploit people's natural ability to adapt and find workarounds to technologies and their limitations. C1 [Caleb-Solly, Praminda; Dogramadzi, Sanja] Univ West England, Bristol Robot Lab, Bristol, Avon, England. [Huijnen, Claire A. G. J.; van den Heuvel, Herjan] Smart Homes, Eindhoven, Netherlands. C3 University of West England; University of Bristol RP Caleb-Solly, P (autor correspondiente), Univ West England, Bristol Robot Lab, Fac Environm & Technol, Bristol BS16 1QY, Avon, England. EM praminda.caleb-solly@uwe.ac.uk RI Dogramadzi, Sanja/AAE-4706-2020 OI Caleb-Solly, Praminda/0000-0001-8821-0464 FU European Commission [FP7-248434]; AHRC [AH/N004108/1, AH/N004108/2] Funding Source: UKRI FX This work was developed within the MOBISERV project partially funded by the European Commission under the 7th Framework Programme (FP7-248434). The authors wish to thank all project members, particularly Anne Allardice and Daniel Davies for their work in the trials, and all the study participants. CR [Anonymous], LEARNING BEHAV [Anonymous], 2013, DESIGN EVERYDAY THIN Bajones M., 2014, COGN ARCH HUM ROB IN Bartneck C, 2007, AI SOC, V21, P217, DOI 10.1007/s00146-006-0052-7 Caleb-Solly P, 2014, ACMIEEE INT CONF HUM, P374, DOI 10.1145/2559636.2559681 Chenxia Wu, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P4362, DOI 10.1109/CVPR.2015.7299065 de Graaf MMA, 2015, COMPUT HUM BEHAV, V43, P1, DOI 10.1016/j.chb.2014.10.030 DICK MB, 1988, J GERONTOL, V43, pP127, DOI 10.1093/geronj/43.5.P127 European Commission, 2012, SPEC EUR 382 WAV EB7 Fiorini L., 2015, IET INT C TECHN ACT Frennert S, 2014, INT J SOC ROBOT, V6, P299, DOI 10.1007/s12369-013-0225-8 Green A, 2004, RO-MAN 2004: 13TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, PROCEEDINGS, P575, DOI 10.1109/ROMAN.2004.1374824 HUBER A, 2016, ACMIEEE INT CONF HUM, P367 Huijnen C, 2011, LECT NOTES COMPUT SC, V7040, P324, DOI 10.1007/978-3-642-25167-2_44 Koppula HS, 2013, INT J ROBOT RES, V32, P951, DOI 10.1177/0278364913478446 Martins G. S., 2016, CONTEXT AWARE ADAPTA Ferrús RM, 2016, ROBOT AUTON SYST, V79, P99, DOI 10.1016/j.robot.2016.01.010 Nani M., 2010, 4 COMP ROB WORKSH BR Nygård L, 2007, AGING MENT HEALTH, V11, P144, DOI 10.1080/13607860600844168 Pino M, 2015, FRONT AGING NEUROSCI, V7, DOI 10.3389/fnagi.2015.00141 Rosenthal-von der Puetten AM, 2017, ACMIEEE INT CONF HUM, P483, DOI 10.1145/2909824.3020251 Salem M., 2015, EM POL ETH HUM ROB I Sandoval EB, 2014, LECT NOTES ARTIF INT, V8755, P54, DOI 10.1007/978-3-319-11973-1_6 Saunders J., 2013, Assist Technol Res Series, V33, P49, DOI [10.3233/978-1-61499-304-9-49, DOI 10.3233/978-1-61499-304-9-49] Sun R, 2001, COGNITIVE SCI, V25, P203, DOI 10.1016/S0364-0213(01)00035-0 Sung J, 2010, INT J SOC ROBOT, V2, P417, DOI 10.1007/s12369-010-0065-8 Syrdal DS, 2014, COGN COMPUT, V6, P741, DOI 10.1007/s12559-014-9284-x Weiss Astrid., 2009, AISB2009 P S NEW FRO, V4, P11 Zimmerman J, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P395 NR 29 TC 20 Z9 21 U1 2 U2 32 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0197-2243 EI 1087-6537 J9 INFORM SOC JI Inf. Soc. PY 2018 VL 34 IS 3 SI SI BP 153 EP 165 DI 10.1080/01972243.2018.1444255 PG 13 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA GE2CR UT WOS:000431023700004 DA 2024-03-27 ER PT J AU Uluskan, M AF Uluskan, Meryem TI Structural equation modelling - artificial neural network based hybrid approach for assessing quality of university cafeteria services SO TQM JOURNAL LA English DT Article DE Artificial intelligence; Service quality; Artificial neural networks; SEM-ANN hybrid approach; Student satisfaction; University cafeterias ID DETERMINANTS; MANAGEMENT; SATISFACTION; ANTECEDENTS; INTEGRATION; ACCEPTANCE; STUDENTS AB Purpose This study aims to show the effectiveness and applicability of artificial intelligence applications in the measurement and evaluation of university services. Universities can gain competitive advantage through providing their students with quality services in various aspects, such as bookstores, dormitories, recreation centers as well as cafeterias. Among these facilities, university cafeterias are places where students spend a significant amount of time. Therefore, this study aims to integrate artificial intelligence application in the evaluation of university cafeteria services based on students' perceptions with two-stage structural equation modeling (SEM) and artificial neural network (ANN) approach. Design/methodology/approach An artificial intelligence based SEM-ANN hybrid approach was used to determine the factors that have significant influence on student satisfaction, sufficiency-of-services and likelihood-of-recommendation. Data were collected from 373 students through a face-to-face questionnaire. Initially, four service quality dimensions were attained through factor analysis. Then, hypotheses, which were determined via literature review, were tested through SEM-ANN hybrid approach. Findings Incorporating the results of SEM analysis into the ANN technique resulted in superior models with good prediction performance. Based on four ANN models created and ANN sensitivity analyses conducted, significant predictors of satisfaction, sufficiency, reliability and recommendation are determined and ranked. Originality/value Prior studies have assessed service quality using traditional techniques, whereas, this study integrates artificial intelligence in the assessment of higher-educational institutions' services quality. Also, as a distinction from previous studies, this study ranked importance levels of predictor variables through ANN sensitivity analysis. C1 [Uluskan, Meryem] Eskisehir Osmangazi Univ, Fac Engn & Architecture, Dept Ind Engn, Eskisehir, Turkey. C3 Eskisehir Osmangazi University; Anadolu University RP Uluskan, M (autor correspondiente), Eskisehir Osmangazi Univ, Fac Engn & Architecture, Dept Ind Engn, Eskisehir, Turkey. EM meryemulus@yahoo.com RI Uluskan, Meryem/AAC-3884-2022 OI Uluskan, Meryem/0000-0003-1287-8286 CR Abirami S, 2020, ADV COMPUT, V117, P339, DOI 10.1016/bs.adcom.2019.09.007 Andaleeb S. S., 2007, Journal of Foodservice Business Research, V10, P51, DOI 10.1300/J369v10n02_04 [Anonymous], 2015, INT FORUM [Anonymous], 2020, MERRIAM WEBSTER OFFI Awan MU, 2013, QUAL QUANT, V47, P1093, DOI 10.1007/s11135-011-9587-x Bollen K.A., 1989, STRUCTURAL EQUATIONS, DOI DOI 10.1002/9781118619179 Bowen N., 2011, STRUCTURAL EQUATION Cerquitelli T., 2017, TRANSPARENT DATA MIN Cha SS, 2019, J ASIAN FINANC ECON, V6, P187, DOI 10.13106/jafeb.2019.vol6.no1.187 Chakraborty M, 2019, NEW GENERAT COMPUT, V37, P67, DOI 10.1007/s00354-018-0048-0 Chang D.M.L., 2018, INT J ENG TECHNOLOGY, V7, P61, DOI [DOI 10.14419/IJET.V7I3.21.17097, 10.14419/ijet.v7i3.21.17097] Chang MLD., 2014, Asian Social Science, V10, P202 Chen SH, 2012, QUAL QUANT, V46, P1279, DOI 10.1007/s11135-011-9441-1 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Cruz-Jesus F, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e04081 Czarniecka-Skubina E, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16193699 Deng LF, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00580 Dwaikat NY, 2021, TQM J, V33, P841, DOI 10.1108/TQM-06-2020-0133 Fern YS, 2012, CURRENT ISSUES IN HOSPITALITY AND TOURISM RESEARCH AND INNOVATIONS, P81 Galabo N. R., 2019, INT J SCI TECHNOLOGY, V8, P114 Garg A, 2017, EUR J TOUR HOSP RECR, V8, P96, DOI 10.1515/ejthr-2017-0009 George B.P., 2004, International journal of bank marketing, V22, P390, DOI [10.1108/02652320410559321, DOI 10.1108/02652320410559321] GOLDBERGER AS, 1972, ECONOMETRICA, V40, P979, DOI 10.2307/1913851 Ha S.J., 2008, J KOREAN I INTERIOR, V17, P91 Han J, 2009, INT CHAIN NETW, V7, P1, DOI 10.3920/978-90-8686-684-7 Hanafi, 2018, INT J HUMANITIES SOC, V6, P112 Jain R., 2007, Journal of Services Research, V7, P37 Jang I, 2018, ENERG EXPLOR EXPLOIT, V36, P433, DOI 10.1177/0144598717729490 Johnson M., 2003, QUALITY MANAGEMENT J, V10, P8, DOI DOI 10.1080/10686967.2003.11919049 Jung J, 2009, NUTR RES PRACT, V3, P295, DOI 10.4162/nrp.2009.3.4.295 Kaufman BE, 2015, HUM RESOUR MANAG J, V25, P19, DOI 10.1111/1748-8583.12056 Kimani S W., 2011, International Journal of Business Administration, V2, P98, DOI https://doi.org/10.5430/ijba.v2n1p98 Kuleto V, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131810424 Kumar A., 2011, MARK MANAG Kwun D. J. W., 2013, Journal of Foodservice Business Research, V16, P276, DOI 10.1080/15378020.2013.810534 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Liang X., 2009, International Journal of Quality and Service Science, V1, P113, DOI DOI 10.1108/17566690910945903 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Masserini L, 2019, SOC INDIC RES, V146, P91, DOI 10.1007/s11205-018-1927-y Mensah I., 2018, Journal of Tourism, Heritage & Services Marketing, V4, P27 Nadzirah S., 2013, International Food Research Journal, V20, P1459 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Pakurár M, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041113 Palma M, 2019, SOC INDIC RES, V146, P327, DOI 10.1007/s11205-018-1889-0 Pei K.J., 2015, Open Access Library Journal, V02, P1 Pickard Q., 2008, ARCHITECTS HDB Piotrowski C.M., 2010, Designing commercial interiors Saglik E., 2014, American International Journal of Contemporary Research, V4, P100 Sainlez M, 2011, COMPUT-AIDED CHEM EN, V29, P1784 Schumacker R. E., 2004, A beginner's guide to structural equation modeling Shanka T., 2005, Asia Pacific Journal of Tourism Research, V10, P329, DOI 10.1080/10941660500309754 Sharma SK, 2019, INFORM SYST FRONT, V21, P815, DOI 10.1007/s10796-017-9775-x Sharma SK, 2019, INFORM SYST MANAGE, V36, P243, DOI 10.1080/10580530.2019.1620504 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Singh Gurjeet., 2011, International Journal of Earth Sciences and Engineering, V4, P443 Smith RA., 2020, International Hospitality Review., V34, P13, DOI [DOI 10.1108/IHR-06-2019-0010, 10.1108/IHR-06-2019-0010] Uluskan M, 2020, TOTAL QUAL MANAG BUS, V31, P1811, DOI 10.1080/14783363.2018.1520597 Uluskan M, 2017, TOTAL QUAL MANAG BUS, V28, P1526, DOI 10.1080/14783363.2016.1150173 Young Jung Hyun, 2013, [Journal of the Korean Society of Food Science and Nutrition, 한국식품영양과학회지], V42, P633 Zabukovsek SS, 2019, CENT EUR J OPER RES, V27, P703, DOI 10.1007/s10100-018-0592-1 Zawacki-Richter O, 2019, INT J EDUC TECHNOL H, V16, DOI 10.1186/s41239-019-0171-0 Zeide E, 2019, Educause Review, V54, P31 Zhenxing Ge, 2020, Journal of Physics: Conference Series, V1533, DOI 10.1088/1742-6596/1533/3/032089 NR 64 TC 2 Z9 2 U1 6 U2 21 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1754-2731 EI 1754-274X J9 TQM J JI TQM J. PD MAY 4 PY 2023 VL 35 IS 4 BP 1048 EP 1071 DI 10.1108/TQM-01-2022-0001 EA MAY 2022 PG 24 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA F3IN1 UT WOS:000799618600001 DA 2024-03-27 ER PT J AU Saw, CC Inthiran, A AF Saw, Chian Chyi Inthiran, Anushia TI Designing for Trust on E-Commerce Websites Using Two of the Big Five Personality Traits SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE keyword trust; personality traits; e-commerce websites; design features; human computer interaction; psychology ID HUMAN-COMPUTER INTERACTION; CONSUMER TRUST; INITIAL TRUST; WEB DESIGN; SATISFACTION; DIMENSIONS; ATTRIBUTES; CULTURES; IMPACT; MODEL AB Online consumers perceived performing an online transaction as risky. The inability to trust the website is one reason why online consumers are reluctant to perform an online transaction. In this research study, 46 design features are examined to identify features that are able to increase the value of trust. Eighty-nine individuals participated in this research study. Participants completed one questionnaire which was divided into four parts. The questionnaire collected information on demographics, personality traits, trust and website design features. Data were analysed using quantitative statistical methods. A pilot test was conducted prior to the main experiment. Results indicate there are sixteen design features that have the ability to increase the level of trust amongst participants with the neuroticism trait. Fourteen design features had the ability to increase the level of trust amongst participants with the conscientiousness personality trait. E-commerce website designers could use these design features to increase the online consumer's perception of trust on e-commerce websites. C1 [Saw, Chian Chyi] Univ Canterbury, Business Informat Syst, Business Taught Masters Degree Programme, Christchurch 8041, New Zealand. [Inthiran, Anushia] Univ Canterbury, Dept Accounting & Informat Syst, Christchurch 8041, New Zealand. C3 University of Canterbury; University of Canterbury RP Inthiran, A (autor correspondiente), Univ Canterbury, Dept Accounting & Informat Syst, Christchurch 8041, New Zealand. EM chianchyi.saw@gmail.com; anushia.inthiran@canterbury.ac.nz OI Inthiran, Anushia/0000-0002-7691-0890 CR Abed S, 2018, J ADV MANAG RES, V15, P146, DOI 10.1108/JAMR-05-2017-0057 [Anonymous], 2020, CHINA INTERNET WATCH Asif MS, 2020, J CLEAN PROD, V276, DOI 10.1016/j.jclepro.2020.124191 Aslam W., 2019, Business Perspectives and Research, V8, P186, DOI DOI 10.1177/2278533719887451 Azam A., 2013, Journal of WEI Business and Economics, V2, P31 Beatty P, 2011, ACM COMPUT SURV, V43, DOI 10.1145/1922649.1922651 Benet-Martinez V, 1998, J PERS SOC PSYCHOL, V75, P729, DOI 10.1037/0022-3514.75.3.729 Bhatnagar A, 2004, J BUS RES, V57, P1352, DOI 10.1016/S0148-2963(03)00067-5 Bratu S., 2019, Review of Contemporary Philosophy, V18, P157, DOI [DOI 10.22381/RCP18201910, 10.22381/RCP18201910, https://doi.org/10.22381/RCP18201910] Carroll JM, 1997, INT J HUM-COMPUT ST, V46, P501, DOI 10.1006/ijhc.1996.0101 CHANDLER GN, 1992, J BUS VENTURING, V7, P223, DOI 10.1016/0883-9026(92)90028-P Clement J., 2019, E COMMERCE WORLDWIDE Clemmensen T., 2006, Information Technology & People, V19, P121, DOI 10.1108/09593840610673793 Cunningham S.M., 1967, RISK TAKING INFORM H Cyr D, 2008, J MANAGE INFORM SYST, V24, P47, DOI 10.2753/MIS0742-1222240402 Davis Evan., 2017, Post Truth: Why We Have Reached Peak Bullshit and What We Can Do About It Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Egger F. N., 2001, P INT C AFF HUM FACT Endeshaw A, 2001, INF COMMUN TECHNOL L, V10, P203 Ferraro A, 1998, 1 MONDAY, V3, DOI DOI 10.5210/FM.V3I6.601 Fimberg K., 2020, ADV CREATIVITY INNOV, P267 Ganguly Boudhayan, 2010, International Journal of Electronic Business, V8, P302, DOI 10.1504/IJEB.2010.035289 Garver Abe., 2012, Forbes Gefen D, 2000, OMEGA-INT J MANAGE S, V28, P725, DOI 10.1016/S0305-0483(00)00021-9 GOLDBERG LR, 1993, AM PSYCHOL, V48, P26, DOI 10.1037/0003-066X.48.1.26 Hansen JM, 2018, COMPUT HUM BEHAV, V80, P197, DOI 10.1016/j.chb.2017.11.010 Jarvenpaa S., 1999, JCMC, V5, P1, DOI [10.1111/j.1083-6101.1999.tb00337.x, DOI 10.1111/J.1083-6101.1999.TB00337.X] Jeon H, 2017, J QUAL ASSUR HOSP TO, V18, P125, DOI [10.1080/1528008X.2016.1169473, 10.1080/1528008x.2016.1169473] Jourdan Z., 2011, TRUST E BUSINESS CRO Karimov FP, 2011, J ELECTRON COMMER RE, V12, P272 Kim D., 2003, J ELECTRON COMMER RE, V4, P49 Ko H., 2013, Journal of Interactive Advertising, V4, P20, DOI [10.1080/15252019.2004.10722084, DOI 10.1080/15252019.2004.10722084] Koufaris M, 2004, INFORM MANAGE-AMSTER, V41, P379, DOI 10.1016/j.im.2003.08.004 Lee JD, 2004, HUM FACTORS, V46, P50, DOI 10.1518/hfes.46.1.50.30392 Lee SM, 2005, J COMPUT INFORM SYST, V46, P85 Leen J. Y. A., 2010, INT J ECON MANAG ACC, V4, P2010 Littauer F., 2005, PERSONALITY PLUS UND Lowry PB, 2014, INT J HUM-COMPUT INT, V30, P63, DOI 10.1080/10447318.2013.839899 Lumsden J, 2006, 2006 ICEC: EIGHTH INTERNATIONAL CONFERENCE ON ELECTRONIC COMMERCE, PROCEEDINGS, P471 Lynch PD, 2001, J ADVERTISING RES, V41, P15, DOI 10.2501/JAR-41-3-15-23 May AY C., 2021, Econ. Manag. Financ. Mark, V16, P32, DOI [10.22381/emfm16220212, DOI 10.22381/EMFM16220212] MCCRAE RR, 1987, J PERS SOC PSYCHOL, V52, P81, DOI 10.1037/0022-3514.52.1.81 McDowell WC, 2016, J BUS RES, V69, P4837, DOI 10.1016/j.jbusres.2016.04.040 McKnight DH, 2002, J STRATEGIC INF SYST, V11, P297, DOI 10.1016/S0963-8687(02)00020-3 Menon S, 2002, J RETAILING, V78, P31, DOI 10.1016/S0022-4359(01)00064-1 Mirica C, 2009, EC MANAG FINANC MARK, V14, P15 Mohd NAB, 2019, PROCEDIA COMPUT SCI, V161, P1199, DOI 10.1016/j.procs.2019.11.233 Faisal CMN, 2017, IEEE T HUM-MACH SYST, V47, P847, DOI 10.1109/THMS.2016.2620901 Nah F., 2002, The Journal of Electronic Commerce Research, V3, P98 Oliveira T, 2017, COMPUT HUM BEHAV, V71, P153, DOI 10.1016/j.chb.2017.01.050 Olson GM, 2003, ANNU REV PSYCHOL, V54, P491, DOI 10.1146/annurev.psych.54.101601.145044 Pandey S, 2020, BUILD TRUST ECOMMERC Pavlou P., 2002, P INT C INFORM SYSTE, V15, P1 Pickup O, 2017, TELEGRAPH Riegelsberger J, 2005, INT J HUM-COMPUT ST, V62, P381, DOI 10.1016/j.ijhcs.2005.01.001 Rodríguez-Ardura Inma, 2008, J. theor. appl. electron. commer. res., V3, P18 Roy MC, 2001, INTERNET RES, V11, P388, DOI 10.1108/10662240110410165 Santos V., 2017, International Journal of Business Administration, V8, P130, DOI DOI 10.5430/IJBA.V8N7P130 Sebastianelli R, 2018, ONLINE INFORM REV, V42, P506, DOI 10.1108/OIR-02-2016-0039 Shah B.S., 2019, LIB PHILOS PRACTICE Song J, 2005, MANAGE SCI, V51, P1219, DOI 10.1287/mnsc.1050.0427 Sulikowski P., 2019, P 16 INT C BUS ENG I, P208 Sulikowski P, 2018, PROCEDIA COMPUT SCI, V126, P1587, DOI 10.1016/j.procs.2018.08.132 Tam E.-C., 2002, P INT C INFORM SYSTE Tan F. B., 2004, Journal of Electronic Commerce in Organizations, V2, P40, DOI 10.4018/jeco.2004070103 Thatcher JB, 2013, COMMUN ASSOC INF SYS, V32, P107 Tractinsky, 2003, P 36 HAW INT C SYST Tseng KT, 2014, LECT NOTES COMPUT SC, V8512, P90, DOI 10.1007/978-3-319-07227-2_10 Vance A, 2008, J MANAGE INFORM SYST, V24, P73, DOI 10.2753/MIS0742-1222240403 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Volkel S.T., 2019, OPPORTUNITIES CHALLE Walczuch R, 2004, INFORM MANAGE-AMSTER, V42, P159, DOI 10.1016/j.im.2003.12.009 Wang Y., 2009, IT IS NOT EASY ENACT Wang YD, 2005, COMPUT HUM BEHAV, V21, P105, DOI 10.1016/j.chb.2003.11.008 Weijters B, 2013, PSYCHOL METHODS, V18, P320, DOI 10.1037/a0032121 Xu-Priour DL, 2017, INT J ELECTRON COMM, V21, P299, DOI 10.1080/10864415.2016.1319206 Yong-Hui L., 2009, Proceedings of World Academy of Science, V41, P919 Zhou X., 2005, THESIS LULEA U TECHN NR 78 TC 4 Z9 4 U1 4 U2 25 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD JUN PY 2022 VL 17 IS 2 BP 375 EP 393 DI 10.3390/jtaer17020020 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 2M4KW UT WOS:000817671300001 OA gold DA 2024-03-27 ER PT J AU Wells, JD Fuerst, WL Palmer, JW AF Wells, JD Fuerst, WL Palmer, JW TI Designing consumer interfaces for experiential tasks: an empirical investigation SO EUROPEAN JOURNAL OF INFORMATION SYSTEMS LA English DT Article DE experiential tasks; interface design; metaphor; electronic commerce; domain familiarity; mental models; consumer behavior; human-computer interaction; information presentation ID GRAPHICAL INFORMATION PRESENTATION; CUSTOMER INTERFACES; COMPUTING SYSTEMS; DECISION-SUPPORT; METAPHOR; IMPACT; ONLINE; WEB; PERFORMANCE; TECHNOLOGY AB In the early adoption phase of business-to-consumer (B2C) ecommerce, the tasks that proved most conducive to online consumer interaction typically were goal-directed, being clear in sequence and structure. A key challenge in ecommerce is the ability to design interfaces that support experiential tasks in addition to goal-directed tasks. Most of the ecommerce research on interface design, however, has focused on goal-directed tasks and has not addressed experiential tasks. Based on the literature from interface metaphors and mental models, this paper explores the use of tangible attributes derived from the physical business domain as a technique for designing an interface that effectively supports experiential tasks. A laboratory experiment was designed and conducted to test the impact of two types of interfaces and business domain familiarity when completing an experiential task. Because consumers need to retain and recall information to evaluate products/services or to make brand associations, retention/recall of information was measured on both the day of the treatment and after a 2-day lag. Results revealed that the interface based upon the business domain metaphor stimulated higher levels of retention and recall of information and thus provided the desired support for experiential tasks. Further, users with weaker domain familiarity showed the greatest improvement in retention and recall, particularly after a 2-day lag, when using the interface with the business domain metaphor design. C1 Washington State Univ, Coll Business & Econ, Dept Informat Syst, Pullman, WA 99164 USA. Univ Kansas, Sch Business, Lawrence, KS 66045 USA. Coll William & Mary, Sch Business, Williamsburg, VA 23187 USA. C3 Washington State University; University of Kansas; William & Mary RP Wells, JD (autor correspondiente), Washington State Univ, Coll Business & Econ, Dept Informat Syst, Pullman, WA 99164 USA. EM wellsjd@wsu.edu CR Agarwal R, 2002, INFORM SYST RES, V13, P168, DOI 10.1287/isre.13.2.168.84 Alba J, 1997, J MARKETING, V61, P38, DOI 10.2307/1251788 Ashcraft M.H., 1994, HUMAN MEMORY COGNITI, V2nd AYKIN NM, 1991, COMPUT IND ENG, V20, P373, DOI 10.1016/0360-8352(91)90009-U Baecker R., 1995, Readings in human-computer interaction: Towards the Year 2000 BENBASAT I, 1986, MIS QUART, V10, P59, DOI 10.2307/248881 BENBASAT I, 1986, COMMUN ACM, V29, P1094, DOI 10.1145/7538.7545 BETTMAN JR, 1977, J CONSUM RES, V3, P233, DOI 10.1086/208672 BETTMAN JR, 1979, J MARKETING, V43, P37, DOI 10.1177/002224297904300205 Biocca F., 1997, J COMPUTER MEDIATED, V3 Burke RR, 2002, J ACAD MARKET SCI, V30, P411, DOI 10.1177/009207002236914 Carroll J. M., 1988, Handbook of human-computer interaction, P67, DOI DOI 10.1016/B978-0-444-70536-5.50008-7 CARROLL JM, 1982, IEEE T SYST MAN CYB, V12, P107, DOI 10.1109/TSMC.1982.4308795 CARROLL JM, 1985, INT J MAN MACH STUD, V22, P39, DOI 10.1016/S0020-7373(85)80076-6 Chau PYK, 2000, J ORG COMP ELECT COM, V10, P1 DAVIES G, 1991, J MICROCOMPUT APPL, V14, P105, DOI 10.1016/0745-7138(91)90003-A DICKSON GW, 1986, COMMUN ACM, V29, P40, DOI 10.1145/5465.5469 Dieberger A, 1998, J VISUAL LANG COMPUT, V9, P597, DOI 10.1006/jvlc.1998.0100 Ebbinghaus H., 1885, MEMORY CONTRIBUTION Erickson T., 1990, ART HUMAN COMPUTER I, P65 Gentner D., 1983, MENTAL MODELS GILLAN DJ, 1995, HUM FAC ERG SOC P, P243 Golovchinsky G, 1997, INFORM PROCESS MANAG, V33, P663, DOI 10.1016/S0306-4573(97)00024-1 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 JACCARD J, 1998, SERIES QUANTITATIVE Jahng JJ, 2002, EUR J INFORM SYST, V11, P181, DOI 10.1057/palgrave.ejis.3000431 Jarvenpaa S.L., 1996, INT J ELECTRON COMM, V1, P59, DOI DOI 10.1080/10864415.1996.11518283 JARVENPAA SL, 1988, COMMUN ACM, V31, P764, DOI 10.1145/62959.62971 Jenkins JG, 1924, AM J PSYCHOL, V35, P605, DOI 10.2307/1414040 Jiang Z., 2003, P 24 INT C INF SYST, P960 Johnson A.L.A., 1984, Zitteliana, V11, P1 Kay Alan., 1990, The Art of Human-Computer Interface Design, P191 Kim J, 1999, BEHAV INFORM TECHNOL, V18, P213, DOI 10.1080/014492999119093 Koufaris M, 2002, INFORM SYST RES, V13, P205, DOI 10.1287/isre.13.2.205.83 Lackoff George., 1980, Metaphors We Live By Li H., 2001, Journal of Interactive Marketing, V15, P13, DOI [https://doi.org/10.1002/dir.1013, DOI 10.1002/DIR.1013, 10.1002/dir.1013] Li HR, 2002, J ADVERTISING, V31, P43, DOI 10.1080/00913367.2002.10673675 Lohse GL, 1998, COMMUN ACM, V41, P81, DOI 10.1145/278476.278491 LUCAS HC, 1980, MANAGE SCI, V26, P982, DOI 10.1287/mnsc.26.10.982 LUCAS HC, 1981, MANAGE SCI, V27, P757, DOI 10.1287/mnsc.27.7.757 MADSEN KH, 1994, COMMUN ACM, V37, P57, DOI 10.1145/198366.198381 Marcus A., 1998, Journal of Computer Documentation, V22, P43, DOI 10.1145/291391.291397 Mathwick C, 2002, J RETAILING, V78, P51, DOI 10.1016/S0022-4359(01)00066-5 MEYER DL, 1991, PSYCHOL BULL, V110, P571, DOI 10.1037/0033-2909.110.3.571 Murphy K., 2004, STAT POWER ANAL Nielsen J, 1999, COMMUN ACM, V42, P65, DOI 10.1145/291469.291470 Nielsen J., 2000, DESIGNING WEB USABIL Norman DonaldA., 1990, DESIGN EVERYDAY THIN O'Keefe RM, 1998, COMMUN ACM, V41, P71, DOI 10.1145/272287.272300 Palmer JW, 2002, INFORM SYST RES, V13, P151, DOI 10.1287/isre.13.2.151.88 Pitkow JE, 1996, COMMUN ACM, V39, P106, DOI 10.1145/228503.228525 ROSNOW RL, 1991, PSYCHOL BULL, V110, P574, DOI 10.1037/0033-2909.110.3.574 Satzinger J. W., 1998, Journal of Management Information Systems, V14, P167 Shayo C., 2000, Journal of End User Computing, V12, P3, DOI 10.4018/joeuc.2000010101 Smith-Jentsch KA, 2001, J ORGAN BEHAV, V22, P179, DOI 10.1002/job.88 UMANATH NS, 1988, COMMUN ACM, V31, P562, DOI 10.1145/42411.42419 UMANATH NS, 1990, DECISION SCI, V21, P216, DOI 10.1111/j.1540-5915.1990.tb00326.x Vaughan MW, 1998, INT J HUM-COMPUT INT, V10, P265, DOI 10.1207/s15327590ijhc1003_4 VESSEY I, 1991, DECISION SCI, V22, P219, DOI 10.1111/j.1540-5915.1991.tb00344.x Vessey I, 1991, INFORM SYST RES, V2, P63, DOI 10.1287/isre.2.1.63 Vora P., 1998, HUMAN FACTORS WEB DE, P153 Wolfinbarger M, 2001, CALIF MANAGE REV, V43, P34, DOI 10.2307/41166074 NR 62 TC 28 Z9 30 U1 5 U2 37 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 0960-085X EI 1476-9344 J9 EUR J INFORM SYST JI Eur. J. Inform. Syst. PD SEP PY 2005 VL 14 IS 3 BP 273 EP 287 DI 10.1057/palgrave.ejis.3000516 PG 15 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 964IK UT WOS:000231872800007 DA 2024-03-27 ER PT J AU Sundar, SS AF Sundar, S. Shyam TI Rise of Machine Agency: A Framework for Studying the Psychology of Human-AI Interaction (HAII) SO JOURNAL OF COMPUTER-MEDIATED COMMUNICATION LA English DT Article DE Source Interactivity; Machine Heuristic; Artificial Intelligence (AI); Algorithms; User Experience; Human-AI Interaction (HAII); Theory of Interactive Media Effects (TIME) ID ATTRIBUTION AB Advances in personalization algorithms and other applications of machine learning have vastly enhanced the ease and convenience of our media and communication experiences, but they have also raised significant concerns about privacy, transparency of technologies and human control over their operations. Going forth, reconciling such tensions between machine agency and human agency will be important in the era of artificial intelligence (AI), as machines get more agentic and media experiences become increasingly determined by algorithms. Theory and research should be geared toward a deeper understanding of the human experience of algorithms in general and the psychology of Human-AI interaction (HAII) in particular. This article proposes some directions by applying the dual-process framework of the Theory of Interactive Media Effects (TIME) for studying the symbolic and enabling effects of the affordances of AI-driven media on user perceptions and experiences. C1 [Sundar, S. Shyam] Penn State Univ, Media Effects Res Lab, Donald P Bellisario Coll Commun, University Pk, PA 16802 USA. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park RP Sundar, SS (autor correspondiente), Penn State Univ, Media Effects Res Lab, Donald P Bellisario Coll Commun, University Pk, PA 16802 USA. EM sss12@psu.edu CR Alvarado O, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173860 [Anonymous], 2016, INFORM COMMUNICATION Bandura A, 2001, ANNU REV PSYCHOL, V52, P1, DOI 10.1146/annurev.psych.52.1.1 Bellavista P, 2008, IEEE PERVAS COMPUT, V7, P85, DOI 10.1109/MPRV.2008.34 Biocca F., 1997, J Comput Mediat Commun, V3, DOI [10.1111/j.1083-6101.1997.tb00070.x, DOI 10.1111/J.1083-6101.1997.TB00070.X, https://doi.org/10.1111/j.1083-6101.1997.tb00070.x] Blin F, 2016, LANG STUD SCI ENGINE, V2, P41, DOI 10.1075/lsse.2.03bli CAPPELLA JN, 1989, SAGE AR CR, V17, P24 Carr N., 2010, SHALLOWS INTERNET IS Chen TW, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174111 Clark M., 2013, STATELINE DeVito MA, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3163, DOI 10.1145/3025453.3025659 Dietvorst BJ, 2015, J EXP PSYCHOL GEN, V144, P114, DOI 10.1037/xge0000033 Eslami M, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P2371, DOI 10.1145/2858036.2858494 Eslami M, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P153, DOI 10.1145/2702123.2702556 Evans SK, 2017, J COMPUT-MEDIAT COMM, V22, P35, DOI 10.1111/jcc4.12180 French M., 2017, 67 ANN C INT COMMUNI, DOI DOI 10.2139/SSRN.2910571 Hassan N, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1803, DOI 10.1145/3097983.3098131 Jakesch M, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300469 Jarrahi MH, 2018, BUS HORIZONS, V61, P577, DOI 10.1016/j.bushor.2018.03.007 Jhaver S, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173995 Jia HY, 2012, UBICOMP'12: PROCEEDINGS OF THE 2012 ACM INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING, P1185 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 KIESLER S, 1984, AM PSYCHOL, V39, P1123, DOI 10.1037/0003-066X.39.10.1123 Kim KJ, 2016, J COMPUT-MEDIAT COMM, V21, P420, DOI 10.1111/jcc4.12177 Lee MK, 2018, BIG DATA SOC, V5, DOI 10.1177/2053951718756684 Lombard M., 1997, J COMPUT-MEDIAT COMM, DOI [DOI 10.1111/J.10836101.1997.TB00072.X, 10.1111/j.1083, 10.1111/j.1083-6101.1997.tb00072.x, DOI 10.1111/J.1083-6101.1997.TB00072.X] McLuhan M., 1964, UNDERST MEDIA Mosier KL, 1996, PROCEEDINGS OF THE HUMAN FACTORS AND ERGONOMICS SOCIETY - 40TH ANNUAL MEETING, VOLS 1 AND 2, P204 Norman D., 1988, PSYCHOL EVERYDAY THI O'Reilly Tim., 2017, WTF?: What's the Future and why It's Up to Us Perez-Rosas V., 2017, AUTOMATIC DETECTION Rader E, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173677 Rammert W., 2008, PARADOXES INTERACTIV, P62, DOI [10.14361/9783839408421-004, DOI 10.14361/9783839408421-004] Reeves B, 1996, MEDIA EQUATION PEOPL Rheingold Howard., 1985, Tools for Thought: The History and Future of Mind-Expanding Technology Roloff MichaelE., 1981, Interpersonal Communication Rusbult C.E., 1997, HDB PERSONAL RELATIO, V2nd, P221 Schuppe Jon, 2018, NBC News Shao CC, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06930-7 Stavrositu C, 2012, J COMPUT-MEDIAT COMM, V17, P369, DOI 10.1111/j.1083-6101.2012.01587.x Subramanian Samanth, 2017, Wired Sundar S., 2007, OXFORD HDB INTERNET, DOI DOI 10.1093/OXFORDHB/9780199561803.013.0007 Sundar SS, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300768 Sundar SS, 2015, HBK COMMUN MEDIA, P47 Sundar SS, 2010, HUM COMMUN RES, V36, DOI 10.1111/j.1468-2958.2010.01377.x Sundar SS, 2000, COMMUN RES, V27, P683, DOI 10.1177/009365000027006001 Takayama L, 2015, HBK COMMUN MEDIA, P160 Treem J. W., 2013, Communication Yearbook, V36, P143, DOI DOI 10.1080/23808985.2013.11679130 Twenge Jean M, 2017, Atlantic Vincent J., 2018, VERGE 0403 Waddell TF, 2019, J MASS COMMUN Q, V96, P82, DOI 10.1177/1077699018815891 Walther J.B., 2002, HDB INTERPERSONAL CO, P529, DOI DOI 10.1177/0893318916687397 Xu B, 2016, ACM CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW 2016), P1662, DOI 10.1145/2818048.2819948 Zhang B, 2019, INT J HUM-COMPUT ST, V128, P86, DOI 10.1016/j.ijhcs.2019.03.002 Zhang B, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P111 NR 55 TC 171 Z9 181 U1 153 U2 479 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1083-6101 J9 J COMPUT-MEDIAT COMM JI J. Comput.-Mediat. Commun. PD JAN PY 2020 VL 25 IS 1 SI SI BP 74 EP 88 DI 10.1093/jcmc/zmz026 PG 15 WC Communication; Information Science & Library Science WE Social Science Citation Index (SSCI) SC Communication; Information Science & Library Science GA NN8QV UT WOS:000569052500007 OA Bronze HC Y HP N DA 2024-03-27 ER PT J AU Sharma, A Fadahunsi, A Abbas, H Pathak, VK AF Sharma, Anshuman Fadahunsi, Akinola Abbas, Haidar Pathak, Vivek Kumar TI A multi-analytic approach to predict social media marketing influence on consumer purchase intention SO JOURNAL OF INDIAN BUSINESS RESEARCH LA English DT Article DE Purchase intention; Inspiration; Artificial neural network (ANN); Consumer-based brand equity (CBBE); Reflective-formative higher order construct (R-F-HOC); Social media marketing (SMM) ID PLS-SEM GUIDELINES; BRAND EQUITY; INSPIRE ME; IMPACT; COMMERCE; REVIEWS; MODEL; DETERMINANTS; ANTECEDENTS; CONSTRUCTS AB Purpose Based on the stimulus-organism-response (SOR) framework, this study aims to investigate the effect of social media marketing (SMM) activities on consumers' purchase intention (PI), as well as to test the mediation effect of consumer-based brand equity (CBBE) and consumer inspiration (INS) between the relationship of SMM and PI. Further, this study has also proposed and validated SMM as a reflective-formative higher-order construct (R-F-HOC) with its five first-order dimensions: customization, entertainment, interaction, trendiness and word of mouth (WoM). Design/methodology/approach Using a non-probability purposive sampling method, a structured questionnaire survey using Google forms was used to collect data from a sample of 236 UAE consumers. Subsequently, the data was analyzed with a hybrid method that combined partial least squares structural equation modeling (PLS-SEM) and artificial neural network (ANN) analysis. Findings The findings suggest that SMM has a direct effect on CBBE, INS and PI. Both proposed mediation effects are statistically significant, and there is a partial complementary mediation effect of CBBE and INS between SMM and PI. This study validated the operationalization of SMM as R-F-HOC. Further, the results of the ANN analysis validate the results of the PLS-SEM, suggesting that SMM is the strongest predictor of PI followed by CBBE and INS. Research limitations/implications In terms of theoretical significance, this study has advanced our understanding of the process by which the influence of SMM is transferred to PI via CBBE and INS. This study has also made a significant contribution by validating SMM as a R-F-HOC. In terms of practical implications, this study suggests that SMM should be best assessed as a R-F-HOC construct with five dimensions: customization, entertainment, interaction, trendiness and WoM. This study has also demonstrated the importance of CBBE and INS in transmitting the effect of SMM on PI to marketers. Originality/value This study contributes to the digital advertising literature by filling a knowledge gap about the mediation effect of CBBE and INS between SMM and PI via the SOR framework. SMM's multidimensionality as a R-F-HOC has also been established. C1 [Sharma, Anshuman; Fadahunsi, Akinola] Ajman Univ, Coll Business Adm, Dept Mkt, Ajman, U Arab Emirates. [Abbas, Haidar] Univ Technol & Appl Sci, Salalah Coll Appl Sci, Dept Business Adm, Salalah, Oman. [Pathak, Vivek Kumar] Arunachal Univ Studies, Fac Commerce & Management, Namsai, India. C3 Ajman University RP Sharma, A (autor correspondiente), Ajman Univ, Coll Business Adm, Dept Mkt, Ajman, U Arab Emirates. EM profasharma@gmail.com RI Pathak, Vivek Kumar/P-9291-2018; Pathak, Vivek/GRX-8733-2022 OI Abbas, Haidar/0000-0001-8063-879X CR Aguirre-Urreta MI, 2018, MIS QUART, V42, P1001, DOI 10.25300/MISQ/2018/13587 Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] Alalwan AA, 2018, INT J INFORM MANAGE, V42, P65, DOI 10.1016/j.ijinfomgt.2018.06.001 Alves H, 2016, PSYCHOL MARKET, V33, P1029, DOI 10.1002/mar.20936 [Anonymous], 2021, GLOBAL MEDIA INTELLI Ashley C, 2015, PSYCHOL MARKET, V32, P15, DOI 10.1002/mar.20761 Baalbaki S, 2016, J BRAND MANAG, V23, P229, DOI 10.1057/bm.2016.11 Batool F, 2022, LEADERSHIP ORG DEV J, V43, P71, DOI 10.1108/LODJ-06-2021-0264 Batra R, 2016, J MARKETING, V80, P122, DOI 10.1509/jm.15.0419 Becker JM, 2012, LONG RANGE PLANN, V45, P359, DOI 10.1016/j.lrp.2012.10.001 Beneke J, 2016, INT REV RETAIL DISTR, V26, P171, DOI 10.1080/09593969.2015.1068828 Böttger T, 2017, J MARKETING, V81, P116, DOI 10.1509/jm.15.0007 Bragg MA, 2020, PEDIATR OBES, V15, DOI 10.1111/ijpo.12606 Carlson J, 2018, J SERV MARK, V32, P83, DOI 10.1108/JSM-02-2017-0059 Chakraborty U, 2019, J RES INTERACT MARK, V13, P142, DOI 10.1108/JRIM-06-2018-0080 Chang HH, 2009, SERV IND J, V29, P1687, DOI 10.1080/02642060902793557 Charoensukmongkol P, 2020, J ASIA BUS STUD, V14, P441, DOI 10.1108/JABS-07-2018-0204 Cheah JH, 2018, INT J CONTEMP HOSP M, V30, P3192, DOI [10.1108/ijchm-10-2017-0649, 10.1108/IJCHM-10-2017-0649] Chen SC, 2019, TECHNOL FORECAST SOC, V140, P22, DOI 10.1016/j.techfore.2018.11.025 Chetioui Y., 2021, Journal of Global Marketing, V34, P220, DOI DOI 10.1080/08911762.2021.1891359 Cheung ML, 2021, AUSTRALAS MARK J, V29, P118, DOI 10.1016/j.ausmj.2020.03.006 Chin WW, 1998, MIS QUART, V22, pVII Cordero-Guti?rrez R., 2020, SPANISH J MARKETING, V24, P247, DOI DOI 10.1108/SJME-09-2019-0075 DataReportal, 2021, DIG 2021 APR GLOB ST Dedeoglu BB, 2020, J VACAT MARK, V26, P33, DOI 10.1177/1356766719858644 Diamantopoulos A, 2006, BRIT J MANAGE, V17, P263, DOI 10.1111/j.1467-8551.2006.00500.x Dolan R, 2019, EUR J MARKETING, V53, P2213, DOI 10.1108/EJM-03-2017-0182 Duffett RG, 2015, INTERNET RES, V25, P498, DOI 10.1108/IntR-01-2014-0020 Dwivedi A, 2018, EUR J MARKETING, V52, P1387, DOI 10.1108/EJM-11-2016-0665 Ebrahim R.S., 2020, J RELATIONSHIP MARKE, V19, P287, DOI [10.1080/15332667.2019.1705742, DOI 10.1080/15332667.2019.1705742] Erdogmus IE, 2015, PROCD SOC BEHV, V207, P189, DOI 10.1016/j.sbspro.2015.10.087 Fang JM, 2017, INT J INFORM MANAGE, V37, P269, DOI 10.1016/j.ijinfomgt.2017.03.003 Fisher G, 2017, ORGAN RES METHODS, V20, P438, DOI 10.1177/1094428116689707 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Guha S, 2021, J RES MARK ENTREP, V23, P339, DOI 10.1108/JRME-07-2020-0097 Hafez M, 2021, INT J BANK MARK, V39, P1353, DOI 10.1108/IJBM-02-2021-0067 Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Hall KR, 2022, J BUS IND MARK, V37, P1787, DOI 10.1108/JBIM-04-2021-0218 Hamilton M, 2016, J INTERACT MARK, V36, P121, DOI 10.1016/j.intmar.2016.07.001 Hasan M, 2021, J INT CONSUM MARK, V33, P350, DOI 10.1080/08961530.2020.1795043 Hayes AF, 2018, COMMUN MONOGR, V85, P4, DOI 10.1080/03637751.2017.1352100 Henseler J, 2020, Composite-based Structural Equation Modeling: Analyzing Latent and Emergent Variables Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hertzog MA, 2008, RES NURS HEALTH, V31, P180, DOI 10.1002/nur.20247 Hu X, 2016, INT J INFORM MANAGE, V36, P1218, DOI 10.1016/j.ijinfomgt.2016.08.005 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Hutter K, 2013, J PROD BRAND MANAG, V22, P342, DOI 10.1108/JPBM-05-2013-0299 Izogo EE, 2020, J RES INTERACT MARK, V14, P431, DOI 10.1108/JRIM-09-2019-0145 Jarvis CB, 2003, J CONSUM RES, V30, P199, DOI 10.1086/376806 Jebarajakirthy C, 2021, INT J CONSUM STUD, V45, P1258, DOI 10.1111/ijcs.12728 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim D, 2013, INT J HOSP MANAG, V35, P246, DOI 10.1016/j.ijhm.2013.05.012 Kim JS, 2021, INT J TOUR RES, V23, P13, DOI 10.1002/jtr.2388 Koay KY, 2021, ASIA PAC J MARKET LO, V33, P53, DOI 10.1108/APJML-07-2019-0453 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015010101 Lamberton C, 2016, J MARKETING, V80, P146, DOI 10.1509/jm.15.0415 Lee EB, 2017, IND MANAGE DATA SYST, V117, P1011, DOI 10.1108/IMDS-06-2016-0229 Lee J, 2016, INT J INFORM MANAGE, V36, P360, DOI 10.1016/j.ijinfomgt.2016.01.001 Liang JP, 2016, J CONSUM PSYCHOL, V26, P283, DOI 10.1016/j.jcps.2015.09.001 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Lim XJ, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120763 MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 Majeed M, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1944008 MARDIA KV, 1970, BIOMETRIKA, V57, P519, DOI 10.2307/2334770 Martin L., 2021, International Business Development: A Concise Textbook Focusing on International B-to-B Contexts Martins J, 2019, J BUS RES, V94, P378, DOI 10.1016/j.jbusres.2017.12.047 Mason AN, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2020.1870797 Mathur M, 2018, INT REV RETAIL DISTR, V28, P554, DOI 10.1080/09593969.2018.1509799 McClure C, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101975 Mehrabian A., 1974, APPROACH ENV PSYCHOL Memon MA., 2018, Journal of Applied Structural Equation Modeling, V2, pi, DOI [10.47263/jasem.2(1)01, DOI 10.47263/JASEM.2(1)01] Mohajeri K, 2020, MIS QUART, V44, P525, DOI 10.25300/MISQ/2020/13932 Moreira AC, 2017, J BUS ECON MANAG, V18, P68, DOI 10.3846/16111699.2016.1252793 Nikabadi M.S., 2015, J PROMOTION MANAGEME, V21, P13, DOI DOI 10.1080/10496491.2014.946208 Oleynick VC, 2014, FRONT HUM NEUROSCI, V8, DOI 10.3389/fnhum.2014.00436 Park N, 2009, CYBERPSYCHOL BEHAV, V12, P729, DOI 10.1089/cpb.2009.0003 Pham Phuoc H. M., 2015, International Journal of Internet Marketing and Advertising, V9, P321 Raji R.A., 2018, J MARK COMMUN, V25, P511 Rasoolimanesh SM, 2021, J HOSP TOUR MANAG, V48, P395, DOI 10.1016/j.jhtm.2021.07.013 Ratriyana I. N., 2021, J DIGITAL SOCIAL MED, V8, P365 Rauschnabel PA, 2019, J RETAIL CONSUM SERV, V49, P43, DOI 10.1016/j.jretconser.2019.03.004 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Rungtusanatham M, 2014, J OPER MANAG, V32, P99, DOI 10.1016/j.jom.2014.01.002 Ryu S, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102094 Sarstedt M, 2019, AUSTRALAS MARK J, V27, P197, DOI 10.1016/j.ausmj.2019.05.003 Schivinski B., 2014, J MARK COMMUN, V22, P1, DOI DOI 10.1080/13527266.2013.871323 Seo EJ, 2018, J AIR TRANSP MANAG, V66, P36, DOI 10.1016/j.jairtraman.2017.09.014 Shareef MA, 2019, J RETAIL CONSUM SERV, V46, P58, DOI 10.1016/j.jretconser.2017.11.001 Sharma Anshuman, 2021, World Review of Science, Technology and Sustainable Development, V17, P348, DOI 10.1504/WRSTSD.2021.117842 Sharma A, 2022, J INDIAN BUS RES, V14, P108, DOI 10.1108/JIBR-02-2021-0057 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sharma SK, 2019, INFORM SYST FRONT, V21, P815, DOI 10.1007/s10796-017-9775-x Sharma SK, 2019, INFORM SYST MANAGE, V36, P243, DOI 10.1080/10580530.2019.1620504 Sheng H, 2020, IND MANAGE DATA SYST, V120, P1041, DOI 10.1108/IMDS-10-2019-0548 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Sigurdsson V, 2021, J INNOV KNOWL, V6, P257, DOI 10.1016/j.jik.2021.07.001 Swani K, 2017, IND MARKET MANAG, V62, P77, DOI 10.1016/j.indmarman.2016.07.006 Tang YY, 2020, J BUS RES, V115, P101, DOI 10.1016/j.jbusres.2020.04.031 Thien LM, 2020, INT J RES METHOD EDU, V43, P243, DOI 10.1080/1743727X.2019.1662779 Thota S.C., 2018, Academy of Marketing Studies Journal, V22, P1 Thrash TM, 2003, J PERS SOC PSYCHOL, V84, P871, DOI 10.1037/0022-3514.84.4.871 Thrash TM, 2017, J PERS SOC PSYCHOL, V113, P466, DOI 10.1037/pspp0000094 Thrash TM, 2010, J PERS SOC PSYCHOL, V98, P469, DOI 10.1037/a0017907 Verma P., 2021, Journal of Promotion Management, V27, P103, DOI DOI 10.1080/10496491.2020.1809591 Walrave M., 2016, Journal of Marketing Communications, P1, DOI [10.1080/13527266.2016.1182938, DOI 10.1080/13527266.2016.1182938] Wang W, 2019, COMPUT HUM BEHAV, V93, P176, DOI 10.1016/j.chb.2018.12.007 Wang Z., 2020, E3S WEB C, V214 Yadav M, 2017, TELEMAT INFORM, V34, P1294, DOI 10.1016/j.tele.2017.06.001 Yazdanparast A, 2016, YOUNG CONSUM, V17, P243, DOI 10.1108/YC-03-2016-00590 Yoo B, 2001, J BUS RES, V52, P1, DOI 10.1016/S0148-2963(99)00098-3 Zhai XS, 2020, INTERACT LEARN ENVIR, V28, P586, DOI 10.1080/10494820.2019.1696841 Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 Zollo L, 2020, J BUS RES, V117, P256, DOI 10.1016/j.jbusres.2020.05.001 NR 116 TC 13 Z9 13 U1 6 U2 38 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1755-4195 EI 1755-4209 J9 J INDIAN BUS RES JI J. Indian Bus. Res. PD MAY 17 PY 2022 VL 14 IS 2 SI SI BP 125 EP 149 DI 10.1108/JIBR-08-2021-0313 EA JAN 2022 PG 25 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 1I3FH UT WOS:000749599400001 DA 2024-03-27 ER PT J AU Akter, S Sultana, S Mariani, M Wamba, SF Spanaki, K Dwivedi, YK AF Akter, Shahriar Sultana, Saida Mariani, Marcello Wamba, Samuel Fosso Spanaki, Konstantina Dwivedi, Yogesh K. TI Advancing algorithmic bias management capabilities in AI-driven marketing analytics research SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Algorithms; Algorithmic bias; AI-driven marketing analytics; Artificial intelligence ID CUSTOMER EQUITY DRIVERS; PLS-SEM GUIDELINES; ARTIFICIAL-INTELLIGENCE; BIG DATA; DYNAMIC CAPABILITIES; SOCIAL MEDIA; LOYALTY; IMPACT; TRUST; TRUSTWORTHINESS AB Algorithms in the age of artificial intelligence (AI) constantly transform customer behaviour, marketing programs, and marketing strategies in industrial markets. However, algorithms often fail to perform as expected due to various data, model, and market biases. Motivated by this challenge, this study presents a framework of algorithmic bias management capabilities for industrial markets that contribute to customer equity in terms of value, brand and relationship equity. Drawing on the dynamic capability theory, this study fills this gap by conducting a literature review, thematic analysis, and two rounds of surveys (n=200 analytics professionals and n=200 business customers) in the financial service industry in Australia. The findings show that algorithmic bias management capability consists of three primary dimensions (data, model, and deployment capabilities) and nine subdimensions. These findings have important implications for scholars and managers interested in developing algorithmic bias management capabilities to influence customer equity in industrial markets. C1 [Akter, Shahriar; Sultana, Saida] Univ Wollongong, Sch Business, Wollongong, NSW 2522, Australia. [Mariani, Marcello] Univ Reading Greenlands, Henley Business Sch, Henley On Thames RG9 3AU, Oxon, England. [Wamba, Samuel Fosso] TBS Business Sch, 1 Pl Alphonse Jourdain, F-31068 Toulouse, France. [Spanaki, Konstantina] Audencia Business Sch, Nantes, France. [Dwivedi, Yogesh K.] Swansea Univ, Sch Management, Digital Futures Sustainable Business & Soc Res Grp, Bay Campus, Swansea SA1 8EN, Wales. [Dwivedi, Yogesh K.] Symbiosis Inst Business Management, Dept Management, Pune, Maharashtra, India. [Dwivedi, Yogesh K.] Symbiosis Int Deemed Univ, Pune, Maharashtra, India. [Mariani, Marcello] Univ Bologna, Bologna, Italy. C3 University of Wollongong; University of Reading; Audencia; Swansea University; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune; Symbiosis International University; University of Bologna RP Dwivedi, YK (autor correspondiente), Swansea Univ, Sch Management, Digital Futures Sustainable Business & Soc Res Grp, Bay Campus, Swansea SA1 8EN, Wales.; Dwivedi, YK (autor correspondiente), Symbiosis Inst Business Management, Dept Management, Pune, Maharashtra, India.; Dwivedi, YK (autor correspondiente), Symbiosis Int Deemed Univ, Pune, Maharashtra, India. EM sakter@uow.edu.au; ss089@uowmail.edu.au; m.mariani@henley.ac.uk; s.fosso-wamba@tbs-education.fr; kspanaki@audencia.com; y.k.dwivedi@swansea.ac.uk RI Dwivedi, Yogesh Kumar/A-5362-2008; Mariani, Marcello/ABW-5250-2022; Fosso Wamba, Samuel/AAB-4953-2019 OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Mariani, Marcello/0000-0002-7916-2576; Fosso Wamba, Samuel/0000-0002-1073-058X; Spanaki, Konstantina/0000-0001-6332-1731 CR ABC, 2020, Federal Government ends Robodebt class action with settlement worth $1.2 billion Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Adomavicius G, 2019, MIT SLOAN MANAGE REV, V60, P13 Akter S, 2022, J BUS RES, V144, P201, DOI 10.1016/j.jbusres.2022.01.083 Akter S, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa3 Akter S, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102387 Akter S, 2017, PROD PLAN CONTROL, V28, P1011, DOI 10.1080/09537287.2016.1267411 Akter S, 2011, J AM SOC INF SCI TEC, V62, P100, DOI 10.1002/asi.21442 Ali Muhammad, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359301 Almquist E, 2018, HARVARD BUS REV, V96, P18 AMIT R, 1993, STRATEGIC MANAGE J, V14, P33, DOI 10.1002/smj.4250140105 Anees-ur-Rehman M, 2019, J STRATEG MARK, V27, P730, DOI 10.1080/0965254X.2018.1482943 Angwin Julia, 2017, PROPUBLICA [Anonymous], 2021, WALL STR J [Anonymous], 2020, USA Today Anshari Muhammad, 2019, Applied Computing and Informatics, V15, P94, DOI 10.1016/j.aci.2018.05.004 Baker RS, 2022, INT J ARTIF INTELL E, V32, P1052, DOI 10.1007/s40593-021-00285-9 Balayn A, 2021, VLDB J, V30, P739, DOI 10.1007/s00778-021-00671-8 Barocas S, 2017, COMMUN ACM, V60, P23, DOI 10.1145/3144172 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Batra M.M., 2017, Competition Forum, V15, P198 Beat V., 2021, Report: AI investments see largest year-over-year growth in 20 years Becker JM, 2012, LONG RANGE PLANN, V45, P359, DOI 10.1016/j.lrp.2012.10.001 Bellamy RKE, 2019, IBM J RES DEV, V63, DOI 10.1147/JRD.2019.2942287 Bhutta N., 2020, FEDS Notes, P2020, DOI 10.17016/2380-7172.2797 Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Bughin J., 2018, Notes from the AI frontier modeling the impact of AI on the world economy, V4 Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312 Cartwright S, 2021, IND MARKET MANAG, V97, P35, DOI 10.1016/j.indmarman.2021.06.005 Castaneda J, 2022, ALGORITHMS, V15, DOI 10.3390/a15090303 Christofi M, 2021, INT BUS REV, V30, DOI 10.1016/j.ibusrev.2019.101625 Chui M., 2018, Notes from the AI frontier: Insights from hundreds of use cases, V2 Colquitt JA, 2007, J APPL PSYCHOL, V92, P909, DOI 10.1037/0021-9010.92.4.909 Columbus L., 2020, 2020 is the year AI goes mainstream in marketing Commonwealth Bank Australia, 2020, Helping our customers understand the options available tothem Coombs C, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102311 Cowgill Bo., 2020, Columbia Business School Research Paper, DOI DOI 10.2139/SSRN.3361280 Dalenberg DJ, 2018, COMPUT LAW SECUR REV, V34, P615, DOI 10.1016/j.clsr.2017.11.009 Danks D, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4691 Dash R., 2019, J. Strateg. Innov. Sustain, V14, P43, DOI DOI 10.33423/JSIS.V14I3.2105 Dastin J., 2018, Reuters9 October Davenport T., 2021, Harvard Data Science Review, V3, DOI 10.1162/99608f92.90814c32 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davenport TH, 2018, HARVARD BUS REV, V96, P108 De Luca LM, 2021, J ACAD MARKET SCI, V49, P790, DOI 10.1007/s11747-020-00739-x de Visser EJ, 2020, INT J SOC ROBOT, V12, P459, DOI 10.1007/s12369-019-00596-x Deloitte and Salesforce, 2018, Consumer experience in the retail renaissance Dilmegani C., 2022, Bias in AI: What it is, Types, Examples & 6 Ways to Fix it in 2022 Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Durach CF, 2017, J SUPPLY CHAIN MANAG, V53, P67, DOI 10.1111/jscm.12145 Dwivedi YK, 2024, INT J CONTEMP HOSP M, V36, P1, DOI 10.1108/IJCHM-05-2023-0686 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E Elia S, 2021, J BUS RES, V132, P158, DOI 10.1016/j.jbusres.2021.04.010 Eyers, 2020, CommBank using AI to help triage loan deferral customers Fahse T, 2021, L N INF SYST ORGAN, V47, P94, DOI 10.1007/978-3-030-86797-3_7 Fairlie R, 2022, MANAGE SCI, V68, P2377, DOI 10.1287/mnsc.2021.3998 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Clavell GG, 2020, PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, P265, DOI 10.1145/3375627.3375852 Gartner, 2020, Healthcare technology innovations for identifying and managing COVID-19 patients Gebru T., 2020, Datasheets for datasets, V2 Gianfrancesco MA, 2018, JAMA INTERN MED, V178, P1544, DOI 10.1001/jamainternmed.2018.3763 Gkikas DC., 2022, Advances in Artificial Intelligence-based Technologies: Selected Papers in Honour of Professor Nikolaos G. Bourbakis-Vol. 1, P147, DOI [10.1007/978-3-030-80571-5_10, DOI 10.1007/978-3-030-80571-5_10] Grewal R., 2022, Handbook of Business-to-Business Marketing, P2 Grote T, 2022, CAMB Q HEALTHC ETHIC, V31, P83, DOI 10.1017/S0963180121000839 Gudivada V., 2017, INT J ADV SOFTW, V10, P1 Guha S, 2000, INFORM SYST, V25, P345, DOI 10.1016/S0306-4379(00)00022-3 Gurbaxani V, 2019, MIS Q EXEC, V18, P209, DOI 10.17705/2msqe.00017 Hagen L, 2020, MARKET LETT, V31, P361, DOI 10.1007/s11002-020-09535-7 Hair J.F., 2021, Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion, DOI DOI 10.1007/978-3-030-80519-7_7 Hardesty L., 2018, MIT NewsFebruary 11 Hartmann J, 2021, J MARKETING RES, V58, P1159, DOI 10.1177/00222437211037258 Hartmann K, 2021, POLICY SCI, V54, P269, DOI 10.1007/s11077-020-09414-y Hassani B.K., 2021, AI and Ethics, V1, P239, DOI DOI 10.1007/S43681-020-00026-Z Hawkins L., 2020, IUP J MARKETING MANA, V19, P7, DOI DOI 10.2139/SSRN.3445173 Hayes AF, 2011, COMMUN SER, P434 Helfat C., 2007, DYNAMIC CAPABILITIES Helfat CE, 2003, STRATEGIC MANAGE J, V24, P997, DOI 10.1002/smj.332 Helfat CE, 2002, IND CORP CHANGE, V11, P725, DOI 10.1093/icc/11.4.725 Helfat CE, 2015, J MANAGE, V41, P1281, DOI 10.1177/0149206314561301 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Ho Mia Hsiao-Wen., 2020, Journal of Business Research, V121, P13, DOI DOI 10.1016/J.JBUSRES.2020.07.046 Hooker S, 2021, PATTERNS, V2, DOI 10.1016/j.patter.2021.100241 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang XL, 2018, MOBILE NETW APPL, V23, P68, DOI 10.1007/s11036-017-0962-2 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Hussain I, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072939 Indriasari Elisa, 2019, 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), P863, DOI 10.1109/IIAI-AAI.2019.00175 Israeli A., 2020, Reference no. 9-521-020) Janssen M, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101493 Jones-Jang SM, 2022, J COMPUT-MEDIAT COMM, V28, DOI 10.1093/jcmc/zmac029 Keller K.L., 2003, INTERACTIVE MARKETIN, V5, P7, DOI [DOI 10.1057/PALGRAVE.IM.4340213, 10.1057/palgrave.im.4340213] Kenny D. A., 2020, Measuring Model Fit Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim W, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101963 Kitchens B, 2018, J MANAGE INFORM SYST, V35, P540, DOI 10.1080/07421222.2018.1451957 Kordzadeh N, 2022, EUR J INFORM SYST, V31, P388, DOI 10.1080/0960085X.2021.1927212 Kumar A, 2020, IND MARKET MANAG, V90, P493, DOI 10.1016/j.indmarman.2019.05.003 Kumar A, 2020, Arxiv, DOI [arXiv:2006.04944, 10.48550/arXiv.2006.04944, DOI 10.48550/ARXIV.2006.04944] Kumar P, 2023, INT J INFORM MANAGE, V69, DOI 10.1016/j.ijinfomgt.2022.102598 Kumar P, 2023, INFORM SYST FRONT, V25, P2197, DOI [10.1007/s10796-021-10136-6, 10.1109/TNSE.2021.3089435] Kumar V, 2007, J ACAD MARKET SCI, V35, P157, DOI 10.1007/s11747-007-0028-2 Lambrecht A., 2016, SSRN, DOI DOI 10.2139/SSRN.2852260 Lambrecht A, 2019, MANAGE SCI, V65, P2966, DOI 10.1287/mnsc.2018.3093 Lee NT, 2018, J INF COMMUN ETHICS, V16, P252, DOI 10.1108/JICES-06-2018-0056 Lee SM, 2020, SERV BUS, V14, P1, DOI 10.1007/s11628-019-00408-2 Lemon KN, 2001, MARK MANAG, V10, P20 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Lind E.A., 2001, ADV ORG JUSTICE, P56 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Majhi SG, 2022, INFORM SYST FRONT, V24, P1435, DOI 10.1007/s10796-021-10145-5 Mariani M, 2023, INT J CONTEMP HOSP M, V35, P2929, DOI 10.1108/IJCHM-08-2022-1006 Mariani MM, 2023, TECHNOVATION, V122, DOI 10.1016/j.technovation.2022.102623 Mariani MM, 2022, PSYCHOL MARKET, V39, P755, DOI 10.1002/mar.21619 Mariani MM, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121009 Mariani MM, 2020, J BUS RES, V121, P338, DOI 10.1016/j.jbusres.2020.09.012 Markl Nina, 2022, FAccT '22: 2022 ACM Conference on Fairness, Accountability, and Transparency, P521, DOI 10.1145/3531146.3533117 Marr B., 2019, Artificial intelligence in practice: How 50 successful companies used AI and machine learning to solve problems Martin K, 2019, J BUS ETHICS, V160, P835, DOI 10.1007/s10551-018-3921-3 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 Meade AW, 2012, PSYCHOL METHODS, V17, P437, DOI 10.1037/a0028085 Mikalef P, 2021, IND MARKET MANAG, V98, P80, DOI 10.1016/j.indmarman.2021.08.003 Miller Barbara D., 2017, Cultural anthropology Moon S, 2022, FOUND TRENDS MARKET, V15, P213, DOI 10.1561/1700000073 Moradi A., 2022, Entrepreneurship Knowledge, V2 Nelson RR, 2005, J MANAGE INFORM SYST, V21, P199, DOI 10.1080/07421222.2005.11045823 Newman DT, 2020, ORGAN BEHAV HUM DEC, V160, P149, DOI 10.1016/j.obhdp.2020.03.008 Ntoutsi E, 2020, WIRES DATA MIN KNOWL, V10, DOI 10.1002/widm.1356 ODonnellan R., 2020, Intuition Okuda T, 2018, FUJITSU SCI TECH J, V54, P4 Ou YC, 2017, J ACAD MARKET SCI, V45, P336, DOI 10.1007/s11747-016-0477-6 Palmatier RW, 2018, J ACAD MARKET SCI, V46, P1, DOI 10.1007/s11747-017-0563-4 Panch T, 2019, J GLOB HEALTH, V9, DOI 10.7189/jogh.09.020318 Pandya J., 2019, Forbes Parikh RB, 2019, JAMA-J AM MED ASSOC, V322, P2377, DOI 10.1001/jama.2019.18058 Paulus JK, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-0304-9 Peters Uwe, 2022, Philos Technol, V35, P25, DOI 10.1007/s13347-022-00512-8 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Puspita H, 2021, J GLOB FASH MARK, V12, P133, DOI 10.1080/20932685.2020.1853584 Raghavan M, 2020, FAT* '20: PROCEEDINGS OF THE 2020 CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, P469, DOI 10.1145/3351095.3372828 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Rajkomar A, 2018, ANN INTERN MED, V169, P866, DOI 10.7326/M18-1990 Ramaseshan B, 2013, J BUS IND MARK, V28, P335, DOI 10.1108/08858621311313929 Ransbotham S., 2017, MIT SLOAN MANAGE REV, V59, P1 Razzaq Z, 2017, ASIA PAC J MARKET LO, V29, P239, DOI 10.1108/APJML-03-2016-0053 Ringle C M., 2022, SmartPLS 4 Rozado D, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0231189 Rust R.T., 2000, DRIVING CUSTOMER EQU Rust RT, 2020, INT J RES MARK, V37, P15, DOI 10.1016/j.ijresmar.2019.08.002 Rust RT, 2004, J MARKETING, V68, P109, DOI 10.1509/jmkg.68.1.109.24030 Ryan J., 2013, The Marketing Review, V13, P39, DOI DOI 10.1362/146934713X13590250137745 Salvato M, 2018, MON NOT R ASTRON SOC, V473, P4937, DOI 10.1093/mnras/stx2651 Sarstedt M, 2019, AUSTRALAS MARK J, V27, P197, DOI 10.1016/j.ausmj.2019.05.003 Sathi A., 2017, Engaging customers using big data: How Marketing analytics are transforming business Sawhney M, 2002, J ACAD MARKET SCI, V30, P313, DOI 10.1177/009207002236908 Schweidel D. A., 2023, Artificial Intelligence in Marketing, P125, DOI [10.1108/S1548-643520230000020006, DOI 10.1108/S1548-643520230000020006] Sengupta E, 2018, PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART), P226, DOI 10.1109/SYSMART.2018.8746946 Seo H., 2023, Asia Marketing Journal, V24, P178, DOI [10.53728/2765-6500.1600, DOI 10.53728/2765-6500.1600] Seyyed-Kalantari L, 2021, NAT MED, V27, P2176, DOI 10.1038/s41591-021-01595-0 Shamma H, 2013, BENCHMARKING, V20, P377, DOI 10.1108/14635771311318144 Shellenbarger Sue., 2019, Wall Street Journal Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Siala H, 2022, SOC SCI MED, V296, DOI 10.1016/j.socscimed.2022.114782 Simmering MJ, 2015, ORGAN RES METHODS, V18, P473, DOI 10.1177/1094428114560023 Simonite Tom, 2015, MIT Technology Review Sipior JC, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102170 SITKIN SB, 1993, ORGAN SCI, V4, P367, DOI 10.1287/orsc.4.3.367 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Slaughter R. K., 2020, YALE J TECH, V23, P1 Smith G, 2020, Mitigating Bias in Artificial Intelligence: An Equity Fluent Leadership Playbook Snyder H, 2019, J BUS RES, V104, P333, DOI 10.1016/j.jbusres.2019.07.039 Srinivasan A. V., 2020, Maandblad voor Accountancy en Bedrijfseconomie, V94, P147 Stahl BC, 2022, INT J INFORM MANAGE, V62, DOI 10.1016/j.ijinfomgt.2021.102441 Sun WL, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0235502 Suresh H, 2021, PROCEEDINGS OF 2021 ACM CONFERENCE ON EQUITY AND ACCESS IN ALGORITHMS, MECHANISMS, AND OPTIMIZATION, EAAMO 2021, DOI 10.1145/3465416.3483305 Takshi S., 2020, JL & Health, V34, P215 Teece D., 2003, HDB KNOWLEDGE MANAGE, P195, DOI DOI 10.1007/978-3-540-24748-7_10 Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Thiem A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233625 Thompson J, 2021, LECT NOTES COMPUT SC, V13095, P574, DOI 10.1007/978-3-030-90963-5_43 Tranfield D, 2003, BRIT J MANAGE, V14, P207, DOI 10.1111/1467-8551.00375 Tsamados A, 2022, AI SOC, V37, P215, DOI 10.1007/s00146-021-01154-8 Valentine S., 2019, Fordham Urban Law Journal, V46, P364 van Giffen B, 2022, J BUS RES, V144, P93, DOI 10.1016/j.jbusres.2022.01.076 Varsha PS, 2021, J GLOB INF MANAG, V29, P221, DOI 10.4018/JGIM.20210701.oa10 Vermeer SAM, 2019, INT J RES MARK, V36, P492, DOI 10.1016/j.ijresmar.2019.01.010 Verster A, 2019, S AFR J BUS MANAG, V50, DOI 10.4102/sajbm.v50i1.1372 Vigdor Neil, 2019, NEW YORK TIMES Vogel V, 2008, J MARKETING, V72, P98, DOI 10.1509/jmkg.72.6.98 Walsh CG, 2020, JAMIA OPEN, V3, P9, DOI 10.1093/jamiaopen/ooz054 Wamba SF, 2019, BUS PROCESS MANAG J, V25, P512, DOI 10.1108/BPMJ-08-2017-0218 Wan MT, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P618, DOI 10.1145/3336191.3371855 Wang CL, 2007, INT J MANAG REV, V9, P31, DOI 10.1111/j.1468-2370.2007.00201.x Watson R, 2018, J PROD INNOVAT MANAG, V35, P254, DOI 10.1111/jpim.12394 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Wetzels M, 2009, MIS QUART, V33, P177, DOI 10.2307/20650284 Whitney H. M., 2017, U. Chi. Legal F., P537 Wirtz BW, 2020, INT J PUBLIC ADMIN, V43, P818, DOI 10.1080/01900692.2020.1749851 Wixom BH, 2005, INFORM SYST RES, V16, P85, DOI 10.1287/isre.1050.0042 Xu Z, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102800 Yang S.J., 2021, COMPUTERS ED ARTIFIC, V2, P100008 Yu XL, 2019, ASIA PAC J MARKET LO, V31, P1233, DOI 10.1108/APJML-01-2018-0034 Zhang JL, 2020, IEEE T IND ELECTRON, V67, P7025, DOI 10.1109/TIE.2019.2938462 Zhou R., 2021, 2021 IEEE 5 C EN INT, P3318, DOI [10.1109/EI252483.2021.9713542, DOI 10.1109/EI252483.2021.9713542] NR 208 TC 0 Z9 0 U1 52 U2 52 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD OCT PY 2023 VL 114 BP 243 EP 261 DI 10.1016/j.indmarman.2023.08.013 EA AUG 2023 PG 19 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA S8SC3 UT WOS:001073801500001 OA hybrid, Green Submitted DA 2024-03-27 ER PT J AU Yi, MY Fiedler, KD Park, JS AF Yi, Mun Y. Fiedler, Kirk D. Park, Jae S. TI Understanding the role of individual innovativeness in the acceptance of IT-based innovations: Comparative analyses of models and measures SO DECISION SCIENCES LA English DT Article DE adopter category; behavioral intention; hierarchical regression; innovation diffusion theory; innovativeness; online shopping; path analysis; personal digital assistant; personal innovativeness in information technology ID COMPUTER SELF-EFFICACY; TECHNOLOGY ACCEPTANCE; INFORMATION-SYSTEMS; USER ACCEPTANCE; PERCEIVED EASE; E-MAIL; ADOPTION; BEHAVIOR; IMPLEMENTATION; PERCEPTIONS AB As new technological innovations are rapidly introduced and changed, identifying an individual characteristic that has a persistent effect on the acceptance decisions across multiple technologies is of substantial value for the successful implementation of information systems. Augmenting prior work on individual innovativeness within the context of information technology, we developed a new measure of adopter category innovativeness (ACI) and compared its effectiveness with the existing measure of personal innovativeness in IT (PIIT). Further, we examined two alternative models in which the role of individual innovativeness was theorized differently-either as a moderator of the effects the perceived innovation characteristics of usefulness, ease of use, and compatibility have on future use intention (moderator model) or as a direct determinant of the innovation characteristics (direct determinant model). To ensure the generalizability of the study findings, two field studies (N = 634) were conducted, each of which examined the two models (moderator and direct determinant) and measured individual innovativeness using the two measures (ACI and PIIT). Study 1 surveyed the online buying practices of 412 individuals, and Study 2 surveyed personal digital assistant adoption of 222 healthcare professionals. Across the markedly different adoption contexts, the study results consistently show that individual innovativeness is a direct determinant of the innovation characteristics, and the two measures share many commonalities. The new measure offers some additional utilities not found in the PIIT measure by allowing individuals to be directly classified and mapped into adopter categories. Implications are drawn for future research and practice. C1 Univ S Carolina, Moore Sch Business, Columbia, SC 29208 USA. Kosin Univ, Pusan, South Korea. C3 University of South Carolina System; University of South Carolina Columbia RP Yi, MY (autor correspondiente), Univ S Carolina, Moore Sch Business, 1705 Coll St, Columbia, SC 29208 USA. EM myi@moore.sc.edu; fiedler@moore.sc.edu; jpark@kosin.ac.kr RI Yi, Mun Yong/C-2065-2011 CR Agarwal R, 1997, DECISION SCI, V28, P557, DOI 10.1111/j.1540-5915.1997.tb01322.x Agarwal R, 2000, MIS QUART, V24, P665, DOI 10.2307/3250951 Agarwal R, 1998, INFORM SYST RES, V9, P204, DOI 10.1287/isre.9.2.204 Agarwal R, 1999, DECISION SCI, V30, P361, DOI 10.1111/j.1540-5915.1999.tb01614.x AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Bhatnagar A, 2000, COMMUN ACM, V43, P98, DOI 10.1145/353360.353371 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Boyer KK, 2005, DECISION SCI, V36, P569, DOI 10.1111/j.1540-5414.2005.00103.x Brancheau JC, 1990, INFORM SYST RES, V1, P115, DOI 10.1287/isre.1.2.115 Carte TA, 2003, MIS QUART, V27, P479 CHURCHILL GA, 1979, J MARKETING RES, V16, P64, DOI 10.2307/3150876 Compeau D. R., 1995, Management Information Systems Quarterly, V19, P189, DOI 10.2307/249688 Cook T.D., 1979, Quasi‐experimentation: design analysis issues for field setting DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dishaw MT, 1999, INFORM MANAGE-AMSTER, V36, P9, DOI 10.1016/S0378-7206(98)00101-3 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Fichman R.G., 1992, INFORM TECHNOLOGY DI FLIEGEL FC, 1968, RURAL SOCIOL, V33, P437 Gefen D, 1997, MIS QUART, V21, P389, DOI 10.2307/249720 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 GILLOOLY C, 1998, INFORM WEEK, V669, P46 Goldsmith R.E., 1991, Journal of the Academy of Marketing Science, V19, P209, DOI [10.1007/BF02726482, DOI 10.1007/BF02726482, 10.1007/BF02726497, DOI 10.1007/BF02726497] Goldsmith R.E., 2011, The Journal of Applied Business Research, V7, P89, DOI [DOI 10.19030/JABR.V7I2.6249, 10.19030/jabr.v7i2.6249] Hurt H.T., 1977, HUM COMMUN RES, V4, P58, DOI DOI 10.1111/J.1468-2958.1977.TB00597.X Jaccard J., 1990, INTERACTION EFFECTS JAMES LR, 1984, J APPL PSYCHOL, V69, P307, DOI 10.1037/0021-9010.69.2.307 KING RT, 1994, WALL STREET J E EDIT, V27, pB5 Kirk R. E., 1995, Experimental design: Procedures for the behavioural sciences KIRTON M, 1976, J APPL PSYCHOL, V61, P622, DOI 10.1037/0021-9010.61.5.622 Kwon T.H., 1987, CRITICAL ISSUES INFO, DOI DOI 10.5555/54905 Leavitt C., 1975, ADV CONSUM RES, V2, P545 Lee Y, 2003, COM ASS INFORM SYST, V12, P752, DOI [DOI 10.17705/1CAIS.01250, 10.17705/1CAIS.01250] LEONARDBARTON D, 1988, MANAGE SCI, V34, P1252, DOI 10.1287/mnsc.34.10.1252 Lewis W, 2003, MIS QUART, V27, P657 Looney CA, 2006, DECISION SCI, V37, P205, DOI 10.1111/j.1540-5915.2006.00122.x Lucas HC, 1999, DECISION SCI, V30, P291, DOI 10.1111/j.1540-5915.1999.tb01611.x Marakas GM, 1998, INFORM SYST RES, V9, P126, DOI 10.1287/isre.9.2.126 McCarroll T., 1991, Time, V138, P44 MIDGLEY DF, 1978, J CONSUM RES, V4, P229, DOI 10.1086/208701 Moore G., 1991, CROSSING CHASM MARKE Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192 MOORE TA, 1999, CROSSING CHASM Neter J., 1996, APPL LINEAR STAT MOD Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Parthasarathy M, 1998, INFORM SYST RES, V9, P362, DOI 10.1287/isre.9.4.362 Rogers, 2003, DIFFUSION INNOVATION Rogers E. M., 1962, Diffusion of Innovations Rothman J., 1974, PLANNING ORG SOCIAL STRAUB DW, 1994, INFORM SYST RES, V5, P23, DOI 10.1287/isre.5.1.23 Sultan F, 2000, IEEE T ENG MANAGE, V47, P106, DOI 10.1109/17.820730 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 TORNATZKY LG, 1982, IEEE T ENG MANAGE, V29, P28, DOI 10.1109/TEM.1982.6447463 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 1996, DECISION SCI, V27, P451, DOI 10.1111/j.1540-5915.1996.tb01822.x Venkatesh V, 2000, MIS QUART, V24, P115, DOI 10.2307/3250981 WEBSTER J, 1992, MIS QUART, V16, P201, DOI 10.2307/249576 Yi MY, 2003, INT J HUM-COMPUT ST, V59, P431, DOI 10.1016/S1071-5819(03)00114-9 Yi MY, 2003, INFORM SYST RES, V14, P146, DOI 10.1287/isre.14.2.146.16016 NR 61 TC 252 Z9 278 U1 8 U2 115 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0011-7315 EI 1540-5915 J9 DECISION SCI JI Decis. Sci. PD AUG PY 2006 VL 37 IS 3 BP 393 EP 426 DI 10.1111/j.1540-5414.2006.00132.x PG 34 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 091AD UT WOS:000240996900004 DA 2024-03-27 ER PT J AU Alantari, HJ Currim, IS Deng, YT Singh, S AF Alantari, Huwail J. Currim, Imran S. Deng, Yiting Singh, Sameer TI An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE Automated text analysis; Sentiment analysis; Online reviews; User generated content; Machine learning; Natural language processing ID USER-GENERATED CONTENT; WORD-OF-MOUTH; CONJOINT-ANALYSIS; SEARCH ENGINES; CHOICE MODELS; CHATTER; DESIGN AB The amount of digital text-based consumer review data has increased dramatically and there exist many machine learning approaches for automated text-based sentiment analysis. Marketing researchers have employed various methods for analyzing text reviews but lack a comprehensive comparison of their performance to guide method selection in future applications. We focus on the fundamental relationship between a consumer's overall empirical evaluation, and the text-based explanation of their evaluation. We study the empirical tradeoff between predictive and diagnostic abilities, in applying various methods to estimate this fundamental relationship. We incorporate methods previously employed in the marketing literature, and methods that are so far less common in the marketing literature. For generalizability, we analyze 25,241 products in nine product categories, and 260,489 reviews across five review platforms. We find that neural network-based machine learning methods, in particular pre-trained versions, offer the most accurate predictions, while topic models such as Latent Dirichlet Allocation offer deeper diagnostics. However, neural network models are not suited for diagnostic purposes and topic models are ill equipped for making predictions. Consequently, future selection of methods to process text reviews is likely to be based on analysts' goals of prediction versus diagnostics. Published by Elsevier B.V. C1 [Alantari, Huwail J.; Currim, Imran S.] Univ Calif Irvine, Paul Merage Sch Business, Irvine, CA 92697 USA. [Deng, Yiting] UCL, UCL Sch Management, London, England. [Singh, Sameer] Univ Calif Irvine, Donald Bren Sch Informat & Comp Sci, Irvine, CA USA. C3 University of California System; University of California Irvine; University of London; University College London; University of California System; University of California Irvine RP Alantari, HJ (autor correspondiente), Univ Calif Irvine, Paul Merage Sch Business, Irvine, CA 92697 USA. RI Deng, Yiting/CAH-2594-2022 OI Deng, Yiting/0000-0003-2330-1554; Singh, Sameer/0000-0003-0621-6323 CR Abramson C, 2000, J MARKETING RES, V37, P410, DOI 10.1509/jmkr.37.4.410.18791 Anderson ET, 2014, J MARKETING RES, V51, P249, DOI 10.1509/jmr.13.0209 Andrews RL, 2008, MANAGE SCI, V54, P83, DOI 10.1287/mnsc.1070.0749 Andrews RL, 2011, J BUS ECON STAT, V29, P319, DOI 10.1198/jbes.2010.07225 Andrews RL, 2002, J MARKETING RES, V39, P479, DOI 10.1509/jmkr.39.4.479.19124 Andrews RL, 2002, J MARKETING RES, V39, P87, DOI 10.1509/jmkr.39.1.87.18936 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Bai X, 2020, INFORM SYST RES, V31, P1132, DOI 10.1287/isre.2020.0935 Bell G, 2009, SCIENCE, V323, P1297, DOI 10.1126/science.1170411 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Borgman CL, 2015, BIG DATA, LITTLE DATA, NO DATA: SCHOLARSHIP IN THE NETWORKED WORLD, P1 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Chakraborty I, 2021, 2176R2 COWL FDN Chen Z, 2017, J CONSUM RES, V44, P613, DOI 10.1093/jcr/ucx055 CHURCH KW, 1990, 27TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P76 GENSCH DH, 1979, J MARKETING RES, V16, P124, DOI 10.2307/3150883 Ghose A, 2019, MANAGE SCI, V65, P1363, DOI 10.1287/mnsc.2017.2991 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 Goes PB, 2014, INFORM SYST RES, V25, P222, DOI 10.1287/isre.2013.0512 Grasser F, 2018, DH '18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, P121, DOI 10.1145/3194658.3194677 GREEN PE, 1978, J CONSUM RES, V5, P103, DOI 10.1086/208721 Harbert T., 2021, Tapping the power of unstructured data Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 He RN, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P507, DOI 10.1145/2872427.2883037 Heitmann M., 2020, MORE FEELING BENCHMA HILL RJ, 1977, CONTEMP SOCIOL, V6, P244, DOI 10.2307/2065853 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Jurafsky D., 2009, P HUMAN LANGUAGE TEC, P638, DOI DOI 10.3115/1620754.1620847 Kirmani A, 2017, J MARKETING, V81, P103, DOI 10.1509/jm.15.0369 Kubler RV, 2020, J INTERACT MARK, V50, P136, DOI 10.1016/j.intmar.2019.08.001 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Liu X, 2019, J MARKETING RES, V56, P918, DOI 10.1177/0022243719866690 Ludwig S, 2013, J MARKETING, V77, P87, DOI 10.1509/jm.11.0560 McAuley J, 2019, ARXIV PREPRINT ARXIV McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Ordenes FV, 2017, J CONSUM RES, V43, P875, DOI 10.1093/jcr/ucw070 Packard G, 2017, J MARKETING RES, V54, P572, DOI 10.1509/jmr.15.0248 Puranam D, 2017, MARKET SCI, V36, P726, DOI 10.1287/mksc.2017.1048 Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Ransbotham S, 2019, MARKET SCI, V38, P773, DOI 10.1287/mksc.2018.1115 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Rubera G, 2015, MARKET SCI, V34, P98, DOI 10.1287/mksc.2014.0875 Sridhar S, 2012, J MARKETING, V76, P70, DOI 10.1509/jm.10.0377 STECKEL JH, 1993, MARKET SCI, V12, P415, DOI 10.1287/mksc.12.4.415 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tirunillai S, 2017, MARKET SCI, V36, P862, DOI 10.1287/mksc.2017.1040 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 van Laer T, 2019, J CONSUM RES, V46, P267, DOI 10.1093/jcr/ucy067 Vermeer SAM, 2019, INT J RES MARK, V36, P492, DOI 10.1016/j.ijresmar.2019.01.010 Wan MT, 2018, 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), P86, DOI 10.1145/3240323.3240369 Wang Y, 2018, J MARKETING RES, V55, P163, DOI 10.1509/jmr.15.0511 Wu CH, 2015, MARKET SCI, V34, P906, DOI 10.1287/mksc.2015.0944 Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 Zhang YC, 2018, MARKET SCI, V37, P425, DOI 10.1287/mksc.2017.1076 NR 56 TC 29 Z9 32 U1 15 U2 79 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD MAR PY 2022 VL 39 IS 1 BP 1 EP 19 DI 10.1016/j.ijresmar.2021.10.011 EA FEB 2022 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA ZI2OZ UT WOS:000761467400001 OA Green Published DA 2024-03-27 ER PT J AU Al-Sharafi, MA Al-Qaysi, N Iahad, NA Al-Emran, M AF Al-Sharafi, Mohammed A. Al-Qaysi, Noor Iahad, Noorminshah A. Al-Emran, Mostafa TI Evaluating the sustainable use of mobile payment contactless technologies within and beyond the COVID-19 pandemic using a hybrid SEM-ANN approach SO INTERNATIONAL JOURNAL OF BANK MARKETING LA English DT Article DE Mobile payment; Contactless technologies; Protection motivation theory; Expectation-confirmation model; Trust; PLS-SEM; Artificial neural network; COVID-19 ID PROTECTION MOTIVATION THEORY; NEURAL-NETWORK; SELF-EFFICACY; FEAR APPEALS; ACCEPTANCE; EXPECTATION; CONTINUANCE; INTENTION; ADOPTION; ATTITUDE AB Purpose While there is an abundant amount of literature studies on mobile payment adoption, there is a scarce of knowledge concerning the sustainable use of mobile payment contactless technologies. As those technologies are mainly concerned with security and users' trust, the question of how security factors and trust can influence the sustainable use of those technologies within and beyond the COVID-19 pandemic is still unanswered. This research thus develops a theoretical model based on integrating the protection motivation theory (PMT) and the expectation-confirmation model (ECM), extended with perceived trust (PT) to explore the sustainable use of mobile payment contactless technologies. Design/methodology/approach The developed model is evaluated based on data collected through a web-based survey from 523 users who used contactless payment technologies. Unlike the existing literature, the collected data were analyzed using a hybrid structural equation modeling-artificial neural network (SEM-ANN) technique. Findings The data analysis results reinforced all the proposed relationships in the developed model. The sensitivity analysis results showed that PT has the largest impact on the sustainable use of mobile payment contactless technologies with 97.2% normalized importance, followed by self-efficacy (SE) (77%), satisfaction (72.1%), perceived vulnerability (PV) (48.9%), perceived usefulness (PU) (48.2%), perceived severity (PS) (40.7%), response efficacy (RE) (28.7%) and response costs (RCs) (24.1%). Originality/value The originality of this research lies behind the development of an integrated model based on PMT and ECM to understand the sustainable use of mobile payment contactless technologies. The study provides several managerial implications for decision-makers, policy-makers and service providers to ensure the sustainability of those contactless technologies within and beyond the COVID-19 pandemic. C1 [Al-Sharafi, Mohammed A.; Iahad, Noorminshah A.] Univ Teknol Malaysia, Azman Hashim Int Business Sch, Dept Informat Syst, Skudai, Malaysia. [Al-Qaysi, Noor] Univ Pendidikan Sultan Idris, Fac Art Comp & Creat Ind, Tanjung Malim, Malaysia. [Iahad, Noorminshah A.] Airlangga Univ, Fac Sci & Technol, Informat Syst, Surabaya, Indonesia. [Al-Emran, Mostafa] British Univ Dubai, Fac Engn & IT, Dubai, Dubai, U Arab Emirates. C3 Universiti Teknologi Malaysia; Universiti Pendidikan Sultan Idris; Airlangga University RP Iahad, NA (autor correspondiente), Univ Teknol Malaysia, Azman Hashim Int Business Sch, Dept Informat Syst, Skudai, Malaysia.; Iahad, NA (autor correspondiente), Airlangga Univ, Fac Sci & Technol, Informat Syst, Surabaya, Indonesia. EM alsharafi@ieee.org; noor.j.alqaysi@gmail.com; minshah@utm.my; mustafa.n.alemran@gmail.com RI Al-Qaysi, Noor/HTN-4399-2023; Al-Sharafi, Mohammed A./E-1530-2017; Al-Emran, Mostafa/W-4466-2018 OI Al-Sharafi, Mohammed A./0000-0003-0726-6031; Al-Emran, Mostafa/0000-0002-5269-5380 CR Al-Emran M, 2021, J ENTERP INF MANAG, V34, P1229, DOI 10.1108/JEIM-02-2020-0052 Al-Emran M, 2022, INTERACT LEARN ENVIR, V30, P1897, DOI 10.1080/10494820.2020.1753216 Al-Emran M, 2019, ADV INTELL SYST COMP, V845, P644, DOI 10.1007/978-3-319-99010-1_59 Al-Saedi K., 2021, RECENT ADV TECHNOLOG, P79, DOI DOI 10.1007/978-3-030-64987-6_6 Al-Saedi K, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101293 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Ali Z, 2018, J COMPUT EDUC, V5, P297, DOI 10.1007/s40692-018-0114-0 Aljawder M., 2019, INT J COMPUTING DIGI, V8, P669, DOI 10.12785/ijcds/080614 Alkawsi GA, 2021, ALEX ENG J, V60, P227, DOI 10.1016/j.aej.2020.07.002 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Arpaci I, 2021, MULTIMED TOOLS APPL, V80, P11943, DOI 10.1007/s11042-020-10340-7 Arpaci I, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101468 BANDURA A, 1977, PSYCHOL REV, V84, P191, DOI 10.1037/0033-295X.84.2.191 Bhattacherjee A, 2004, MIS QUART, V28, P229 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Bhattacherjee Anol, 2011, Asia Pacific Journal of Information Systems, V21, P1 Cao XF, 2018, INTERNET RES, V28, P456, DOI 10.1108/IntR-11-2016-0359 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Compeau D. R., 1995, Management Information Systems Quarterly, V19, P189, DOI 10.2307/249688 Daragmeh A., 2021, Journal of Open Innovation: Technology, Market, and Complexity, V7, P132, DOI [DOI 10.3390/JOITMC7020132, 10.3390/joitmc7020132] DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dawes J, 2008, INT J MARKET RES, V50, P61, DOI 10.1177/147078530805000106 Duy DP, 2015, COMPUT SECUR, V48, P281, DOI 10.1016/j.cose.2014.11.002 Foth M, 2012, J PUBLIC HEALTH-HEID, V20, P253, DOI 10.1007/s10389-011-0456-9 Gaube S., 2019, Perceived Safety: A Multidisciplinary Perspective, P101, DOI DOI 10.1007/978-3-030-11456-5_7 Hair J., 2017, International Journal of Multivariate Data Analysis, V1, P107, DOI [DOI 10.1504/IJMDA.2017.087624, https://doi.org/10.1504/IJMDA.2017.087624, 10.1504/ijmda.2017.10008574] Hair JF, 2012, J ACAD MARKET SCI, V40, P414, DOI 10.1007/s11747-011-0261-6 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair Jr J.F., 2016, PRIMER PARTIAL LEAST Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Johnston AC, 2010, MIS QUART, V34, P549 Kalinic Z, 2021, EXPERT SYST APPL, V175, DOI 10.1016/j.eswa.2021.114803 Karjaluoto H, 2020, INT J BANK MARK, V38, P332, DOI 10.1108/IJBM-04-2019-0155 Khayer A, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101225 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015040101 Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Loh XM, 2021, INTERNET RES, V31, P376, DOI 10.1108/INTR-04-2020-0175 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 MORRIS SA, 2004, IND MANAGE DATA SYST Nguyen P., 2013, Contemporary Management Research, V9, P399 OLIVER RL, 1977, J APPL PSYCHOL, V62, P480, DOI 10.1037/0021-9010.62.4.480 Ooi KB, 2018, EXPERT SYST APPL, V93, P376, DOI 10.1016/j.eswa.2017.10.009 Park E, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101318 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Puriwat W., 2021, Emerging Science Journal, V5, P85, DOI DOI 10.28991/ESJ-2021-01260 Qasem, 2018, INDIAN J SCI TECHNOL, V11, P1, DOI DOI 10.17485/IJST/2018/V11I20/91928 Qasem YAM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144905 Rahi S, 2021, J ENTERP INF MANAG, V34, P1874, DOI 10.1108/JEIM-04-2020-0156 Ramayah T., 2018, Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated guide and practical guide to statistical analysis, V2nd, DOI DOI 10.1213/01.ANE.0000105862.78906.3D Roger E., 2003, DIFFUSION INNOVATION, V4th, DOI DOI 10.1111/J.1467-9523.1970.TB00071.X ROGERS RW, 1975, J PSYCHOL, V91, P93, DOI 10.1080/00223980.1975.9915803 Rogers RW., 1997, HDB HLTH BEHAV RES Sekaran U.Bougie., 2010, RES METHODS BUSINESS, DOI DOI 10.1007/978-94-007-0753-5_102084 Sim JJ, 2014, TELEMAT INFORM, V31, P569, DOI 10.1016/j.tele.2013.11.005 Singh S, 2020, AUSTRALAS J INF SYST, V24, DOI 10.3127/ajis.v24i0.2695 Tam C, 2020, INFORM SYST FRONT, V22, P243, DOI 10.1007/s10796-018-9864-5 Tan GWH, 2014, TELEMAT INFORM, V31, P292, DOI 10.1016/j.tele.2013.06.002 Teo AC, 2015, INT J MOB COMMUN, V13, P478, DOI 10.1504/IJMC.2015.070961 Tew HT, 2022, J COMPUT INFORM SYST, V62, P527, DOI 10.1080/08874417.2020.1858731 Tongco M. D. C., 2007, Ethnobotany Research and Applications, V5, P147 Trutsch T., 2020, Swiss Journal of Economics and Statistics, V156, P1, DOI DOI 10.1186/S41937-020-00050-0 Tull K., 2017, MOBILE PAYMENTS TODA Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x Wang YM, 2007, EXPERT SYST APPL, V32, P336, DOI 10.1016/j.eswa.2005.11.029 WITTE K, 1992, COMMUN MONOGR, V59, P329, DOI 10.1080/03637759209376276 Xiu-Ming Loh, 2022, Journal of Computer Information Systems, V62, P39, DOI 10.1080/08874417.2019.1688733 Zhang X, 2019, ONLINE INFORM REV, V44, P1, DOI 10.1108/OIR-11-2016-0339 NR 69 TC 44 Z9 43 U1 9 U2 41 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0265-2323 EI 1758-5937 J9 INT J BANK MARK JI Int. J. Bank Mark. PD JUN 8 PY 2022 VL 40 IS 5 SI SI BP 1071 EP 1095 DI 10.1108/IJBM-07-2021-0291 EA DEC 2021 PG 25 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 1V9TF UT WOS:000733286600001 DA 2024-03-27 ER PT J AU Flavién, C Akdim, K Casaló, LV AF Flavian, Carlos Akdim, Khaoula Casalo, Luis V. TI Effects of voice assistant recommendations on consumer behavior SO PSYCHOLOGY & MARKETING LA English DT Article DE artificial intelligence; consumer behavior; e-WOM; online consumer review; recommendations; virtual assistant; voice assistant ID WORD-OF-MOUTH; MEDIA-RICHNESS; ONLINE REVIEWS; PLS-SEM; ELECTRONIC MAIL; CREDIBILITY; INFORMATION; IMPACT; SEARCH; EXPERIENCE AB The present study compares the influence of text-based recommendations; traditionally known as online consumer reviews, and the influence of voice-based recommendations provided by voice-driven virtual assistants on consumer behaviors. Based on media richness theory, the research model investigates how voice versus text modality influences consumers' perceptions of credibility and usefulness, as well as their behavioral intentions and actual behaviors. In addition, the study analyses if these relationships vary based on the type of product and compares the influence of masculine and feminine voices. Two studies were conducted using between-subjects experimental designs, partial least squares-structural equation modeling, and logistic regression. The core finding is that voice-based recommendations are more effective than online consumer reviews in altering consumer behaviors. In addition, the first study showed that the influence of recommendations on behavioral intentions is mediated by consumers' perceptions of their credibility and usefulness. The second study confirmed, in a realistic setting, that voice-based recommendations affect consumer choices to a greater extent. Recommendations for search products and provided by males are also found to be more effective. These results contribute to the voice assistant and e-WOM literature by highlighting the effectiveness of voice-based recommendations in predicting consumer behaviors, confirming that credibility and usefulness are key factors that determine the influence of recommendations, and showing that recommendations are more effective when they focus on search products. C1 [Flavian, Carlos; Akdim, Khaoula; Casalo, Luis V.] Univ Zaragoza, Dept Mkt Management & Market Res, Zaragoza, Spain. [Flavian, Carlos; Akdim, Khaoula] Univ Zaragoza, Fac Econ & Business, Zaragoza, Spain. [Casalo, Luis V.] Univ Zaragoza, Fac Business & Publ Management, Huesca, Spain. C3 University of Zaragoza; University of Zaragoza; University of Zaragoza RP Flavién, C (autor correspondiente), Univ Zaragoza, Dept Mkt Management & Market Res, Zaragoza, Spain. EM cflavian@unizar.es RI Flavian, Carlos/G-4365-2013 OI Flavian, Carlos/0000-0001-7118-9013 FU Spanish Ministry of Science and Innovation; European Social Fund; Government of Aragon (Group "METODO"); [PID2019-105468RB-I00]; [S20_20R; LMP51_21]; [C135/2017] FX This research was supported by the Spanish Ministry of Science and Innovation (PID2019-105468RB-I00) and the European Social Fund and the Government of Aragon (Group "METODO" S20_20R; LMP51_21 and pre-doctoral grant 2017-2021 C135/2017). CR Agarwal J, 2022, PSYCHOL MARKET, V39, P1946, DOI 10.1002/mar.21710 Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Anandarajan M, 2010, IEEE T PROF COMMUN, V53, P132, DOI 10.1109/TPC.2010.2046082 [Anonymous], 2006, 649 SFB Bagozzi RP, 2016, PSYCHOL MARKET, V33, P629, DOI 10.1002/mar.20905 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Bampo M, 2008, INFORM SYST RES, V19, P273, DOI 10.1287/isre.1070.0152 Basil DZ, 2006, PSYCHOL MARKET, V23, P1035, DOI 10.1002/mar.20145 Baumgartner H, 2021, J ACAD MARKET SCI, V49, P221, DOI 10.1007/s11747-020-00766-8 Belanche D, 2021, PSYCHOL MARKET, V38, P2357, DOI 10.1002/mar.21532 Berger J, 2013, J CONSUM RES, V40, P567, DOI 10.1086/671345 BJORK RA, 1970, J VERB LEARN VERB BE, V9, P255, DOI 10.1016/S0022-5371(70)80059-7 Bloch P.H., 1981, ADV CONSUM RES, V8, P61 Braeuer P, 2022, COMPUT HUM BEHAV, V135, DOI 10.1016/j.chb.2022.107362 Brill TM, 2019, J MARKET MANAG-UK, V35, P1401, DOI 10.1080/0267257X.2019.1687571 Campbell John, 2006, Journal of Information, Information Technology & Organizations, V1, P87 Capgemini, 2019, SMART TALK ORG CONSU Caplan S.E., 2014, COMMUNICATION TECHNO, P53 Casaló LV, 2011, COMPUT HUM BEHAV, V27, P622, DOI 10.1016/j.chb.2010.04.013 Casaló LV, 2010, TOURISM MANAGE, V31, P898, DOI 10.1016/j.tourman.2010.04.007 Chang Y, 2016, INFORM DEV, V32, P226, DOI 10.1177/0266666914529294 Chatterjee P, 2001, ADV CONSUM RES, V28, P129 Cheng YH, 2015, J BUS RES, V68, P883, DOI 10.1016/j.jbusres.2014.11.046 Chérif E, 2019, RECH APPL MARKET-ENG, V34, P28, DOI 10.1177/2051570719829432 Cheung CMK, 2008, INTERNET RES, V18, P229, DOI 10.1108/10662240810883290 Cheung CMK, 2012, DECIS SUPPORT SYST, V54, P461, DOI 10.1016/j.dss.2012.06.008 Cheung MY, 2009, INT J ELECTRON COMM, V13, P9, DOI 10.2753/JEC1086-4415130402 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chi OHX, 2022, J TRAVEL RES, V61, P170, DOI 10.1177/0047287520971054 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Chin WW, 1998, MIS QUART, V22, pVII Chiu CM, 2009, ONLINE INFORM REV, V33, P761, DOI 10.1108/14684520910985710 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 ComScore, 2021, SMART SPEAKERS EVOLV Craciun G, 2019, COMPUT HUM BEHAV, V97, P104, DOI 10.1016/j.chb.2019.03.010 DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 Dellaert BGC, 2020, MARKET LETT, V31, P335, DOI 10.1007/s11002-020-09537-5 DOWLING GR, 1994, J CONSUM RES, V21, P119, DOI 10.1086/209386 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Eyssel F, 2012, J APPL SOC PSYCHOL, V42, P2213, DOI 10.1111/j.1559-1816.2012.00937.x Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009 Filieri R, 2021, INT J CONTEMP HOSP M, V33, P199, DOI 10.1108/IJCHM-05-2020-0402 Filieri R, 2018, INFORM MANAGE-AMSTER, V55, P956, DOI 10.1016/j.im.2018.04.010 Filieri R, 2018, COMPUT HUM BEHAV, V80, P122, DOI 10.1016/j.chb.2017.10.039 Filieri R, 2016, ANN TOURISM RES, V58, P46, DOI 10.1016/j.annals.2015.12.019 Filieri R, 2015, TOURISM MANAGE, V51, P174, DOI 10.1016/j.tourman.2015.05.007 Filieri R, 2015, J BUS RES, V68, P1261, DOI 10.1016/j.jbusres.2014.11.006 Filieri R, 2014, J TRAVEL RES, V53, P44, DOI 10.1177/0047287513481274 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Foster ME, 2007, LANG RESOUR EVAL, V41, P305, DOI 10.1007/s10579-007-9055-3 Grewal L, 2019, J MARKETING RES, V56, P197, DOI 10.1177/0022243718821960 Grover T, 2020, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2020, P390, DOI 10.1145/3377325.3377507 Hair J F., 2014, European Business Review, V26, P106, DOI [10.1108/ebr-10-2013-0128, DOI 10.1108/EBR-10-2013-0128] Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hernandez-Ortega B, 2021, PSYCHOL MARKET, V38, P1122, DOI 10.1002/mar.21497 Hosany S, 2010, J TRAVEL RES, V49, P351, DOI 10.1177/0047287509346859 Hsieh YC, 2005, J RETAILING, V81, P75, DOI 10.1016/j.jretai.2005.01.006 Hu HS, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104316 Huang P.H., 2020, INT J MULTINATIONAL, V3, P108 Huang P, 2009, J MARKETING, V73, P55, DOI 10.1509/jmkg.73.2.55 Iribarren M., 2021, GLOBAL DIGITAL TRAVE Jiménez FR, 2013, J INTERACT MARK, V27, P226, DOI 10.1016/j.intmar.2013.04.004 KAMINS MA, 1989, J ADVERTISING, V18, P4, DOI 10.1080/00913367.1989.10673146 Keil M., 2002, J INFORM SYSTEMS ED, V13, P295 Keller E, 2007, J ADVERTISING RES, V47, P448, DOI 10.2501/S0021849907070468 Klaus P, 2020, J SERV MARK, V34, P389, DOI 10.1108/JSM-01-2019-0043 Klein LR, 1998, J BUS RES, V41, P195, DOI 10.1016/S0148-2963(97)00062-3 Kontogiorgos D, 2019, PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS (IVA' 19), P133, DOI 10.1145/3308532.3329466 Kraus D., 2019, FACTORS INFLUENCING Lau Josephine, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274371 Lieberman A, 2020, CURR OPIN PSYCHOL, V31, P16, DOI 10.1016/j.copsyc.2019.06.022 Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654 Lim YS, 2015, J COMPUT-MEDIAT COMM, V20, P67, DOI 10.1111/jcc4.12093 Ling EC, 2021, PSYCHOL MARKET, V38, P1031, DOI 10.1002/mar.21491 Lis B, 2013, JMM-INT J MEDIA MANA, V15, P229, DOI 10.1080/14241277.2013.863099 Liu BJ, 2018, CYBERPSYCH BEH SOC N, V21, P625, DOI 10.1089/cyber.2018.0110 Liu HH, 2020, PSYCHOL MARKET, V37, P1586, DOI 10.1002/mar.21404 Lo A.S., 2019, INT J CONTEMP HOSP M, V11, P228 Ma WWK, 2014, COMPUT HUM BEHAV, V39, P51, DOI 10.1016/j.chb.2014.06.015 Maity M, 2018, J BUS RES, V87, P36, DOI 10.1016/j.jbusres.2018.02.003 Mariani MM, 2022, PSYCHOL MARKET, V39, P755, DOI 10.1002/mar.21619 MCCRAE RR, 1987, J PERS SOC PSYCHOL, V52, P81, DOI 10.1037/0022-3514.52.1.81 McKnight H., 2007, 9 INT C ELECT COMMER, P423 McLean G, 2019, COMPUT HUM BEHAV, V99, P28, DOI 10.1016/j.chb.2019.05.009 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 MEYER P, 1988, JOURNALISM QUART, V65, P567, DOI 10.1177/107769908806500301 Miller DI, 2013, FRONT NEUROL, V4, DOI 10.3389/fneur.2013.00107 Moon Y, 1996, COMMUN RES, V23, P651, DOI 10.1177/009365096023006002 Moriuchi E, 2019, PSYCHOL MARKET, V36, P489, DOI 10.1002/mar.21192 Mudambi SM, 2010, MIS QUART, V34, P185 Nass C, 1997, J APPL SOC PSYCHOL, V27, P864, DOI 10.1111/j.1559-1816.1997.tb00275.x NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 Neuninger R, 2017, J RETAIL CONSUM SERV, V35, P98, DOI 10.1016/j.jretconser.2016.12.003 Nunnally J., 1994, INTRO RES HLTH SCI Ostrom AL., 2018, Handbook of service science, Vii, P77, DOI DOI 10.1007/978-3-319-98512-1_5 Park C, 2009, J BUS RES, V62, P61, DOI 10.1016/j.jbusres.2007.11.017 Patrakosol B, 2013, SERV BUS, V7, P329, DOI 10.1007/s11628-012-0162-x Paul Grice H., 1975, Syntax and Semantics, P47, DOI [10.1057/9780230005853_5, DOI 10.1163/9789004368811_003] PERLOFF RM, 1993, INT J PUBLIC OPIN R, V5, P167, DOI 10.1093/ijpor/5.2.167 Petrock Victoria., 2020, Voice assistant and smart speaker users 2020 Petty RE, 2002, J PERS SOC PSYCHOL, V82, P722, DOI 10.1037//0022-3514.82.5.722 Pitardi V, 2021, PSYCHOL MARKET, V38, P626, DOI 10.1002/mar.21457 Pizzi G, 2021, J BUS RES, V129, P878, DOI 10.1016/j.jbusres.2020.11.006 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Purnawirawan N, 2012, J INTERACT MARK, V26, P244, DOI 10.1016/j.intmar.2012.04.002 Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Rhee CE, 2020, COMPUT HUM BEHAV, V109, DOI [10.1016/j.chb.2020.102659, 10.1016/j.chb.2020.106359] Ringle CM, 2016, IND MANAGE DATA SYST, V116, P1865, DOI 10.1108/IMDS-10-2015-0449 Ringle CM, 2012, MIS QUART, V36, pIII Rosenthal-von der Pütten AM, 2019, COMPUT HUM BEHAV, V90, P397, DOI 10.1016/j.chb.2018.08.047 Rosenthal-von der Pütten AM, 2016, LECT NOTES ARTIF INT, V10011, P256, DOI 10.1007/978-3-319-47665-0_23 Rudovic O, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aao6760 Saima, 2021, Journal of Promotion Management, V27, P503, DOI DOI 10.1080/10496491.2020.1851847 Schepers J, 2022, J SERV RES-US, V25, P565, DOI 10.1177/10946705221107704 Schindler RM, 2012, J CONSUM BEHAV, V11, P234, DOI 10.1002/cb.1372 SCHMITZ J, 1991, COMMUN RES, V18, P487, DOI 10.1177/009365091018004003 Schweitzer F, 2019, J MARKET MANAG-UK, V35, P693, DOI 10.1080/0267257X.2019.1596970 Sciuto A, 2018, DIS 2018: PROCEEDINGS OF THE 2018 DESIGNING INTERACTIVE SYSTEMS CONFERENCE, P857, DOI 10.1145/3196709.3196772 Cantallops AS, 2014, INT J HOSP MANAG, V36, P41, DOI 10.1016/j.ijhm.2013.08.007 Spence PR, 2019, COMPUT HUM BEHAV, V90, P285, DOI 10.1016/j.chb.2018.09.014 SPROULL L, 1986, MANAGE SCI, V32, P1492, DOI 10.1287/mnsc.32.11.1492 Statista, 2021, NUMB DIG VOIC ASS US statista, 2022, GLOB SMART SPEAK MAR Stoll B, 2016, COMMUN STUD, V67, P530, DOI 10.1080/10510974.2016.1215339 Suh KS, 1999, INFORM MANAGE, V35, P295, DOI 10.1016/S0378-7206(98)00097-4 Sussman SW, 2003, INFORM SYST RES, V14, P47, DOI 10.1287/isre.14.1.47.14767 Tabassum Madiha, 2019, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, V3, DOI 10.1145/3369807 Tassiello V, 2021, PSYCHOL MARKET, V38, P1069, DOI 10.1002/mar.21488 Taylor KM, 2021, IND MARKET MANAG, V92, P295, DOI 10.1016/j.indmarman.2020.05.007 Teng SS, 2014, ONLINE INFORM REV, V38, P746, DOI 10.1108/OIR-04-2014-0089 Tolmeijer S, 2021, EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), DOI 10.1145/3411763.3451623 van Esch P, 2021, PSYCHOL MARKET, V38, P1081, DOI 10.1002/mar.21494 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Verma S, 2021, J INTERACT MARK, V53, P111, DOI 10.1016/j.intmar.2020.07.001 Viglia G, 2021, IND MARKET MANAG, V98, P193, DOI 10.1016/j.indmarman.2021.08.007 Viglia G, 2016, INT J CONTEMP HOSP M, V28, P2035, DOI 10.1108/IJCHM-05-2015-0238 Wathen CN, 2002, J AM SOC INF SCI TEC, V53, P134, DOI 10.1002/asi.10016 Weathers D, 2007, J RETAILING, V83, P393, DOI 10.1016/j.jretai.2007.03.009 Westlund JMK, 2017, FRONT HUM NEUROSCI, V11, DOI 10.3389/fnhum.2017.00295 Xiao H, 2023, CURR PSYCHOL, V42, P2488, DOI 10.1007/s12144-021-02253-x ZAICHKOWSKY JL, 1986, J ADVERTISING, V15, P4, DOI 10.1080/00913367.1986.10672999 ZAICHKOWSKY JL, 1985, J CONSUM RES, V12, P341, DOI 10.1086/208520 Zhang HZ, 2014, ASIAN J COMMUN, V24, P158, DOI 10.1080/01292986.2013.856452 Zhao JY, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2020.106334 Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 NR 147 TC 15 Z9 15 U1 34 U2 85 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0742-6046 EI 1520-6793 J9 PSYCHOL MARKET JI Psychol. Mark. PD FEB PY 2023 VL 40 IS 2 BP 328 EP 346 DI 10.1002/mar.21765 EA NOV 2022 PG 19 WC Business; Psychology, Applied WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA 7L6AP UT WOS:000892520700001 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Pantano, E Pizzi, G AF Pantano, Eleonora Pizzi, Gabriele TI Forecasting artificial intelligence on online customer assistance: Evidence from chatbot patents analysis SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article ID RECOMMENDATION AGENTS; CONVERSATIONAL AGENTS; SERVICE; TECHNOLOGY; INNOVATION; KNOWLEDGE; ROBOTS; ANTHROPOMORPHISM; PERSONALIZATION; ARCHITECTURE C1 [Pantano, Eleonora] Univ Bristol, Sch Management, Howard House,Queens Ave, Bristol BS8 1SD, Avon, England. Univ Bologna, Dept Management, Via Capo di Lucca 34, I-3440126 Bologna, Italy. C3 University of Bristol; University of Bologna RP Pantano, E (autor correspondiente), Univ Bristol, Sch Management, Howard House,Queens Ave, Bristol BS8 1SD, Avon, England. EM e.pantano@bristol.ac.uk; gabriele.pizzi@unibo.it OI Pantano, Eleonora/0000-0001-9480-3346 CR Abraham BP, 2001, TECHNOVATION, V21, P245, DOI 10.1016/S0166-4972(00)00040-7 Admoni H, 2017, J HUM-ROBOT INTERACT, V6, P25, DOI 10.5898/JHRI.6.1.Admoni Aldiri K, 2008, INT J E-BUS RES, V4, P58, DOI 10.4018/jebr.2008100105 Alfano M, 2011, RECENT PAT NANOTECH, V5, P37, DOI 10.2174/187221011794474976 Almansor E.H., 2019, ADV INTELLIGENT SYST, P534 Andre Q., 2018, Customer Needs and Solutions, V5, P28, DOI 10.1007/s40547-017-0085-8 [Anonymous], 1999, J SERV MARK, DOI DOI 10.1108/08876049910273763 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Ariely D, 2004, J CONSUM PSYCHOL, V14, P81, DOI 10.1207/s15327663jcp1401&2_10 Arsovski S, 2019, EXPERT SYST APPL, V137, P343, DOI 10.1016/j.eswa.2019.07.014 Arsovski S, 2018, INT J ADV COMPUT SC, V9, P402 Beck A, 2013, INT J SOC ROBOT, V5, P325, DOI 10.1007/s12369-013-0193-z Belavina E, 2017, MANAGE SCI, V63, P1781, DOI 10.1287/mnsc.2016.2430 Beldad A, 2016, COMPUT HUM BEHAV, V60, P62, DOI 10.1016/j.chb.2016.02.046 Bell DR, 2018, MANAGE SCI, V64, P1629, DOI 10.1287/mnsc.2016.2684 Ben Mimoun MS, 2017, INFORM MANAGE-AMSTER, V54, P545, DOI 10.1016/j.im.2016.11.008 Ben Mimoun MS, 2012, J RETAIL CONSUM SERV, V19, P605, DOI 10.1016/j.jretconser.2012.07.006 Bitner MJ, 2000, J ACAD MARKET SCI, V28, P138, DOI 10.1177/0092070300281013 Block J, 2013, FAM BUS REV, V26, P180, DOI 10.1177/0894486513477454 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Bozer YA, 2018, INT J PROD RES, V56, P3838, DOI 10.1080/00207543.2018.1424364 Burke RR, 2002, J ACAD MARKET SCI, V30, P411, DOI 10.1177/009207002236914 Castro-González A, 2016, INT J HUM-COMPUT ST, V90, P27, DOI 10.1016/j.ijhcs.2016.02.004 Chakrabarti C, 2015, EXPERT SYST APPL, V42, P6878, DOI 10.1016/j.eswa.2015.04.067 Chakraborty R, 2016, DECIS SUPPORT SYST, V83, P47, DOI 10.1016/j.dss.2015.12.007 Chang HH, 2016, INFORM TECHNOL PEOPL, V29, P496, DOI 10.1108/ITP-08-2014-0171 Chang SB, 2012, TECHNOL FORECAST SOC, V79, P3, DOI 10.1016/j.techfore.2011.07.002 Chatterjee A, 2019, COMPUT HUM BEHAV, V93, P309, DOI 10.1016/j.chb.2018.12.029 Choi Y.K., 2001, J INTERACTIVE ADVERT, V2, P19, DOI [https://doi.org/10.1080/15252019.2001.10722055, DOI 10.1080/15252019.2001.10722055] Culley KE, 2013, COMPUT HUM BEHAV, V29, P577, DOI 10.1016/j.chb.2012.11.023 Daim TU, 2006, TECHNOL FORECAST SOC, V73, P981, DOI 10.1016/j.techfore.2006.04.004 Davelembayeva D., MAPPING EC SOCIAL TE Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davenport TH, 2018, J BUS ANAL, V1, P73, DOI 10.1080/2573234X.2018.1543535 Davenport TH, 2016, MIT SLOAN MANAGE REV, V57, P21 De Bruyn A, 2008, MARKET SCI, V27, P443, DOI 10.1287/mksc.1070.0306 De Keyser A, 2019, J SERV MANAGE, V30, P156, DOI 10.1108/JOSM-03-2018-0082 Demmers J, 2018, INT J ELECTRON COMM, V22, P8, DOI 10.1080/10864415.2018.1396110 Felfernig A., 2014, RECOMMENDATION SYSTE, P15, DOI [10.1007/978-3-642-45135-5_2, DOI 10.1007/978-3-642-45135-5_2] Felfernig A, 2006, INT J ELECTRON COMM, V11, P11, DOI 10.2753/JEC1086-4415110201 Flanagin AJ, 2014, ELECTRON COMMER RES, V14, P1, DOI 10.1007/s10660-014-9139-2 Fryer LK, 2019, COMPUT HUM BEHAV, V93, P279, DOI 10.1016/j.chb.2018.12.023 Ghahramani Z, 2015, NATURE, V521, P452, DOI 10.1038/nature14541 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Grand View Research, 2017, CHATB MARK SIZ REACH Gretzel U, 2006, INT J ELECTRON COMM, V11, P81, DOI 10.2753/JEC1086-4415110204 Grewal D, 2017, J RETAILING, V93, P1, DOI 10.1016/j.jretai.2016.12.008 Griol D, 2016, COGN COMPUT, V8, P336, DOI 10.1007/s12559-015-9352-x Griol D, 2013, APPL ARTIF INTELL, V27, P759, DOI 10.1080/08839514.2013.835230 Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Hostler RE, 2011, INFORM MANAGE-AMSTER, V48, P336, DOI 10.1016/j.im.2011.08.002 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang MH, 2017, J ACAD MARKET SCI, V45, P906, DOI 10.1007/s11747-017-0545-6 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 JACOBY J, 1977, J MARKETING RES, V14, P569, DOI 10.2307/3151201 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Kim G, 2017, TECHNOL FORECAST SOC, V117, P228, DOI 10.1016/j.techfore.2016.11.023 Läpple D, 2015, FOOD POLICY, V51, P1, DOI 10.1016/j.foodpol.2014.11.003 Lai HC, 2000, INT J ELECTRON COMM, V4, P69, DOI 10.1080/10864415.2000.11518372 Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lee C, 2011, TECHNOL FORECAST SOC, V78, P690, DOI 10.1016/j.techfore.2010.11.010 Lee SY, 2017, INT J HUM-COMPUT ST, V103, P95, DOI 10.1016/j.ijhcs.2017.02.005 Lee S, 2009, TECHNOL FORECAST SOC, V76, P769, DOI 10.1016/j.techfore.2009.01.003 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Mathur MB, 2016, COGNITION, V146, P22, DOI 10.1016/j.cognition.2015.09.008 McGinty L, 2006, INT J ELECTRON COMM, V11, P35, DOI 10.2753/JEC1086-4415110202 Mou Y, 2017, COMPUT HUM BEHAV, V72, P432, DOI 10.1016/j.chb.2017.02.067 Müller VC, 2016, SYNTH LIBR, V376, P553, DOI 10.1007/978-3-319-26485-1_33 Murray KB, 2009, J INTERACT MARK, V23, P138, DOI 10.1016/j.intmar.2009.02.009 Nelson A, 2014, RES POLICY, V43, P927, DOI 10.1016/j.respol.2014.01.010 Nowak KL, 2008, COMPUT HUM BEHAV, V24, P1473, DOI 10.1016/j.chb.2007.05.005 Nuruzzaman M, 2018, INT CONF E BUS ENG, P54, DOI 10.1109/ICEBE.2018.00019 Pantano E, 2019, J RETAIL CONSUM SERV, V49, P297, DOI 10.1016/j.jretconser.2019.01.019 Pantano E, 2018, J RETAIL CONSUM SERV, V44, P150, DOI 10.1016/j.jretconser.2018.06.004 Pantano E, 2017, J RETAIL CONSUM SERV, V34, P88, DOI 10.1016/j.jretconser.2016.10.001 Papagiannidis S, 2017, INFORM TECHNOL PEOPL, V30, P163, DOI 10.1108/ITP-03-2015-0069 Park C.-H., 2003, International Journal of Retail and Distribution Management, V31, P16, DOI DOI 10.1108/09590550310457818 Park Y, 2005, TECHNOL SOC, V27, P471, DOI 10.1016/j.techsoc.2005.08.003 Potdar V, 2018, INFORM TECHNOL PEOPL, V31, P595, DOI 10.1108/ITP-02-2017-0035 Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Rust RT, 2014, MARKET SCI, V33, P206, DOI 10.1287/mksc.2013.0836 Satzger B, 2006, LECT NOTES COMPUT SC, V4082, P31 Saunila M, 2019, INFORM TECHNOL PEOPL, V32, P627, DOI 10.1108/ITP-10-2016-0224 SEIFODDINI H, 1991, COMPUT IND ENG, V21, P263, DOI 10.1016/0360-8352(91)90099-R Shah H, 2016, COMPUT HUM BEHAV, V58, P278, DOI 10.1016/j.chb.2016.01.004 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Silver C, 2015, J MIX METHOD RES, V9, P386, DOI 10.1177/1558689814538833 Sivaramakrishnan S, 2007, J INTERACT MARK, V21, P60, DOI 10.1002/dir.20075 Swaminathan V, 2003, J CONSUM PSYCHOL, V13, P93, DOI 10.1207/S15327663JCP13-1&2_08 Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 Tay BTC, 2016, COMPUT HUM BEHAV, V60, P19, DOI 10.1016/j.chb.2016.01.042 Van den Broeck E, 2019, COMPUT HUM BEHAV, V98, P150, DOI 10.1016/j.chb.2019.04.009 Verhagen T, 2014, J COMPUT-MEDIAT COMM, V19, P529, DOI 10.1111/jcc4.12066 Willems K, 2017, TECHNOL FORECAST SOC, V124, P228, DOI 10.1016/j.techfore.2016.10.066 Wilson JR, 2017, LECT NOTES ARTIF INT, V10652, P334, DOI 10.1007/978-3-319-70022-9_33 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Yoo WS, 2010, J RETAIL CONSUM SERV, V17, P89, DOI 10.1016/j.jretconser.2009.10.003 Yoon VY, 2013, DECIS SUPPORT SYST, V55, P883, DOI 10.1016/j.dss.2012.12.024 Zanker M., 2011, NEW DIRECTIONS INTEL, P1 NR 100 TC 94 Z9 95 U1 19 U2 153 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JUL PY 2020 VL 55 AR 102096 DI 10.1016/j.jretconser.2020.102096 PG 9 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA LZ3ZH UT WOS:000541166100015 OA Green Submitted DA 2024-03-27 ER PT J AU Sim, Y Lee, SK Sutherland, I AF Sim, Youngseok Lee, Seul Ki Sutherland, Ian TI The impact of latent topic valence of online reviews on purchase intention for the accommodation industry SO TOURISM MANAGEMENT PERSPECTIVES LA English DT Article DE Latent Dirichlet allocation; Convolutional neural network; Text analytics; Online customer reviews; Purchase intention ID WORD-OF-MOUTH; CONSUMER REVIEWS; SOCIAL MEDIA; PRODUCT; RATINGS; SATISFACTION; PERFORMANCE; WEBSITE; HOTELS; SALES AB This study utilizes machine learning (ML) natural language processing (NLP) algorithms and statistical methods in order to measure the impact that qualitative textual reviews have on booking intentions for accommodations. Using over 400,000 online reviews from 1256 accommodations in South Korea, latent Dirichlet allocation (LDA) is used to determine the topic of the review content, convolutional neural networks (CNNs) are used to identify the valence of the reviews, and spatial probit models are used to determine the impact of the review content and valence on booking intention, while controlling for several other variables. It is found that positive reviews about an accommodation's ambiance, value, service, front office, accessibility, surrounding neighborhood and room capacity result in significantly higher booking intentions, while negative reviews in the service, front office and surrounding neighborhood result in lower probability of booking. A number of explanatory variables also have varying effects on booking intentions. C1 [Sim, Youngseok] Small Enterprise Policy Res Ctr, Small Enterprise & Market Serv, 246 Bomun Ro, Daejeon, South Korea. [Lee, Seul Ki] Sejong Univ, Coll Hotel & Tourism Management HTM, Tourism Ind Data Analyt Lab TIDAL, Off Int Affairs OIA, 98 Gunja Dong, Seoul 143747, South Korea. [Sutherland, Ian] Sejong Univ, Coll Hotel & Tourism Management HTM, Tourism Ind Data Analyt Lab TIDAL, Room 824a,98 Gunja Dong, Seoul 143747, South Korea. C3 Sejong University; Sejong University RP Sutherland, I (autor correspondiente), Sejong Univ, Coll Hotel & Tourism Management HTM, Tourism Ind Data Analyt Lab TIDAL, Room 824a,98 Gunja Dong, Seoul 143747, South Korea. EM iamssys@gmail.com; seulkilee@sejong.ac.kr; sutherland@sejong.ac.kr RI Sutherland, Ian/AAU-7274-2020; Lee, Seul Ki/K-2440-2013 OI Sutherland, Ian/0000-0002-0481-5827; CR Abdi H., 2007, ENCY MEASUREMENT STA, P651, DOI DOI 10.4135/9781412952644.N299 Anderson C, 2012, IMPACT SOCIAL MEDIA Anderson E.W., 1998, J SERVICE RES, V1, P5, DOI DOI 10.1177/109467059800100102 [Anonymous], 2017, TOUL VER C EXC SERV ANSELIN L, 1992, REG SCI URBAN ECON, V22, P509, DOI 10.1016/0166-0462(92)90042-Y ANSELIN L, 1988, GEOGR ANAL, V20, P1, DOI 10.1111/j.1538-4632.1988.tb00159.x Anselin Luc., 1999, GEOGRAPHIC INFORM SC, V5, P67, DOI [DOI 10.1080/10824009909480516, 10.1080/10824009909480516] Appel G, 2020, J ACAD MARKET SCI, V48, P79, DOI 10.1007/s11747-019-00695-1 Arun R, 2010, LECT NOTES ARTIF INT, V6118, P391 Avant T., 2013, RESPONDING TRIPADVIS Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Bansal H.S., 2000, Journal of Service Research, DOI [10.1177/109467050032005, DOI 10.1177/109467050032005] Berezina K, 2016, J HOSP MARKET MANAG, V25, P1, DOI 10.1080/19368623.2015.983631 Bivand RS, 2008, USE R, P237 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bordogna G, 2016, IEEE INT CONGR BIG, P42, DOI 10.1109/BigDataCongress.2016.78 Buttle F. A., 1998, J STRATEGIC MARKETIN, V6, P241, DOI DOI 10.1080/096525498346658 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Casaló LV, 2015, INT J HOSP MANAG, V49, P28, DOI 10.1016/j.ijhm.2015.05.005 Chan ICC, 2017, INT J HOSP MANAG, V66, P54, DOI 10.1016/j.ijhm.2017.06.007 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] DEVEAUD R, 2014, DOCUMENT NUMERIQUE, V0017 Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 El-Said OA, 2020, TOUR MANAG PERSPECT, V33, DOI 10.1016/j.tmp.2019.100604 Floh A, 2013, J MARKET MANAG-UK, V29, P646, DOI 10.1080/0267257X.2013.776620 Gavilan D, 2018, TOURISM MANAGE, V66, P53, DOI 10.1016/j.tourman.2017.10.018 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Helbich M, 2014, URBAN STUD, V51, P390, DOI 10.1177/0042098013492234 Hilbrink E. M, 2017, EFFECTS VALENCE LANG Hunold M, 2018, INT J IND ORGAN, V61, P542, DOI 10.1016/j.ijindorg.2018.03.008 Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y Khozaei F., 2016, International Journal of Research in Tourism and Hospitality, V2, P30, DOI DOI 10.20431/24550043.0202004 Kiatkawsin K, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12166673 Kim WG, 2015, INT J HOSP MANAG, V44, P165, DOI 10.1016/j.ijhm.2014.10.014 Ladhari R, 2015, INT J HOSP MANAG, V46, P36, DOI 10.1016/j.ijhm.2015.01.010 Lai IKW, 2016, TOURISM MANAGE, V55, P139, DOI 10.1016/j.tourman.2016.01.007 Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 Lee SK, 2013, J TRAVEL RES, V52, P56, DOI 10.1177/0047287512457268 Lee SK, 2012, CORNELL HOSP Q, V53, P165, DOI 10.1177/1938965512441056 LeSage J, 2009, STAT TEXTB MONOGR, P1 Li G, 2015, TOURISM MANAGE, V46, P311, DOI 10.1016/j.tourman.2014.06.015 Li HY, 2013, ASIA PAC J TOUR RES, V18, P784, DOI 10.1080/10941665.2012.708351 Li XX, 2008, INFORM SYST RES, V19, P456, DOI 10.1287/isre.1070.0154 Liu ZW, 2015, TOURISM MANAGE, V47, P140, DOI 10.1016/j.tourman.2014.09.020 Lu WL, 2012, TOURISM MANAGE, V33, P702, DOI 10.1016/j.tourman.2011.08.003 Mauri AG, 2013, INT J HOSP MANAG, V34, P99, DOI 10.1016/j.ijhm.2013.02.012 Nieto J, 2014, TOURISM MANAGE, V45, P115, DOI 10.1016/j.tourman.2014.03.009 Pavlou PA, 2003, INT J ELECTRON COMM, V7, P101, DOI 10.1080/10864415.2003.11044275 Philander K, 2016, INT J HOSP MANAG, V55, P16, DOI 10.1016/j.ijhm.2016.02.001 Phillips P, 2017, J TRAVEL RES, V56, P235, DOI 10.1177/0047287516636481 Senecal S, 2004, J RETAILING, V80, P159, DOI 10.1016/j.jretai.2004.04.001 Singh N., 2007, International Journal of Hospitality Management, V26, P131, DOI 10.1016/j.ijhm.2005.10.002 Sparks BA, 2013, TOURISM MANAGE, V39, P1, DOI 10.1016/j.tourman.2013.03.007 Sparks BA, 2010, J HOSP MARKET MANAG, V19, P797, DOI 10.1080/19368623.2010.508010 Sparks BA, 2011, TOURISM MANAGE, V32, P1310, DOI 10.1016/j.tourman.2010.12.011 Stepchenkova S, 2009, J TRAVEL RES, V47, P454, DOI 10.1177/0047287508326509 Stringam BB, 2010, J QUAL ASSUR HOSP TO, V11, P73, DOI 10.1080/1528008X.2010.482000 Sun M, 2012, MANAGE SCI, V58, P696, DOI 10.1287/mnsc.1110.1458 Sutherland I, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083402 Sutherland I, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051821 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Torres EN, 2015, INT J HOSP MANAG, V50, P77, DOI 10.1016/j.ijhm.2015.07.012 Tuominen P., 2011, 19 ANN FRONT SERV C, P1 Vermeulen IE, 2009, TOURISM MANAGE, V30, P123, DOI 10.1016/j.tourman.2008.04.008 Wang R, 2019, ASIA PAC J TOUR RES, V24, P1092, DOI 10.1080/10941665.2019.1665558 Wooldridge J., 2002, INTRO ECONOMETRICS M Xiang Z, 2010, TOURISM MANAGE, V31, P179, DOI 10.1016/j.tourman.2009.02.016 Xie KL, 2014, INT J HOSP MANAG, V43, P1, DOI 10.1016/j.ijhm.2014.07.007 Xu X, 2016, INT J HOSP MANAG, V55, P57, DOI 10.1016/j.ijhm.2016.03.003 Yang B., 2013, EFFECT ONLINE CUSTOM Ye QA, 2011, COMPUT HUM BEHAV, V27, P634, DOI 10.1016/j.chb.2010.04.014 Ye Q, 2009, INT J HOSP MANAG, V28, P180, DOI 10.1016/j.ijhm.2008.06.011 Zhao XY, 2015, INT J CONTEMP HOSP M, V27, P1343, DOI 10.1108/IJCHM-12-2013-0542 Zhong ZhuLing Zhong ZhuLing, 2014, Journal of Applied Sciences, V14, P341 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 79 TC 12 Z9 12 U1 5 U2 63 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2211-9736 EI 2211-9744 J9 TOUR MANAG PERSPECT JI Tour. Manag. Perspect. PD OCT PY 2021 VL 40 AR 100903 DI 10.1016/j.tmp.2021.100903 EA NOV 2021 PG 12 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA XB6XX UT WOS:000721471200006 DA 2024-03-27 ER PT J AU Hou, LF AF Hou, Linfang TI RETRACTADO: Decision support model of e-commerce enterprise investment based on deep learning algorithm (Retracted Article) SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article; Retracted Publication DE Deep learning; E-commerce; Investment decision; Neural network model AB According to the current situation and future trend of e-commerce investment market research at home and abroad, combined with the established research objectives, this paper studies and analyzes the existing methods of investment quality evaluation. This paper puts forward the modeling idea of the evaluation index system of investment decision quality, and takes the deep neural network as the modeling tool and python as the simulation tool to complete the establishment of the investment decision support model of e-commerce listed companies and get the experimental results. In this paper, based on the deep learning portfolio replication algorithm, the features of the portfolio model are extracted by the automatic encoder to realize the portfolio replication. First, the definition of deep learning model and the framework of model training will be given. Then, a process of trestle automatic encoder model will be introduced, and then the detailed process of portfolio replication algorithm based on deep learning will be explained in detail. Finally, the trained model is used to evaluate the samples of the test set, and the results are good, which shows that the index evaluation system is feasible and effective. C1 [Hou, Linfang] Zhoukou Normal Univ, Sch Econ & Management, Zhoukou 466000, Henan, Peoples R China. C3 Zhoukou Normal University RP Hou, LF (autor correspondiente), Zhoukou Normal Univ, Sch Econ & Management, Zhoukou 466000, Henan, Peoples R China. EM lf18103872337@163.com CR Cardenas CE, 2018, INT J RADIAT ONCOL, V101, P468, DOI 10.1016/j.ijrobp.2018.01.114 Dhote S, 2020, ELECTRON COMMER RES, V20, P259, DOI 10.1007/s10660-019-09383-2 Gao MH, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20051452 Guan Y, 2019, DECIS SUPPORT SYST, V118, P58, DOI 10.1016/j.dss.2019.01.003 Hadad Y, 2013, INT J PROJ MANAG, V31, P532, DOI 10.1016/j.ijproman.2012.10.004 Jasek P, 2019, PRAGUE ECON PAP, V28, P648, DOI 10.18267/j.pep.714 Ju RH, 2019, IEEE ACM T COMPUT BI, V16, P244, DOI 10.1109/TCBB.2017.2776910 Kratzwald B, 2018, DECIS SUPPORT SYST, V115, P24, DOI 10.1016/j.dss.2018.09.002 Kumar APP., 2018, J COMPUTER COMMUNICA, V06, P45, DOI [10.4236/jcc.2018.66004, DOI 10.4236/JCC.2018.66004] Leng JW, 2016, KNOWL-BASED SYST, V100, P188, DOI 10.1016/j.knosys.2016.03.008 [彭海霞 Peng Haixia], 2014, [光电子·激光, Journal of Optoelectronics·Laser], V25, P1771 Rangra A, 2019, INT J INF SYST MODEL, V10, P59, DOI 10.4018/IJISMD.2019070104 Ren JL, 2014, J INFRARED MILLIM W, V33, P122, DOI 10.3724/SP.J.1010.2014.00122 Thung KH, 2017, LECT NOTES COMPUT SC, V10553, P160, DOI 10.1007/978-3-319-67558-9_19 Twa MD, 2018, OPTOMETRY VISION SCI, V95, P275, DOI 10.1097/OPX.0000000000001210 Vo NNY, 2019, DECIS SUPPORT SYST, V124, DOI 10.1016/j.dss.2019.113097 Wang YH, 2018, KNOWL-BASED SYST, V143, P248, DOI 10.1016/j.knosys.2017.11.005 Zhang ZH, 2015, INT J SIMUL MODEL, V14, P647, DOI 10.2507/IJSIMM14(4)7.318 NR 18 TC 2 Z9 2 U1 4 U2 31 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD AUG PY 2023 VL 21 IS SUPPL 1 SU 1 BP 13 EP 13 DI 10.1007/s10257-021-00507-6 EA FEB 2021 PG 1 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA T4NO4 UT WOS:000613583600001 DA 2024-03-27 ER PT J AU Stenbom, A Wiggberg, M Norlund, T AF Stenbom, Agnes Wiggberg, Mattias Norlund, Tobias TI Exploring Communicative AI: Reflections from a Swedish Newsroom SO DIGITAL JOURNALISM LA English DT Article DE Computational journalism; machine learning; natural language generation; search engine optimization; human-machine communication; communicative AI ID DIGITAL JOURNALISM; AUTOMATION; MACHINE AB This article contributes to the emerging field of research on computational journalism with a practical illustration of an attempt to utilize Machine Learning to generate Search Engine Optimized headlines in a major Swedish newsroom. By using its technical results as a springboard for reflections among internal stakeholders, the experiment serves as a catalyzing innovation revealing deliberations on computational approaches in journalism in general and communicative Artificial Intelligence (AI) in specific. The study concludes with three ideas to support decision makers involved in evaluating potential use cases for communicative AI in journalism. C1 [Stenbom, Agnes] Schibsted, Stockholm, Sweden. [Stenbom, Agnes; Wiggberg, Mattias] KTH Royal Inst Technol, Dept Ind Econ & Management, Stockholm, Sweden. [Norlund, Tobias] Chalmers Univ Technol, Dept Comp Sci & Engn, Gothenburg, Sweden. C3 Royal Institute of Technology; Chalmers University of Technology RP Stenbom, A (autor correspondiente), Schibsted, Stockholm, Sweden.; Stenbom, A (autor correspondiente), KTH Royal Inst Technol, Dept Ind Econ & Management, Stockholm, Sweden. EM astenbom@kth.se RI Wiggberg, Mattias/GPP-6721-2022 OI Wiggberg, Mattias/0000-0001-9636-1545 CR Anderson CW, 2013, NEW MEDIA SOC, V15, P1005, DOI 10.1177/1461444812465137 [Anonymous], 2021, SWEDEN OECD DATA Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473] Becker BE, 2006, J MANAGE, V32, P898, DOI 10.1177/0149206306293668 Beckett, 2019, POLIS LONDON SCH EC Bilton, 2018, REUTERS NEW AUTOMATI Broussard M, 2018, ARTIFICIAL UNINTELLIGENCE: HOW COMPUTERS MISUNDERSTAND THE WORLD Brown T. B., 2020, Neural Information Processing Systems (NeurIPS) Carlson M, 2015, DIGIT JOURNAL, V3, P416, DOI 10.1080/21670811.2014.976412 Coddington M, 2015, DIGIT JOURNAL, V3, P331, DOI 10.1080/21670811.2014.976400 Cohen S, 2011, COMMUN ACM, V54, P66, DOI 10.1145/2001269.2001288 Cornia A, 2020, JOURNALISM, V21, P172, DOI 10.1177/1464884918779919 Deuze M, 2018, JOURNALISM, V19, P165, DOI 10.1177/1464884916688550 Diakopoulos N., 2019, Automating the News: How Algorithms Are Rewriting the Media Diakopoulos N, 2019, DIGIT JOURNAL, V7, P1180, DOI 10.1080/21670811.2019.1682938 Dick M, 2011, JOURNAL PRACT, V5, P462, DOI 10.1080/17512786.2010.551020 Dörr KN, 2016, DIGIT JOURNAL, V4, P700, DOI 10.1080/21670811.2015.1096748 Duffy A, 2019, DIGIT JOURNAL, V7, P378, DOI 10.1080/21670811.2019.1568899 Eldridge SA, 2019, DIGIT JOURNAL, V7, P386, DOI 10.1080/21670811.2019.1599724 Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019 Giomelakis D, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11120261 Graefe A., 2016, Guide to Automated Journalism Grubenmann S, 2016, DIGIT JOURNAL, V4, P160, DOI 10.1080/21670811.2015.1093274 Guzman, 2018, WHAT IS HUMAN MACHIN, P1 Guzman AL, 2020, NEW MEDIA SOC, V22, P70, DOI 10.1177/1461444819858691 Hermida, 2016, SAGE HDB DIGITAL JOU Hollis Martin., 2002, PHILOS SOCIAL SCI IN, P1 Ilya Wu., 2019, OPENAI BLOG, V1 Jones B, 2019, DIGIT JOURNAL, V7, P1032, DOI 10.1080/21670811.2019.1609371 Jones R, 2019, DIGIT JOURNAL, V7, P1157, DOI 10.1080/21670811.2019.1609372 K├a┬Nrhus, 2020, Q1 2020 RESULTS Karlsson M., 2018, RETHINKING RES METHO Krys Kochut., 2017, ARXIV PREPRINT ARXIV Kung L, 2015, RISJ CHALLENGES, P1 Kung L., 2013, Media Innovations: A Multidisciplinary Study of Change, P9, DOI 10.13140/2.1.1328.9284 Latzer M., 2016, Handbook on the Economics of the Internet Lewis SC, 2019, DIGIT JOURNAL, V7, P409, DOI 10.1080/21670811.2019.1577147 Lewis SC, 2019, J MASS COMMUN Q, V96, P673, DOI 10.1177/1077699019859901 Lewis SC, 2016, CONVERGENCE-US, V22, P543, DOI 10.1177/1354856515623865 Lewis SC, 2015, DIGIT JOURNAL, V3, P19, DOI 10.1080/21670811.2014.927986 Mattias Wiggberg., 2020, DIGITAL SPETSKOMPETE McNiff J., 2016, YOU YOUR ACTION RES Nedelkoska L., 2018, AUTOMATION SKILLS US, DOI DOI 10.1787/2E2F4EEA-EN Newman Nic., 2011, REUTERS I STUDY JOUR, V58 Posetti J., 2018, TIME STEP AWAY BRIGH Raffel C, 2020, J MACH LEARN RES, V21 Royal C, 2020, J MASS COMMUN Q, V97, P597, DOI 10.1177/1077699020933872 See A, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P1073, DOI 10.18653/v1/P17-1099 Steensen S, 2015, DIGIT JOURNAL, V3, P1, DOI 10.1080/21670811.2014.927984 Syvertsen T., 2019, NORDIC J MEDIA STUDI, V1, P11, DOI DOI 10.2478/NJMS-2019-0002 Tandoc EC, 2020, DIGIT JOURNAL, V8, P548, DOI 10.1080/21670811.2020.1762102 Taylor, 2008, ACTION INQUIRY INTER, V2, P239 Thurman N, 2017, DIGIT JOURNAL, V5, P1240, DOI 10.1080/21670811.2017.1289819 Torbert W., 2004, Action inquiry: The secret of timely and transforming leadership Vaswani A, 2017, ADV NEUR IN, V30 Vollstedt M, 2019, ICME-13 MONOGR, P81, DOI 10.1007/978-3-030-15636-7_4 Wagemans A, 2019, CONVERGENCE-US, V25, P209, DOI 10.1177/1354856519834880 Wu SY, 2019, DIGIT JOURNAL, V7, P428, DOI 10.1080/21670811.2019.1620112 NR 58 TC 4 Z9 4 U1 24 U2 71 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 2167-0811 EI 2167-082X J9 DIGIT JOURNAL JI Digit. Journal. PD OCT 21 PY 2023 VL 11 IS 9 BP 1622 EP 1640 DI 10.1080/21670811.2021.2007781 EA NOV 2021 PG 19 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA Y4RU5 UT WOS:000725462300001 OA Green Published DA 2024-03-27 ER PT J AU Bigné, E Oltra, E Andreu, L AF Bigne, Enrique Oltra, Enrique Andreu, Luisa TI Harnessing stakeholder input on Twitter: A case study of short breaks in Spanish tourist cities SO TOURISM MANAGEMENT LA English DT Article DE Social media marketing; Destination marketing organisations; Twitter; Text mining; Artificial neural network; Hotel occupancy; Short-break holidays ID WORD-OF-MOUTH; ARTIFICIAL NEURAL-NETWORKS; USER-GENERATED CONTENT; SOCIAL MEDIA; MARKET-SEGMENTATION; ONLINE REVIEWS; DEMAND; IMPACT; BRAND; INFORMATION AB Knowledge of how destination marketing organisations (DMOs) use Twitter is still limited. This study aimed to assess how DMOs' Twitter activity affects hotel occupancy in short-break holidays. Key dimensions of Twitter that may affect hotel occupancy in tourist destinations were first identified. A longitudinal study using data for 10 Spanish DMOs was conducted to forecast hotel occupancy. Twitter application programming interfaces were used to gather data on tweets by DMOs and retweets and likes by users. Text mining was used to analyse the tweets by DMOs, differentiating between tweets related to events, attractions, socialisation, and marketing. Data were analysed using artificial neural networks. The best fit was achieved with a multilayer perceptron artificial neural network. Findings suggest that the number of retweets and replies by users and the number of event tweets, tourist attraction tweets, and retweets by DMOs can predict the hotel occupancy rate for a given destination. C1 [Bigne, Enrique; Andreu, Luisa] Univ Valencia, Fac Econ, Dept Mkt, Av Naranjos S-N, Valencia 46022, Spain. [Oltra, Enrique] Inst Serrallarga, C Joan Benejam 1, Blanes, Gerona, Spain. C3 University of Valencia RP Andreu, L (autor correspondiente), Univ Valencia, Fac Econ, Dept Mkt, Av Naranjos S-N, Valencia 46022, Spain. EM Enrique.Bigne@uv.es; kike.oltra.llopis@gmail.com; Luisa.Andreu@uv.es RI Andreu, Luisa/K-8428-2014; Bigné, Enrique/D-9287-2015 OI Andreu, Luisa/0000-0001-8852-6506; Bigné, Enrique/0000-0002-6529-7605 FU Ministry of Economy and Competitiveness (Spain) [ECO2014-53837R] FX This work was supported by the Ministry of Economy and Competitiveness (Spain) under Grant ECO2014-53837R. The authors are grateful to Juergen Gnoth (University of Otago, New Zealand) for comments on an earlier draft of this manuscript. We thank the anonymous reviewers for their comments throughout the review process. CR Ågerfalk PJ, 2014, EUR J INFORM SYST, V23, P593, DOI 10.1057/ejis.2014.35 Akin M, 2015, TOURISM MANAGE, V48, P64, DOI 10.1016/j.tourman.2014.11.004 Anderson C, 2012, CORNELL HOSPITALITY, V12, P6 Andre Paul., 2012, P ACM 2012 C COMPUTE, P471, DOI DOI 10.1145/2145204 [Anonymous], 1988, PARALLEL DISTRIBUTED [Anonymous], 2015, Revista Europea de Direccion y Economia de la Empresa, DOI [DOI 10.1016/J.REDEE.2015.03.002, 10.1016/j.redee.2015.03.002] [Anonymous], 2011, J COMPUT SCI-NETH, DOI DOI 10.1016/j.jocs.2010.12.007 [Anonymous], 1994, Econometric Reviews, DOI DOI 10.1080/07474939408800273 [Anonymous], 2010, P 2010 43 HAWAII INT, DOI [DOI 10.1353/JSM.2016.0009, DOI 10.1109/HICSS.2010.412] Aral S, 2011, MANAGE SCI, V57, P1623, DOI 10.1287/mnsc.1110.1421 Attoh-Okine NO, 1999, ADV ENG SOFTW, V30, P291, DOI 10.1016/S0965-9978(98)00071-4 Bansal A., 1993, Journal of Management Information Systems, V10, P11 Barke M., 1996, Tourism in Spain: Critical Issues, P3 Bigné E, 2016, EUR J MANAG BUS ECON, V25, P89, DOI 10.1016/j.redeen.2016.09.001 Bigné E, 2010, NEURAL COMPUT APPL, V19, P1, DOI 10.1007/s00521-008-0226-y Bloom JZ, 2004, TOURISM MANAGE, V25, P723, DOI 10.1016/j.tourman.2003.07.004 Bokunewicz JF, 2017, J HOSP TOUR TECHNOL, V8, P205, DOI 10.1108/JHTT-09-2016-0057 Boyd DM, 2007, J COMPUT-MEDIAT COMM, V13, P210, DOI 10.1111/j.1083-6101.2007.00393.x Breiman L, 2001, STAT SCI, V16, P199, DOI 10.1214/ss/1009213726 Burger CJSC, 2001, TOURISM MANAGE, V22, P403, DOI 10.1016/S0261-5177(00)00068-6 Castellanos-Verdugo M, 2009, INT J CONTEMP HOSP M, V21, P251, DOI 10.1108/09596110910948288 Cha M., 2010, P 4 INT AAAI C WEBLO, V4, P10 Chan NL, 2011, J TRAVEL TOUR MARK, V28, P345, DOI 10.1080/10548408.2011.571571 Chu SC, 2016, INT J ADVERT, V35, P421, DOI 10.1080/02650487.2015.1037708 Chu SC, 2015, ELECTRON COMMER R A, V14, P251, DOI 10.1016/j.elerap.2015.04.002 Claveria O., 2018, SSRN ELECT J, V1, P1 Counts S., 2011, P INT AAAI C WEB SOC, P97, DOI DOI 10.1609/ICWSM.V5I1.14103 Crofton S. O., 2012, J TOURISM RES HOSPIT, V1, DOI [10.4172/2324-8807, DOI 10.4172/2324-8807] DeTienne KB, 2003, ORGAN RES METHODS, V6, P236, DOI 10.1177/1094428103251907 DeTienne KB, 2017, J STRATEG MARK, V25, P289, DOI 10.1080/0965254X.2015.1076881 Dholakia UM, 2009, J SERV RES-US, V12, P208, DOI 10.1177/1094670509338618 Dijkmans C, 2015, TOURISM MANAGE, V47, P58, DOI 10.1016/j.tourman.2014.09.005 Evans L., 2010, SOCIAL MEDIA MARKETI Feldman R., 2006, TEXT MINING HDB ADV, DOI 10.1017/cbo9780511546914 Fielding AH, 1997, ENVIRON CONSERV, V24, P38, DOI 10.1017/S0376892997000088 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hand DJ, 2000, SOC SCI COMPUT REV, V18, P442, DOI 10.1177/089443930001800407 Hays S, 2013, CURR ISSUES TOUR, V16, P211, DOI 10.1080/13683500.2012.662215 He W, 2013, INT J INFORM MANAGE, V33, P464, DOI 10.1016/j.ijinfomgt.2013.01.001 Hennig-Thurau T, 2015, J ACAD MARKET SCI, V43, P375, DOI 10.1007/s11747-014-0388-3 Hewett K, 2016, J MARKETING, V80, P1, DOI 10.1509/jm.15.0033 HINTON GE, 1992, SCI AM, V267, P145, DOI 10.1038/scientificamerican0992-144 Jabreel M, 2017, J DESTIN MARK MANAGE, V6, P170, DOI 10.1016/j.jdmm.2016.03.004 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Karlaftis MG, 2011, TRANSPORT RES C-EMER, V19, P387, DOI 10.1016/j.trc.2010.10.004 Keiningham TL, 2018, J SERV MANAGE, V29, P2, DOI 10.1108/JOSM-03-2017-0077 Kirilenko AP, 2017, TOURISM MANAGE, V63, P54, DOI 10.1016/j.tourman.2017.06.007 Köhler CF, 2011, J MARKETING, V75, P93, DOI 10.1509/jm.75.2.93 Költringer C, 2015, J BUS RES, V68, P1836, DOI 10.1016/j.jbusres.2015.01.011 Kozinets RV, 2010, J MARKETING, V74, P71, DOI 10.1509/jmkg.74.2.71 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Kumar V, 2017, J ACAD MARKET SCI, V45, P268, DOI 10.1007/s11747-016-0484-7 Kwok L, 2013, CORNELL HOSP Q, V54, P84, DOI 10.1177/1938965512458360 Sánchez VL, 2017, TOURISM ECON, V23, P1255, DOI 10.1177/1354816616675996 Law R., 1998, International Journal of Contemporary Hospitality Management, V10, P234, DOI 10.1108/09596119810232301 Law R, 1999, TOURISM MANAGE, V20, P89, DOI 10.1016/S0261-5177(98)00094-6 Law R, 2000, TOURISM MANAGE, V21, P331, DOI 10.1016/S0261-5177(99)00067-9 Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919 Leung XY, 2013, J TRAVEL TOUR MARK, V30, P58, DOI 10.1080/10548408.2013.751211 Llodrà-Riera I, 2015, TOURISM MANAGE, V48, P319, DOI 10.1016/j.tourman.2014.11.012 MACINNIS DJ, 1991, J MARKETING, V55, P32, DOI 10.2307/1251955 Malaga Tourism Observatory, 2014, IMP EC TUR SEM SANT Malthouse EC, 2013, J INTERACT MARK, V27, P270, DOI 10.1016/j.intmar.2013.09.008 Martínez-Navarro J, 2017, J ELECTRON COMMER RE, V18, P52 Meier F., 2014, Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, P346 Milano R, 2011, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2011, P471 Miller AR, 2013, INFORM SYST RES, V24, P52, DOI 10.1287/isre.1120.0466 Milwood P, 2013, J TRAVEL TOUR MARK, V30, P165, DOI 10.1080/10548408.2013.751287 Moro S, 2016, J BUS RES, V69, P3341, DOI 10.1016/j.jbusres.2016.02.010 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Moutinho L, 2015, TOUR ANAL, V20, P619, DOI 10.3727/108354215X14464845877913 Munar AM, 2014, TOURISM MANAGE, V43, P46, DOI 10.1016/j.tourman.2014.01.012 Nielsen, 2017, 2016 NIELS SOC MED R Oggionni T, 2018, J DESTIN MARK MANAGE, V9, P85, DOI 10.1016/j.jdmm.2017.11.003 Olden JD, 2002, ECOL MODEL, V154, P135, DOI 10.1016/S0304-3800(02)00064-9 Oliveira N, 2017, EXPERT SYST APPL, V73, P125, DOI 10.1016/j.eswa.2016.12.036 Padhi SS, 2011, INT J HOSP MANAG, V30, P725, DOI 10.1016/j.ijhm.2010.12.007 Palmer A, 2006, TOURISM MANAGE, V27, P781, DOI 10.1016/j.tourman.2005.05.006 Park S, 2016, J TRAVEL TOUR MARK, V33, P885, DOI 10.1080/10548408.2015.1071688 Pattie DC, 1996, ANN TOURISM RES, V23, P151, DOI 10.1016/0160-7383(95)00052-6 Peters K, 2013, J INTERACT MARK, V27, P281, DOI 10.1016/j.intmar.2013.09.007 Phillips P, 2015, TOURISM MANAGE, V50, P130, DOI 10.1016/j.tourman.2015.01.028 Pike S., 2003, J TRAVEL RES, V41, P315 Pollach I, 2011, ORGAN RES METHODS, V14, P741, DOI 10.1177/1094428109356713 Rishika R, 2013, INFORM SYST RES, V24, P108, DOI 10.1287/isre.1120.0460 Rosario AB, 2016, J MARKETING RES, V53, P297, DOI 10.1509/jmr.14.0380 Rudat A, 2015, COMPUT HUM BEHAV, V46, P75, DOI 10.1016/j.chb.2015.01.005 Rutter R, 2016, J BUS RES, V69, P3096, DOI 10.1016/j.jbusres.2016.01.025 Sarle W. S., 1994, P SUGI19 P 19 ANN SA Seiler S, 2017, MARKET SCI, V36, P838, DOI 10.1287/mksc.2017.1045 Sevin E, 2013, J PLACE MANAG DEV, V6, P227, DOI 10.1108/JPMD-10-2012-0037 Smith AN, 2012, J INTERACT MARK, V26, P102, DOI 10.1016/j.intmar.2012.01.002 Soboleva A, 2017, J MARKET MANAG-UK, V33, P1120, DOI 10.1080/0267257X.2017.1369142 Somers MJ, 2009, ORGAN RES METHODS, V12, P403, DOI 10.1177/1094428107309326 Sotiriadis MD, 2013, ELECTRON COMMER RES, V13, P103, DOI 10.1007/s10660-013-9108-1 Tang TY, 2014, J MARKETING, V78, P41, DOI 10.1509/jm.13.0301 Tsaur SH, 2002, TOURISM MANAGE, V23, P397, DOI 10.1016/S0261-5177(01)00097-8 Usakli A, 2017, J DESTIN MARK MANAGE, V6, P136, DOI 10.1016/j.jdmm.2017.02.001 Uysal M., 1999, Journal of Travel Research, V38, P111, DOI 10.1177/004728759903800203 Wang X, 2012, J INTERACT MARK, V26, P198, DOI 10.1016/j.intmar.2011.11.004 WARD S, 1974, J CONSUM RES, V1, P1, DOI 10.1086/208584 Weber P., 1990, BASIC CONTENT ANAL, V2nd West PM, 1997, MARKET SCI, V16, P370, DOI 10.1287/mksc.16.4.370 Westerman D, 2012, COMPUT HUM BEHAV, V28, P199, DOI 10.1016/j.chb.2011.09.001 Wu DCG, 2017, INT J CONTEMP HOSP M, V29, P507, DOI [10.1108/ijchm-05-2015-0249, 10.1108/IJCHM-05-2015-0249] Yang Y, 2014, J TRAVEL RES, V53, P433, DOI 10.1177/0047287513500391 Ye Q, 2009, INT J HOSP MANAG, V28, P180, DOI 10.1016/j.ijhm.2008.06.011 You Y, 2015, J MARKETING, V79, P19, DOI 10.1509/jm.14.0169 Youn H, 2010, INT J HOSP MANAG, V29, P120, DOI 10.1016/j.ijhm.2009.06.007 Zaman T. R., 2010, P WORKSHOP COMPUTATI, V104, P17599 Zeng BX, 2014, TOUR MANAG PERSPECT, V10, P27, DOI 10.1016/j.tmp.2014.01.001 Zhang J, 2009, AM J BUS, V24, P53, DOI 10.1108/19355181200900011 NR 113 TC 33 Z9 33 U1 3 U2 118 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-5177 EI 1879-3193 J9 TOURISM MANAGE JI Tourism Manage. PD APR PY 2019 VL 71 BP 490 EP 503 DI 10.1016/j.tourman.2018.10.013 PG 14 WC Environmental Studies; Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Social Sciences - Other Topics; Business & Economics GA HD8NZ UT WOS:000452815100043 DA 2024-03-27 ER PT J AU Moroz, M AF Moroz, Miroslaw TI TENDENCY TO USE THE VIRTUAL FITTING ROOM IN GENERATION Y - RESULTS OF QUALITATIVE STUDY SO FOUNDATIONS OF MANAGEMENT LA English DT Article DE virtual fitting room; virtual dressing room; virtual changing room; e-commerce; clothing industry; generation Y; augmented reality; 3D mapping; human-computer interaction ID CONSUMERS AB E-commerce is growing rapidly on a global scale. Among many products purchased via the Internet, clothing is the first in terms of purchase frequency. However, there are growth barriers for this product category, which include, first of all, the client's fear of matching clothing to their own figure or complexion. This results in a high percentage of returns reaching up to 60% of transactions, which is more than that in other e-commerce sectors. One of the possible solutions to the abovementioned problem is the use of a virtual fitting room (VFR), which allows you to try on clothes in terms of size, fit, style, or color on a computer or smartphone screen. The main purpose of the article is to determine the propensity to use a VFR in the age group of generation Y. The second goal is to compare the propensity to use by type of VFR: 2D vs. 3D. The methodology is based on the qualitative exploratory approach. To conduct research, content analysis and sentiment analysis were used. The results of the study indicate that the participants of the research have an ambivalent attitude towards VFR. on the one hand, they perceive VFRs as an interesting solution for Internet users (not only generation Y). On the other hand, however, they themselves show a distance to use the VFR. The analysis also showed that a two-dimensional type of VFR based on augmented reality technology has greater market opportunities. C1 [Moroz, Miroslaw] Wroclaw Univ Econ, Wroclaw, Poland. C3 Wroclaw University of Economics & Business RP Moroz, M (autor correspondiente), Wroclaw Univ Econ, Wroclaw, Poland. EM miroslaw.moroz@ue.wroc.pl CR Anagaha R., 2018, NCESC 2018 C P [Anonymous], 2014, MARK RES [Anonymous], 2016, INTERNET RETAILING F Bakopoulos K., 2019, E COMMERCE SHARE TOT Barclaycard, 2016, EM SER RET ONL SHOPP Barclaycard, 2019, AG SER RET Bazaki E., 2019, UNLOCKING POTENTIAL Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987 Bonetti F, 2018, PROGR IS, P119, DOI 10.1007/978-3-319-64027-3_9 Boonbrahm P, 2015, PROCEDIA COMPUT SCI, V75, P12, DOI 10.1016/j.procs.2015.12.189 Clancy O., 2016, BBC Cullinane S., 2019, CONT OPERATIONS LOGI, P301, DOI DOI 10.1007/978-3-030-14493-7_16 Daaboul J., 2014, J REMANUFACTURING, V4, P7, DOI DOI 10.1186/S13243-014-0007-Y de Leeuw S, 2016, INT J OPER PROD MAN, V36, P710, DOI 10.1108/IJOPM-01-2015-0010 DPD, 2018, E SHOPP BAR REP 2018 Dunn C., 2015, SIZING TECHNOLOGY CA Duriau VJ, 2007, ORGAN RES METHODS, V10, P5, DOI 10.1177/1094428106289252 Duszczyk M., 2019, WIRTUALNA PRZYMIERZA Ecommercenews, 2019, ECOMMERCENEWS EISENHARDT KM, 1989, ACAD MANAGE REV, V14, P532, DOI 10.2307/258557 Erra U, 2018, MULTIMED TOOLS APPL, V77, P25077, DOI 10.1007/s11042-018-5758-2 Eurostat, 2018, E COMM STAT IND Flick U., 2018, ANAL QUALITATIVE DAT, DOI DOI 10.4135/9781849208826.N10 Franco CE., 2016, INT J RES GRANTHAALA, V4, P7, DOI [10.29121/granthaalayah.v4.i3SE.2016.2771, DOI 10.29121/GRANTHAALAYAH.V4.I3SE.2016.2771] Gemius, 2019, E COMM POLSC GEM DLA Glamstorm, 2019, FITT ROOM Hammersley M., 1995, Ethnography: Principles in practice Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Koch L., 2019, NIKE UNVEILS NIKE FI Liu B., 2012, SENTIMENT ANAL OPINI Narvar, 2017, MAK RET COMP ADV Nielsen, 2018, TOP CATEGORIES PURCH NVivo, 2019, MIX SENT COD Patodiya P.K., 2017, REV J PHILOS SOCIAL, V42, P197 Smith S.M., 2005, Fundamentals of marketing research Soares RR, 2017, J SERV MANAGE, V28, P520, DOI 10.1108/JOSM-08-2015-0256 Statista, 2019, SHAR INT US WHO HAV Statista, 2020, RET E COMM SAL WORLD Turban E., 2017, Electronic Commerce 2018: A Managerial and Social Networks Perspective Urbanke P., 2015, 36 INT C INF SYST IC Wearfits, 2019, DEM FITT ROOM West P., 2017, VIRTUAL FITTING ROOM Yen YY, 2017, PROC INT CONF COMP, P311 Yi Gao, 2014, HCI in Business. First International Conference, HCIB 2014. Held as Part of HCI International 2014. Proceedings: LNCS 8527, P307, DOI 10.1007/978-3-319-07293-7_30 NR 44 TC 8 Z9 9 U1 3 U2 18 PU SCIENDO PI WARSAW PA DE GRUYTER POLAND SP Z O O, BOGUMILA ZUGA 32A STR, 01-811 WARSAW, POLAND SN 2080-7279 EI 2300-5661 J9 FOUND MANAGE JI Found. Manag. PD MAR PY 2019 VL 11 IS 1 BP 239 EP 254 DI 10.2478/fman-2019-0020 PG 16 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA JZ1OC UT WOS:000504873100009 OA gold, Green Submitted DA 2024-03-27 ER PT J AU Zhao, HL Yang, Q Liu, ZH AF Zhao, Huiliang Yang, Qin Liu, Zhenghong TI Impact of online customer reviews and deep learning on product innovation empirical study on mobile applications SO BUSINESS PROCESS MANAGEMENT JOURNAL LA English DT Article DE Product innovation (PI); Deep learning (DL); Online customer reviews (OCR); Technology (T); Mobile apps (M apps) AB Purpose The customer enables online reviews, discusses product features and enhances the user's experiences in online activities. Users generated product innovation and product reviews effect as market competition. This research study explains deep learning, online reviews and product innovation empirical evidence used by mobile apps. Design/methodology/approach Online reviews and product innovation are very important for every organization and firms to achieve a competitive advantage in a large business environment. When the authors see past traditional history, customers are not involved in product creating and innovating processes. Due to new technology changes, online systems and web 2.0 increase this ability. Findings For this research purpose, the authors use different analytical software to measure the impact among variables. This study is established on primary data; this study collected data from online customers and its users. For data collection, the authors use some questionnaires, and these questions are filled from 200 respondents. Research limitations/implications This research study used data from the Google app store - Google product selling application - and gathered customers' online reviews. Research found that customers' online reviews and deep learning positively and significantly influence product innovation through networking technology. This research-based online mobile application and its research reviews found that organizations convert their own business online and effectively and efficiently enhance creditability. Originality/value This research study used data from the Google app store Google product selling application and gathered customers' online reviews. Research founded that customers' online reviews and deep learning are positively and significantly influence product innovation through networking technology. This research-based online mobile application and its research reviews found that organizations convert their own business online and effectively and efficiently enhance creditability. C1 [Zhao, Huiliang] Guizhou Minzu Univ, Dept Prod Design, Guiyang, Peoples R China. [Zhao, Huiliang; Yang, Qin; Liu, Zhenghong] Guizhou Univ, Sch Mech Engn, Guiyang, Peoples R China. C3 Guizhou Minzu University; Guizhou University RP Liu, ZH (autor correspondiente), Guizhou Univ, Sch Mech Engn, Guiyang, Peoples R China. EM fightingzhl@163.com; qinyang_6@163.com; 415803168@qq.com OI zhao, hui liang/0000-0003-3025-6560 FU Natural Science Foundation of the Guizhou Higher Education Institutions of China [[2018]152, [2017]239]; Humanity and Social Science Foundation of the Guizhou Higher Education Institutions of China [2018qn46] FX Project supported by the Natural Science Foundation of the Guizhou Higher Education Institutions of China (Grant No. [2018]152, No. [2017]239). Project supported by the Humanity and Social Science Foundation of the Guizhou Higher Education Institutions of China (Grant No. 2018qn46). CR Becker A., 2014, Journal of Promotion Management, V20, P436, DOI [10.1080/10496491.2014.930282, DOI 10.1080/10496491.2014.930282] Bhuiyan N, 2004, MANAGE SCI, V50, P1690, DOI 10.1287/mnsc.1040.0309 Bickart B., 2001, J INTERACT MARK, V15, P31, DOI [10.1002/dir.1014, DOI 10.1002/DIR.1014] Blythe M, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P1467 Burton J, 2010, J MARKET MANAG-UK, V26, P230, DOI 10.1080/02672570903566268 Chua AYK, 2015, J ASSOC INF SCI TECH, V66, P354, DOI 10.1002/asi.23180 Constantinides E., 2008, Data and Digital Marketing Practice, V9, P231, DOI DOI 10.1057/PALGRAVE.DDDMP.4350098 Cummings JN, 2004, MANAGE SCI, V50, P352, DOI 10.1287/mnsc.1030.0134 De Dreu CKW, 2003, J APPL PSYCHOL, V88, P741, DOI 10.1037/0021-9010.88.4.741 Dellarocas C, 2010, MIT SLOAN MANAGE REV, V51, P33 Du JX, 2005, EDUC MEDIA INT, V42, P207, DOI 10.1080/09523980500161221 Edmondson AC, 2003, CALIF MANAGE REV, V45, P34, DOI 10.2307/41166164 Edmondson AC, 2002, ORGAN SCI, V13, P128, DOI 10.1287/orsc.13.2.128.530 Edmondson C, 2009, J PROD INNOVAT MANAG, V26, P123 Fan WG, 2014, COMMUN ACM, V57, P74, DOI 10.1145/2602574 Floh A, 2013, J MARKET MANAG-UK, V29, P646, DOI 10.1080/0267257X.2013.776620 Goldsmith R.E., 2006, Journal of Interactive Advertising, V6, P1, DOI DOI 10.1080/15252019.2006.10722114 Hennig-Thurau T, 2003, INT J ELECTRON COMM, V8, P51, DOI 10.1080/10864415.2003.11044293 Huang LS, 2015, BEHAV INFORM TECHNOL, V34, P33, DOI 10.1080/0144929X.2014.978378 Huang Z, 2013, ELECTRON COMMER R A, V12, P246, DOI 10.1016/j.elerap.2012.12.003 Iansiti M, 2004, HARVARD BUS REV, V82, P68 Jeppesen LB, 2003, TECHNOL ANAL STRATEG, V15, P363, DOI 10.1080/09537320310001601531 Klein LR, 2003, J INTERACT MARK, V17, P29, DOI 10.1002/dir.10058 Lee M, 2009, INT J ADVERT, V28, P473, DOI 10.2501/S0265048709200709 Lewis, 2013, E COMMERCE ORG DEV C, P85 Lu LC, 2014, COMPUT HUM BEHAV, V34, P258, DOI 10.1016/j.chb.2014.02.007 Prahalad CK, 2004, J INTERACT MARK, V18, P5, DOI 10.1002/dir.20015 Randall T, 2007, MARKET SCI, V26, P268, DOI 10.1287/mksc.1050.0116 Schmidt J.B., 1996, J ACAD MARKET SCI, V24, P246, DOI DOI 10.1177/0092070396243005 Wang HY, 2011, INT J HOSP MANAG, V30, P503, DOI 10.1016/j.ijhm.2010.07.009 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 31 TC 2 Z9 2 U1 10 U2 51 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1463-7154 EI 1758-4116 J9 BUS PROCESS MANAG J JI Bus. Process. Manag. J. PD OCT 12 PY 2021 VL 27 IS 6 BP 1912 EP 1925 DI 10.1108/BPMJ-12-2020-0542 EA APR 2021 PG 14 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA WF3XN UT WOS:000636485100001 DA 2024-03-27 ER PT J AU Perez-Vega, R Kaartemo, V Lages, CR Razavi, NB Männistö, J AF Perez-Vega, Rodrigo Kaartemo, Valtteri Lages, Cristiana R. Razavi, Niloofar Borghei Mannisto, Jaakko TI Reshaping the contexts of online customer engagement behavior via artificial intelligence: A conceptual framework SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Artificial intelligence; Online customer engagement behaviors; Stimulus-organism-response; Information processing systems ID WORD-OF-MOUTH; BIG DATA; BUSINESS INTELLIGENCE; BRAND ENGAGEMENT; ANALYTICS; CONSUMERS; DECISION; PURCHASE; IMPACT; MODEL AB As new applications of artificial intelligence continue to emerge, there is an increasing interest to explore how this type of technology can improve automated service interactions between the firm and its customers. This paper aims to develop a conceptual framework that details how firms and customers can enhance the outcomes of firm-solicited and firm-unsolicited online customer engagement behaviors through the use of information processing systems enabled by artificial intelligence. By building on the metaphor of artificial intelligence systems as organisms and taking a Stimulus-Organism-Response theory perspective, this paper identifies different types of firm-solicited and firm-unsolicited online customer engagement behaviors that act as stimuli for artificial intelligence organisms to process customer-related information resulting in both artificial intelligence and human responses which, in turn, shape the contexts of future online customer engagement behaviors. C1 [Perez-Vega, Rodrigo; Lages, Cristiana R.; Razavi, Niloofar Borghei] Univ Reading, Henley Business Sch, Whiteknights Campus, Reading RG6 6UD, Berks, England. [Kaartemo, Valtteri] Univ Turku, Turku Sch Econ, Rehtorinpellonkatu 3, Turku 20500, Finland. [Mannisto, Jaakko] Feedbackly Oy, Itamerenkatu 1, Helsinki 00180, Finland. C3 University of Reading; University of Turku RP Perez-Vega, R (autor correspondiente), Univ Reading, Henley Business Sch, Whiteknights Campus, Reading RG6 6UD, Berks, England. EM r.perezvega@henley.ac.uk RI Perez-Vega, Rodrigo/AAR-2603-2021; Lages, Cristiana/ABD-3563-2020; Kaartemo, Valtteri/JCD-8259-2023 OI Lages, Cristiana/0000-0002-7024-9536; Kaartemo, Valtteri/0000-0003-2915-0240; Perez Vega, Rodrigo/0000-0003-1619-317X FU Academy of Finland [315604]; Academy of Finland (AKA) [315604] Funding Source: Academy of Finland (AKA) FX This research is funded by the Academy of Finland (315604). CR Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Alexander MJ, 2018, J SERV MANAGE, V29, P333, DOI 10.1108/JOSM-08-2016-0237 Assaf AG, 2015, INT J HOSP MANAG, V44, P77, DOI 10.1016/j.ijhm.2014.09.009 Bauer J, 2014, DECIS SUPPORT SYST, V68, P77, DOI 10.1016/j.dss.2014.09.005 Beckers SFM, 2018, J ACAD MARKET SCI, V46, P366, DOI 10.1007/s11747-017-0539-4 Bhuiyan T., 2009, P 9 AS PAC COMPL SYS, P385 Bijmolt THA, 2010, J SERV RES-US, V13, P341, DOI 10.1177/1094670510375603 BITNER MJ, 1992, J MARKETING, V56, P57, DOI 10.2307/1252042 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bonnin G, 2006, J SERVICES RES, V6, P43 Brodie RJ, 2011, J SERV RES-US, V14, P252, DOI 10.1177/1094670511411703 Chau M, 2012, MIS QUART, V36, P1189 Chen HC, 2012, MIS QUART, V36, P1165 Chen YC, 2009, ELECTRON COMMER R A, V8, P48, DOI 10.1016/j.elerap.2008.09.001 Cheng H.-T., 2016, P 1 WORKSH DEEP LEAR, P7, DOI [10.1145/2988450.2988454, DOI 10.1145/2988450.2988454] Chica M, 2017, J MARKETING RES, V54, P752, DOI 10.1509/jmr.15.0443 Chiu YB, 2005, INT J SERV IND MANAG, V16, P416, DOI 10.1108/09564230510625741 Choudhury MM, 2014, J STRATEG MARK, V22, P149, DOI 10.1080/0965254X.2013.876069 Culotta A, 2015, AAAI CONF ARTIF INTE, P72 Domingos P., 2015, The Master Algorithm. How the Quest for the Ultimate Learning Machine Will Remake Our World, DOI DOI 10.5555/3217330 Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Estelami H., 2014, ROUTLEDGE COMPANION, P376 Fagella D., 2018, ARTIFICIAL INTELLIGE Fill C., 2016, MARKETING COMMUNICAT Fortini-Campbell L, 1992, J CONSUMER MARKET, V9, P73 Fournier S, 2009, HARVARD BUS REV, V87, P105 Freitag D, 2000, MACH LEARN, V39, P169, DOI 10.1023/A:1007601113994 Fulgoni GM, 2014, J ADVERTISING RES, V54, P377, DOI 10.2501/JAR-54-4-377-380 Gamberini L, 2017, LECT NOTES COMPUT SC, V9961, P1, DOI 10.1007/978-3-319-57753-1_1 Greenberg P, 2010, J BUS IND MARK, V25, P410, DOI 10.1108/08858621011066008 Gummerus J, 2012, MANAG RES REV, V35, P857, DOI 10.1108/01409171211256578 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Herlocker JL, 2004, ACM T INFORM SYST, V22, P5, DOI 10.1145/963770.963772 Hirschman AlbertO., 1972, EXIT VOICE LOYALTY R Hollebeek LD, 2014, J PROD BRAND MANAG, V23, P62, DOI 10.1108/JPBM-06-2013-0332 Hollebeek L, 2011, J STRATEG MARK, V19, P555, DOI 10.1080/0965254X.2011.599493 Hollebeek LD, 2019, J ACAD MARKET SCI, V47, P161, DOI 10.1007/s11747-016-0494-5 Hoyer WD, 2010, J SERV RES-US, V13, P283, DOI 10.1177/1094670510375604 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 HUNT SD, 1995, J BUS RES, V33, P81, DOI 10.1016/0148-2963(94)00057-L Isinkaye FO, 2015, EGYPT INFORM J, V16, P261, DOI 10.1016/j.eij.2015.06.005 Jaakkola E, 2014, J SERV RES-US, V17, P247, DOI 10.1177/1094670514529187 Jacucci G, 2014, LECT NOTES COMPUT SC, V8820, P3, DOI 10.1007/978-3-319-13500-7_1 Jahn B, 2012, J SERV MANAGE, V23, P344, DOI 10.1108/09564231211248444 Kaartemo V., 2018, Journal of Creating Value, V4, P211, DOI 10.1177/2394964318805625 Karimi J, 2001, J MANAGE INFORM SYST, V17, P125, DOI 10.1080/07421222.2001.11045661 Kitchens B, 2018, J MANAGE INFORM SYST, V35, P540, DOI 10.1080/07421222.2018.1451957 Koren Y, 2008, P 14 ACM SIGKDD INT KOTLER P, 1974, J RETAILING, V49, P48 Kumar V, 2016, J ACAD MARKET SCI, V44, P24, DOI 10.1007/s11747-015-0426-9 Kumar V, 2013, J SERV MANAGE, V24, P330, DOI 10.1108/09564231311327021 Kunz W, 2017, J SERV MARK, V31, P161, DOI 10.1108/JSM-10-2016-0352 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Li ST, 2008, EXPERT SYST APPL, V35, P739, DOI 10.1016/j.eswa.2007.07.049 MacInnis DJ, 2011, J MARKETING, V75, P136, DOI 10.1509/jmkg.75.4.136 Marbach J, 2016, J MARKET MANAG-UK, V32, P502, DOI 10.1080/0267257X.2015.1128472 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 Maslowska E, 2016, J MARKET MANAG-UK, V32, P469, DOI 10.1080/0267257X.2015.1134628 McCarthy J., 1955, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence Mehrabian A., 1974, APPROACH ENV PSYCHOL, V12 Oelke D., 2009, Visual Analytics Science and Technology, P187 Ordenes FV, 2014, J SERV RES-US, V17, P278, DOI 10.1177/1094670514524625 Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Ricci F, 2011, RECOMMENDER SYSTEMS HANDBOOK, P1, DOI 10.1007/978-0-387-85820-3_1 Rust RT, 2014, MARKET SCI, V33, P206, DOI 10.1287/mksc.2013.0836 Sahoo N, 2012, MIS QUART, V36, P1329 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Smith AN, 2012, J INTERACT MARK, V26, P102, DOI 10.1016/j.intmar.2012.01.002 Sterne J., 2017, Artificial intelligence for marketing: practical applications Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 Trusov M, 2009, J MARKETING, V73, P90, DOI 10.1509/jmkg.73.5.90 Vafeiadis T, 2015, SIMUL MODEL PRACT TH, V55, P1, DOI 10.1016/j.simpat.2015.03.003 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Vargo Stephen L., 2008, European Management Journal, V26, P145, DOI 10.1016/j.emj.2008.04.003 Verhoef PC, 2010, J SERV RES-US, V13, P247, DOI 10.1177/1094670510375461 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Weinberg BD, 2015, BUS HORIZONS, V58, P615, DOI 10.1016/j.bushor.2015.06.005 Wirtz J, 2004, INT J SERV IND MANAG, V15, P150, DOI 10.1108/09564230410532484 Wirtz J, 2013, J SERV MANAGE, V24, P223, DOI 10.1108/09564231311326978 Zhu DH, 2016, TELEMAT INFORM, V33, P8, DOI 10.1016/j.tele.2015.06.001 Ziegler Cai-Nicolas, 2008, Wl 2008. 2008 IEEE/WIC/ACM International Conference on Web Intelligence. IAT 2008. 2008 IEEE/WIC/ACM International Conference on Intelligent Agent Technology. Wl-IAT Workshop 2008 2008 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Workshops, P932, DOI 10.1109/WIIAT.2008.69 NR 82 TC 53 Z9 53 U1 52 U2 240 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD MAY PY 2021 VL 129 BP 902 EP 910 DI 10.1016/j.jbusres.2020.11.002 EA APR 2021 PG 9 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA RL7AA UT WOS:000639120000077 OA Green Accepted, hybrid DA 2024-03-27 ER PT J AU Deng, ZH Guo, MW AF Deng, Zhihang Guo, Meiwen TI Research on the impact of the application of artificial intelligence technology on the sustainable development of mobile e-commerce SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article; Early Access DE Mobile e-commerce; AI; Sustainable development; Grounded theory ID PRIVACY AB Purpose - This article aims to reveal the factors influencing the sustainable development of mobile e-commerce from both user and operational perspectives. It fills the gap in qualitative research on the sustainable development of artificial intelligence (AI) technology in mobile e-commerce based on the grounded theory. This study provides valuable insights and inspiration for sustainable development in this field and lays the theoretical foundation and research reference for future studies. Design/methodology/approach - Based on the grounded theory (GT), interview method was used to conduct the study. Findings - The impact of AI applications on mobile e-commerce is mainly reflected in three stages of the customer shopping process. They are pre-shopping, mid-shopping and after-shopping AI services and each of the three stages has its own separate dimensions that need attention. The study and its persistence aspects are discussed. Practical implications - The results of this study can provide forward-looking suggestions and paths for the construction and optimization of future e-commerce platforms, contribute to the sustainable development of e-commerce and contribute to the sustainable and healthy growth of the social economy. Originality/value - This study proposes sustainable development measures for the application of AI in mobile e-commerce, from operation to supervision, which is an important reference for promoting coordinated and rapid socio-economic development. C1 [Deng, Zhihang; Guo, Meiwen] Guangzhou Xinhua Univ, Guangzhou, Peoples R China. RP Guo, MW (autor correspondiente), Guangzhou Xinhua Univ, Guangzhou, Peoples R China. EM gmw@xhsysu.edu.cn FU collaborative education project of industry-university cooperation of the Ministry of Education [202102209025]; "The 13th Five-Year" plan research project of philosophy and social sciences of Guangdong province [GD17YGL03]; Guangdong Youth Research Project [2019GJ043] FX This paper was funded by the collaborative education project of industry-university cooperation of the Ministry of Education (No: 202102209025), "The 13th Five-Year" plan research project of philosophy and social sciences of Guangdong province (No: GD17YGL03) and Guangdong Youth Research Project (No: 2019GJ043). CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Bawack RE, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102309 Bedué P, 2022, J ENTERP INF MANAG, V35, P530, DOI 10.1108/JEIM-06-2020-0233 Borland J, 2017, AUST ECON REV, V50, P377, DOI 10.1111/1467-8462.12245 Cai YJ, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107729 Feng M., 2009, Guangdong Science and Technology (In Chinese), P65 Glaser Barney., 2007, The Grounded Theory Seminar Reader Glaser Barney G., 1967, DISCOV GROUNDED THEO, DOI DOI 10.4324/9780203793206 Goode, 2021, BIOMETRIC TECHNOL TO, V2021, P7, DOI [10.1016/S0969-4765(21)00083-7, DOI 10.1016/S0969-4765(21)00083-7] Guo MZ, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020926 Guo MW, 2023, HUM SOC SCI COMMUN, V10, DOI 10.1057/s41599-023-01732-9 Guo MW, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182010729 Huang A.Z., 2022, Technological Forecasting and Social Change, V188 Ju X., 2020, E-Commerce, P21 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kurzweil R., 2001, Work and Think in the New Age of Intelligent Machines, V38, P351 Lin J., 2019, China Business Theory (In Chinese), P19 Liu YL, 2021, TELECOMMUN POLICY, V45, DOI 10.1016/j.telpol.2021.102155 Lu Y., 2017, National Circulation Economy, P14 Lu Z., 2020, Popular Investment Guide, P58 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Lv Jian, 2021, Journal of Physics: Conference Series, V1881, DOI 10.1088/1742-6596/1881/3/032062 Nilsson N.J., 1998, ARTIFICIAL INTELLIGE Omar S, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102468 Pallathadka Harikumar, 2023, Materials Today: Proceedings, P2610, DOI 10.1016/j.matpr.2021.06.419 Pan W., 2021, Journal of Lvliang College of Education, V38, P35 Pratap M.chandra., 2021, International Journal of Business Strategy and Automation, V2, P20 Shao Y., 2018, Science and Technology Communication, V10, P106 Simkova N, 2021, J THEOR APPL EL COMM, V16, P1186, DOI 10.3390/jtaer16050067 Strauss A.L., 2003, QUALITATIVE ANAL SOC Su X, 2019, IEEE T IND INFORM, V15, P4266, DOI 10.1109/TII.2019.2908056 Suddaby R, 2006, ACAD MANAGE J, V49, P633, DOI 10.5465/AMJ.2006.22083020 Sun K., 2019, Guizhou Social Science, P136 Vimalkumar M, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106763 Wang F.Q., 2020, Foreign Economy and Management (In Chinese), V42, P48 Wang Y, 2017, CABI SER TOUR MANAGE, P136, DOI 10.1079/9781786391896.0136 Wu Q.J., 2019, Shandong Social Science (In Chinese), V3, P73 Xia Song, 2019, Journal of Physics: Conference Series, V1302, DOI 10.1088/1742-6596/1302/3/032030 Yang GY, 2022, ANN OPER RES, V308, P703, DOI 10.1007/s10479-020-03602-y Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 Zhu Z., 2016, Computer Knowledge and Technology, V12, P263 Zhu Z.F., 2018, Logistics Engineering and Management (In Chinese), V40, P31 NR 42 TC 0 Z9 0 U1 6 U2 6 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD 2023 SEP 25 PY 2023 DI 10.1108/BIJ-11-2022-0697 EA SEP 2023 PG 24 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA S0LR4 UT WOS:001068176100001 DA 2024-03-27 ER PT J AU Ng, FZX Yap, HY Tan, GWH Lo, PS Ooi, KB AF Ng, Felicity Zi-Xuan Yap, Hui-Yee Tan, Garry Wei-Han Lo, Pei-San Ooi, Keng-Boon TI Fashion shopping on the go: A Dual-stage predictive-analytics SEM-ANN analysis on usage behaviour, experience response and cross-category usage SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Mobile commerce; Fashion; Usage intention; Usage behaviour; Experience response; Cross category usage; Individual lifestyle; Artificial neural network; PLS-SEM ID EMPLOYEES EXTENDED USE; MOBILE; ACCEPTANCE; INTENTION; ADOPTION; IMPACT; PRODUCTS; SERVICES; DRIVERS; TOOL AB With the proliferation of mobile commerce, mobile shopping has become the buzzword in the electronic commerce industry. To examine the predictive factors that affect the usage behaviour, experience response, and cross-category usage in mobile fashion shopping, an integrated research framework, comprising of the Mobile Technology Acceptance Model and individual attributes in terms of lifestyle orientations was proposed. The quantitative data, derived from 500 qualified responses, collected through a survey questionnaire, was validated via a two-stage predictive-analytics SEM-ANN approach to identify the non-compensatory and non-linear relationship. All six of the ANN models showed consistent relationships and rankings with the SEM results. The findings imply that mobile commerce developers and designers should ensure that the functions provided can satisfy the evaluation criteria of users with different lifestyle orientations, whereby the advantages of the mobile commerce platforms should be highlighted in the marketing messages to drive first-time usage, as well as extended usage across different mobile commerce platforms (i.e., mobile sites and mobile applications) and product categories. From the theoretical perspective, the findings revealed the indirect influence of the individual attributes on the usage intention of innovative mobile technology. The research is also the first to adopt non-compensatory neural network analysis to compensate the linear SEM analysis in the study on mobile shopping of fashion products. C1 [Ng, Felicity Zi-Xuan; Yap, Hui-Yee] UCSI Univ, Fac Business & Management, 1 Jalan Menara Gading, Kuala Lumpur 56000, Malaysia. [Tan, Garry Wei-Han; Lo, Pei-San; Ooi, Keng-Boon] UCSI Univ, UCSI Grad Business Sch, 1 Jalan Menara Gading, Kuala Lumpur 56000, Malaysia. [Tan, Garry Wei-Han] Nanchang Inst Technol, Sch Finance & Econ, Nanchang, Jiangxi, Peoples R China. [Ooi, Keng-Boon] Chang Jung Christian Univ, Coll Management, Tainan, Taiwan. C3 UCSI University; UCSI University; Nanchang Institute Technology; Chang Jung Christian University RP Tan, GWH (autor correspondiente), UCSI Univ, UCSI Grad Business Sch, 1 Jalan Menara Gading, Kuala Lumpur 56000, Malaysia. EM xuan99.fn@gmail.com; huiyee097@gmail.com; garrytanweihan@gmail.com; oeiansan@gmail.com; ooikengboon@gmail.com RI Lo, Pei San/ADV-5389-2022; OOI, Keng-Boon/I-4143-2019; Lo, Pei San/AAD-7683-2022; Tan Wei Han, Garry/C-6565-2011 OI OOI, Keng-Boon/0000-0002-3384-1207; Lo, Pei San/0000-0002-7061-2307; Tan Wei Han, Garry/0000-0003-2974-2270 CR Abdallah N., 2020, J THEORETICAL APPL I, V98, P1479 Ahmad Norzieiriani, 2010, Business Strategy Series, V11, P227, DOI 10.1108/17515631011063767 Akkaya M, 2021, EUR RES MANAG BUS EC, V27, DOI 10.1016/j.iedeen.2021.100155 [Anonymous], 1997, J FASH MARK MANAG, DOI DOI 10.1108/EB022500 Bourdieu Pierre., 2012, Food and Culture: A Reader, P31, DOI [10.4324/9780203079751-11, DOI 10.4324/9780203079751-11] Broeckelmann P, 2010, QUAL MARK RES, V13, P414, DOI 10.1108/13522751011078827 Caiati V, 2020, TRANSPORT RES A-POL, V131, P123, DOI 10.1016/j.tra.2019.09.029 Sánchez-Prieto JC, 2016, COMPUT HUM BEHAV, V55, P519, DOI 10.1016/j.chb.2015.07.002 Cho YC., 2015, INT J MANAGEMENT INF, V19, P21, DOI DOI 10.19030/IJMIS.V19I1.9086 Chong AYL, 2012, DECIS SUPPORT SYST, V53, P34, DOI 10.1016/j.dss.2011.12.001 Chopdar PK, 2019, BEHAV INFORM TECHNOL, V38, P42, DOI 10.1080/0144929X.2018.1513563 Dahana WD, 2019, J BUS RES, V99, P319, DOI 10.1016/j.jbusres.2019.02.049 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dijkstra TK, 2015, MIS QUART, V39, P297, DOI 10.25300/MISQ/2015/39.2.02 Donovan RJ, 1999, PSYCHOL MARKET, V16, P613, DOI 10.1002/(SICI)1520-6793(199910)16:7<613::AID-MAR4>3.0.CO;2-F El Hedhli K, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102260 Ericsson KA, 2006, CAMBRIDGE HANDBOOK OF EXPERTISE AND EXPERT PERFORMANCE, P683 Escobar-Rodríguez T, 2017, INF SYST E-BUS MANAG, V15, P599, DOI 10.1007/s10257-016-0319-6 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Gefen D, 2005, COMMUN ASSOC INF SYS, V16, P91, DOI 10.17705/1CAIS.01605 Gorgoglione M, 2018, INT J BANK MARK, V36, P1311, DOI 10.1108/IJBM-06-2017-0124 Gross M, 2015, INT J RETAIL DISTRIB, V43, P221, DOI 10.1108/IJRDM-06-2013-0119 Gunter B., 2016, PSYCHOL CONSUMER PRO Hair J.F., 2016, A premier on partial least squares structural equation modeling (PLS-SEM), V2nd Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Hew JJ, 2017, TELEMAT INFORM, V34, P914, DOI 10.1016/j.tele.2017.04.001 Hongkun Peng, 2020, Advances in Intelligent Information Hiding and Multimedia Signal Processing. Proceedings of the 15th International Conference on IIH-MSP in conjunction with the 12th International Conference on FITAT. Smart Innovation, Systems and Technologies (SIST 156), P21, DOI 10.1007/978-981-13-9714-1_3 Hsieh JJPA, 2007, EUR J INFORM SYST, V16, P216, DOI 10.1057/palgrave.ejis.3000663 Hubert M, 2017, PSYCHOL MARKET, V34, P175, DOI 10.1002/mar.20982 Hur HJ, 2017, COMPUT HUM BEHAV, V73, P353, DOI 10.1016/j.chb.2017.03.051 Kaynak E., 2015, International Journal of Advertising, V20, P455, DOI DOI 10.1080/02650487.2001.11104906 Kim D., 2000, P 21 INT C INF SYST, V76, P688 Kim N, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102457 Leung L, 2017, TELEMAT INFORM, V34, P1638, DOI 10.1016/j.tele.2017.07.010 Lew SS, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101430 Li SCS, 2013, TELECOMMUN POLICY, V37, P639, DOI 10.1016/j.telpol.2012.12.009 Lian JWE, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102631 Liang HG, 2007, MIS QUART, V31, P59 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Liu H, 2022, J RETAILING, V98, P241, DOI 10.1016/j.jretai.2021.02.002 Loh XK, 2022, INFORM SYST FRONT, V24, P1887, DOI 10.1007/s10796-021-10202-z Loh XM, 2021, INTERNET RES, V31, P376, DOI 10.1108/INTR-04-2020-0175 Madan K, 2018, ASIA PAC J MARKET LO, V30, P139, DOI 10.1108/APJML-02-2017-0023 Mali N, 2020, BIG COMMERCE Menon S, 2002, J RETAILING, V78, P31, DOI 10.1016/S0022-4359(01)00064-1 Mohamed N, 2014, IND MANAGE DATA SYST, V114, P1453, DOI 10.1108/IMDS-07-2014-0201 Mowen J.C., 1998, CONSUMER BEHAV Mowen John C., 1999, The 3M Model of Motivation and Personality: Theory and Empirical Applications to Consumer Behavior Murray KB, 2007, J CONSUM RES, V34, P77, DOI 10.1086/513048 Nawi NC, 2019, SOCIETIES, V9, DOI 10.3390/soc9010010 Nikhashemi SR, 2019, J RETAIL CONSUM SERV, V48, P122, DOI 10.1016/j.jretconser.2019.01.014 Omar S, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102468 Ooi KB, 2021, IND MANAGE DATA SYST, V121, P312, DOI 10.1108/IMDS-04-2020-0239 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Raman P, 2021, YOUNG CONSUM, V22, P387, DOI 10.1108/YC-05-2020-1148 Ruiz-Mafe C, 2014, ONLINE INFORM REV, V38, P362, DOI 10.1108/OIR-05-2013-0101 Russell G.J., 1997, MARKET LETT, V8, P297, DOI 10.1023/A:1007960529932 Shao Z, 2019, J ENTERP INF MANAG, V32, P626, DOI 10.1108/JEIM-07-2018-0160 Shin E, 2021, J BUS RES, V132, P416, DOI 10.1016/j.jbusres.2021.04.022 Siau K., 2004, International Journal of Electronic Business, V2, P283, DOI 10.1504/IJEB.2004.005143 Soni M, 2019, J GLOB FASH MARK, V10, P358 Statista, 2020, FASH ECOMMERCE REP 2 Statista Digital Market Outlook, 2021, ECOMMERCE REP 2021 Tan GWH, 2018, TELEMAT INFORM, V35, P2270, DOI 10.1016/j.tele.2018.09.005 Tan GWH, 2018, TELEMAT INFORM, V35, P1617, DOI 10.1016/j.tele.2018.04.009 Tan GWH, 2014, COMPUT HUM BEHAV, V36, P198, DOI 10.1016/j.chb.2014.03.052 Tanusondjaja A, 2016, INT J MARKET RES, V58, P401, DOI 10.2501/IJMR-2016-026 Taylor S, 1995, MIS QUART, V19, P561, DOI 10.2307/249633 Tew HT, 2022, J COMPUT INFORM SYST, V62, P527, DOI 10.1080/08874417.2020.1858731 Pham TSH, 2017, TECHNOL FORECAST SOC, V124, P332, DOI 10.1016/j.techfore.2017.04.003 Venkatesh V, 2012, MIS QUART, V36, P157 Vic-Qi Pan, 2015, International Journal of Modelling in Operations Management, V5, P83 Ward P, 2014, J LEISURE RES, V46, P84, DOI 10.1080/00222216.2014.11950314 We are Social & Hootsuite, 2021, DIG 2021 MAL Wong C.H., 2012, INT J NETWORK MOBILE, V3, P24 Wong CH, 2015, ONLINE INFORM REV, V39, P762, DOI 10.1108/OIR-05-2015-0152 Wu JH, 2006, ELECTRON COMMER R A, V5, P192, DOI 10.1016/j.elerap.2005.09.004 Xiu-Ming Loh, 2022, Journal of Computer Information Systems, V62, P39, DOI 10.1080/08874417.2019.1688733 Yan LY, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102300 Yang CY, 2011, INT J HUM-COMPUT INT, V27, P583, DOI 10.1080/10447318.2011.555300 Yon Heong Tung, 2016, HERES WHY MILLENNIAL, pE27 Yuan YP, 2021, TELEMAT INFORM, V64, DOI 10.1016/j.tele.2021.101676 Zalora, 2020, SE AS TREND REP 2020 Zha XJ, 2020, ASLIB J INFORM MANAG, V72, P705, DOI 10.1108/AJIM-08-2019-0213 NR 86 TC 24 Z9 25 U1 14 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAR PY 2022 VL 65 AR 102851 DI 10.1016/j.jretconser.2021.102851 EA JAN 2022 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 0U8HG UT WOS:000787887700011 DA 2024-03-27 ER PT J AU Das, PK Kumar, T AF Das, P. K. Kumar, Talleen TI E-commerce sellers' ratings: Is user feedback adequate? SO INTERNATIONAL JOURNAL OF CONSUMER STUDIES LA English DT Article DE artificial neural network; electronic commerce; principal component analysis; reputation systems; seller rating; Wilcoxon signed-rank test ID PRINCIPAL COMPONENT ANALYSIS; REPUTATION MANAGEMENT; ONLINE; REVIEWS; SYSTEMS; MARKETPLACES; DISCLOSURE; CHALLENGES; EXPERIENCE; MODEL AB The literature on the theory of public procurement points out two well-known informational problems arising out of information asymmetry: (i) adverse selection and (ii) moral hazard. To reduce these issues and foster credibility and trust in the procurement process while maintaining quality and efficiency in public procurement, e-procurement platforms have turned to reputation or rating systems. Therefore, the research and design of such rating systems are crucial. In this study, we discuss the theoretical underpinnings of procurement and employ the information-theoretic, regression analysis, artificial neural network and principal component analysis (PCA) approaches to estimate the weights of the variables entering the rating system. Using real data from Government e-Marketplace, a business-to-business public e-commerce portal, we empirically determine the weights of the rating variables derived from the transaction-level and user feedback data for sellers. The weights obtained from the PCA are the most applicable compared with the other three methods. We compare the old rating system with the newly proposed design using the Wilcoxon signed-rank test. This results in a statistically significant difference between the two ratings. The canonical correlation and Wilks' trial reveal that the ratings derived from transaction-level data and user feedback are uncorrelated to a great extent. Hence, considering only transaction-level data or user feedback is unlikely to divulge sellers' intrinsic worth. E-commerce platforms can use this approach to quickly implement methods to obtain rating scores on a real-time basis for sellers on online platforms. C1 [Das, P. K.] Indian Inst Foreign Trade, 1583 Madurdaha, Chowbaga Rd, Kolkata 700107, West Bengal, India. [Kumar, Talleen] Govt e Marketplace, Space Atom Energy & Earth Commiss, New Delhi, India. RP Das, PK (autor correspondiente), Indian Inst Foreign Trade, 1583 Madurdaha, Chowbaga Rd, Kolkata 700107, West Bengal, India. EM pkdas@iift.edu CR Aggarwal C.C., 2018, NEURAL NETWORKS DEEP AKERLOF GA, 1970, Q J ECON, V84, P488, DOI 10.2307/1879431 Albano G. L., 2013, CHARTING COURSE PUBL Alston C. M., 2016, ADVERSE SELECTION Anderson T.W., 2003, INTRO MULTIVARIATE S ANDERSON TW, 1954, J AM STAT ASSOC, V49, P765, DOI 10.2307/2281537 Aulkemeier F, 2016, INF SYST E-BUS MANAG, V14, P469, DOI 10.1007/s10257-015-0291-6 Badenhorst-Weiss J., 2010, J CONTEMP ISS BUS GO, V16, P69 Banerjee S, 2017, DECIS SUPPORT SYST, V96, P17, DOI 10.1016/j.dss.2017.01.006 Banks DL, 2006, STAT SCI, V21, P234, DOI 10.1214/088342306000000204 Baranowski P, 2018, APPL ECON LETT, V25, P1226, DOI 10.1080/13504851.2017.1412070 Basheka B. C., 2021, Public procurement, corruption and the crisis of governance in Africa, P113 Basheka B. C., 2013, CHARTING COURSE PUBL, P289 BOX GEP, 1964, J ROY STAT SOC B, V26, P211, DOI 10.1111/j.2517-6161.1964.tb00553.x Butler D, 2021, GAMES-BASEL, V12, DOI 10.3390/g12040073 Castillo A, 2018, DECIS SUPPORT SYST, V108, P69, DOI 10.1016/j.dss.2018.02.006 Chatterjee S, 2019, DECIS SUPPORT SYST, V119, P14, DOI 10.1016/j.dss.2019.02.008 Chen S. C., 2003, Information Technology & Management, V4, P303, DOI 10.1023/A:1022962631249 Chrisidu-Budnik A., 2017, WROCLAW REV LAW ADM, V7, P154, DOI DOI 10.1515/WRLAE-2015-0059 Chung C, 2018, J GLOB MARK, V31, P128 Chung-Tzer Liu, 2008, Journal of Organizational and End User Computing, V20, P74, DOI 10.4018/joeuc.2008100104 Clemons EK, 2007, J MANAGE INFORM SYST, V24, P43, DOI 10.2753/MIS0742-1222240203 Cox JC, 1996, GAME ECON BEHAV, V17, P147, DOI 10.1006/game.1996.0100 Dai CY, 2007, I C WIREL COMM NETW, P3617 Dellarocas C, 2003, MANAGE SCI, V49, P1407, DOI 10.1287/mnsc.49.10.1407.17308 Dewally M, 2006, J BUS, V79, P693, DOI 10.1086/499169 Duan H., 2012, IEEE 11 INT C TRUS Fienberg SE, 2006, STAT SCI, V21, P143, DOI 10.1214/088342306000000240 Flanagin AJ, 2014, ELECTRON COMMER RES, V14, P1, DOI 10.1007/s10660-014-9139-2 Flynn A, 2014, J PUBLIC PROCUR, V14, P139, DOI 10.1108/JOPP-14-02-2014-B001 GeM, 2019, INTERNAL REPORT GeM, 2023, HOME GEM STA Ghose A, 2006, STAT SCI, V21, P131, DOI 10.1214/088342306000000187 Goes P, 2013, DECIS SUPPORT SYST, V56, P247, DOI 10.1016/j.dss.2013.06.007 Goldsmith E., 2008, J CONSUMER STUDIES H, V24, P124, DOI DOI 10.1046/J.1365-2737.2000.00150.X Hackney R., 2003, INFORM TECHNOL MANAG, V4, P135 Hendrikx F, 2015, J PARALLEL DISTR COM, V75, P184, DOI 10.1016/j.jpdc.2014.08.004 Hoffman K, 2009, ACM COMPUT SURV, V42, DOI 10.1145/1592451.1592452 IBM Corp, 2020, IBM SPSS Statistics for Windows, DOI DOI 10.1186/S12910-020-00557-4 IEZZONI AF, 1991, HORTSCIENCE, V26, P334, DOI 10.21273/HORTSCI.26.4.334 Irmatov A., 2018, ARXIV Irmatova E., 2017, RUSSIAN J RUSSIAN E, V18, P20 Ivanova O, 2017, DECIS SUPPORT SYST, V104, P64, DOI 10.1016/j.dss.2017.10.003 Jank W, 2006, STAT SCI, V21, P113, DOI 10.1214/088342306000000178 Jelinek R, 2021, BUS HORIZONS, V64, P61, DOI 10.1016/j.bushor.2020.10.002 Johnson R. A., 2015, APPL MULTIVARIATE ST Johnson R.A., 2019, Statistics: principles and methods Jung H, 2014, ADV MATER RES-SWITZ, V919-921, P1716, DOI 10.4028/www.scientific.net/AMR.919-921.1716 Kalia P, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106608 Khoman S, 2017, PUBLIC ADM GOV GLOB, V18, P249, DOI 10.1007/978-3-319-49280-3_14 Kleisiari C, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084392 Koala K, 2018, J PUBLIC PROCUR, V18, P282, DOI 10.1108/JOPP-11-2018-017 Komakech R.A., 2016, PUBLIC POLICY ADM RE, V6, P20 Kostyk A, 2017, J CONSUM BEHAV, V16, P434, DOI 10.1002/cb.1643 Kotha S, 2004, J BUS, V77, pS109, DOI 10.1086/381639 Labib K, 2006, ANN TELECOMMUN, V61, P218, DOI 10.1007/BF03219975 Lakshmanaprabu SK, 2018, COMPLEXITY, DOI 10.1155/2018/3569351 Leonidou LC, 2018, PSYCHOL MARKET, V35, P341, DOI 10.1002/mar.21090 Li HF, 2019, MIS QUART, V43, P207, DOI 10.25300/MISQ/2019/14201 Lin HW, 2020, IEEE-CAA J AUTOMATIC, V7, P954, DOI 10.1109/JAS.2020.1003225 Liu HY, 2020, IEEE T COMPUT SOC SY, V7, P1358, DOI 10.1109/TCSS.2020.3033302 Lysons K., 2020, Procurement and Supply Chain Management Melnik MI, 2002, J IND ECON, V50, P337 Minitab Inc., 2007, COMP SOFTW STAT COLL Mishra Monika, 2020, [Journal of Internet Computing and Services, 인터넷정보학회논문지], V21, P33, DOI 10.7472/jksii.2020.21.6.33 Mudambi SM, 2010, MIS QUART, V34, P185 Ngai EWT, 2002, INFORM MANAGE-AMSTER, V39, P415, DOI 10.1016/S0378-7206(01)00107-0 Park DH, 2007, INT J ELECTRON COMM, V11, P125, DOI 10.2753/JEC1086-4415110405 Paul J, 2020, INT BUS REV, V29, DOI 10.1016/j.ibusrev.2020.101717 Qu Z, 2008, DECIS SUPPORT SYST, V46, P440, DOI 10.1016/j.dss.2008.08.004 Rabby F, 2016, MANAG DECIS ECON, V37, P95, DOI 10.1002/mde.2696 RDSO, 2020, INTERNAL REPORT Sanderson J., 2015, Health Services and Delivery Research, V3, P1, DOI DOI 10.3310/HSDR03180 Shinde S., 2022, 58 E COMMERCE CONSUM Smith G., 2015, Essential statistics, regression, and econometrics, DOI [10.1016/B978-0-12-382221-5.00010-6, DOI 10.1016/B978-0-12-382221-5.00010-6] Snider KF, 2012, J PUBLIC AFF EDUC, V18, P327, DOI 10.1080/15236803.2012.12001687 Statista, 2021, WORLDW SHAR CONS SHO Suchacka G, 2017, INF SYST E-BUS MANAG, V15, P751, DOI 10.1007/s10257-016-0329-4 Sun T, 2011, INT J CONSUM STUD, V35, P330, DOI 10.1111/j.1470-6431.2010.00938.x THAI K.V., 2017, GLOBAL PUBLIC PROCUR Thai K.V., 2005, Challenges in public procurement Thakur S, 2019, ELECTRON COMMER RES, V19, P23, DOI 10.1007/s10660-017-9280-9 Tzeng DY, 2005, COLOR RES APPL, V30, P84, DOI 10.1002/col.20086 Vaithianathan S, 2010, ELECTRON COMMER RES, V10, P83, DOI 10.1007/s10660-010-9046-0 Varzaru AA, 2021, J THEOR APPL EL COMM, V16, P2304, DOI 10.3390/jtaer16060127 Vecchi V., 2022, PUBLIC WORKS MANAG P, V0, P1 von Helversen B, 2018, DECIS SUPPORT SYST, V113, P1, DOI 10.1016/j.dss.2018.05.006 Wang M., 2005, E SERVICE J, V4, P29 WTO, 2020, ELECT COMMERCE Xu YZ, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11195521 Yang C, 2021, J THEOR APPL EL COMM, V16, P1598, DOI 10.3390/jtaer16050090 Yu B, 2002, COMPUT INTELL-US, V18, P535, DOI 10.1111/1467-8640.00202 Yu CM, 2019, INFORM TECHNOL MANAG, V20, P123, DOI 10.1007/s10799-018-0288-1 Zhang YJ, 2020, IEEE-CAA J AUTOMATIC, V7, P1038, DOI 10.1109/JAS.2020.1003243 NR 94 TC 0 Z9 0 U1 9 U2 19 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-6423 EI 1470-6431 J9 INT J CONSUM STUD JI Int. J. Consum. Stud. PD JUL PY 2023 VL 47 IS 4 BP 1561 EP 1578 DI 10.1111/ijcs.12938 EA APR 2023 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA I1JE5 UT WOS:000967873200001 DA 2024-03-27 ER PT J AU Malthouse, E Copulsky, J AF Malthouse, Edward Copulsky, Jonathan TI Artificial intelligence ecosystems for marketing communications SO INTERNATIONAL JOURNAL OF ADVERTISING LA English DT Article DE machine learning algorithms; customer data; digital environments; digital content assets; IT infrastructure ID PITFALLS; NEED AB The goal of this article is to help advertising scholars, students and practitioners understand and anticipate the effects of artificial intelligence (AI) and machine learning (ML) on advertising and, more generally, marketing communications (Marcom). While many discussions of AI centre on algorithms and models, we argue that to understand AI in Marcom, one must consider the broader ecosystem in which these algorithms operate. This article develops a framework that shows the Marcom-AI ecosystem and its outcomes, consisting of the following mutually reinforcing components: (1) algorithms and models, (2) customer data (3) digital environments (e.g. mobile devices, digital signage), (4) digital content assets (e.g. images, videos, copy) and (5) information technology infrastructure. We briefly sketch the uses of AI within Marcom. Most or all components of the ecosystem are usually necessary for AI to address Marcom opportunities and challenges. In conjunction with these components, the ecosystem comprises a broad set of stakeholders: consumers, influencers, brands/advertisers, media and messaging platforms, data platforms, publishers and content creators, MarTech/AdTech vendors, AI/ML service providers, device manufacturers and regulators. The combination of these components and stakeholders enables marketers to optimize touchpoints through targeting and choice architectures, create platforms for testing, derive insights from data, and support marketing processes and workflows. Building from the framework, we close by identifying future research directions for advertising scholars, including understanding consumer response to AI touchpoints, privacy, interactions between stakeholders, and how the ecosystem will evolve. C1 [Malthouse, Edward; Copulsky, Jonathan] Northwestern Univ, Medill Spiegel Res Ctr, Integrated Mkt Commun, Evanston, IL 60208 USA. C3 Northwestern University RP Malthouse, E (autor correspondiente), Northwestern Univ, Medill Spiegel Res Ctr, Integrated Mkt Commun, Evanston, IL 60208 USA. EM ecm@northwestern.edu CR Ahn J, 2021, INT J ADVERT, V40, P1366, DOI 10.1080/02650487.2021.1982529 [Anonymous], 1988, PARALLEL DISTRIBUTED [Anonymous], 2018, US MARKETING TECHNOL Araujo T, 2020, J ADVERTISING, V49, P428, DOI 10.1080/00913367.2020.1795756 Araujo T, 2020, AI SOC, V35, P611, DOI 10.1007/s00146-019-00931-w Ascarza E., 2021, HARVARD BUSINESS REV Baek TH, 2022, INT J ADVERT, V41, P850, DOI 10.1080/02650487.2021.2011654 Ben Schafer J, 2001, DATA MIN KNOWL DISC, V5, P115, DOI 10.1023/A:1009804230409 Bird J., 2022, FORBES Buhalis D, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102253 Creswell Julie., 2021, The New York Times De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 Edelman D. C., 2022, HARVARD BUS REV Hastie T., 2009, ELEMENTS STAT LEARNI, V2, DOI [DOI 10.1007/978-0-387-21606-5, 10.1007/978-0-387-21606-5, 10.1007/978-0-387-84858-7] Hayes A., 2021, BUSINESS ECOSYSTEM Helberger N, 2020, J ADVERTISING, V49, P377, DOI 10.1080/00913367.2020.1811179 Holzer, 2021, MARKETING OPERATIONS Huh J, 2020, J ADVERTISING, V49, P367, DOI 10.1080/00913367.2020.1795759 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Khatibloo F., 2017, CONSUMER DATA 1 3 PA Kietzmann J, 2021, INT J ADVERT, V40, P473, DOI 10.1080/02650487.2020.1834211 Kim J, 2022, INT J ADVERT, V41, P997, DOI 10.1080/02650487.2021.1963098 Konstan JA, 2021, AI MAG, V42, P31, DOI 10.1609/aaai.12015 Kuhl N., 2020, ARXIV Lacerda A, 2015, INFORM RETRIEVAL J, V18, P95, DOI 10.1007/s10791-014-9249-4 Lee HK, 2020, INT J CULT POLICY, V26, P544, DOI 10.1080/10286632.2019.1577401 Lee Kai-Fu, 2018, AI Superpowers: China, Silicon Valley, and the New World Order Lou C, 2022, INT J ADVERT, V41, P655, DOI 10.1080/02650487.2021.1951510 Luscombe NM, 2001, METHOD INFORM MED, V40, P346, DOI 10.1055/s-0038-1634431 Malthouse EC, 1999, J INTERACT MARK, V13, P10, DOI 10.1002/(SICI)1520-6653(199923)13:4<10::AID-DIR2>3.3.CO;2-V Malthouse EC, 2018, INT J ADVERT, V37, P769, DOI 10.1080/02650487.2018.1461733 Malthouse EC, 2017, J ADVERTISING, V46, P227, DOI 10.1080/00913367.2017.1299653 Moore J.F., 1997, DEATH COMPETITION MOORE JF, 1993, HARVARD BUS REV, V71, P75 Mumtaz F, 2018, BIOMED PHARMACOTHER, V105, P1205, DOI 10.1016/j.biopha.2018.05.086 PRAAGMAN J, 1985, EUR J OPER RES, V19, P144, DOI 10.1016/0377-2217(85)90321-2 Quinlan JR., 2014, C4 5 PROGRAMS MACHIN Quinn T, 2018, TLS-TIMES LIT SUPPL, P31 Rice, 2012, SMU COMMENCEMENT SPE Rusk N, 2016, NAT METHODS, V13, P35, DOI 10.1038/nmeth.3707 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 Sotolongo N., 2018, APPL MARKETING ANAL, V4, P11 Strycharz J, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106750 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Taylor CR, 2022, INT J ADVERT, V41, P383, DOI 10.1080/02650487.2022.2058786 Taylor CR, 2020, INT J ADVERT, V39, P889, DOI 10.1080/02650487.2020.1822104 Taylor CR, 2019, INT J ADVERT, V38, P649, DOI 10.1080/02650487.2019.1618032 Wang RJH, 2015, J RETAILING, V91, P217, DOI 10.1016/j.jretai.2015.01.002 Willemsen MC, 2016, USER MODEL USER-ADAP, V26, P347, DOI 10.1007/s11257-016-9178-6 Williams L, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102215 Yuan Shuai, 2013, P 7 INT WORKSH DAT M, P1, DOI DOI 10.1145/2501040.2501980 Yun JT, 2020, J ADVERTISING, V49, P446, DOI 10.1080/00913367.2020.1795757 NR 52 TC 6 Z9 6 U1 47 U2 125 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0265-0487 EI 1759-3948 J9 INT J ADVERT JI Int. J. Advert. PD JAN 2 PY 2023 VL 42 IS 1 SI SI BP 128 EP 140 DI 10.1080/02650487.2022.2122249 EA SEP 2022 PG 13 WC Business; Communication WE Social Science Citation Index (SSCI) SC Business & Economics; Communication GA 8Z3EL UT WOS:000854242400001 DA 2024-03-27 ER PT J AU Phillips, P Zigan, K Silva, MMS Schegg, R AF Phillips, Paul Zigan, Krystin Santos Silva, Maria Manuela Schegg, Roland TI The interactive effects of online reviews on the determinants of Swiss hotel performance: A neural network analysis SO TOURISM MANAGEMENT LA English DT Article DE User generated content; Online reviews; Determinants of performance; Artificial neural network; Hotels and tourism; Switzerland ID WORD-OF-MOUTH; USER-GENERATED CONTENT; MARKET-SEGMENTATION; TOURISM DEMAND; BEHAVIOR; HOSPITALITY; RELIABILITY; PREDICTION; SYSTEM; IMPACT AB From a strategy perspective, the growth of social media accelerates the need for tourism organisations to constantly re-appraise their competitive strategies. This study contributes theoretically to the tourism performance literature by validating a new approach to examining the determinants of hotel performance. Drawing from and extending prior hotel determinants studies, this study uses artificial neural network model with ten input variables to investigate the relationships among user generated online reviews, hotel characteristics, and Revpar. The sample includes 235 Swiss hotels for the period 2008 -2010, with 59,688 positive reviews from 69 online sources. The empirical findings reveal four hidden nodes that have a significant impact on RevPar. Three of these have negative impacts: room quality, positive regional review, hotel regional reputation, and regional room star rating has a positive impact. Further, the findings imply that there may be boundaries to reputational benefits for Swiss hotels. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Phillips, Paul] Univ Kent, Kent Business Sch, Canterbury CT2 7PE, Kent, England. [Zigan, Krystin] Univ Kent, Kent Business Sch, Chatham Maritim ME4 4AG, Kent, England. [Santos Silva, Maria Manuela] Univ Coimbra, Fac Econ, P-3004512 Coimbra, Portugal. [Schegg, Roland] Univ Appl Sci & Arts Western Switzerland Valais, Inst Tourism, CH-3960 Sierre, Switzerland. C3 University of Kent; University of Kent; Universidade de Coimbra RP Phillips, P (autor correspondiente), Univ Kent, Kent Business Sch, Canterbury CT2 7PE, Kent, England. EM P.A.Phillips@kent.ac.uk; K.Zigan@kent.ac.uk; nelinha@fe.uc.pt; Roland.Schegg@hevs.ch CR Anderson C. K., 2012, Cornell Hospitality Report, V12, P1 [Anonymous], 2007, J TRAVEL TOUR MARK, DOI DOI 10.1300/J073V21N04_03 [Anonymous], 2001, J MARKET MANAG [Anonymous], 2008, Information and Communications Technology in Tourism Ayeh JK, 2013, J TRAVEL RES, V52, P437, DOI 10.1177/0047287512475217 B e CURRY., 1993, European Journal of Marketing, V, V27, P5, DOI DOI 10.1108/03090569310040325 Bentz Y, 2000, J FORECASTING, V19, P177, DOI 10.1002/(SICI)1099-131X(200004)19:3<177::AID-FOR738>3.0.CO;2-6 Bishop C.M., 1995, NEURAL NETWORKS PATT Blal I, 2014, CORNELL HOSP Q, V55, P365, DOI 10.1177/1938965514533419 Bloom JZ, 2005, ANN TOURISM RES, V32, P93, DOI 10.1016/j.annals.2004.05.001 Bloom JZ, 2004, TOURISM MANAGE, V25, P723, DOI 10.1016/j.tourman.2003.07.004 Boone DS, 2002, MARKET LETT, V13, P317, DOI 10.1023/A:1020321132568 Burger CJSC, 2001, TOURISM MANAGE, V22, P403, DOI 10.1016/S0261-5177(00)00068-6 Cardoso JB, 2008, ADV ENG SOFTW, V39, P505, DOI 10.1016/j.advengsoft.2007.03.015 Castro G.M., 2004, Journal of Intellectual Capital, V5, P575, DOI [10.1108/14691930410567022, DOI 10.1108/14691930410567022] Chen HN, 2013, EUR J MARKETING, V47, P1758, DOI 10.1108/EJM-11-2011-0625 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Loureiro SMC, 2011, INT J HOSP MANAG, V30, P575, DOI 10.1016/j.ijhm.2010.10.007 Davies G, 2010, STRATEGIC MANAGE J, V31, P530, DOI 10.1002/smj.825 Deng WJ, 2009, EXPERT SYST APPL, V36, P3774, DOI 10.1016/j.eswa.2008.02.063 DeTienne KB, 2003, ORGAN RES METHODS, V6, P236, DOI 10.1177/1094428103251907 Dickinger A., 2008, Information and communication technologies in tourism 2008, P244, DOI [10.1007/978-3-211-77280-5_22, DOI 10.1007/978-3-211-77280-5_22] Du JP, 2007, LECT NOTES COMPUT SC, V4493, P80 Duverger P, 2013, J TRAVEL RES, V52, P465, DOI 10.1177/0047287513478498 Gan C., 2005, Journal of Social Sciences, V1, P211 Ghose A., 2006, P WORKSHOP INFORM TE, P1 Gronholdt L, 2005, INT J MARKET RES, V47, P121 Haykin S., 2008, NUERAL NETWORKS LEAR Jost A., 1993, CREDIT WORLD, V2, P26 Jun SH, 2010, J TRAVEL TOUR MARK, V27, P579, DOI 10.1080/10548408.2010.507151 Khan ZabirHaider., 2011, International Journal of Computer Applications, V22, P42 Kim J, 2003, TOURISM MANAGE, V24, P25, DOI 10.1016/S0261-5177(02)00050-X Kim J, 2010, J HOSP MARKET MANAG, V19, P735, DOI 10.1080/19368623.2010.508005 Kuo RJ, 2001, EUR J OPER RES, V129, P496, DOI 10.1016/S0377-2217(99)00463-4 Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919 Levy SE, 2013, CORNELL HOSP Q, V54, P49, DOI 10.1177/1938965512464513 Li SL, 2000, DECIS SUPPORT SYST, V27, P395, DOI 10.1016/S0167-9236(99)00061-5 Lopes N., 2003, Neural, Parallel & Scientific Computations, V11, P253 Lu WL, 2012, TOURISM MANAGE, V33, P702, DOI 10.1016/j.tourman.2011.08.003 Mazanec J. A., 1992, Journal of Travel & Tourism Marketing, V1, P39, DOI 10.1300/J073v01n01_04 McGuire K., 2013, PRICING SOCIAL WORLD Mikulic J, 2012, EXPERT SYST APPL, V39, P5144, DOI 10.1016/j.eswa.2011.11.026 Mitchell VW, 1999, J BUS RES, V46, P167, DOI 10.1016/S0148-2963(98)00020-4 Moutinho L, 2008, SERV BUS, V2, P219, DOI 10.1007/s11628-008-0037-3 Moutinho Luiz., 1996, J RETAILING CONSUMER, V3, P135 Nieto J, 2014, TOURISM MANAGE, V45, P115, DOI 10.1016/j.tourman.2014.03.009 Palmer A, 2006, TOURISM MANAGE, V27, P781, DOI 10.1016/j.tourman.2005.05.006 Phillips P., 1999, Management Decision, V37, P279, DOI 10.1108/00251749910264514 Phillips P.A., 2002, Journal of Market-Focused Management, V5, P219 Porter ME, 1998, HARVARD BUS REV, V76, P77 Robson K, 2013, INT J MARKET RES, V55, P521, DOI 10.2501/IJMR-2013-046 Romero I, 2011, TOURISM MANAGE, V32, P297, DOI 10.1016/j.tourman.2010.02.006 Roos G., 2005, Managing Intellectual Capital in Practice Sainaghi R, 2011, INT J CONTEMP HOSP M, V23, P297, DOI 10.1108/09596111111122497 Saldamli A., 2008, Istambul Ticaret Universitesi Sosyal Bilimler Dergisi, V7, P351 Scaglione M, 2009, TECHNOVATION, V29, P625, DOI 10.1016/j.technovation.2009.05.011 Schegg R., 2013, INFORM COMMUNICATION, P801 Cantallops AS, 2014, INT J HOSP MANAG, V36, P41, DOI 10.1016/j.ijhm.2013.08.007 Silva M, 2009, EUR J MARKETING, V43, P421, DOI 10.1108/03090560910935505 Sparks BA, 2011, TOURISM MANAGE, V32, P1310, DOI 10.1016/j.tourman.2010.12.011 Sund KJ, 2006, TOUR PLAN DEV, V3, P1, DOI 10.1080/14790530600638788 Swingler K., 1996, APPL NEURAL NETWORKS Swiss Tourism Federation, 2010, SWISS TOUR FIG 2010 Swiss Tourism Federation, 2011, SWISS TOUR FIG 2011 Swiss Tourism Federation, 2013, SWISS TOUR FIG 2012 Thieme RJ, 2000, J MARKETING RES, V37, P499, DOI 10.1509/jmkr.37.4.499.18790 Toh RS, 2011, CORNELL HOSP Q, V52, P181, DOI 10.1177/1938965511400409 TripAdvisor, 2014, FACT SHEET TripAdvisor, 2014, TRIPADVISOR NOW OFF Tsaur S., 2002, TOURISM MANAGE, V25, P367 Tuominen P., 2011, 19 ANN FRONT SERV C, P1 Vellido A, 2000, INT J ELECTRON COMM, V4, P83, DOI 10.1080/10864415.2000.11518380 Venugopal V., 1994, MARKETING INTELLIGEN, V12, P30, DOI DOI 10.1108/02634509410065555 Vila M, 2010, TOURISM MANAGE, V31, P232, DOI 10.1016/j.tourman.2009.02.015 Wallis Kanton, 2013, ENTWICKLUNGSSTRATEGI West PM, 1997, MARKET SCI, V16, P370, DOI 10.1287/mksc.16.4.370 Yacouel N, 2012, J TRAVEL RES, V51, P219, DOI 10.1177/0047287511400611 Ye QA, 2011, COMPUT HUM BEHAV, V27, P634, DOI 10.1016/j.chb.2010.04.014 Ye Q, 2009, INT J HOSP MANAG, V28, P180, DOI 10.1016/j.ijhm.2008.06.011 NR 79 TC 135 Z9 145 U1 7 U2 224 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-5177 EI 1879-3193 J9 TOURISM MANAGE JI Tourism Manage. PD OCT PY 2015 VL 50 BP 130 EP 141 DI 10.1016/j.tourman.2015.01.028 PG 12 WC Environmental Studies; Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Social Sciences - Other Topics; Business & Economics GA CJ8QV UT WOS:000355769500020 DA 2024-03-27 ER PT J AU Capatina, A Kachour, M Lichy, J Micu, A Micu, AE Codignola, F AF Capatina, Alexandru Kachour, Maher Lichy, Jessica Micu, Adrian Micu, Angela-Eliza Codignola, Federica TI Matching the future capabilities of an artificial intelligence-based software for social media marketing with potential users' expectations SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Artificial intelligence; Machine learning; Social media marketing; Audience analysis; Image analysis; Sentiment analysis ID REGRESSION-MODELS; STRATEGIES; INNOVATION AB The increasing use of Artificial Intelligence (AI) in Social Media Marketing (SMM) triggered the need for this research to identify and further analyze such expectations of potential users of an AI-based software for Social Media Marketing; a software that will be developed in the next two years, based on its future capabilities. In this research, we seek to discover how the potential users of this AI-based software (owners and employees from digital agencies based in France, Italy and Romania, as well as freelancers from these countries, with expertise in SMM) perceive the capabilities that we offer, as a way to differentiate our technological solution from other available in the market. We propose a causal model to find out which expected capabilities of the future AI-based software can explain potential users' intention to test and use this innovative technological solution for SMM, based on integer valued regression models. With this purpose, R software is used to analyze the data provided by the respondents. We identify different causal configurations of upcoming capabilities of the AI-based software, classified in three categories (audience, image and sentiment analysis), and will trigger potential users' intention to test and use the software, based on an fsQCA approach. C1 [Capatina, Alexandru; Micu, Adrian] Dunarea de Jos Univ Galati, Business Adm Dept, Galati, Romania. [Kachour, Maher] ESSCA Sch Management, Angers, France. [Lichy, Jessica] IDRAC Business Sch, Lyon, France. [Micu, Angela-Eliza] Ovidius Univ Constanta, Constanta, Romania. [Codignola, Federica] Univ Milano Bicocca, Milan, Italy. C3 Dunarea De Jos University Galati; ESSCA School of Management; Ovidius University; University of Milano-Bicocca RP Capatina, A (autor correspondiente), Dunarea de Jos Univ Galati, Business Adm Dept, Galati, Romania. EM acapatana@ugal.ro; maher.kachour@essca.fr; jessica.lichy1@idraclyon.com; amicu@ugal.ro; federica.codignola@unimib.it RI Micu, Angela Eliza/B-7129-2018; Micu, Adrian/V-7868-2017; sami, nusrat/AAK-9622-2020; Micu, Adrian/AAJ-9641-2020; Capatina, Alexandru/A-7596-2018 OI Lichy, Jessica/0000-0002-7091-9448; Micu, Adrian/0000-0003-3161-5748; Capatina, Alexandru/0000-0002-5439-838X; Micu, Angela Eliza/0000-0001-5254-0015 FU project FutureWeb by Romanian Ministry of Research and Innovation, CCCDI - UEFISCDI within PNCDI III [PN-III-P1-1.2-PCCDI-2017-0800/86PCCDI/2018]; project "Excellence, performance and competitiveness in the Research, Development and Innovation activities at "Dunarea de Jos" University of Galati", acronym "EXPERT" - Romanian Ministry of Research and Innovation [14PFE/17.10.2018] FX This research was conducted within the framework of the project FutureWeb, launched by Romanian Ministry of Research and Innovation, CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0800/86PCCDI/2018, within PNCDI III. This work was supported by the project "Excellence, performance and competitiveness in the Research, Development and Innovation activities at "Dunarea de Jos" University of Galati", acronym "EXPERT", financed by the Romanian Ministry of Research and Innovation in the framework of Programme 1 - Development of the national research and development system, Sub-programme 1.2 - Institutional Performance - Projects for financing excellence in Research, Development and Innovation, Contract no. 14PFE/17.10.2018. Romanian authors are grateful for the collaboration with the colleagues from France and Italy, which led to a cross-country approach of the results. CR [Anonymous], 2010, 4 INT AAAI C WEBL SO [Anonymous], 28 AAAI C ART INT [Anonymous], 2017, P 50 HAW INT C SYST Ashley C, 2015, PSYCHOL MARKET, V32, P15, DOI 10.1002/mar.20761 Barbour R, 2008, DOING FOCUS GROUPS Bengio Y, 2009, FOUND TRENDS MACH LE, V2, P1, DOI 10.1561/2200000006 Bhimani H, 2019, TECHNOL FORECAST SOC, V144, P251, DOI 10.1016/j.techfore.2018.10.007 Borth D, 2013, P 21 ACM INT C MULT, P223, DOI [10.1145/2502081.2502282, DOI 10.1145/2502081.2502282] Brannen J., 2005, Qualitative Research, V5, P523, DOI [10.1177/1468794105059508, DOI 10.1177/1468794105059508] Cambria E, 2012, MULTIMED TOOLS APPL, V59, P557, DOI 10.1007/s11042-011-0815-0 Cao DL, 2016, MULTIMEDIA SYST, V22, P479, DOI 10.1007/s00530-014-0407-8 Chen SC, 2019, TECHNOL FORECAST SOC, V140, P22, DOI 10.1016/j.techfore.2018.11.025 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Ding Y, 2013, 2013 INTERNATIONAL CONFERENCE ON SENSOR NETWORK SECURITY TECHNOLOGY AND PRIVACY COMMUNICATION SYSTEM (SNS & PCS), P13 Dutang C., 2017, SOME EXPLANATIONS IW Engel R.J. Schutt., 2012, PRACTICE RES SOCIAL Farquhar J, 2006, BUS PROCESS MANAG J, V12, P162, DOI 10.1108/14637150610657512 Fiss PC, 2007, ACAD MANAGE REV, V32, P1180, DOI 10.5465/AMR.2007.26586092 Garimella VRK, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P5543, DOI 10.1145/2858036.2858234 Guo-Fitoussi L., 2019, INT J INTELLECTUAL P, V9, P136, DOI DOI 10.1504/IJIPM.2019.100213 Habernal I., 2013, P 4 WORKSH COMP APPR, P65 He W, 2013, INT J INFORM MANAGE, V33, P464, DOI 10.1016/j.ijinfomgt.2013.01.001 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Holsapple CW, 2018, DECIS SUPPORT SYST, V110, P32, DOI 10.1016/j.dss.2018.03.004 Iqbal R, 2020, TECHNOL FORECAST SOC, V153, DOI 10.1016/j.techfore.2018.03.024 Jia J., 2012, Proc. ACM Multimedia, P857 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Karpathy A, 2015, PROC CVPR IEEE, P3128, DOI 10.1109/CVPR.2015.7298932 Kawano Y, 2015, MULTIMED TOOLS APPL, V74, P5263, DOI 10.1007/s11042-014-2000-8 Khedhaouria A, 2017, TECHNOL FORECAST SOC, V120, P48, DOI 10.1016/j.techfore.2017.04.005 Kosinski M, 2013, P NATL ACAD SCI USA, V110, P5802, DOI 10.1073/pnas.1218772110 Kouloumpis E., 2011, P INT AAAI C WEB SOC Kurnia Parama Fadli, 2018, Procedia Computer Science, V135, P5, DOI 10.1016/j.procs.2018.08.144 Lassen N.B., 2017, The SAGE Handbook of Social Media Research Methods, P328 Lee I, 2018, BUS HORIZONS, V61, P199, DOI 10.1016/j.bushor.2017.11.002 Liu Jingjing, 2007, P 2007 JOINT C EMPIR, P334 Lopez R, 2012, BUILDING AMERICAN PUBLIC HEALTH: URBAN PLANNING, ARCHITECTURE, AND THE QUEST FOR BETTER HEALTH IN THE UNITED STATES, P81 MCCULLAGH P, 1980, J ROY STAT SOC B MET, V42, P109 Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Pappas IO, 2016, J BUS RES, V69, P794, DOI 10.1016/j.jbusres.2015.07.010 Paul J, 2018, EUR J INT MANAG, V12, P722, DOI 10.1504/EJIM.2018.094466 Phillips F, 2016, TECHNOL FORECAST SOC, V105, P158, DOI 10.1016/j.techfore.2016.01.007 Ragin C. C., 2009, Redesigning social inquiry: Fuzzy sets and beyond, DOI DOI 10.7208/CHICAGO/9780226702797.001.0001 Soriano DR, 2010, J BUS RES, V63, P463, DOI 10.1016/j.jbusres.2009.04.003 Sterne J., 2017, Artificial intelligence for marketing: practical applications Suwajanakorn S, 2017, ACM T GRAPHIC, V36, DOI 10.1145/3072959.3073640 Trkman M, 2018, ECON RES-EKON ISTRAZ, V31, P1091, DOI 10.1080/1331677X.2018.1456355 Tsimonis G, 2014, MARK INTELL PLAN, V32, P328, DOI 10.1108/MIP-04-2013-0056 Vázquez S, 2014, NEURAL NETWORKS, V58, P68, DOI 10.1016/j.neunet.2014.05.026 Wang YL, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1584, DOI 10.1109/ICDMW.2015.142 Wilson T, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P761 WINSHIP C, 1984, AM SOCIOL REV, V49, P512, DOI 10.2307/2095465 Woodside AG, 2014, J BUS RES, V67, P2495, DOI 10.1016/j.jbusres.2014.07.006 Wu R., 2015, Deep image: Scaling up image recognition You QZ, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P13, DOI 10.1145/2835776.2835779 You QZ, 2015, AAAI CONF ARTIF INTE, P381 Zikmund W. G., 2003, Business Research Methods, V7th NR 60 TC 44 Z9 46 U1 20 U2 107 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD FEB PY 2020 VL 151 AR 119794 DI 10.1016/j.techfore.2019.119794 PG 11 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA KG3CA UT WOS:000509818900053 DA 2024-03-27 ER PT J AU Pandey, P Rai, AK AF Pandey, Palima Rai, Alok Kumar TI Consumer Adoption of AI-powered Virtual Assistants (AIVA): An Integrated Model Based on the SEM-ANN Approach SO FIIB BUSINESS REVIEW LA English DT Article; Early Access DE Artificial Intelligence; Artificial Neural Network; Consumer Adoption; Structural Equation Modelling; Uncanny Valley; Virtual Assistants ID ARTIFICIAL-INTELLIGENCE; CUSTOMER LOYALTY; VOICE ASSISTANTS; USER ACCEPTANCE; TECHNOLOGY; REGRESSION; BEHAVIOR; WARMTH; TRUST; USAGE AB Artificial intelligence (AI) has lured consumers to orchestrate their routine activities relying on such technologies. Though AI-powered virtual assistants (AIVAs) have gained traction among service providers, these are still lagging on the demand front. This study intends to develop an 'AIVA adoption model' delineated under a holistic framework based on structural equation modelling and deep neural network incorporating multilayer perceptron algorithm. The sensitivity analysis designated 'effort expectancy' as the most dominant antecedent of AIVA adoption, followed by 'perceived innovativeness'. While 'perceived risk' held high relevance, the tech users were equally concerned about the performance of AIVA in conjunction with its anthropomorphic response; however, they gave the least consideration to subjective norms. The parallel mediation analysis revealed that the adopters preferred transactional relationships with AIVA more than the communal one, while the simultaneous application of both the perspectives better generates loyal customers. The moderation analysis unveiled that the uncanny valley paradigm could not always be supportive, especially in the context of AIVA. The developed model may serve the basis to generate as well as sustain adoption and loyalty of the specified technology. C1 [Pandey, Palima] Banaras Hindu Univ, RGSC, Inst Management Studies, Dept MBA Agribusiness, Varanasi, Uttar Pradesh, India. [Rai, Alok Kumar] Banaras Hindu Univ, Inst Management Studies, Dept Management, Varanasi, Uttar Pradesh, India. [Rai, Alok Kumar] Univ Lucknow, Lucknow, Uttar Pradesh, India. [Pandey, Palima] Banaras Hindu Univ, RGSC, Inst Management Studies, Varanasi 221005, Uttar Pradesh, India. C3 Banaras Hindu University (BHU); Banaras Hindu University (BHU); Lucknow University; Banaras Hindu University (BHU) RP Pandey, P (autor correspondiente), Banaras Hindu Univ, RGSC, Inst Management Studies, Varanasi 221005, Uttar Pradesh, India. EM palimapandey@gmail.com RI Pandey, Palima/KEH-4932-2024 CR Acosta L. H., 2021, Pervasive and Mobile Computing, V80, P1 Agarwal A, 2023, FORESIGHT, V25, P67, DOI 10.1108/FS-10-2021-0199 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Al-Emran M, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3237789 Anantasiska V., 2022, The International Journal of Social Sciences World, V4, P101 [Anonymous], 2021, McKinsey Report [Anonymous], 2023, McKinsey Report Aruldoss A, 2023, J MARKET THEORY PRAC, DOI 10.1080/10696679.2023.2221442 Ashrafi DM, 2023, INT J INNOV TECHNOL, V20, DOI 10.1142/S0219877023500049 Bauer R. A., 1960, CONSUMER BEHAV RISK Bawack R., 2022, In HICSS: Proceedings of the 55th Hawaii International Conference on System Sciences, P4306 Bedi K., 2022, Adoption and implementation of AI in customer relationship management, P26 Belanche D, 2021, PSYCHOL MARKET, V38, P2357, DOI 10.1002/mar.21532 BENTLER PM, 1990, PSYCHOL BULL, V107, P238, DOI 10.1037/0033-2909.107.2.238 Bhadauria VS, 2022, INF COMPUT SECUR, V30, P730, DOI 10.1108/ICS-07-2021-0096 Bhonsle Vishnu Sai, 2022, Communication and Control for Robotic Systems. Smart Innovation, Systems and Technologies (229), P177, DOI 10.1007/978-981-16-1777-5_11 Bilgihan A, 2016, COMPUT HUM BEHAV, V61, P103, DOI 10.1016/j.chb.2016.03.014 Bolton T, 2021, SENSORS-BASEL, V21, DOI 10.3390/s21072312 Burbach L, 2019, IEEE INT PROF COMMUN, P101, DOI 10.1109/ProComm.2019.00025 Cao C., 2022, Frontiers in Psychology, V13, P1 Carmines E.G., 1988, RELIABILITY VALIDITY Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chi OH, 2020, J HOSP MARKET MANAG, V29, P757, DOI 10.1080/19368623.2020.1721394 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Choudhury A, 2023, J MED INTERNET RES, V25, DOI 10.2196/47184 Chow CSK, 2023, J ELECTRON COMMER RE, V24, P84 Chu L., 2019, Master's thesis, University of Twente, P1 Chung D, 2022, INT J INNOV TECHNOL, V19, DOI 10.1142/S0219877022500250 Cochran W.G., 1963, Sampling Technique, V2nd Collins C, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102383 Coskun-Setirek Abide, 2017, International Journal of E-Services and Mobile Applications, V9, P1, DOI 10.4018/IJESMA.2017070101 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Sebastián MGD, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.993935 Fang SJ, 2023, CORNELL HOSP Q, V64, P246, DOI 10.1177/19389655221102383 Fernandes S., 2015, INDIAN J SCI TECHNOL, V8, P95 Fernandes S., 2019, Journal of management research, V19, P131, DOI DOI 10.17485/IJST/2015/V8IS6/64720 Fernandes S. F., 2018, Journal of Commerce and Management Thought, V9, P273 Fernandes T, 2021, J BUS RES, V122, P180, DOI 10.1016/j.jbusres.2020.08.058 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Fiske ST, 2002, J PERS SOC PSYCHOL, V82, P878, DOI 10.1037//0022-3514.82.6.878 Fiske ST, 2007, TRENDS COGN SCI, V11, P77, DOI 10.1016/j.tics.2006.11.005 Frank DA, 2023, PSYCHOL MARKET, V40, P554, DOI 10.1002/mar.21740 Gopinath K, 2023, INT J CONSUM STUD, V47, P2367, DOI 10.1111/ijcs.12933 Gunasinghe A, 2020, INT J TECHNOL ENHANC, V12, P458, DOI 10.1504/IJTEL.2020.110056 Hair J.F., 2009, Multivariate data analysis Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Hasan R, 2021, J BUS RES, V131, P591, DOI 10.1016/j.jbusres.2020.12.012 Hu K, 2023, ARTIF INTELL REV, V56, P1833, DOI 10.1007/s10462-022-10210-8 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huh J, 2023, J RES INTERACT MARK, V17, P794, DOI 10.1108/JRIM-10-2022-0328 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Hurley AE, 1997, J ORGAN BEHAV, V18, P667, DOI 10.1002/(SICI)1099-1379(199711)18:6<667::AID-JOB874>3.0.CO;2-T Jang H., 2022, The impact of the humanness of AI influencers on the success of influencer marketing, DOI [10.26153/tsw/42156, DOI 10.26153/TSW/42156] Jenneboer L, 2022, J THEOR APPL EL COMM, V17, P212, DOI 10.3390/jtaer17010011 Johnson N, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15129224 Kaaria A., 2017, Master Thesis Kallel A, 2023, J STRATEG MARK, DOI 10.1080/0965254X.2023.2175020 Kessler S. K., 2017, Master Thesis, P1 Kim SY, 2019, MARKET LETT, V30, P1, DOI 10.1007/s11002-019-09485-9 Kontogiorgos D, 2019, PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON INTELLIGENT VIRTUAL AGENTS (IVA' 19), P133, DOI 10.1145/3308532.3329466 Lavuri R, 2023, INT J EMERG MARK, V18, P958, DOI 10.1108/IJOEM-12-2020-1530 Lee KW, 2023, J RETAIL CONSUM SERV, V74, DOI 10.1016/j.jretconser.2023.103447 Liu X, 2022, ANN TOURISM RES, V92, DOI 10.1016/j.annals.2021.103324 Lowe B, 2019, EUR J MARKETING, V53, P1038, DOI 10.1108/EJM-06-2019-966 MacKenzie SB, 2001, J CONSUM RES, V28, P159, DOI 10.1086/321954 Malhan A., 2021, The Economic Times Malodia S, 2023, J SERV MARK, V37, P25, DOI 10.1108/JSM-12-2021-0488 Mariani MM, 2023, J BUS RES, V161, DOI 10.1016/j.jbusres.2023.113838 Maroufkhani P, 2022, TECHNOL FORECAST SOC, V183, DOI 10.1016/j.techfore.2022.121870 Mokhtar S. A., 2017, Science International Lahore, V29, P829 Molinillo S, 2023, SERV BUS, V17, P167, DOI 10.1007/s11628-022-00509-5 Mori M., 1970, IEEE Spectrum Moriuchi E, 2023, PSYCHOL MARKET, V40, P169, DOI 10.1002/mar.21753 Moussawi S, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P115 Moussawi S, 2021, ELECTRON MARK, V31, P343, DOI 10.1007/s12525-020-00411-w Mukherjee S, 2022, FIIB BUS REV, V11, P438, DOI 10.1177/23197145211059243 Musil CM, 1998, RES NURS HEALTH, V21, P271 Muthukumaran A., 2020, Indian Journal of Science and Technology, V13, P4407, DOI DOI 10.17485/IJST/v13i43.1911 Nasirian F., 2017, Twenty-third Americas Conference on Information Systems, P1 Nunkoo R, 2012, CURR ISSUES TOUR, V15, P777, DOI 10.1080/13683500.2011.641947 Pal D, 2020, IEEE INTERNET THINGS, V7, P10852, DOI 10.1109/JIOT.2020.2991791 Pan Y., 2023, AMCIS 2023 Proceedings, V4, P1178 Pandey P., 2020, Purushartha, V13, P30 Pentina I, 2023, COMPUT HUM BEHAV, V140, DOI 10.1016/j.chb.2022.107600 Phaosathianphan N, 2019, INT J INNOV TECHNOL, V16, DOI 10.1142/S0219877019500603 Prasad B, 2022, FIIB BUS REV, V11, P405, DOI 10.1177/23197145211046126 PwC's Report, 2023, AI-sizing the price Qadiri R. M., 2020, International Journal of Finance, Insurance Risk Management, V10, P44 RAM S, 1987, ADV CONSUM RES, V14, P208 Rana S., 2023, Journal of Promotion Management, P1 Rogers E. M., 1962, Diffusion of Innovations Saxena Charu, 2023, 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), P1, DOI 10.1109/GlobConET56651.2023.10150155 Shao Z., 2021, Working Paper Singh S, 2021, J HOSP TOUR MANAG, V49, P528, DOI 10.1016/j.jhtm.2021.10.014 Sohn K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101324 Song Y. W., 2019, Doctoral dissertation Soofastaei A., 2021, Virtual assistants Sun CC, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210618 Sung B, 2023, INT J CONSUM STUD, V47, P1772, DOI 10.1111/ijcs.12946 Sweeney JC, 2001, J RETAILING, V77, P203, DOI 10.1016/S0022-4359(01)00041-0 Tan S, 2019, STUD HEALTH TECHNOL, V264, P1787, DOI [10.3233/SHT1190648, 10.3233/SHTI190648] Traiyatha P., 2023, Jurnal Nasional Pendidikan Teknik Informatika: Janapati, V12, P119, DOI [10.23887/janapati.v12i1.53524, DOI 10.23887/JANAPATI.V12I1.53524] Tran HTT, 2023, CONTEMP EDUC TECHNOL, V15, DOI 10.30935/cedtech/12659 Tsai W. H. S., 2023, The Palgrave handbook of interactive marketing, P255 Tschopp M, 2023, CYBERPSYCHOLOGY, V17, DOI 10.5817/CP2023-3-9 Tuzovic S., 2018, SERVSIG Conference Proceedings 2018 Paris: Opportunities for services in a challenging world, P107 van Bussel MJP, 2022, BMC HEALTH SERV RES, V22, DOI 10.1186/s12913-022-08189-7 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Wagner K, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P1386 Weiz D, 2016, PROGR IS, P1, DOI 10.1007/978-3-319-30376-5_1 White KM, 2009, BRIT J SOC PSYCHOL, V48, P135, DOI 10.1348/014466608X295207 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Xue JL, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2023.2227834 Yadav H., 2021, International Journal of Computer Science and Wireless, Security (IJCSWS), V8, P39 Yilmaz MB, 2022, J ENG DES TECHNOL, V20, P1738, DOI 10.1108/JEDT-02-2021-0084 Yu XY, 2023, INFORM TECHNOL PEOPL, V36, P454, DOI 10.1108/ITP-04-2021-0254 Zhang SL, 2023, IND MANAGE DATA SYST, V123, P578, DOI 10.1108/IMDS-11-2021-0662 Zhang SY, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.728495 Zhang YT, 2023, APPL ENERG, V333, DOI 10.1016/j.apenergy.2022.120600 Zhao Y. G., 2023, P 56 HAWAII INT C SY NR 122 TC 2 Z9 2 U1 0 U2 0 PU SAGE PUBLICATIONS INDIA PVT LTD PI NEW DELHI PA B-1-I-1 MOHAN CO-OPERATIVE INDUSTRIAL AREA, MATHURA RD, POST BAG NO 7, NEW DELHI 110 044, INDIA SN 2319-7145 EI 2455-2658 J9 FIIB BUS REV JI FIIB Bus. Rev. PD 2023 OCT 11 PY 2023 DI 10.1177/23197145231196066 EA OCT 2023 PG 19 WC Business; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HP7E6 UT WOS:001160767200001 DA 2024-03-27 ER PT J AU Ellickson, PB Kar, W Reeder, JC AF Ellickson, Paul B. Kar, Wreetabrata Reeder, James C. TI Estimating Marketing Component Effects: Double Machine Learning from Targeted Digital Promotions SO MARKETING SCIENCE LA English DT Article DE digital marketing; causal machine learning; targeted digital promotions; robust inference; advertising ID SALES PROMOTIONS; CAUSAL; PERCEPTIONS; INFERENCE AB We estimate the causal effects of different targeted email promotions on the opening and purchase decisions of the consumers who receive them. To do so, we synthesize and extend recent advances in causal machine learning techniques to capture heterogeneity in the content of the email subject line itself as well as heterogeneous consumer responses to the promotional offers and semantic choices contained therein. We find that content and framing are important for driving performance. We identify precise causal estimates of the effects of individual deal components, personalized content, and various semantic choices on consumer outcomes all the way down the conversion funnel. The decompositional nature of our methodology allows us to show how different combinations of key words and promotional inducements produce significantly different outcomes, both within a given stage and across all stages of the funnel. Notably, discounts framed as clearance events sharply outperform those tied to particular products. We also find components that drive engagement at the top of the funnel don't always lead to conversion at the bottom: their efficacy, across the funnel, is significantly moderated by the engagement levels of the consumers who receive them. Finally, leveraging both aspects of heterogeneity, we use off-policy evaluation to demonstrate the potential for significant gains from improved targeting. C1 [Ellickson, Paul B.] Univ Rochester, Simon Sch Business, Rochester, NY 14627 USA. [Kar, Wreetabrata; Reeder, James C.] Purdue Univ, Krannert Sch Management, W Lafayette, IN 47907 USA. C3 University of Rochester; Purdue University System; Purdue University RP Ellickson, PB (autor correspondiente), Univ Rochester, Simon Sch Business, Rochester, NY 14627 USA. EM paul.ellickson@simon.rochester.edu; wkar@purdue.edu; jreederi@purdue.edu OI Ellickson, Paul/0000-0003-4020-5716 CR [Anonymous], 1935, Supplement to the Journal of the Royal Statistical Society, DOI DOI 10.2307/2983637 Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 Ascarza E, 2018, J MARKETING RES, V55, P80, DOI 10.1509/jmr.16.0163 Athey S., 2019, Estimating Treatment Effects with Causal Forests: An Application, V5, P37 Athey S, 2019, ANNU REV ECON, V11, P685, DOI 10.1146/annurev-economics-080217-053433 Athey S, 2016, P NATL ACAD SCI USA, V113, P7353, DOI 10.1073/pnas.1510489113 Bembom O, 2007, STAT APPL GENET MOL, V6 Bonfrer A, 2009, MARKET SCI, V28, P251, DOI 10.1287/mksc.1080.0393 BOX GEP, 1951, J R STAT SOC B, V13, P1, DOI 10.1111/j.2517-6161.1951.tb00067.x Chatterjee P, 2010, J APPL BUS RES, V26 Chernozhukov V, 2017, GEN MACHINE LEARNING Chernozhukov V, 2018, ECONOMET J, V21, pC1, DOI 10.1111/ectj.12097 Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007 Cook TD, 2002, EXPT QUASIEXPERIMENT Cox D.R., 1958, PLANNING EXPT Crump RK, 2009, BIOMETRIKA, V96, P187, DOI 10.1093/biomet/asn055 DIAMOND WD, 1990, ADV CONSUM RES, V17, P494 Dudik M., 2011, ARXIV11034601 Dudík M, 2014, STAT SCI, V29, P485, DOI 10.1214/14-STS500 Garrett Johnson, 2017, SSRN, DOI [10.2139/ssrn.2701578, DOI 10.2139/SSRN.2701578] Gopalakrishnan A, 2021, MARKET SCI, V40, P48, DOI 10.1287/mksc.2020.1232 Gordon B. R., 2022, PREPRINT Gordon BR, 2019, MARKET SCI, V38, P193, DOI 10.1287/mksc.2018.1135 Grimmer J, 2017, POLIT ANAL, V25, P413, DOI 10.1017/pan.2017.15 Heckman J., 2007, HDB ECONOMETRICS, P4779, DOI DOI 10.1016/S1573-4412(07)06070-9 Hernán MA, 2006, J EPIDEMIOL COMMUN H, V60, P578, DOI 10.1136/jech.2004.029496 Hernan MA., 2020, Causal inference: what if Hitsch GJ, 2018, PREPRINT, DOI [10.2139/ssrn.3111957, DOI 10.2139/SSRN.3111957] HOLLAND PW, 1986, J AM STAT ASSOC, V81, P945, DOI 10.2307/2289064 Imai K, 2013, ANN APPL STAT, V7, P443, DOI 10.1214/12-AOAS593 Imai K, 2011, POLIT ANAL, V19, P1, DOI 10.1093/pan/mpq035 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Jacob D, 2019, PREPRINT Johnson G, 2020, PREPRINT, DOI [10.2139/ssrn.3581396, DOI 10.2139/SSRN.3581396] KALWANI MU, 1990, J MARKETING RES, V27, P251, DOI 10.2307/3172584 Kodinariya T.M., 2013, International Journal, V1, DOI DOI 10.18576/AMIS/100428 KRISHNA A, 1991, J MARKETING, V55, P4, DOI 10.2307/1252233 Kumar V, 2014, J MARKETING RES, V51, P403, DOI 10.1509/jmr.13.0169 Lee BK, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018174 Lewis RA, 2015, Q J ECON, V130, P1941, DOI 10.1093/qje/qjv023 Liaukonyte J, 2015, MARKET SCI, V34, P311, DOI 10.1287/mksc.2014.0899 McCaffrey DF, 2013, STAT MED, V32, P3388, DOI 10.1002/sim.5753 Park CH, 2018, INT J RES MARK, V35, P453, DOI 10.1016/j.ijresmar.2018.05.001 QUANDT RE, 1958, J AM STAT ASSOC, V53, P873, DOI 10.2307/2281957 ROBINS JM, 1995, J AM STAT ASSOC, V90, P122, DOI 10.2307/2291135 Rose S, 2011, SPRINGER SER STAT, P3, DOI 10.1007/978-1-4419-9782-1 RUBIN DB, 1978, ANN STAT, V6, P34, DOI 10.1214/aos/1176344064 RUBIN DB, 1980, J AM STAT ASSOC, V75, P591, DOI 10.2307/2287653 Sahni NS, 2018, MARKET SCI, V37, P236, DOI 10.1287/mksc.2017.1066 Sahni NS, 2017, MANAGE SCI, V63, P2688, DOI 10.1287/mnsc.2016.2450 Semenova V, 2021, ECONOMET J, V24, P264, DOI 10.1093/ectj/utaa027 Sinha I, 2000, PSYCHOL MARKET, V17, P257, DOI 10.1002/(SICI)1520-6793(200003)17:3<257::AID-MAR4>3.3.CO;2-G WASSERTHEIL S, 1970, BIOMETRICS, V26, P588, DOI 10.2307/2529115 Yi Y, 2011, PSYCHOL MARKET, V28, P879, DOI 10.1002/mar.20416 Yoganarasimhan H, 2020, DESIGN EVALUATION PE Zeelenberg M, 2005, PSYCHOL MARKET, V22, P611, DOI 10.1002/mar.20076 Zhang X, 2017, J MARKETING RES, V54, P851, DOI 10.1509/jmr.16.0210 NR 57 TC 2 Z9 2 U1 28 U2 63 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD JUL-AUG PY 2023 VL 42 IS 4 DI 10.1287/mksc.2022.1401 EA SEP 2022 PG 26 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA CC3H1 UT WOS:000864731700001 DA 2024-03-27 ER PT J AU Xu, XY Jia, QD Tayyab, SMU AF Xu, Xiao-Yu Jia, Qing-Dan Tayyab, Syed Muhammad Usman TI Exploring the stimulating role of augmented reality features in E-commerce: A three-staged hybrid approach SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Augmented eality (AR) retailing; Stimuli-organism-response (S-O-R); Structural equation modeling (SEM); Artificial-neural-network (ANN); Mixed-method ID MIXED-METHODS RESEARCH; PURCHASE INTENTION; METHOD VARIANCE; INFORMATION; ANTECEDENTS; GUIDELINES; VARIABLES; ADOPTION; MODEL; TRUST AB The application of Augmented Reality (AR) in business applications has seen colossal growth in recent years with even healthier future growth expectations. To advance the understanding of the paramount role played by AR features in shaping consumers' perceptions and behaviors. Applying a mixed-method approach, this study endeavors to contextualize the Stimuli-Organism-Response (S-O-R) framework in a novel context of AR retailing. Specifically, this study aims to determine the key influential AR features in the context of e-commerce and explores their relevant effects on facilitating consumers' in-depth understanding of the products and producing a playful atmosphere for customers resulting in enhanced consumer experiences. A three-stage hybrid research design is adopted in this study. First, an in-depth qualitative interview is applied to produce a comprehensive list of context-dependent key AR features. The SEM analysis using survey data in stage two and the artificial neural network (ANN) analytical technique in stage three unveil how the AR features influence customers' different reactions and rank the significance of AR features. Some cardinal theoretical and practical implications are also provided in the end. C1 [Xu, Xiao-Yu; Jia, Qing-Dan] Xi An Jiao Tong Univ, Sch Econ & Finance, Xian, Shaanxi, Peoples R China. [Tayyab, Syed Muhammad Usman] McGill Univ, Desautels Fac Management, Montreal, PQ, Canada. [Jia, Qing-Dan] Xi An Jiao Tong Univ, Sch Econ & Finance, 74 Yanta West Rd, Xian, Shaanxi, Peoples R China. C3 Xi'an Jiaotong University; McGill University; Xi'an Jiaotong University RP Jia, QD (autor correspondiente), Xi An Jiao Tong Univ, Sch Econ & Finance, 74 Yanta West Rd, Xian, Shaanxi, Peoples R China. EM xuxiaoyu@xjtu.edu.cn; qingdan@stu.xjtu.edu.cn; syed.tayyab@mail.mcgill.ca FU Nature Science Foundation of Shaanxi [2023-JC-QN-0794] FX This work was supported by the Nature Science Foundation of Shaanxi (2023-JC-QN-0794) . CR Alimamy S, 2022, INFORM TECHNOL PEOPL, V35, P577, DOI 10.1108/ITP-07-2020-0455 [Anonymous], 2020, Forbes 11.5 Arghashi V, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102756 Ayaburi EW, 2020, INT J INFORM MANAGE, V50, P171, DOI 10.1016/j.ijinfomgt.2019.05.014 Barhorst JB, 2021, J BUS RES, V122, P423, DOI 10.1016/j.jbusres.2020.08.041 BERLYNE DE, 1963, J EXP PSYCHOL, V66, P560, DOI 10.1037/h0045767 Braun V, 2021, QUAL RES PSYCHOL, V18, P328, DOI 10.1080/14780887.2020.1769238 Castillo A, 2021, DECIS SUPPORT SYST, V145, DOI 10.1016/j.dss.2021.113516 Chan TKH, 2017, INFORM MANAGE-AMSTER, V54, P204, DOI 10.1016/j.im.2016.06.001 Chandra S, 2018, J ELECTRON COMMER RE, V19, P237 Cheung C.M., 2011, 32nd International Conference on Information System 2011, ICIS 2011, P3105 Cheung CMY, 2012, J ASSOC INF SYST, V13, P618 Chin W. W., 1998, QUANT METH SER, P295, DOI DOI 10.1016/J.AAP.2008.12.010 Chiu CL, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102561 Daassi M, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103453 DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 DONOVAN RJ, 1982, J RETAILING, V58, P34 Eroglu SA, 2003, PSYCHOL MARKET, V20, P139, DOI 10.1002/mar.10064 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Fazal-e-Hasan SM, 2021, COMPUT HUM BEHAV, V117, DOI 10.1016/j.chb.2020.106622 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 French AM, 2017, INFORM MANAGE-AMSTER, V54, P802, DOI 10.1016/j.im.2016.10.006 Grand View Research, 2021, AUGM REAL MARK SIZ S Haile TT, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12219185 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hsu SHY, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102649 Huang TL, 2019, J SERV MARK, V31, P851, DOI 10.1108/JSM-12-2018-0366 Javornik A, 2016, J MARKET MANAG-UK, V32, P987, DOI 10.1080/0267257X.2016.1174726 Jiang Y, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102720 Jung TH, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102575 Kang HJ, 2020, J INTERACT MARK, V49, P70, DOI 10.1016/j.intmar.2019.07.002 KBV research, 2021, Augmented reality market size, growth & forecast 2020-2026 Kim JH, 2021, J RES INTERACT MARK, V15, P502, DOI 10.1108/JRIM-07-2020-0148 Kline R. B., 2015, PRINCIPLES PRACTICE Kowalczuk P, 2021, J BUS RES, V124, P357, DOI 10.1016/j.jbusres.2020.10.050 Lee H, 2021, J FASH MARK MANAG, V25, P45, DOI 10.1108/JFMM-05-2019-0092 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Leonidou LC, 2022, J BUS RES, V151, P339, DOI 10.1016/j.jbusres.2022.06.027 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liu MT, 2007, J CONSUM MARK, V24, P358, DOI 10.1108/07363760710822945 Lombard M, 2002, HUM COMMUN RES, V28, P587, DOI 10.1111/j.1468-2958.2002.tb00826.x MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 McLean G, 2019, COMPUT HUM BEHAV, V101, P210, DOI 10.1016/j.chb.2019.07.002 MEHRABIA.A, 1974, PERCEPT MOTOR SKILL, V38, P283, DOI 10.2466/pms.1974.38.1.283 Molinillo S, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2019.04.004 Nikhashemi SR, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102464 Noy C, 2008, INT J SOC RES METHOD, V11, P327, DOI 10.1080/13645570701401305 Park M, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101912 Poushneh A, 2018, J RETAIL CONSUM SERV, V41, P169, DOI 10.1016/j.jretconser.2017.12.010 Qasem Z, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102254 Qin H, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102680 Qin H, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102337 Rademaker M., 2020, cSEM: Composite - Based Structural Equation Modeling (0.2.0) Raut RD, 2018, TECHNOL FORECAST SOC, V134, P98, DOI 10.1016/j.techfore.2018.05.020 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sharma PN, 2019, J ASSOC INF SYST, V20, P346, DOI 10.17005/1.jais.00538 Shiau W.L., 2022, Inf. Technol. People. Smink AR, 2020, J BUS RES, V118, P474, DOI 10.1016/j.jbusres.2020.07.018 Smink AR, 2019, ELECTRON COMMER R A, V35, DOI 10.1016/j.elerap.2019.100854 Song HK, 2020, INFORM TECHNOL PEOPL, V33, P1214, DOI 10.1108/ITP-02-2019-0092 Spector PE, 2006, ORGAN RES METHODS, V9, P221, DOI 10.1177/1094428105284955 Suh A, 2018, COMPUT HUM BEHAV, V86, P77, DOI 10.1016/j.chb.2018.04.019 Venkatesh V, 2016, J ASSOC INF SYST, V17, P435, DOI 10.17705/1jais.00433 Venkatesh V, 2013, MIS QUART, V37, P21 Wang GQ, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121345 Wang YN, 2022, ASIA PAC J MARKET LO, V34, P110, DOI 10.1108/APJML-11-2019-0684 Whang JB, 2021, J BUS RES, V133, P275, DOI 10.1016/j.jbusres.2021.04.057 Williams LJ, 2010, ORGAN RES METHODS, V13, P477, DOI 10.1177/1094428110366036 Xiao X, 2020, MIS QUART, V44, P1811, DOI 10.25300/MISQ/2020/13216 Xu XY, 2020, J ELECTRON COMMER RE, V21, P144 Xu X, 2020, DECIS SUPPORT SYST, V136, DOI 10.1016/j.dss.2020.113344 Yuan CL, 2021, INT J ADVERT, V40, P922, DOI 10.1080/02650487.2020.1869387 Zheng XB, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102043 NR 74 TC 0 Z9 0 U1 23 U2 23 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAR PY 2024 VL 77 AR 103682 DI 10.1016/j.jretconser.2023.103682 EA JAN 2024 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA GR5T4 UT WOS:001154419800001 DA 2024-03-27 ER PT J AU Qi, BT Shen, YB Xu, TY AF Qi, Bitian Shen, Yanbo Xu, Tieyu TI An artificial-intelligence-enabled sustainable supply chain model for B2C E-commerce business in the international trade SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE International trade; Business to consumer (B2C); Artificial intelligence; Sustainable supply chain; Electronic commerce (E-commerce) ID SYSTEMS AB This work aims to improve the efficiency of logistics distribution in the international trade environment by optimizing the distribution path of the e-commerce supply chain model (SCM). First, this work analyzes the international trade and e-commerce backgrounds and unveils the existing problems in the sustainable supply chain model (SCM). Then, an experiment is designed to study sustainable SCM under the Business to Consumer (B2C) E-commerce business model and compare it to the Consumer to Consumer (C2C) business model. This research has important reference value for improving resource efficiency in the logistics field. The optimal experimental results of the model show that given an order quantity of 2000, the vehicle competition ratio (VCR) is only 1.1 when the vehicle capacity (VC) is 12. In contrast, when the VC is 72, the VCR is 1.45. Therefore, the greater that the load of a single vehicle in the logistics management system is, the higher the logistics distribution efficiency of the supply chain. The research content has practical application value for improving the efficiency of logistics distribution under the current e-commerce environment and promoting the digital and electronic development of international trade logistics. C1 [Qi, Bitian] Yichun Univ, Sch Econ & Management, Yichun 336000, Jiangxi, Peoples R China. [Shen, Yanbo; Xu, Tieyu] Suzhou Univ, Sch Business Coll, Anhui 215000, Peoples R China. C3 Yichun University; Suzhou University RP Xu, TY (autor correspondiente), Suzhou Univ, Sch Business Coll, Anhui 215000, Peoples R China. EM ture1983@163.com CR Al-Adwan AS, 2019, J THEOR APPL EL COMM, V14, P51, DOI 10.4067/S0718-18762019000100105 Alamdari PM, 2020, IEEE ACCESS, V8, P115694, DOI 10.1109/ACCESS.2020.3002803 Atkin D, 2020, ANNU REV ECON, V12, P213, DOI 10.1146/annurev-economics-081919-041554 Bach A, 2020, J DAIRY SCI, V103, P5709, DOI 10.3168/jds.2019-17304 Bag S., 2023, TECHNOL FORECAST SOC, V186 Beltran A.D., 2019, BMC VET RES, V15, P1 Belu MG., 2019, ROMANIAN EC J, V71, P2 Bueno S, 2021, J THEOR APPL EL COMM, V16, P1612, DOI 10.3390/jtaer16050091 Castillo VE, 2018, J BUS LOGIST, V39, P38, DOI 10.1111/jbl.12176 Chen LM, 2019, J INTELL FUZZY SYST, V37, P4697, DOI 10.3233/JIFS-179304 Chiu ML, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100264 Cui JB, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2022.121492 Dondi M, 2021, RESOUR CONSERV RECY, V168, DOI 10.1016/j.resconrec.2020.105271 Friel S, 2020, NAT FOOD, V1, P51, DOI 10.1038/s43016-019-0014-0 Grandón EE, 2018, J THEOR APPL EL COMM, V13, P1, DOI 10.4067/S0718-18762018000300102 Hayakawa K, 2021, ASIAN ECON PAP, V20, P123, DOI 10.1162/asep_a_00804 Hsu BX, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121302 Hulme PE, 2021, ONE EARTH, V4, P666, DOI 10.1016/j.oneear.2021.04.015 Hung BQ, 2023, J INNOV KNOWL, V8, DOI 10.1016/j.jik.2022.100284 Ilyash O, 2021, B GEOGR-SOCIO-ECO, V51, P7, DOI 10.2478/bog-2021-0001 Ishfaq R, 2022, J BUS LOGIST, V43, P169, DOI 10.1111/jbl.12277 Jones R.W., 2018, WORLD SCI BOOK CHAPT, P233 Kibati P., 2022, EDITON CONSORTIUM J, V4, P146 Kumar S, 2021, ELECTRON COMMER RES, V21, P1, DOI 10.1007/s10660-021-09464-1 Lee TS, 2019, MATHEMATICS-BASEL, V7, DOI 10.3390/math7100918 Leonard LNK, 2021, J COMPUT INFORM SYST, V61, P240, DOI 10.1080/08874417.2019.1598829 Li HJ, 2020, IEEE T IND INFORM, V16, P5327, DOI 10.1109/TII.2019.2960835 Li QB, 2021, INT J SYST ASSUR ENG, V12, P813, DOI 10.1007/s13198-021-01108-9 Liu XL, 2021, IEEE ACCESS, V9, P36140, DOI 10.1109/ACCESS.2021.3059867 Manogaran G, 2021, IEEE T VEH TECHNOL, V70, P2404, DOI 10.1109/TVT.2021.3058689 Mastrocinque E, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121813 Ortiz AMD, 2021, ONE EARTH, V4, P88, DOI 10.1016/j.oneear.2020.12.008 Parfenov A., 2021, J OPEN INNOV TECHNOL, V7, P1, DOI 10.3390/joitmc7010058 Qiao L, 2022, DIGIT COMMUN NETW, V8, P687, DOI 10.1016/j.dcan.2021.07.004 Qin JJ, 2021, INT J PROD ECON, V241, DOI 10.1016/j.ijpe.2021.108271 Qin XL, 2021, EUR J OPER RES, V289, P639, DOI 10.1016/j.ejor.2020.07.029 Rebs T, 2019, J CLEAN PROD, V208, P1265, DOI 10.1016/j.jclepro.2018.10.100 Ren R, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17010261 Rodríguez-Ardura I, 2020, J THEOR APPL EL COMM, V15, pI, DOI 10.4067/S0718-18762020000200101 Rosenbaum MS, 2021, BUS HORIZONS, V64, P93, DOI 10.1016/j.bushor.2020.10.001 Roy V, 2022, INT J MANAG REV, V24, P3, DOI 10.1111/ijmr.12258 Sadeeq M., 2020, TECHNOL REP KANSAI U, V62, P2365 Shi WQ, 2021, IEEE T WIREL COMMUN, V20, P453, DOI 10.1109/TWC.2020.3025446 Siragusa C, 2022, INT J SUSTAIN TRANSP, V16, P22, DOI 10.1080/15568318.2020.1847367 Villa E, 2018, J THEOR APPL EL COMM, V13, P39, DOI 10.4067/S0718-18762018000100104 Wiedmann T, 2018, NAT GEOSCI, V11, P314, DOI 10.1038/s41561-018-0113-9 Yang HH, 2019, IEEE T IND INFORM, V15, P4178, DOI 10.1109/TII.2019.2897128 Yang J, 2021, INT J PROD ECON, V231, DOI 10.1016/j.ijpe.2020.107878 Yuan QW, 2019, J INTELL FUZZY SYST, V37, P3393, DOI 10.3233/JIFS-179142 Zekhnini K, 2022, INT J PROD RES, V60, P6529, DOI 10.1080/00207543.2021.1994164 Zhao YY, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12083381 Zheng KP, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100256 NR 52 TC 4 Z9 4 U1 29 U2 62 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUN PY 2023 VL 191 AR 122491 DI 10.1016/j.techfore.2023.122491 EA MAR 2023 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA D8GO1 UT WOS:000971058300001 DA 2024-03-27 ER PT J AU Orea-Giner, A Muñoz-Mazón, A Villacé-Molinero, T Fuentes-Moraleda, L AF Orea-Giner, Alicia Munoz-Mazon, Ana Villace-Molinero, Teresa Fuentes-Moraleda, Laura TI Cultural tourist and user experience with artificial intelligence: a holistic perspective from the Industry 5.0 approach SO JOURNAL OF TOURISM FUTURES LA English DT Article; Early Access DE Artificial intelligence; Industry 5; 0; User service experiences; Cultural institutions; Cultural tourist; User experience; Managers ID SERVICE; TECHNOLOGY; HOSPITALITY; ACCEPTANCE; INNOVATION; HERITAGE; FUTURE; ROBOTS; AI AB PurposeThe purpose of this paper is to analyse the future of the implementation of artificial intelligence (AI) technologies in services experience provided by cultural institutions (e.g. museums, exhibition halls and cultural centres) from experts', cultural tourists' and users' point of view under the Industry 5.0 approach.Design/methodology/approachThe research was conducted using a qualitative approach, which was based on the analysis of the contents obtained from two roundtable discussions with experts and cultural tourists and users. A thematic analysis using NVivo was done to the data obtained.FindingsFrom a futuristic Industry 5.0 approach, AI is considered to be more than a tool - it as an integral part of the entire experience. AI aids in connecting cultural institutions with users and is beneficial since it allows the institutions to get to know the users better and provide a more integrated and immersive experience. Furthermore, AI is critical in establishing a community and nurturing it daily.Originality/valueThe most important contribution of this research is the theoretical model focused on the user experience and AI application in services experiences of museums and cultural institutions from an Industry 5.0 approach. This model includes the visitors' and managers' points of view through the following dimensions: the pre-experience, experience and post-experience. This model is focused on human-AI coworking (HAIC) in museums and cultural institutions. C1 [Orea-Giner, Alicia; Munoz-Mazon, Ana; Villace-Molinero, Teresa; Fuentes-Moraleda, Laura] Rey Juan Carlos Univ, Fac Econ & Business, Madrid, Spain. [Orea-Giner, Alicia] Univ Paris 1 Pantheon Sorbonne, EIREST, Paris, France. C3 Universidad Rey Juan Carlos RP Orea-Giner, A (autor correspondiente), Rey Juan Carlos Univ, Fac Econ & Business, Madrid, Spain.; Orea-Giner, A (autor correspondiente), Univ Paris 1 Pantheon Sorbonne, EIREST, Paris, France. EM alicia.orea@urjc.es RI MAZON, ANA isabel MUÑOZ/Q-4954-2018; Villacé-Molinero, Teresa/U-1313-2019; Muñoz, Ana/JCN-6031-2023; Orea-Giner, Alicia/AAZ-5581-2020 OI Villacé-Molinero, Teresa/0000-0001-9322-3673; Orea-Giner, Alicia/0000-0001-8198-8169; Munoz Mazon, Ana Isabel/0000-0001-7636-7982; Fuentes-Moraleda, Laura/0000-0003-4612-8838 FU OpenInnova Research Group FX The authors acknowledge the funding support by OpenInnova Research Group. CR Akundi A, 2022, APPL SYST INNOV, V5, DOI 10.3390/asi5010027 Anhong Guo, 2020, ACM SIGACCESS Accessibility and Computing, DOI 10.1145/3386296.3386298 [Anonymous], INFORM COMMUNICATION [Anonymous], ANAL INTERPRETING QU Arefieva V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104318 Armbrecht J, 2014, TOURISM MANAGE, V42, P141, DOI 10.1016/j.tourman.2013.11.010 Bartneck C, 2007, AI SOC, V21, P217, DOI 10.1007/s00146-006-0052-7 Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Bickmore TW, 2013, AUTON AGENT MULTI-AG, V27, P254, DOI 10.1007/s10458-012-9216-7 Bonacini E, 2022, CULT TRENDS, V31, P3, DOI 10.1080/09548963.2021.1910490 Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Cachia M, 2011, QUAL RES ORGAN MANAG, V6, P265, DOI 10.1108/17465641111188420 Calero-Sanz J, 2022, PROCEDIA COMPUT SCI, V200, P1078, DOI 10.1016/j.procs.2022.01.307 Camarero C, 2015, J CULT HERIT, V16, P228, DOI 10.1016/j.culher.2014.05.006 Capriotti P, 2010, CORP COMMUN, V15, P281, DOI 10.1108/13563281011068131 Carayannis EG, 2022, J KNOWL ECON, V13, P3445, DOI 10.1007/s13132-021-00854-2 Chuah SHW, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102551 Cristobal-Fransi E, 2021, ACM J COMPUT CULT HE, V14, DOI 10.1145/3464977 Damian IM, 2022, TOUR REV, V77, P515, DOI 10.1108/TR-07-2020-0292 Demir Kadir Alpaslan, 2019, Procedia Computer Science, V158, P688, DOI 10.1016/j.procs.2019.09.104 Di Pietro L, 2018, J HERIT TOUR, V13, P97, DOI 10.1080/1743873X.2017.1384478 Dieck MCT, 2018, CURR ISSUES TOUR, V21, P2014, DOI 10.1080/13683500.2016.1224818 Falk J.H., 2016, MUSEUM EXPERIENCE RE Ferreiro-Rosende É, 2022, J BRAND MANAG, V29, P383, DOI 10.1057/s41262-021-00267-1 French A., 2019, HUMANIZING DIGITAL P, P101 Fritzsche A, 2022, GENEVA PAP R I-ISS P, V47, P817, DOI 10.1057/s41288-021-00244-4 Fuentes-Moraleda L, 2022, LIBR HI TECH, V40, P894, DOI 10.1108/LHT-07-2020-0180 Gaia G, 2019, SPR SER CULT COMPUT, P309, DOI 10.1007/978-3-319-97457-6_15 García-Muiña FE, 2019, INT J CONTEMP HOSP M, V31, P4357, DOI 10.1108/IJCHM-03-2018-0260 Gasteiger N, 2021, CLIN INTERV AGING, V16, P941, DOI 10.2147/CIA.S282709 Glisczinski D, 2018, J TRANSFORM EDUC, V16, P175, DOI 10.1177/1541344618777367 Gravari-Barbas M., 2020, STAR ARCHITECTURE, P203 Hanafiah MH, 2019, COMPET REV, V29, P592, DOI 10.1108/CR-07-2018-0045 Hausmann A, 2021, J HERIT TOUR, V16, P669, DOI 10.1080/1743873X.2020.1819300 Heerink M, 2010, INT J SOC ROBOT, V2, P361, DOI 10.1007/s12369-010-0068-5 Hennink MM, 2019, QUAL HEALTH RES, V29, P1483, DOI 10.1177/1049732318821692 Huang L, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/2490033 Hughes P, 2004, NONPROF VOLUNT SEC Q, V33, P203, DOI 10.1177/0899764004263320 Ivanov D, 2018, ANNU REV CONTROL, V46, P134, DOI 10.1016/j.arcontrol.2018.10.014 Ivanov S, 2019, J HOSP TOUR TECHNOL, V10, P489, DOI 10.1108/JHTT-08-2018-0087 Ivanov S, 2018, TECHNOL SOC, V55, P24, DOI 10.1016/j.techsoc.2018.06.004 Jobin A, 2019, NAT MACH INTELL, V1, P389, DOI 10.1038/s42256-019-0088-2 Kim M, 2015, J HOSP TOUR RES, V39, P170, DOI 10.1177/1096348012471376 Kirby R, 2010, ROBOT AUTON SYST, V58, P322, DOI 10.1016/j.robot.2009.09.015 Kirchner TA, 2007, INT J NONPROFIT VOLU, V12, DOI 10.1002/nvsm.285 Koukoulis K., 2016, Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection, P792, DOI 10.1007/978-3-319-48496-9_63 Kuo CM, 2017, INT J CONTEMP HOSP M, V29, P1305, DOI [10.1108/ijchm-08-2015-0414, 10.1108/IJCHM-08-2015-0414] Li ML, 2021, INT J HOSP MANAG, V95, DOI 10.1016/j.ijhm.2021.102930 Lindsay G, 2018, J URBAN DES, V23, P193, DOI 10.1080/13574809.2017.1399793 Maddikunta PKR, 2022, J IND INF INTEGR, V26, DOI 10.1016/j.jii.2021.100257 Majd M, 2017, 2017 19TH CSI INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), P195, DOI 10.1109/AISP.2017.8324080 Marasco A, 2018, INT J CONTEMP HOSP M, V30, P2364, DOI [10.1108/ijchm-01-2018-0043, 10.1108/IJCHM-01-2018-0043] Markovic S, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120883 Mich L., 2022, APPL DATA SCI TOURIS, P3 Minkiewicz J, 2016, J SERV MARK, V30, P749, DOI 10.1108/JSM-04-2015-0156 Niemczyk A, 2014, ECON SOCIOL, V7, P204, DOI 10.14254/2071-789X.2014/7-1/18 Noy C, 2008, INT J SOC RES METHOD, V11, P327, DOI 10.1080/13645570701401305 Orea-Giner A, 2022, TOURISM MANAGE, V93, DOI 10.1016/j.tourman.2022.104586 Orea-Giner A, 2021, TOUR PLAN DEV, V18, P147, DOI 10.1080/21568316.2021.1873831 Orea-Giner A, 2021, MUS MANAGE CURATOR, V36, P48, DOI 10.1080/09647775.2019.1700468 Ozdemir-Guzel S., 2021, GENERATION MARKETING, P141 Park S, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102888 Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Pinillos R, 2016, ROBOT AUTON SYST, V79, P40, DOI 10.1016/j.robot.2016.01.014 Polishuk A., 2011, 4 KNOWLEDGE CITIES W, P319 Pop F., 2018, CYBERSPACE SAFETY SE, P291 Primawati S., 2018, P ENTER2018 PHD WORK Richards G, 2020, TOUR REV, V75, P232, DOI 10.1108/TR-04-2019-0139 Richards G, 2018, J HOSP TOUR MANAG, V36, P12, DOI 10.1016/j.jhtm.2018.03.005 Ruel Huub, 2021, Journal of Tourism Futures, V7, P53, DOI 10.1108/JTF-03-2020-0032 Russo AP., 2016, Reinventing the local in tourism planning: Producing, consuming and negotiating place Samala N, 2022, J TOUR FUTURES, V8, P73, DOI 10.1108/JTF-07-2019-0065 Samara D, 2020, J HOSP TOUR TECHNOL, V11, P343, DOI 10.1108/JHTT-12-2018-0118 Sarmah B, 2018, ONLINE INFORM REV, V42, P1146, DOI 10.1108/OIR-03-2017-0079 Scavarelli A, 2021, VIRTUAL REAL-LONDON, V25, P257, DOI 10.1007/s10055-020-00444-8 Schepers J, 2007, INFORM MANAGE-AMSTER, V44, P90, DOI 10.1016/j.im.2006.10.007 Singh G., 2021, ResearchBerg Review of Science and Technology, V1, P16 Smith P., 2021, AI and Ethics, V1, P81, DOI DOI 10.1007/S43681-020-00004-5 Solima L, 2018, J HERIT TOUR, V13, P115, DOI 10.1080/1743873X.2017.1337776 Stock RM, 2018, PROCEEDINGS OF THE 51ST ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), P1056 Tung VWS, 2018, INT J CONTEMP HOSP M, V30, P2680, DOI 10.1108/IJCHM-06-2017-0322 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Varitimiadis S, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app11199160 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Vitezic V, 2021, SERV IND J, V41, P926, DOI 10.1080/02642069.2021.1974406 Webster C., 2022, Journal of Smart Tourism, V2, P33, DOI 10.1007/s10055-020-00444-8 Weiss Astrid., 2009, AISB2009 P S NEW FRO, V4, P11 WELCH JK, 1992, MOD LANG J, V76, P543, DOI 10.2307/330063 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wu HC, 2018, J HOSP MARKET MANAG, V27, P151, DOI 10.1080/19368623.2017.1344952 Yap N., 2020, 2020 INT S NETWORKS, P1 Zheng DN, 2020, J SUSTAIN TOUR, V28, P1782, DOI 10.1080/09669582.2020.1760288 NR 92 TC 2 Z9 2 U1 13 U2 29 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2055-5911 EI 2055-592X J9 J TOUR FUTURES JI J. Tour. Futures PD 2022 DEC 6 PY 2022 DI 10.1108/JTF-04-2022-0115 EA DEC 2022 PG 18 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA 6S9KV UT WOS:000893302900001 OA gold DA 2024-03-27 ER PT J AU Khayer, A Talukder, MS Bao, YK Hossain, MN AF Khayer, Abul Talukder, Md Shamim Bao, Yukun Hossain, Md Nahin TI Application-based mobile payment systems: continuance intention and intention to recommend SO INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS LA English DT Article DE application-based mobile payment; expectation-confirmation model; ECM; continuance intention; intention to recommend; structural equation modelling; SEM; artificial neural network; ANN ID NEURAL NETWORK APPROACH; GOVERNMENT SERVICES; WEARABLE TECHNOLOGY; USER ACCEPTANCE; ADOPTION; DETERMINANTS; MODEL; SEM; TRUST; COMMERCE AB This research paper valuates the factors of continuance intention and intention to recommend application-based mobile payment systems. The research model has been developed based on several strands of theories in information systems. The model has been tested using 360 respondents' data collected from Wuhan, PR China. This study used a hybrid method by relating structural equation modelling (SEM) and artificial neural network (ANN) for analysing data. The SEM confirms that satisfaction, perceived usefulness, perceived enjoyment, habit, and context are the key predictors of the continuance intention. The continuance intention positively affects the intention to recommend the application-based mobile payment. This study also confirms the moderating effect of context on the relationship between satisfaction and continuance intention. The ANN concludes that the most significant predictor of continuance intention is satisfaction, while the least important factor is habit. This study's implications provide worthy insights to the researchers, practitioners, and managers, which assist them in devising effective strategies for implementing application-based mobile payment. C1 [Khayer, Abul] Univ Dhaka, Dept Int Business, Dhaka, Bangladesh. [Talukder, Md Shamim] North South Univ, Dept Management, Dhaka, Bangladesh. [Bao, Yukun] Huazhong Univ Sci & Technol, Ctr Modern Informat Management, Sch Management, Wuhan 430074, Peoples R China. [Hossain, Md Nahin] Army Inst Business Adm, Dept Management, Savar, Bangladesh. C3 University of Dhaka; North South University (NSU); Huazhong University of Science & Technology RP Bao, YK (autor correspondiente), Huazhong Univ Sci & Technol, Ctr Modern Informat Management, Sch Management, Wuhan 430074, Peoples R China. EM akhayer@du.ac.bd; shamim.talukder@northsouth.edu; yukunbao@hust.edu.cn; nahin@aibasavar.edu.bd RI Hossain, MD Nahin/HDM-0518-2022 FU National Natural Science Foundation of China [71810107003] FX This study was supported by the National Natural Science Foundation of China under Project No. 71810107003. CR Abel F, 2010, IEEE T LEARN TECHNOL, V3, P165, DOI 10.1109/TLT.2009.40 Abul Khayer, 2019, BOTTOM LINE, V32, P211, DOI 10.1108/BL-07-2019-0097 Al-Emran M, 2020, EDUC INF TECHNOL, V25, P2899, DOI 10.1007/s10639-019-10094-2 Alalwan AA, 2020, INT J INFORM MANAGE, V50, P28, DOI 10.1016/j.ijinfomgt.2019.04.008 Amoroso D, 2017, INT J INFORM MANAGE, V37, P693, DOI 10.1016/j.ijinfomgt.2017.05.003 [Anonymous], 2016, J IND ENG ENG MANAG BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Bölen MC, 2020, INT J MOB COMMUN, V18, P101, DOI 10.1504/IJMC.2020.104423 Cao Q, 2019, INT J IND ERGONOM, V69, P9, DOI 10.1016/j.ergon.2018.09.004 Cao XF, 2018, INTERNET RES, V28, P456, DOI 10.1108/IntR-11-2016-0359 Chan FTS, 2012, DECIS SUPPORT SYST, V54, P621, DOI 10.1016/j.dss.2012.08.009 Chen CC, 2015, MULTIMEDIA SYST, V21, P61, DOI [10.1007/978-3-642-36620-8_1, 10.1007/s00530-013-0348-7] Chen XG, 2017, J COMPUT INFORM SYST, V57, P287, DOI 10.1080/08874417.2016.1180649 Cheng S, 2020, INT J MOB COMMUN, V18, P462, DOI 10.1504/IJMC.2020.108288 Chin WW, 2003, INFORM SYST RES, V14, P189, DOI 10.1287/isre.14.2.189.16018 Chin WW, 1998, QUANT METH SER, P295 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Chuah SHW, 2017, J SERV THEOR PRACT, V27, P616, DOI 10.1108/JSTP-05-2016-0107 Cimperman M, 2016, INT J MED INFORM, V90, P22, DOI 10.1016/j.ijmedinf.2016.03.002 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Dayour F, 2020, AFR J MANAGE, V6, P85, DOI 10.1080/23322373.2020.1753495 DeLone WH, 2003, J MANAGE INFORM SYST, V19, P9, DOI 10.1080/07421222.2003.11045748 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gallego Daniel, 2013, 2013 IEEE Frontiers in Education Conference (FIE), P1393, DOI 10.1109/FIE.2013.6685060 Gallego D, 2012, PROC FRONT EDUC CONF Gao YW, 2015, IND MANAGE DATA SYST, V115, P1704, DOI 10.1108/IMDS-03-2015-0087 Gogo KO, 2018, INT CONF SOFT COMP, P114, DOI 10.1109/ISCMI.2018.8703247 Ha I, 2007, INFORM MANAGE-AMSTER, V44, P276, DOI 10.1016/j.im.2007.01.001 Hair J.F., 2016, A premier on partial least squares structural equation modeling (PLS-SEM), V2nd Hair J.F., 2009, Multivariate data analysis Hampshire C, 2017, INT J BANK MARK, V35, P354, DOI 10.1108/IJBM-08-2016-0105 Harman H. H., 1976, MODERN FACTOR ANAL Haykin S., 2009, Neural Networks and Learning Machines, V3rd Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hillman S, 2017, COMPUT HUM BEHAV, V70, P10, DOI 10.1016/j.chb.2016.12.061 Hoque MR, 2015, TELEMED E-HEALTH, V21, P845, DOI 10.1089/tmj.2014.0128 Houston L, 2018, ORGAN BEHAV HUM DEC, V144, P85, DOI 10.1016/j.obhdp.2017.10.001 Humbani M, 2019, INT J BANK MARK, V37, P646, DOI 10.1108/IJBM-03-2018-0072 Hussein T., 2009, WORKSH CONT AW REC S Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Khalifa M., 2004, Journal of Information Technology Theory and Application (JITTA), V5, P4 Khayer A, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101225 Khayer A, 2020, IND MANAGE DATA SYST, V120, P963, DOI 10.1108/IMDS-06-2019-0327 Khayer A, 2021, VINE J INF KNOWL MAN, V51, P64, DOI 10.1108/VJIKMS-05-2019-0064 Kim B, 2012, TELECOMMUN POLICY, V36, P69, DOI 10.1016/j.telpol.2011.11.011 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Kumar A, 2018, INT J BANK MARK, V36, P1170, DOI 10.1108/IJBM-04-2017-0077 Lee T., 2005, J ELECTRON COMMER RE, V6, P165, DOI DOI 10.1145/1964921.1964953 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Liang TP, 2011, PERS UBIQUIT COMPUT, V15, P187, DOI 10.1007/s00779-010-0300-1 Liao CC, 2009, INT J INFORM MANAGE, V29, P309, DOI 10.1016/j.ijinfomgt.2009.03.004 Liébana-Cabanillas F, 2014, COMPUT HUM BEHAV, V35, P464, DOI 10.1016/j.chb.2014.03.022 Lim SH, 2019, INT J HUM-COMPUT INT, V35, P886, DOI 10.1080/10447318.2018.1507132 Limayem M, 2007, MIS QUART, V31, P705, DOI 10.2307/25148817 Lowry PB, 2014, IEEE T PROF COMMUN, V57, P123, DOI 10.1109/TPC.2014.2312452 Lu YB, 2009, COMPUT HUM BEHAV, V25, P29, DOI 10.1016/j.chb.2008.06.002 Nascimento B, 2018, J RETAIL CONSUM SERV, V43, P157, DOI 10.1016/j.jretconser.2018.03.017 O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6 Oghuma AP, 2016, TELEMAT INFORM, V33, P34, DOI 10.1016/j.tele.2015.05.006 Oliveira T, 2016, COMPUT HUM BEHAV, V61, P404, DOI 10.1016/j.chb.2016.03.030 OLSON JC, 1979, J APPL PSYCHOL, V64, P179, DOI 10.1037/0021-9010.64.2.179 Ozturk AB, 2017, INT J CONTEMP HOSP M, V29, P2027, DOI [10.1108/IJCHM-04-2016-0192, 10.1108/ijchm-04-2016-0192] Pal D, 2020, UNIVERSAL ACCESS INF, V19, P261, DOI 10.1007/s10209-018-0639-z Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Rahi S, 2019, INT J INF LEARN TECH, V36, P2, DOI 10.1108/IJILT-05-2018-0045 Ringle CM, 2016, IND MANAGE DATA SYST, V116, P1865, DOI 10.1108/IMDS-10-2015-0449 Schilit B. N., 1994, Proceedings of the Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, P85 Shao Z, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.100823 Sharma SK, 2018, GOV INFORM Q, V35, P557, DOI 10.1016/j.giq.2018.07.002 Talukder M.S., 2020, TECHNOLOGICAL FORECA, V150, P119 Talukder MS, 2020, J GLOB INF MANAG, V28, P74, DOI 10.4018/JGIM.2020100105 Talukder MS, 2019, TECHNOL SOC, V56, P147, DOI 10.1016/j.techsoc.2018.09.013 Talukder MS, 2019, IND MANAGE DATA SYST, V119, P170, DOI 10.1108/IMDS-01-2018-0009 Tam C, 2020, INFORM SYST FRONT, V22, P243, DOI 10.1007/s10796-018-9864-5 Tarus JK, 2018, ARTIF INTELL REV, V50, P21, DOI 10.1007/s10462-017-9539-5 Tawafak RM, 2020, EDUC INF TECHNOL, V25, P817, DOI 10.1007/s10639-019-09984-2 Tehseen S., 2017, J MANAG SCI, V4, P142, DOI DOI 10.20547/JMS.2014.1704202 Thiprak S, 2015, 2015 12TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY (ECTI-CON) Thong JYL, 2011, IEEE T ENG MANAGE, V58, P613, DOI 10.1109/TEM.2010.2058851 Turel O, 2011, MIS QUART, V35, P1043 Veeramootoo N, 2018, GOV INFORM Q, V35, P161, DOI 10.1016/j.giq.2018.03.004 Verkasalo Hannu, 2010, Telematics and Informatics, V27, P242, DOI 10.1016/j.tele.2009.11.001 Yang CH, 2009, RES POLICY, V38, P77, DOI 10.1016/j.respol.2008.09.001 Yang KC, 2020, TELEMAT INFORM, V51, DOI 10.1016/j.tele.2020.101400 Yao CB, 2017, IEEE T LEARN TECHNOL, V10, P104, DOI 10.1109/TLT.2015.2487977 Yap C.S., 2020, INT J PUBLIC ADMIN Ye DP, 2016, MULTIMED TOOLS APPL, V75, P13977, DOI 10.1007/s11042-015-2693-3 Zhang XX, 2020, INT J NURS SCI, V7, P580, DOI 10.1016/j.ijnss.2020.07.009 Zhang Y., 2020, J CLEAN PROD, V242, P118 Zhou T, 2014, IND MANAGE DATA SYST, V114, P936, DOI 10.1108/IMDS-02-2014-0068 NR 97 TC 1 Z9 1 U1 11 U2 36 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1470-949X EI 1741-5217 J9 INT J MOB COMMUN JI Int. J. Mob. Commun. PY 2023 VL 21 IS 1 BP 19 EP 53 DI 10.1504/IJMC.2023.127374 PG 36 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA 6T3ZK UT WOS:000893617300002 DA 2024-03-27 ER PT J AU Asante, IO Jiang, YS Hossin, AM Luo, X AF Asante, Isaac Owusu Jiang, Yushi Hossin, Atlab Md Luo, Xiao TI OPTIMIZATION OF CONSUMER ENGAGEMENT WITH ARTIFICIAL INTELLIGENCE ELEMENTS ON ELECTRONIC COMMERCE PLATFORMS SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE AI capability elements; Chatbot; Image search; Recommendation system; Automated after-sales service ID STRUCTURAL EQUATION MODELS; CUSTOMER ENGAGEMENT; BEHAVIORAL-RESEARCH; BUSINESS VALUE; PLS-SEM; PERFORMANCE; ENVIRONMENTS; ANTECEDENTS; INFORMATION; INTENTION AB Artificial intelligence (AI) is reshaping the online shopping experience. However, there is limited information on consumers' interaction with AI elements embedded in electronic commerce (e-commerce) platforms and the behavioral outcomes of such interactions. AI application studies have focused on consumers' reluctance to use AI-powered services due to failed machine-human conversations. On the contrary, this study exploits the bright side of AI applications in e-commerce. It applies the stimuli-organism-response (S-O-R) paradigm to examine the effects of AI elements on consumer engagement attitudes, beyond purchase intentions, towards e-commerce platforms. Specifically, it examined the impact of chatbot efficiency, image search functionality, recommendation system efficiency, and automated after-sales service on consumer engagement. Furthermore, the study examined the moderating role of consumers' attention to the social comparison of consumption choices on the relationships between the AI capability elements and consumer engagement. The partial least square-structural equation modeling (PLS-SEM) approach was employed in analyzing 464 responses collected via an online survey from consumers of different e-commerce platforms. The findings indicate that AI capability elements, directly and indirectly, attract consumers' observable engagement behaviors. Also, attention to social comparison dampens the positive effects of chatbot efficiency and automated after-sales service on behavioral engagement. In contrast, it positively moderates the impact of recommendation system efficiency. The study contributes to academia by introducing consumers' attention to social comparison to advance the understanding of consumer engagement with AI applications in e -commerce. Practitioners can gain insight into improving consumer experience on e-commerce platforms. C1 [Asante, Isaac Owusu; Jiang, Yushi] Southwest Jiaotong Univ, Sch Econ & Management, North Second Ring Rd, Chengdu 610031, Peoples R China. [Asante, Isaac Owusu; Jiang, Yushi; Luo, Xiao] Southwest Jiaotong Univ, Yibin Res Inst, Yibin 644000, Peoples R China. [Hossin, Atlab Md] Chengdu Univ, Sch Innovat & Entrepreneurship, Chengluo Ave, Chengdu 610106, Peoples R China. C3 Southwest Jiaotong University; Southwest Jiaotong University; Chengdu University RP Asante, IO (autor correspondiente), Southwest Jiaotong Univ, Sch Econ & Management, North Second Ring Rd, Chengdu 610031, Peoples R China.; Asante, IO (autor correspondiente), Southwest Jiaotong Univ, Yibin Res Inst, Yibin 644000, Peoples R China. EM asanteowusuisaac@swjtu.edu.cn; jiangyushi@swjtu.edu.cn; atlabbd@cdu.edu.cn; luoxiaonec@hotmail.com RI Asante, Isaac Owusu/AGU-4597-2022 OI Asante, Isaac Owusu/0000-0003-1213-9678 FU National Natural Science Foundation of China [72172129]; National Social Science Foundation [20BSH103]; Humanities and Social Sciences Research Program Fund of the Ministry of Education [21YJA63003] FX Acknowledgments This study was funded by the National Natural Science Foundation of China (72172129) , the National Social Science Foundation (20BSH103) , and the Humanities and Social Sciences Research Program Fund of the Ministry of Education (21YJA63003) . CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Agency G. E, 2021, CHIN ECOMMERCE PLATF Aguinis H, 2005, J APPL PSYCHOL, V90, P94, DOI 10.1037/0021-9010.90.1.94 Amirpur M., 2015, P 36 INT C INF SYST, P1 ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 Asante IO, 2020, J PSYCHOL AFR, V30, P403, DOI 10.1080/14330237.2020.1821305 Asante IO, 2019, 2019 IEEE 10TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), P763, DOI 10.1109/IEMCON.2019.8936291 Bagozzi RP, 1988, Journal of the Academy of Marketing Science, V16, P74, DOI DOI 10.1007/BF02723327 BEARDEN WO, 1990, J CONSUM RES, V16, P461, DOI 10.1086/209231 Becker JM, 2013, MIS QUART, V37, P665, DOI 10.25300/MISQ/2013/37.3.01 Ben Schafer J, 2001, DATA MIN KNOWL DISC, V5, P115, DOI 10.1023/A:1009804230409 Benitez J, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.003 Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983 Bowden JLH, 2009, J MARKET THEORY PRAC, V17, P63, DOI 10.2753/MTP1069-6679170105 Brennan M., 2017, WECHAT USER REPORT I Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 CALDER BJ, 1981, J CONSUM RES, V8, P197, DOI 10.1086/208856 Cepeda-Carrion G, 2019, J KNOWL MANAG, V23, P67, DOI 10.1108/JKM-05-2018-0322 Chen XY, 2017, INT J INFORM MANAGE, V37, P1563, DOI 10.1016/j.ijinfomgt.2016.07.005 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Cheng XS, 2022, EUR J INFORM SYST, V31, P339, DOI 10.1080/0960085X.2020.1869508 Cheung CMK, 2015, ELECTRON COMMER R A, V14, P241, DOI 10.1016/j.elerap.2015.03.001 Chin WW, 1998, QUANT METH SER, P295 Chinchanachokchai S, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102528 Chou C., 2019, ALIZILA 0404 Chui M., 2018, AI Adoption Advances, but Foundational Barriers Remain Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 CXPA, 2018, ARTIF INTELL Dagan A, 2021, SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P102, DOI 10.1145/3404835.3462950 Daqau M.A.M.A., 2019, INT REV MANAG MARK, V9, P22 Davenport TH, 2018, HARVARD BUS REV, V96, P108 De Cicco R, 2020, INT J RETAIL DISTRIB, V48, P1213, DOI 10.1108/IJRDM-12-2019-0406 De Keyzer F, 2022, J ELECTRON COMMER RE, V23, P138 Evans JR, 2005, INTERNET RES, V15, P195, DOI 10.1108/10662240510590360 Fang JM, 2017, INT J INFORM MANAGE, V37, P269, DOI 10.1016/j.ijinfomgt.2017.03.003 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fornell C., 1994, ADV METHODS MARKETIN, P52, DOI DOI 10.1002/0471667196.ESS1914.PUB2 Gawali S. N, 2020, INT J MANAG ECON, VI, P15 Gnewuch Ulrich, 2017, ICIS, P13 Gupta M, 2016, INFORM MANAGE-AMSTER, V53, P1049, DOI 10.1016/j.im.2016.07.004 Hair J., 2017, International Journal of Multivariate Data Analysis, V1, P107, DOI [DOI 10.1504/IJMDA.2017.087624, https://doi.org/10.1504/IJMDA.2017.087624, 10.1504/ijmda.2017.10008574] Hair JF, 2012, J ACAD MARKET SCI, V40, P414, DOI 10.1007/s11747-011-0261-6 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair Jr J., 2016, SAGE Henseler J., 2010, HDB PARTIAL LEAST SQ, P713, DOI DOI 10.1007/978-3-540-32827-8_31 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hornung O, 2022, ELECTRON MARK, V32, P123, DOI 10.1007/s12525-021-00493-0 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Jamil R, 2019, J ACAD ETHICS, V17, P95, DOI 10.1007/s10805-018-9312-7 Jenkins A, 2003, FUTURES, V35, P779, DOI 10.1016/S0016-3287(03)00029-6 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Khan S., 2020, 2020 8THINTERNATIONA, DOI [DOI 10.1109/ICRITO48877.2020.9198004, 10.1109/icrito48877.2020.9198004] Khrais LT, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12120226 Kim E, 2014, COMPUT HUM BEHAV, V37, P18, DOI 10.1016/j.chb.2014.04.020 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Kohli R, 2008, J ASSOC INF SYST, V9, P23, DOI 10.17705/1jais.00147 LENNOX RD, 1984, J PERS SOC PSYCHOL, V46, P1349, DOI 10.1037/0022-3514.46.6.1349 Li J, 2018, MIDDLEWARE INDUSTRY'18: PROCEEDINGS OF THE 2018 ACM/IFIP/USENIX MIDDLEWARE CONFERENCE (INDUSTRIAL TRACK), P9, DOI 10.1145/3284028.3284030 Lin H, 2014, INFORM MANAGE-AMSTER, V51, P595, DOI 10.1016/j.im.2014.03.010 Liu JW, 2022, J ACAD MARKET SCI, V50, P410, DOI 10.1007/s11747-021-00809-8 Lops P, 2011, RECOMMENDER SYSTEMS HANDBOOK, P73, DOI 10.1007/978-0-387-85820-3_3 Luger E, 2016, 34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, P5286, DOI 10.1145/2858036.2858288 Luo X., 2019, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.3435635, 10.2139/SSRN.3435635] MacKenzie SB, 2011, MIS QUART, V35, P293 Matthews L., 2017, Partial least squares path modeling, P219, DOI [DOI 10.1007/978-3-319-64069-3_10, 10.1007/978-3-319-64069-3_10/COVER] Mehrabian A., 1974, APPROACH ENV PSYCHOL Mikalef P, 2021, INFORM MANAGEMENT AR Müller T, 2018, J HOSP TOUR TECHNOL, V9, P249, DOI 10.1108/JHTT-09-2017-0106 Nunthiphatprueksa A., 2018, ASEAN J MANAGEMENT I, V5, P15, DOI DOI 10.14456/AJMI.2018.2 Oh C, 2017, INFORM MANAGE-AMSTER, V54, P25, DOI 10.1016/j.im.2016.03.004 Peters T, 2016, INT J INFORM MANAGE, V36, P773, DOI 10.1016/j.ijinfomgt.2016.05.003 Pfeuffer N., 2019, ICIS, P343, DOI 10.2/JQUERY.MIN.JS Phua J, 2017, TELEMAT INFORM, V34, P412, DOI 10.1016/j.tele.2016.06.004 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Quoquab F, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12187784 Quoquab F, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17145258 Quoquab F, 2018, ASIA PAC J MARKET LO, V30, P1087, DOI 10.1108/APJML-06-2017-0121 Ramey HL, 2019, J YOUTH DEV, V14, P88, DOI 10.5195/jyd.2019.769 Ransbotham S, 2018, MIT SLOAN BUSINESS R Ray S, 2014, INFORM SYST RES, V25, P528, DOI 10.1287/isre.2014.0525 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Rowsell-Jones A., 2019, 2019 CIO SURVEY CIOS Ruiz-Fernández A, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph18062845 Sander T, 2014, NEW CHALLENGES OF ECONOMIC AND BUSINESS DEVELOPMENT - 2014, P346 Sashi CM, 2012, MANAGE DECIS, V50, P253, DOI 10.1108/00251741211203551 Schaufeli W.B., 2002, Journal of Happiness Studies, V3, P71, DOI [DOI 10.1023/A:1015630930326, 10.1023/A:1015630930326] Schryen G, 2013, EUR J INFORM SYST, V22, P139, DOI 10.1057/ejis.2012.45 Singaraju SP, 2022, J ELECTRON COMMER RE, V23, P13 Sivapalan Sanjeevan, 2014, 2014 World Automation Congress (WAC), P179, DOI 10.1109/WAC.2014.6935763 Sudarsan Shambhavi, 2022, Evolutionary Computing and Mobile Sustainable Networks: Proceedings of ICECMSN 2021. Lecture Notes on Data Engineering and Communications Technologies (116), P823, DOI 10.1007/978-981-16-9605-3_57 Sutikno T., 2016, INT J ELECT COMPUTER, P909, DOI DOI 10.11591/IJECE.V6I3.10271 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 UNCTAD, 2021, GLOB E COMM JUMPS 26 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Verhagen T, 2015, COMPUT HUM BEHAV, V48, P340, DOI 10.1016/j.chb.2015.01.061 Wei KN, 2007, I C SERV SYST SERV M, P734 Xia Song, 2019, Journal of Physics: Conference Series, V1302, DOI 10.1088/1742-6596/1302/3/032030 Xu Y, 2023, NANKAI BUS REV NT, V14, P249, DOI 10.1108/NBRI-06-2021-0041 Yang F, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2101, DOI 10.1145/3097983.3098162 Yoon HJ, 2016, INT J ADVERT, V35, P799, DOI 10.1080/02650487.2016.1145094 Zarifis A, 2021, J INTERNET COMMER, V20, P66, DOI 10.1080/15332861.2020.1832817 Zhang H, 2015, INFORM MANAGE-AMSTER, V52, P468, DOI 10.1016/j.im.2015.01.008 Zhang H, 2014, INFORM MANAGE-AMSTER, V51, P1017, DOI 10.1016/j.im.2014.07.005 Zhang YH, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P2489, DOI 10.1145/3357384.3357800 Zhang YH, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P993, DOI 10.1145/3219819.3219820 NR 109 TC 2 Z9 2 U1 16 U2 41 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PD FEB PY 2023 VL 24 IS 1 SI SI BP 7 EP 28 PG 22 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA A8RC7 UT WOS:000957725600002 DA 2024-03-27 ER PT J AU Fonseka, K Jaharadak, AA Raman, M AF Fonseka, Kapila Jaharadak, Adam Amril Raman, Murali TI Impact of E-commerce adoption on business performance of SMEs in Sri Lanka; moderating role of artificial intelligence SO INTERNATIONAL JOURNAL OF SOCIAL ECONOMICS LA English DT Article DE E-commerce; E-business; Performance; Business strategy; Artificial intelligence ID CHATBOTS AB Purpose - With the rapid development of technology in the 21st century, an ever-growing number of organisations are adopting digitalised technologies. The global economy connected with digitalisation is moving towards sustainable development. Individual firms adopt innovative technological strategies to consolidate their position in the competitive market. The study aimed to examine the management perception of the impact of E-commerce adoption (EC) on business performance (BP) - the moderating role of using artificial intelligence (AI). Design/methodology/approach - A quantitative study using the deductive approach and the data collected from senior managers of the small and medium-sized enterprises (SMEs) in Sri Lanka, and 389 samples were collected using a simple random sampling method. EC, BP and AI were named as the independent, dependent and moderating variables in the model. Porters' generic strategies and resource-based views (RBVs) were applied as the foundation of the study. Findings - The independent and moderating variables significantly influenced the BP. Managers' age, gender, education level and job position affect their perception. Originality/value - The global economy is moving towards sustainable development using digitalisation. The firms should blend their strategies with digitalised platforms to survive in the competitive market. C1 [Fonseka, Kapila; Jaharadak, Adam Amril] Management & Sci Univ, Shah Alam, Malaysia. [Raman, Murali] Asia Pacific Univ Technol & Innovat, Kuala Lumpur, Malaysia. C3 Management Science University; Asia Pacific University of Technology & Innovation RP Fonseka, K (autor correspondiente), Management & Sci Univ, Shah Alam, Malaysia. EM kapilafonseka@gmail.com RI FONSEKA, Kapila/ACX-3367-2022 OI FONSEKA, Kapila/0000-0002-5895-7249; Jaharadak, Adam Amril/0000-0001-8441-1621 CR Abed SS, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102118 Abubakar AM, 2019, J INNOV KNOWL, V4, P104, DOI 10.1016/j.jik.2017.07.003 Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Agrawal A., 2019, The economics of artificial intelligence: An agenda, DOI DOI 10.7208/CHICAGO/9780226613475.001.0001 Ahmad SZ, 2019, INT J ENTREP BEHAV R, V25, P84, DOI 10.1108/IJEBR-08-2017-0299 Alderete María Verónica, 2019, Contad. Adm, V64, pe133, DOI 10.22201/fca.24488410e.2019.1922 Alzahrani J., 2019, Review of Economics and Political Science, V4, P73, DOI [10.1108/REPS-10-2018-013, DOI 10.1108/REPS-10-2018-013] Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 [Anonymous], 2015, STRUCTURAL EQUATION [Anonymous], 2021, STATISTA 2021 E COMM Aravind A.S., 2021, INT J CREATIVE RES T, V9, P5023 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Dahbi Salma, 2019, Procedia Computer Science, V158, P811, DOI 10.1016/j.procs.2019.09.118 Davis GF, 2021, J MANAGE, V47, P1684, DOI 10.1177/0149206320982650 Deloitte, 2018, ARTIF INTELL Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Ezzaouia I, 2020, TOUR MANAG PERSPECT, V34, DOI 10.1016/j.tmp.2020.100675 Fonseka K., 2021, J TELECOMMUNICATIONS, V9, P23, DOI [10.18080/jtde.v9n4.412, DOI 10.18080/JTDE.V9N4.412] Fonseka K., 2020, Global Journal of Management and Business Research, P1, DOI [DOI 10.34257/GJMBRBVOL20IS6PG1, 10.34257/gjmbrbvol20is6pg1] Govinnage D., 2019, Asian Journal of Advanced Research and Reports, V6, P1, DOI DOI 10.9734/AJARR/2019/V6I230147 Gunawardana Kennedy D., 2018, International Journal of Sociotechnology and Knowledge Development, V10, P54, DOI 10.4018/IJSKD.2018040104 Hidayati R., 2019, CENDEKIA NIAGA, V3, P31, DOI [10.52391/jcn.v3i1.460, DOI 10.52391/JCN.V3I1.460] Howard MC, 2016, INT J HUM-COMPUT INT, V32, P51, DOI 10.1080/10447318.2015.1087664 Hu XH, 2019, ECON SOCIOL, V12, P80, DOI 10.14254/2071-789X.2019/12-1/4 Ibrahim W., 2018, International Journal of Business and Management, V14, P46, DOI DOI 10.5539/IJBM.V14N1P46 Jovanovic JS, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176993 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 KREJCIE RV, 1970, EDUC PSYCHOL MEAS, V30, P607, DOI 10.1177/001316447003000308 Kuruwitaarachchi N., 2020, International Journal of e-Education, e-Business, e-Management and e-Learning, V10, P95, DOI 10.17706/ijeeee.2020.10.1.95-103 Lim S., 2018, Management Science Letters, V8, DOI DOI 10.5267/J.MSL.2018.4 Mahliza F., 2019, International Journal of Business, Economics and Law, V8, P290 Masbuqin I., 2020, INT J PSYCHOSOCIAL R, V24, P779, DOI [10.37200/ijpr/v24i1/pr200182, DOI 10.37200/IJPR/V24I5/PR201747] National Accounts of Sri Lanka, 2020, DEP C STAT MIN FIN E NICHIFOR E, WWWAMFITEATRUECONOMI, V23, P87 Oktora K., 2020, IEOM SOC INT AFR INT, P7 Olise M C., 2020, Sumerianz Journal of Business Management and Marketing, V3, P212, DOI DOI 10.47752/SJBMM.312.212.218 Phiri, 2019, INT J ACAD RES BUSIN, V9, P32, DOI [10.6007/IJARBSS/v9-i4/5815, DOI 10.6007/IJARBSS/V9-I4/5815] Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Porter M. E., 1985, COMPETITIVE ADVANTAG Prem E, 2019, TECHNOL INNOV MANAG, V9, P5, DOI 10.22215/timreview/1287 Putra POH, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03568 Qamariah I., 2019, ECOFORUM, V8 Saravanan K., 2020, INT J MODERN TRENDS, V6, P14, DOI [10.46501/ijmtst0609s03, DOI 10.46501/IJMTST0609S03] Schuetzler RM, 2020, J MANAGE INFORM SYST, V37, P875, DOI 10.1080/07421222.2020.1790204 Shumanov M, 2021, COMPUT HUM BEHAV, V117, DOI 10.1016/j.chb.2020.106627 Soloducho-Pelc L, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12218832 Song X., 2019, J PHYS C SERIES, V1302, DOI 10.1088/1742-6596/1302/3/032030 Tran AD, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102718 United Nations, 2019, DIG EC REP 2019 VAL United Nations Conference on Trade and Development ( 2021 ), DIGITAL EC REPORT 20 Yadav R, 2019, J ELECTRON COMMER OR, V17, P44, DOI 10.4018/JECO.2019100104 Yoon C, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2020.106309 Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 NR 55 TC 7 Z9 7 U1 11 U2 32 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0306-8293 EI 1758-6712 J9 INT J SOC ECON JI Int. J. Soc. Econ. PD AUG 25 PY 2022 VL 49 IS 10 BP 1518 EP 1531 DI 10.1108/IJSE-12-2021-0752 EA MAY 2022 PG 14 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 3X8HK UT WOS:000794259300001 DA 2024-03-27 ER PT J AU Lacárcel, FJS AF Lacarcel, Francisco Javier S. TI Main Uses of Artificial Intelligence in Digital Marketing Strategies Linked to Tourism SO JOURNAL OF TOURISM SUSTAINABILITY AND WELL-BEING LA English DT Article DE Digital Marketing; Artificial Intelligence; Tourism; Machine Learning; Big Data Marketing AB Migratory movements and tourism in general, together with the improvement of new technologies, have meant an increase in terms of accessibility and ease of information linked to tourism. At the same time, the use of artificial intelligence has opened new horizons in which digital marketing strategies linked to tourism can improve the industry, thus offering multiple possibilities in the short term. This new business ecosystem can analyze and extract large amounts of data for use in their marketing strategies. In this study, a systematic literature review (SLR) is conducted using the Web of Science (WOS) database. The main objective of this review is to identify the main uses of artificial intelligence in digital marketing strategies to understand the decision-making processes of future tourists, destination selection, automation of decision-making processes, and actions developed by tourists in the destination itself. In this context, through the applied methodology, 24 potential results have been identified, which have been classified gence algorithms, and (v)artificial intelligence strategies for the improvement of the user experience. Finally, theoretical and practical implications are identified to support companies that want to develop data-driven digital marketing actions and, from the applied perspective, to help future authors who want to make new academic contributions. C1 [Lacarcel, Francisco Javier S.] Univ Alicante, Univ Inst Tourism Res, Alicante, Spain. C3 Universitat d'Alacant RP Lacárcel, FJS (autor correspondiente), Univ Alicante, Univ Inst Tourism Res, Alicante, Spain. EM francisco@jlacarcel.net RI S. Lacárcel, Francisco Javier/JOK-6507-2023 CR Agapito D, 2020, J SPAT ORGAN DYN, V8, P244 Agapito D, 2014, J SPAT ORGAN DYN, V2, P201 Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002 Ameri F, 2012, J INTELL MANUF, V23, P1817, DOI 10.1007/s10845-010-0495-z BARBOSA B., 2020, REV IBERICA SISTEMAS, V35, P152 Bassano C, 2019, CITIES, V87, P10, DOI 10.1016/j.cities.2018.12.025 Belo A, 2014, J SPAT ORGAN DYN, V2, P217 Bertello A, 2022, INT ENTREP MANAG J, V18, P89, DOI 10.1007/s11365-020-00727-1 Bhandari R.S., 2018, Jindal Journal of Business Research, V7, P23, DOI DOI 10.1177/2278682117754016 Burr C, 2020, SCI ENG ETHICS, V26, P2313, DOI 10.1007/s11948-020-00175-8 Caloghirou Y, 2022, INT ENTREP MANAG J, V18, P1319, DOI 10.1007/s11365-020-00674-x Campbell C, 2020, BUS HORIZONS, V63, P469, DOI 10.1016/j.bushor.2020.03.003 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chu M. K., 2021, Open J. Soc. Sci., V9, P42 Csáji BC, 2006, ADV ENG INFORM, V20, P279, DOI 10.1016/j.aei.2006.01.001 De Carlo M, 2021, J BUS RES, V129, P936, DOI 10.1016/j.jbusres.2020.09.013 Duvnjak K, 2020, MANAG RES PRACT, V12, P18 Ekelik H, 2021, ESKISEH OSMAN UNIV I, V16, P341, DOI 10.17153/oguiibf.879105 Huete R, 2009, TURISTAS QUE LLEGAN, P281 Karagkiozidou M., 2019, STRATEGIC INNOVATIVE, P479, DOI DOI 10.1007/978-3-030-12453-3_54 Katsikeas C, 2020, INT MARKET REV, V37, P405, DOI 10.1108/IMR-02-2019-0080 Kerdpitak C., 2022, UNCERTAIN SUPPLY CHA, V10, P771, DOI [10.5267/j.uscm.2022.4.005, DOI 10.5267/J.USCM.2022.4.005] Kikot T, 2014, J SPAT ORGAN DYN, V2, P229 Kim KS, 2008, EXPERT SYST APPL, V34, P128, DOI 10.1016/j.eswa.2006.08.009 Kirtil IG, 2021, ADV HOSP TOUR RES-AH, V9, P205, DOI 10.30519/ahtr.801690 Kitchen Philip J., 2015, Journal of Business Strategy, V36, P34, DOI 10.1108/JBS-06-2014-0070 Kopalle PK, 2021, J PUBLIC POLICY MARK, V40, P453, DOI 10.1177/0743915621999031 Kumar J, 2020, J SPAT ORGAN DYN, V8, P197 Lal B, 2020, ADV THE PRAC EMER MA, P3, DOI 10.1007/978-3-030-24374-6_1 Lee CK, 2020, J DESTIN MARK MANAGE, V18, DOI 10.1016/j.jdmm.2020.100500 Lee M, 2021, INT J CONTEMP HOSP M, V33, P2117, DOI 10.1108/IJCHM-06-2020-0587 Li D., 2022, WIREL COMMUN MOB COM, V2022, P5441170, DOI DOI 10.1155/2022/5441170 Li G, 2022, ADV METEOROL, V2022, DOI 10.1155/2022/5422210 Lv H, 2022, J HOSP MARKET MANAG, V31, P145, DOI 10.1080/19368623.2021.1937434 Mariani M, 2018, INT J CONTEMP HOSP M, V30, P3514, DOI 10.1108/IJCHM-07-2017-0461 Martin BAS, 2020, J HOSP TOUR MANAG, V44, P108, DOI 10.1016/j.jhtm.2020.06.004 Martin J.M.M., 2022, SUSTAINABLE TECHNOLO, V1, DOI [DOI 10.1016/J.STAE.2022.100005, 10.1016/j.stae.2022.100005] Nadalipour Z, 2019, COMPET REV, V29, P314, DOI 10.1108/CR-12-2017-0086 Nedjah N., 2022, SUSTAINABLE TECHNOLO, V1, DOI [10.1016/j.stae.2022.100001, DOI 10.1016/J.STAE.2022.100001] Nyagadza B., 2022, J DIGIT MEDIA POLICY Ojo B. Y., 2019, Journal of Tourism Management Research, V6, P45, DOI 10.18488/journal.31.2019.61.45.59 Ostic D, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.678766 Prentice C, 2020, J HOSP MARKET MANAG, V29, P377, DOI 10.1080/19368623.2019.1647124 Saura JR, 2022, MANAGE DECIS, DOI 10.1108/MD-02-2022-0190 Saura JR, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9214603 Rather R.A., 2020, ROUTLEDGE HDB TOURIS, P271 Roscher R, 2020, IEEE ACCESS, V8, P42200, DOI 10.1109/ACCESS.2020.2976199 Samara D, 2020, J HOSP TOUR TECHNOL, V11, P343, DOI 10.1108/JHTT-12-2018-0118 Samuel A, 2021, COMPUT HUM BEHAV, V116, DOI 10.1016/j.chb.2020.106657 Sánchez EC, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100718 Saura JR, 2022, J BUS RES, V142, P242, DOI 10.1016/j.jbusres.2021.12.052 Saura JR, 2021, IND MARKET MANAG, V98, P161, DOI 10.1016/j.indmarman.2021.08.006 Saura JR., 2021, J SMALL BUS MANAGE, DOI [10.1080/00472778.2021.1955127, DOI 10.1080/00472778.2021.1955127] Schiessl D, 2022, J MARK ANAL, V10, P207, DOI 10.1057/s41270-021-00143-6 Sholichah N. L., 2022, PROCEDIA COMPUTER SC, V197, P445 Shuting Tao, 2017, Culinary Science & Hospitality Research, V23, P1, DOI 10.20878/cshr.2017.23.6.001 Sigala M., 2019, Big data and innovation in tourism, travel, and hospitality Singh G., 2019, ADV ANAL APPL, P77, DOI 10.1007/978-981-13-1208-3 Tiago F, 2021, J INNOV KNOWL, V6, P27, DOI 10.1016/j.jik.2019.12.002 Topal I, 2019, IEEE ACCESS, V7, P162530, DOI 10.1109/ACCESS.2019.2947712 Veit DJ, 2002, APPL ARTIF INTELL, V16, P853, DOI 10.1080/08839510290030525 Wang RW, 2020, J DESTIN MARK MANAGE, V18, DOI 10.1016/j.jdmm.2020.100512 Xie D., 2022, HINDAWI MOBILE INFOR, DOI DOI 10.1155/2022/9154351 Yu N, 2007, P 14 INT C INT SYST, P1, DOI DOI 10.1109/ISAP.2007.4441590 NR 64 TC 7 Z9 7 U1 28 U2 46 PU CINTURS-RESEARCH CENTRE TOURISM SUSTAINABILITY & WELL-BEING PI FARO PA UNIV ALGARVE, GAMBELAS CAMPUS, FAC ECONOMICS, BLDG 9, OFF 2 76, FARO, PORTUGAL SN 2795-5044 J9 J TOUR SUSTAIN WELL JI J. Tourism Sustainability Well-being PY 2022 VL 10 IS 3 BP 215 EP 226 DI 10.34623/mppf-r253 PG 12 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA 5M4NO UT WOS:000871074200005 DA 2024-03-27 ER PT J AU Thabet, Z Albashtawi, S Ansari, H Al-Emran, M Al-Sharafi, MA AlQudah, AA AF Thabet, Zeina Albashtawi, Sara Ansari, Hurmat Al-Emran, Mostafa Al-Sharafi, Mohammed A. AlQudah, Adi Ahmad TI Exploring the Factors Affecting Telemedicine Adoption by Integrating UTAUT2 and IS Success Model: A Hybrid SEM-ANN Approach SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Artificial neural network (ANN); Information System (IS) success model; PLS-structural equation modeling (SEM); telemedicine adoption; Unified Theory of Acceptance and Use of Technology (UTAUT2) ID UNIFIED THEORY; INFORMATION-TECHNOLOGY; HEALTH; ACCEPTANCE; APPS; PERCEPTIONS; TELEHEALTH; NETWORKS; SECURITY AB Telemedicine adoption has steadily grown due to its ability to provide accessible and cost-effective healthcare services. However, individuals' adoption rate still faces challenges, necessitating a comprehensive understanding of the factors influencing their adoption. This article explores the factors affecting telemedicine adoption by integrating Unified Theory of Acceptance and Use of Technology, the Information System success model, and perceived security. The integrated model is evaluated using a hybrid structural equation modeling-artificial neural network (ANN) technique based on data collected from 152 individuals. The results showed that performance expectancy, hedonic motivation, perceived security, and user satisfaction significantly drive telemedicine adoption. Additionally, user satisfaction is affected substantially by information quality, system quality, and service quality. However, effort expectancy, social influence, and facilitating conditions do not significantly impact telemedicine adoption. The ANN findings revealed that user satisfaction is the most important driver for telemedicine adoption, with a normalized importance of 100%. This article contributes to telemedicine literature by providing a comprehensive framework that combines two well-established theories, offering insights into the multifaceted factors affecting telemedicine adoption. The findings also provide practical implications for decision-makers, policymakers, telemedicine service providers, software companies, and developers, emphasizing the importance of addressing the identified factors to promote widespread telemedicine adoption and ensure its long-term success. C1 [Thabet, Zeina; Albashtawi, Sara; Ansari, Hurmat; Al-Emran, Mostafa; AlQudah, Adi Ahmad] British Univ Dubai, Fac Engn & IT, Dubai 345015, U Arab Emirates. [Al-Emran, Mostafa] Dijlah Univ Coll, Dept Comp Tech Engn, Baghdad 00964, Iraq. [Al-Sharafi, Mohammed A.] Univ Tenaga Nas, Inst Informat & Comp Energy, Kajang 43000, Malaysia. C3 Dijlah University College; Universiti Tenaga Nasional RP Al-Emran, M (autor correspondiente), British Univ Dubai, Fac Engn & IT, Dubai 345015, U Arab Emirates.; Al-Emran, M (autor correspondiente), Dijlah Univ Coll, Dept Comp Tech Engn, Baghdad 00964, Iraq. EM zeina.thabet@outlook.com; sarabashtawi@hotmail.com; hurmatsalmanansari@gmail.com; mustafa.n.alemran@gmail.com; mohamed.a.alsharafi@gmail.com; adi.qudah@gmail.com RI Al-Emran, Mostafa/W-4466-2018; Al-Sharafi, Mohammed A./E-1530-2017 OI Al-Emran, Mostafa/0000-0002-5269-5380; Al-Sharafi, Mohammed A./0000-0003-0726-6031; AlQudah, Adi/0000-0003-3942-5869 CR Abbate S, 2023, IEEE T ENG MANAGE, V70, P2998, DOI 10.1109/TEM.2022.3212007 Abu-Shanab E, 2023, INT J HUM-COMPUT INT, DOI 10.1080/10447318.2023.2208990 Aggarwal A., 2018, INT J PUBLIC SECTOR, V4, P1, DOI [10.1504/ijpspm.2018.088691, DOI 10.1504/IJPSPM.2018.088691] Akrong GB, 2022, INT J ACCOUNT INF SY, V47, DOI 10.1016/j.accinf.2022.100579 Al-Emran M., 2021, RECENT ADV TECHNOLOG, P159 Al-Emran M, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3237789 Al-Sharafi MA, 2023, HELIYON, V9, DOI 10.1016/j.heliyon.2023.e16299 Al-Sharafi MA, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107708 Al-Sharafi MA, 2023, INTERACT LEARN ENVIR, V31, P7491, DOI 10.1080/10494820.2022.2075014 Al-Sharafi MA, 2022, INT J BANK MARK, V40, P1071, DOI 10.1108/IJBM-07-2021-0291 Al-Shihi H, 2018, EDUC INF TECHNOL, V23, P1805, DOI 10.1007/s10639-018-9691-9 Alaboudi A, 2016, J INFECT PUBLIC HEAL, V9, P725, DOI 10.1016/j.jiph.2016.09.001 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alami R, 2021, INT WINT WORKSH BR, P253, DOI 10.1109/BCI51272.2021.9385323 Albanna H, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102452 AlQudah AA, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210537 AlQudah AA, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3223520 Alshaafee AA, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111916 Alzahrani AI, 2019, J LIBR INF SCI, V51, P291, DOI 10.1177/0961000617726123 Antrim A., 2020, PHARM TIMES Boontarig W., 2012, 2012 IEEE Symposium on Humanities, Science and Engineering Research (SHUSER), P479, DOI 10.1109/SHUSER.2012.6268881 Camilleri MA, 2022, TECHNOL SOC, V68, DOI 10.1016/j.techsoc.2022.101881 Chakraborty I, 2023, INT J MED INFORM, V174, DOI 10.1016/j.ijmedinf.2023.105048 Chopdar PK, 2018, COMPUT HUM BEHAV, V86, P109, DOI 10.1016/j.chb.2018.04.017 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Crico C, 2018, ECANCERMEDICALSCIENC, V12, DOI 10.3332/ecancer.2018.853 Cushing M, 2022, VET CLIN N AM-SMALL, V52, P1069, DOI 10.1016/j.cvsm.2022.06.004 Dang T. Q., IN PRESS, DOI [10.1108/IJBM-05-2022-0202/FULL/PDF, DOI 10.1108/IJBM-05-2022-0202/FULL/PDF] DeLone WH, 2003, J MANAGE INFORM SYST, V19, P9, DOI 10.1080/07421222.2003.11045748 Dwivedi YK, 2020, CURR OPIN PSYCHOL, V36, P13, DOI 10.1016/j.copsyc.2020.03.008 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Fadahunsi KP, 2021, J MED INTERNET RES, V23, DOI 10.2196/23479 Galloway A., 2005, Encyclopedia of Social Measurement, P859, DOI DOI 10.1016/B0-12-369398-5/00382-0 Giansanti D, 2017, TELEMED E-HEALTH, V23, P773, DOI 10.1089/tmj.2016.0255 Goetz D, 2023, INT J IND ORGAN, V89, DOI 10.1016/j.ijindorg.2023.102956 Gofeld M., 2023, INTERVENTIONAL PAIN, V2, DOI [10.1016/J.INPM.2023.100252, DOI 10.1016/J.INPM.2023.100252] Hair Jr J.F., 2016, PRIMER PARTIAL LEAST Hammood W.A., 2020, Telkomnika, V18, P2956, DOI DOI 10.12928/TELKOMNIKA.V18I6.14666 Harman H.H., 1976, MODERN FACTOR ANAL, DOI DOI 10.2307/2282293 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Isakovic M, 2016, J DIABETES RES, V2016, DOI 10.1155/2016/1604609 Kaium MA, 2020, INT J PHARM HEALTHC, V14, P251, DOI 10.1108/IJPHM-06-2019-0041 Kalinic Z, 2021, EXPERT SYST APPL, V175, DOI 10.1016/j.eswa.2021.114803 Kamal SA, 2020, TECHNOL SOC, V60, DOI 10.1016/j.techsoc.2019.101212 Kavandi H, 2020, HEALTH SOC CARE COMM, V28, P1827, DOI 10.1111/hsc.13011 Keikhosrokiani P, 2018, TELEMAT INFORM, V35, P753, DOI 10.1016/j.tele.2017.11.006 Khalilzadeh J, 2017, COMPUT HUM BEHAV, V70, P460, DOI 10.1016/j.chb.2017.01.001 Khodadad-Saryazdi A, 2021, TECHNOVATION, V107, DOI 10.1016/j.technovation.2021.102273 Kitsios F, 2019, COMPUT STAND INTER, V63, P16, DOI 10.1016/j.csi.2018.11.002 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Krasnova H, 2010, J INF TECHNOL-UK, V25, P109, DOI 10.1057/jit.2010.6 Kruse CS, 2018, J TELEMED TELECARE, V24, P4, DOI 10.1177/1357633X16674087 Mombeuil C, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102384 Mona Chang, 2022, Technology in Society, DOI 10.1016/j.techsoc.2022.102027 Nicolaou AI, 2013, DECIS SUPPORT SYST, V54, P986, DOI 10.1016/j.dss.2012.10.024 Nikolopoulou K, 2021, COMPUT EDUC OPEN, V2, DOI 10.1016/j.caeo.2021.100041 Ooi KB, 2018, EXPERT SYST APPL, V93, P376, DOI 10.1016/j.eswa.2017.10.009 Ostberg N, 2022, INT J MED INFORM, V161, DOI 10.1016/j.ijmedinf.2022.104726 Pratono AH, 2018, J AGING HEALTH, V30, P1556, DOI 10.1177/0898264318794732 Priyadarshinee P, 2017, COMPUT HUM BEHAV, V76, P341, DOI 10.1016/j.chb.2017.07.027 Qasem YAM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10144905 Qazi A, 2023, IEEE T ENG MANAGE, V70, P371, DOI 10.1109/TEM.2020.3046749 Rahi S, 2021, ENTERP INF SYST-UK, V15, P769, DOI 10.1080/17517575.2020.1850872 Rahim NIM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141912726 Rajeh MT, 2021, MED EDUC ONLINE, V26, DOI 10.1080/10872981.2021.1961348 Rana NP, 2017, INFORM SYST FRONT, V19, P549, DOI 10.1007/s10796-015-9613-y Salehi S, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3235718 Salisbury WD, 2001, IND MANAGE DATA SYST, V101, P165, DOI 10.1108/02635570110390071 Serrano KM, 2021, INT J HEALTH CARE Q, V34, P35, DOI 10.1108/IJHCQA-06-2020-0098 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Sharma S, 2024, IEEE T ENG MANAGE, V71, P1846, DOI 10.1109/TEM.2022.3157976 Shi JJ, 2021, FRONT PEDIATR, V9, DOI 10.3389/fped.2021.745687 Shiferaw KB, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0250220 Song T, 2021, J MED INTERNET RES, V23, DOI 10.2196/26670 Sulaman H, 2022, INT J MED INFORM, V158, DOI 10.1016/j.ijmedinf.2021.104653 Vaidya A., 2021, MHEALTHINTELLIGENCE VanderSchaaf HP, 2023, IEEE T ENG MANAGE, V70, P631, DOI 10.1109/TEM.2021.3053966 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Voran David, 2015, Mo Med, V112, P129 Wang HL, 2021, JMIR MHEALTH UHEALTH, V9, DOI 10.2196/25960 Wei XY, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3140952 Wu D, 2021, HEALTH POLICY TECHN, V10, DOI 10.1016/j.hlpt.2021.100525 Yamin MAY, 2020, J INFECT PUBLIC HEAL, V13, P1845, DOI 10.1016/j.jiph.2020.10.017 Yuan SP, 2015, TELEMED E-HEALTH, V21, P735, DOI 10.1089/tmj.2014.0148 Yuan YP, 2024, IEEE T ENG MANAGE, V71, P2986, DOI 10.1109/TEM.2022.3204285 Zhang W, 2022, INT J MED INFORM, V166, DOI 10.1016/j.ijmedinf.2022.104854 Zhou M, 2019, INT J MED INFORM, V126, P118, DOI 10.1016/j.ijmedinf.2019.04.001 NR 89 TC 1 Z9 1 U1 11 U2 16 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 JUL 26 PY 2023 DI 10.1109/TEM.2023.3296132 EA JUL 2023 PG 13 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA O4IN3 UT WOS:001043468800001 DA 2024-03-27 ER PT J AU Barata, SFPG Ferreira, FAF Carayannis, EG Ferreira, JJM AF Barata, Sofia F. P. G. Ferreira, Fernando A. F. Carayannis, Elias G. Ferreira, Joao J. M. TI Determinants of E-Commerce, Artificial Intelligence, and Agile Methods in Small- and Medium-Sized Enterprises SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Agile methods; artificial intelligence (AI); cognitive mapping; decision-making trial and evaluation laboratory (DEMATEL); e-commerce; multiple-criteria decision analysis (MCDA); strategic options development and analysis (SODA); technology ID MULTICRITERIA DECISION-ANALYSIS; ADOPTION; SATISFACTION; MANAGEMENT AB Small- and medium-sized enterprises (SMEs) are constrained by scarce resources, yet they are under strong pressure to maintain a competitive position in global markets, especially during crises such as the coronavirus disease-19 (COVID-19) pandemic. In this context, electronic commerce (hereafter e-commerce) platforms combining artificial intelligence (AI) and agile methods have been thriving. On the one hand, AI is a better way to process the data essential to platform customization and optimization. On the other hand, agile adoption ensures iterative software delivery as well as improved management practices that reduce uncertainty and allow SMEs to adapt more easily to new market requirements. A limited number of studies have covered all three topics, especially in relation to these companies. This research focused on creating an innovative model to identify determinants that favor or inhibit SME development of e-commerce, AI, and agile method projects. The model was developed using cognitive mapping-based on strategic options development and analysis-and decision-making trial and evaluation laboratory technique. Recommendations were generated to help SMEs use these tools to acquire a stronger competitive position in global markets. C1 [Barata, Sofia F. P. G.] Univ Inst Lisbon, ISCTE Business Sch, P-1649026 Lisbon, Portugal. [Ferreira, Fernando A. F.] Univ Inst Lisbon, ISCTE Business Sch, BRU IUL, P-1649026 Lisbon, Portugal. [Ferreira, Fernando A. F.] Univ Memphis, Fogelman Coll Business & Econ, Memphis, TN 38152 USA. [Carayannis, Elias G.] George Washington Univ, Sch Business, Dept Informat Syst & Technol Management, Washington, DC 20052 USA. [Ferreira, Joao J. M.] Univ Beira Interior, NECE Res Unit, P-6200209 Covilha, Portugal. C3 Instituto Universitario de Lisboa; Instituto Universitario de Lisboa; University of Memphis; George Washington University; Universidade da Beira Interior RP Carayannis, EG (autor correspondiente), George Washington Univ, Sch Business, Dept Informat Syst & Technol Management, Washington, DC 20052 USA. EM sofiabarata@outlook.pt; fernando.alberto.ferreira@iscte.pt; caraye@gwu.edu; jjmf@ubi.pt RI CARAYANNIS, ELIAS/H-3075-2014; Ferreira, João J.M./K-7669-2012 OI CARAYANNIS, ELIAS/0000-0003-2348-4311; Ferreira, João J.M./0000-0002-5928-2474 FU Portuguese Foundation for Science and Technology [UIDB/00315/2020] FX This work was supported in part by the Portuguese Foundation for Science and Technology under Grant UIDB/00315/2020. CR Abebe M, 2014, J SMALL BUS ENTERP D, V21, P100, DOI 10.1108/JSBED-10-2013-0145 Abuabara L, 2021, EUR J OPER RES, V292, P1051, DOI 10.1016/j.ejor.2020.11.032 [Anonymous], 2021, DESI DIG EC SOC IND Barroso RMR, 2019, TECHNOL ECON DEV ECO, V25, P496, DOI 10.3846/tede.2019.9386 Bartoloni S, 2022, TECHNOVATION, V113, DOI 10.1016/j.technovation.2021.102413 Bhuyan HK, 2023, IEEE T ENG MANAGE, V70, P1655, DOI 10.1109/TEM.2021.3065699 Biesialska K., 2021, INFORM SOFTWARE TECH, V132, P106 Braga I., 2022, TECHNOL SOC, V66, P1 Carayannis EG, 2022, EUR J OPER RES, V300, P791, DOI 10.1016/j.ejor.2021.10.030 Carayannis EG, 2023, J KNOWL ECON, V14, P2420, DOI 10.1007/s13132-022-00991-2 Carayannis EG, 2022, J KNOWL ECON, V13, P926, DOI 10.1007/s13132-021-00763-4 Chan CML, 2019, INFORM SYST J, V29, P436, DOI 10.1111/isj.12215 Chaparro-Peláez J, 2016, J BUS RES, V69, P1277, DOI 10.1016/j.jbusres.2015.10.092 Chatterjee S, 2021, TECHNOL FORECAST SOC, V170, DOI 10.1016/j.techfore.2021.120880 Chatterjee S, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120783 Chen CX, 2014, MANAGE ACCOUNT RES, V25, P187, DOI 10.1016/j.mar.2013.12.003 Chui Yin Wong, 2010, 2010 International Conference on Computer Applications and Industrial Electronics (ICCAIE), P288, DOI 10.1109/ICCAIE.2010.5735091 Cioffi R, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12020492 Darvishmotevali M, 2020, INT J HOSP MANAG, V87, DOI 10.1016/j.ijhm.2020.102499 DELBECQ AL, 1971, J APPL BEHAV SCI, V7, P466, DOI 10.1177/002188637100700404 Delbecq AL., 1975, Group Techniques for Program Planning: A Guide to Nominal Group and Delphi Techniques Dutot V, 2014, INT J INFORM MANAGE, V34, P672, DOI 10.1016/j.ijinfomgt.2014.06.006 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Eden C, 2001, GROUP DECIS NEGOT, V10, P119, DOI 10.1023/A:1008710816126 Ensslin L., 2000, International Transactions in Operational Research, V7, P79, DOI 10.1111/j.1475-3995.2000.tb00186.x European Commission, 2003, OFFICIAL J EUROPEAN, V124, P36, DOI DOI 10.1093/NQ/S10-I.5.88-C Ferreira F., 2011, Multiple Criteria Evaluation of Bank Branches: Decision Analysis Models and Applications Freire CAR, 2023, IEEE T ENG MANAGE, V70, P1881, DOI 10.1109/TEM.2021.3098665 Gabus A, 1972, World problems, an invitation to further thought within the framework of DEMATEL Goncalves R., 2014, P 9 IB C INF SYST TE, P1 IIBAInternational Institute of Business Analysis, 2011, AG EXT BABOK GUID CO Ju XG, 2020, SOCIO-ECON PLAN SCI, V72, DOI 10.1016/j.seps.2019.100779 Khrais LT, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12120226 Kilic HS, 2021, J MANUF SYST, V59, P320, DOI 10.1016/j.jmsy.2021.03.003 Li G, 2019, INT J PROD ECON, V218, P135, DOI 10.1016/j.ijpe.2019.05.006 Lin CL, 2010, EXPERT SYST APPL, V37, P6723, DOI 10.1016/j.eswa.2010.01.014 Lip-Sam T, 2011, INT J BUS SOC, V12, P15 Maghrabie HF, 2019, TECHNOL FORECAST SOC, V146, P366, DOI 10.1016/j.techfore.2019.05.031 Mansor Z., 2013, SOCIAL BEHAV SCI, V107, P129 Martinidis G, 2022, J KNOWL ECON, V13, P849, DOI 10.1007/s13132-021-00722-z Martins SM, 2020, J SERV MANAGE, V31, P291, DOI 10.1108/JOSM-03-2019-0084 Marttunen M, 2017, EUR J OPER RES, V263, P1, DOI 10.1016/j.ejor.2017.04.041 Milici A, 2023, IEEE T ENG MANAGE, V70, P495, DOI 10.1109/TEM.2020.3042458 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Murcia N., 2022, TECHNOLOGICAL FORECA, V174, P1 Niewöhner N, 2019, PROC CIRP, V84, P826, DOI [10.1016/j.procii.2019.04.295, 10.1016/j.procir.2019.04.295] Nisar TM, 2017, J RETAIL CONSUM SERV, V39, P135, DOI 10.1016/j.jretconser.2017.07.010 Nunes S., 2021, J CLEANER PROD, V313, P1 Pérez-Gómeza P, 2018, BRQ-BUS RES Q, V21, P238, DOI 10.1016/j.brq.2018.08.003 Perkusich M, 2020, INFORM SOFTWARE TECH, V119, DOI 10.1016/j.infsof.2019.106241 Potdar PK, 2017, MATER TODAY-PROC, V4, P1744, DOI 10.1016/j.matpr.2017.02.016 Ribeiro MIF, 2017, TECHNOL ECON DEV ECO, V23, P140, DOI 10.3846/20294913.2016.1212742 Rodrigues A., 2022, Res. Int. Bus. Finance, V60, P1 Rodrigues RG, 2024, IEEE T ENG MANAGE, V71, P2524, DOI 10.1109/TEM.2022.3187650 Rosenhead J., 1989, OPERATIONAL RES SOCI Sila I, 2013, ELECTRON COMMER RES, V13, P199, DOI 10.1007/s10660-013-9110-7 Sin KY, 2016, PROC ECON FINANC, V35, P434, DOI 10.1016/S2212-5671(16)00054-X Song WY, 2017, COMPUT IND ENG, V110, P353, DOI 10.1016/j.cie.2017.06.020 Sumrit D, 2013, INT TRANS J ENG MANA, V4, P81 Tam C, 2020, INT J PROJ MANAG, V38, P165, DOI 10.1016/j.ijproman.2020.02.001 Tran LTT, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102287 TURBAN E., 2008, ELECT COMMERCE 2008 Walker JH, 2016, J INTERNET COMMER, V15, P189, DOI 10.1080/15332861.2016.1191049 Wolfslehner B, 2011, ECOL INDIC, V11, P274, DOI 10.1016/j.ecolind.2010.05.004 Yazdi M., 2020, Safety Science, V127, P1 Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224 Zhuo ZL, 2021, AMFITEATRU ECON, V23, P174, DOI 10.24818/EA/2021/56/174 NR 67 TC 3 Z9 3 U1 35 U2 41 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 JUL 7 PY 2023 DI 10.1109/TEM.2023.3269601 EA JUL 2023 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA M5NB7 UT WOS:001030672600001 DA 2024-03-27 ER PT J AU Gupta, AK AF Gupta, Anoop Kumar TI Is m-shopping a reasoned action? Evaluating the role of intention and perceived risk in Indian m-shopping behaviour SO INTERNATIONAL JOURNAL OF INDIAN CULTURE AND BUSINESS MANAGEMENT LA English DT Article DE reasoned action; mobile shopping; perceived risk; neural network; structural equation modelling; SEM; intention; attitude; perceived norm; India ID NEURAL-NETWORK ANALYSIS; RETAIL FORMAT CHOICE; MOBILE COMMERCE; PLANNED BEHAVIOR; TECHNOLOGY ADOPTION; CONSUMER ATTITUDES; SOCIAL MEDIA; ONLINE; ACCEPTANCE; MODEL AB This study attempts to explain m-shopping behaviour of Indian consumer durable(1) customers through the theoretical lens of consumer perceived risk and reasoned action. For deeper understanding of the role of perceived risk in m-shopping behaviour, the study evaluates whether attitude and intention fully mediate the effect of risk on behaviour. A representative dataset of 485 respondents was analysed through multi-analytic techniques of structural equation modelling and neural network analysis for examining the contribution of the determinants of m-shopping behaviour. The perceived risk was found to have direct effect on m-purchasing action, besides having indirect effect through attitude and intention. This research offers new insights into the role played by perceived risk during check-out from mobile shopping cart and contributes in explaining the gap between intention and actual buying action. C1 [Gupta, Anoop Kumar] Maharaja Agrasen Inst Technol, Dept Management, Sect 22, New Delhi 110086, India. C3 Maharaja Agrasen Institute of Technology RP Gupta, AK (autor correspondiente), Maharaja Agrasen Inst Technol, Dept Management, Sect 22, New Delhi 110086, India. EM anoopkg@live.com RI Gupta, Anoop Kumar/P-7652-2014 OI Gupta, Anoop Kumar/0000-0003-3314-3502 CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 2008, The handbook of social psychology, P525, DOI DOI 10.4324/9780203809570.CH20 Ajzen I., 1988, ATTITUDES PERSONALIT Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] Akturan U, 2012, MARK INTELL PLAN, V30, P444, DOI 10.1108/02634501211231928 Alkailani M., 2009, Perceived risk, locus of control, product tactility and cultural impact: A study of online buying behavior in USA, India, and Jordan Anand KS, 2009, INT REV RETAIL DISTR, V19, P505, DOI 10.1080/09593960903445376 Anwar A, 2021, J STRATEG MARK, V29, P722, DOI 10.1080/0965254X.2020.1786847 Armitage CJ, 2001, BRIT J SOC PSYCHOL, V40, P471, DOI 10.1348/014466601164939 Balapour A, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102063 Bang HK, 2000, PSYCHOL MARKET, V17, P449, DOI 10.1002/(SICI)1520-6793(200006)17:6<449::AID-MAR2>3.0.CO;2-8 Bashir S, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102285 Bauer R.A., 1967, RISK TAKING INFORM H, P23 Bezes C, 2016, INT J RETAIL DISTRIB, V44, P284, DOI 10.1108/IJRDM-02-2015-0019 Boudreau MC, 2001, MIS QUART, V25, P1, DOI 10.2307/3250956 Cases A.S., 2002, INT REV RETAIL DISTR, V12, P375, DOI [10.1080/09593960210151162, DOI 10.1080/09593960210151162] Chan FTS, 2013, ONLINE INFORM REV, V37, P443, DOI 10.1108/OIR-01-2012-0012 Chen CS, 2013, MANAG SERV QUAL, V23, P410, DOI 10.1108/MSQ-10-2012-0137 Cheung GW, 2008, ORGAN RES METHODS, V11, P296, DOI 10.1177/1094428107300343 Chhonker MS, 2018, BOTTOM LINE, V31, P208, DOI 10.1108/BL-04-2018-0020 Cho JS, 2004, INFORM MANAGE-AMSTER, V41, P827, DOI 10.1016/j.im.2003.08.013 Choi JY, 2004, J ECON PSYCHOL, V25, P821, DOI 10.1016/j.joep.2003.08.006 Chong AYL, 2013, TECHNOL FORECAST SOC, V80, P1350, DOI 10.1016/j.techfore.2012.12.011 Chopdar PK, 2019, BEHAV INFORM TECHNOL, V38, P42, DOI 10.1080/0144929X.2018.1513563 Chopdar PK, 2018, COMPUT HUM BEHAV, V86, P109, DOI 10.1016/j.chb.2018.04.017 Chopdar PK, 2018, J INDIAN BUS RES, V10, P208, DOI 10.1108/JIBR-07-2017-0109 Chung KC, 2014, BEHAV INFORM TECHNOL, V33, P743, DOI 10.1080/0144929X.2013.805243 Conner M., 2020, HDB SPORT PSYCHOL, V3, DOI DOI 10.1002/9781119568124.CH1 Cox D., 1967, Risk taking and information handling in consumer behavior, P34 Cozzarin BP, 2016, ELECTRON COMMER RES, V16, P335, DOI 10.1007/s10660-015-9204-5 D2C, 2021, E COMM IND REP DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 de Mooij M, 2011, J INT CONSUM MARK, V23, P181, DOI 10.1080/08961530.2011.578057 Dowling G.R., 1986, PSYCHOL MARKETING, V3, P193, DOI [10.1002/mar.4220030307, DOI 10.1002/MAR.4220030307] Eagly A. H., 1993, PSYCHOL ATTITUDES Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 Fishbein M, 2011, PREDICTING AND CHANGING BEHAVIOR: THE REASONED ACTION APPROACH, P1 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Ghazali EM, 2018, ASIA PAC J MARKET LO, V30, P1064, DOI 10.1108/APJML-05-2017-0093 Giovanis A, 2019, INT J BANK MARK, V37, P1165, DOI 10.1108/IJBM-08-2018-0200 GREWAL D, 1994, J CONSUM RES, V21, P145, DOI 10.1086/209388 GroSS Michael, 2020, International Journal of Electronic Marketing and Retailing, V11, P50 Gross M, 2016, J RETAIL CONSUM SERV, V33, P109, DOI 10.1016/j.jretconser.2016.08.013 Gross M, 2015, INT REV RETAIL DISTR, V25, P215, DOI 10.1080/09593969.2014.988280 Gross M, 2015, INT J RETAIL DISTRIB, V43, P221, DOI 10.1108/IJRDM-06-2013-0119 Gupta A.K., 2018, THESIS Gupta AK, 2019, J INT CONSUM MARK, V31, P469, DOI 10.1080/08961530.2019.1611518 Gupta AK, 2019, INT J INDIAN CULT BU, V18, P496, DOI 10.1504/IJICBM.2019.100309 Hair J.F., 2009, Multivariate data analysis Hansen JM, 2018, COMPUT HUM BEHAV, V80, P197, DOI 10.1016/j.chb.2017.11.010 Hassan LM, 2016, J CONSUM BEHAV, V15, P72, DOI 10.1002/cb.1536 Hegner SM, 2017, J PROD BRAND MANAG, V26, P26, DOI 10.1108/JPBM-06-2016-1215 Crespo AH, 2009, J RISK RES, V12, P259, DOI 10.1080/13669870802497744 Hofstede G., 1980, CULTURES CONSEQUENCE, DOI DOI 10.1016/S0005-7967(02)00184-5 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Hubert M, 2017, PSYCHOL MARKET, V34, P175, DOI 10.1002/mar.20982 HUI CH, 1985, J CROSS CULT PSYCHOL, V16, P131, DOI 10.1177/0022002185016002001 Iacobucci D, 2010, J CONSUM PSYCHOL, V20, P90, DOI 10.1016/j.jcps.2009.09.003 Ismagilova E, 2020, INFORM SYST FRONT, V22, P1203, DOI 10.1007/s10796-019-09924-y Jadil Y, 2021, J BUS RES, V132, P354, DOI 10.1016/j.jbusres.2021.04.052 Jain A., 2020, INDIA SURPASSED US B Jain S, 2021, INT J INDIAN CULT BU, V22, P66 Jeyaraj A, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2021.102345 Joines JL, 2003, J CONSUM MARK, V20, P90, DOI 10.1108/07363760310464578 Joshi R, 2019, INT J INDIAN CULT BU, V19, P339 Kapoor AP, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102553 Khalifa M, 2012, J COMPUT INFORM SYST, V53, P14 Khare A, 2020, INT J INDIAN CULT BU, V20, P74 Khare A, 2019, INT J RETAIL DISTRIB, V47, P1093, DOI 10.1108/IJRDM-06-2017-0134 Kim E, 2013, INT J HOSP MANAG, V35, P203, DOI 10.1016/j.ijhm.2013.06.008 Kirk CP, 2015, J ADVERTISING RES, V55, P81, DOI 10.2501/JAR-55-1-081-094 Köster A, 2016, ELECTRON COMMER R A, V15, P26, DOI 10.1016/j.elerap.2015.11.002 Kongsompong K, 2009, AUSTRALAS MARK J, V17, DOI 10.1016/j.ausmj.2009.05.013 Lee C., 1991, Journal of International Consumer Marketing, V3, P27, DOI DOI 10.1300/J046V03N01_03 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Li X, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102093 Li YM, 2010, COMPUT HUM BEHAV, V26, P673, DOI 10.1016/j.chb.2010.01.004 Li ZH, 2020, J BUS IND MARK, V35, P76, DOI 10.1108/JBIM-12-2018-0381 Liu ZZ, 2019, ELECTRON COMMER RES, V19, P575, DOI 10.1007/s10660-019-09349-4 Luna D, 2001, INT MARKET REV, V18, P45, DOI 10.1108/02651330110381998 Luo X, 2010, DECIS SUPPORT SYST, V49, P222, DOI 10.1016/j.dss.2010.02.008 Madan Khushbu, 2019, International Journal of Electronic Marketing and Retailing, V10, P130 Madan K, 2018, ASIA PAC J MARKET LO, V30, P139, DOI 10.1108/APJML-02-2017-0023 Mahapatra S, 2017, INT J RETAIL DISTRIB, V45, P930, DOI 10.1108/IJRDM-08-2016-0128 Malhotra NK, 2001, INT MARKET REV, V18, P235, DOI 10.1108/02651330110396505 MARKUS HR, 1991, PSYCHOL REV, V98, P224, DOI 10.1037/0033-295X.98.2.224 Marriott H. R., 2017, The Marketing Review, V17, P337, DOI [10.1362/146934717X14909733966254, DOI 10.1362/146934717X14909733966254] Marriott HR, 2018, J RETAIL CONSUM SERV, V42, P133, DOI 10.1016/j.jretconser.2018.01.017 Marriott HR, 2017, INT J RETAIL DISTRIB, V45, P568, DOI 10.1108/IJRDM-09-2016-0164 Mathieson K, 1991, INFORM SYST RES, V2, P173, DOI 10.1287/isre.2.3.173 McCort D.J., 1993, J INT CONSUM MARK, V6, P91 McEachan RRC, 2011, HEALTH PSYCHOL REV, V5, P97, DOI 10.1080/17437199.2010.521684 McLean G, 2020, J BUS RES, V106, P139, DOI 10.1016/j.jbusres.2019.08.032 Mitchell V. W., 1998, British Food Journal, V100, P171, DOI 10.1108/00070709810207856 Mitchell V.W., 1999, EUR J MARKETING, V33, P163, DOI [10.1108/03090569910249229, DOI 10.1108/03090569910249229] Mitchell V-W., 2015, P 1994 AC MARK SCI A, P350 Moore S., 2006, Journal of Website Promotion, V2, P71, DOI DOI 10.1080/15533610802104141 Morris SA, 2004, IND MANAGE DATA SYST, V104, P129, DOI 10.1108/02635570410522099 Morton NA, 2008, STRUCT EQU MODELING, V15, P491, DOI 10.1080/10705510802154331 Mukherjee W., 2018, EC TIMES Mukherjee W., 2018, EC TIMES Nel J, 2020, EUR J MARKETING, V54, P1433, DOI 10.1108/EJM-02-2018-0144 Khoi NH, 2018, ASIA PAC J MARKET LO, V30, P1112, DOI 10.1108/APJML-11-2017-0301 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Parry M.E., 2020, J INT CONSUMER MARKE, V33, P1 Patney M.B., 2010, THESIS Paul J, 2016, INT J CONSUM STUD, V40, P635, DOI 10.1111/ijcs.12279 Paul J, 2016, J RETAIL CONSUM SERV, V29, P123, DOI 10.1016/j.jretconser.2015.11.006 Pelaez A, 2019, J COMPUT INFORM SYST, V59, P73, DOI 10.1080/08874417.2017.1300514 PETER JP, 1975, J CONSUM RES, V2, P29, DOI 10.1086/208613 Pookulangara S., 2010, International Journal of Electronic Commerce Studies, V1, P97 Preacher KJ, 2007, MULTIVAR BEHAV RES, V42, P185, DOI 10.1080/00273170701341316 Prodanova J, 2021, SERV IND J, V41, P648, DOI 10.1080/02642069.2018.1492561 Rajamma RK, 2009, J PROD BRAND MANAG, V18, P188, DOI 10.1108/10610420910957816 San-Martín S, 2013, J ORG COMP ELECT COM, V23, P350, DOI 10.1080/10919392.2013.837793 Sarkar S, 2020, INT J INFORM MANAGE, V50, P286, DOI 10.1016/j.ijinfomgt.2019.08.008 Schiffman L.G., 2007, CONSUMER BEHAV, V9th Shankar A, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101920 SHEPPARD BH, 1988, J CONSUM RES, V15, P325, DOI 10.1086/209170 Shim S, 2001, J RETAILING, V77, P397, DOI 10.1016/S0022-4359(01)00051-3 Singh N, 2020, INT J INFORM MANAGE, V50, P191, DOI 10.1016/j.ijinfomgt.2019.05.022 Sohn S, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102129 Statista, 2020, NUMB SMARTPH US Sutton S, 1998, J APPL SOC PSYCHOL, V28, P1317, DOI 10.1111/j.1559-1816.1998.tb01679.x Thakur R, 2015, INT J RETAIL DISTRIB, V43, P148, DOI 10.1108/IJRDM-06-2013-0128 Thongpapanl N, 2018, J INT MARKETING, V26, P22, DOI 10.1509/jim.17.0129 Triandis H.C., 2018, INDIVIDUALISM COLLEC Tyrväinen O, 2019, J INTERNET COMMER, V18, P221, DOI 10.1080/15332861.2019.1595364 Vahdat A, 2021, AUSTRALAS MARK J, V29, P187, DOI 10.1016/j.ausmj.2020.01.002 Van den Poel D., 1996, INT REV RETAIL DISTR, V6, P351, DOI DOI 10.1080/09593969600000039 Wang EST, 2017, BEHAV INFORM TECHNOL, V36, P2, DOI 10.1080/0144929X.2016.1143033 Wu IL, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2020.102099 Yang K, 2012, J RETAIL CONSUM SERV, V19, P484, DOI 10.1016/j.jretconser.2012.06.003 Zhang LY, 2012, COMPUT HUM BEHAV, V28, P1902, DOI 10.1016/j.chb.2012.05.008 NR 137 TC 0 Z9 0 U1 0 U2 1 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1753-0806 EI 1753-0814 J9 INT J INDIAN CULT BU JI Int. J. Indian Cult. Bus. Manag. PY 2022 VL 27 IS 4 BP 436 EP 465 DI 10.1504/IJICBM.2022.127729 PG 31 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 7F1AZ UT WOS:000901589700002 DA 2024-03-27 ER PT J AU Chen, SL Li, XL Liu, KC Wang, XS AF Chen, Shili Li, Xiaolin Liu, Kecheng Wang, Xuesong TI Chatbot or human? The impact of online customer service on consumers' purchase intentions SO PSYCHOLOGY & MARKETING LA English DT Article DE artificial intelligence; chatbot; demand certainty; human employee; online customer service; processing fluency; product type ID ARTIFICIAL-INTELLIGENCE; PRODUCT TYPE; INFORMATION; EXPERIENCE; SEARCH; FLUENCY; UNCERTAINTY; BENEFITS; REVIEWS; ROBOTS AB Artificial intelligence (AI) chatbots and human employees have emerged as the dominant forms of online customer service. However, existing research rarely connects the service differences between them in terms of product type, ignoring the interactivity between the two. This study reveals the effect of matching customer service type (AI chatbot vs. human) to product type (search vs. experience) on consumers' purchase intentions through four experiments, revealing the psychological mechanism and boundary condition for the existence of this effect. It shows that (1) the match between customer service type and product type positively affects consumers' purchase intentions; (2) this matching effect is mediated by processing fluency and perceived service quality; and (3) the matching effect works only when consumers' demand certainty is low. These findings enrich the theoretical study of online customer service, and provide marketing insights for companies to improve the adoption of AI chatbots and human employees. C1 [Chen, Shili; Li, Xiaolin; Wang, Xuesong] Sichuan Agr Univ, Business & Tourism Sch, Chengdu, Peoples R China. [Liu, Kecheng] Univ Reading, Henley Business Sch, Whiteknights, England. [Li, Xiaolin] Sichuan Agr Univ, Business & Tourism Sch, Chengdu 611830, Peoples R China. C3 Sichuan Agricultural University; University of Reading; Sichuan Agricultural University RP Li, XL (autor correspondiente), Sichuan Agr Univ, Business & Tourism Sch, Chengdu 611830, Peoples R China. EM shinely1203@163.com RI WANG, JIAXUAN/JMP-8599-2023; Rau, Lea/IXW-9119-2023 OI chen, shili/0000-0003-3689-7019 FU National Philosophy and Social Science Foundation project: Research on consumption decision and application problems of improving the traceability of China's agricultural industry chain and supply chain [21BGL161] FX The National Philosophy and Social Science Foundation project: Research on consumption decision and application problems of improving the traceability of China's agricultural industry chain and supply chain, Grant/Award Number: 21BGL161 CR Akdim K, 2023, SERV BUS, V17, P81, DOI 10.1007/s11628-023-00527-x Alter AL, 2009, PERS SOC PSYCHOL REV, V13, P219, DOI 10.1177/1088868309341564 Ameen N, 2022, PSYCHOL MARKET, V39, P2110, DOI 10.1002/mar.21715 Aw ECX, 2022, TECHNOL FORECAST SOC, V180, DOI 10.1016/j.techfore.2022.121711 Balbo L, 2015, RECH APPL MARKET-ENG, V30, P28, DOI 10.1177/2051570714563686 Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 BITNER MJ, 1990, J MARKETING, V54, P69, DOI 10.2307/1251871 Bock DE, 2020, J SERV MARK, V34, P317, DOI 10.1108/JSM-01-2019-0047 Borau S, 2021, PSYCHOL MARKET, V38, P1052, DOI 10.1002/mar.21480 Calvo MG, 2001, COGNITION EMOTION, V15, P299, DOI 10.1080/0269993004200141 Casado-Aranda LA, 2022, J INTERACT MARK, V57, P296, DOI 10.1177/10949968221087259 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chi OHX, 2022, J TRAVEL RES, V61, P170, DOI 10.1177/0047287520971054 CRONIN JJ, 1992, J MARKETING, V56, P55, DOI 10.2307/1252296 Filieri R, 2021, PSYCHOL MARKET, V38, P431, DOI 10.1002/mar.21440 Flavién C, 2023, PSYCHOL MARKET, V40, P328, DOI 10.1002/mar.21765 Flavian C, 2021, SERV IND J, V41, P853, DOI 10.1080/02642069.2021.1989177 Franke GR, 2004, J ACAD MARKET SCI, V32, P20, DOI 10.1177/0092070303257856 Gao X, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.102994 GOODSTEIN RC, 1993, J CONSUM RES, V20, P87, DOI 10.1086/209335 Graf LKM, 2018, J CONSUM PSYCHOL, V28, P393, DOI 10.1002/jcpy.1021 Gray HM, 2007, SCIENCE, V315, P619, DOI 10.1126/science.1134475 Haenlein M, 2021, J BUS RES, V124, P405, DOI 10.1016/j.jbusres.2020.10.042 Hafner M, 2010, J EXP SOC PSYCHOL, V46, P73, DOI 10.1016/j.jesp.2009.10.001 Haugeland IKF, 2022, INT J HUM-COMPUT ST, V161, DOI 10.1016/j.ijhcs.2022.102788 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 Hilken T, 2022, PSYCHOL MARKET, V39, P1660, DOI 10.1002/mar.21678 Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 Huang P, 2009, J MARKETING, V73, P55, DOI 10.1509/jmkg.73.2.55 Huang YH, 2018, INFORM MANAGE-AMSTER, V55, P430, DOI 10.1016/j.im.2017.10.003 Invernizzi AC, 2022, PSYCHOL MARKET, V39, P974, DOI 10.1002/mar.21635 Kallweit K, 2014, J RETAIL CONSUM SERV, V21, P268, DOI 10.1016/j.jretconser.2014.02.002 Kang G.D., 2006, MANAG SERV QUAL, V16, P37, DOI [DOI 10.1108/09604520610639955, 10.1108/09604520610639955] Ketron S, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2019.102021 Klein LR, 1998, J BUS RES, V41, P195, DOI 10.1016/S0148-2963(97)00062-3 Kotler P., 1967, Managerial marketing, planning, analysis, and control Kramer M.W., 1999, Management Communication Quarterly, V13, P305, DOI [10.1177/0893318999132007, DOI 10.1177/0893318999132007] Lee EJ, 2014, COMPUT HUM BEHAV, V31, P356, DOI 10.1016/j.chb.2013.10.050 Letheren K, 2020, J MARKET MANAG-UK, V36, P216, DOI 10.1080/0267257X.2019.1706306 Li CY, 2023, J RETAIL CONSUM SERV, V72, DOI 10.1016/j.jretconser.2023.103264 Lim WM, 2022, PSYCHOL MARKET, V39, P1129, DOI 10.1002/mar.21654 Liu DW, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102244 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Luan J, 2016, COMPUT HUM BEHAV, V65, P420, DOI 10.1016/j.chb.2016.08.037 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Mauri C, 2021, PSYCHOL MARKET, V38, P1323, DOI 10.1002/mar.21473 McLean G, 2019, COMPUT HUM BEHAV, V99, P28, DOI 10.1016/j.chb.2019.05.009 McLean G, 2017, COMPUT HUM BEHAV, V76, P494, DOI 10.1016/j.chb.2017.08.005 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Mero J, 2018, ELECTRON MARK, V28, P205, DOI 10.1007/s12525-017-0281-2 Moriuchi E, 2021, J STRATEG MARK, V29, P375, DOI 10.1080/0965254X.2020.1740766 NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 Northey G, 2020, J ADVERTISING RES, V60, P222, DOI 10.2501/JAR-2020-009 Pan B, 2006, ANN TOURISM RES, V33, P809, DOI 10.1016/j.annals.2006.03.006 PARASURAMAN A, 1988, J RETAILING, V64, P12 Pizzi G, 2023, PSYCHOL MARKET, V40, P1372, DOI 10.1002/mar.21813 Rabassa V, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121292 Rajaobelina L, 2021, PSYCHOL MARKET, V38, P2339, DOI 10.1002/mar.21548 Reynolds KE, 1999, J RETAILING, V75, P11, DOI 10.1016/S0022-4359(99)80002-5 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Ruan YY, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103059 Rushton A.M., 1989, European Journal of Marketing, V23, P23, DOI DOI 10.1108/EUM0000000000582 Sands S, 2022, PSYCHOL MARKET, V39, P2039, DOI 10.1002/mar.21723 Septianto F, 2020, INT J RES MARK, V37, P621, DOI 10.1016/j.ijresmar.2019.11.003 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shin H, 2023, INT J CONSUM STUD, V47, P545, DOI 10.1111/ijcs.12849 Söderlund M, 2022, J RETAIL CONSUM SERV, V67, DOI 10.1016/j.jretconser.2022.102999 Song MM, 2022, ELECTRON COMMER R A, V55, DOI 10.1016/j.elerap.2022.101199 TAYLOR RS, 1968, COLL RES LIBR, V29, P178, DOI 10.5860/crl_29_03_178 Tsai WHS, 2021, PSYCHOL MARKET, V38, P2377, DOI 10.1002/mar.21556 URBANY JE, 1989, J CONSUM RES, V16, P208, DOI 10.1086/209209 Viglia G, 2021, IND MARKET MANAG, V98, P193, DOI 10.1016/j.indmarman.2021.08.007 Wang YW, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103002 Wansink B, 1996, J MARKETING, V60, P31, DOI 10.2307/1251886 Wien AH, 2021, J BUS RES, V137, P13, DOI 10.1016/j.jbusres.2021.08.016 Winkielman P., 2012, Cognitive consistency: A fundamental principle in social cognition, P89 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wu RJ, 2022, J BUS RES, V141, P299, DOI 10.1016/j.jbusres.2021.12.037 Xiao L, 2021, J SERV RES-US, V24, P9, DOI 10.1177/1094670519878881 Xie ZH, 2022, PSYCHOL MARKET, V39, P1902, DOI 10.1002/mar.21706 Xu YZ, 2020, AUSTRALAS MARK J, V28, P189, DOI 10.1016/j.ausmj.2020.03.005 Yao Q, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103082 Zhang AD, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107415 Zhu YM, 2022, J BUS RES, V150, P642, DOI 10.1016/j.jbusres.2022.06.044 NR 85 TC 4 Z9 4 U1 120 U2 185 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0742-6046 EI 1520-6793 J9 PSYCHOL MARKET JI Psychol. Mark. PD NOV PY 2023 VL 40 IS 11 BP 2186 EP 2200 DI 10.1002/mar.21862 EA JUN 2023 PG 15 WC Business; Psychology, Applied WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA T8XT9 UT WOS:001016823200001 DA 2024-03-27 ER PT J AU Arya, V Paul, J Sethi, D AF Arya, Vikas Paul, Justin Sethi, Deepa TI Like it or not! Brand communication on social networking sites triggers consumer-based brand equity SO INTERNATIONAL JOURNAL OF CONSUMER STUDIES LA English DT Article DE artificial neural network; brand attachment; brand communication; brand created content; consumer-based brand equity; social networking sites; user generated content ID MEDIA MARKETING ACTIVITIES; CUSTOMER SATISFACTION; ATTACHMENT; EXPERIENCE; LOYALTY; ADVOCACY; SERVICES; IMPACT; MODEL; GRATIFICATIONS AB This study examines how brand communication influences consumer-based brand equity (BEQ) through social networking sites in the presence of brand attachment (BAT) as a mediator. The outcomes related to consumer-BEQ, such as consumers' pay intention and loyalty to a brand and a brand's vocal ability, are also explored in this study. An empirical investigation for 498 responses was carried using Smart-PLS, Process-macro & artificial neural network modeling based hybrid approach. The analysis indicates that brand consumer-BEQ is high when a brand's communication on social media platforms is positive. A strong mediating role of BAT is confirmed. The study is unique in terms of explaining the role of brand communication on social networking sites and its impact on consumer-BEQ in the presence of BAT as a mediator. While focusing on Millennials' tech-savvy characteristics and considering SNSs as an advanced tool for brand communication, brands should refine their marketing strategy. C1 [Arya, Vikas] Int Univ Rabat, Rabat Business Sch, Rabat, Morocco. [Paul, Justin] Univ Puerto Rico, MBA Dept, San Juan, PR 00936 USA. [Sethi, Deepa] Indian Inst Management, Kozhikode, India. C3 Universite Internationale de Rabat; University of Puerto Rico; Indian Institute of Management (IIM System); Indian Institute of Management Kozhikode RP Arya, V (autor correspondiente), Int Univ Rabat, Rabat Business Sch, Rabat, Morocco. EM vikas.aryaa@yahoo.in RI PAUL, JUSTIN/Y-5214-2019; Arya, Dr. Vikas/U-5500-2017 OI PAUL, JUSTIN/0000-0001-5062-8371; Arya, Dr. Vikas/0000-0001-8025-1528 CR Aaker DA, 1996, CALIF MANAGE REV, V38, P102, DOI 10.2307/41165845 Aaker DavidA., 1996, BUILDING STRONG BRAN Al-Adwan AS, 2019, J THEOR APPL EL COMM, V14, P15, DOI 10.4067/S0718-18762019000200103 Algharabat R, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.01.016 ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 [Anonymous], 2018, #BrandsGetReal: What consumers want from brands in a divided society Arya V, 2019, INT J INFORM MANAGE, V49, P142, DOI 10.1016/j.ijinfomgt.2019.03.013 Arya V, 2019, IIM KOZHIKODE SOC MA, V8, P87, DOI 10.1177/2277975219825508 Arya V, 2018, CORP COMMUN, V23, P648, DOI 10.1108/CCIJ-03-2018-0036 Banerjee S, 2016, IIMB MANAG REV, V28, P225, DOI 10.1016/j.iimb.2016.10.002 Belaid S, 2011, J PROD BRAND MANAG, V20, P37, DOI 10.1108/10610421111108003 Bhakar S., 2018, J PROMOTION MANAGEME, V24, P153 Biedenbach G, 2010, J BRAND MANAG, V17, P446, DOI 10.1057/bm.2009.37 BOWLBY J, 1979, BEHAV BRAIN SCI, V2, P637, DOI 10.1017/S0140525X00064955 Brakus JJ, 2009, J MARKETING, V73, P52, DOI 10.1509/jmkg.73.3.52 Bu LG, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.124413 Burmann C., 2008, USE GENERATED BRANDI CFI Group, 2016, ONL SHOPP EXP RET OP Cheah JH, 2020, AUSTRALAS MARK J, V28, P218, DOI 10.1016/j.ausmj.2020.04.005 Choudrie J, 2020, INFORM SYST FRONT, V22, P673, DOI [10.1007/s10796-018-9875-2, 10.1080/10298436.2018.1549325] Chu SC, 2019, J GLOB FASH MARK, V10, P81 Clement J., 2019, GLOBAL NUMBER FACEBO Correia LoureiroS M., 2012, Journal of Promotion Management, V18, P329, DOI [DOI 10.1080/10496491.2012.696460, https://doi.org/10.1080/10496491.2012.696460] Damjana J., 2015, INNOVATIVE ISSUES AP, V8, P28, DOI DOI 10.12959/ISSN.1855-0541.IIASS-2015-NO1-ART02 Dash G, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121092 Dash G, 2021, J BUS RES, V122, P608, DOI 10.1016/j.jbusres.2020.10.016 Datta H, 2017, J MARKETING, V81, P1, DOI 10.1509/jm.15.0340 de Almeida SO, 2018, J INTERACT MARK, V44, P29, DOI 10.1016/j.intmar.2018.05.006 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Devereux E, 2020, J CONSUM BEHAV, V19, P151, DOI 10.1002/cb.1800 Dholakia UM, 2009, J SERV RES-US, V12, P208, DOI 10.1177/1094670509338618 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Foroudi P, 2018, J BUS RES, V89, P462, DOI 10.1016/j.jbusres.2018.01.031 Gao Q, 2016, COMPUT HUM BEHAV, V63, P868, DOI 10.1016/j.chb.2016.06.022 García-de los Salmones MD, 2021, J BUS ETHICS, V171, P583, DOI 10.1007/s10551-020-04466-9 Gilal RG, 2022, INT J CONSUM STUD, V46, P161, DOI 10.1111/ijcs.12653 Gohary A, 2020, CURR ISSUES TOUR, V23, P131, DOI 10.1080/13683500.2018.1560397 Gold AH, 2001, J MANAGE INFORM SYST, V18, P185, DOI 10.1080/07421222.2001.11045669 Gordon-Wilson S, 2022, INT J CONSUM STUD, V46, P575, DOI 10.1111/ijcs.12701 Grewal D, 1998, J RETAILING, V74, P331, DOI 10.1016/S0022-4359(99)80099-2 Hair J. F., 2017, ADV ISSUES PARTIAL L Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair Jr J.F., 2016, PRIMER PARTIAL LEAST Hamzah ZL, 2021, J RES INTERACT MARK, V15, P336, DOI 10.1108/JRIM-05-2020-0113 HANJEEHOON, 2020, [The Journal of the Korea Contents Association, 한국콘텐츠학회 논문지], V20, P31, DOI 10.5392/JKCA.2020.20.01.031 Hao AW, 2021, INT MARKET REV, V38, P46, DOI 10.1108/IMR-01-2019-0028 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 HAYKIN S, 1997, NEURAL NETWORKS COMP Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Ho R.C., 2018, J RELATIONSHIP MARKE, V17, P204, DOI DOI 10.1080/15332667.2018.1492322 Hollebeek LD, 2014, J INTERACT MARK, V28, P149, DOI 10.1016/j.intmar.2013.12.002 Hosen M, 2021, COMPUT EDUC, V172, DOI 10.1016/j.compedu.2021.104262 Hsieh SH, 2016, J INTERACT MARK, V33, P13, DOI 10.1016/j.intmar.2015.10.001 Huaman-Ramirez R, 2019, EUR BUS REV, V31, P610, DOI 10.1108/EBR-02-2017-0039 Huang R, 2018, J RES INTERACT MARK, V12, P274, DOI 10.1108/JRIM-07-2017-0059 Huba, 2003, INC MAGAZINE Hwang E, 2019, INT J HOSP MANAG, V76, P19, DOI 10.1016/j.ijhm.2018.03.009 Islam AKMN, 2019, INFORM TECHNOL PEOPL, V32, P269, DOI 10.1108/ITP-07-2017-0213 Islam T, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102357 Jahn S, 2012, PSYCHOL MARKET, V29, P445, DOI 10.1002/mar.20533 Jani D, 2014, INT J HOSP MANAG, V37, P11, DOI 10.1016/j.ijhm.2013.10.007 Japutra A, 2018, J STRATEG MARK, V26, P223, DOI 10.1080/0965254X.2016.1195862 Jawahar D, 2020, INT J TOUR CITIES, V6, P491, DOI 10.1108/IJTC-08-2019-0147 Jillapalli RK, 2010, J MARKET EDUC, V32, P328, DOI 10.1177/0273475310380880 Jones H., 2003, J FINANC SERV MARK, V8, P71, DOI [10.1057/palgrave.fsm.4770108, DOI 10.1057/PALGRAVE.FSM.4770108] Joshi R, 2021, INT J CONSUM STUD, V45, P259, DOI 10.1111/ijcs.12618 Kampani N, 2021, BENCHMARKING, V28, P1247, DOI 10.1108/BIJ-09-2020-0492 Kapoor S, 2021, INT J CONSUM STUD, V45, P1047, DOI 10.1111/ijcs.12633 Katz E., 1973, PUBLIC OPIN QUART, V37, DOI [10.1086/268109, DOI 10.1086/268109] Keller E, 2007, J ADVERTISING RES, V47, P448, DOI 10.2501/S0021849907070468 Keller K.L., 2019, Handbuch Markenfuhrung, P1409, DOI DOI 10.1007/978-3-658-13342-9_72 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Keller KL, 2003, MARK MANAG, V12, P26 Khatoon S, 2021, INT J CONSUM STUD, V45, P719, DOI 10.1111/ijcs.12665 Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim J, 2022, INT J CONSUM STUD, V46, P558, DOI 10.1111/ijcs.12700 Kizgin H, 2018, INFORM SYST FRONT, V20, P503, DOI 10.1007/s10796-017-9817-4 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015010101 Kujur F, 2020, J THEOR APPL EL COMM, V15, P30, DOI 10.4067/S0718-18762020000100104 Kujur F, 2017, ASIA PAC MANAG REV, V22, P16, DOI 10.1016/j.apmrv.2016.10.006 Kumar A, 2020, J BUS RES, V113, P384, DOI 10.1016/j.jbusres.2019.09.030 Kumar A, 2018, INT BUS REV, V27, P969, DOI 10.1016/j.ibusrev.2018.02.007 Lee J, 2018, DECIS SUPPORT SYST, V110, P1, DOI 10.1016/j.dss.2018.03.001 Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liu S, 2020, INT J HOSP MANAG, V90, DOI 10.1016/j.ijhm.2020.102611 Mägi AW, 2003, J RETAILING, V79, P97, DOI 10.1016/S0022-4359(03)00008-3 Mahapatra S, 2017, MARK INTELL PLAN, V35, P594, DOI 10.1108/MIP-01-2017-0007 Melancon JP, 2011, J ACAD MARKET SCI, V39, P341, DOI 10.1007/s11747-010-0206-5 Moreira AC, 2017, J BUS ECON MANAG, V18, P68, DOI 10.3846/16111699.2016.1252793 Naidoo C, 2018, J BRAND MANAG, V25, P3, DOI 10.1057/s41262-017-0072-2 Nisar TM, 2016, COMPUT HUM BEHAV, V62, P743, DOI 10.1016/j.chb.2016.04.042 Pappu R, 2005, J PROD BRAND MANAG, V14, P143, DOI 10.1108/10610420510601012 Park C.W., 2007, SEOUL NATL J, V12, P3, DOI DOI 10.4337/9781848446151.00007 Park C.W., 2014, HDB BRAND RELATIONSH, P349 Park CW, 2006, J CONSUM RES, V33, P16, DOI 10.1086/504122 Park CW, 2010, J MARKETING, V74, P1, DOI 10.1509/jmkg.74.6.1 Paul J, 2021, INT J CONSUM STUD, V45, P937, DOI 10.1111/ijcs.12727 Paul J, 2019, EUR MANAG J, V37, P299, DOI 10.1016/j.emj.2018.07.003 Paul J, 2018, EUR J INT MANAG, V12, P722, DOI 10.1504/EJIM.2018.094466 Paul J, 2015, MARK INTELL PLAN, V33, P691, DOI 10.1108/MIP-02-2014-0028 Piehler R, 2019, EUR J MARKETING, V53, P1833, DOI 10.1108/EJM-10-2017-0722 Podsakoff PM, 2012, ANNU REV PSYCHOL, V63, P539, DOI 10.1146/annurev-psych-120710-100452 Puligadda S, 2021, J RES INTERACT MARK, V15, P709, DOI 10.1108/JRIM-09-2019-0149 PUTREVU S, 1994, J ADVERTISING, V23, P77, DOI 10.1080/00913367.1994.10673443 Qin YS, 2020, J RES INTERACT MARK, V14, P337, DOI 10.1108/JRIM-08-2019-0138 Ringle CM, 2010, ANN INFORM SYST, V8, P19, DOI 10.1007/978-1-4419-1280-0_2 Romaniuk J., 2004, Marketing Theory, V4, P327, DOI DOI 10.1177/1470593104047643 Sarstedt M, 2019, AUSTRALAS MARK J, V27, P197, DOI 10.1016/j.ausmj.2019.05.003 Schivinski B, 2015, J RES INTERACT MARK, V9, P31, DOI 10.1108/JRIM-02-2014-0007 Schultz D, 2016, J PROD BRAND MANAG, V25, P507, DOI 10.1108/JPBM-07-2016-1260 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Seo EJ, 2018, J AIR TRANSP MANAG, V66, P36, DOI 10.1016/j.jairtraman.2017.09.014 Shah S., 2011, Asian Journal of Business Management, V4, P105 Sharma A, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106919 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Södergren J, 2021, INT J CONSUM STUD, V45, P645, DOI 10.1111/ijcs.12651 Sreejesh S, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102155 Taber KS, 2018, RES SCI EDUC, V48, P1273, DOI 10.1007/s11165-016-9602-2 Tang ZY, 2019, GOV INFORM Q, V36, DOI 10.1016/j.giq.2019.06.001 Tascioglu C., 2019, 16 EUR C PSYCH, P870 Thomson M, 2005, J CONSUM PSYCHOL, V15, P77, DOI 10.1207/s15327663jcp1501_10 Tsiros M, 2004, J CONSUM RES, V31, P476, DOI 10.1086/422124 Verduyn P, 2020, CURR OPIN PSYCHOL, V36, P32, DOI 10.1016/j.copsyc.2020.04.002 Wang WT, 2012, INTERNET RES, V22, P142, DOI 10.1108/10662241211214548 Wilk V, 2020, J PROD BRAND MANAG, V29, P415, DOI 10.1108/JPBM-10-2018-2090 Yannopoulou N, 2019, INT J CONSUM STUD, V43, P348, DOI 10.1111/ijcs.12514 Yap SAF, 2021, INT J CONSUM STUD, V45, P1239, DOI 10.1111/ijcs.12724 Yoo B, 2001, J BUS RES, V52, P1, DOI 10.1016/S0148-2963(99)00098-3 Zhang CB, 2019, J BUS IND MARK, V34, P1420, DOI 10.1108/JBIM-07-2018-0211 Zhang Z., 2018, Practical statistical power analysis using Webpower and R, DOI [10.35566/power, DOI 10.35566/POWER, 10.35566/power.] Zhao XS, 2010, J CONSUM RES, V37, P197, DOI 10.1086/651257 NR 131 TC 38 Z9 38 U1 18 U2 81 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1470-6423 EI 1470-6431 J9 INT J CONSUM STUD JI Int. J. Consum. Stud. PD JUL PY 2022 VL 46 IS 4 BP 1381 EP 1398 DI 10.1111/ijcs.12763 EA DEC 2021 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 2E6GY UT WOS:000730663000001 DA 2024-03-27 ER PT J AU Kwark, Y Lee, GM Pavlou, PA Qiu, LF AF Kwark, Young Lee, Gene Moo Pavlou, Paul A. Qiu, Liangfei TI On the Spillover Effects of Online Product Reviews on Purchases: Evidence from Clickstream Data SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE online product reviews; substitutive products; complementary products; brand spillover; WOM spillover; topic modeling; machine learning ID WORD-OF-MOUTH; RECOMMENDATION NETWORKS; MODERATING ROLE; SOCIAL MEDIA; CONSUMER ATTITUDES; EMPIRICAL-ANALYSIS; CUSTOMER REVIEWS; SELF-SELECTION; BRAND; SALES AB We study the spillover effects of the online reviews of other covisited products on the purchases of a focal product using clickstream data from a large retailer. The proposed spillover effects are moderated by (a) whether the related (covisited) products are complementary or substitutive, (b) the choice of media channel (mobile or personal computer (PC)) used, (c) whether the related products are from the same or a different brand, (d) consumer experience, and (e) the variance of the review ratings. To identify complementary and substitutive products, we develop supervised machine-learning models based on product characteristics, such as product category and brand, and novel text-based similarity measures. We train and validate the machine-learning models using product pair labels from Amazon Mechanical Turk. Our results show that the mean rating of substitutive (complementary) products has a negative (positive) effect on purchasing of the focal product. Interestingly, the magnitude of the spillover effects of the mean ratings of covisited (substitutive and complementary) products is significantly larger than the effects on the focal product, especially for complementary products. The spillover effect of ratings is stronger for consumers who use mobile devices versus PCs. We find the negative effect of the mean ratings of substitutive products across different brands on purchasing of a focal product to be significantly higher than within the same brand. Lastly, the effect of the mean ratings is stronger for less experienced consumers and for ratings with lower variance. We discuss implications on leveraging the spillover effect of the online product reviews of related products to encourage online purchases. C1 [Kwark, Young; Qiu, Liangfei] Univ Florida, Warrington Coll Business, Dept Informat Syst & Operat Management, Gainesville, FL 32611 USA. [Lee, Gene Moo] Univ British Columbia, Sauder Sch Business, Vancouver, BC V6T 1Z2, Canada. [Pavlou, Paul A.] Univ Houston, CT Bauer Coll Business, Houston, TX 77204 USA. C3 State University System of Florida; University of Florida; University of British Columbia; University of Houston System; University of Houston RP Kwark, Y (autor correspondiente), Univ Florida, Warrington Coll Business, Dept Informat Syst & Operat Management, Gainesville, FL 32611 USA. EM young.kwark@warrington.ufl.edu; gene.lee@sauder.ubc.ca; pavlou@bauer.uh.edu; liangfei.qiu@warrington.ufl.edu RI Pavlou, Paul A/D-3561-2014 OI Pavlou, Paul A/0000-0002-8830-5727; Lee, Gene Moo/0000-0003-0657-6898; Qiu, Liangfei/0000-0002-8771-9389 CR Aaker DavidA., 2009, MANAGING BRAND EQUIT Aaker DavidA., 1996, BUILDING STRONG BRAN Aggarwal R, 2012, INFORM SYST RES, V23, P976, DOI 10.1287/isre.1110.0402 Ahluwalia R, 2001, J MARKETING RES, V38, P458, DOI 10.1509/jmkr.38.4.458.18903 Anderson ET, 2013, J MARKETING RES, V50, P489, DOI 10.1509/jmr.11.0538 [Anonymous], 2014, P 35 INT C INF SYST Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Ariely D, 2016, TIME PRESSURE BEHAV Balachander S, 2003, J MARKETING, V67, P4, DOI 10.1509/jmkg.67.1.4.18594 Bart Y, 2014, J MARKETING RES, V51, P270, DOI 10.1509/jmr.13.0503 Barwise P., 2002, J INTERACT MARK, V16, P14 Basuroy S, 2006, J MARKETING RES, V43, P287, DOI 10.1509/jmkr.43.2.287 Blackwell RogerD., 2001, CONSUMER BEHAV, V9th Borah A, 2016, J MARKETING RES, V53, P143, DOI 10.1509/jmr.13.0009 Burtch G, 2018, MANAGE SCI, V64, P2065, DOI 10.1287/mnsc.2016.2715 Butcher D, 2010, MOBILE AD CAMPAIGNS Cameron AC, 2008, REV ECON STAT, V90, P414, DOI 10.1162/rest.90.3.414 Carmi E., 2012, SSRN ELECT J, DOI [10.2139/ssrn.1694308, DOI 10.2139/SSRN.1694308] Chae I, 2017, MARKET SCI, V36, P89, DOI 10.1287/mksc.2016.1001 Chen YB, 2005, MARKET SCI, V24, P218, DOI 10.1287/mksc.1040.0089 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 1998, J MARKETING RES, V35, P43, DOI 10.2307/3151929 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Connelly BL, 2011, J MANAGE, V37, P39, DOI 10.1177/0149206310388419 Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Dellarocas C, 2006, MANAGE SCI, V52, P1577, DOI 10.1287/mnsc.1060.0567 Dellarocas C, 2010, J MANAGE INFORM SYST, V27, P127, DOI 10.2753/MIS0742-1222270204 Dimoka A, 2012, MIS QUART, V36, P395 DODSON JA, 1978, J MARKETING RES, V15, P72, DOI 10.2307/3150402 Drossos D., 2007, Journal of Interactive Advertising, V7, P16 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Duan W, 2009, MIS QUART, V33, P23 Entin EE, 1990, TR454 ALPH INC EPPEN GD, 1991, SLOAN MANAGE REV, V32, P7 Erdem T, 2002, J MARKETING RES, V39, P408, DOI 10.1509/jmkr.39.4.408.19120 Erdem T, 1999, J ECONOMETRICS, V89, P159 Erdem T, 1998, J MARKETING RES, V35, P339, DOI 10.2307/3152032 Escalas JenniferE., 1998, J CONSUM PSYCHOL, V7, P131, DOI DOI 10.1207/S15327663JCP0702_02 Feng J, 2019, INFORM SYST RES, V30, P1107, DOI 10.1287/isre.2019.0852 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Gaeth GaryJ., 1991, MARKET LETT, V2, P47, DOI [DOI 10.1007/BF00435195, 10.1007/BF00435195] Gao GD, 2015, MIS QUART, V39, P565, DOI 10.25300/MISQ/2015/39.3.03 Ghose A, 2013, INFORM SYST RES, V24, P613, DOI 10.1287/isre.1120.0453 Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 Godes D, 2009, MARKET SCI, V28, P721, DOI 10.1287/mksc.1080.0444 Goes PB, 2014, INFORM SYST RES, V25, P222, DOI 10.1287/isre.2013.0512 GUILTINAN JP, 1987, J MARKETING, V51, P74, DOI 10.2307/1251130 Ho YC, 2017, INFORM SYST RES, V28, P626, DOI 10.1287/isre.2017.0694 Ho-Dac NN, 2013, J MARKETING, V77, P37, DOI 10.1509/jm.11.0011 Hong Y, 2014, INFORM SYST RES, V25, P328, DOI 10.1287/isre.2014.0520 Hu N, 2017, MIS QUART, V41, P449, DOI 10.25300/MISQ/2017/41.2.06 Jabr W, 2014, MIS QUART, V38, P635, DOI 10.25300/MISQ/2014/38.3.01 Kamakura WA, 2007, J RETAILING, V83, P159, DOI 10.1016/j.jretai.2006.02.006 KELLER KL, 1993, J MARKETING, V57, P1, DOI 10.2307/1252054 Khern-am-nuai W, 2018, INFORM SYST RES, V29, P871, DOI 10.1287/isre.2017.0750 KOTLER P., 2006, Marketing Management Krishnan TV, 2012, INT J RES MARK, V29, P292, DOI 10.1016/j.ijresmar.2012.04.003 KUMAR V, 1988, J MARKETING RES, V25, P178, DOI 10.2307/3172649 Kwark Y, 2014, INFORM SYST RES, V25, P93, DOI 10.1287/isre.2013.0511 Lee D, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P85, DOI 10.1145/2872427.2882976 Lee GM, 2020, INFORM SYST RES, V31, P865, DOI 10.1287/isre.2020.0921 Lee YJ, 2015, MANAGE SCI, V61, P2241, DOI 10.1287/mnsc.2014.2082 Lewis R, 2015, QME-QUANT MARK ECON, V13, P93, DOI 10.1007/s11129-015-9155-0 Li XX, 2008, INFORM SYST RES, V19, P456, DOI 10.1287/isre.1070.0154 Li XT, 2018, INFORM SYST RES, V29, P739, DOI 10.1287/isre.2017.0728 Libai B, 2013, J MARKETING RES, V50, P161, DOI 10.1509/jmr.11.0305 Libai B, 2009, J MARKETING, V73, P19, DOI 10.1509/jmkg.73.3.19 Lin ZJ, 2017, MIS QUART, V41, P397, DOI 10.25300/MISQ/2017/41.2.04 Liu Y, 2017, INFORM SYST RES, V28, P723, DOI 10.1287/isre.2017.0715 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Lovett MJ, 2013, J MARKETING RES, V50, P427, DOI 10.1509/jmr.11.0458 Lu XH, 2013, INFORM SYST RES, V24, P596, DOI 10.1287/isre.1120.0454 Luca M, 2016, MANAGE SCI, V62, P3412, DOI 10.1287/mnsc.2015.2304 Luo XM, 2017, MIS QUART, V41, P371, DOI 10.25300/MISQ/2017/41.2.03 Luo XM, 2014, MANAGE SCI, V60, P1738, DOI 10.1287/mnsc.2013.1836 Manchanda P, 1999, MARKET SCI, V18, P95, DOI 10.1287/mksc.18.2.95 Maniar Nipan, 2008, Journal of Software, V3, P51, DOI 10.4304/jsw.3.4.51-61 Mas-Colell A., 1995, MICROECONOMIC THEORY Maslowska E, 2017, DECIS SUPPORT SYST, V98, P1, DOI 10.1016/j.dss.2017.03.010 Mudambi SM, 2010, MIS QUART, V34, P185 MULHERN FJ, 1991, J MARKETING, V55, P63, DOI 10.2307/1251957 Nunamaker J. F. Jr., 1987, Journal of Management Information Systems, V3, P5 Oestreicher-Singer G, 2012, MANAGE SCI, V58, P1963, DOI 10.1287/mnsc.1120.1536 Oestreicher-Singer G, 2012, MIS QUART, V36, P65, DOI 10.2307/41410406 Parker P., 1994, International Journal ofResearch in Marketing, V11, P17, DOI DOI 10.1016/0167-8116(94)90032-9 Pavlou PA, 2006, INFORM SYST RES, V17, P392, DOI 10.1287/isre.1060.0106 Peres R, 2014, J MARKETING, V78, P83, DOI 10.1509/jm.12.0344 Rice SC, 2012, INFORM SYST RES, V23, P436, DOI 10.1287/isre.1110.0362 Roehm ML, 2006, J MARKETING RES, V43, P366, DOI 10.1509/jmkr.43.3.366 Russell GJ, 2000, J RETAILING, V76, P367, DOI 10.1016/S0022-4359(00)00030-0 RYNES SL, 1991, PERS PSYCHOL, V44, P487, DOI 10.1111/j.1744-6570.1991.tb02402.x Seetharaman PB, 2005, MARKET LETT, V16, P239, DOI 10.1007/s11002-005-5888-y Shin D, 2020, MIS QUART, V44, P1459, DOI 10.25300/MISQ/2020/14870 Shocker AD, 2004, J MARKETING, V68, P28, DOI 10.1509/jmkg.68.1.28.24032 Song R, 2019, J BUS ETHICS, V158, P743, DOI 10.1007/s10551-017-3720-2 Susarla A, 2012, INFORM SYST RES, V23, P23, DOI 10.1287/isre.1100.0339 Svenson O, 1985, KNOWLEDGE REPRESENTA, P134 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tsang MM, 2004, INT J ELECTRON COMM, V8, P65, DOI 10.1080/10864415.2004.11044301 TVERSKY A, 1991, Q J ECON, V106, P1039, DOI 10.2307/2937956 TVERSKY A, 1993, MANAGE SCI, V39, P1179, DOI 10.1287/mnsc.39.10.1179 WALTERS RG, 1991, J MARKETING, V55, P17, DOI 10.2307/1252234 WERNERFELT B, 1988, RAND J ECON, V19, P458, DOI 10.2307/2555667 Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 107 TC 24 Z9 24 U1 36 U2 164 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD SEP PY 2021 VL 32 IS 3 BP 895 EP 913 DI 10.1287/isre.2021.0998 PG 20 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA YI9CF UT WOS:000744138200013 DA 2024-03-27 ER PT J AU Li, L Lin, JB Luo, WY Luo, X AF Li, Lei Lin, Jiabao Luo, Wenyi Luo, Xin (Robert) TI INVESTIGATING THE EFFECT OF ARTIFICIAL INTELLIGENCE ON CUSTOMER RELATIONSHIP MANAGEMENT PERFORMANCE IN E-COMMERCE ENTERPRISES SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE AI usage; CRM capabilities; CRM performance; E-commerce enterprise ID BIG DATA ANALYTICS; SOCIAL MEDIA; FIRM PERFORMANCE; IMPACT; CAPABILITIES; INNOVATION; USAGE; AI AB Despite the importance of artificial intelligence (AI) technologies in improving customer relationships, AI usage in enabling customer relationship management (CRM) capabilities and, in turn, enhancing CRM performance has not yet been investigated. This study from the IT-enabled organizational capabilities perspective investigates the impact of AI usage on CRM performance and the mediating effect of CRM capabilities. We tested our core proposition and theory-driven research model using data collected from a sample of 193 e-commerce enterprises in China. The empirical results indicate that AI usage positively impacts CRM performance and that CRM capabilities positively mediate their relationship. Thus, this paper contributes to IS research with an eloquent theoretical explanation and strong empirical evidence on why e-commerce enterprises deploy AI initiatives to improve their CRM capabilities and performance. C1 [Li, Lei] Northwest Agr & Forestry Univ, Coll Econ & Management, Yangling 712100, Peoples R China. [Lin, Jiabao; Luo, Wenyi] South China Agr Univ, Coll Econ & Management, Guangzhou 510642, Peoples R China. [Luo, Xin (Robert)] Univ New Mexico, Anderson Sch Management, Albuquerque, NM USA. C3 Northwest A&F University - China; South China Agricultural University; University of New Mexico RP Lin, JB (autor correspondiente), South China Agr Univ, Coll Econ & Management, Guangzhou 510642, Peoples R China. EM lilei0123@nwafu.edu.cn; linjb@scau.edu.cn; luowenyi1101@163.com; luowenyi1101@163.com RI wang, xiaoxuan/JMP-6531-2023; zhao, lin/JJF-0406-2023; zhang, xiao/JCN-8822-2023; Yu, Xiaohan/KCK-5462-2024; Wang, Xuechun/JRX-6509-2023; zhao, yan/JNT-6961-2023; li, yifan/JHU-9272-2023; peng, yan/JCO-1763-2023; song, yu/KCZ-2003-2024; Zhang, Yunyi/JHS-3626-2023; su, hang/KEH-2976-2024; Yang, Xiao/JDN-0082-2023; yang, xiao/JLL-7721-2023 FU National Natural Science Foundation of China [71873047]; National Social Science Foundation of China [18ZDA109]; Guangdong Basic and Applied Basic Research Foundation [2023A1515011263]; National Natural Science Foundation of Shaanxi Province [2023-JC-QN-0807, 2020JQ-282]; National Social Science Foundation of Shaanxi Province [2020R042]; 111 Project FX Acknowledgment This work was supported by grants from the National Natural Science Foundation of China (71873047) , the National Social Science Foundation of China (18ZDA109) , the Guangdong Basic and Applied Basic Research Foundation (2023A1515011263) , the National Natural Science Foundation of Shaanxi Province (2023-JC-QN-0807, 2020JQ-282) , National Social Science Foundation of Shaanxi Province (2020R042) and the Support by the 111 Project. CR Braojos J, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2020.103290 Brougham D, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120276 Cao LM, 2023, COMPUT HUM BEHAV, V143, DOI 10.1016/j.chb.2023.107669 Castillo A, 2021, J ASSOC INF SYST, V22, P1472, DOI 10.17705/1jais.00700 Chandra S, 2018, J ELECTRON COMMER RE, V19, P237 Chatterjee S, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120783 Collins C, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102383 Dalla Pozza I, 2018, J BUS RES, V89, P391, DOI 10.1016/j.jbusres.2018.02.004 Demlehner Q, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102317 Di Vaio A, 2020, J BUS RES, V121, P283, DOI 10.1016/j.jbusres.2020.08.019 Dondapati A, 2022, MATER TODAY-PROC, V56, P2232, DOI 10.1016/j.matpr.2021.11.557 Foltean FS, 2019, J BUS RES, V104, P563, DOI 10.1016/j.jbusres.2018.10.047 Ghasemaghaei M, 2021, INFORM SYST J, V31, P268, DOI 10.1111/isj.12310 Ghasemaghaei M, 2020, J BUS RES, V108, P147, DOI 10.1016/j.jbusres.2019.09.062 Ghasemaghaei M, 2017, DECIS SUPPORT SYST, V101, P95, DOI 10.1016/j.dss.2017.06.004 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Guerola Navarro V., 2021, TECHNOL FORECAST SOC, V169 Guerola-Navarro V, 2021, J BUS RES, V129, P83, DOI 10.1016/j.jbusres.2021.02.050 Gupta S, 2020, IND MARKET MANAG, V90, P581, DOI 10.1016/j.indmarman.2019.11.009 Hou TT, 2022, J BUS RES, V139, P496, DOI 10.1016/j.jbusres.2021.09.066 Hua Y, 2020, DECISION SCI, V51, P755, DOI 10.1111/deci.12372 Hung SY, 2010, DECIS SUPPORT SYST, V48, P592, DOI 10.1016/j.dss.2009.11.009 Jan Z, 2023, EXPERT SYST APPL, V216, DOI 10.1016/j.eswa.2022.119456 Johnson PC, 2022, TECHNOL FORECAST SOC, V179, DOI 10.1016/j.techfore.2022.121636 Komarek AM, 2020, AGR SYST, V178, DOI 10.1016/j.agsy.2019.102738 Li FY, 2022, SUSTAIN ENERGY TECHN, V52, DOI 10.1016/j.seta.2022.102103 Li L, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121355 Li LX, 2022, IND MARKET MANAG, V104, P28, DOI 10.1016/j.indmarman.2022.04.007 Li MN, 2015, INT J INFORM MANAGE, V35, P229, DOI 10.1016/j.ijinfomgt.2014.12.004 Li XC, 2020, J ELECTRON COMMER RE, V21, P75 Li YF, 2019, INFORM MANAGE-AMSTER, V56, P392, DOI 10.1016/j.im.2018.07.012 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Lin JB, 2021, DECIS SUPPORT SYST, V151, DOI 10.1016/j.dss.2021.113628 Lin SZ, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2022.103680 Lindell MK, 2001, J APPL PSYCHOL, V86, P114, DOI 10.1037//0021-9010.86.1.114 Liu HF, 2013, DECIS SUPPORT SYST, V54, P1452, DOI 10.1016/j.dss.2012.12.016 Liu YY, 2018, TECHNOL FORECAST SOC, V130, P123, DOI 10.1016/j.techfore.2018.01.018 Longoni C, 2019, J CONSUM RES, V46, P629, DOI 10.1093/jcr/ucz013 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Nazir S, 2023, TECHNOL SOC, V72, DOI 10.1016/j.techsoc.2022.102190 Olan F, 2022, J BUS RES, V145, P605, DOI 10.1016/j.jbusres.2022.03.008 Rahman MS, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113525 Saura JR, 2021, IND MARKET MANAG, V98, P161, DOI 10.1016/j.indmarman.2021.08.006 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Spanaki K, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2021.102350 Trainor KJ, 2014, J BUS RES, V67, P1201, DOI 10.1016/j.jbusres.2013.05.002 Turel O, 2019, INT J ACCOUNT INF SY, V33, P32, DOI 10.1016/j.accinf.2019.03.002 Verma S., 2021, INT J INFORM MANAGE, V1, DOI [10.1016/j.jjimei.2020.100002, DOI 10.1016/J.JJIMEI.2020.100002] Wamba SF, 2022, INT J INFORM MANAGE, V67, DOI 10.1016/j.ijinfomgt.2022.102544 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411 Wang DY, 2022, DECIS SUPPORT SYST, V158, DOI 10.1016/j.dss.2022.113801 Wang S, 2016, INFORM MANAGE-AMSTER, V53, P197, DOI 10.1016/j.im.2015.09.011 Wang YG, 2012, MANAGE DECIS, V50, P115, DOI 10.1108/00251741211194903 Ye Y, 2022, J BUS RES, V139, P510, DOI 10.1016/j.jbusres.2021.10.008 Yu Y, 2018, INFORM MANAGE-AMSTER, V55, P245, DOI 10.1016/j.im.2017.07.001 Zhang CB, 2020, IND MARKET MANAG, V91, P483, DOI 10.1016/j.indmarman.2020.10.012 Zhao X, 2021, J ELECTRON COMMER RE, V22, P178 NR 58 TC 1 Z9 1 U1 19 U2 34 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PD FEB PY 2023 VL 24 IS 1 SI SI BP 68 EP 83 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA A8RC7 UT WOS:000957725600005 DA 2024-03-27 ER PT J AU Zhang, HL Song, M AF Zhang, Haili Song, Michael TI How Big Data Analytics, AI, and Social Media Marketing Research Boost Market Orientation Companies can use big data analytics, artificial intelligence (AI), and social media marketing research to increase market orientation. SO RESEARCH-TECHNOLOGY MANAGEMENT LA English DT Article DE Market orientation; Market-oriented firms; Big data analytics; Artificial Intelligence; Social media marketing research AB Overview: Previous research has shown that market-oriented firms outperform their peers. Why are some firms such outstanding performers in market orientation (MO)? This study identifies three categories of new technology tools that have emerged in the past few years-big data analytics, artificial intelligence (AI), and social media marketing research-and assesses how each category enhances MO. The empirical evidence from 442 firms indicates that all three categories have significant impacts on MO, with AI being the most effective, followed by big data analytics and social media marketing research, respectively. We outline how very successful firms adopt these new technology tools and offer managerial implications that can guide senior executives looking to increase MO. C1 [Zhang, Haili] Xian Technol Univ, Innovat Management, Xian, Peoples R China. [Song, Michael] Xian Technol Univ, Xian, Peoples R China. C3 Xi'an Technological University; Xi'an Technological University RP Zhang, HL (autor correspondiente), Xian Technol Univ, Innovat Management, Xian, Peoples R China. EM zhanghaili@xatu.edu.cn; drmichaelsong@163.com OI Song, Michael/0000-0002-8829-9961 CR DeVellis RF., 2017, SCALE DEV THEORY APP Dillman DA, 2014, INTERNET PHONE MAIL, V4th Frösén J, 2016, J MARKETING, V80, P60, DOI 10.1509/jm.15.0153 Gupta VK, 2019, REV MANAG SCI, V13, P649, DOI 10.1007/s11846-017-0262-z Hu CJ, 2019, MARK INTELL PLAN, V37, P598, DOI 10.1108/MIP-08-2018-0325 JAWORSKI BJ, 1993, J MARKETING, V57, P53, DOI 10.2307/1251854 KOHLI AK, 1990, J MARKETING, V54, P1, DOI 10.2307/1251866 KOHLI AK, 1993, J MARKETING RES, V30, P467, DOI 10.2307/3172691 Mikalef P, 2018, INF SYST E-BUS MANAG, V16, P547, DOI 10.1007/s10257-017-0362-y Moorman C, 2016, J MARKETING, V80, P6, DOI 10.1509/jm.15.0423 Song M, 2009, J ACAD MARKET SCI, V37, P144, DOI 10.1007/s11747-008-0114-0 Varadarajan Rajan., 2017, AMS Review, V7, P26, DOI DOI 10.1007/S13162-017-0094-7 Wang YJ, 2020, J BUS IND MARK, V35, P1001, DOI 10.1108/JBIM-04-2019-0152 Wang YF, 2020, RES TECHNOL MANAGE, V63, P35, DOI 10.1080/08956308.2020.1762447 Zhang HL, 2021, RES TECHNOL MANAGE, V64, P50, DOI 10.1080/08956308.2021.1942646 NR 15 TC 0 Z9 0 U1 34 U2 140 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0895-6308 EI 1930-0166 J9 RES TECHNOL MANAGE JI Res.-Technol. Manage. PD FEB 22 PY 2022 VL 65 IS 2 BP 64 EP 70 DI 10.1080/08956308.2022.2022907 PG 7 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA ZC6MR UT WOS:000757632200008 DA 2024-03-27 ER PT J AU Yadav, R Sharma, SK Tarhini, A AF Yadav, Rajan Sharma, Sujeet Kumar Tarhini, Ali TI A multi-analytical approach to understand and predict the mobile commerce adoption SO JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT LA English DT Article DE Neural network; India; Perceived trust; India; M-commerce; Variety of services ID TECHNOLOGY ACCEPTANCE MODEL; NEURAL NETWORK APPROACH; INFORMATION-TECHNOLOGY; PERSONAL INNOVATIVENESS; INDIVIDUAL-DIFFERENCES; EMPIRICAL-ANALYSIS; USER ACCEPTANCE; PERCEIVED RISK; SERVICES; INTERNET AB Purpose - The advent of mobile telephony devices with strong internet capabilities has laid the foundation for mobile commerce (m-commerce) services. The purpose of this paper is to empirically examine predictors of m-commerce adoption using a modification of the widely used technology acceptance model and the unified theory of acceptance and use of technology model. Design/methodology/approach - The data were collected from 213 respondents by means of an online survey. The data were analyzed through multi analytic approach by employing structural equation modeling (SEM) and neural network modeling. Findings - The SEM results showed that variety of services, social influence, perceived usefulness, cost and perceived trust have significant influence on consumer's intention to adopt m-commerce. The only exception was perceived ease of use which observed statistically insignificant influence on adoption of m-commerce. Furthermore, the results obtained from SEM were employed as input to the neural network model and results showed that perceived usefulness, perceived trust and variety of services as most important predictors in adoption of m-commerce. Practical implications - The findings of this study give an insight of key determinants that are important to develop suitable strategic framework to enhance the use of m-commerce adoption. In addition, it also provides an opportunity to academicians and researchers to use the framework of this study for further research. Originality/value - The study is among a very few studies which analyzed m-commerce adoption by applying a linear and non-linear approach. The study offers a multi-analytical model to understand and predict m-commerce adoption in the developing nation like India. C1 [Yadav, Rajan] Delhi Technol Univ, Dept Management, Delhi, India. [Sharma, Sujeet Kumar] Sultan Qaboos Univ, Dept Operat Management & Business Stat, Muscat, Oman. [Tarhini, Ali] Brunel Univ, Dept Informat Syst, London, England. C3 Delhi Technological University; Sultan Qaboos University; Brunel University RP Sharma, SK (autor correspondiente), Sultan Qaboos Univ, Dept Operat Management & Business Stat, Muscat, Oman. EM drsujeet@squ.edu.om RI Tarhini, Ali/B-5045-2016; Sharma, Sujeet Kumar/HTP-3338-2023 OI Tarhini, Ali/0000-0002-8698-1764; Sharma, Sujeet Kumar/0000-0001-6985-3798 CR Abbasi MS, 2015, J ENTERP INF MANAG, V28, P747, DOI 10.1108/JEIM-12-2014-0124 Aggarwal CC, 2012, ELECTRON COMMER R A, V11, P142, DOI 10.1016/j.elerap.2011.11.001 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Akturan U, 2012, MARK INTELL PLAN, V30, P444, DOI 10.1108/02634501211231928 [Anonymous], 2 BILLION SMART PHON [Anonymous], 1975, BELIEFS ATTITUDES IN [Anonymous], MIS Q Chang YP, 2011, COMPUT HUM BEHAV, V27, P1840, DOI 10.1016/j.chb.2011.04.006 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Chong AYL, 2012, DECIS SUPPORT SYST, V53, P34, DOI 10.1016/j.dss.2011.12.001 Chong AYL, 2010, INT J MOB COMMUN, V8, P129, DOI 10.1504/IJMC.2010.031444 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Gitau L., 2014, INT J BUSINESS HUMAN, V4, P84 Guriting P., 2006, MANAGE RES NEWS, V29, P6, DOI DOI 10.1108/01409170610645402 Hair J.F., 2010, MULTIVAR DATA ANAL, P168 Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Hsu CI, 2009, EXPERT SYST APPL, V36, P11760, DOI 10.1016/j.eswa.2009.04.010 Hsu CL, 2011, INT J MOB COMMUN, V9, P477, DOI 10.1504/IJMC.2011.042455 Karahanna E, 2000, J ORG COMP ELECT COM, V10, P49, DOI 10.1207/S15327744JOCE100103 Khalifa M, 2008, J ENTERP INF MANAG, V21, P110, DOI 10.1108/17410390810851372 Kim HW, 2007, DECIS SUPPORT SYST, V43, P111, DOI 10.1016/j.dss.2005.05.009 Kleijnen M., 2004, J FINANC SERV MARK, V8, P206, DOI [DOI 10.1057/PALGRAVE.FSM.4770120, 10.1057/palgrave.fsm.4770120] Koenig-Lewis N, 2010, INT J BANK MARK, V28, P410, DOI 10.1108/02652321011064917 Lee CC, 2007, DECIS SUPPORT SYST, V43, P95, DOI 10.1016/j.dss.2005.05.008 Lee FH, 2011, EXPERT SYST APPL, V38, P7766, DOI 10.1016/j.eswa.2010.12.131 Lee YK, 2012, J BUS RES, V65, P1590, DOI 10.1016/j.jbusres.2011.02.044 Liao Z., 2006, INFORM MANAGE, V38, P299 Lu J, 2005, J STRATEGIC INF SYST, V14, P245, DOI 10.1016/j.jsis.2005.07.003 Lu U, 2003, INTERNET RES, V13, P206, DOI 10.1108/10662240310478222 Luam P., 2005, Computers in Human Behavior, V21, P873 Ngai EWT, 2007, DECIS SUPPORT SYST, V43, P3, DOI 10.1016/j.dss.2005.05.003 Qiang C.Z.W., 2009, PRIVATE SECTOR D NOV Ramayah T., 2007, MANAGE RES NEWS, V30, P420 Riquelme HE, 2010, INT J BANK MARK, V28, P328, DOI 10.1108/02652321011064872 Roger E.M., 1995, DIFFUSION INNOVATION, V4th Safeena Rahmath, 2013, International Journal of Computer Theory and Engineering, V5, P146, DOI 10.7763/IJCTE.2013.V5.665 Sharma S.K., 2014, ED BUSINESS SOC CONT, V7, P152, DOI DOI 10.1108/EBS-08-2013-0032 Sharma S.K., 2013, Education, Business and Society: Contemporary Middle Eastern Issues, V6, P87, DOI DOI 10.1108/EBS-12-2012-0055 Sharma SK, 2015, TRANSFORM GOV-PEOPLE, V9, P207, DOI 10.1108/TG-10-2014-0046 Sharma SK, 2015, MANAG RES REV, V38, P750, DOI 10.1108/MRR-06-2014-0139 Sharma SK, 2014, J INDIAN BUS RES, V6, P155, DOI 10.1108/JIBR-02-2013-0013 Szajna B, 1996, MANAGE SCI, V42, P85, DOI 10.1287/mnsc.42.1.85 Tarhini A, 2016, EDUC INF TECHNOL, V21, P1269, DOI 10.1007/s10639-015-9381-9 Tarhini A, 2015, BRIT J EDUC TECHNOL, V46, P739, DOI 10.1111/bjet.12169 Tarhini A, 2015, ELECTRON J E-LEARN, V13, P14 Tarhini A, 2014, COMPUT HUM BEHAV, V41, P153, DOI 10.1016/j.chb.2014.09.020 Thakur R, 2014, INTERNET RES, V24, P369, DOI 10.1108/IntR-12-2012-0244 Thakur R, 2013, J INDIAN BUS RES, V5, P52, DOI 10.1108/17554191311303385 Vance A, 2008, J MANAGE INFORM SYST, V24, P73, DOI 10.2753/MIS0742-1222240403 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Wang YM, 2007, EXPERT SYST APPL, V32, P336, DOI 10.1016/j.eswa.2005.11.029 Wei TT, 2009, IND MANAGE DATA SYST, V109, P370, DOI 10.1108/02635570910939399 Wu JH, 2005, INFORM MANAGE-AMSTER, V42, P719, DOI 10.1016/j.im.2004.07.001 Zhang LY, 2012, COMPUT HUM BEHAV, V28, P1902, DOI 10.1016/j.chb.2012.05.008 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 NR 56 TC 107 Z9 124 U1 0 U2 48 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1741-0398 EI 1758-7409 J9 J ENTERP INF MANAG JI J. Enterp. Inf. Manag. PY 2016 VL 29 IS 2 BP 222 EP 237 DI 10.1108/JEIM-04-2015-0034 PG 16 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA DR1RC UT WOS:000379681600005 DA 2024-03-27 ER PT J AU Salminen, J Mustak, M Corporan, J Jung, SG Jansen, BJ AF Salminen, Joni Mustak, Mekhail Corporan, Juan Jung, Soon-gyo Jansen, Bernard J. TI Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning SO JOURNAL OF INTERACTIVE MARKETING LA English DT Article DE marketing; artificial intelligence; AI; machine learning; customer insight; user-generated content; UGC; pain points ID MARKETING-RESEARCH; ARTIFICIAL-INTELLIGENCE; CUSTOMER; TOUCHPOINTS; JOURNEY; SEARCH; DESIGN; AI AB Artificial intelligence, particularly machine learning, carries high potential to automatically detect customers' pain points, which is a particular concern the customer expresses that the company can address. However, unstructured data scattered across social media make detection a nontrivial task. Thus, to help firms gain deeper insights into customers' pain points, the authors experiment with and evaluate the performance of various machine learning models to automatically detect pain points and pain point types for enhanced customer insights. The data consist of 4.2 million user-generated tweets targeting 20 global brands from five separate industries. Among the models they train, neural networks show the best performance at overall pain point detection, with an accuracy of 85% (F1 score = .80). The best model for detecting five specific pain points was RoBERTa 100 samples using SYNONYM augmentation. This study adds another foundational building block of machine learning research in marketing academia through the application and comparative evaluation of machine learning models for natural language-based content identification and classification. In addition, the authors suggest that firms use pain point profiling, a technique for applying subclasses to the identified pain point messages to gain a deeper understanding of their customers' concerns. C1 [Salminen, Joni] Univ Vaasa, Vaasa, Finland. [Mustak, Mekhail] Turku Sch Econ & Business Adm, Turku, Finland. [Corporan, Juan] Banco Santa Cruz RD, Santo Domingo, Dominican Rep. [Jung, Soon-gyo] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Ar Rayyan, Qatar. [Jansen, Bernard J.] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, Social Comp Grp, Ar Rayyan, Qatar. C3 University of Vaasa; University of Turku; Qatar Foundation (QF); Hamad Bin Khalifa University-Qatar; Qatar Computing Research Institute; Qatar Foundation (QF); Hamad Bin Khalifa University-Qatar; Qatar Computing Research Institute RP Salminen, J (autor correspondiente), Univ Vaasa, Vaasa, Finland. EM salminen@uwasa.fi; mekhail.mustak@utu.fi; juan.nunez.corp@gmail.com; sjung@hbku.edu.qa; bjansen@hbku.edu.qa RI Mustak, Mekhail/P-9559-2019 OI Mustak, Mekhail/0000-0002-2111-2939 FU Mekhail Mustak expresses gratitude; Liikesivistysrahasto (The Foundation for Economic Education, Finland) FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Mekhail Mustak expresses gratitude to the Kone Foundation (Finland) and Liikesivistysrahasto (The Foundation for Economic Education, Finland) for their financial support of this research. CR Abu-Salih B, 2018, J KNOWL MANAG, V22, P949, DOI 10.1108/JKM-11-2016-0489 Agrawal Tanay., 2020, Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient Alonso O, 2015, PROCEEDINGS OF THE 15TH ACM/IEEE-CS JOINT CONFERENCE ON DIGITAL LIBRARIES (JCDL'15), P101, DOI 10.1145/2756406.2757741 Alonso O, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P1089, DOI 10.1145/2766462.2776778 Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002 Antons D, 2018, J SERV RES-US, V21, P17, DOI 10.1177/1094670517738373 Argyris YA, 2021, J INTERACT MARK, V55, P67, DOI 10.1016/j.intmar.2021.02.001 Arras L., 2017, PREPRINT Asiri Sidath., 2018, Machine learning classifiers Balducci B, 2018, J ACAD MARKET SCI, V46, P557, DOI 10.1007/s11747-018-0581-x Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Bergstra J, 2012, J MACH LEARN RES, V13, P281 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Brownlee J., 2016, MACHINE LEARNIN 0816 Chen RY, 2019, ELECTRON COMMER R A, V38, DOI 10.1016/j.elerap.2019.100889 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Cheng LC, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102613 Cui DP, 2005, MARKET SCI, V24, P595, DOI 10.1287/mksc.1050.0123 Cui G, 2006, MANAGE SCI, V52, P597, DOI 10.1287/mnsc.1060.0514 Davis DF, 2013, J BUS RES, V66, P1245, DOI 10.1016/j.jbusres.2012.02.020 Deshpande R., 1994, Marketing Letters, V5, P271 Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171 Donges N., 2022, BUILT Freelon D, 2014, J BROADCAST ELECTRON, V58, P59, DOI 10.1080/08838151.2013.875018 GRIFFIN A, 1993, MARKET SCI, V12, P1, DOI 10.1287/mksc.12.1.1 Gupta S, 2020, J INTERACT MARK, V51, P26, DOI 10.1016/j.intmar.2020.04.003 Handfield R.B., 2005, INT J SUPPLY CHAIN F, V6, P6 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Hofacker CF, 2012, J INTERACT MARK, V26, P1, DOI 10.1016/j.intmar.2011.10.001 Homburg C, 2007, J ACAD MARKET SCI, V35, P523, DOI 10.1007/s11747-006-0009-x Horev R., 2018, DATA SCI Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Johnson DS, 2007, J INTERACT MARK, V21, P2, DOI 10.1002/dir.20091 Joulin A., 2016, PREPRINT Kämpf M, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0141892 Kingma D. P., 2014, ARXIV Klapdor S, 2014, J INTERACT MARK, V28, P285, DOI 10.1016/j.intmar.2014.07.001 Knocklein O., 2019, Em Towards Data Science, P1 KOHLI AK, 1990, J MARKETING, V54, P1, DOI 10.2307/1251866 Kotsiantis SB, 2007, INFORM-J COMPUT INFO, V31, P249 Kramer O, 2013, DIMENSIONALITY REDUC, P13, DOI DOI 10.1007/978-3-642-38652-7_2 Kranzbuhler AM, 2019, J ACAD MARKET SCI, V47, P308, DOI 10.1007/s11747-018-0594-5 Krogh A., 1995, Advances in Neural Information Processing Systems 7, P231 Kuehl N, 2020, ELECTRON MARK, V30, P351, DOI 10.1007/s12525-019-00351-0 Kuhl N., 2020, ARXIV Kumar V, 2018, J MARKETING, V82, P1, DOI 10.1177/0022242918805485 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Li H, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102784 Li YT, 2017, ADV NEUR IN, V30 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Liu L, 2020, MARKET SCI, V39, P669, DOI 10.1287/mksc.2020.1226 Liu X, 2017, J ADVERTISING, V46, P236, DOI 10.1080/00913367.2017.1297273 Liu X, 2016, MARKET SCI, V35, P363, DOI 10.1287/mksc.2015.0972 Liu Y, 2020, ABS190711692 CORR Liu Y, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.11.002 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Macdonald E., 2012, Harvard Business Review Malthouse EC, 2013, J INTERACT MARK, V27, P270, DOI 10.1016/j.intmar.2013.09.008 McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031 MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mitchell T. M., 1997, MACH LEARN Mumtaz F, 2018, BIOMED PHARMACOTHER, V105, P1205, DOI 10.1016/j.biopha.2018.05.086 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Mustak M, 2013, MANAG SERV QUAL, V23, P341, DOI 10.1108/MSQ-03-2013-0046 Patel S., 2020, REVE CHAT Patnaik D., 1999, Design management journal, V10, P37, DOI DOI 10.1111/J.1948-7169.1999.TB00250.X Pawar U., 2020, ANAL VIDHYA Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Plangger K, 2020, J INTERACT MARK, V50, P32, DOI 10.1016/j.intmar.2019.10.004 Price R, 2016, J INT CONSUM MARK, V28, P92, DOI 10.1080/08961530.2015.1092405 Price RA, 2015, QUAL MARK RES, V18, P230, DOI 10.1108/QMR-03-2014-0024 Rambocas M, 2018, J RES INTERACT MARK, V12, P146, DOI 10.1108/JRIM-05-2017-0030 Rawson A, 2013, HARVARD BUS REV, V91, P90 Ray S., 2017, Analytics Vidhya Reinstein I., 2017, KDNUGGETS Reisenbichler M., 2021, SUPPORTING CONTENT M Reisenbichler M., 2018, J BUSINESS EC, V89, P327, DOI [DOI 10.1007/S11573-018-0915-7, 10.1007/s11573-018-0915-7] Rish I, 2001, IJCAI 2001 workshop on empirical methods in artificial intelligence, V3, P41, DOI DOI 10.1039/B104835J Rojas R., 2013, Neural networks : A systematic introduction Rooderkerk RP, 2016, J INTERACT MARK, V35, P1, DOI 10.1016/j.intmar.2015.12.003 Rydén P, 2015, J INTERACT MARK, V31, P1, DOI 10.1016/j.intmar.2015.03.001 Said E, 2015, J MARKET MANAG-UK, V31, P1158, DOI 10.1080/0267257X.2015.1037785 Salian I., 2018, SUPERVISED UNSUPERVI Salminen J., 2018, P 5 INT C SOCIAL NET Salminen J, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102771 Salminen J, 2020, HUM-CENTRIC COMPUT I, V10, DOI 10.1186/s13673-019-0205-6 Salminen J, 2019, J BUS RES, V101, P203, DOI 10.1016/j.jbusres.2019.04.018 Sanh V., 2019, ARXIV Sawhney M, 2005, J INTERACT MARK, V19, P4, DOI 10.1002/dir.20046 Schaffhausen CR, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030161 Shalev-Shwartz S., 2014, Understanding Machine Learning: From Theory to Algorithms, DOI DOI 10.1017/CBO9781107298019 SHAP Latest Documentation, 2018, READ DOCS Smith L.N, 2018, A disciplined approach to neural network hyper-parameters: Part 1-learning rate, batch size, momentum, and weight decay Srivastava N., 2013, THESIS U TORONTO, V182 Steinwart I., 2008, SUPPORT VECTOR MACHI Straker K, 2021, J INT CONSUM MARK, V33, P239, DOI 10.1080/08961530.2020.1792387 Sugimura P., 2018, ARXIV Sun BH, 2006, J INTERACT MARK, V20, P82, DOI 10.1002/dir.20069 Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 URBAN GL, 1988, MANAGE SCI, V34, P569, DOI 10.1287/mnsc.34.5.569 Verhoef PC, 2010, J INTERACT MARK, V24, P121, DOI 10.1016/j.intmar.2010.02.009 von Hippel E., 2009, J BETRIEBSWIRTSCHAFT, V1, P29, DOI [DOI 10.1007/S11301-004-0002-8, DOI 10.1260/175722209787951224] VONHIPPEL E, 1986, MANAGE SCI, V32, P791, DOI 10.1287/mnsc.32.7.791 Wang BD, 2016, ENG APPL ARTIF INTEL, V47, P101, DOI 10.1016/j.engappai.2015.06.005 Wang W, 2022, CELL MOL NEUROBIOL, V42, P695, DOI 10.1007/s10571-020-00958-4 Wang Y, 2018, CIRP ANN-MANUF TECHN, V67, P145, DOI 10.1016/j.cirp.2018.04.018 Weinberg BD, 2013, J INTERACT MARK, V27, P299, DOI 10.1016/j.intmar.2013.09.006 Yang Y, 2022, J MARKETING, V86, P37, DOI 10.1177/00222429211033585 Yiu Tony., 2019, DATA SCI Zhang JH, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102716 Zhang MM, 2011, ELECTRON MARK, V21, P161, DOI 10.1007/s12525-011-0065-z Zhang Y, 2019, arXiv Zhou F, 2020, J MECH DESIGN, V142, DOI 10.1115/1.4044435 NR 115 TC 11 Z9 11 U1 22 U2 67 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1094-9968 EI 1520-6653 J9 J INTERACT MARK JI J. Interact. Mark. PD AUG PY 2022 VL 57 IS 3 BP 517 EP 539 DI 10.1177/10949968221095556 EA JUN 2022 PG 23 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 3A1OI UT WOS:000823591200001 OA Green Accepted DA 2024-03-27 ER PT J AU Ping, YN Hill, C Zhu, Y Fresneda, J AF Ping, Yanni Hill, Chelsey Zhu, Yun Fresneda, Jorge TI Antecedents and consequences of the key opinion leader status: an econometric and machine learning approach SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Key opinion leader; Reviewer certification; Difference-in-difference; Machine learning; Online consumer reviews ID WORD-OF-MOUTH; ONLINE CONSUMER REVIEWS; PRODUCT REVIEWS; PROPENSITY SCORE; PRICE PREMIUMS; HELPFULNESS; IMPACT; SALES; CREDIBILITY; USER AB Key Opinion Leaders (KOLs) have an undeniable influence on businesses. Many online review communities, such as Yelp, give KOL users prominent status in their communities as cues of source trustworthiness. Using both econometric analysis and machine learning methods, we adopt an antecedents and consequences framework to investigate the drivers of KOL status and their economic impact on businesses. We find that a user's social activity is more important in determining KOL status than the reviews themselves. On the consequences side, the paper shows that the first KOL review significantly boosts sales, regardless of the actual rating assigned by the KOL. After confirming this sales boost, we use random forest regression to predict sales using KOL review characteristics, including text. It is found that the number of KOL reviews as the most influential feature in predicting sales. This research contributes to the existing literature by adding a more granular, holistic investigation into KOLs in online consumer review communities. C1 [Ping, Yanni] St Johns Univ, Peter J Tobin Coll Business, Dept Business Analyt & Informat Syst, Queens, NY 11439 USA. [Hill, Chelsey] Montclair State Univ, Feliciano Sch Business, Dept Informat Management & Business Analyt, Montclair, NJ 07043 USA. [Zhu, Yun] St Johns Univ, Peter J Tobin Coll Business, Dept Econ & Finance, Queens, NY 11439 USA. [Fresneda, Jorge] New Jersey Inst Technol, Martin Tuchman Sch Management, Dept Mkt, Newark, NJ 07103 USA. C3 Saint John's University; Montclair State University; Saint John's University; New Jersey Institute of Technology RP Ping, YN (autor correspondiente), St Johns Univ, Peter J Tobin Coll Business, Dept Business Analyt & Informat Syst, Queens, NY 11439 USA. EM pingy@stjohns.edu; hillc@montclair.edu; zhuy@stjohns.edu; fresneda@njit.edu RI Hill, Chelsey/JJF-2157-2023 OI Hill, Chelsey/0000-0003-3417-3121; Fresneda, Jorge Eduardo/0000-0001-9985-8362 CR Agnihotri A, 2016, PSYCHOL MARKET, V33, P1006, DOI 10.1002/mar.20934 Aral S, 2011, MANAGE SCI, V57, P1623, DOI 10.1287/mnsc.1110.1421 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Austin PC, 2015, STAT MED, V34, P3661, DOI 10.1002/sim.6607 Ba SL, 2002, MIS QUART, V26, P243, DOI 10.2307/4132332 Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Bamakan SMH, 2019, EXPERT SYST APPL, V115, P200, DOI 10.1016/j.eswa.2018.07.069 Banerjee S, 2017, DECIS SUPPORT SYST, V96, P17, DOI 10.1016/j.dss.2017.01.006 Bapna R, 2018, MIS QUART, V42, P719, DOI 10.25300/MISQ/2018/13592 BasuMallick C., 2020, YELP VS GOOGLE WHICH Bennett P., 1999, Risk Communication and Public Health, P3, DOI DOI 10.1093/ACPROF:OSO/9780199562848.001.0001 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Casalo LV, 2020, J BUS RES, V117, P510, DOI 10.1016/j.jbusres.2018.07.005 Chen P.-Y., 2008, ALL REV ARE NOT CREA Chen Z, 2013, J MARKETING RES, V50, P463, DOI 10.1509/jmr.12.0063 Cheng LC, 2020, ELECTRON COMMER RES, V20, P807, DOI 10.1007/s10660-019-09332-z Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chong AYL, 2016, INT J OPER PROD MAN, V36, P358, DOI 10.1108/IJOPM-03-2015-0151 CHOWDHRY K, 1952, J ABNORM SOC PSYCH, V47, P51, DOI 10.1037/h0056411 Chua AYK, 2015, J ASSOC INF SCI TECH, V66, P354, DOI 10.1002/asi.23180 Cui G, 2012, INT J ELECTRON COMM, V17, P39, DOI 10.2753/JEC1086-4415170102 Dai WJ, 2018, QME-QUANT MARK ECON, V16, P289, DOI 10.1007/s11129-017-9194-9 De Langhe B, 2016, J CONSUM RES, V42, P817, DOI 10.1093/jcr/ucv047 Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 Fang B, 2016, TOURISM MANAGE, V52, P498, DOI 10.1016/j.tourman.2015.07.018 Floyd K, 2014, J RETAILING, V90, P217, DOI 10.1016/j.jretai.2014.04.004 Folse JAG, 2016, PSYCHOL MARKET, V33, P747, DOI 10.1002/mar.20914 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469 Goldsmith RE, 2000, J ADVERTISING, V29, P43, DOI 10.1080/00913367.2000.10673616 Hass R.G., 1981, COGNITIVE RESPONSES, V1st Hastie T., 2009, ELEMENTS STAT LEARNI, V2, P1, DOI DOI 10.1007/978-0-387-84858-7 He JX, 2020, DECIS SUPPORT SYST, V132, DOI 10.1016/j.dss.2020.113281 Heckman JJ, 1998, REV ECON STUD, V65, P261, DOI 10.1111/1467-937X.00044 Hong H, 2017, DECIS SUPPORT SYST, V102, P1, DOI 10.1016/j.dss.2017.06.007 Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Jiménez FR, 2013, J INTERACT MARK, V27, P226, DOI 10.1016/j.intmar.2013.04.004 Karimi S, 2017, DECIS SUPPORT SYST, V96, P39, DOI 10.1016/j.dss.2017.02.001 Kim JM, 2018, J INTERACT MARK, V43, P134, DOI 10.1016/j.intmar.2018.05.002 Kirmani A, 2000, J MARKETING, V64, P66, DOI 10.1509/jmkg.64.2.66.18000 Lee J, 2019, INT J ELECTRON COMM, V23, P595, DOI 10.1080/10864415.2019.1655207 Lee SG, 2018, J COMPUT INFORM SYST, V58, P344, DOI 10.1080/08874417.2016.1275954 Liu Y, 2008, IEEE DATA MINING, P443, DOI 10.1109/ICDM.2008.94 Liu ZW, 2015, TOURISM MANAGE, V47, P140, DOI 10.1016/j.tourman.2014.09.020 Lorla S., 2020, TEXTBLOB DOCUMENTATI Lu SY, 2018, J INTERACT MARK, V44, P17, DOI 10.1016/j.intmar.2018.05.005 Lu XH, 2013, INFORM SYST RES, V24, P596, DOI 10.1287/isre.1120.0454 Luca M., 2012, SSRN ELECT J Lyu W., 2022, ELECTRON COMMER RES, V1, P34 Mariani MM, 2020, INT J ELECTRON COMM, V24, P421, DOI 10.1080/10864415.2020.1806464 Ngo-Ye TL, 2014, DECIS SUPPORT SYST, V61, P47, DOI 10.1016/j.dss.2014.01.011 Ögüt H, 2012, SERV IND J, V32, P197, DOI 10.1080/02642069.2010.529436 Pavlou PA, 2006, INFORM SYST RES, V17, P392, DOI 10.1287/isre.1060.0106 Pearl J, 2009, STAT SURV, V3, P96, DOI 10.1214/09-SS057 Pranata I, 2016, ELECTRON COMMER R A, V20, P30, DOI 10.1016/j.elerap.2016.09.005 Rocks N., 2015, WHY WE CREATED YELP Rosario AB, 2016, J MARKETING RES, V53, P297, DOI 10.1509/jmr.14.0380 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Salesbacker, 2015, STEP BY STEP GUID GE Shadish W.R., 2002, STAT CONCLUSION VALI Shan Y, 2016, COMPUT HUM BEHAV, V55, P633, DOI 10.1016/j.chb.2015.10.013 Srivastava V, 2019, J INTERACT MARK, V48, P33, DOI 10.1016/j.intmar.2018.12.003 Stuart EA, 2013, J CLIN EPIDEMIOL, V66, pS84, DOI 10.1016/j.jclinepi.2013.01.013 Tobon S, 2021, J THEOR APPL EL COMM, V16, P748, DOI 10.3390/jtaer16040043 Wang X, 2019, INT J HOSP MANAG, V77, P438, DOI 10.1016/j.ijhm.2018.08.007 Weathers D, 2015, DECIS SUPPORT SYST, V79, P12, DOI 10.1016/j.dss.2015.07.009 Willemsen LM, 2012, J COMPUT-MEDIAT COMM, V18, P16, DOI 10.1111/j.1083-6101.2012.01598.x Xu KQ, 2017, MANAGE SCI, V63, P1469, DOI 10.1287/mnsc.2015.2406 Xu Q, 2014, COMPUT HUM BEHAV, V33, P136, DOI 10.1016/j.chb.2014.01.027 Yang J, 2016, DECIS SUPPORT SYST, V89, P66, DOI 10.1016/j.dss.2016.06.009 Yang J, 2012, EUR J MARKETING, V46, P1523, DOI 10.1108/03090561211259961 Ye Q, 2009, INT J HOSP MANAG, V28, P180, DOI 10.1016/j.ijhm.2008.06.011 Yu C, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0252157 Zhang MY, 2020, DECIS SUPPORT SYST, V128, DOI 10.1016/j.dss.2019.113158 Zhang XF, 2016, ONLINE INFORM REV, V40, P119, DOI 10.1108/OIR-04-2015-0101 Zhu L, 2014, J ELECTRON COMMER RE, V15, P267 NR 78 TC 0 Z9 0 U1 7 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD SEP PY 2023 VL 23 IS 3 SI SI BP 1459 EP 1484 DI 10.1007/s10660-022-09650-9 EA DEC 2022 PG 26 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA S4MI7 UT WOS:000896504100002 DA 2024-03-27 ER PT J AU Hossain, MA Agnihotri, R Rushan, MRI Rahman, MS Sumi, SF AF Hossain, Md Afnan Agnihotri, Raj Rushan, Md Rifayat Islam Rahman, Muhammad Sabbir Sumi, Sumaiya Farhana TI Marketing analytics capability, artificial intelligence adoption, and firms? competitive advantage: Evidence from the manufacturing industry SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Marketing analytics capability; AI adoption; Market sensing; Market seizing; Market reconfiguration; Manufacturing industry; B2B export market ID BIG-DATA ANALYTICS; RESOURCE-BASED VIEW; BUSINESS MODEL INNOVATION; DYNAMIC CAPABILITIES; SOCIAL MEDIA; SENSING CAPABILITY; DECISION-MAKING; FINANCIAL PERFORMANCE; ORIENTATION; OPERATIONS AB Data-driven analytics and artificial intelligence (AI) have become the most crucial aspects of today's industrial marketing management. Although many firms have embraced analytics and AI strategies, corresponding academic advances have been slow. This research investigates how industrial goods manufacturers sustain their competitive advantage in export markets, convincing buyers in a competitive data-rich business environment. The evidence has been taken from the RMG (readymade garment) industry, one of the largest manufacturing industries significantly attached to the export markets. Utilizing multi-phase research design, the study reveals that firms marketing analytics capability play a vital role in sensing, seizing, and reconfiguring the market, consequently leading to a sustained competitive advantage. The performance of sensing, seizing, and reconfiguring becomes higher for a firm when they adopt AI on the strength of the marketing analytics platform. These findings exhibit the latest avenue of exploration within marketing analytics and AI's academic research paradigm. Further, in practice, managers will be aware of the facts that create resilience in this specific industry context. C1 [Hossain, Md Afnan] Univ Wollongong, Sch Business, Wollongong, NSW 2522, Australia. [Agnihotri, Raj] Iowa State Univ, Ivy Coll Business, Dept Mkt, Ames, IA 50011 USA. [Rushan, Md Rifayat Islam] Univ Manchester, Alliance Manchester Business Sch, Manchester M15 6PB, Lancs, England. [Hossain, Md Afnan; Rahman, Muhammad Sabbir] North South Univ, Sch Business & Econ, Dept Mkt & Int Business, Dhaka 1229, Bangladesh. [Sumi, Sumaiya Farhana] Univ Dhaka, Dhaka 1000, Bangladesh. [Hossain, Md Afnan] Univ Melbourne, Fac Business & Econ, Dept Management & Mkt, Melbourne, Vic 3010, Australia. C3 University of Wollongong; Iowa State University; University of Manchester; Alliance Manchester Business School; North South University (NSU); University of Dhaka; University of Melbourne RP Agnihotri, R (autor correspondiente), Iowa State Univ, Ivy Coll Business, Dept Mkt, Ames, IA 50011 USA. EM mah619@uowmail.edu.au; raj2@iastate.edu; rifayat.islam@postgrad.manchester.ac.uk; rahman.sabbir@northsouth.edu; ssumaiyafarhana@gmail.com RI Rushan, Rifayat Islam/AAT-7796-2020; Rahman, Muhammad Sabbir/G-3968-2018; Hossain, Dr Md Afnan/M-6626-2017; N'Dri, Amoin Bernadine/IWD-7811-2023 OI Rushan, Rifayat Islam/0000-0001-5294-7253; Hossain, Dr Md Afnan/0000-0003-2954-1823; CR Addo PC, 2022, J MARKET THEORY PRAC, V30, P405, DOI 10.1080/10696679.2022.2056487 Adrodegari F, 2015, PROC CIRP, V30, P245, DOI 10.1016/j.procir.2015.02.105 Agnihotri R., 2021, A Research Agenda for Sales Agnihotri R, 2020, IND MARKET MANAG, V90, P291, DOI 10.1016/j.indmarman.2020.07.017 Ahaskar A., 2019, MINT Akter S, 2021, IND MARKET MANAG, V97, P258, DOI 10.1016/j.indmarman.2021.07.014 Akter S, 2021, INT MARKET REV, V38, P927, DOI 10.1108/IMR-11-2020-0256 Akter S, 2020, TECHNOL FORECAST SOC, V159, DOI 10.1016/j.techfore.2020.120180 Akter S, 2022, ANN OPER RES, V308, P7, DOI 10.1007/s10479-020-03620-w Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018 Ali SM, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114690 Alinaghian L, 2020, IND MARKET MANAG, V85, P110, DOI 10.1016/j.indmarman.2019.10.003 Ambrosini V, 2009, BRIT J MANAGE, V20, pS9, DOI 10.1111/j.1467-8551.2008.00610.x Amin A., 2022, NEW NATION AMIT R, 1993, STRATEGIC MANAGE J, V14, P33, DOI 10.1002/smj.4250140105 [Anonymous], 2021, Forbes [Anonymous], 2019, SAMAKAL NEWS [Anonymous], 2019, BBC NEWS [Anonymous], 2012, Mining Text Data, DOI [DOI 10.1007/978-1-4614-3223-4, DOI 10.1007/978-1-4614-3223-4_1, 10.1007/978-1-4614-3223-4_1] [Anonymous], 2018, RMG TIMES Apparel-Online, 2016, DEN SHOWS TOPP ONC A Auh S, 2009, IND MARKET MANAG, V38, P757, DOI 10.1016/j.indmarman.2008.02.011 Aydiner AS, 2019, J BUS RES, V96, P228, DOI 10.1016/j.jbusres.2018.11.028 Baabdullah AM, 2021, IND MARKET MANAG, V98, P255, DOI 10.1016/j.indmarman.2021.09.003 Bag S, 2021, IND MARKET MANAG, V92, P178, DOI 10.1016/j.indmarman.2020.12.001 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Barrie Leonie., 2019, Just Style Battistella C, 2017, J BUS RES, V73, P65, DOI 10.1016/j.jbusres.2016.12.007 Benitez J, 2018, INFORM MANAGE-AMSTER, V55, P131, DOI 10.1016/j.im.2017.09.004 Berg A, 2021, What's Next for Bangladesh's Garment Industry, after a Decade of Growth? Bertello A, 2021, J MANAG GOV, V25, P1035, DOI 10.1007/s10997-020-09542-w Bharadwaj N, 2014, J PROD INNOVAT MANAG, V31, P799, DOI 10.1111/jpim.12124 BHARADWAJ SG, 1993, J MARKETING, V57, P83, DOI 10.2307/1252221 Bordeleau FE, 2020, PROD PLAN CONTROL, V31, P173, DOI 10.1080/09537287.2019.1631458 Brynjolfsson E., 2017, Harvard Business Review, V95, P3 Business and Human Rights Resource Centre, 2020, 7 FASH BRANDS MAD BA Cao GM, 2019, IND MARKET MANAG, V76, P72, DOI 10.1016/j.indmarman.2018.08.002 Capron L, 1999, J MARKETING, V63, P41, DOI 10.2307/1251944 Chaudhary S, 2020, INT J ENG BUS MANAG, V12, DOI 10.1177/1847979020975528 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Colombi C, 2018, RES J TEXT APPAR, V22, P390, DOI 10.1108/RJTA-03-2018-0019 Conboy K, 2020, EUR J OPER RES, V281, P656, DOI 10.1016/j.ejor.2019.06.051 Cosic R, 2015, AUSTRALAS J INF SYST, V19, pS5 Coughlin T, 2018, 175 Zettabytes By 2025 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davenport TH, 2018, HARVARD BUS REV, V96, P108 DAY GS, 1994, J MARKETING, V58, P37, DOI 10.2307/1251915 De Luca LM, 2021, J ACAD MARKET SCI, V49, P790, DOI 10.1007/s11747-020-00739-x De Silva M, 2021, J BUS RES, V125, P733, DOI 10.1016/j.jbusres.2019.12.030 Delen D, 2018, J BUS ANAL, V1, P2, DOI 10.1080/2573234X.2018.1507324 Dong JQ, 2019, TECHNOL FORECAST SOC, V146, P923, DOI 10.1016/j.techfore.2018.07.050 Doshi Y., 2021, THAIL SKIN CAR PROD Durmusoglu SS, 2021, IND MARKET MANAG, V93, P250, DOI 10.1016/j.indmarman.2021.01.014 Ebbes P, 2005, QME-QUANT MARK ECON, V3, P365, DOI 10.1007/s11129-005-1177-6 Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E Elia S, 2021, J BUS RES, V132, P158, DOI 10.1016/j.jbusres.2021.04.010 Endres H, 2020, IND MARKET MANAG, V90, P30, DOI 10.1016/j.indmarman.2020.06.004 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Farrokhi A, 2020, IND MARKET MANAG, V91, P257, DOI 10.1016/j.indmarman.2020.09.015 Fethi MD, 2010, EUR J OPER RES, V204, P189, DOI 10.1016/j.ejor.2009.08.003 Finney RZ, 2008, J BUS RES, V61, P925, DOI 10.1016/j.jbusres.2007.09.023 Fischer T, 2010, J SERV MANAGE, V21, P591, DOI 10.1108/09564231011079066 Fox R., 2018, Geek meets chic: Four actions to jump-start advanced analytics in apparel Gaudenzi B, 2021, IND MARKET MANAG, V93, P124, DOI 10.1016/j.indmarman.2020.12.016 Germann F, 2013, INT J RES MARK, V30, P114, DOI 10.1016/j.ijresmar.2012.10.001 Giri C., 2019, FUNCTIONAL TEXTILES, P349 Greenley GE, 2005, J BUS RES, V58, P1483, DOI 10.1016/j.jbusres.2004.07.004 Gu Y., 2021, Gearing Up for the Future of Manufacturing in Bangladesh Gupta S, 2020, IND MARKET MANAG, V90, P581, DOI 10.1016/j.indmarman.2019.11.009 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hanssens DM, 2016, J MARKETING, V80, P173, DOI 10.1509/jm.15.0417 Hayes AF, 2011, COMMUN SER, P434 Helfat C.E., 2009, Dynamic capabilities: undrestanding strategic change in organizations, P1 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Heusinkveld S, 2009, TECHNOVATION, V29, P509, DOI 10.1016/j.technovation.2009.02.003 Hossain M. A., 2020, TECHNOLOGICAL INNOVA, P117, DOI [10.4018/978-1-5225-9940-1.ch001, DOI 10.4018/978-1-5225-9940-1.CH001] Hossain MA, 2021, J BUS RES, V131, P287, DOI 10.1016/j.jbusres.2021.03.063 Hossain MA, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102187 Hsu LC, 2012, BRIT J MANAGE, V23, P179, DOI 10.1111/j.1467-8551.2010.00718.x Hughes P, 2019, IND MARKET MANAG, V83, P59, DOI 10.1016/j.indmarman.2018.11.005 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Iacobucci D, 2019, J MARK ANAL, V7, P152, DOI 10.1057/s41270-019-00059-2 Inigo EA, 2017, IND INNOV, V24, P515, DOI 10.1080/13662716.2017.1310034 JAWORSKI BJ, 1993, J MARKETING, V57, P53, DOI 10.2307/1251854 Jin BE, 2021, FASH TEXT, V8, DOI 10.1186/s40691-021-00259-4 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Keegan BJ, 2022, IND MARKET MANAG, V100, P36, DOI 10.1016/j.indmarman.2021.11.001 Khan O, 2021, J CLEAN PROD, V287, DOI 10.1016/j.jclepro.2020.125565 Kozjek D, 2020, INT J COMPUT INTEG M, V33, P169, DOI 10.1080/0951192X.2020.1718765 Kozlenkova IV, 2014, J ACAD MARKET SCI, V42, P1, DOI 10.1007/s11747-013-0336-7 Kumar V., 2017, APPL MARKETING ANAL, V3, P58 Kushwaha AK, 2021, IND MARKET MANAG, V98, P207, DOI 10.1016/j.indmarman.2021.08.011 Lay R., 2018, Digital transformation. The ultimate challenge for the fashion industry Lee JM, 2021, J WORLD BUS, V56, DOI 10.1016/j.jwb.2021.101193 Lilien GL, 2011, J MARKETING, V75, P196, DOI 10.1509/jmkg.75.4.196 Lin JH, 2015, ASIA PAC MANAG REV, V20, P141, DOI 10.1016/j.apmrv.2014.12.013 Lütjen H, 2019, J BUS RES, V104, P506, DOI 10.1016/j.jbusres.2019.06.001 Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001 McKinsey Analytics, 2020, ACC AN NAV COVID 19 Michailova S, 2015, J WORLD BUS, V50, P576, DOI 10.1016/j.jwb.2014.10.001 Mikalef P., 2017, P BIG DAT AN CAP ANT Mikalef P, 2021, IND MARKET MANAG, V98, P80, DOI 10.1016/j.indmarman.2021.08.003 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2020.103412 Mikalef P, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.004 Moktadir MA, 2018, J CLEAN PROD, V174, P1366, DOI 10.1016/j.jclepro.2017.11.063 Moorman C, 2016, J ACAD MARKET SCI, V44, P562, DOI 10.1007/s11747-016-0483-8 Morash EA, 2002, J INT MARKETING, V10, P25, DOI 10.1509/jimk.10.1.25.19529 Mousavi S, 2017, J CLEAN PROD, V167, P1263, DOI 10.1016/j.jclepro.2017.07.146 Nath P, 2010, IND MARKET MANAG, V39, P317, DOI 10.1016/j.indmarman.2008.09.001 Ou YC, 2017, J ACAD MARKET SCI, V45, P336, DOI 10.1007/s11747-016-0477-6 Paiola M, 2020, IND MARKET MANAG, V89, P245, DOI 10.1016/j.indmarman.2020.03.009 Partida D., 2022, TECHNOLOGY Pereira V, 2021, J BUS RES, V132, P557, DOI 10.1016/j.jbusres.2021.04.021 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Rahman MS, 2022, J ENTERP INF MANAG, V35, P455, DOI 10.1108/JEIM-05-2020-0185 Rahman MS, 2022, INFORM TECHNOL PEOPL, V35, P316, DOI 10.1108/ITP-12-2019-0621 Randhawa K, 2021, J BUS RES, V130, P618, DOI 10.1016/j.jbusres.2020.05.046 Ravi R, 2021, FASHION IS REVAMPING Safari A, 2020, J BUS IND MARK, V35, P635, DOI 10.1108/JBIM-11-2018-0324 Saha K, 2021, BUS STRATEG ENVIRON, V30, P1497, DOI 10.1002/bse.2670 Sarkar M, 2021, J INTERACT MARK, V53, P80, DOI 10.1016/j.intmar.2020.07.002 Schmelzer R., 2019, 5 BENEFITS BANKING I Seagate, 2021, SEAGATE REPORT Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Silva E.S., 2019, Journal of Business Strategy, DOI [DOI 10.1108/JBS-04-2019-0062, 10.1108/JBS-04-2019-0062] Slater SF, 2000, J ACAD MARKET SCI, V28, P120, DOI 10.1177/0092070300281011 Song M, 2007, J ACAD MARKET SCI, V35, P18, DOI 10.1007/s11747-006-0005-1 Song PJ, 2018, INFORM MANAGE-AMSTER, V55, P633, DOI 10.1016/j.im.2018.01.004 Stahl BC, 2021, J BUS RES, V124, P374, DOI 10.1016/j.jbusres.2020.11.030 Statista, 2021, TECH OV RMG Swazan I.S., 2022, INT J GLOB BUS COMPE, P1 Tan FTC, 2016, INFORM MANAGE-AMSTER, V53, P878, DOI 10.1016/j.im.2016.07.002 Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640 Teece DJ, 2018, LONG RANGE PLANN, V51, P40, DOI 10.1016/j.lrp.2017.06.007 Teece DJ, 2014, J INT BUS STUD, V45, P8, DOI 10.1057/jibs.2013.54 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Thomassey S, 2018, SPR SER FASH BUS, P1, DOI 10.1007/978-981-13-0080-6_1 Trainor KJ, 2014, J BUS RES, V67, P1201, DOI 10.1016/j.jbusres.2013.05.002 Tupikovskaja-Omovie Z, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102294 Uddin M., 2018, DAILY STAR Urban G, 2020, MIT SLOAN MANAGE REV, V61, P71 Wade M, 2004, MIS QUART, V28, P107 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wang CL, 2007, INT J MANAG REV, V9, P31, DOI 10.1111/j.1468-2370.2007.00201.x Wang Z, 2017, J INTERACT MARK, V39, P15, DOI [10.13393/j.cnki.issn.1672-948X.2017.03.004, 10.1016/j.intmar.2017.02.004] Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Weinberg BD, 2015, BUS HORIZONS, V58, P615, DOI 10.1016/j.bushor.2015.06.005 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Wiggers K., 2022, TECH CRUNCH Wilden R, 2019, IND MARKET MANAG, V83, P21, DOI 10.1016/j.indmarman.2018.11.001 World Trade Organization, 2021, World Trade Statistics Review 2021 Wu LY, 2010, J BUS RES, V63, P27, DOI 10.1016/j.jbusres.2009.01.007 Xu ZN, 2016, J BUS RES, V69, P1562, DOI 10.1016/j.jbusres.2015.10.017 Cai YJ, 2020, EUR J OPER RES, V298, P169, DOI 10.1016/j.ejor.2021.05.021 Yalcin AS, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121193 Yasmin M, 2020, J BUS RES, V114, P1, DOI 10.1016/j.jbusres.2020.03.028 Yu WT, 2014, IND MARKET MANAG, V43, P25, DOI 10.1016/j.indmarman.2013.07.014 Zhang HS, 2020, IND MARKET MANAG, V86, DOI 10.1016/j.indmarman.2019.02.020 Zhou KZ, 2010, J BUS RES, V63, P224, DOI 10.1016/j.jbusres.2009.03.003 NR 159 TC 21 Z9 21 U1 61 U2 177 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD OCT PY 2022 VL 106 BP 240 EP 255 DI 10.1016/j.indmarman.2022.08.017 EA SEP 2022 PG 16 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 4N9ND UT WOS:000854337800002 DA 2024-03-27 ER PT J AU Yuan, YP Tan, GWH Ooi, KB AF Yuan, Yun-Peng Tan, Garry Wei-Han Ooi, Keng-Boon TI Does COVID-19 Pandemic Motivate Privacy Self-Disclosure in Mobile Fintech Transactions? A Privacy-Calculus-Based Dual-Stage SEM-ANN Analysis SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Privacy; Pandemics; COVID-19; Decision making; Appraisal; Calculus; Psychology; Artificial neural network (ANN); control agency theory; coronavirus disease 2019 (COVID-19); mobile commerce; mobile financial technology; partial least squares structural equation modeling; privacy calculus ID PROTECTION MOTIVATION; INFORMATION PRIVACY; FEAR APPEALS; E-COMMERCE; RISK; DETERMINANTS; ANTECEDENTS; INTENTION; EPIDEMIC; EFFICACY AB The emergence of mobile financial technology (mobile fintech) services raises numerous public concerns regarding privacy issues; consequently, researchers in mobile technology acceptance have focused on consumers' privacy self-disclosure behaviors under the usual scenario. However, there is still a lack of understanding on how external influences, such as a public health crisis, affect consumers' privacy decision-making process. Therefore, in this article, we examine the effects of privacy- and pandemic-related antecedents on mobile fintech users' information self-disclosure behavior during the coronavirus disease 2019 pandemic. The present research adopts a self-administered questionnaire with 712 effective responses for data collection and a two-stage partial least squares-structural equation modeling-artificial neural network (PLS-SEM-ANN) approach to test the theoretical lens proposed. The results indicate that the significant structural paths in the model are consistent with the proposed hypotheses and existing literature. Surprisingly, face-to-face avoidance (FFA) does not significantly influence consumers' self-disclosure willingness. Infection severity and infection susceptibility were insignificant with FFA. The present research is the first to investigate consumers' privacy-related behavior via integrating the privacy-calculus framework with control agency theory. This research focuses on consumers' decision-making during the pandemic, explicitly highlighting the macroenvironment's role in influencing an individual's behavior. C1 [Yuan, Yun-Peng; Tan, Garry Wei-Han; Ooi, Keng-Boon] UCSI Univ, UCSI Grad Business Sch, Kuala Lumpur 56000, Malaysia. [Tan, Garry Wei-Han; Ooi, Keng-Boon] Nanchang Inst Technol, Sch Finance & Econ, Nanchang 330029, Jiangxi, Peoples R China. [Tan, Garry Wei-Han] Yunnan Normal Univ, Sch Econ & Management, Kunming 650092, Yunnan, Peoples R China. [Ooi, Keng-Boon] Chang Jung Christian Univ, Coll Management, Tainan 711301, Taiwan. C3 UCSI University; Nanchang Institute Technology; Yunnan Normal University RP Tan, GWH (autor correspondiente), UCSI Univ, UCSI Grad Business Sch, Kuala Lumpur 56000, Malaysia. EM yunpeng_yuan@163.com; fowler_1982@yahoo.com; ooikengboon@gmail.com RI OOI, Keng-Boon/I-4143-2019; Tan Wei Han, Garry/C-6565-2011 OI OOI, Keng-Boon/0000-0002-3384-1207; Tan Wei Han, Garry/0000-0003-2974-2270; Yuan, Yunpeng/0000-0002-6589-5568 CR Adam I, 2015, TOURISM MANAGE, V49, P99, DOI 10.1016/j.tourman.2015.02.016 Al-Saedi K., 2019, 2019 INT C 4 IND REV, P1, DOI DOI 10.1109/ICFIR.2019.8894794 Al-Sharafi MA, 2022, INT J BANK MARK, V40, P1071, DOI 10.1108/IJBM-07-2021-0291 Altman I., 1973, Social penetration: The development of interpersonal relationships [Anonymous], 2021, 47 CHIN INT NETW INF Bandura A, 2001, ANNU REV PSYCHOL, V52, P1, DOI 10.1146/annurev.psych.52.1.1 Bauer R.A., 1967, RISK TAKING INFORM H, P23 Boss SR, 2015, MIS QUART, V39, P837, DOI 10.25300/MISQ/2015/39.4.5 Bulgurcu B, 2010, MIS QUART, V34, P523 Cao Y. Q., 2021, CHINA DAILY AUG Chen CY, 2020, INFORM SYST J, V30, P492, DOI 10.1111/isj.12264 Cho J, 2006, J RETAILING, V82, P25, DOI 10.1016/j.jretai.2005.11.002 Chong AYL, 2013, EXPERT SYST APPL, V40, P1240, DOI 10.1016/j.eswa.2012.08.067 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 COLLINS NL, 1994, PSYCHOL BULL, V116, P457, DOI 10.1037/0033-2909.116.3.457 Cui, 2018, SOHU JAN DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 De Meulenaer S, 2018, HEALTH COMMUN, V33, P291, DOI 10.1080/10410236.2016.1266573 Dinev T, 2006, INFORM SYST RES, V17, P61, DOI 10.1287/isre.1060.0080 Dinev T, 2013, EUR J INFORM SYST, V22, P295, DOI 10.1057/ejis.2012.23 Eichelberger L, 2007, SOC SCI MED, V65, P1284, DOI 10.1016/j.socscimed.2007.04.022 Fixson SK, 2017, IEEE T ENG MANAGE, V64, P16, DOI 10.1109/TEM.2016.2638847 Floyd DL, 2000, J APPL SOC PSYCHOL, V30, P407, DOI 10.1111/j.1559-1816.2000.tb02323.x Foo PY, 2018, EXPERT SYST APPL, V107, P1, DOI 10.1016/j.eswa.2018.04.013 Fu Y., 2020, QIANZHAN OCT Gao YW, 2015, IND MANAGE DATA SYST, V115, P1704, DOI 10.1108/IMDS-03-2015-0087 García-Milon A, 2021, TOURISM MANAGE, V87, DOI 10.1016/j.tourman.2021.104361 Gong X, 2020, INFORM TECHNOL PEOPL, V33, P1174, DOI 10.1108/ITP-03-2018-0132 Gong X, 2020, INT J INFORM MANAGE, V50, P310, DOI 10.1016/j.ijinfomgt.2019.08.006 Goode, 2021, BIOMETRIC TECHNOL TO, V2021, P7, DOI [10.1016/S0969-4765(21)00083-7, DOI 10.1016/S0969-4765(21)00083-7] Hair J.F., 2009, Multivariate data analysis Hajli N, 2017, IEEE T ENG MANAGE, V64, P594, DOI 10.1109/TEM.2017.2711042 Haykin S., 1994, Neural Network: A Comprehensive Foundation, V5, P363 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Hew TS, 2016, J COMPUT INFORM SYST, V56, P352, DOI 10.1080/08874417.2016.1164497 Jayanti RK, 1998, J ACAD MARKET SCI, V26, P6, DOI 10.1177/0092070398261002 Jiang Z, 2013, INFORM SYST RES, V24, P579, DOI 10.1287/isre.1120.0441 Jung Y, 2018, INT J INFORM MANAGE, V43, P15, DOI 10.1016/j.ijinfomgt.2018.05.007 Keller PA, 2006, J CONSUM RES, V33, P109, DOI 10.1086/504141 Lankton NK, 2020, IEEE T ENG MANAGE, V67, P697, DOI 10.1109/TEM.2019.2893541 LAUFER RS, 1977, J SOC ISSUES, V33, P22, DOI 10.1111/j.1540-4560.1977.tb01880.x Lee VH, 2020, EXPERT SYST APPL, V157, DOI 10.1016/j.eswa.2020.113477 Lee YK, 2012, J BUS RES, V65, P1590, DOI 10.1016/j.jbusres.2011.02.044 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Li Y, 2020, INTERNET RES, V30, P511, DOI 10.1108/INTR-02-2018-0066 Liang HG, 2007, MIS QUART, V31, P59 Liu N, 2017, IEEE T ENG MANAGE, V64, P529, DOI 10.1109/TEM.2017.2703121 Liu ZL, 2016, INFORM MANAGE-AMSTER, V53, P53, DOI 10.1016/j.im.2015.08.006 Loh XM, 2021, INTERNET RES, V31, P376, DOI 10.1108/INTR-04-2020-0175 Lwin MO, 2010, HEALTH COMMUN, V25, P69, DOI 10.1080/10410230903473540 Ma XF, 2021, COMPUT HUM BEHAV, V124, DOI 10.1016/j.chb.2021.106928 MADDUX JE, 1983, J EXP SOC PSYCHOL, V19, P469, DOI 10.1016/0022-1031(83)90023-9 Martin K, 2016, J ASSOC INF SCI TECH, V67, P1871, DOI 10.1002/asi.23500 Masser BM, 2011, TRANSFUSION, V51, P548, DOI 10.1111/j.1537-2995.2010.02887.x McKnight D. H., 2002, Information Systems Research, V13, P334, DOI 10.1287/isre.13.3.334.81 Mcknight DH, 1998, ACAD MANAGE REV, V23, P473, DOI 10.5465/AMR.1998.926622 Menard P, 2017, J MANAGE INFORM SYST, V34, P1203, DOI 10.1080/07421222.2017.1394083 Milne S, 2000, J APPL SOC PSYCHOL, V30, P106, DOI 10.1111/j.1559-1816.2000.tb02308.x Min J, 2016, J ASSOC INF SCI TECH, V67, P26, DOI 10.1002/asi.23376 Mutimukwe C, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2019.101413 Olya HGT, 2018, TOURISM MANAGE, V65, P279, DOI 10.1016/j.tourman.2017.10.015 Ooi KB, 2021, IND MANAGE DATA SYST, V121, P312, DOI 10.1108/IMDS-04-2020-0239 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Person B, 2004, EMERG INFECT DIS, V10, P358, DOI 10.3201/eid1002.030750 Posey C, 2015, J MANAGE INFORM SYST, V32, P179, DOI 10.1080/07421222.2015.1138374 Rogers R.W., 1983, SOCIAL PSYCHOPHYSIOL, P153 ROGERS RW, 1975, J PSYCHOL, V91, P93, DOI 10.1080/00223980.1975.9915803 Shao Z, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.100823 Shih PH, 2018, KYBERNETES, V47, P539, DOI 10.1108/K-12-2016-0354 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Son JY, 2008, MIS QUART, V32, P503 STRONG P, 1990, SOCIOL HEALTH ILL, V12, P249, DOI 10.1111/1467-9566.ep11347150 Teo AC, 2015, INT J MOB COMMUN, V13, P478, DOI 10.1504/IJMC.2015.070961 Teo AC, 2015, IND MANAGE DATA SYST, V115, P311, DOI 10.1108/IMDS-08-2014-0231 Tew HT, 2022, J COMPUT INFORM SYST, V62, P527, DOI 10.1080/08874417.2020.1858731 Wang HY, 2017, CURR ISSUES TOUR, V20, P459, DOI 10.1080/13683500.2015.1062471 Wang JG, 2017, INFORM SYST RES, V28, P378, DOI 10.1287/isre.2016.0680 Wang L, 2019, INFORM MANAGE-AMSTER, V56, DOI 10.1016/j.im.2019.02.005 Wang ST, 2020, INT J BANK MARK, V38, P21, DOI 10.1108/IJBM-10-2018-0272 Wang ZN, 2019, IND MANAGE DATA SYST, V119, P1625, DOI 10.1108/IMDS-01-2019-0011 Wen H, 2022, J HOSP TOUR MANAG, V51, DOI 10.1016/j.jhtm.2022.03.009 Wheeless L.R., 1976, Human Communication Research, V3, P47 Wilson RD, 2019, J BUS IND MARK, V35, P495, DOI 10.1108/JBIM-01-2019-0060 Wong CH, 2015, ONLINE INFORM REV, V39, P762, DOI 10.1108/OIR-05-2015-0152 Xiang D, 2021, IEEE T ENG MANAGE, V68, P1590, DOI 10.1109/TEM.2020.2989136 Xiu-Ming Loh, 2022, Journal of Computer Information Systems, V62, P39, DOI 10.1080/08874417.2019.1688733 Xu H, 2012, INFORM SYST RES, V23, P1342, DOI 10.1287/isre.1120.0416 Xu H, 2011, J ASSOC INF SYST, V12, P798 Xu H, 2011, DECIS SUPPORT SYST, V51, P42, DOI 10.1016/j.dss.2010.11.017 Yan LY, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102300 Yang QW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.102065 Zheng DN, 2021, TOURISM MANAGE, V83, DOI 10.1016/j.tourman.2020.104261 Zlatolas LN, 2015, COMPUT HUM BEHAV, V45, P158, DOI 10.1016/j.chb.2014.12.012 NR 96 TC 10 Z9 10 U1 13 U2 58 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 2986 EP 3000 DI 10.1109/TEM.2022.3204285 EA SEP 2022 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA EO4E7 UT WOS:000854577000001 DA 2024-03-27 ER PT J AU Bhatnagar, S Kumra, R AF Bhatnagar, Sushant Kumra, Rajeev TI Understanding consumer motivation to share IoT products data SO JOURNAL OF INDIAN BUSINESS RESEARCH LA English DT Article DE Electronic word of thing; Internet of things; Natural language generation; eWOT; Online consumer behavior; Internet marketing ID WORD-OF-MOUTH; INTERNET; INTENTION; BEHAVIOR AB Purpose Almost every study undertaken by academicians or practitioners on the Internet of Things (IoT) has mainly highlighted the privacy concerns and information security issues with the IoT products. On the contrary, this paper aims to explore the motivators that could encourage customers of an IoT product to share their IoT product's data with a third-party aggregator system to facilitate computer-generated product reviews which are defined as electronic Word of Thing (eWOT) in this paper. Design/methodology/approach An experiment was conducted with customized e-commerce prototypes of eWOT. Structural equation modeling analysis was conducted to test the measurement model by using confirmatory factor analysis and thereafter a structural model to test the relationships amongst the latent variables. Findings This paper found that five consumer motivators (personal innovativeness, enjoyment of helping, anticipated extrinsic rewards, moral obligations and venting negative feelings) contribute to eWOT intention. Originality/value This paper presents motivators for eWOT intention to share IoT product data. This is done through a novel concept of an experimental IoT-based prototype, namely, eWOT. These eWOT reviews can be generated from the IoT products data by applying analytics and using natural language generation. To the best of the authors' knowledge, no other study has been conducted on this subject. C1 [Bhatnagar, Sushant] IIM Lucknow, Noida, India. [Kumra, Rajeev] IIM Lucknow, Dept Mkt, Noida, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Lucknow; Indian Institute of Management (IIM System); Indian Institute of Management Lucknow RP Bhatnagar, S (autor correspondiente), IIM Lucknow, Noida, India. EM efpm01018@iiml.ac.in RI Kumra, Rajeev/J-4069-2016 CR Agarwal R, 1998, INFORM SYST RES, V9, P204, DOI 10.1287/isre.9.2.204 Anderson ET, 2014, J MARKETING RES, V51, P249, DOI 10.1509/jmr.13.0209 [Anonymous], 2011, Big data: The next frontier for innovation, competition, and productivity [Anonymous], 2011, MARKETING RES APPL O [Anonymous], 2007, MULTIVARIATE DATA Ashton K., 2009, RFID J, V22, P97, DOI DOI 10.1016/J.AMJCARD.2013.11.014 Atzori L, 2014, IEEE COMMUN MAG, V52, P97, DOI 10.1109/MCOM.2014.6710070 Babbie E., 2003, The practice of social research Bagozzi R.P., 1988, COGNITION EMOTION, V12, P1 Balasubramanian S, 2001, INT J ELECTRON COMM, V5, P103 Bartoli A, 2016, LECT NOTES COMPUT SC, V9817, P19, DOI 10.1007/978-3-319-45507-5_2 Bock GW, 2005, MIS QUART, V29, P87, DOI 10.2307/25148669 Bok B.G.J., 2016, 7 IBA BACH THES C EN Bosnjak M, 2005, PSYCHOL MARKET, V22, P489, DOI 10.1002/mar.20070 Carmines E, 1981, SOCIAL MEASUREMENT C Cecchinato M.E., 2015, Proceedings of the 33rd Annual ACM Conference extended abstracts on human factors in computing systems, P2133, DOI DOI 10.1145/2702613.2732837 Cheung CMK, 2012, DECIS SUPPORT SYST, V53, P218, DOI 10.1016/j.dss.2012.01.015 Cheyer A., 2014, US Patent, Patent No. 8677377 Chin WW, 1997, INFORM SYST RES, V8, P342, DOI 10.1287/isre.8.4.342 Choi H., 2018, P 11 INT NAT LANG GE, P165 Choi J, 2016, COMPUT HUM BEHAV, V63, P777, DOI 10.1016/j.chb.2016.06.007 de Arriba-Pérez F, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16091538 Dennison G., 2009, CISC VIS NETW IND GL Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Edson B., 2015, MICROSOFT REPORT ETZIONI A, 1988, J ECON PSYCHOL, V9, P125, DOI 10.1016/0167-4870(88)90048-7 Evans H. I., 2015, INT J INFORM COMMUNI, V5 Farah M.F., 2017, J RETAILING CONSUMER, V39 Gartner, 2017, GARTN SAYS 84 BILL C Haller S, 2009, LECT NOTES COMPUT SC, V5468, P14, DOI 10.1007/978-3-642-00985-3_2 Hennig-Thurau T., 2004, Journal Interactive Marketing, V18 Hongcharu B., 2011, International Journal of Management and Information Systems, V15, P113, DOI [10.19030/ijmis.v15i4.5808, DOI 10.19030/IJMIS.V15I4.5808] Li W., 2014, PACIS 2014 P Luo XM, 2009, MARKET SCI, V28, P148, DOI 10.1287/mksc.1080.0389 Manyika J., 2015, MCKINSEY 2025 INTERN Mirkovic D., 2011, US Patent, Patent No. 8041570 Mukhopadhyay S.C., 2014, Internet of Things: Challenges and Opportunities Neisse R, 2015, 2015 IEEE 2ND WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P789, DOI 10.1109/WF-IoT.2015.7389154 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Perera C, 2015, IT PROF, V17, P32, DOI 10.1109/MITP.2015.34 Pittman D., 2013, BIG DATA RETAIL EXAM Porter G, 2015, J CRIMINOL RES POLIC, V1, DOI 10.1108/JCRPP-10-2015-0049 Porter M.E., 2014, HARVARD BUSINESS REV, V11 Presi C, 2014, EUR J MARKETING, V48, P1600, DOI 10.1108/EJM-07-2012-0400 PwC, 2014, CONS INT SER Sengul C, 2017, CONF INNOV CLOUD, P319, DOI 10.1109/ICIN.2017.7899432 Smits S.P., 2014, THESIS Sundaram DS, 1998, ADV CONSUM RES, V25, P527 Verame J.M., 2016, P 2016 CHI C HUM FAC Want R, 2015, COMPUTER, V48, P28, DOI 10.1109/MC.2015.12 Wasko MM, 2000, J STRATEGIC INF SYST, V9, P155, DOI 10.1016/S0963-8687(00)00045-7 Xia F, 2012, INT J COMMUN SYST, V25, P1101, DOI 10.1002/dac.2417 Yu J, 2005, INFORM MANAGE-AMSTER, V42, P965, DOI 10.1016/j.im.2004.11.001 NR 53 TC 5 Z9 6 U1 1 U2 10 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1755-4195 EI 1755-4209 J9 J INDIAN BUS RES JI J. Indian Bus. Res. PD JAN 25 PY 2020 VL 12 IS 1 SI SI BP 5 EP 22 DI 10.1108/JIBR-09-2019-0268 EA JAN 2020 PG 18 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA LB2NW UT WOS:000512308100001 DA 2024-03-27 ER PT J AU Cajias, M Zeitler, JA AF Cajias, Marcelo Zeitler, Joseph-Alexander TI Quantifying the drivers of residential housing demand - an interpretable machine learning approach SO JOURNAL OF EUROPEAN REAL ESTATE RESEARCH LA English DT Article DE Machine learning; eXtreme gradient boosting; Online user-generated search data; Residential real estate; German rental market; C33; C45; D83; R211 ID INTERNET SEARCH BEHAVIOR; SELLING PRICE; MARKET; TIME; EFFICIENCY; LIQUIDITY; DETERMINANTS; INFORMATION; HOT AB PurposeThe paper employs a unique online user-generated housing search dataset and introduces a novel measure for housing demand, namely "contacts per listing" as explained by hedonic, geographic and socioeconomic variables. Design/methodology/approachThe authors explore housing demand by employing an extensive Internet search dataset from a German housing market platform. The authors apply state-of-the-art artificial intelligence, the eXtreme Gradient Boosting, to quantify factors that lead an apartment to be in demand.FindingsThe authors compare the results to alternative parametric models and find evidence of the superiority of the nonparametric model. The authors use eXplainable artificial intelligence (XAI) techniques to show economic meanings and inferences of the results. The results suggest that hedonic, socioeconomic and spatial aspects influence search intensity. The authors further find differences in temporal dynamics and geographical variations.Originality/valueTo the best of the authors' knowledge, it is the first study of its kind. The statistical model of housing search draws on insights from decision theory, AI and qualitative studies on housing search. The econometric approach employed is new as it considers standard regression models and an eXtreme Gradient Boosting (XGB or XGBoost) approach followed by a model-agnostic interpretation of the underlying effects. C1 [Cajias, Marcelo] PATRIZIA SE, Investment Strategy & Res, Augsburg, Germany. [Cajias, Marcelo] Univ Regensburg, Regensburg, Germany. [Zeitler, Joseph-Alexander] IREBS, Regensburg, Germany. C3 University of Regensburg RP Cajias, M (autor correspondiente), PATRIZIA SE, Investment Strategy & Res, Augsburg, Germany.; Cajias, M (autor correspondiente), Univ Regensburg, Regensburg, Germany. EM marcelocajias@hotmail.com; joseph-alexander.zeitler@hotmail.de OI Cajias, Marcelo/0000-0002-0777-7459 CR Albrecht J, 2007, INT ECON REV, V48, P641, DOI 10.1111/j.1468-2354.2007.00440.x Albrecht J, 2016, REV ECON DYNAM, V19, P218, DOI 10.1016/j.red.2015.05.002 Alexa, 2020, IMMOBILIENSCOUT24 CO Allen MT, 2009, J REAL ESTATE FINANC, V38, P351, DOI 10.1007/s11146-007-9092-0 Anglin PM, 2003, J REAL ESTATE FINANC, V26, P95, DOI 10.1023/A:1021526332732 Askitas, 2009, APPL EC Q, V55, P107, DOI [10.2139/ssrn.1465341, DOI 10.3790/AEQ.55.2.107] Benefield J., 2014, Journal of Real Estate Literature, V22, P149, DOI DOI 10.1080/10835547.2014.12090387 Benefield JD, 2011, J REAL ESTATE FINANC, V43, P401, DOI 10.1007/s11146-009-9219-6 Beracha E., 2015, Journal of Housing Research, V24, P147, DOI DOI 10.1080/10835547.2015.12092101 Boeing G, 2020, ENVIRON PLANN A, V52, P449, DOI 10.1177/0308518X19869678 Botterill Jacqueline., 2013, The Routledge Companion to Advertising and Promotional Culture, P326, DOI [10.4324/9780203071434-37, DOI 10.4324/9780203071434-37] Bourassa SC, 1999, J HOUS ECON, V8, P160, DOI 10.1006/jhec.1999.0246 Breidenbach P, 2018, JAHRB NATL STAT, V238, P609, DOI 10.1515/jbnst-2017-0171 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cajias M, 2018, J PROP INVEST FINANC, V36, P3, DOI 10.1108/JPIF-01-2017-0006 Cameron AC., 2013, REGRESSION ANAL COUN, V53, DOI DOI 10.1017/CBO9781139013567 Carrillo P.E., 2008, INFORM REAL ESTATE T Carrillo PE, 2012, REG SCI URBAN ECON, V42, P189, DOI 10.1016/j.regsciurbeco.2011.08.010 CASE KE, 1989, AM ECON REV, V79, P125 CASE KE, 1990, AREUEA J, V18, P253 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chernobai E, 2012, REAL ESTATE ECON, V40, P805, DOI 10.1111/j.1540-6229.2012.00329.x Chuklin A, 2013, PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), P1217, DOI 10.1145/2505515.2507859 Cirman A, 2015, INZ EKON, V26, P4, DOI 10.5755/j01.ee.26.1.3905 Clark W.A. V., 1993, BEHAV ENV PSYCHOL GE, P298 Clayton J., 1998, J REAL ESTATE RES, V15, P41, DOI DOI 10.5555/REES.15.1.L4745676513K672U Comscore, 2019, COMSC MED METR D'urso V., 2002, 427102 MIT SLOAN SCH Da Z, 2011, J FINANC, V66, P1461, DOI 10.1111/j.1540-6261.2011.01679.x Das P, 2015, J REAL ESTATE FINANC, V51, P480, DOI 10.1007/s11146-015-9496-1 Díaz A, 2013, INT ECON REV, V54, P837, DOI 10.1111/iere.12019 Dunning R., 2012, INFORM SEARCH HOUSIN European Parliament and Council, 2016, Official Journal of the European Union Fisher A, 2019, J MACH LEARN RES, V20 Ford JS, 2005, J HOUS ECON, V14, P92, DOI 10.1016/j.jhe.2005.06.003 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Genesove D, 2012, J URBAN ECON, V72, P31, DOI 10.1016/j.jue.2012.01.002 Gesellschaft fur Konsumforschung, 2020, GFK WERB Goodman AC, 2007, REAL ESTATE ECON, V35, P209, DOI 10.1111/j.1540-6229.2007.00188.x Han Lu., 2015, HDB REGIONAL URBAN E, V5, P813, DOI [10.1016/B978-0-444-59531-7.00013-2, DOI 10.1016/B978-0-444-59531-7.00013-2] Immobilienverband Deutschland, 2018, NUTZ IMM Joint Center for Housing Studies, 2019, SUPPL STATE NAT HOUS Knight JR, 2002, REAL ESTATE ECON, V30, P213, DOI 10.1111/1540-6229.00038 Krainer J, 2002, ECON THEOR, V19, P223, DOI 10.1007/PL00004214 Krainer J, 2001, J URBAN ECON, V49, P32, DOI 10.1006/juec.2000.2180 Krainer J., 1999, Economic Review, V3, P14 Kroft K, 2014, J LABOR ECON, V32, P259, DOI 10.1086/673374 Maclennan D., 1982, MODELLING HOUSING MA, P134, DOI DOI 10.4324/9781003182085-8 McLaughlin R., 2018, SHARED FUTURE FOSTER, P126 Meen G., 2001, ADV URBAN REGIONAL E, DOI [10.1007/978-1-4615-1673-6, DOI 10.1007/978-1-4615-1673-6] Merlo A, 2015, INT ECON REV, V56, P457, DOI 10.1111/iere.12111 MHCLG (Ministry of Housing Communities and Local Government), 2020, English Housing Survey: headline report 2019-2020 National Assocation of Realtors, 2019, Technical report National Association of Realtors, 2006, 2006 PROF HOM BUYERS Novy-Marx R, 2009, REAL ESTATE ECON, V37, P1, DOI 10.1111/j.1540-6229.2009.00232.x Office of Fair Trading, 2010, HOM BUYING SELL A MA Palm R, 2001, URBAN GEOGR, V22, P641, DOI 10.2747/0272-3638.22.7.641 Pangallo M, 2018, EPJ DATA SCI, V7, DOI 10.1140/epjds/s13688-018-0176-2 Piazzesi M, 2020, AM ECON REV, V110, P720, DOI 10.1257/aer.20141772 Rae A, 2016, CITIES, V52, P140, DOI 10.1016/j.cities.2015.12.002 Rae A, 2015, HOUSING STUD, V30, P453, DOI 10.1080/02673037.2014.974142 Ribeiro M.T., 2016, 2016 ICML WORKSHOP H Richardson H, 2012, J REAL ESTATE RES, V34, P515 RICS, 2017, ARTIF INTELL RWI-Leibniz-Institut fur Wirtschaftsforschung, 2020, REAL EST DAT GERM RW Seiler MJ, 2012, J REAL ESTATE RES, V34, P211 US Census Bureau, 2018, AM HOUS SURV AHS van Dijk DW, 2018, REAL ESTATE ECON, V46, P368, DOI 10.1111/1540-6229.12187 Watkins CA, 2001, ENVIRON PLANN A, V33, P2235, DOI 10.1068/a34162 Watkins C, 2008, HOUSING STUD, V23, P163, DOI 10.1080/02673030801893131 WHEATON WC, 1990, J POLIT ECON, V98, P1270, DOI 10.1086/261734 Zhao QY, 2021, J BUS ECON STAT, V39, P272, DOI 10.1080/07350015.2019.1624293 NR 72 TC 0 Z9 0 U1 6 U2 7 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1753-9269 J9 J EUR REAL ESTATE RE JI J. Eur. Real Estate Res. PD OCT 11 PY 2023 VL 16 IS 2 BP 172 EP 199 DI 10.1108/JERER-02-2023-0008 EA JUL 2023 PG 28 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA U2PL2 UT WOS:001027203400001 DA 2024-03-27 ER PT J AU Chhabra, M Das, S Sarne, D AF Chhabra, Meenal Das, Sanmay Sarne, David TI Expert-mediated sequential search SO EUROPEAN JOURNAL OF OPERATIONAL RESEARCH LA English DT Article DE E-commerce; Artificial intelligence; Sequential decision making; Expert-mediated search ID BUNDLING INFORMATION GOODS; JOB SEARCH; PRICE DISPERSION; 2-SIDED MARKETS; BUYER SEARCH; ECONOMICS; SUBSIDIES; PRODUCTS; INTERNET; COSTS AB This paper studies markets, such as Internet marketplaces for used cars or mortgages, in which consumers engage in sequential search. In particular, we consider the impact of information-brokers (experts) who can, for a fee, provide better information on true values of opportunities. We characterize the optimal search strategy given a price and the terms of service set by the expert, and show how to use this characterization to solve the monopolist expert's service pricing problem. Our analysis enables the investigation of three common pricing schemes (pay-per-use, unlimited subscription, and package pricing) that can be used by the expert. We demonstrate that in settings characteristic of electronic marketplaces, namely those with lower search costs for consumers and lower costs of production of expert services, unlimited subscription schemes are favored. Finally, we show that the platform that connects consumer and experts can improve social welfare by subsidizing the purchase of expert services. The optimal level of subsidy forces the buyer to exactly fully internalize the marginal cost of provision of expert services. In electronic markets, this cost is minimal, so it may be worthwhile for the platform to make the expert freely available to consumers. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chhabra, Meenal] Virginia Tech, Dept Comp Sci, Blacksburg, VA USA. [Das, Sanmay] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA. [Sarne, David] Bar Ilan Univ, Dept Comp Sci, Ramat Gan, Israel. [Chhabra, Meenal; Das, Sanmay] Rensselaer Polytech Inst, Troy, NY 12181 USA. [Chhabra, Meenal; Das, Sanmay] Virginia Tech, Blacksburg, VA USA. C3 Virginia Polytechnic Institute & State University; Washington University (WUSTL); Bar Ilan University; Rensselaer Polytechnic Institute; Virginia Polytechnic Institute & State University RP Das, S (autor correspondiente), Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA. EM meenal@cs.vt.edu; sanmay@seas.wustl.edu; sarned@cs.biu.ac.il FU US-Israel Binational Science Foundation [2008404]; US National Science Foundation CAREER award [IIS-0952918/1303350]; Israel Science Foundation [1083/13]; Direct For Computer & Info Scie & Enginr; Div Of Information & Intelligent Systems [1414452] Funding Source: National Science Foundation FX This work was supported by a US-Israel Binational Science Foundation Grant (2008404), a US National Science Foundation CAREER award (IIS-0952918/1303350), and an Israel Science Foundation Grant (1083/13). CR Armstrong M, 2006, RAND J ECON, V37, P668, DOI 10.1111/j.1756-2171.2006.tb00037.x Atakan AE, 2006, ECONOMETRICA, V74, P667, DOI 10.1111/j.1468-0262.2006.00678.x Bakos JY, 1997, MANAGE SCI, V43, P1676, DOI 10.1287/mnsc.43.12.1676 Bakos Y, 1999, MANAGE SCI, V45, P1613, DOI 10.1287/mnsc.45.12.1613 Baryla Edward., 2000, Journal of Real Estate Research, V20, P75 Baye MR, 2001, AM ECON REV, V91, P454, DOI 10.1257/aer.91.3.454 Bental B, 2002, J EVOL ECON, V12, P397, DOI 10.1007/s00191-002-0125-9 Bloch F, 2000, INT ECON REV, V41, P93, DOI 10.1111/1468-2354.00056 Brynjolfsson E, 2000, MANAGE SCI, V46, P563, DOI 10.1287/mnsc.46.4.563.12061 Burdett K, 1998, REV ECON DYNAM, V1, P220, DOI 10.1006/redy.1997.0004 Cason TN, 2003, J ECON THEORY, V112, P232, DOI 10.1016/S0022-0531(03)00135-0 Chhabra M., 2011, P 10 INT C AUTONOMOU, P415 Chun YH, 1996, EUR J OPER RES, V92, P135, DOI 10.1016/0377-2217(95)00045-3 Das S, 2005, 19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), P947 DIAMOND PA, 1982, J POLIT ECON, V90, P881, DOI 10.1086/261099 Dranove D, 2010, J ECON LIT, V48, P935, DOI 10.1257/jel.48.4.935 Galeotti A, 2009, EUR ECON REV, V53, P417, DOI 10.1016/j.euroecorev.2008.08.003 Geng XJ, 2005, MANAGE SCI, V51, P662, DOI 10.1287/mnsc.1040.0344 Grosfeld-Nir A, 2009, EUR J OPER RES, V197, P667, DOI 10.1016/j.ejor.2007.07.036 Haynes M, 2008, INT J IND ORGAN, V26, P459, DOI 10.1016/j.ijindorg.2007.02.003 Ho LS, 2000, POLICY SCI, V33, P89, DOI 10.1023/A:1004774928116 Janetos A., 1980, BEHAV ECOLOGY SOCIOB, V7, P107 Kang BK, 2005, EUR J OPER RES, V165, P765, DOI 10.1016/j.ejor.2002.12.003 Kephart JO, 2000, COMPUT NETW, V32, P731, DOI 10.1016/S1389-1286(00)00026-8 Lee R., 2009, INTERVIEWING 2 SIDED Lim C., 2006, DECIS ANAL, V3, P3, DOI DOI 10.1287/DECA.1050.0044 LIPPMAN SA, 1976, ECON INQ, V14, P155, DOI 10.1111/j.1465-7295.1976.tb00386.x MACQUEEN JB, 1964, MANAGE SCI, V10, P746, DOI 10.1287/mnsc.10.4.746 MCCALL JJ, 1970, Q J ECON, V84, P113, DOI 10.2307/1879403 McMillan J., 1994, HDB GAME THEORY EC A, P905 MILGROM PR, 1981, BELL J ECON, V12, P380, DOI 10.2307/3003562 MONAHAN GE, 1980, OPER RES, V28, P1319, DOI 10.1287/opre.28.6.1319 MONAHAN GE, 1982, J APPL PROBAB, V19, P72, DOI 10.2307/3213917 Mortensen D., 1999, HDB LABOR EC, DOI [10.1016/S1573-4463(99)30025-0, DOI 10.1016/S1573-4463(99)30025-0, https://doi.org/10.1016/S1573-4463(99)30025-0] Moscarini G, 2001, ECONOMETRICA, V69, P1629, DOI 10.1111/1468-0262.00259 Rysman M, 2009, J ECON PERSPECT, V23, P125, DOI 10.1257/jep.23.3.125 Sahib P., 2002, DEMOGR RES, V6, P355 Sundararajan A, 2004, MANAGE SCI, V50, P1660, DOI 10.1287/mnsc.1040.0291 Terwiesch C, 2004, MANAGE SCI, V50, P145, DOI 10.1287/mnsc.1030.0178 WEITZMAN ML, 1979, ECONOMETRICA, V47, P641, DOI 10.2307/1910412 Wiegmann DD, 2010, J MATH BIOL, V60, P543, DOI 10.1007/s00285-009-0274-7 Wilson KE, 2011, EUR J OPER RES, V215, P218, DOI 10.1016/j.ejor.2011.05.045 WRIGHT R, 1986, J POLIT ECON, V94, P38, DOI 10.1086/261362 NR 43 TC 14 Z9 15 U1 1 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-2217 EI 1872-6860 J9 EUR J OPER RES JI Eur. J. Oper. Res. PD MAY 1 PY 2014 VL 234 IS 3 BP 861 EP 873 DI 10.1016/j.ejor.2013.10.033 PG 13 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA AA9NI UT WOS:000331419800027 DA 2024-03-27 ER PT J AU Zhai, MF Wang, XY Zhao, XJ AF Zhai, Mengfan Wang, Xinyue Zhao, Xijie TI The importance of online customer reviews characteristics on remanufactured product sales: Evidence from the mobile phone market on Amazon.com SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Online consumer reviews; Remanufactured products; Natural language processing; Formal characteristics; Content characteristics; Emotional characteristics ID WORD-OF-MOUTH; NEGATIVE REVIEWS; HOTEL BOOKING; INFORMATION; INTENTION; EMOTIONS; DYNAMICS; BEHAVIOR; QUALITY AB Remanufactured products have emerged as an important option for achieving sustainable development, which is crucial to the success of the circular economy. Consequently, it is necessary to investigate the influence of online customer reviews on remanufactured product sales, an aspect that has not been well understood in current research. In this study, we employed natural language processing methodologies, analyzing over 50,000 reviews from 2020 to 2021 on Amazon.com to explore the impacts of online customer reviews on remanufactured product sales. The findings indicate that the formal characteristics of online customer reviews, that is, review length and review valence have positive influences on remanufactured product sales. Furthermore, the content characteristics of online customer reviews, including the volume and valence of product usability, product service quality, and product cost performance, positively promote remanufactured product sales. Additionally, this study reveals three emotional characteristics of online customer reviews that significantly influence remanufactured product sales. Specifically, contentment and surprise positively affect remanufactured product sales, while anger negatively affects remanufactured product sales. The findings of this study provide useful insights for remanufactured product sellers to manage online customer reviews and develop marketing strategies. C1 [Zhai, Mengfan; Zhao, Xijie] North China Univ Water Resources & Elect Power, Sch Management & Econ, Zhengzhou 450046, Peoples R China. [Wang, Xinyue] Guangdong Univ Finance & Econ, Sch Informat Sci, Guangzhou 510320, Peoples R China. [Wang, Xinyue] Sch Informat Sci, 21 Luntou St, Guangzhou, Peoples R China. C3 North China University of Water Resources & Electric Power; Guangdong University of Finance & Economics RP Wang, XY (autor correspondiente), Sch Informat Sci, 21 Luntou St, Guangzhou, Peoples R China. EM zhaimengfan@ncwu.edu.cn; 20231056@gdufe.edu.cn; 13410061570@163.com FU High -Level Talent Research Project of the North China University of Water Resources and Electric Power [202210007]; Henan University Philosophy and Social Science Innovation Team Funding Project [2019-CXTD-12, 2024-CXTD-10] FX This work was supported by the High -Level Talent Research Project of the North China University of Water Resources and Electric Power (202210007) , and Henan University Philosophy and Social Science Innovation Team Funding Project (2019-CXTD-12; 2024-CXTD-10) . CR Abbasi GA, 2022, J CLEAN PROD, V359, DOI 10.1016/j.jclepro.2022.132137 Abbey JD, 2015, PROD OPER MANAG, V24, P488, DOI 10.1111/poms.12238 Alyahya M, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103172 Berger J, 2010, MARKET SCI, V29, P815, DOI 10.1287/mksc.1090.0557 Cai XW, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103141 Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Chatterjee S, 2019, DECIS SUPPORT SYST, V119, P14, DOI 10.1016/j.dss.2019.02.008 Chaudhuri N, 2021, DECIS SUPPORT SYST, V149, DOI 10.1016/j.dss.2021.113622 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 CNNIC, 2022, The 51th Statistical Report on Internet Development in China Colasante A, 2021, J CLEAN PROD, V329, DOI 10.1016/j.jclepro.2021.129774 Delre SA, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113329 Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805] Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Elwalda A, 2016, COMPUT HUM BEHAV, V56, P306, DOI 10.1016/j.chb.2015.11.051 Filieri R, 2021, INT J CONTEMP HOSP M, V33, P199, DOI 10.1108/IJCHM-05-2020-0402 Neto JQF, 2016, INT J PROD ECON, V171, P371, DOI 10.1016/j.ijpe.2015.02.006 Gopinath S, 2014, MARKET SCI, V33, P241, DOI 10.1287/mksc.2013.0820 Guo JP, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101891 Hazen BT, 2012, INT J PROD ECON, V135, P781, DOI 10.1016/j.ijpe.2011.10.011 Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Huang N, 2016, J CONSUM PSYCHOL, V26, P474, DOI 10.1016/j.jcps.2016.03.001 Jang S, 2021, J BUS RES, V130, P583, DOI 10.1016/j.jbusres.2019.09.027 Kalyan K.S., 2021, arXiv Kaushik K, 2018, J RETAIL CONSUM SERV, V45, P21, DOI 10.1016/j.jretconser.2018.08.002 Khan FH, 2016, APPL SOFT COMPUT, V39, P140, DOI 10.1016/j.asoc.2015.11.016 Kim D, 2023, J RETAIL CONSUM SERV, V74, DOI 10.1016/j.jretconser.2023.103409 Kuo YF, 2009, COMPUT HUM BEHAV, V25, P887, DOI 10.1016/j.chb.2009.03.003 Li CY, 2018, COMPUT HUM BEHAV, V84, P272, DOI 10.1016/j.chb.2018.03.009 Li KL, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102107 Liang TP, 2019, INFORM MANAGE-AMSTER, V56, P70, DOI 10.1016/j.im.2018.07.002 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Lovett MJ, 2013, J MARKETING RES, V50, P427, DOI 10.1509/jmr.11.0458 Ludwig S, 2013, J MARKETING, V77, P87, DOI 10.1509/jm.11.0560 Luo RL, 2022, INT J PROD ECON, V245, DOI 10.1016/j.ijpe.2022.108408 Majumder MG, 2022, J BUS RES, V150, P147, DOI 10.1016/j.jbusres.2022.06.012 Mauri AG, 2013, INT J HOSP MANAG, V34, P99, DOI 10.1016/j.ijhm.2013.02.012 Minnema A, 2016, J RETAILING, V92, P253, DOI 10.1016/j.jretai.2016.03.001 Mirzaei T, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2020.103404 Moore GC, 1991, INFORM SYST RES, V2, P192, DOI 10.1287/isre.2.3.192 Morgan DL, 1996, ANNU REV SOCIOL, V22, P129, DOI 10.1146/annurev.soc.22.1.129 Mudambi SM, 2010, MIS QUART, V34, P185 Park DH, 2008, ELECTRON COMMER R A, V7, P386, DOI 10.1016/j.elerap.2007.11.004 Pashchenko Y, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103011 Reimers N, 2020, Arxiv, DOI arXiv:2004.09813 Reimers N, 2019, Arxiv, DOI [arXiv:1908.10084, DOI 10.48550/ARXIV.1908.10084] Ren J, 2019, EUR J INFORM SYST, V28, P272, DOI 10.1080/0960085X.2018.1524419 Richins ML, 1997, J CONSUM RES, V24, P127, DOI 10.1086/209499 Rose J. M., 2004, Journal of Information Systems, V18, P53, DOI 10.2308/jis.2004.18.1.53 Salehan M, 2016, DECIS SUPPORT SYST, V81, P30, DOI 10.1016/j.dss.2015.10.006 Schwarz N., 2012, International Handbook of Survey Methodology, P18 See-To EWK, 2014, COMPUT HUM BEHAV, V31, P182, DOI 10.1016/j.chb.2013.10.013 Setia P, 2013, MIS QUART, V37, P565, DOI 10.25300/MISQ/2013/37.2.11 Singhal D, 2019, INT J PROD RES, V57, P7289, DOI 10.1080/00207543.2019.1598590 Tereyagoglu N, 2016, SPRING SER SUP CHA M, V3, P19, DOI 10.1007/978-3-319-30094-8_2 Nguyen TV, 2020, EUR J OPER RES, V281, P543, DOI 10.1016/j.ejor.2019.08.015 Tseng ML, 2015, APPL SOFT COMPUT, V28, P411, DOI 10.1016/j.asoc.2014.11.048 Turney PD, 2006, COMPUT LINGUIST, V32, P379, DOI 10.1162/coli.2006.32.3.379 Ullah R, 2016, DECIS SUPPORT SYST, V81, P41, DOI 10.1016/j.dss.2015.10.007 Valentini F, 2021, Arxiv, DOI [arXiv:2104.06474, 10.48550/arXiv.2104.06474, DOI 10.48550/ARXIV.2104.06474] van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660 Wagar BM, 2004, PSYCHOL REV, V111, P67, DOI 10.1037/0033-295X.111.1.67 Wang MH, 2015, J ELECTRON COMMER RE, V16, P72 Wang Q, 2022, COMPUT HUM BEHAV, V133, DOI 10.1016/j.chb.2022.107272 Wang X, 2022, J MARKETING, V86, P155, DOI 10.1177/00222429211047822 Wang YC, 2016, INT J PROD ECON, V181, P460, DOI 10.1016/j.ijpe.2015.08.031 Wang YQ, 2021, INT J HOSP MANAG, V95, DOI 10.1016/j.ijhm.2021.102895 Wright DB, 2011, BEHAV RES METHODS, V43, P8, DOI 10.3758/s13428-010-0044-x Ye QA, 2011, COMPUT HUM BEHAV, V27, P634, DOI 10.1016/j.chb.2010.04.014 Yin DZ, 2021, MIS QUART, V45, P1059, DOI 10.25300/MISQ/2021/15363 Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 Yin WP, 2021, Arxiv, DOI [arXiv:2106.09449, 10.48550/arXiv.2106.09449, DOI 10.48550/ARXIV.2106.09449] Zhang WH, 2012, EXPERT SYST APPL, V39, P10283, DOI 10.1016/j.eswa.2012.02.166 Zhao XY, 2015, INT J CONTEMP HOSP M, V27, P1343, DOI 10.1108/IJCHM-12-2013-0542 Zheng LL, 2021, J BUS RES, V135, P226, DOI 10.1016/j.jbusres.2021.06.038 Zhong N, 2020, MARKET SCI, V39, P827, DOI 10.1287/mksc.2019.1212 Zhou QJ, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2020.102424 Zhou WQ, 2016, J MANAGE INFORM SYST, V33, P202, DOI 10.1080/07421222.2016.1172460 NR 79 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAR PY 2024 VL 77 AR 103677 DI 10.1016/j.jretconser.2023.103677 EA DEC 2023 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA EG6N2 UT WOS:001137809100001 DA 2024-03-27 ER PT J AU Mogaji, E Soetan, TO Kieu, TA AF Mogaji, Emmanuel Soetan, Taiwo O. Kieu, Tai Anh TI The implications of artificial intelligence on the digital marketing of financial services to vulnerable customers SO AUSTRALASIAN MARKETING JOURNAL LA English DT Article DE AI; Digital marketing; Financial services; Vulnerable customers ID SOCIAL MEDIA AB Artificial intelligence (AI) is rapidly transforming digital marketing practices. While the extant literature extensively covers AI applications that generally benefit businesses and customers, there is scant research on AI deployments that exacerbate problems for financially vulnerable customers. These customers have limited access to financial systems, services or technologies. To rectify this research deficit, this paper describes the challenges confronting businesses as they attempt to integrate AI into the digital marketing of their financial services. Ultimately, Al-enabled digital marketing is not as simple as collecting big data and using analytical algorithms; the technology may not always help businesses target their customers more effectively. This paper examines the relationships between AI, digital marketing, and financial services in relation to vulnerable customers, highlighting key implications in the collection, processing, and delivery of information, as well as the importance of human connection for optimal customer experience and engagement with financial services providers. Understanding ethical implications, as well as data and modelling challenges, is necessary for the successful deployment of AI. This study provides a theoretical framework to financial services providers, AI developers, marketers, policymakers, and academics, aiding the understanding of the precarious conditions facing vulnerable customers, and the ways in which they can more effectively be reached. C1 [Mogaji, Emmanuel] Univ Greenwich, London, England. [Soetan, Taiwo O.] Red River Coll, Winnipeg, MB, Canada. [Kieu, Tai Anh] Univ Econ & Finance, Ho Chi Minh City, Vietnam. C3 University of Greenwich RP Mogaji, E (autor correspondiente), Univ Greenwich, London, England. EM e.o.mogaji@greenwich.ac.uk RI Soetan, Taiwo/ADH-7388-2022; Mogaji, Emmanuel/B-8900-2014; Soetan, Taiwo O./HMV-3285-2023; Kieu, Tai Anh/I-4795-2018 OI Mogaji, Emmanuel/0000-0003-0544-4842; Soetan, Taiwo O./0000-0002-4270-8213; Kieu, Tai Anh/0000-0002-0238-5958 CR Agarwal R, 2002, INFORM SYST RES, V13, P168, DOI 10.1287/isre.13.2.168.84 Albers-Miller N.D., 1999, J SERV MARK, V13, P390, DOI DOI 10.1108/08876049910282682 Alzahrani H., 2016, GLOBAL J COMPUT SCI, V16, P1 Black JS, 2020, BUS HORIZONS, V63, P215, DOI 10.1016/j.bushor.2019.12.001 Boerman SC, 2017, J ADVERTISING, V46, P363, DOI 10.1080/00913367.2017.1339368 Brockmann EN, 2002, GROUP ORGAN MANAGE, V27, P436, DOI 10.1177/1059601102238356 Butenko E.D, 2018, FINANC CREDIT, V24, P143 Canhoto AI, 2020, BUS HORIZONS, V63, P183, DOI 10.1016/j.bushor.2019.11.003 Castillo J, 2002, J MANAGE INQUIRY, V11, P46, DOI 10.1177/1056492602111018 CBA, 2020, DAIL IQ CMA, 2019, CONSUMER VULNERABILI Coppack Martin, 2015, 8 FCA Costa A., 2015, Innovations: Technology, Governance, Globalization, V10, P53 Cozzi L., 2018, POPULATION ACCESS EL Czarnecka B, 2020, INT J BANK MARK, V38, P756, DOI 10.1108/IJBM-07-2019-0249 Davenport TH, 2018, HARVARD BUS REV, V96, P108 de Ruyter K, 2018, AUSTRALAS MARK J, V26, P199, DOI 10.1016/j.ausmj.2018.07.003 Dimitrieska S., 2018, Entrepreneurship, V6, P298 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Epstein SL, 2015, ARTIF INTELL, V221, P36, DOI 10.1016/j.artint.2014.12.006 Gabor D, 2017, NEW POLIT ECON, V22, P423, DOI 10.1080/13563467.2017.1259298 Gökerik M, 2018, ASIA PAC J MARKET LO, V30, P1222, DOI 10.1108/APJML-10-2017-0257 Grover P., 2017, GLOBAL J FLEXIBLE SY, V18, P203, DOI [10.1007/s40171-017-0159-3, DOI 10.1007/S40171-017-0159-3] Gupta R. K., 2017, JK Science, V19, P191 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 HAYESROTH B, 1995, ARTIF INTELL, V72, P329, DOI 10.1016/0004-3702(94)00004-K Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kihn M., 2016, CUSTOMER JOURNEY ANA Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Lacasse R.M., 2016, International Scientific Conference on Digital Intelligence, P1 Leong C, 2017, INT J INFORM MANAGE, V37, P92, DOI 10.1016/j.ijinfomgt.2016.11.006 Lui A, 2018, INF COMMUN TECHNOL L, V27, P267, DOI 10.1080/13600834.2018.1488659 Metcalf L, 2019, CALIF MANAGE REV, V61, P84, DOI 10.1177/0008125619862256 Mitchell M, 2019, INFORMATION, V10, DOI 10.3390/info10020051 Mogaji E, 2019, FINTECH ART INT LAW Mogaji E, 2020, ADV THE PRAC EMER MA, P137, DOI 10.1007/978-3-030-24374-6_10 Mogaji E, 2019, TRAVEL BEHAV SOC, V14, P21, DOI 10.1016/j.tbs.2018.09.004 Mogaji E, 2017, J PROD BRAND MANAG, V26, P531, DOI 10.1108/JPBM-07-2016-1285 Mogaji E, 2016, COGENT BUS MANAG, V3, DOI 10.1080/23311975.2016.1223389 Mugrauer A., 2019, MARKETING MANAGERS A Nadler A, 2018, CRIT STUD MEDIA COMM, V35, P151, DOI 10.1080/15295036.2017.1387279 Nasser L., 2019, INFLUENCE AI DIGITAL O'Connor GE, 2019, J BUS RES, V100, P421, DOI 10.1016/j.jbusres.2018.12.033 Overgoor G, 2019, CALIF MANAGE REV, V61, P156, DOI 10.1177/0008125619859318 Pan YH, 2016, ENGINEERING, V2, P409, DOI 10.1016/J.ENG.2016.04.018 Paschen J, 2020, BUS HORIZONS, V63, P403, DOI 10.1016/j.bushor.2020.01.003 Poppleton A., 2019, RETAIL BANKS ARE PRE Russell S.J., 2010, MALAYSIA, V3rd Salampasis D, 2018, HANDBOOK OF BLOCKCHAIN, DIGITAL FINANCE, AND INCLUSION, VOL 2: CHINATECH, MOBILE SECURITY, DISTRIBUTED LEDGER, AND BLOCKCHAIN, P451, DOI 10.1016/B978-0-12-812282-2.00018-8 Saura J.R., 2019, Organizational Transformation and Management Innovation in the Fourth Industrial Revolution, P86, DOI DOI 10.4018/978-1-5225-7074-5.CH005 Silver L., 2018, INTERNET CONNECTIVIT Sterner J., 2017, ARTIFICIAL INTELLIGE Sun TQ, 2019, GOV INFORM Q, V36, P368, DOI 10.1016/j.giq.2018.09.008 Theodoridis P.K, 2019, STRATEGIC INNOVATIVE Treleaven P., 2017, Journal of Financial Transformation, V45, P14 Ukpabi DC, 2018, EUROMED ACAD BUS CON, P1339 van Esch P, 2019, BUS HORIZONS, V62, P729, DOI 10.1016/j.bushor.2019.07.004 van Esch P, 2019, COMPUT HUM BEHAV, V90, P215, DOI 10.1016/j.chb.2018.09.009 Wayne T., 2020, Research Agenda Working Papers, V2020, P40 Webster FE, 2013, J ACAD MARKET SCI, V41, P389, DOI 10.1007/s11747-013-0331-z Westpac, 2019, CUSTOMER VULNERABILI Wirtz BW, 2019, INT J PUBLIC ADMIN, V42, P596, DOI 10.1080/01900692.2018.1498103 World Bank, 2018, FINANCIAL INCLUSION Yurdakul D, 2017, MARKETING THEOR, V17, P289, DOI 10.1177/1470593117704265 NR 65 TC 61 Z9 62 U1 12 U2 71 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1441-3582 EI 1839-3349 J9 AUSTRALAS MARK J JI Australas. Mark. J. PD AUG PY 2021 VL 29 IS 3 BP 235 EP 242 DI 10.1016/j.ausmj.2020.05.003 PG 8 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA UJ5KG UT WOS:000691323200005 DA 2024-03-27 ER PT J AU Jin, KY Zhong, ZZ Zhao, EY AF Jin, Keyan Zhong, Zoe Ziqi Zhao, Elena Yifei TI Sustainable Digital Marketing Under Big Data: An AI Random Forest Model Approach SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Big Data; Business; Engineering management; Artificial intelligence; Social networking (online); Optimization; Technological innovation; Artificial intelligence (AI); big data; random forest model (RFM); social media; sustainable digital marketing ID ARTIFICIAL-INTELLIGENCE AB Digital marketing refers to the process of promoting, selling, and delivering products or services through online platforms and channels using the internet and electronic devices in a digital environment. Its aim is to attract and engage target audiences through various strategies and methods, driving brand promotion and sales growth. The primary objective of this scholarly study is to seamlessly integrate advanced big data analytics and artificial intelligence (AI) technology into the realm of digital marketing, thereby fostering the progression and optimization of sustainable digital marketing practices. First, the characteristics and applications of big data involving vast, diverse, and complex datasets are analyzed. Understanding their attributes and scope of application is essential. Subsequently, a comprehensive investigation into AI-driven learning mechanisms is conducted, culminating in the development of an AI random forest model (RFM) tailored for sustainable digital marketing. Subsequent to this, leveraging a real-world case study involving enterprise X, fundamental customer data is collected and subjected to meticulous analysis. The RFM model, ingeniously crafted in this study, is then deployed to prognosticate the anticipated count of prospective customers for said enterprise. The empirical findings spotlight a pronounced prevalence of university-affiliated individuals across diverse age cohorts. In terms of occupational distribution within the customer base, the categories of workers and educators emerge as dominant, constituting 41% and 31% of the demographic, respectively. Furthermore, the price distribution of patrons exhibits a skewed pattern, whereby the price bracket of 0-150 encompasses 17% of the population, whereas the range of 150-300 captures a notable 52%. These delineated price bands collectively constitute a substantial proportion, whereas the range exceeding 450 embodies a minority, accounting for less than 20%. Notably, the RFM model devised in this scholarly endeavor demonstrates a remarkable proficiency in accurately projecting forthcoming passenger volumes over a seven-day horizon, significantly surpassing the predictive capability of logistic regression. Evidently, the AI-driven RFM model proffered herein excels in the precise anticipation of target customer counts, thereby furnishing a pragmatic foundation for the intelligent evolution of sustainable digital marketing strategies. C1 [Jin, Keyan] Univ Granada, Dept Quantitat Methods Econ & Business, Ceuta 51001, Spain. [Zhong, Zoe Ziqi] London Sch Econ & Polit Sci, Dept Management, London WC2A 2AE, England. [Zhao, Elena Yifei] Univ Southern Calif, Annenberg Sch Commun & Journalism, Los Angeles, CA 90089 USA. C3 University of Granada; University of London; London School Economics & Political Science; University of Southern California RP Zhong, ZZ (autor correspondiente), London Sch Econ & Polit Sci, Dept Management, London WC2A 2AE, England. EM kjin@correo.ugr.es; z.zhong6@lse.ac.uk; zhaoyife@usc.edu OI Zhong, Zoe Ziqi/0000-0002-3919-9999 FU China Scholarship Council FX No Statement Available CR Al-Emran M, 2023, TECHNOL SOC, V75, DOI 10.1016/j.techsoc.2023.102383 Albahri AS, 2022, COMPLEX INTELL SYST, V8, P1781, DOI 10.1007/s40747-021-00503-w Amiri AM, 2023, J SMALL BUS ENTERP D, V30, P621, DOI 10.1108/JSBED-04-2022-0206 Andronie M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13020751 Bai JW, 2022, PATTERN RECOGN, V122, DOI 10.1016/j.patcog.2021.108331 Balyan AK, 2022, SENSORS-BASEL, V22, DOI 10.3390/s22165986 Behl A, 2022, MANAGE DECIS, V60, P368, DOI 10.1108/MD-01-2020-0121 Bracarense N, 2022, PAC ASIA J ASSOC INF, V14, P136, DOI 10.17705/1pais.14209 Butuner R, 2023, EUR FOOD RES TECHNOL, V249, P1303, DOI 10.1007/s00217-023-04214-z Dash G, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126735 Demirbaga U, 2022, IEEE T NETW SERV MAN, V19, P3896, DOI 10.1109/TNSM.2022.3204851 Diez-Martin F, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11102839 Eleonora Z, 2023, QUAL-ACCESS SUCCESS, V24, P360, DOI 10.47750/QAS/24.192.43 Foresti R, 2020, ENGINEERING-PRC, V6, P835, DOI 10.1016/j.eng.2019.11.014 Gao W., 2022, Secur. Commun. Netw., P1 Ghosh A, 2022, GEOCARTO INT, V37, P9663, DOI 10.1080/10106049.2021.2022016 Hancock JT, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-020-00369-8 He B, 2023, TUNN UNDERGR SP TECH, V133, DOI 10.1016/j.tust.2022.104979 Islam U, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148374 Jablonka KM, 2020, CHEM REV, V120, P8066, DOI 10.1021/acs.chemrev.0c00004 Kang XH, 2020, J INTELL FUZZY SYST, V39, P1131, DOI 10.3233/JIFS-192032 Kastouni MZ, 2022, J KING SAUD UNIV-COM, V34, P2758, DOI 10.1016/j.jksuci.2020.11.024 Khanbaghi M, 2020, ENERGIES, V13, DOI 10.3390/en13194997 Khare V. K., 2023, Anvesak UGC Care Group 1 J., V53, P107 Kiguchi M, 2022, APPL SOFT COMPUT, V118, DOI 10.1016/j.asoc.2022.108491 Kim J, 2022, INTERNET RES, V32, P1003, DOI 10.1108/INTR-11-2020-0651 Kongar Elif, 2021, IEEE Engineering Management Review, V49, P133, DOI 10.1109/EMR.2021.3055036 Koo DM, 2022, INTERNET RES, V32, P967, DOI 10.1108/INTR-04-2022-684 Kuzior A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158145 Lee M, 2021, INT J CONTEMP HOSP M, V33, P2117, DOI 10.1108/IJCHM-06-2020-0587 Li J, 2019, TEH VJESN, V26, P1670, DOI 10.17559/TV-20190603165825 Li Z., 2020, J. Comput., V31, P256 Liu Q., 2023, Front. Bus., Econ. Manage., V9, P168 Low S, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12135402 Lu JZ, 2022, IEEE SYST J, V16, P5465, DOI 10.1109/JSYST.2021.3106195 Marinakis V, 2020, ENERGIES, V13, DOI 10.3390/en13071555 Munsch A, 2021, J GLOB SCHOLARS MARK, V31, P10 Nagendra NP, 2023, IEEE T ENG MANAGE, V70, P1099, DOI 10.1109/TEM.2022.3159451 Ngiam KY, 2019, LANCET ONCOL, V20, pE262, DOI 10.1016/S1470-2045(19)30149-4 Nica E., 2021, J. Self-Governance Manag. Econ., V9, P35, DOI [10.22381/jsme9320213, DOI 10.22381/JSME9320213] Ong AKS, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142316041 Paniagua C, 2021, IEEE SYST J, V15, P1149, DOI 10.1109/JSYST.2020.2993323 Peng YZ, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100198 Rakic S, 2023, APPL SYST INNOV, V6, DOI 10.3390/asi6050089 Saura JR, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12031003 Leguina JR, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9111822 Salih Ageed Z., 2021, Qubahan Academic Journal, V1, P29, DOI [10.48161/qaj.v1n2a46, DOI 10.48161/QAJ.V1N2A46] Samara D, 2020, J HOSP TOUR TECHNOL, V11, P343, DOI 10.1108/JHTT-12-2018-0118 Satpathi A, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032786 Saura JR, 2023, J SMALL BUS MANAGE, V61, P1278, DOI 10.1080/00472778.2021.1955127 Shankar V, 2022, INT J RES MARK, V39, P541, DOI 10.1016/j.ijresmar.2021.09.005 Sharma S, 2022, IEEE T ENG MANAGE, V69, P3546, DOI 10.1109/TEM.2022.3148341 Shaw S., 2021, Econ.,Manage. Financial Markets, V16, P106, DOI 10.22381/emfm16220217 Sinha Moumita, 2020, UMAP '20 Adjunct: Adjunct Publication of the 28th ACM Conference on User Modeling, Adaptation and Personalization, P65, DOI 10.1145/3386392.3397600 Sisodia D, 2022, IETE TECH REV, V39, P789, DOI 10.1080/02564602.2021.1915892 Stergiou CL, 2021, IEEE INTERNET THINGS, V8, P5164, DOI 10.1109/JIOT.2020.3033131 Sun L, 2020, J STRUCT ENG, V146, DOI 10.1061/(ASCE)ST.1943-541X.0002535 Thangam Dhanabalan, 2023, Climate and Energy, P11, DOI 10.1002/gas.22329 Wang J, 2020, J INTERNET TECHNOL, V21, P393, DOI 10.3966/160792642020032102008 Yadav S, 2023, IEEE T ENG MANAGE, V70, P1215, DOI 10.1109/TEM.2022.3177188 Yousaf Z, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105715 Zhou J, 2022, TUNN UNDERGR SP TECH, V124, DOI 10.1016/j.tust.2022.104494 Zhou YY, 2022, ACTA AGR SCAND B-S P, V72, P284, DOI 10.1080/09064710.2021.2008482 Ziakis C, 2023, INFORMATION, V14, DOI 10.3390/info14120664 NR 64 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 3566 EP 3579 DI 10.1109/TEM.2023.3348991 PG 14 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA IR4M6 UT WOS:001168043600001 DA 2024-03-27 ER PT J AU Rani, TS Garg, U Kalyani, P AF Rani, T. Suchitra Garg, Umang Kalyani, P. TI Artificial Intelligence and its Role in Transforming Marketing and Impact on Consumer Perception SO PACIFIC BUSINESS REVIEW INTERNATIONAL LA English DT Article DE Artificial Intelligence; Consumer Buying; Transforming Marketing; Chatbots; Marketing Automation AB With every changing product and service landscape the customer needs and their expectations are also evolving. In terms of quick delivery and quick response to customer queries an organization is left with no choice but to adapt to the latest technologies like Artificial Intelligence (AI). Artificial Intelligence is the capacity of machines to recognize, learn and make decision from its surrounding environment. This paper is an attempt to identify the ways how artificial intelligence is transforming marketing. It also aims to study the impact of awareness of AI on perception of use of AI with reference to different uses of AI during the customer journey. The select sample belongs to the area of Hyderabad and Secunderabad. Correlation and regression results showed that impact of awareness of AI on perception of use of AI with reference to voice search was found to be having significant influence. However, it was found that there was no impact of awareness of AI on perception of other four uses in the study. AI is one among the emerging technologies which is still in the introduction stage and to some extent an inscrutable event though AI is already impacting the customers lives in a big way. C1 [Rani, T. Suchitra; Garg, Umang; Kalyani, P.] Amity Global Business Sch, Hyderabad, India. RP Rani, TS (autor correspondiente), Amity Global Business Sch, Hyderabad, India. CR Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002 [Anonymous], EC APPL INFORM, V25, P28 Avinaash M., 2018, P INT J PURE APPL MA, V119, P1881 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 eia, EC APPL INF YEARS 25, DOI [10.35219/eai158404094, DOI 10.35219/EAI158404094] Kim KY, 2014, KSII T INTERNET INF, V8, P567, DOI 10.3837/tiis.2014.02.014 Lessmann S., 2019, INFORM SCIENCES, P15 mapr.com, MAP R HOM PAG Shahid M. Z., 2019, GLOBAL J MANAGEMENT, V19, P26 smartinsights.com, US Soni N., 2019, Journal of Business Research, P1 NR 11 TC 0 Z9 0 U1 7 U2 25 PU PACIFIC INST MANAGEMENT PI RAJASTHAN PA PACIFIC HILLS, PRATAP NAGAR EXTENSION, AIR PORT RD, UDAIPUR, RAJASTHAN, 313 001, INDIA SN 0974-438X J9 PAC BUS REV INT JI Pac. Bus. Rev. Int. PD JUN PY 2022 VL 14 IS 12 BP 1 EP 7 PG 7 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 5A5RM UT WOS:000862944700001 DA 2024-03-27 ER PT J AU Kaiser, C Ahuvia, A Rauschnabel, PA Wimble, M AF Kaiser, Carolin Ahuvia, Aaron Rauschnabel, Philipp A. Wimble, Matt TI Social media monitoring: What can marketers learn from Facebook brand photos? SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Brand love; Monitoring; User-generated content; Social media; Machine learning; AI; Artificial intelligence ID WORD-OF-MOUTH; GENETIC ALGORITHM; FEATURE-SELECTION; NEURAL-NETWORKS; ONLINE; MODEL; MOTIVATIONS; BEHAVIOR; PICTURE; NARCISSISM AB Users upload > 350 million photos per day to Facebook. While considerable research has explored text-based user-generated content on social media, research on photos is still in its early stages. This paper uses a sample of 44,765 Facebook photos from 503 Facebook users in the United States and Germany to determine the degree to which photos play an integral role in people's social media communications. The analysis shows that uploading brand photos (i.e., photos containing a brand name or logo) is related to brand love, brand loyalty, and word-of-mouth (WOM) endorsement of the brand in question. We then code a subsample of these photos for content and train a powerful hybrid machine learning algorithm combining genetic search and artificial neural networks. The resulting algorithm is able to predict users' brand love, brand loyalty, and WOM endorsement from the content of their brand photos posted on Facebook. Finally, we discuss the implications for social media marketing, in particular social media monitoring. C1 [Ahuvia, Aaron] Univ Michigan, Fairlane Ctr South, Dearborn Coll Business, 19000 Hubbard Dr, Dearborn, MI 48128 USA. [Rauschnabel, Philipp A.] Univ Bundeswehr Munchen, Professorship Digital Mkt & Media Innovat, Fak Betriebswirtschaft, Werner Heisenberg Weg 39, D-85579 Neubiberg, Germany. [Kaiser, Carolin] Nuremberg Inst Market Decis, Nordwestring 101, D-90419 Nurnberg, Germany. [Wimble, Matt] Suffolk Univ, Sawyer Sch Business, 73 Tremont St, Boston, MA 02108 USA. C3 University of Michigan System; University of Michigan; Bundeswehr University Munich; Nuremberg Institute for Market Decisions; Suffolk University RP Rauschnabel, PA (autor correspondiente), Univ Bundeswehr Munchen, Professorship Digital Mkt & Media Innovat, Fak Betriebswirtschaft, Werner Heisenberg Weg 39, D-85579 Neubiberg, Germany. EM Carolin.Kaiser@nim.org; Ahuvia@umich.edu; philipp.rauschnabel@gmail.com; mwimble@suffolk.edu RI Rauschnabel, Philipp/ABB-8212-2020; Ahuvia, Aaron/N-6189-2018 OI Rauschnabel, Philipp/0000-0003-2188-6747; Ahuvia, Aaron/0000-0002-1796-3933 FU NIM - Nuremberg Institute for Market Decisions; Carolin Kaiser, of NIM FX Funding for this project was provided by NIM - Nuremberg Institute for Market Decisions (formerly GfK Verein). Carolin Kaiser, of NIM, was a full participant in all aspects of this research. CR Ahuvia AC, 2015, REV MARKET RES, V12, P121, DOI 10.1108/S1548-643520150000012005 Aleixandre M, 2004, SENSOR ACTUAT B-CHEM, V103, P122, DOI 10.1016/j.snb.2004.04.044 Algesheimer R, 2005, J MARKETING, V69, P19, DOI 10.1509/jmkg.69.3.19.66363 Alvarez-Milán A, 2018, J BUS RES, V92, P61, DOI 10.1016/j.jbusres.2018.07.017 Iniesta-Bonillo MA, 2016, J BUS RES, V69, P5002, DOI 10.1016/j.jbusres.2016.04.071 [Anonymous], 1981, MEANING THINGS DOMES Bagozzi RP, 2017, MARKET LETT, V28, P1, DOI 10.1007/s11002-016-9406-1 Batra R, 2012, J MARKETING, V76, P1, DOI 10.1509/jm.09.0339 Becker S., 2016, Conceptualizing Germany's Energy Transition, P21, DOI [DOI 10.1057/978-1-137-50593-4_3, 10.1057/978-1-137-50593-4, DOI 10.4324/9781315725185] Belk RW, 2013, J CONSUM RES, V40, P477, DOI 10.1086/671052 Boley BB, 2013, TOURISM MANAGE, V37, P27, DOI 10.1016/j.tourman.2012.11.020 Bourlai Elli., 2014, P 2014 ACM C WEB SCI, DOI [10.1145/2615569.2615697, DOI 10.1145/2615569.2615697] Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 Brodie RJ, 2011, J SERV RES-US, V14, P283, DOI 10.1177/1094670511415523 Calder B. J., 2018, Customer Engagement Marketing, P221, DOI [10.1007/978-3-319-61985-9_10, DOI 10.1007/978-3-319-61985-9_10] Chalfen Richard., 1987, SNAPSHOT VERSIONS LI Chen Y, 2015, ACSR ADV COMPUT, V13, P264 Cheung CMK, 2012, DECIS SUPPORT SYST, V53, P218, DOI 10.1016/j.dss.2012.01.015 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cui G, 2012, INT J ELECTRON COMM, V17, P39, DOI 10.2753/JEC1086-4415170102 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Delen D, 2018, J BUS RES, V90, P186, DOI 10.1016/j.jbusres.2018.05.013 Durrant A, 2011, VISUAL STUD, V26, P113, DOI 10.1080/1472586X.2011.571887 EFRON B, 1983, J AM STAT ASSOC, V78, P316, DOI 10.2307/2288636 Ellison NB, 2007, J COMPUT-MEDIAT COMM, V12, P1143, DOI 10.1111/j.1083-6101.2007.00367.x Erkan I, 2016, COMPUT HUM BEHAV, V61, P47, DOI 10.1016/j.chb.2016.03.003 Felix R, 2017, J BUS RES, V70, P118, DOI 10.1016/j.jbusres.2016.05.001 Feng H, 2014, NEUROCOMPUTING, V129, P409, DOI 10.1016/j.neucom.2013.09.018 Fish KE, 2004, J BUS RES, V57, P79, DOI 10.1016/S0148-2963(02)00287-4 Geisser S, 1993, PREDICTIVE INFERENCE Hawkins DM, 2003, J CHEM INF COMP SCI, V43, P579, DOI 10.1021/ci025626i Hennig-Thurau T, 2003, INT J ELECTRON COMM, V8, P51, DOI 10.1080/10864415.2003.11044293 Hennig-Thurau T, 2010, J SERV RES-US, V13, P311, DOI 10.1177/1094670510375460 Holland J.H., 1992, CONTROL ARTIFICIAL I Hollebeek L, 2011, J STRATEG MARK, V19, P555, DOI 10.1080/0965254X.2011.599493 Hollebeek LD, 2011, J MARKET MANAG-UK, V27, P785, DOI 10.1080/0267257X.2010.500132 Huang CM, 2013, INT J PSYCHOL, V48, P334, DOI 10.1080/00207594.2011.649285 Hum NJ, 2011, COMPUT HUM BEHAV, V27, P1828, DOI 10.1016/j.chb.2011.04.003 Ibrahim Y., 2015, Journal of Media Practice, V16, P42, DOI [DOI 10.1080/14682753.2015.1015800, 10.1080/14682753.2015.1015800.] Jalilvand MR, 2012, MARK INTELL PLAN, V30, P460, DOI 10.1108/02634501211231946 KAISER C, 2009, IADIS INT J WWW INTE, V6, P63 Kaiser C, 2012, INTERNET RES, V22, P275, DOI 10.1108/10662241211235653 Kapidzic S, 2013, CYBERPSYCH BEH SOC N, V16, P14, DOI 10.1089/cyber.2012.0143 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kim D, 2013, J BUS RES, V66, P1243, DOI 10.1016/j.jbusres.2012.02.019 King RA, 2014, J INTERACT MARK, V28, P167, DOI 10.1016/j.intmar.2014.02.001 Kozinets RV, 2002, J CONSUM RES, V29, P20, DOI 10.1086/339919 Kumar V, 2016, J MARKETING RES, V53, P497, DOI 10.1509/jmr.15.0044 Kwok L, 2013, CORNELL HOSP Q, V54, P84, DOI 10.1177/1938965512458360 LACHENBR.PA, 1968, TECHNOMETRICS, V10, P1, DOI 10.2307/1266219 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 LEARDI R, 1992, J CHEMOMETR, V6, P267, DOI 10.1002/cem.1180060506 Lee E, 2015, CYBERPSYCH BEH SOC N, V18, P552, DOI 10.1089/cyber.2015.0157 Liu H, 2005, IEEE T KNOWL DATA EN, V17, P491, DOI 10.1109/TKDE.2005.66 Liu N, 2014, PR ELECTROMAGN RES S, P959 Lo IS, 2011, TOURISM MANAGE, V32, P725, DOI 10.1016/j.tourman.2010.06.001 Miller AD, 2007, CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1 AND 2, P347 Morgan EM, 2010, COMPUT HUM BEHAV, V26, P1405, DOI 10.1016/j.chb.2010.04.017 Moro S, 2016, J BUS RES, V69, P3341, DOI 10.1016/j.jbusres.2016.02.010 Muñiz AM, 2011, BUS HORIZONS, V54, P209, DOI 10.1016/j.bushor.2011.01.002 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 Oreski S, 2012, EXPERT SYST APPL, V39, P12605, DOI 10.1016/j.eswa.2012.05.023 Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Park C, 2003, INT MARKET REV, V20, P534, DOI 10.1108/02651330310498771 Pfeil U, 2006, J COMPUT-MEDIAT COMM, V12, P88, DOI 10.1111/j.1083-6101.2006.00316.x Rauschnabel P.A., 2012, Advances in Advertising Research, VIII, P153, DOI DOI 10.1007/978-3-8349-4291-3_12 Rauschnabel PA, 2019, J RETAIL CONSUM SERV, V49, P43, DOI 10.1016/j.jretconser.2019.03.004 Raymer ML, 2000, IEEE T EVOLUT COMPUT, V4, P164, DOI 10.1109/4235.850656 Reguera-Alvarado N, 2016, J BUS RES, V69, P4685, DOI 10.1016/j.jbusres.2016.04.016 ROSENBLATT F, 1958, PSYCHOL REV, V65, P386, DOI 10.1037/h0042519 Russel S., 2010, ARTIF INTELL Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Seder JP, 2012, SOC PSYCHOL PERS SCI, V3, P407, DOI 10.1177/1948550611424968 Sheldon P., 2019, DARK SIDE SOCIAL MED Sheldon P, 2016, COMPUT HUM BEHAV, V58, P89, DOI 10.1016/j.chb.2015.12.059 SIEDLECKI W, 1989, PATTERN RECOGN LETT, V10, P335, DOI 10.1016/0167-8655(89)90037-8 Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008 Smith L.R., 2012, J INTERCULTURAL COMM, V41, P279, DOI DOI 10.1080/17475759.2012.728771 Stefanone MA, 2011, CYBERPSYCH BEH SOC N, V14, P41, DOI 10.1089/cyber.2010.0049 STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Tan F., 2007, Journal of Information Science Technology, V4, P3 Thelwall M, 2016, J ASSOC INF SCI TECH, V67, P2575, DOI 10.1002/asi.23620 Van House N., 2005, CHI 05, P1853, DOI [DOI 10.1145/1056808.1057039, 10.1145/1056808.1057039.] WALLENDORF M, 1988, J CONSUM RES, V14, P531, DOI 10.1086/209134 Walther JB, 2008, HUM COMMUN RES, V34, P28, DOI 10.1111/j.1468-2958.2007.00312.x Wang SS, 2010, COMPUT HUM BEHAV, V26, P226, DOI 10.1016/j.chb.2009.10.001 Wang X., 2009, Proc. 3rd international Workshop on Data Mining and Audience Intelligence for Advertising, P18 Watson S. W, 2006, ED493049 ERIC White Leanne., 2010, TOURISM INFORM VISUA, P115 Wong NY, 1998, PSYCHOL MARKET, V15, P423, DOI 10.1002/(SICI)1520-6793(199808)15:5<423::AID-MAR2>3.0.CO;2-9 Yi-Wen Fan, 2012, International Journal of Electronic Business Management, V10, P175 Yoon G.-M., 2012, ADV INFORM SCI SERVI, V4, P7 Zhao SY, 2008, COMPUT HUM BEHAV, V24, P1816, DOI 10.1016/j.chb.2008.02.012 NR 94 TC 29 Z9 31 U1 9 U2 77 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD SEP PY 2020 VL 117 BP 707 EP 717 DI 10.1016/j.jbusres.2019.09.017 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA MW2RD UT WOS:000556889900067 DA 2024-03-27 ER PT J AU Koonsanit, K Nishiuchi, N AF Koonsanit, Kitti Nishiuchi, Nobuyuki TI Predicting Final User Satisfaction Using Momentary UX Data and Machine Learning Techniques SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE user experience; UX; UX evaluation; satisfaction; prediction; machine learning ID MANAGEMENT AB User experience (UX) evaluation investigates how people feel about using products or services and is considered an important factor in the design process. However, there is no comprehensive UX evaluation method for time-continuous situations during the use of products or services. Because user experience changes over time, it is difficult to discern the relationship between momentary UX and episodic or cumulative UX, which is related to final user satisfaction. This research aimed to predict final user satisfaction by using momentary UX data and machine learning techniques. The participants were 50 and 25 university students who were asked to evaluate a service (Experiment I) or a product (Experiment II), respectively, during usage by answering a satisfaction survey. Responses were used to draw a customized UX curve. Participants were also asked to complete a final satisfaction questionnaire about the product or service. Momentary UX data and participant satisfaction scores were used to build machine learning models, and the experimental results were compared with those obtained using seven built machine learning models. This study shows that participants' momentary UX can be understood using a support vector machine (SVM) with a polynomial kernel and that momentary UX can be used to make more accurate predictions about final user satisfaction regarding product and service usage. C1 [Koonsanit, Kitti; Nishiuchi, Nobuyuki] Tokyo Metropolitan Univ, Grad Sch Syst Design, Dept Comp Sci, Tokyo 1910065, Japan. C3 Tokyo Metropolitan University RP Koonsanit, K (autor correspondiente), Tokyo Metropolitan Univ, Grad Sch Syst Design, Dept Comp Sci, Tokyo 1910065, Japan. EM koonsanit-kitti@ed.tmu.ac.jp; nnishiuc@tmu.ac.jp OI Koonsanit, Kitti/0000-0002-9968-2309 FU JSPS KAKENHI [JP20K12511] FX This research was funded by JSPS KAKENHI, grant number JP20K12511. CR Akinbi A., 2020, SN Comput. Sci, V1, P272, DOI DOI 10.1007/S42979-020-00285-X Angamuthu B, 2015, BVIMSR J MANAG RES, V7, P43 Badran O., 2018, J MANAG INF DECIS SC, V21, P1 Balasubramoniam Vignesh, 2013, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), V2, P1214 Barari M, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101985 Batista G. E. A. P. A., 2004, ACM SIGKDD EXPL NEWS, V6, P20, DOI [10.1145/1007730.1007735, DOI 10.1145/1007730.1007735] Beleites C, 2013, ANAL CHIM ACTA, V760, P25, DOI 10.1016/j.aca.2012.11.007 Ben-Hur A, 2010, METHODS MOL BIOL, V609, P223, DOI 10.1007/978-1-60327-241-4_13 Bolger N, 2003, ANNU REV PSYCHOL, V54, P579, DOI 10.1146/annurev.psych.54.101601.145030 Cahyana N, 2019, 2019 5TH INTERNATIONAL CONFERENCE ON SCIENCE ININFORMATION TECHNOLOGY (ICSITECH), P217, DOI [10.1109/icsitech46713.2019.8987499, 10.1109/ICSITech46713.2019.8987499] Carneiro J, 2014, COMM COM INF SC, V430, P368 Siebert LC, 2021, INT J ENERGY SECT MA, V15, P743, DOI 10.1108/IJESM-10-2018-0007 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Dokic I., 2017, EC ANAL, V50, P50 Feng L, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11082432 Gharaibeh NK, 2015, INT J ADV COMPUT SC, V6, P1 Hashizume A, 2016, INT J COMPUT SCI ISS, V13, P86, DOI [10.20943/01201605.8693, DOI 10.20943/01201605.8693] Hassan RS, 2015, PROC ECON FINANC, V23, P563, DOI 10.1016/S2212-5671(15)00513-4 Haykin S.S., 2009, NEURAL NETWORKS LEAR, V10 He HB, 2008, IEEE IJCNN, P1322, DOI 10.1109/IJCNN.2008.4633969 James G, 2013, SPRINGER TEXTS STAT, V103, P59, DOI 10.1007/978-1-4614-7138-7_3 Karapanos E., 2010, Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems, P4075, DOI 10.1145/1753846.1754105 Kaul D., 2017, REV PROFESSIONAL MAN, V15, P55, DOI DOI 10.20968/RPM/2017/V15/I2/163914 Khondoker M, 2016, STAT METHODS MED RES, V25, P1804, DOI 10.1177/0962280213502437 Kinha Y, 2020, EASY GUIDE CHOOSE RI Klotins E, 2011, USABILITY USER EXPER Koonsanit Kitti, 2020, 2020 IEEE Region 10 Conference (TENCON), P561, DOI 10.1109/TENCON50793.2020.9293912 Korber Moritz., 2013, Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications - AutomotiveUI'13, P194, DOI DOI 10.1145/2516540.2516555 Kujala S, 2011, INTERACT COMPUT, V23, P473, DOI 10.1016/j.intcom.2011.06.005 Kumar S, 2019, J BIG DATA-GER, V6, DOI 10.1186/s40537-019-0224-1 Kurosu M., 2016, LNCS, V9731, P331, DOI [10.1007/978-3-319-39510-4_31, DOI 10.1007/978-3-319-39510-4_31] Law ELC, 2014, INT J HUM-COMPUT ST, V72, P526, DOI 10.1016/j.ijhcs.2013.09.006 Lemaître G, 2017, J MACH LEARN RES, V18 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Longadge R, 2013, ARXIV13051707, P1707, DOI DOI 10.48550/ARXIV.1305.1707 Marti P, 2016, ACSIS-ANN COMPUT SCI, V8, P1647, DOI 10.15439/2016F302 Matsuda Y, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18113978 Meng M., 2015, ADV PETROLEUM EXPLOR, V10, P72, DOI DOI 10.3968/7830 Ng A. Y., 1997, P 14 INT C MACH LEAR, V97, P245, DOI [DOI 10.5555/645526.657119, DOI 10.1007/S13398-014-0173-7.2] Nguyen Hien M., 2011, International Journal of Knowledge Engineering and Soft Data Paradigms, V3, P4, DOI 10.1504/IJKESDP.2011.039875 Oppong S.H., 2013, ASIAN J MANAGEMENT S, V2, P202, DOI DOI 10.7748/NR2004.07.12.1.7.C5927 Paper D., 2020, Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python, P137, DOI DOI 10.1007/978-1-4842-5373-1 Pedregosa F., 2011, J Mach Learn Res, V12, P2825 Precourt G, 2014, J ADVERTISING RES, V54, P124, DOI 10.2501/JAR-54-2-124-125 Rahimi R, 2017, J TRAVEL TOUR MARK, V34, P40, DOI 10.1080/10548408.2015.1130108 Raikwal J.S, 2012, INT J COMPUT APPL, V50, P2 Raschka S., 2018, COMPUT RES REPOS, V1811, P12808, DOI DOI 10.1109/TPAMI.1986.4767851 Roto V., 2011, Dagstuhl Seminar on Demarcating User Experience, page, P12, DOI DOI 10.4230/DAGSEMPROC.10373.1 Sánchez-Adame LM, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10228199 Santos MS, 2018, IEEE COMPUT INTELL M, V13, P59, DOI 10.1109/MCI.2018.2866730 Schilling K, 2012, J MED LIBR ASSOC, V100, P258, DOI 10.3163/1536-5050.100.4.007 Schölkopf B, 2000, NEURAL COMPUT, V12, P1207, DOI 10.1162/089976600300015565 Senechal T, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), P10, DOI 10.1109/ICCVW.2015.11 Shankar V, 2006, J INTERACT MARK, V20, P2, DOI 10.1002/dir.20057 Spool J, IS DESIGN METRICALLY Stover-Wright E, 2013, J REHABIL ADM, V37, P103 Subramanian J, 2013, CONTEMP CLIN TRIALS, V36, P636, DOI 10.1016/j.cct.2013.06.011 Sulaiman S.M., 2018, CUSTOMER RELATIONSHI, V2, P692, DOI [10.5220/0008892606920698, DOI 10.5220/0008892606920698] Tao F., 2014, INT J BUS SOC SCI, V5, P255, DOI [10.30845/ijbss, DOI 10.30845/IJBSS] Taufik M., 2021, IOP Conference Series: Materials Science and Engineering, V1115, DOI 10.1088/1757-899X/1115/1/012040 Torres-Valencia C, 2017, J MULTIMODAL USER IN, V11, P9, DOI 10.1007/s12193-016-0222-y V??n?nen-Vainio-Mattila K., 2010, P 6 NORD C HUM COMP, P521, DOI DOI 10.1145/1868914.1868973 Vall-Llosera L, 2020, AXIOMS, V9, DOI 10.3390/axioms9010021 Wawre S.V., 2016, Int. J. Sci. Res, V5, P819 Zhang ML, 2005, 2005 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, P718 NR 65 TC 6 Z9 6 U1 4 U2 17 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD DEC PY 2021 VL 16 IS 7 BP 3136 EP 3156 DI 10.3390/jtaer16070171 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA XZ4SN UT WOS:000737643200001 OA gold DA 2024-03-27 ER PT J AU Oh, YK Yi, J AF Oh, Yun Kyung Yi, Jisu TI Asymmetric effect of feature level sentiment on product rating: an application of bigram natural language processing (NLP) analysis SO INTERNET RESEARCH LA English DT Article DE Online consumer review; Bigram NLP analysis; Feature level sentiment analysis; Big data analytics ID CUSTOMER SATISFACTION; PERFORMANCE; REVIEWS; QUALITY; SALES AB Purpose The evaluation of perceived attribute performance reflected in online consumer reviews (OCRs) is critical in gaining timely marketing insights. This study proposed a text mining approach to measure consumer sentiments at the feature level and their asymmetric impacts on overall product ratings. Design/methodology/approach This study employed 49,130 OCRs generated for 14 wireless earbud products on Amazon.com. Word combinations of the major quality dimensions and related sentiment words were identified using bigram natural language processing (NLP) analysis. This study combined sentiment dictionaries and feature-related bigrams and measured feature level sentiment scores in a review. Furthermore, the authors examined the effect of feature level sentiment on product ratings. Findings The results indicate that customer sentiment for product features measured from text reviews significantly and asymmetrically affects the overall rating. Building upon the three-factor theory of customer satisfaction, the key quality dimensions of wireless earbuds are categorized into basic, excitement and performance factors. Originality/value This study provides a novel approach to assess customer feature level evaluation of a product and its impact on customer satisfaction based on big data analytics. By applying the suggested methodology, marketing managers can gain in-depth insights into consumer needs and reflect this knowledge in their future product or service improvement. C1 [Oh, Yun Kyung] Dongduk Womens Univ, Dept Business Adm, Seoul, South Korea. [Yi, Jisu] Gachon Univ, Coll Business, Seongnam, South Korea. C3 Dongduk Women's University; Gachon University RP Yi, J (autor correspondiente), Gachon Univ, Coll Business, Seongnam, South Korea. EM yunk.oh13@gmail.com; yijisu@outlook.com RI Oh, Yun Kyung/ABD-2530-2021 OI Oh, Yun Kyung/0000-0003-4759-2026 CR ANDERSON EW, 1994, J MARKETING, V58, P53, DOI 10.2307/1252310 Arbore A, 2009, J RETAIL CONSUM SERV, V16, P271, DOI 10.1016/j.jretconser.2009.02.002 Bhakkad A., 2013, International Journal of Computer Applications, V68, P9 Bi JW, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104006 Bi JW, 2019, TOURISM MANAGE, V70, P460, DOI 10.1016/j.tourman.2018.09.010 Braga I.A., 2009, 14 PORT C ART INT NE, P489 Büschken J, 2020, MARKET SCI, V39, P727, DOI 10.1287/mksc.2019.1214 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Du RY, 2015, J MARKETING, V79, P29, DOI 10.1509/jm.12.0459 Falk T, 2010, J ACAD MARKET SCI, V38, P288, DOI 10.1007/s11747-009-0152-2 Fan ZP, 2017, J BUS RES, V74, P90, DOI 10.1016/j.jbusres.2017.01.010 Filieri R, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106527 Fishbein M., 1977, BELIEF ATTITUDE INTE, V5, P177 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hu MQ, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P755 JOHNSON MD, 1984, J CONSUM RES, V11, P741, DOI 10.1086/209010 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 Kano N, 1984, J JAPANESE SOC QUALI, V41, P39, DOI [10.20684/quality.14.2_147, DOI 10.20684/QUALITY.14.2_147] Liu B., 2012, SYNTHESIS LECT HUMAN, V5, P1, DOI [DOI 10.2200/S00416ED1V01Y201204HLT016, DOI 10.1007/978-3-031-02145-9] Long Chong., 2010, P 23 INT C COMPUTATI, P766 Luo Y, 2019, INT J HOSP MANAG, V80, P144, DOI 10.1016/j.ijhm.2019.02.008 Matzler K, 2004, IND MARKET MANAG, V33, P271, DOI 10.1016/S0019-8501(03)00055-5 Mittal V, 1998, J MARKETING, V62, P33, DOI 10.2307/1251801 Nielsen F.A., 2011, MSM, V2011, P93, DOI DOI 10.1016/J.KN0SYS.2015.06.015 Oh Yun Kyung, 2020, [Journal of Distribution Science, 유통과학연구], V18, P65 Oliver RL, 1997, J RETAILING, V73, P311, DOI 10.1016/S0022-4359(97)90021-X Rao AR, 2005, J MARKETING RES, V42, P401, DOI 10.1509/jmkr.2005.42.4.401 Schouten K, 2016, IEEE T KNOWL DATA EN, V28, P813, DOI 10.1109/TKDE.2015.2485209 Ting SC, 2002, TOTAL QUAL MANAGE, V13, P547, DOI 10.1080/09544120220149331 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 Tsao HY, 2019, ONLINE INFORM REV, V43, P283, DOI 10.1108/OIR-11-2017-0307 Wakamiya S, 2019, J MED INTERNET RES, V21, DOI 10.2196/12783 Yi J, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102519 Yi J, 2022, INTERNET RES, V32, P606, DOI 10.1108/INTR-08-2020-0478 NR 34 TC 6 Z9 6 U1 5 U2 50 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1066-2243 J9 INTERNET RES JI Internet Res. PD MAY 9 PY 2022 VL 32 IS 3 BP 1023 EP 1040 DI 10.1108/INTR-11-2020-0649 EA JUL 2021 PG 18 WC Business; Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science; Telecommunications GA 0Z5VN UT WOS:000679421500001 DA 2024-03-27 ER PT J AU Alsiehemy, A AF Alsiehemy, Ali TI Emergence of Digital Marketing in Current Scenario and Implementation of AI to Improve the Productivity of a Concern SO PACIFIC BUSINESS REVIEW INTERNATIONAL LA English DT Article DE Artificial Intelligence (AI); Digital Marketing; AI Based Automated Programs; Search Engines; Social Media Sites ID ARTIFICIAL-INTELLIGENCE AB Businesses have been on the rise in current decades as an outcome of digital progressions. The promotion has achieved a phase in its evolution where it is essential to modify to digitalization. While it seems to be a boost for marketing, every AI-based computerised programs and platforms reduce the burden of traditional advertising and personalization operations. In many cases, the systems used for online marketing include algorithms for determining the optimum combinations, while in others, businesses take the initiative to build and deploy unique methods in-house. The authors' goal is to summarize the prevailing status of AI in marketing efforts and facilitate implementations of a smart marketing approach to increase a site's exposure using keywords. This article also focuses on the various benefits of AI in Digital Marketing. Along with all these, the author discussed how Artificial Intelligence is used in today's digital marketing scenario to increase the productivity of any company. C1 [Alsiehemy, Ali] Univ Tabuk, Dept Mkt, Tabuk, Saudi Arabia. C3 University of Tabuk RP Alsiehemy, A (autor correspondiente), Univ Tabuk, Dept Mkt, Tabuk, Saudi Arabia. EM a.alsiehemy@ut.edu.sa CR Dzyabura D, 2019, MARKET SCI, V38, P417, DOI 10.1287/mksc.2018.1144 Fahimnia B, 2015, INT J PROD ECON, V162, P101, DOI 10.1016/j.ijpe.2015.01.003 Hajek P, 2017, KNOWL-BASED SYST, V128, P139, DOI 10.1016/j.knosys.2017.05.001 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Huang MH, 2017, J ACAD MARKET SCI, V45, P906, DOI 10.1007/s11747-017-0545-6 Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Kwok R, 2019, NATURE, V567, P133, DOI 10.1038/d41586-019-00746-1 Liao T, 2015, INFORM COMMUN SOC, V18, P310, DOI 10.1080/1369118X.2014.989252 Misra K, 2019, MARKET SCI, V38, P226, DOI 10.1287/mksc.2018.1129 Mohamadi A, 2016, J FAC FOR-ISTANB UNI, V66, P683, DOI 10.17099/jffiu.75819 Montes GA, 2019, TECHNOL FORECAST SOC, V141, P354, DOI 10.1016/j.techfore.2018.11.010 Rouhani S, 2016, J ENTERP INF MANAG, V29, P19, DOI 10.1108/JEIM-12-2014-0126 Seo Y, 2015, J HYDROL, V520, P224, DOI 10.1016/j.jhydrol.2014.11.050 Seranmadevi R., 2019, Management Science Letters, V9, P33, DOI [https://doi.org/10.5267/j.msl.2018.11.002, DOI 10.5267/J.MSL.2018.11.002] Solaiman SM, 2017, ARTIF INTELL LAW, V25, P155, DOI 10.1007/s10506-016-9192-3 Zhang HJ, 2017, IEEE T IND INFORM, V13, P520, DOI 10.1109/TII.2016.2605629 NR 16 TC 0 Z9 0 U1 13 U2 14 PU PACIFIC INST MANAGEMENT PI RAJASTHAN PA PACIFIC HILLS, PRATAP NAGAR EXTENSION, AIR PORT RD, UDAIPUR, RAJASTHAN, 313 001, INDIA SN 0974-438X J9 PAC BUS REV INT JI Pac. Bus. Rev. Int. PD JAN PY 2023 VL 15 IS 7 BP 19 EP 27 PG 9 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA N4OB8 UT WOS:001036814100003 DA 2024-03-27 ER PT J AU Alt, R Zimmermann, HD AF Alt, Rainer Zimmermann, Hans-Dieter TI Towards AI application marketplaces-an interview with Dorian Selz SO ELECTRONIC MARKETS LA English DT Article DE Artificial intelligence; cognitive search; AI marketplace; information objects AB This interview with the CEO from Squirro reports on how a search engine in the enterprise context evolves with artificial intelligence (AI) towards a cognitive search engine and ultimately towards an electronic marketplace for information objects. Using several examples, Dorian Selz describes the opportunities of Squirro's low-code in creating user-specific information objects from internal and external data sources as well as in deriving probabilities and projections. This not only has the potential to improve existing business processes, but also sheds light on new predictive capabilities. The example shows potential elements of future AI marketplaces, such as models, app directories and connectors. C1 [Alt, Rainer] Univ Leipzig, Leipzig, Germany. [Zimmermann, Hans-Dieter] Eastern Switzerland Univ Appl Sci, St Gallen, Switzerland. C3 Leipzig University RP Alt, R (autor correspondiente), Univ Leipzig, Leipzig, Germany.; Zimmermann, HD (autor correspondiente), Eastern Switzerland Univ Appl Sci, St Gallen, Switzerland. EM rainer.alt@uni-leipzig.de; hansdieter.zimmermann@ost.ch RI Zimmermann, Hans-Dieter/P-4702-2018; Alt, Rainer/U-6769-2018 OI Zimmermann, Hans-Dieter/0000-0002-6672-3311; Alt, Rainer/0000-0002-6395-0658 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR Alt R, 2021, ELECTRON MARK, V31, P233, DOI 10.1007/s12525-021-00489-w Emmott S., 2021, GARTNER MAGIC QUADRA Selz D, 2020, ELECTRON MARK, V30, P57, DOI 10.1007/s12525-019-00393-4 NR 3 TC 1 Z9 1 U1 3 U2 11 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD MAR PY 2022 VL 32 IS 1 BP 139 EP 143 DI 10.1007/s12525-021-00516-w EA FEB 2022 PG 5 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 1F1AS UT WOS:000751234400001 OA hybrid DA 2024-03-27 ER PT J AU Kapoor, R Kapoor, K AF Kapoor, Rashmeet Kapoor, Kush TI Transition from traditional to digital marketing: a study of evolution of E-marketing in the Indian hotel industry SO WORLDWIDE HOSPITALITY AND TOURISM THEMES LA English DT Article DE Digitalization; Artificial intelligence; Social media marketing; Digital marketing; Traditional marketing; E-marketing tools AB Purpose The study aims at analyzing the adoption and preference of E-Marketing tools in five-star hotels in India. This paper also explores the scope of artificial intelligence and the challenges with regards to its application. Design/methodology/approach A qualitative approach is adopted for this research, wherein the data has been collected through conducting one on one telephonic interviews (some in questionnaire format) and a roundtable conference with the general managers and marketing communication managers of 30 New Delhi/National Capital Region (NCR) hotels respectively to understand the transition from traditional to digital marketing era and how are they using various social media marketing tools. Findings This study aims to inform how digitalization has benefitted the industry in various aspects and its comparison to the traditional marketing methods. It also discovers the future of artificial intelligence in the Indian hospitality space. Practical implications This study aims to help managerial decision-making in the application of various E-marketing tools and strategies, suggesting the right mix of both traditional and digital marketing platforms. Originality/value Arguably this is one of a kind study, as there has been no such research done specifically aiming at the five-star hotels of the Indian market. The findings will help the industry explore and enhance their digital presence by suggesting the appropriate mix of both traditional and digital approaches and can be used as a good source for further exploring the perspective of digitalization by academicians as well. C1 [Kapoor, Rashmeet] Vedatya Inst, Gurgaon, India. [Kapoor, Kush] Roseate Hotels & Resorts, Gurgaon, India. RP Kapoor, R (autor correspondiente), Vedatya Inst, Gurgaon, India. EM rashmeet.kapoor@vedatya.ac.in; kush.kapoor@roseatehotels.com OI Kapoor, Rashmeet/0000-0002-6454-5486 CR [Anonymous], 2019, The Economic Times Arya A., 2016, IMPORTANT IS DIGITAL Bagley E., 2014, DIGITAL DIRECTION 2 Baidya S., 2020, 2H19 COUNTRY REPORT Barry C., 2011, PUTTING SOCIAL MEDIA Chang T., 2018, DIGITAL TRANSFORMATI Dentsu Aegis Network, 2020, DIGITAL ADVERTISING Gupta R., 2019, CHANGING SALES MARKE Hospitality Bizz India, 2018, ARTIFICIAL INTELLIGE IBEF, 2019, DIG AD IND GROW 32 T International Data Corporation, 2018, IMPR PROD FAST TIM M Ivanov S., 2017, Revista Turismo & Desenvolvimento, P1501 Jaganmohan M., 2019, SHARE MEDIA CHANNELS Kaushik P.C., 2017, INT RES J MANAGEMENT, V4, P61 Keelery S., 2020, DIGITAL ADVERTISING Malhotra N.K., 2009, MARKETING RES APPL O McCaskill A., 2015, NTR CITATION Naik S, 2019, INT J INNOVATIVE RES SAMALA N, 2020, J TOURISM FUTURES SETIAWAN Iwan., 2017, MARKETING 4 0 Shejale P., 2019, TIPS PERFECT DIGITAL Tata Consultancy Service, 2017, GETT SMART SECT 13 G The Economic Times, 2018, ARTIFICIAL INTELLIGE Tripadvisor, 2013, TRIPBAROMETER TRIPAD Visser M, 2018, DIGITAL MARKETING FU, P14 Wali B., 2017, TEDX TALKS Yang L, 2020, DIGITAL TRANSFORMATION IN BUSINESS AND SOCIETY: THEORY AND CASES, P211, DOI 10.1007/978-3-030-08277-2_13 NR 27 TC 8 Z9 8 U1 10 U2 46 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1755-4217 EI 1755-4225 J9 WORLDW HOSP TOUR THE JI Worldw. Hosp. Tour. Themes PD JUL 6 PY 2021 VL 13 IS 2 SI SI BP 199 EP 213 DI 10.1108/WHATT-10-2020-0124 EA MAY 2021 PG 15 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA TN5FU UT WOS:000657678700001 DA 2024-03-27 ER PT J AU Tchelidze, CL AF Tchelidze, Candidate Lasha TI POTENTIAL AND SKILL REQUIREMENTS OF ARTIFICIAL INTELLIGENCE IN DIGITAL MARKETING SO QUALITY-ACCESS TO SUCCESS LA English DT Article DE Artificial intelligence; Digitalization; Required skills; Marketer skills; Marketing and technologies; Digital skills AB Technological development has contributed to development of artificial intelligence. Self-learning machines have becoming more and more popular in the world. Investments, on development of artificial intelligence, are on the rise in various countries. This particular study emphasizes limitless potential of this technology. Self-learning machines have been integrated into different fields. Various digital algorithms are implemented in digital marketing as well. According to the results, this technology facilitates process to learn online consumer behavior and attitudes. Study highlights importance of creativity, mathematical skills, analytical skills, basic understanding of technologies and knowledge of communication in humans. These skills have been stated as the requirements of artificial intelligence for digital marketers, in order to exploit the technological advancement and promote prolific marketing campaigns. C1 [Tchelidze, Candidate Lasha] Int Black Sea Univ, Tbilisi, Georgia. C3 International Black Sea University RP Tchelidze, CL (autor correspondiente), Int Black Sea Univ, Tbilisi, Georgia. EM lasha.chelo@gmail.com CR Akdeniz C., 2016, ARTIFICIAL INTELLIGE Anderson G., 2005, FUNDAMENTALS ED RES, P109 Andre Q., 2018, Customer Needs and Solutions, V5, P28, DOI 10.1007/s40547-017-0085-8 [Anonymous], 2017, COMPETITIVE STRATEGY [Anonymous], THESIS Borana J., 2016, Science [ETEBMS-2016], V5 Bozeman B, 2000, RES POLICY, V29, P627, DOI 10.1016/S0048-7333(99)00093-1 Braun V., 2012, APA handbook of research methods in psychology, Vol. 2: Research designs: Quantitative, qualitative, neuropsychological, P57, DOI [10.1007/978-981-10-2779-6_103-1, DOI 10.1007/978-981-10-5251-4_103, DOI 10.1037/13620-004, https://doi.org/10.1037/13620-004] Buchner A.G., 1998, SIGMOD Record, V27, P54, DOI DOI 10.1145/306101.306124 Cellan-Jones Rory., 2014, BBC NEWS 1202 Cockburn Iain M., 2018, W24449 NAT BUR EC RE Dyer J, 2015, FORBES, V196, P90 Eberhard M, 2007, 21 CENTURY ELECT CAR, P1 Forbes Technology Council, 2018, 14 WAYS AI WILL BEN Geraci RM, 2007, ZYGON, V42, P961, DOI 10.1111/j.1467-9744.2007.00883.x Harris M. C., 2010, Q2AMEDIA, P4 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huggins R., 2011, COMPETITION COMPETIT, P81 Jones M.T., 2015, ARTIF INTELL, P1 Kose U., 2017, ARXIV170402114 Kulkarni P., 2015, ARTIF INTELL, P8 Kumar V, 2011, J MARKETING, V75, P16, DOI 10.1509/jmkg.75.1.16 Lane P.J., 1998, STRATEGIC MANAGEMENT, V19, P2 Lu HM, 2018, MOBILE NETW APPL, V23, P368, DOI 10.1007/s11036-017-0932-8 Makridakis S, 2017, FUTURES, V90, P46, DOI 10.1016/j.futures.2017.03.006 McWilliams A., 2010, J MANAGEMENT Pham-Gia K., 2011, RADICAL INNOVATION O, P17 Porter M., 1998, The Competitive Advantage: Creating and Sustaining Superior Performance (2e ed.) Radosevic S., 1999, INT TECHNOLOGY TRANS, P5 Ruan Z., 2019, Digital marketing in the artificial intelligence and machine learning age Siau K., 2017, 12 ANN MIDW ASS INF, V48, P18 Stern J., 2017, ACCELERATING MPI RED, P1 Sterne J., 2017, Artificial intelligence for marketing: practical applications van Laar E, 2017, COMPUT HUM BEHAV, V72, P577, DOI 10.1016/j.chb.2017.03.010 Wahab S., 2012, International Business Research, V5, P61, DOI DOI 10.5539/IBR.V5N1P61 Warwick Kevin, 2013, ARTIF INTELL, P13 NR 36 TC 0 Z9 0 U1 14 U2 70 PU SOC ROMANA PENTRU ASIGURAREA CALITATII PI BUCHAREST PA STR VASILE PARVAN NR 14, SECTOR 1, POSTAL CODE 010 216, BUCHAREST, 00000, ROMANIA SN 1582-2559 EI 2668-4861 J9 QUAL-ACCESS SUCCESS JI Qual.-Access Success PD OCT PY 2019 VL 20 SU 3 BP 73 EP 78 PG 6 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA JN3OZ UT WOS:000496810200010 DA 2024-03-27 ER PT J AU Tong, SL Luo, XM Xu, B AF Tong, Siliang Luo, Xueming Xu, Bo TI Personalized mobile marketing strategies SO JOURNAL OF THE ACADEMY OF MARKETING SCIENCE LA English DT Article DE Mobile marketing; Mobile personalization; Mobile marketing mix; Artificial intelligence ID INTENTIONS; PROMOTIONS; FRAMEWORK; CONSUMERS; COMMERCE; CHANNELS; ISSUES; MEDIA; PRICE AB The prevalence of mobile usage data has provided unprecedented insights into customer hyper-context information and brings ample opportunities for practitioners to design more pertinent marketing strategies and timely targeted campaigns. Granular unstructured mobile data also stimulate new research frontiers. This paper integrates the traditional marketing mix model to develop a framework of personalized mobile marketing strategies. The framework incorporates personalization into the center of mobile product, mobile place, mobile price, mobile promotion, and mobile prediction. Extant studies in mobile marketing are reviewed under the proposed framework, and promising topics about personalized mobile marketing are discussed for future research. C1 [Tong, Siliang] Temple Univ, Fox Sch Business, Philadelphia, PA 19122 USA. [Luo, Xueming] Temple Univ, Fox Sch Business, Global Ctr Big Data & Mobile Analyt, Philadelphia, PA 19122 USA. [Xu, Bo] Fudan Univ, Sch Management, Shanghai, Peoples R China. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; Fudan University RP Xu, B (autor correspondiente), Fudan Univ, Sch Management, Shanghai, Peoples R China. EM tug76173@temple.edu; luoxm@temple.edu; bxu@fudan.edu.cn CR Adweek, 2018, ADWEEK Aguirre E, 2015, J RETAILING, V91, P34, DOI 10.1016/j.jretai.2014.09.005 Andrews M, 2016, J INTERACT MARK, V34, P15, DOI 10.1016/j.intmar.2016.03.004 Andrews M, 2016, MARKET SCI, V35, P218, DOI 10.1287/mksc.2015.0905 [Anonymous], 2018, THEMANIFEST [Anonymous], 2018, DIGITAL TRENDS [Anonymous], 2018, Quartz [Anonymous], 2019, NUMB MOB PHON US WOR [Anonymous], 2019, MOBILE MARKETER [Anonymous], 2018, HUBSPOT [Anonymous], 2018, BUSINESSOFAPPS [Anonymous], 2017, Harvard Business Review Manager's Handbook: The 17 Skills Leaders Need to Stand Out [Anonymous], 2018, RETAILDIVE [Anonymous], 2019, Businesswire Arora S, 2017, J MARKETING, V81, P62, DOI 10.1509/jm.15.0205 Balasubramanian S, 2002, J ACAD MARKET SCI, V30, P348, DOI 10.1177/009207002236910 Bart Y, 2014, J MARKETING RES, V51, P270, DOI 10.1509/jmr.13.0503 Barwise P., 2002, J INTERACT MARK, V16, P14 Bluecorona, 2018, 61 MOB MARK STAT 201 Castelo N., 2019, WORKING PAPER Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Danaher PJ, 2015, J MARKETING RES, V52, P710, DOI 10.1509/jmr.13.0341 de Haan E, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.17.0113 Dickinger A, 2008, J INTERACT MARK, V22, P23, DOI 10.1002/dir.20115 Doyle M., 2018, 6 WAYS MEASURE ONLIN Dubé JP, 2017, MARKET SCI, V36, P944, DOI 10.1287/mksc.2017.1042 Economides N, 2017, MARKET SCI, V36, P815, DOI 10.1287/mksc.2017.1027 Einav L, 2014, AM ECON REV, V104, P489, DOI 10.1257/aer.104.5.489 eMarketer, 2019, WHATS SUDD GROWTH TI Fast Company, 2018, FAST CO Fong N, 2019, J MARKETING RES, V56, P310, DOI 10.1177/0022243718817513 Fong NM, 2015, J MARKETING RES, V52, P726, DOI 10.1509/jmr.14.0229 Ghose A., 2019, MANAGEMENT SCI ARTIC Ghose A, 2019, INFORM SYST RES, V30, P154, DOI 10.1287/isre.2018.0792 Ghose A, 2014, MANAGE SCI, V60, P1470, DOI 10.1287/mnsc.2014.1945 Ghose A, 2013, INFORM SYST RES, V24, P613, DOI 10.1287/isre.1120.0453 Ghose A, 2011, MANAGE SCI, V57, P1671, DOI 10.1287/mnsc.1110.1350 Gill M, 2017, J MARKETING, V81, P45, DOI 10.1509/jm.16.0149 Grewal D, 2018, J MARKETING, V82, P102, DOI 10.1509/jm.17.0277 Grewal D, 2017, J RETAILING, V93, P1, DOI 10.1016/j.jretai.2016.12.008 Grewal D, 2016, J INTERACT MARK, V34, P3, DOI 10.1016/j.intmar.2016.03.003 Grewal L., 2019, J MARKETING RES Gurau C, 2009, J CONSUM MARK, V26, P496, DOI 10.1108/07363760911001556 Ho SY, 2018, MIS QUART, V42, P757, DOI 10.25300/MISQ/2018/14083 Hofacker CF, 2016, J INTERACT MARK, V34, P25, DOI 10.1016/j.intmar.2016.03.001 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Hui SK, 2013, J MARKETING, V77, P1, DOI 10.1509/jm.11.0436 Investopedia, 2018, Mobile Advertising Definition Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kim SJ, 2015, J INTERACT MARK, V31, P28, DOI 10.1016/j.intmar.2015.05.004 Kübler R, 2018, J MARKETING, V82, P20, DOI 10.1509/jm.16.0140 Kumar V., 2018, J ACAD MARKET SCI, P1, DOI DOI 10.1007/s11747-018-0613-6 Lamberton C, 2016, J MARKETING, V80, P146, DOI 10.1509/jm.15.0415 Leung E, 2018, J MARKETING RES, V55, P818, DOI 10.1177/0022243718818423 Li CX, 2017, MARKET SCI, V36, P762, DOI 10.1287/mksc.2017.1044 Luo XM, 2014, MANAGE SCI, V60, P1738, DOI 10.1287/mnsc.2013.1836 McCarthy E.Jerome., 1964, BASIC MARKETING MANA, VSecond Melumad S, 2019, J MARKETING RES, V56, P259, DOI 10.1177/0022243718815429 Nysveen H, 2005, J ACAD MARKET SCI, V33, P330, DOI 10.1177/0092070305276149 Provost F, 2015, INFORM SYST RES, V26, P243, DOI 10.1287/isre.2015.0576 Ransbotham S., 2019, MARKETING SCI Shankar V, 2016, J INTERACT MARK, V34, P37, DOI 10.1016/j.intmar.2016.03.002 Shankar V, 2010, J INTERACT MARK, V24, P111, DOI 10.1016/j.intmar.2010.02.006 Shankar V, 2009, J INTERACT MARK, V23, P118, DOI 10.1016/j.intmar.2009.02.002 Shen H, 2016, J MARKETING RES, V53, P745, DOI 10.1509/jmr.14.0563 Spaid BI, 2014, J MARKET THEORY PRAC, V22, P73, DOI 10.2753/MTP1069-6679220105 Statista, 2018, CHART MOB E COMM IS The Verge, 2019, THE VERGE Vargo SL, 2004, J MARKETING, V68, P1, DOI 10.1509/jmkg.68.1.1.24036 Vlachos Pavlos A., 2008, Journal of Services Marketing, V22, P280, DOI 10.1108/08876040810881687 Wang F., 2019, J ACAD MARKETING SCI Wang Q, 2018, INFORM SYST RES, V29, P273, DOI 10.1287/isre.2017.0735 Wang RJH, 2015, J RETAILING, V91, P217, DOI 10.1016/j.jretai.2015.01.002 Xu H, 2012, INFORM SYST RES, V23, P1342, DOI 10.1287/isre.1120.0416 Xu J, 2014, J MARKETING, V78, P97, DOI 10.1509/jm.13.0198 Xu KQ, 2017, MANAGE SCI, V63, P1469, DOI 10.1287/mnsc.2015.2406 Zinrelo, 2018, TIER LOYALT PROGR WH Zubcsek PP, 2017, J MARKETING, V81, P109, DOI 10.1509/jm.15.0215 NR 78 TC 112 Z9 128 U1 36 U2 254 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 0092-0703 EI 1552-7824 J9 J ACAD MARKET SCI JI J. Acad. Mark. Sci. PD JAN PY 2020 VL 48 IS 1 SI SI BP 64 EP 78 DI 10.1007/s11747-019-00693-3 EA OCT 2019 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA KQ2KE UT WOS:000490889400001 DA 2024-03-27 ER PT J AU Liu, X AF Liu, Xia TI Analyzing the impact of user-generated content on B2B Firms' stock performance: Big data analysis with machine learning methods SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Big data; User-generated content; LDA; Sentiment analysis; Machine learning ID AUTOMATED CONTENT-ANALYSIS; WORD-OF-MOUTH; SENTIMENT ANALYSIS; DATA ANALYTICS; TEXT ANALYSIS; REVIEWS; MODEL; PANEL; MANAGEMENT; COMMUNITY AB Marketing scholars are interested in the big data of user-generated content (UGC) from social media platforms. However, the majority of current UGC studies have been conducted in the business-to-consumer (B2C) context. To fill the knowledge gap in business-to-business (B2B) research, we investigate whether UGC has differential impacts on stock performance for B2B and B2C firms by using big data. We collect a large dataset of 84 million tweets from 20.3 million Twitter accounts and 8 years of stock data for 407 companies from the S&P500 index. The results from machine learning methods are transformed into a monthly panel data. We conduct fixed effects model on the panel data. We find that UGC has a significant impact on firms' stock performance and that its impact on stock performance is much stronger among B2C firms than among B2B firms. While consumers' positive sentiment does not play a significant role in stock performance, consumers' negative sentiment and WOM significantly impact stock prices. C1 [Liu, Xia] Rowan Univ, William G Rohrer Coll Business, Dept Mkt, 201 Mull Hill Rd, Glassboro, NJ 08028 USA. [Liu, Xia] Rowan Univ, William G Rohrer Coll Business, BIS, 201 Mull Hill Rd, Glassboro, NJ 08028 USA. C3 Rowan University; Rowan University RP Liu, X (autor correspondiente), Rowan Univ, William G Rohrer Coll Business, Dept Mkt, 201 Mull Hill Rd, Glassboro, NJ 08028 USA.; Liu, X (autor correspondiente), Rowan Univ, William G Rohrer Coll Business, BIS, 201 Mull Hill Rd, Glassboro, NJ 08028 USA. EM liul@rowan.edu CR Aksoy L, 2008, J MARKETING, V72, P105, DOI 10.1509/jmkg.72.4.105 Allison P., 2008, FIXED EFFECTS REGRES [Anonymous], 6 INT ADV COMP C IAC [Anonymous], 2010, IFIP ANN C DAT APPL [Anonymous], 2018, NUMBER MONTHLY ACTIV Armbrust M, 2015, SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P1383, DOI 10.1145/2723372.2742797 Bird S., 2009, NATURAL LANGUAGE PRO Bjeladinovic S, 2018, ENTERP INF SYST-UK, V12, P1202, DOI 10.1080/17517575.2018.1446102 Blei DM, 2014, ANNU REV STAT APPL, V1, P203, DOI 10.1146/annurev-statistics-022513-115657 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boyd D, 2012, INFORM COMMUN SOC, V15, P662, DOI 10.1080/1369118X.2012.678878 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Cameron AC, 2010, MICROECONOMETRICS US, V2 Chintagunta P, 2016, MARKET SCI, V35, P341, DOI 10.1287/mksc.2016.0996 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 Choi I, 2001, J INT MONEY FINANC, V20, P249, DOI 10.1016/S0261-5606(00)00048-6 Chu Z, 2012, IEEE T DEPEND SECURE, V9, P811, DOI 10.1109/TDSC.2012.75 Culotta A, 2016, MARKET SCI, V35, P343, DOI 10.1287/mksc.2015.0968 Engelberg J, 2018, J ACCOUNT ECON, V66, P415, DOI 10.1016/j.jacceco.2018.08.005 Fornell C, 2006, J MARKETING, V70, P3, DOI 10.1509/jmkg.2006.70.1.3 George G, 2016, ACAD MANAGE J, V59, P1493, DOI 10.5465/amj.2016.4005 George G, 2014, ACAD MANAGE J, V57, P321, DOI 10.5465/amj.2014.4002 Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Grün B, 2011, J STAT SOFTW, V40, P1 HAUSMAN JA, 1978, ECONOMETRICA, V46, P1251, DOI 10.2307/1913827 Heimerl F, 2014, P ANN HICSS, P1833, DOI 10.1109/HICSS.2014.231 Heinonen K, 2011, J CONSUM BEHAV, V10, P356, DOI 10.1002/cb.376 Heng Y, 2018, J RETAIL CONSUM SERV, V42, P161, DOI 10.1016/j.jretconser.2018.02.006 Hennig-Thurau T, 2015, J ACAD MARKET SCI, V43, P375, DOI 10.1007/s11747-014-0388-3 Hewett K, 2016, J MARKETING, V80, P1, DOI 10.1509/jm.15.0033 Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448 Hsiao C, 2007, TEST-SPAIN, V16, P1, DOI 10.1007/s11749-007-0046-x Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Iliev R, 2015, LANG COGN, V7, P265, DOI 10.1017/langcog.2014.30 Izogo Ernest Emeka, 2017, TQM Journal, V29, P19, DOI 10.1108/TQM-10-2014-0089 Jin SAA, 2014, J ADVERTISING, V43, P181, DOI 10.1080/00913367.2013.827606 Jungherr A, 2014, J COMMUN, V64, P239, DOI 10.1111/jcom.12087 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kim AJ, 2016, COMPUT HUM BEHAV, V58, P98, DOI 10.1016/j.chb.2015.12.047 Lacy S, 2015, J MASS COMMUN Q, V92, P791, DOI 10.1177/1077699015607338 Lansdall-Welfare T, 2017, P NATL ACAD SCI USA, V114, pE457, DOI 10.1073/pnas.1606380114 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Li XY, 2018, IEEE T INF FOREN SEC, V13, P1917, DOI 10.1109/TIFS.2018.2806925 Lilien GL, 2016, INT J RES MARK, V33, P543, DOI 10.1016/j.ijresmar.2016.01.003 Liu X, 2017, J ADVERTISING, V46, P236, DOI 10.1080/00913367.2017.1297273 Liu X, 2016, MARKET SCI, V35, P363, DOI 10.1287/mksc.2015.0972 Lu Y., 2009, FDN STAT NATURAL LAN, P131 Luo XM, 2009, MARKET SCI, V28, P148, DOI 10.1287/mksc.1080.0389 Malthouse EC, 2017, J ADVERTISING, V46, P227, DOI 10.1080/00913367.2017.1299653 Mankad S, 2016, SERV SCI, V8, P124, DOI 10.1287/serv.2016.0126 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 McCallum A. K., 2002, MALLET MACHINE LEARN Meng XR, 2016, J MACH LEARN RES, V17 Minnick K, 2017, J CORP FINANC, V44, P233, DOI 10.1016/j.jcorpfin.2017.04.001 Morstatter F, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P533, DOI 10.1109/ASONAM.2016.7752287 Netzer O, 2008, MARKET SCI, V27, P185, DOI 10.1287/mksc.1070.0294 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Nunez-Mir GC, 2016, METHODS ECOL EVOL, V7, P1262, DOI 10.1111/2041-210X.12602 Pustejovsky J., 2012, NATURAL LANGUAGE ANN Ravi K, 2015, KNOWL-BASED SYST, V89, P14, DOI 10.1016/j.knosys.2015.06.015 Saboo AR, 2016, MIS QUART, V40, P911, DOI 10.25300/MISQ/2016/40.4.06 Schwartz B., 2012, High Performance MySQL: Optimization, Backups, and Replication Shuai CY, 2017, APPL ENERG, V187, P310, DOI 10.1016/j.apenergy.2016.11.029 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Trilling D, 2018, COMMUN METHODS MEAS, V12, P158, DOI 10.1080/19312458.2018.1447655 Uotila J, 2009, STRATEGIC MANAGE J, V30, P221, DOI 10.1002/smj.738 van der Meer TGLA, 2016, PUBLIC RELAT REV, V42, P952, DOI 10.1016/j.pubrev.2016.09.001 Varian H.R., 2014, BUS ECON, V49, P27 Varian HR, 2014, J ECON PERSPECT, V28, P3, DOI 10.1257/jep.28.2.3 Varol O, 2017, P INT AAAI C WEB SOC, DOI DOI 10.48550/ARXIV.1703.03107 Wang YC, 2018, INFORM MANAGE-AMSTER, V55, P64, DOI 10.1016/j.im.2017.04.001 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P1 Wu PJ, 2018, TELEMAT INFORM, V35, P237, DOI 10.1016/j.tele.2017.11.004 Zhang ZF, 2018, NEUROCOMPUTING, V275, P1407, DOI 10.1016/j.neucom.2017.09.080 NR 78 TC 71 Z9 72 U1 17 U2 100 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD APR PY 2020 VL 86 DI 10.1016/j.indmarman.2019.02.021 PG 10 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LG2LA UT WOS:000527937700004 DA 2024-03-27 ER PT J AU Pillai, R Sivathanu, B AF Pillai, Rajasshrie Sivathanu, Brijesh TI Adoption of artificial intelligence (AI) for talent acquisition in IT/ITeS organizations SO BENCHMARKING-AN INTERNATIONAL JOURNAL LA English DT Article DE Artificial intelligence; TOE; TTF; Talent acquisition; Adoption; IT; ITeS; PLS-SEM ID TASK-TECHNOLOGY FIT; SUPPLY CHAIN MANAGEMENT; SOCIAL COGNITIVE THEORY; BUSINESS INTELLIGENCE; ACCEPTANCE MODEL; MOBILE BANKING; BIG DATA; PLS-SEM; DETERMINANTS; SMES AB Purpose Human resource managers are adopting AI technology for conducting various tasks of human resource management, starting from manpower planning till employee exit. AI technology is prominently used for talent acquisition in organizations. This research investigates the adoption of AI technology for talent acquisition. Design/methodology/approach This study employs Technology-Organization-Environment (TOE) and Task-Technology-Fit (TTF) framework and proposes a model to explore the adoption of AI technology for talent acquisition. The survey was conducted among the 562 human resource managers and talent acquisition managers with a structured questionnaire. The analysis of data was completed using PLS-SEM. Findings This research reveals that cost-effectiveness, relative advantage, top management support, HR readiness, competitive pressure and support from AI vendors positively affect AI technology adoption for talent acquisition. Security and privacy issues negatively influence the adoption of AI technology. It is found that task and technology characteristics influence the task technology fit of AI technology for talent acquisition. Adoption and task technology fit of AI technology influence the actual usage of AI technology for talent acquisition. It is revealed that stickiness to traditional talent acquisition methods negatively moderates the association between adoption and actual usage of AI technology for talent acquisition. The proposed model was empirically validated and revealed the predictors of adoption and actual usage of AI technology for talent acquisition. Practical implications This paper provides the predictors of the adoption of AI technology for talent acquisition, which is emerging extensively in the human resource domain. It provides vital insights to the human resource managers to benchmark AI technology required for talent acquisition. Marketers can develop their marketing plan considering the factors of adoption. It would help designers to understand the factors of adoption and design the AI technology algorithms and applications for talent acquisition. It contributes to advance the literature of technology adoption by interweaving it with the human resource domain literature on talent acquisition. Originality/value This research uniquely validates the model for the adoption of AI technology for talent acquisition using the TOE and TTF framework. It reveals the factors influencing the adoption and actual usage of AI technology for talent acquisition. C1 [Pillai, Rajasshrie] Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. [Sivathanu, Brijesh] Sri Balaji Univ, Dept Management, Pune, Maharashtra, India. RP Pillai, R (autor correspondiente), Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. EM rajasshrie1@gmail.com RI S, BRIJESH/AAQ-4753-2021; Pillai, Rajasshrie/GRO-0859-2022 OI Sivathanu, Dr. Brijesh/0000-0003-2505-9140 CR Aayog Niti, 2018, National Strategy for Artificial Intelligence Ahmadi Hossein., 2015, Journal of Soft Computing and Decision Support Systems, V2, P26 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] Al-Qirim N., 2006, International Journal of Internet and Enterprise Management, V4, P293, DOI 10.1504/IJIEM.2006.011042 Al-Qirim N, 2007, ELECTRON COMMER R A, V6, P462, DOI 10.1016/j.elerap.2007.02.012 Alaiad A., 2016, IEEE T PROFESSIONAL, V60, P1 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alam MGR, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0160366 Alam SS, 2011, J BUS ECON MANAG, V12, P375, DOI 10.3846/16111699.2011.576749 Alatawi F., 2012, GOV WORKSHOP, V2, P1 Albert Edward Tristram, 2019, Strategic HR Review, V18, P215, DOI 10.1108/SHR-04-2019-0024 Allen DG, 2007, J APPL PSYCHOL, V92, P1696, DOI 10.1037/0021-9010.92.6.1696 Awa H.O., 2010, International Journal of Business and Management, V5, P184 Awa HO, 2016, COGENT BUS MANAG, V3, DOI 10.1080/23311975.2016.1196571 Awa HO, 2017, J ENTERP INF MANAG, V30, P893, DOI 10.1108/JEIM-03-2016-0079 Awa HO, 2017, BOTTOM LINE, V30, P2, DOI 10.1108/BL-12-2016-0044 Awa HO, 2016, INFORM TECHNOL PEOPL, V29, P901, DOI 10.1108/ITP-03-2015-0068 Awa HO, 2015, J ENTERP INF MANAG, V28, P326, DOI 10.1108/JEIM-10-2013-0073 Baig MI, 2019, INFORM PROCESS MANAG, V56, DOI 10.1016/j.ipm.2019.102095 Balaid Ali, 2014, 2014 8th Malaysian Software Engineering Conference (MySEC), P201, DOI 10.1109/MySec.2014.6986014 Bandura A, 2001, MEDIA PSYCHOL, V3, P265, DOI 10.1207/S1532785XMEP0303_03 Beechler S, 2009, J INT MANAG, V15, P273, DOI 10.1016/j.intman.2009.01.002 Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Benlian A, 2011, DECIS SUPPORT SYST, V52, P232, DOI 10.1016/j.dss.2011.07.007 Bersin J., 2018, TALENT TRENDS TECHNO Bogle S., 2012, INT J INFORM SCI TEC, V2, P1, DOI DOI 10.5121/IJIST.2012.2301 Bugg K., 2015, Library Leadership Management, V29 Bughin J., 2017, JOBS LOST JOBS GAINE, P1 Burton-Jones A, 2013, INFORM SYST RES, V24, P632, DOI 10.1287/isre.1120.0444 Chan FTS, 2013, INT J PROD RES, V51, P1196, DOI 10.1080/00207543.2012.693961 Charlier Robert, 2017, Artificial Intelligence in HR: a No-brainer Cheng YM, 2020, BENCHMARKING, V27, P1591, DOI 10.1108/BIJ-05-2019-0208 Chong AYL, 2012, EXPERT SYST APPL, V39, P8645, DOI 10.1016/j.eswa.2012.01.201 Collings D., 2013, HUMAN RESOURCE MANAG, V23, P305 Cruz-Jesus Frederico, 2018, Trends and Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 745), P1094, DOI 10.1007/978-3-319-77703-0_106 Cruz-Jesus F, 2019, COMPUT IND, V109, P1, DOI 10.1016/j.compind.2019.03.007 Daradkeh MK, 2019, INFORM TECHNOL PEOPL, V32, P668, DOI 10.1108/ITP-10-2017-0359 Das R, 2018, BENCHMARKING, V25, P1213, DOI 10.1108/BIJ-09-2016-0143 Dastin J., 2018, Reuters9 October DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Deloitte, 2017, 2018 HR TECHN DISR Demers E., 2001, Review of Accounting Studies, V6, P331 Depietro R., 1990, The process of technological innovation, P151 Derous E, 2016, INT J SELECT ASSESS, V24, P1, DOI 10.1111/ijsa.12123 Dhamija P, 2020, TQM J, V32, P869, DOI 10.1108/TQM-10-2019-0243 Dishaw MT, 1999, INFORM MANAGE-AMSTER, V36, P9, DOI 10.1016/S0378-7206(98)00101-3 Dries N, 2013, HUM RESOUR MANAGE R, V23, P272, DOI 10.1016/j.hrmr.2013.05.001 Dubey R, 2018, INT J LOGIST MANAG, V29, P485, DOI 10.1108/IJLM-02-2017-0039 DWIVEDI YK, 2019, INT J INFORM MANAGEM El-Haddadeh R, 2020, INFORM SYST FRONT, V22, P985, DOI 10.1007/s10796-019-09912-2 Erro-Garcés A, 2021, BENCHMARKING, V28, P1858, DOI 10.1108/BIJ-12-2018-0444 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gangwar H, 2014, J ENTERP INF MANAG, V27, P488, DOI 10.1108/JEIM-08-2012-0047 Gerrard Michael, 2010, ACIS 2010 P 21 AUSTR Ghobakhloo M, 2011, IND MANAGE DATA SYST, V111, P1238, DOI 10.1108/02635571111170785 GOODHUE DL, 1995, MIS QUART, V19, P213, DOI 10.2307/249689 Goodman E., 2017, HARVARD BUSINESS REV GROVER V, 1993, DECISION SCI, V24, P603, DOI 10.1111/j.1540-5915.1993.tb01295.x Gu V., 2020, INT J PRODUCTIVITY P Guide VDR, 2015, J OPER MANAG, V37, pV, DOI 10.1016/S0272-6963(15)00056-X Gupta A, 2016, ISPRS ANN PHOTO REM, V3, P263, DOI 10.5194/isprsannals-III-3-263-2016 Hair J.F., 2016, A premier on partial least squares structural equation modeling (PLS-SEM), V2nd Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Hameed MA, 2012, INFORM MANAGE-AMSTER, V49, P218, DOI 10.1016/j.im.2012.05.002 Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Henderson D, 2012, INT J ACCOUNT INF SY, V13, P109, DOI 10.1016/j.accinf.2012.02.001 Hossain MA, 2017, INFORM TECHNOL PEOPL, V30, P785, DOI 10.1108/ITP-06-2016-0133 Howard M.C., 2018, INFORM MANAGEMENT, P1 Hsu CL, 2016, TECHNOL FORECAST SOC, V108, P42, DOI 10.1016/j.techfore.2016.04.012 Hsu CW, 2017, TECHNOL ANAL STRATEG, V29, P1089, DOI 10.1080/09537325.2016.1269160 Huang G., 2002, Benchmarking, V9, P357, DOI [10.1108/14635770210442699, DOI 10.1108/14635770210442699] Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Hungund S, 2019, BENCHMARKING, V26, P1451, DOI 10.1108/BIJ-05-2018-0127 Ifinedo P, 2011, INT J INF TECH DECIS, V10, P731, DOI 10.1142/S0219622011004543 Ivanov S.H., 2017, Artificial Intelligence and Service Automation by Travel, Tourism and Hospitality Companies -A Cost -Benefit Analysis Jia Q, 2016, INT CON DISTR COMP S, P690, DOI 10.1109/ICDCS.2016.94 Jia Q, 2017, COMPUT HUM BEHAV, V67, P95, DOI 10.1016/j.chb.2016.10.022 Kapoor KK, 2018, INFORM SYST FRONT, V20, P531, DOI 10.1007/s10796-017-9810-y Kashi K, 2016, J ORG COMP ELECT COM, V26, P203, DOI 10.1080/10919392.2016.1194055 Khemthong S., 2006, J BUSINESS SYSTEMS G, V1, P51, DOI [10.15209/jbsge.v1i2.74, DOI 10.15209/JBSGE.V1I2.74] Kin TongYoon., 2005, Employee Relations, V27, P103, DOI DOI 10.1108/01425450510569337 Kinder T, 2000, TECHNOVATION, V20, P461, DOI 10.1016/S0166-4972(00)00017-1 Kumar S, 2019, BENCHMARKING, V26, P2188, DOI 10.1108/BIJ-08-2018-0251 Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153 Landers RN., 2016, Social media in employee selection and recruitment: Theory, practice, and current challenges, DOI DOI 10.1007/978-3-319-29989-1 Laumer S, 2010, INTEGR SER INFORM SY, V28, P63, DOI 10.1007/978-1-4419-6108-2_4 Lee JN, 2004, INFORM SYST RES, V15, P110, DOI 10.1287/isre.1040.0013 Lin HX, 2020, J HOSP MARKET MANAG, V29, P530, DOI 10.1080/19368623.2020.1685053 Lin JCC, 2007, BEHAV INFORM TECHNOL, V26, P507, DOI 10.1080/01449290600740843 Lin TC, 2008, INFORM MANAGE-AMSTER, V45, P410, DOI 10.1016/j.im.2008.06.004 Lin WS, 2012, INT J HUM-COMPUT ST, V70, P498, DOI 10.1016/j.ijhcs.2012.01.006 Low CY, 2011, IND MANAGE DATA SYST, V111, P1006, DOI 10.1108/02635571111161262 Maciag G.A., 2000, National Underwrite, V104, P19 Mårtensson J, 2016, ANN INTENSIVE CARE, V6, DOI 10.1186/s13613-016-0108-x Masood T, 2019, ROBOT CIM-INT MANUF, V58, P181, DOI 10.1016/j.rcim.2019.02.003 McCarthy J., 1955, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence McDonald K, 2017, CHANG CONT MANAG, P87 McGill TJ, 2009, COMPUT EDUC, V52, P496, DOI 10.1016/j.compedu.2008.10.002 McGoven S., 2018, The new age: artificial intelligence for human resource opportunities and functions Melanthiou Y., 2015, J TRANSNATIONAL MANA, V20, P31, DOI DOI 10.1080/15475778.2015.998141 Michaels E., 2001, WAR TALENT Moghaddam H., 2015, Journal of Global Business Advancement, V8, P305, DOI DOI 10.1504/JGBA.2015.071331 Muduli A, 2020, BENCHMARKING, V27, P1615, DOI 10.1108/BIJ-07-2019-0312 Nair P., 2017, RISE AI RECRUITER IS Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Oliveira T., 2011, Literature Review of Information Technology Adoption Models at Firm Level Oliveira T, 2019, INT J INFORM MANAGE, V49, P1, DOI 10.1016/j.ijinfomgt.2019.02.009 Oliveira T, 2014, INFORM MANAGE-AMSTER, V51, P497, DOI 10.1016/j.im.2014.03.006 Oliveira T, 2010, IND MANAGE DATA SYST, V110, P1337, DOI 10.1108/02635571011087428 Onik M.M., 2018, P SMART CIT S SCS 20, DOI [10.1049/CP.2018.1371, DOI 10.1049/CP.2018.1371] Osmonbekov T, 2010, J BUS RES, V63, P217, DOI 10.1016/j.jbusres.2009.01.012 Park JY, 2020, J SPORT REHABIL, V29, P93, DOI 10.1123/jsr.2017-0216 Phahlane M.M., 2017, MULTIDIMENSIONAL FRA Phahlane MM, 2017, 2017 CONFERENCE ON INFORMATION COMMUNICATION TECHNOLOGY AND SOCIETY (ICTAS) Phillips-Wren G, 2016, J DECIS SYST, V25, P450, DOI 10.1080/12460125.2016.1187398 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Premkumar G, 1999, OMEGA-INT J MANAGE S, V27, P467, DOI 10.1016/S0305-0483(98)00071-1 Puklavec B, 2018, IND MANAGE DATA SYST, V118, P236, DOI 10.1108/IMDS-05-2017-0170 Qu WG, 2011, J BUS RES, V64, P997, DOI 10.1016/j.jbusres.2010.11.023 Quaddus M, 2007, EUR J INFORM SYST, V16, P202, DOI 10.1057/palgrave.ejis.3000671 Queiroz MM, 2021, BENCHMARKING, V28, P1761, DOI 10.1108/BIJ-12-2018-0435 Qureshi M.A., 2018, INT J TECHNOL ENHANC, V1, P1, DOI [10.1504/IJTEL.2018.10017608, DOI 10.1504/IJTEL.2018.10017608] Radhika R., 2016, J MULTIDISCIPLINARY, V3, P78 Rahayu R, 2015, WORLD CONFERENCE ON TECHNOLOGY, INNOVATION AND ENTREPRENEURSHIP, P142, DOI 10.1016/j.sbspro.2015.06.423 Rahman M., 2017, J ENTERPRISE INFORM, V31, P247 Rahman M, 2018, J ENTERP INF MANAG, V31, P247, DOI 10.1108/JEIM-05-2017-0066 Ramdani B, 2013, J SMALL BUS ENTERP D, V20, P735, DOI 10.1108/JSBED-12-2011-0035 Ringle C.M., 2005, Smart PLS 2.0 Rogers, 2003, DIFFUSION INNOVATION Rogers E., 2005, Diffusion of Innovations, V4th ed., DOI DOI 10.1007/978-3-642-79868-9_2 Sabherwal R., 2006, INFORM SYSTEM SUCCES Salam MA, 2021, BENCHMARKING, V28, P1697, DOI 10.1108/BIJ-12-2018-0428 Salleh K., 2018, PACIS P, P211 Sen S., 2018, AI AUTOMATION HR IMP Shaltoni AM, 2017, J BUS IND MARK, V32, P1009, DOI 10.1108/JBIM-06-2016-0122 Shih KH, 2010, INT J MOB COMMUN, V8, P257, DOI 10.1504/IJMC.2010.032974 Singh N, 2018, BENCHMARKING, V25, P3459, DOI 10.1108/BIJ-08-2017-0215 Sivathanu B, 2019, INF RESOUR MANAG J, V32, P52, DOI 10.4018/IRMJ.2019040103 Sivathanu B, 2019, J SCI TECHNOL POLICY, V10, P143, DOI 10.1108/JSTPM-07-2017-0033 SONY M, 2019, PROD PLAN CONTR 1115, DOI DOI 10.1108/BIJ-09-2018-0284 Strohmeier S., 2007, Human Resources Management Review, V17, P19, DOI 10.1016/j.hrmr.2006.11.002 Sun J, 2017, INT J INFORM MANAGE, V37, P400, DOI 10.1016/j.ijinfomgt.2017.04.010 Tam C, 2016, INT J BANK MARK, V34, P434, DOI 10.1108/IJBM-11-2014-0169 Tavana M, 2019, BENCHMARKING, V27, P81, DOI 10.1108/BIJ-04-2019-0178 Teo TSH, 2008, J MANAGE INFORM SYST, V25, P99, DOI 10.2753/MIS0742-1222250303 Thomas M, 2016, INFORM SYST FRONT, V18, P693, DOI 10.1007/s10796-015-9556-3 Thong J., 1991, J MANAGEMNET INFORAM, V15, P187 Tong DYK, 2009, IND MANAGE DATA SYST, V109, P281, DOI 10.1108/02635570910930145 Tornatzky L.G. Fleischer., 1990, The Process of Technology Innovation Tsai MC, 2010, INFORM MANAGE-AMSTER, V47, P255, DOI 10.1016/j.im.2010.05.001 Tsou HT, 2015, INT J INFORM MANAGE, V35, P1, DOI 10.1016/j.ijinfomgt.2014.09.001 Tung LL, 2005, J STRATEGIC INF SYST, V14, P417, DOI 10.1016/j.jsis.2005.06.001 Tussyadiah I., 2018, CONSUMER EVALUATION, DOI [10.1007/978-3-319-72923-7, DOI 10.1007/978-3-319-72923-7] Tussyadiah I, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P359, DOI 10.1007/978-3-030-05940-8_28 Upadhyay Ashwani Kumar, 2018, Strategic HR Review, V17, P255, DOI 10.1108/SHR-07-2018-0051 van Esch P, 2019, COMPUT HUM BEHAV, V90, P215, DOI 10.1016/j.chb.2018.09.009 Vanduhe VZ, 2020, IEEE ACCESS, V8, P21473, DOI 10.1109/ACCESS.2020.2966179 Venkatesh V., 2009, MIS Q, P425 Virdyananto A., 2017, 2016 INT C INFORM TE, P1 Wamba SF, 2016, PROD PLAN CONTROL, V27, P979, DOI 10.1080/09537287.2016.1167981 Wang SL, 2019, BEHAV INFORM TECHNOL, V38, P974, DOI 10.1080/0144929X.2019.1626486 Wang YS, 2013, INT J INFORM MANAGE, V33, P199, DOI 10.1016/j.ijinfomgt.2012.09.004 Wang YY, 2018, INT J INFORM MANAGE, V38, P7, DOI 10.1016/j.ijinfomgt.2017.07.003 Wu WW, 2011, EXPERT SYST APPL, V38, P15057, DOI 10.1016/j.eswa.2011.05.039 Wymer S. A., 2005, Electronic Markets, V15, P438, DOI 10.1080/10196780500303151 Xia BS, 2014, BENCHMARKING, V21, P300, DOI 10.1108/BIJ-08-2012-0050 Yadegaridehkordi E, 2020, ELECTRON COMMER R A, V40, DOI 10.1016/j.elerap.2019.100921 Yang H, 2017, IND MANAGE DATA SYST, V117, P68, DOI 10.1108/IMDS-01-2016-0017 Yang ZJ, 2015, COMPUT HUM BEHAV, V45, P254, DOI 10.1016/j.chb.2014.12.022 Yoon TE, 2013, COMPUT HUM BEHAV, V29, P772, DOI 10.1016/j.chb.2012.12.003 You T., 2019, 2019 TALENT ACQUISIT Yuan YF, 2010, INFORM MANAGE-AMSTER, V47, P125, DOI 10.1016/j.im.2009.12.004 Zafar H, 2013, HUM RESOUR MANAGE R, V23, P105, DOI 10.1016/j.hrmr.2012.06.010 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 Zhu K, 2006, EUR J INFORM SYST, V15, P601, DOI 10.1057/palgrave.ejis.3000650 NR 177 TC 67 Z9 71 U1 45 U2 205 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1463-5771 EI 1758-4094 J9 BENCHMARKING JI Benchmarking PD NOV 9 PY 2020 VL 27 IS 9 BP 2599 EP 2629 DI 10.1108/BIJ-04-2020-0186 EA AUG 2020 PG 31 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA PB7BX UT WOS:000562876300001 DA 2024-03-27 ER PT J AU Zheng, TX Wu, FR Law, R Qiu, QH Wu, R AF Zheng, Tianxiang Wu, Feiran Law, Rob Qiu, Qihang Wu, Rong TI Identifying unreliable online hospitality reviews with biased user-given ratings: A deep learning forecasting approach SO INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT LA English DT Article DE Online customer review; Review reliability; Review rating prediction; Deep learning; Information quality ID BIG DATA; SENTIMENT ANALYSIS; SOCIAL MEDIA; SATISFACTION; HELPFULNESS; IMPACT; PERCEPTIONS; ANALYTICS; BEHAVIOR; PHOTOS AB This study considers the review reliability problem by identifying biased user-given ratings through rating prediction on the basis of the textual content. Deep learning approaches were introduced to investigate the textual review and validate the effect of rating prediction using a dataset collected from Yelp. The definition of "biased rating" was clarified and influenced the matching rules. The approach obtains high performance on a total of 1,000,000 reviews for prediction, with user-given ratings as the benchmark. Using the revealed biased ratings, unreliable reviews were detected by combining the results of several deep learning kernels. Findings shed light on understanding review quality by distinguishing biased ratings and unreliable reviews that may cause inconsistency and ambiguity to readers. Hence, theoretical and managerial areas for social media analytics are enriched on the basis of online review meta-data in hospitality and tourism. C1 [Zheng, Tianxiang; Wu, Feiran] Jinan Univ, Shenzhen Tourism Coll JNU UF Int Joint Lab Inform, 6 Qiaocheng East Ave, Shenzhen 518053, Guangdong, Peoples R China. [Law, Rob] Hong Kong Polytech Univ, Sch Hotel & Tourism Management, TST East, Kowloon, 17 Sci Museum Rd, Hong Kong 999077, Peoples R China. [Qiu, Qihang] Adam Mickiewicz Univ, Fac Human Geog & Planning, Krygowskiego 10, PL-61680 Poznan, Poland. [Wu, Rong] Guangdong Univ Technol, Sch Architecture & Urban Planning, 729 Dongfeng East Rd, Guangzhou 510090, Guangdong, Peoples R China. C3 Jinan University; Hong Kong Polytechnic University; Adam Mickiewicz University; Guangdong University of Technology RP Wu, R (autor correspondiente), Guangdong Univ Technol, Sch Architecture & Urban Planning, 729 Dongfeng East Rd, Guangzhou 510090, Guangdong, Peoples R China. EM zheng_tx@jnu.edu.cn; wufeiran@stu2018.jnu.edu.cn; rob.law@polyu.edu.hk; qihang.qiu@amu.edu.pl; wurong5@mail2.sysu.edu.cn RI Law, Rob/Y-3608-2019; Qiu, Qihang/GMW-4485-2022 OI Law, Rob/0000-0001-7199-3757; Qiu, Qihang/0000-0002-7821-8670 FU Special Funds of High-level University Construction Program of Guangdong Province [88018052] FX This work was partially supported by the Special Funds of High-level University Construction Program of Guangdong Province under Grant No. 88018052. CR Alaei AR, 2019, J TRAVEL RES, V58, P175, DOI 10.1177/0047287517747753 Antonio N, 2018, INT J CONTEMP HOSP M, V30, P3574, DOI 10.1108/IJCHM-05-2017-0302 Bengio Y, 2004, J MACH LEARN RES, V5, P1089 Berezina K, 2016, J HOSP MARKET MANAG, V25, P1, DOI 10.1080/19368623.2015.983631 Calheiros AC, 2017, J HOSP MARKET MANAG, V26, P675, DOI 10.1080/19368623.2017.1310075 Cheng MM, 2019, INT J HOSP MANAG, V76, P58, DOI 10.1016/j.ijhm.2018.04.004 Chollet F., 2017, Deep learning with Python Costa A, 2019, J RETAIL CONSUM SERV, V47, P272, DOI 10.1016/j.jretconser.2018.12.006 Duan WJ, 2016, CORNELL HOSP Q, V57, P282, DOI 10.1177/1938965515620483 Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010 Ganu G, 2012, INFORM SYST, V38, P1, DOI 10.1016/j.is.2012.03.001 Gavilan D, 2018, TOURISM MANAGE, V66, P53, DOI 10.1016/j.tourman.2017.10.018 Gössling S, 2019, CURR ISSUES TOUR, V22, P1744, DOI 10.1080/13683500.2018.1455171 Gursoy D, 2019, INT J HOSP MANAG, V76, P53, DOI 10.1016/j.ijhm.2018.06.003 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002 Hu N, 2012, DECIS SUPPORT SYST, V52, P674, DOI 10.1016/j.dss.2011.11.002 Kirilenko AP, 2018, J TRAVEL RES, V57, P1012, DOI 10.1177/0047287517729757 Kuhzady S, 2019, TOUR ANAL, V24, P69, DOI [10.3727/108354219x15458295631972, 10.3727/108354219X15458295631972] Kwok L, 2017, INT J CONTEMP HOSP M, V29, P307, DOI 10.1108/IJCHM-11-2015-0664 Law R, 2019, ANN TOURISM RES, V75, P410, DOI 10.1016/j.annals.2019.01.014 Lei Xue, 2015, 2015 23rd International Conference on Geoinformatics. Proceedings, P1, DOI 10.1109/GEOINFORMATICS.2015.7378578 Levy SE, 2013, CORNELL HOSP Q, V54, P49, DOI 10.1177/1938965512464513 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Liu L., 2009, Encyclopedia of Database Systems, P532, DOI [DOI 10.1007/978-0-387-39940-9, 10.1007/978-0-387-39940-9_565, DOI 10.1007/978-0-387-39940-9_565] Liu XW, 2018, TOURISM MANAGE, V66, P38, DOI 10.1016/j.tourman.2017.11.005 Liu Y, 2019, TOURISM MANAGE, V71, P337, DOI 10.1016/j.tourman.2018.10.004 Ma YF, 2018, INT J HOSP MANAG, V71, P120, DOI 10.1016/j.ijhm.2017.12.008 Mellinas JP, 2019, TOURISM MANAGE, V71, P421, DOI 10.1016/j.tourman.2018.10.034 Powers D. M. W., 2020, J MACH LEARN TECHNOL, V2, P37, DOI [10.48550/arXiv.2010.16061, 10.9735/2229-3981, DOI 10.9735/2229-3981] Ren J, 2019, EUR J INFORM SYST, V28, P272, DOI 10.1080/0960085X.2018.1524419 Schuckert M, 2016, ASIA PAC J TOUR RES, V21, P259, DOI 10.1080/10941665.2015.1029954 Shin S, 2019, J TRAVEL RES, V58, P579, DOI 10.1177/0047287518768456 Sijoria C, 2019, J HOSP MARKET MANAG, V28, P1, DOI 10.1080/19368623.2018.1497564 Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008 Starosta K, 2019, TOURISM, V67, P405 Wang X, 2019, INT J HOSP MANAG, V77, P438, DOI 10.1016/j.ijhm.2018.08.007 Wen L, 2019, TOURISM ECON, V25, P309, DOI 10.1177/1354816618768317 Wijnhoven F, 2014, DECIS SUPPORT SYST, V59, P262, DOI 10.1016/j.dss.2013.12.005 Xiang Z, 2018, INF TECHNOL TOUR, V18, P43, DOI 10.1007/s40558-017-0098-z Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Xie KL, 2014, INT J HOSP MANAG, V43, P1, DOI 10.1016/j.ijhm.2014.07.007 Xie X, 2019, SOFT COMPUT, V23, P599, DOI 10.1007/s00500-017-2904-0 Zhang BR, 2020, ASIA PAC J TOUR RES, V25, P323, DOI 10.1080/10941665.2019.1709876 Zhang K, 2019, TOURISM MANAGE, V75, P595, DOI 10.1016/j.tourman.2019.07.002 Zhang YL, 2016, ROUTL ADV HETEROD EC, V23, P13, DOI 10.1016/j.tourman.2015.09.001 Zhao YB, 2019, INT J HOSP MANAG, V76, P111, DOI 10.1016/j.ijhm.2018.03.017 Zhu DH, 2019, INT J HOSP MANAG, V77, P178, DOI 10.1016/j.ijhm.2018.06.028 NR 49 TC 27 Z9 28 U1 7 U2 84 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0278-4319 EI 1873-4693 J9 INT J HOSP MANAG JI Int. J. Hosp. Manag. PD JAN PY 2021 VL 92 AR 102658 DI 10.1016/j.ijhm.2020.102658 PG 9 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA PB7ZJ UT WOS:000596534500006 DA 2024-03-27 ER PT J AU Rezaei, F Vanani, IR Jafari, A Kakavand, S AF Rezaei, Faridoddin Vanani, Iman Raeesi Jafari, Amirhosein Kakavand, Sanaz TI Identification of Influential Factors and Improvement of Hotel Online User-Generated Scores: A Prescriptive Analytics Approach SO JOURNAL OF QUALITY ASSURANCE IN HOSPITALITY & TOURISM LA English DT Article; Early Access DE hospitality management; natural language processing; online customer reviews; prescriptive analytics; service quality; machine learning ID WORD-OF-MOUTH; CUSTOMER SATISFACTION; SERVICE QUALITY; BIG DATA; SOCIAL MEDIA; MODERATING ROLE; SENTIMENT ANALYSIS; BUDGET HOTELS; REVIEWS; HOSPITALITY AB The information obtained from customers' feedback can help hotel managers improve their provided services in a targeted manner according to customers' expectations. Besides, other customers consider online hotel scores an efficient tool for quickly evaluating the quality of hotels' services. Therefore, a higher online score indicates customer satisfaction and would lead to more bookings, price acceptance, and higher financial performance. In this article, we extracted the shortcomings related to hotel attributes utilizing a novel methodology that comprises machine learning algorithms, text mining, and a combination of customers' comments and scores. Then we examined the quantitative effect of fixing these problems on hotels' online scores. Furthermore, considering the origin of the problems, the cost required for fixing them, and the quantitative effect of solving them on improving the hotels' online scores, we provided some prescriptions for hotel managers as the last phase of business analytics. This model and its resulting prescriptions can be used to increase hotels' online scores significantly by improving service quality at the lowest cost. Finally, to describe the most important attributes, we used The Nordic European School of thought and classified them based on the technical and functional dimensions of Gronroos' service quality model. C1 [Rezaei, Faridoddin; Vanani, Iman Raeesi; Jafari, Amirhosein; Kakavand, Sanaz] Allameh Tabatabai Univ, Fac Management & Accounting, Tehran, Iran. C3 Allameh Tabataba'i University RP Vanani, IR (autor correspondiente), Allameh Tabatabai Univ, Fac Management & Accounting, Tehran, Iran. EM imanraeesi@atu.ac.ir RI Jafari, Amirhosein/B-7375-2016; Raeesi Vanani, Iman/GQP-7444-2022 OI Raeesi Vanani, Iman/0000-0001-8324-9896; jafari, amirhosein/0000-0002-3547-2118; Rezaei, Faridoddin/0000-0003-1973-6424 CR Aggarwal S, 2020, J HOSP TOUR MANAG, V45, P580, DOI 10.1016/j.jhtm.2020.10.009 Albayrak T, 2015, TOURISM MANAGE, V46, P43, DOI 10.1016/j.tourman.2014.06.009 Ali F, 2016, J HOSP MARKET MANAG, V25, P449, DOI 10.1080/19368623.2015.1019172 Amado A, 2018, EUR RES MANAG BUS EC, V24, P1, DOI 10.1016/j.iedeen.2017.06.002 Ananth M., 1992, Cornell Hotel and Restaurant Administration Quarterly, V33, P12, DOI 10.1177/001088049203300403 Anderson C, 2012, IMPACT SOCIAL MEDIA Anderson SW, 2009, M&SOM-MANUF SERV OP, V11, P52, DOI 10.1287/msom.1070.0193 [Anonymous], 2014, MEASURING CUSTOMER S, DOI DOI 10.15308/SINTEZA-2014-788-795 Araque O, 2017, EXPERT SYST APPL, V77, P236, DOI 10.1016/j.eswa.2017.02.002 Assaf AG, 2012, INT J HOSP MANAG, V31, P642, DOI 10.1016/j.ijhm.2011.08.008 Au N., 2009, Information and Communication Technologies in Tourism 2009, P73 BABAKUS E, 1992, HEALTH SERV RES, V26, P767 Baka V, 2016, TOURISM MANAGE, V53, P148, DOI 10.1016/j.tourman.2015.09.004 Banerjee S, 2017, DECIS SUPPORT SYST, V96, P17, DOI 10.1016/j.dss.2017.01.006 Berezina K, 2016, J HOSP MARKET MANAG, V25, P1, DOI 10.1080/19368623.2015.983631 Berger C.R., 1974, Hum. Commun. Res., V1, P99, DOI DOI 10.1111/J.1468-2958.1975.TB00258.X Bharwani S, 2013, INT J CONTEMP HOSP M, V25, P823, DOI 10.1108/IJCHM-05-2012-0065 Boehmke B., 2019, HANDS ON MACHINE LEA, DOI DOI 10.1201/9780367816377 Bonn M. A., 2007, Journal of Travel Research, V45, P345, DOI 10.1177/0047287506295947 Boo S, 2018, J TRAVEL TOUR MARK, V35, P895, DOI 10.1080/10548408.2018.1445066 Brazyte K, 2017, J QUAL ASSUR HOSP TO, V18, P282, DOI 10.1080/1528008X.2016.1230033 Brownlee J., 2019, GENERATIVE ADVERSARI Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Canito J, 2018, COMPUT IND, V99, P1, DOI 10.1016/j.compind.2018.03.018 Casaló LV, 2015, INT J HOSP MANAG, V49, P28, DOI 10.1016/j.ijhm.2015.05.005 Centuori SM, 2016, BBA-MOL CELL BIOL L, V1861, P663, DOI 10.1016/j.bbalip.2016.04.006 Chatterjee S, 2020, INT J HOSP MANAG, V85, DOI 10.1016/j.ijhm.2019.102356 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chittiprolu V, 2021, INT J CULT TOUR HOSP, V15, P131, DOI 10.1108/IJCTHR-02-2020-0050 Chua BL, 2015, INT J HOSP MANAG, V44, P131, DOI 10.1016/j.ijhm.2014.10.012 Connelly BL, 2011, J MANAGE, V37, P39, DOI 10.1177/0149206310388419 De Pelsrnacker P, 2018, INT J HOSP MANAG, V72, P47, DOI 10.1016/j.ijhm.2018.01.003 Devesa M, 2010, TOURISM MANAGE, V31, P547, DOI 10.1016/j.tourman.2009.06.006 Dortyol IT, 2014, INT J CONTEMP HOSP M, V26, P470, DOI 10.1108/IJCHM-11-2012-0211 Duverger P, 2013, J TRAVEL RES, V52, P465, DOI 10.1177/0047287513478498 Ekiz E, 2012, J HOSP TOUR TECHNOL, V3, P96, DOI 10.1108/17579881211248817 Ekiz EH, 2011, INT J CONTEMP HOSP M, V23, P327, DOI 10.1108/09596111111122514 Filieri R, 2016, ANN TOURISM RES, V58, P46, DOI 10.1016/j.annals.2015.12.019 FORNELL C, 1992, J MARKETING, V56, P6, DOI 10.2307/1252129 Fuchs G, 2011, TOURISM MANAGE, V32, P266, DOI 10.1016/j.tourman.2010.01.012 Ganguli S, 2011, INT J BANK MARK, V29, P168, DOI 10.1108/02652321111107648 Gao BJ, 2018, TOURISM MANAGE, V65, P176, DOI 10.1016/j.tourman.2017.10.007 Gavilan D, 2018, TOURISM MANAGE, V66, P53, DOI 10.1016/j.tourman.2017.10.018 Geetha M, 2017, TOURISM MANAGE, V61, P43, DOI 10.1016/j.tourman.2016.12.022 Grimes M., 2012, GLOBAL CONSUMERS TRU GRONROOS C, 1984, EUR J MARKETING, V18, P36, DOI 10.1108/EUM0000000004784 Gronroos C., 1990, Service management and marketing, V27 Gronroos C., 1988, REV BUS, V9, P10, DOI [DOI 10.1016/S1474-4422(12)70307-1, DOI 10.1111/J.1945-1474.1988.TB00329.X] Gu B, 2014, PROD OPER MANAG, V23, P570, DOI 10.1111/poms.12043 Gu HM, 2008, INT J HOSP MANAG, V27, P337, DOI 10.1016/j.ijhm.2007.10.005 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hagerty J., 2016, PLANNING GUIDE DATA Han J.W., 2007, data mining concepts and technology Haywood-Farmer J., 1988, INT J OPER PROD MAN, V8, P19, DOI DOI 10.1108/EB054839 He W, 2017, ONLINE INFORM REV, V41, P921, DOI 10.1108/OIR-07-2016-0201 Hobday RA, 2019, J HOSP INFECT, V103, pE23, DOI 10.1016/j.jhin.2019.04.003 Huber F., 2001, J PROD BRAND MANAG, V10, P160, DOI 10.1108/10610420110395403 Hudson S, 2013, J TRAVEL TOUR MARK, V30, P156, DOI 10.1080/10548408.2013.751276 Hyndman RJ, 2006, INT J FORECASTING, V22, P679, DOI 10.1016/j.ijforecast.2006.03.001 Jang SH, 2018, AUSTRALAS MARK J, V26, P23, DOI 10.1016/j.ausmj.2018.02.001 Ji P, 2019, IEEE T SYST MAN CY-S, V49, P1993, DOI 10.1109/TSMC.2018.2875163 Kim H, 2015, TOURISM MANAGE, V49, P29, DOI 10.1016/j.tourman.2015.02.004 Kim K, 2017, TECHNOL FORECAST SOC, V123, P362, DOI 10.1016/j.techfore.2017.01.001 Kim WG, 2015, INT J HOSP MANAG, V44, P165, DOI 10.1016/j.ijhm.2014.10.014 Kirilenko AP, 2018, J TRAVEL RES, V57, P1012, DOI 10.1177/0047287517729757 KLEIN B, 1981, J POLIT ECON, V89, P615, DOI 10.1086/260996 Konstantinov AV, 2021, KNOWL-BASED SYST, V222, DOI 10.1016/j.knosys.2021.106993 Kunz W, 2017, J SERV MARK, V31, P161, DOI 10.1108/JSM-10-2016-0352 Ladhari R, 2015, INT J HOSP MANAG, V46, P36, DOI 10.1016/j.ijhm.2015.01.010 Lai IKW, 2018, INT J CONTEMP HOSP M, V30, P114, DOI 10.1108/IJCHM-08-2016-0408 Lee HM, 2020, APPL ACOUST, V162, DOI 10.1016/j.apacoust.2020.107206 Lee J, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2020.102669 Lee PJ, 2018, TELEMAT INFORM, V35, P436, DOI 10.1016/j.tele.2018.01.001 Lehtinen U., 1991, SERV IND J, V11, P287, DOI [10.1080/02642069100000047, DOI 10.1080/02642069100000047] Lepenioti K, 2020, INT J INFORM MANAGE, V50, P57, DOI 10.1016/j.ijinfomgt.2019.04.003 Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919 Li CY, 2017, TOURISM MANAGE, V62, P42, DOI 10.1016/j.tourman.2017.03.009 Li HY, 2013, ASIA PAC J TOUR RES, V18, P784, DOI 10.1080/10941665.2012.708351 Liat CB, 2017, J GLOB MARK, V30, P42 Lima ACES, 2015, APPL MATH COMPUT, V270, P756, DOI 10.1016/j.amc.2015.08.059 Lin PMC, 2018, J CHINA TOUR RES, V14, P123, DOI 10.1080/19388160.2018.1455613 Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011 Liu L, 2016, J ECON MANAGE STRAT, V25, P32, DOI 10.1111/jems.12131 Mao ZX, 2018, INT J HOSP MANAG, V74, P189, DOI 10.1016/j.ijhm.2018.05.002 Mattila A. S., 2001, Cornell Hotel and Restaurant Administration Quarterly, V42, P73, DOI 10.1016/S0010-8804(01)81012-0 Mauri AG, 2013, INT J HOSP MANAG, V34, P99, DOI 10.1016/j.ijhm.2013.02.012 McAfee A, 2012, HARVARD BUS REV, V90, P60 Merlo EM, 2011, AFR J BUS MANAGE, V5, P8410 Miguéis VL, 2016, LECT NOTES BUS INF P, V247, P155, DOI 10.1007/978-3-319-32689-4_12 Miyoung Jeong, 2008, Journal of Hospitality & Leisure Marketing, V17, P121, DOI 10.1080/10507050801978265 Moro S, 2018, INT J CULT TOUR HOSP, V12, P420, DOI 10.1108/IJCTHR-04-2018-0051 Nicolau JL, 2020, INT J HOSP MANAG, V87, DOI 10.1016/j.ijhm.2020.102497 Nie RX, 2020, INT J HOSP MANAG, V88, DOI 10.1016/j.ijhm.2020.102495 Nieto-Garcia M, 2019, INT J HOSP MANAG, V77, P583, DOI 10.1016/j.ijhm.2018.09.002 Nieto-García M, 2017, INT J HOSP MANAG, V62, P67, DOI 10.1016/j.ijhm.2016.12.006 Ögüt H, 2012, SERV IND J, V32, P197, DOI 10.1080/02642069.2010.529436 Olbrich R, 2011, INT J ELECTRON COMM, V16, P15, DOI 10.2753/JEC1086-4415160202 Padma P, 2020, INT J HOSP MANAG, V84, DOI 10.1016/j.ijhm.2019.102318 Pallesen S, 2016, SCAND J HOSP TOUR, V16, P243, DOI 10.1080/15022250.2015.1074938 Pantouvakis A, 2012, TOTAL QUAL MANAG BUS, V23, P177, DOI 10.1080/14783363.2012.647846 PARASURAMAN A, 1994, J MARKETING, V58, P111, DOI 10.1177/002224299405800109 PARASURAMAN A, 1985, J MARKETING, V49, P41, DOI 10.2307/1251430 Pedregosa F., 2020, FEATURE EXTRACTION Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Phillips P, 2017, J TRAVEL RES, V56, P235, DOI 10.1177/0047287516636481 Pizam A, 2016, INT J CONTEMP HOSP M, V28, P2, DOI 10.1108/IJCHM-04-2015-0167 Prentice C, 2013, INT J CONTEMP HOSP M, V25, P49, DOI 10.1108/09596111311290219 Qi MW, 2017, BUILD ENVIRON, V111, P1, DOI 10.1016/j.buildenv.2016.09.027 Qu H., 2000, J QUALITY ASSURANCE, V1, P65, DOI [https://doi.org/10.1300/J162v01n03_04, DOI 10.1300/J162V01N03_04] Radojevic T, 2015, TOURISM MANAGE, V51, P13, DOI 10.1016/j.tourman.2015.04.002 Ren LP, 2016, INT J HOSP MANAG, V52, P13, DOI 10.1016/j.ijhm.2015.09.009 Ren LP, 2015, J QUAL ASSUR HOSP TO, V16, P45, DOI 10.1080/1528008X.2015.966299 Richard M.D., 1993, J SERV MARK, V7, P59 Robbins R, 2021, TOUR HOSP RES, V21, P144, DOI 10.1177/1467358420961544 Ryu K, 2010, J HOSP TOUR RES, V34, P310, DOI 10.1177/1096348009350624 Sayfuddin ATM, 2021, INT J HOSP MANAG, V99, DOI 10.1016/j.ijhm.2021.103065 Schröer C, 2021, PROCEDIA COMPUT SCI, V181, P526, DOI 10.1016/j.procs.2021.01.199 Schuckert M, 2016, ASIA PAC J TOUR RES, V21, P259, DOI 10.1080/10941665.2015.1029954 Cantallops AS, 2014, INT J HOSP MANAG, V36, P41, DOI 10.1016/j.ijhm.2013.08.007 SHAPIRO C, 1983, Q J ECON, V98, P659, DOI 10.2307/1881782 Sharda R., 2018, BUSINESS INTELLIGENC, V4th Shin SI, 2017, TELEMAT INFORM, V34, P449, DOI 10.1016/j.tele.2016.09.005 Sigala M., 2019, Big data and innovation in tourism, travel, and hospitality Sim J, 2006, J QUAL ASSUR HOSP TO, V7, P1, DOI 10.1300/J162v07n03_01 Sohrabi B., 2018, Journal of Cyberspace Studies, V2, P103, DOI [DOI 10.22059/JCSS.2017.239847, DOI 10.22059/JCSS.2017.239847.1009] Soifer I, 2021, J QUAL ASSUR HOSP TO, V22, P539, DOI 10.1080/1528008X.2020.1814935 Song C, 2020, KNOWL-BASED SYST, V194, DOI 10.1016/j.knosys.2020.105572 Sparks BA, 2016, TOURISM MANAGE, V53, P74, DOI 10.1016/j.tourman.2015.09.011 Sparks BA, 2011, TOURISM MANAGE, V32, P1310, DOI 10.1016/j.tourman.2010.12.011 Stringam BB, 2012, J QUAL ASSUR HOSP TO, V13, P187, DOI 10.1080/1528008X.2012.692281 Sun KA, 2013, INT J HOSP MANAG, V35, P68, DOI 10.1016/j.ijhm.2013.05.008 Thi NV, 2022, J QUAL ASSUR HOSP TO, V23, P913, DOI 10.1080/1528008X.2021.1920550 Torres EN, 2015, INT J HOSP MANAG, V50, P77, DOI 10.1016/j.ijhm.2015.07.012 Torres EN, 2013, INT J CONTEMP HOSP M, V25, P642, DOI 10.1108/IJCHM-Dec-2011-0228 Vermeulen IE, 2009, TOURISM MANAGE, V30, P123, DOI 10.1016/j.tourman.2008.04.008 Viglia G, 2016, INT J CONTEMP HOSP M, V28, P2035, DOI 10.1108/IJCHM-05-2015-0238 Wang L, 2020, TOURISM MANAGE, V76, DOI 10.1016/j.tourman.2019.103961 WESTBROOK RA, 1991, J CONSUM RES, V18, P84, DOI 10.1086/209243 Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Xie KL, 2014, INT J HOSP MANAG, V43, P1, DOI 10.1016/j.ijhm.2014.07.007 Xu X, 2017, INT J INFORM MANAGE, V37, P673, DOI 10.1016/j.ijinfomgt.2017.06.004 Xu X, 2016, INT J HOSP MANAG, V55, P57, DOI 10.1016/j.ijhm.2016.03.003 Xu X, 2015, INT J HOSP MANAG, V49, P105, DOI 10.1016/j.ijhm.2015.06.003 Yang Y, 2019, J TRAVEL RES, V58, P1274, DOI 10.1177/0047287518815984 Yang Y, 2018, TOURISM MANAGE, V67, P248, DOI 10.1016/j.tourman.2018.01.015 Ye QA, 2011, COMPUT HUM BEHAV, V27, P634, DOI 10.1016/j.chb.2010.04.014 Ye Q, 2009, INT J HOSP MANAG, V28, P180, DOI 10.1016/j.ijhm.2008.06.011 Zhang XF, 2016, ONLINE INFORM REV, V40, P119, DOI 10.1108/OIR-04-2015-0101 Zhang YL, 2016, ROUTL ADV HETEROD EC, V23, P13, DOI 10.1016/j.tourman.2015.09.001 Zhang ZQ, 2011, INT J CONTEMP HOSP M, V23, P972, DOI 10.1108/09596111111167551 Zhao XY, 2015, INT J CONTEMP HOSP M, V27, P1343, DOI 10.1108/IJCHM-12-2013-0542 Zhao YB, 2019, INT J HOSP MANAG, V76, P111, DOI 10.1016/j.ijhm.2018.03.017 Zheng XY, 2018, J INTELL INF SYST, V51, P557, DOI 10.1007/s10844-018-0496-5 Zhou LQ, 2014, INT J HOSP MANAG, V38, P1, DOI 10.1016/j.ijhm.2013.12.004 NR 155 TC 0 Z9 0 U1 3 U2 19 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1528-008X EI 1528-0098 J9 J QUAL ASSUR HOSP TO JI J. Qual. Assur. Hosp. Tour. PD 2022 NOV 28 PY 2022 DI 10.1080/1528008X.2022.2146620 EA NOV 2022 PG 40 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA 6Q8OI UT WOS:000891868800001 DA 2024-03-27 ER PT J AU Cheng, XS Cohen, J Mou, J AF Cheng, Xusen Cohen, Jason Mou, Jian TI AI-ENABLED TECHNOLOGY INNOVATION IN E-COMMERCE SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE AI-enabled technology; E-commerce; Digital economy ID BIG DATA ANALYTICS; ARTIFICIAL-INTELLIGENCE AB Recently, advanced digital/internet-based technology has become more prevalent and advanced to play a dominant role in e-commerce. Among them, AI-driven technology innovation in e-commerce plays an important role for its development. There is research potential to discuss how AI-driven technology innovation can benefit the digital economy, as typified by e-commerce, and how it can contribute to the digital transformation of companies in traditional industries. This special issue expands our understanding of organizational and customer intentions and behavior toward AI, such as privacy issues, the perceived benefits and risks of AI-driven technology innovations in e-commerce and building long-term trust relationships between users and AI. C1 [Cheng, Xusen] Renmin Univ China, Sch Informat, Beijing, Peoples R China. [Cohen, Jason] Univ Witwatersrand, Sch Business Sci, Johannesburg, South Africa. [Mou, Jian] Pusan Natl Univ, Sch Business, 2 Busandaehak Ro 63 Beon Gil, Pusan 46241, South Korea. C3 Renmin University of China; University of Witwatersrand; Pusan National University RP Mou, J (autor correspondiente), Pusan Natl Univ, Sch Business, 2 Busandaehak Ro 63 Beon Gil, Pusan 46241, South Korea. EM xusen.cheng@ruc.edu.cn; jason.cohen@wits.ac.za; jian.mou@pusan.ac.kr FU National Natural Science Foundation of China [72271236, 72061147005]; School of Interdisciplinary Studies at Renmin University of China; Metaverse Research Center at Renmin University of China [2020K2A9A2A1110432911, FY2023] FX The special issue editors take this opportunity to thank all the authors for their interest in the topic and for all the reviewers constructive comments and recommendations to the authors. We are also grateful to the Editor in Chief of JECR, Professor Melody Kiang, for giving us this opportunity and for her support and guidance in developing the special issue. We would like to thank the National Natural Science Foundation of China (Grant No. 72271236 ; 72061147005) , the School of Interdisciplinary Studies at Renmin University of China, the Metaverse Research Center at Renmin University of China, and the framework of the international cooperation program managed by the National Research Foundation of Korea (2020K2A9A2A1110432911, FY2023) for providing funding for part of this research. CR Agrawal A., 2022, POWER PREDICTION DIS Akter S, 2016, INT J PROD ECON, V182, P113, DOI 10.1016/j.ijpe.2016.08.018 Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Amankwah-Amoah J, 2021, EUR MANAG J, V39, P179, DOI 10.1016/j.emj.2020.09.002 Beckers J, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102645 Benlian A, 2020, INFORM SYST J, V30, P1010, DOI 10.1111/isj.12243 Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312 Chan J, 2021, INT J CONTEMP HOSP M, V33, P1668, DOI 10.1108/IJCHM-09-2020-1013 Chen XH, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120645 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Cheng XS, 2020, BRIT J EDUC TECHNOL, V51, P1653, DOI 10.1111/bjet.13018 Chinchanachokchai S, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102528 Cichy P, 2021, MIS QUART, V45, P1863, DOI 10.25300/MISQ/2021/14165 Davenport TH, 2018, HARVARD BUS REV, V96, P108 Gang R, 2019, INFORM PROCESS MANAG, V56, P1425, DOI 10.1016/j.ipm.2018.04.003 Gao SQ, 2020, J MED INTERNET RES, V22, DOI 10.2196/16649 George G, 2020, J MANAGE STUD, V57, P1754, DOI 10.1111/joms.12634 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Hasija A, 2022, J BUS LOGIST, V43, P388, DOI 10.1111/jbl.12301 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Iansiti M., 2020, COMPETING AGE STRATE Kawasaki T, 2022, TRANSPORT POLICY, V115, P88, DOI 10.1016/j.tranpol.2021.10.023 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Lukinskiy V, 2023, INT J INFORM MANAGE, V68, DOI 10.1016/j.ijinfomgt.2022.102567 Luo JM, 2021, INT J HOSP MANAG, V98, DOI 10.1016/j.ijhm.2021.103032 Mena C, 2022, J BUS RES, V138, P77, DOI 10.1016/j.jbusres.2021.08.064 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Rana NP, 2022, EUR J INFORM SYST, V31, P364, DOI 10.1080/0960085X.2021.1955628 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Wang XH, 2021, INT J PROD RES, V59, P3841, DOI 10.1080/00207543.2020.1752949 Wongkitrungrueng A, 2020, J BUS RES, V117, P543, DOI 10.1016/j.jbusres.2018.08.032 Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 Zhang Q, 2021, COMPLEX INTELL SYST, V7, P439, DOI 10.1007/s40747-020-00212-w Zhu TQ, 2022, IEEE T KNOWL DATA EN, V34, P2824, DOI 10.1109/TKDE.2020.3014246 Zuiderwijk A, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2021.101577 NR 36 TC 1 Z9 1 U1 34 U2 46 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PD FEB PY 2023 VL 24 IS 1 SI SI BP 1 EP 6 PG 6 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA A8RC7 UT WOS:000957725600001 DA 2024-03-27 ER PT J AU Liu, WD She, XS AF Liu, Wei-Dong She, Xi-Shui TI Application of Computer Vision on E-Commerce Platforms and Its Impact on Sales Forecasting SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Bidirection Attention Mechanism; BiLSTM; Computer Vision; E -commerce Platform; ResNet-101 AB In today's digital age, the e -commerce industry continues to grow and flourish. The widespread application of computer vision technology has brought revolutionary changes to e -commerce platforms. Extracting image features from e -commerce platforms using deep learning techniques is of paramount importance for predicting product sales. Deep learning -based computer vision models can automatically learn image features without the need for manual feature extractors. By employing deep learning techniques, key features such as color, shape, and texture can be effectively extracted from product images, providing more representative and diverse data for sales prediction models. This study proposes the use of ResNet-101 as an image feature extractor, enabling the automatic learning of rich visual features to provide high -quality image representations for subsequent analysis. Furthermore, a bidirectional attention mechanism is introduced to dynamically capture correlations between different modalities, facilitating the fusion of multimodal features. C1 [Liu, Wei-Dong] Dongbei Univ Finance & Econ, Dalian, Peoples R China. [She, Xi-Shui] Fengjia Univ, Taichung, Taiwan. C3 Dongbei University of Finance & Economics RP Liu, WD (autor correspondiente), Dongbei Univ Finance & Econ, Dalian, Peoples R China. CR Abdullah A. S., 2023, Anbar Journal of Engineering Sciences, V14 Cai WW, 2021, MOB INF SYST, V2021, DOI 10.1155/2021/5568208 Chaudhuri A, 2018, IEEE INT CONF BIG DA, P1728, DOI 10.1109/BigData.2018.8622259 Cheng L, 2020, IEEE T SERV COMPUT, V13, P368, DOI 10.1109/TSC.2019.2906203 Durga BK, 2022, COMPUT ELECTR ENG, V104, DOI 10.1016/j.compeleceng.2022.108384 Efat MIA, 2022, ANN OPER RES, DOI 10.1007/s10479-022-04838-6 Ekambaram V, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3110, DOI 10.1145/3394486.3403362 Erdelyi C, 2019, Using Computer Vision Techniques to Play an Existing Video Game Fan QY, 2021, J PHYS CHEM C, V125, P27615, DOI 10.1021/acs.jpcc.1c08970 Giri C, 2022, FORECASTING-BASEL, V4, P565, DOI 10.3390/forecast4020031 Guo S, 2019, IEEE INT CONF COMP V, P3113, DOI 10.1109/ICCVW.2019.00377 Jain V, 2022, Journal of Student Research, V11 Karunasingha DSK, 2022, INFORM SCIENCES, V585, P609, DOI 10.1016/j.ins.2021.11.036 Kumar B., 2023, 2023 INT C SUST COMP Li JB, 2022, INT CONF ACOUST SPEE, P8007, DOI 10.1109/ICASSP43922.2022.9747085 Liu X, 2022, SCI PROGRAMMING-NETH, V2022, DOI 10.1155/2022/4000171 Liu ZW, 2016, PROC CVPR IEEE, P1096, DOI 10.1109/CVPR.2016.124 Mehmood I, 2019, IEEE INTERNET THINGS, V6, P9246, DOI 10.1109/JIOT.2019.2896151 Ning EH, 2024, NEURAL NETWORKS, V169, P532, DOI 10.1016/j.neunet.2023.11.003 Ning X, 2024, INFORM FUSION, V102, DOI 10.1016/j.inffus.2023.102033 Papadopoulos SI, 2022, INT J MULTIMED INF R, V11, P717, DOI 10.1007/s13735-022-00262-5 Rights JD, 2023, MULTIVAR BEHAV RES, V58, P340, DOI 10.1080/00273171.2021.1985948 Senapati B., 2023, 2023 IEEE INT C EL I Sheela T., 2022, 2022 INT C COMP COMM Shetty Sharath Kariya, 2022, International Journal of Advanced Operations Management, P366, DOI 10.1504/IJAOM.2022.127864 Singh A, 2022, MICROPROCESS MICROSY, V95, DOI 10.1016/j.micpro.2022.104681 Singla P, 2022, EARTH SCI INFORM, V15, P291, DOI 10.1007/s12145-021-00723-1 Soni N, 2020, PROCEDIA COMPUT SCI, V167, P2200, DOI 10.1016/j.procs.2020.03.272 Thivakaran T., 2022, 2022 4 INT C INV RES Wu DH, 2023, COMPUT ELECTRON AGR, V205, DOI 10.1016/j.compag.2023.107622 Xu W, 2023, DECIS SUPPORT SYST, V172, DOI 10.1016/j.dss.2023.113984 Yang C, 2021, Journal of Physics: Conference Series Yang TB, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3554729 Zhang C., 2021, Journal of Jilin University Science Edition, V59, P609 Zhang X, 2023, J CLOUD COMPUT-ADV S, V12, DOI 10.1186/s13677-023-00390-1 Zhang Y., 2021, Journal of Jilin University: Science Edition, V59, P643, DOI DOI 10.13413/J.CNKI.JDXBLXB.2020152 Zhao L, 2023, J RETAIL CONSUM SERV, V74, DOI 10.1016/j.jretconser.2023.103379 NR 37 TC 0 Z9 0 U1 0 U2 0 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2024 VL 36 IS 1 AR 336848 DI 10.4018/JOEUC.336848 PG 20 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA LF6P2 UT WOS:001185409200001 OA gold DA 2024-03-27 ER PT J AU Vasquez, FGZ Poveda, DAM Mora, DPM AF Vasquez, Freddy Giovanni Zuniga Poveda, Diego Alejandro Mora Mora, Diego Patricio Molina TI THE IMPORTANCE OF ARTIFICIAL INTELLIGENCE IN MARKETING PROCESS COMMUNICATIONS SO VIVAT ACADEMIA LA English DT Article DE marketing; artificial intelligence; AI; digital marketing ID INTERNET; THINGS AB These days it is no longer unusual to talk about marketing, and what is involved in its use within organizations, we know that it deals with every possible interaction between companies and people, and why not say it, marketing allows achieve organizational objectives by creating increasingly adaptable and intelligent experiences for customers, for this it is necessary to deploy three types of capabilities: creative, analytical and technological, in the use of these capabilities is where employment intervenes of artificial intelligence; the correct application of this, allows the optimization of resources and reduction of costs; but above all it has a transcendental impact for clients, since it makes it easier to anticipate their needs and offer solutions to them, even before they look for them through predictive analysis; or, using cookies, deep learning techniques and the use of chatbot, data can be obtained from various sources of information to create advertising content that is as personalized as possible. This article aims to carry out an exhaustive bibliographic review on this subject, based on information that has been published in scientific databases, which allows obtaining a reference framework on the importance of the use of artificial intelligence in marketing, which affirms that the use of AI in current marketing is vital for the evolution, adaptability and survival of organizations in this new world of digital transformation 4.0. C1 [Vasquez, Freddy Giovanni Zuniga; Mora, Diego Patricio Molina] Technol Super Univ Spain, Guayaquil, Ecuador. [Poveda, Diego Alejandro Mora] Tech Univ Ambato, Ambato, Ecuador. C3 Universidad Tecnica de Ambato RP Vasquez, FGZ (autor correspondiente), Technol Super Univ Spain, Guayaquil, Ecuador. EM freddy.zuniga@iste.edu.ec; da.mora@uta.edu.ec; diego.molina@iste.edu.ec CR Abashidze I, 2016, MANAG SYST PROD ENG, V24, P217, DOI 10.2478/mspe-01-04-2016 Alcaide J. C, 2019, CUSTOMER EXPERIENCE Amor-Bravo E. M., 2019, MARKETING CUARTA REV Arenal-Laza C., 2019, ENTORNO INFORMACION Bededetti A. M., 2020, MARKETING REDES SOCI Boden M.A., 2017, Inteligencia Artificial Bova T., 2019, ARPA Castillo-Romero J. A., 2019, BIG DATA Cuervo Sanchez C. A., 2021, ADRESEARCH REV INT I, V24, DOI 10.7263/adresic-024-02 Devang V., 2019, Annals of "Dunarea de Jos" University of Galati: Fascicle I, Economics and Applied Informatics, V25, P28, DOI [DOI 10.35219/EAI158404094, 10.35219/eai158404094] Edwards B., 2020, Marketing en movimiento García Mendoza Carmen, 2021, Universidad y Sociedad, V13, P526 Giraldez G., 2021, MARKETING DIGITAL QU Gonzales-Onate C., 2019, NEGOCIO PUBLICITARIO Grandinetti R, 2020, INNOV MARKET, V16, P91, DOI 10.21511/im.16(2).2020.08 Jones VK., 2018, J BRAND STRATEGY, V7, P233 Joyanes-Aguilar L., 2021, INTERNET COSAS FUTUR Jyng L. W., 2020, INT J PSYCHOSOCIAL R, V24, P1118 Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Markuleta-Arrula M., 2020, MARKETING ONLINE EST Martinez A., 2020, Pro Sciences, V4, P36, DOI [10.29018/issn.2588-1000vol4iss30.2020pp36-47, DOI 10.29018/ISSN.2588-1000VOL4ISS30.2020PP36-47] Martinez L., 2019, COMUNICACION PERSUAS Martinez S., 2021, EMPATIA DIGITAL INTE Mercade-Mele P., 2017, SPANISH J MARKETING, V21, P54, DOI [DOI 10.1016/J.SJME.2017.04.003, 10.1016/j.sjme.2017.04.003] Munoz-Barros F. D., 2020, COMM081PO TECNICAS V Nguyen B, 2017, J MARKET MANAG-UK, V33, P1, DOI 10.1080/0267257X.2016.1257542 Ostos-Mota G., 2021, OPORTUNIDADES PARTIC Overgoor G, 2019, CALIF MANAGE REV, V61, P156, DOI 10.1177/0008125619859318 Paniagua-Martin F., 2021, LENGUAJES MARCAS SIS Paschen J, 2019, J BUS IND MARK, V34, P1410, DOI 10.1108/JBIM-10-2018-0295 Pereda-Marin S., 2018, DIRECCION GESTION RE Ramirez-Hauncher A., 2019, MOBILE MARKETING Recuenco A., 2020, SCIENDO, V23, P299, DOI [http://dx.doi.org/10.17268/sciendo.2020.036, DOI 10.17268/SCIENDO.2020.036] Rodriguez-Fenandez L., 2021, PROPAGANDA DIGITAL C Rouhiainen L., 2021, INTELIGENCIA ARTIFIC Rouhiainen L, 2018, Inteligencia artificial Sainz de Vicuna Ancin J. M., 2021, PLAN MARKETING DIGIT Sainz de Vicuna Ancin J. M., 2020, PLAN MARKETING PRACT Salazar-Garcia I., 2020, HARVARD DEUSTO MARKE, P42 Sanchez-Monasterio M., 2018, HARVARD DEUSTO BUSIN, P62 Setiawan I., 2022, MARKETING 5 0 VERSIO Silva-Guerra H., 2021, MARKETING INT AM LAT Stengel R., 2021, GUERRAS INFORM Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022 Turletti P., 2018, El ROI de marketing y ventas: calculo y utilidad nuevo estandar de rendimiento Villaseca-Morales D., 2021, SILICON VALLEY TU NE Viteri Luque F., 2018, RECIMUNDO: Revista Cientifica de La Investigacion y El Conocimiento, V2, P764 Yegin T., 2020, EKEV AKAD DERGISI, V81, P489, DOI 10.17753/Ekev1340 Zamora P. A., 2017, UNIANDES EPISTEME RE, P312 NR 49 TC 0 Z9 0 U1 37 U2 54 PU UNIV COMPLUTENSE MADRID, SERVICIO PUBLICACIONES PI MADRID PA CIUDAD UNIV, OBISPO TREJO 3, MADRID, 28040, SPAIN SN 1575-2844 J9 VIVAT ACAD JI Vivat Acad. PY 2023 IS 156 BP 19 EP 37 DI 10.15178/va.2023.e1474 PG 19 WC Communication WE Emerging Sources Citation Index (ESCI) SC Communication GA J8TU4 UT WOS:001012302500001 DA 2024-03-27 ER PT J AU Zhou, LC AF Zhou, Lichun TI Product advertising recommendation in e-commerce based on deep learning and distributed expression SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Deep learning; E-commerce; Distributed expression; Advertising recommendation ID CONSUMER AB With the advent of Internet big data era, recommendation system has become a hot research topic of information selection. This paper studies the application of deep learning and distributed expression technology in e-commerce product advertising recommendation. In this paper, firstly, from the semantic level of advertising, we build a similarity network based on the theme distribution of advertising, and then build a deep learning model framework for advertising click through rate prediction. Finally, we propose an improved recommendation algorithm based on recurrent neural network and distributed expression. Aiming at the particularity of the recommendation algorithm, this paper improves the traditional recurrent neural network, and introduces a time window to control the hidden layer data transfer of the recurrent neural network. The experimental results show that the improved recurrent neural network model based on time window is superior to the traditional recurrent neural network model in the accuracy of recommendation system. The complexity of calculation is reduced and the accuracy of recommendation system is improved. C1 [Zhou, Lichun] Shangqiu Normal Univ, Sch Media & Commun, Shangqiu 476000, Henan, Peoples R China. C3 Shangqiu Normal University RP Zhou, LC (autor correspondiente), Shangqiu Normal Univ, Sch Media & Commun, Shangqiu 476000, Henan, Peoples R China. EM zhoulc666@163.com CR Adhikary A, 2014, PROC ECON FINANC, V11, P230, DOI 10.1016/S2212-5671(14)00191-9 Ardila D, 2019, NAT MED, V25, P954, DOI 10.1038/s41591-019-0447-x [Gong Xueqing 宫学庆], 2013, [华东师范大学学报. 自然科学版, Journal of East China Normal University. Natural Science], P70 Hao T, 2018, MULTIMED TOOLS APPL, V77, P22173, DOI 10.1007/s11042-018-5705-2 Jeong HJ, 2013, INT J ADVERT, V32, P539, DOI 10.2501/IJA-32-4-539-558 Khan S, 2018, MECH SYST SIGNAL PR, V107, P241, DOI 10.1016/j.ymssp.2017.11.024 Lange T, 2015, J LAW MED ETHICS, V43, P878, DOI 10.1111/jlme.12326 Lee-Wingate SN, 2013, INT J PHARM HEALTHC, V7, P265, DOI 10.1108/IJPHM-05-2013-0025 Li MX, 2019, INT J OPHTHALMOL-CHI, V12, P1012, DOI 10.18240/ijo.2019.06.22 [林奕欧 Lin Yiou], 2017, [电子科技大学学报, Journal of University of Electronic Science and Technology of China], V46, P913 Minarro-Giménez JA, 2014, STUD HEALTH TECHNOL, V205, P584, DOI 10.3233/978-1-61499-432-9-584 Moeskops P, 2018, NEUROIMAGE-CLIN, V17, P251, DOI 10.1016/j.nicl.2017.10.007 Morgan FW, 1997, J ADVERTISING, V26, P63, DOI 10.1080/00913367.1997.10673523 Nair R, 2017, IBM J RES DEV, V61, DOI 10.1147/JRD.2017.2709198 Park J, 2011, IEEE MULTIMEDIA, V18, P78, DOI 10.1109/MMUL.2010.6 [孙毅 Sun Yi], 2019, [电力系统自动化, Automation of Electric Power Systems], V43, P183 Vandecasteele F, 2017, ACM T MULTIM COMPUT, V13, DOI 10.1145/3092834 Wei J, 2017, EXPERT SYST APPL, V69, P29, DOI 10.1016/j.eswa.2016.09.040 Williams GW, 2017, J INT FOOD AGRIBUSIN, V30, P1 [余文喆 Yu Wenzhe], 2013, [华东师范大学学报. 自然科学版, Journal of East China Normal University. Natural Science], P46 Zhang HJ, 2020, NEURAL COMPUT APPL, V32, P4519, DOI [10.1007/s00521-018-3691-y, 10.1007/s00521-018-3579-x] [朱斌 Zhu Bin], 2018, [计算机辅助设计与图形学学报, Journal of Computer-Aided Design & Computer Graphics], V30, P1778 NR 22 TC 43 Z9 44 U1 10 U2 65 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD JUN PY 2020 VL 20 IS 2 SI SI BP 321 EP 342 DI 10.1007/s10660-020-09411-6 EA APR 2020 PG 22 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LK9BZ UT WOS:000528429900001 DA 2024-03-27 ER PT J AU Liang, TP Li, YW Yen, NS Hsu, SM Banker, S AF Liang, Ting-Peng Li, Yu-Wen Yen, Nai-Shing Hsu, Shen-Mou Banker, Sachin TI HOW DIGITAL ASSISTANTS EVOKE SOCIAL CLOSENESS: AN FMRI INVESTIGATION SO JOURNAL OF ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Digital assistants; Personalization; Anthropomorphization; Functional magnetic resonance imaging (fMRI); Electronic commerce ID CORTICAL MIDLINE STRUCTURES; WEB PERSONALIZATION; PREFRONTAL CORTEX; EGOCENTRIC BIAS; SELF-DISCLOSURE; TRUST; INFORMATION; PERCEPTION; DISTANCE; BRAIN AB The growing popularity of digital assistants (from Microsoft's Clippy to Amazon's Alexa) is changing how consumers acquire information and make decisions. Often embodied in anthropomorphized forms, digital assistants (DAs) are designed to serve consumers by suggesting relevant products to simplify purchasing decisions. In this work, we aim to understand how consumers evaluate social relationships with different types of DAs and their subsequent effects on purchasing. Our findings show that consumers judge DAs as being more socially close both when DAs are anthropomorphized and when they provide higher-quality recommendations. Evidence from fMRI indicated that both recommendation quality and anthropomorphization fostered greater feelings of social closeness by recruiting similar brain mechanisms involved in mental simulation (i.e., inferior frontal gyms and cortical midline structures). Although anthropomorphized DAs were evaluated as more socially close, they did not facilitate increased purchase interest, suggesting that stimulation of neural reward networks is also necessary for driving greater purchasing. C1 [Liang, Ting-Peng] Natl Sun Yat Sen Univ, Elect Commerce Res Ctr, 70 Lien Hai Rd, Kaohsiung 80424, Taiwan. [Li, Yu-Wen] Wenzao Ursuline Univ Languages, Dept Digital Content Applicat & Management, 900 Mintsu 1st Rd, Kaohsiung 807, Taiwan. [Yen, Nai-Shing] Natl Chengchi Univ, Dept Psychol, Taipei, Taiwan. [Hsu, Shen-Mou] Natl Taiwan Univ, Image Ctr Integrated Body Mind & Culture Res, Taipei, Taiwan. [Banker, Sachin] Univ Utah, Dept Mkt Eccles Sch Business, Salt Lake City, UT 84112 USA. C3 National Sun Yat Sen University; National Chengchi University; National Taiwan University; Utah System of Higher Education; University of Utah RP Li, YW (autor correspondiente), Wenzao Ursuline Univ Languages, Dept Digital Content Applicat & Management, 900 Mintsu 1st Rd, Kaohsiung 807, Taiwan. EM tpliang@mail.nsysu.edu.tw; yuwen@mail.wzu.edu.tw; nsy@nccu.edu.tw; smhsu@nccu.edu.tw; sachin.banker@eccles.utah.edu RI li, yuwen/HGU-6435-2022; liang, ting/JFB-4960-2023; Li, yu/HHZ-5236-2022 FU Ministry of Science and Technology, Taiwan ROC FX Funding of this research was provided by the Ministry of Science and Technology, Taiwan ROC. CR Aggarwal P, 2012, J CONSUM RES, V39, P307, DOI 10.1086/662614 Ahn SJ, 2011, J ADVERTISING, V40, P93, DOI 10.2753/JOA0091-3367400207 Aljukhadar M, 2010, INT J ELECTRON COMM, V14, P103, DOI 10.2753/JEC1086-4415140404 [Anonymous], 1987, INTENTIONAL STANCE Arioli M, 2018, HUM BRAIN MAPP, V39, P1412, DOI 10.1002/hbm.23930 Baek EC, 2017, PSYCHOL SCI, V28, P851, DOI 10.1177/0956797617695073 Bapna R, 2017, MIS QUART, V41, P115, DOI 10.25300/MISQ/2017/41.1.06 Bargh JA, 1999, AM PSYCHOL, V54, P462, DOI 10.1037/0003-066x.54.7.462 Bartra O, 2013, NEUROIMAGE, V76, P412, DOI 10.1016/j.neuroimage.2013.02.063 Behrens TEJ, 2009, SCIENCE, V324, P1160, DOI 10.1126/science.1169694 Benbasat Izak, 2010, P 31 INT C INF SYST Bente G, 2008, HUM COMMUN RES, V34, P287, DOI 10.1111/j.1468-2958.2008.00322.x Binzel C, 2013, J DEV ECON, V103, P99, DOI 10.1016/j.jdeveco.2013.01.009 Bogardus ES, 1947, SOCIOMETRY, V10, P306, DOI 10.2307/2785570 Buccino G, 2004, NEURON, V42, P323, DOI 10.1016/S0896-6273(04)00181-3 Bues M, 2017, PSYCHOL MARKET, V34, P157, DOI 10.1002/mar.20981 Camerer C, 2005, J ECON LIT, V43, P9, DOI 10.1257/0022051053737843 Cavanna AE, 2006, BRAIN, V129, P564, DOI 10.1093/brain/awl004 Charness G, 2008, J ECON BEHAV ORGAN, V68, P29, DOI 10.1016/j.jebo.2008.03.001 Chartrand TL, 2013, ANNU REV PSYCHOL, V64, P285, DOI 10.1146/annurev-psych-113011-143754 Chartrand TL, 1999, J PERS SOC PSYCHOL, V76, P893, DOI 10.1037/0022-3514.76.6.893 De Keyzer F., 2015, Journal of Interactive Advertising, V15, P124, DOI DOI 10.1080/15252019.2015.1082450 DeBruine LM, 2002, P ROY SOC B-BIOL SCI, V269, P1307, DOI 10.1098/rspb.2002.2034 DeBruine LM, 2005, P ROY SOC B-BIOL SCI, V272, P919, DOI 10.1098/rspb.2004.3003 Delgado MR, 2004, CEREB CORTEX, V14, P1022, DOI 10.1093/cercor/bhh062 Dijksterhuis A., 2007, Social psychology and the unconscious: The automaticity of higher mental processes, P51 Dimoka A, 2012, MIS QUART, V36, P811 Dimoka A, 2012, MIS QUART, V36, P679 Dimoka A, 2011, INFORM SYST RES, V22, P687, DOI 10.1287/isre.1100.0284 Dimoka A, 2011, NEUROIMAGE, V54, pS263, DOI 10.1016/j.neuroimage.2010.05.007 Dimoka A, 2010, MIS QUART, V34, P373 Eddington KM, 2007, J COGNITIVE NEUROSCI, V19, P1152, DOI 10.1162/jocn.2007.19.7.1152 Emery NJ, 2000, NEUROSCI BIOBEHAV R, V24, P581, DOI 10.1016/S0149-7634(00)00025-7 Farb NAS, 2010, EMOTION, V10, P25, DOI 10.1037/a0017151 FIEDLER K, 1995, PERS SOC PSYCHOL B, V21, P525, DOI 10.1177/0146167295215010 Frith CD, 2007, CURR BIOL, V17, pR724, DOI 10.1016/j.cub.2007.05.068 Fudge JL, 2002, J NEUROSCI, V22, P10078 Gallese V, 1998, TRENDS COGN SCI, V2, P493, DOI 10.1016/S1364-6613(98)01262-5 Gong L, 2007, HUM COMMUN RES, V33, P163, DOI 10.1111/j.1468-2958.2007.00295.x Gounaris SpirosP., 2007, J RELATIONSHIP MARKE, V6, P63, DOI DOI 10.1300/J366V06N01_05 Grimm S, 2009, HUM BRAIN MAPP, V30, P2617, DOI 10.1002/hbm.20693 Groenewegen HJ, 2000, PROG BRAIN RES, V126, P3 Gusnard DA, 2001, P NATL ACAD SCI USA, V98, P4259, DOI 10.1073/pnas.071043098 Haruno M, 2006, J NEUROPHYSIOL, V95, P948, DOI 10.1152/jn.00382.2005 Heatherton TF, 2006, SOC COGN AFFECT NEUR, V1, P18, DOI 10.1093/scan/nsl001 Heiser M, 2003, EUR J NEUROSCI, V17, P1123, DOI 10.1046/j.1460-9568.2003.02530.x Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Hong Y., 2016, MIS Q FORTHCOMING FO Iacoboni M, 1999, SCIENCE, V286, P2526, DOI 10.1126/science.286.5449.2526 Iacoboni M, 2009, ANNU REV PSYCHOL, V60, P653, DOI 10.1146/annurev.psych.60.110707.163604 Jin S.A., 2009, Journal of Interactive Advertising, V10, P51, DOI DOI 10.1080/15252019.2009.10722162 JOHN OP, 1994, J PERS SOC PSYCHOL, V66, P206, DOI 10.1037/0022-3514.66.1.206 Johnson SC, 2005, J COGNITIVE NEUROSCI, V17, P1897, DOI 10.1162/089892905775008607 Karmarkar UR, 2015, J MARKETING RES, V52, P467, DOI 10.1509/jmr.13.0488 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Kelley WM, 2002, J COGNITIVE NEUROSCI, V14, P785, DOI 10.1162/08989290260138672 Kervyn N, 2012, J CONSUM PSYCHOL, V22, P166, DOI 10.1016/j.jcps.2011.09.006 Knutson B, 2008, NEURON, V58, P814, DOI 10.1016/j.neuron.2008.05.018 Knutson B, 2008, NEUROREPORT, V19, P509, DOI 10.1097/WNR.0b013e3282f85c01 Knutson B, 2007, NEURON, V53, P147, DOI 10.1016/j.neuron.2006.11.010 Komiak SYX, 2006, MIS QUART, V30, P941 KRUEGER J, 1994, J PERS SOC PSYCHOL, V67, P596, DOI 10.1037/0022-3514.67.4.596 Laurenceau JP, 1998, J PERS SOC PSYCHOL, V74, P1238, DOI 10.1037/0022-3514.74.5.1238 Lee EJ, 2004, COMPUT HUM BEHAV, V20, P779, DOI 10.1016/j.chb.2003.11.005 Liang T., 2009, Em: PACIS 2009 Proceedings, P73 Liang TP, 2006, J MANAGE INFORM SYST, V23, P45, DOI 10.2753/MIS0742-1222230303 Liang TP, 2009, PAC ASIA J ASSOC INF, V1, pI Liviatan I, 2008, J EXP SOC PSYCHOL, V44, P1256, DOI 10.1016/j.jesp.2008.04.007 Macrae CN, 2004, CEREB CORTEX, V14, P647, DOI 10.1093/cercor/bhh025 Mahy CEV, 2014, DEV COGN NEUROS-NETH, V9, P68, DOI 10.1016/j.dcn.2014.01.002 Miller DT, 1998, EUR J SOC PSYCHOL, V28, P475, DOI 10.1002/(SICI)1099-0992(199805/06)28:3<475::AID-EJSP881>3.0.CO;2-M Moon Y, 2000, J CONSUM RES, V26, P323, DOI 10.1086/209566 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 NASS C, 1995, INT J HUM-COMPUT ST, V43, P223, DOI 10.1006/ijhc.1995.1042 Nass C, 1997, J APPL SOC PSYCHOL, V27, P864, DOI 10.1111/j.1559-1816.1997.tb00275.x Nass C, 2001, J EXP PSYCHOL-APPL, V7, P171, DOI 10.1037//1076-898X.7.3.171 Nass Clifford Ivar, 2005, WIRED SPEECH VOICE A Northoff G, 2004, TRENDS COGN SCI, V8, P102, DOI 10.1016/j.tics.2004.01.004 Northoff G, 2008, TRENDS COGN SCI, V12, P259, DOI 10.1016/j.tics.2008.04.007 Northoff G, 2006, NEUROIMAGE, V31, P440, DOI 10.1016/j.neuroimage.2005.12.002 Ochsner KN, 2004, J COGNITIVE NEUROSCI, V16, P1746, DOI 10.1162/0898929042947829 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Olmstead K, 2017, ASSESSMENT ANAL HAND Park RE, 1924, J APPL SOCIOL, V8, P339 PARKER EB, 1978, CONTEMP SOCIOL, V7, P32, DOI 10.2307/2065899 Pavlou PA, 2007, MIS QUART, V31, P105 Perez S., 2018, TECHCRUNCH Phan KL, 2004, NEUROIMAGE, V21, P768, DOI 10.1016/j.neuroimage.2003.09.072 Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Riedl R, 2017, L N INF SYST ORGAN, V21, P1, DOI 10.1007/978-3-319-48755-7 Riedl R., 2016, Fundamentals of NeuroIS: Information Systems and the Brain, DOI DOI 10.1007/978-3-662-45091-8 Riedl R., 2011, 32 INT C INFORM SYST Riedl R, 2014, J ASSOC INF SYST, V15, pI Ries ML, 2007, J INT NEUROPSYCH SOC, V13, P450, DOI 10.1017/S1355617707070488 ROSS L, 1977, J EXP SOC PSYCHOL, V13, P279, DOI 10.1016/0022-1031(77)90049-X Schilbach L, 2010, NAT REV NEUROSCI, V11, DOI 10.1038/nrn2805-c1 Schultz W, 2015, PHYSIOL REV, V95, P853, DOI 10.1152/physrev.00023.2014 Sherwood CC, 2011, P NATL ACAD SCI USA, V108, P13029, DOI 10.1073/pnas.1016709108 Tam KY, 2006, MIS QUART, V30, P865 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Tesser A., 1988, SELF EVALUATION MAIN, V21, P181 Trope Y, 2007, J CONSUM PSYCHOL, V17, P83, DOI 10.1016/S1057-7408(07)70013-X Wang LC, 2007, J MARKETING, V71, P143, DOI 10.1509/jmkg.71.3.143 Waytz A, 2010, J PERS SOC PSYCHOL, V99, P410, DOI 10.1037/a0020240 Yuan LY, 2019, J MANAGE INFORM SYST, V36, P450, DOI 10.1080/07421222.2019.1598691 NR 105 TC 2 Z9 2 U1 0 U2 14 PU CALIFORNIA STATE UNIV PI LONG BEACH PA COLL BUSINESS, LONG BEACH, CA 90840 USA SN 1526-6133 EI 1938-9027 J9 J ELECTRON COMMER RE JI J. Electron. Commer. Res. PD NOV PY 2021 VL 22 IS 4 BP 285 EP 304 PG 20 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA XN6KS UT WOS:000729612100002 DA 2024-03-27 ER PT J AU Ma, LY Sun, BH AF Ma, Liye Sun, Baohong TI Machine learning and AI in marketing - Connecting computing power to human insights SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE Artificial intelligence (AI); Machine learning; Digital marketing; Big data; Unstructured data; Tracking data; Network; Prediction; Interpretation; Marketing theory ID DISCRETE-CHOICE MODELS; VARIATIONAL INFERENCE; CUSTOMER; TEXT; INFORMATION; PRODUCT AB Artificial intelligence (AI) agents driven by machine learning algorithms are rapidly transforming the business world, generating heightened interest from researchers. In this paper, we review and call for marketing research to leverage machine learning methods. We provide an overview of common machine learning tasks and methods, and compare them with statistical and econometric methods that marketing researchers traditionally use. We argue that machine learning methods can process large-scale and unstructured data, and have flexible model structures that yield strong predictive performance. Meanwhile, such methods may lack model transparency and interpretability. We discuss salient AI-driven industry trends and practices, and review the still nascent academic marketing literature which uses machine learning methods. More importantly, we present a unified conceptual framework and a multi-faceted research agenda. From five key aspects of empirical marketing research: method, data, usage, issue, and theory, we propose a number of research priorities, including extending machine learning methods and using them as core components in marketing research, using the methods to extract insights from large-scale unstructured, tracking, and network data, using them in transparent fashions for descriptive, causal, and prescriptive analyses, using them to map out customer purchase journeys and develop decision-support capabilities, and connecting the methods to human insights and marketing theories. Opportunities abound for machine learning methods in marketing, and we hope our multi-faceted research agenda will inspire more work in this exciting area. (c) 2020 Elsevier B.V. All rights reserved. C1 [Ma, Liye] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA. [Sun, Baohong] Cheung Kong Grad Sch Business Amer, New York, NY USA. C3 University System of Maryland; University of Maryland College Park RP Ma, LY (autor correspondiente), Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA. EM liyema@rhsmith.umd.edu; bhsun@ckgsb.edu.cn CR ALTMAN NS, 1992, AM STAT, V46, P175, DOI 10.2307/2685209 Amos B., 2016, CMU SCH COMPUTER SCI, V6 [Anonymous], 2015, Deep learning, DOI 10.1038/nature14539 [Anonymous], 2016, DEEP LEARNING [Anonymous], 2018, WORKING PAPER [Anonymous], MACH LEARN [Anonymous], 2012, ARXIV12063278 Ansari A, 2018, MARKET SCI, V37, P987, DOI 10.1287/mksc.2018.1113 Athey S, 2016, P NATL ACAD SCI USA, V113, P7353, DOI 10.1073/pnas.1510489113 Bahdanau D., 2014, NEURAL MACHINE TRANS Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 BERRY S, 1995, ECONOMETRICA, V63, P841, DOI 10.2307/2171802 BERRY ST, 1994, RAND J ECON, V25, P242, DOI 10.2307/2555829 Blei DM, 2007, ANN APPL STAT, V1, P17, DOI 10.1214/07-AOAS114 Blei DM, 2017, J AM STAT ASSOC, V112, P859, DOI 10.1080/01621459.2017.1285773 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Braun M, 2013, MARKET SCI, V32, P753, DOI 10.1287/mksc.2013.0802 Braun M, 2010, J AM STAT ASSOC, V105, P324, DOI 10.1198/jasa.2009.tm08030 Breiman L, 1996, MACH LEARN, V24, P49 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Chakraborty I, 2019, WORKING PAPER Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chiong KX, 2019, MANAGE SCI, V65, P256, DOI 10.1287/mnsc.2017.2928 Chung TS, 2016, J ACAD MARKET SCI, V44, P66, DOI 10.1007/s11747-015-0441-x Chung TS, 2009, MARKET SCI, V28, P52, DOI 10.1287/mksc.1080.0371 Cohn DA, 1996, J ARTIF INTELL RES, V4, P129, DOI 10.1613/jair.295 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cui DP, 2005, MARKET SCI, V24, P595, DOI 10.1287/mksc.1050.0123 Dai Z., 2019, ARXIV190102860 Daria Dzyabura, 2019, WORKING PAPER de Haan E, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.17.0113 Dong YX, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P135, DOI 10.1145/3097983.3098036 Drucker H, 1997, ADV NEUR IN, V9, P155 Dzyabura D, 2011, MARKET SCI, V30, P801, DOI 10.1287/mksc.1110.0660 Erdem T, 1996, MARKET SCI, V15, P1, DOI 10.1287/mksc.15.1.1 Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226 Evgeniou T, 2005, MARKET SCI, V24, P415, DOI 10.1287/mksc.1040.0100 Evgeniou T, 2007, MARKET SCI, V26, P805, DOI 10.1287/mksc.1070.0291 Feng F, 2018, WORKING PAPER Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Frost C, 2000, J R STAT SOC A STAT, V163, P173, DOI 10.1111/1467-985X.00164 Grimes Seth, 2008, UNSTRUCTURED DATA 80 Guo T, 2018, WORKING PAPER Hartmann J, 2019, WORKING PAPER Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Hauser JR, 2010, J MARKETING RES, V47, P485, DOI 10.1509/jmkr.47.3.485 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hinton GE, 2006, SCIENCE, V313, P504, DOI 10.1126/science.1127647 Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Hofmann T, 1999, SIGIR'99: PROCEEDINGS OF 22ND INTERNATIONAL CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P50, DOI 10.1145/312624.312649 Hsu CW, 2002, IEEE T NEURAL NETWOR, V13, P415, DOI 10.1109/72.991427 Huang DL, 2016, MARKET SCI, V35, P445, DOI 10.1287/mksc.2015.0946 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Huang MH, 2019, CALIF MANAGE REV, V61, P43, DOI 10.1177/0008125619863436 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Jacobs BJD, 2016, MARKET SCI, V35, P389, DOI 10.1287/mksc.2016.0985 Jordan MI, 1999, MACH LEARN, V37, P183, DOI 10.1023/A:1007665907178 Kakatkar C, 2019, INT J RES MARK, V36, P117, DOI 10.1016/j.ijresmar.2018.10.001 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kawaf F, 2019, INT J RES MARK, V36, P169, DOI 10.1016/j.ijresmar.2018.11.002 Ke GL, 2017, ADV NEUR IN, V30 Klostermann J, 2018, INT J RES MARK, V35, P538, DOI 10.1016/j.ijresmar.2018.08.002 Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques LeCun Y., 1995, HDB BRAIN THEORY NEU, V3361, P1995, DOI [10.5555/303568.303704, DOI 10.5555/303568.303704] Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Lewis D.D., SIGIR 94, P3 Li H., 2019, WORKING PAPER Li HS, 2014, J MARKETING RES, V51, P40, DOI 10.1509/jmr.13.0050 Li SB, 2011, J MARKETING RES, V48, P683, DOI 10.1509/jmkr.48.4.683 Li X, 2019, INT J RES MARK, V36, P216, DOI 10.1016/j.ijresmar.2019.02.004 Lin CF, 2002, IEEE T NEURAL NETWOR, V13, P464, DOI 10.1109/72.991432 Lippmann R. P., 1987, IEEE ASSP Magazine, V4, P4, DOI 10.1145/44571.44572 Lipton Z. C., 2016, COMMUN ACM, DOI DOI 10.1145/3233231 Liu L, 2018, Working Paper Liu X, 2018, MARKET SCI, V37, P855, DOI 10.1287/mksc.2018.1106 Ma L., 2019, Working paper Ma LY, 2015, MARKET SCI, V34, P627, DOI 10.1287/mksc.2015.0912 Malik N, 2019, WORKING PAPER McCarthy J., 1955, A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence McCulloch Warren S., 1943, BULL MATH BIOPHYS, V5, P115, DOI 10.1007/BF02459570 Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Misra K., 2018, Dynamic online pricing with incomplete information using multi-armed bandit experiments Mitchell T., MACHINE LEARNING, P2 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Netzer O, 2008, MARKET SCI, V27, P185, DOI 10.1287/mksc.1070.0294 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Ng ICL, 2017, INT J RES MARK, V34, P3, DOI 10.1016/j.ijresmar.2016.11.003 Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191 Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1007/BF00116251 Radford A., 2018, THE OPEN Rafieian O, 2018, WORKING PAPER Romov P., 2015, P 2015 INT ACM REC S, P1, DOI DOI 10.1145/2813448.2813510 RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Rust RT, 2020, INT J RES MARK, V37, P15, DOI 10.1016/j.ijresmar.2019.08.002 Rust RT, 2014, MARKET SCI, V33, P206, DOI 10.1287/mksc.2013.0836 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Selvaraju RR, 2017, IEEE I CONF COMP VIS, P618, DOI 10.1109/ICCV.2017.74 Simonyan K., 2014, 13126034 ARXIV, P1 STONE CJ, 1977, ANN STAT, V5, P595, DOI 10.1214/aos/1176343886 Sun BH, 2006, J INTERACT MARK, V20, P82, DOI 10.1002/dir.20069 Sun BH, 2011, J MARKETING RES, V48, P72, DOI 10.1509/jmkr.48.1.72 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Tang J, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P1067, DOI 10.1145/2736277.2741093 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994 Trusov M, 2016, MARKET SCI, V35, P405, DOI 10.1287/mksc.2015.0956 Tsochantaridis I, 2005, J MACH LEARN RES, V6, P1453 Turing A., 1950, MIND, VLIX Vapnik V., 1998, STAT LEARNING THEORY Vaswani A, 2017, ADV NEUR IN, V30 Vermeer SAM, 2019, INT J RES MARK, V36, P492, DOI 10.1016/j.ijresmar.2019.01.010 Wager S, 2018, J AM STAT ASSOC, V113, P1228, DOI 10.1080/01621459.2017.1319839 Watkins C. J. C. H., 1989, THESIS WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698 Wu QA, 2010, INFORM RETRIEVAL, V13, P254, DOI 10.1007/s10791-009-9112-1 Yang Y, 2019, WORKING PAPER Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 Zhang M., 2019, WORKING PAPER Zhang S, 2017, WORKING PAPER Zhang ZF, 2017, PROC CVPR IEEE, P4352, DOI 10.1109/CVPR.2017.463 Zhu X., 2005, Time-sensitive Dirichlet process mixture models NR 123 TC 138 Z9 151 U1 67 U2 299 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD SEP PY 2020 VL 37 IS 3 BP 481 EP 504 DI 10.1016/j.ijresmar.2020.04.005 PG 24 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA OH1NT UT WOS:000582339000004 DA 2024-03-27 ER PT J AU Akbarabadi, M Hosseini, M AF Akbarabadi, Mina Hosseini, Monireh TI Predicting the helpfulness of online customer reviews: The role of title features SO INTERNATIONAL JOURNAL OF MARKET RESEARCH LA English DT Article DE machine learning; online customer reviews; review helpfulness prediction ID USER; CONTRIBUTE AB Nowadays, many people refer to online customer reviews that are available on most shopping websites to make a better purchase decision. An automated review helpfulness prediction model can help the websites to rank reviews based on their level of helpfulness. This study examines the effect of review title features on predicting the helpfulness of online reviews. Moreover, a new method is proposed to categorize action verbs in a review text. Text, reviewer, readability, and title features are the four main categories that are used in this article. We examine our proposed prediction model on two real-life Amazon datasets using machine learning techniques. The results show a promising performance of the model. However, feature importance analysis reveals the low importance of title features in the predictive model. It means that the title characteristics cannot be a powerful determinant of online review helpfulness. The results of this study can be beneficial to both buyers and website owners to have a deep insight into online reviews helpfulness. C1 [Akbarabadi, Mina; Hosseini, Monireh] KN Toosi Univ Technol, Tehran, Iran. C3 K. N. Toosi University of Technology RP Hosseini, M (autor correspondiente), KN Toosi Univ Technol, Ind Engn Fac, IT Dept, 17 Pardis Ave,Molla Sadra St,Vanak Sq 470, Tehran 1999143344, Iran. EM hosseini@kntu.ac.ir CR Ahmad SN, 2016, INT J ELECTRON COMM, V20, P76, DOI 10.1080/10864415.2016.1061471 [Anonymous], 2002, P ACL 02 WORKSH EFF [Anonymous], 1963, MEASUREMENT READABIL [Anonymous], 2007, P 9 INT C ELECT COMM [Anonymous], P 8 INT C STAT AN TE Bickart B., 2001, J INTERACT MARK, V15, P31, DOI [10.1002/dir.1014, DOI 10.1002/DIR.1014] Bloom B. S., 1956, Taxonomy of educational objectives: Handbook I: Cognitive domain Cao Q, 2011, DECIS SUPPORT SYST, V50, P511, DOI 10.1016/j.dss.2010.11.009 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Das B., 2013, 2013 IEEE 13 INT C D Genc-Nayebi N, 2017, J SYST SOFTWARE, V125, P207, DOI 10.1016/j.jss.2016.11.027 Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469 He RN, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P507, DOI 10.1145/2872427.2883037 Hong H, 2017, DECIS SUPPORT SYST, V102, P1, DOI 10.1016/j.dss.2017.06.007 Hu YH, 2017, INFORM MANAGE-AMSTER, V54, P728, DOI 10.1016/j.im.2016.12.009 Huang AH, 2015, COMPUT HUM BEHAV, V48, P17, DOI 10.1016/j.chb.2015.01.010 Huitt W. G., 2011, BLOOM ALS TAXONOMY C Kim S.-M., 2006, EMP METH NAT LANG PR Krishnamoorthy S, 2015, EXPERT SYST APPL, V42, P3751, DOI 10.1016/j.eswa.2014.12.044 Lee PJ, 2018, TELEMAT INFORM, V35, P436, DOI 10.1016/j.tele.2018.01.001 Lee S, 2014, EXPERT SYST APPL, V41, P3041, DOI 10.1016/j.eswa.2013.10.034 Liu Jingjing, 2007, P 2007 JOINT C EMPIR, P334 Liu YF, 2008, ISPD'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON PHYSICAL DESIGN, P15 Ma YF, 2018, INT J HOSP MANAG, V71, P120, DOI 10.1016/j.ijhm.2017.12.008 Malik MSI, 2018, INFORM PROCESS MANAG, V54, P88, DOI 10.1016/j.ipm.2017.09.004 Mudambi SM, 2010, MIS QUART, V34, P185 Muller A.C., 2016, Introduction to machine learning with Python: A guide for data scientists Ngo-Ye TL, 2017, EXPERT SYST APPL, V71, P98, DOI 10.1016/j.eswa.2016.11.029 Ngo-Ye TL, 2014, DECIS SUPPORT SYST, V61, P47, DOI 10.1016/j.dss.2014.01.011 Park DH, 2007, INT J ELECTRON COMM, V11, P125, DOI 10.2753/JEC1086-4415110405 Qazi A, 2016, COMPUT HUM BEHAV, V58, P75, DOI 10.1016/j.chb.2015.12.028 Siering M, 2018, DECIS SUPPORT SYST, V108, P1, DOI 10.1016/j.dss.2018.01.004 Singh JP, 2017, J BUS RES, V70, P346, DOI 10.1016/j.jbusres.2016.08.008 Stanny CJ, 2016, EDUC SCI, V6, DOI 10.3390/educsci6040037 Wan Y, 2015, ELECTRON MARK, V25, P313, DOI 10.1007/s12525-015-0186-x Zhang RC, 2012, WORLD WIDE WEB, V15, P117, DOI 10.1007/s11280-011-0127-3 Zhang Y, 2018, ELECTRON COMMER R A, V27, P1, DOI 10.1016/j.elerap.2017.10.008 NR 37 TC 26 Z9 26 U1 7 U2 51 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1470-7853 EI 2515-2173 J9 INT J MARKET RES JI Int. J. Market Res. PD MAY PY 2020 VL 62 IS 3 BP 272 EP 287 DI 10.1177/1470785318819979 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA LQ8KZ UT WOS:000535248500003 DA 2024-03-27 ER PT J AU Kushwaha, AK Kumar, P Kar, AK AF Kushwaha, Amit Kumar Kumar, Prashant Kar, Arpan Kumar TI What impacts customer experience for B2B enterprises on using AI-enabled chatbots? Insights from Big data analytics SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Artificial intelligence; Chatbots; Big data analytics; Customer experience; Social media analytics; Service quality ID ARTIFICIAL-INTELLIGENCE; DECISION-MAKING; VIRTUAL-REALITY; SERVICE EXPERIENCE; TRUST; SYSTEMS; COMMITMENT; EVOLUTION; ADOPTION; SUCCESS AB Many B2B firms have widely accepted AI-based chatbots to provide human-like service interaction at different customer touchpoints in recent years. One of the objectives behind introducing this technology is to provide an enhanced, live channel Customer Experience (CX) all round the clock. Researchers have focused on delivering the CX by improvising the chatbot's internal algorithm, giving limited attention to CX theories from management literature, which leaves a gap. With the proposed paper, we have investigated the influencing factors of AI-based chatbots from the lens of CX theories for B2B firms. In this paper, a model for organizing CX has been proposed using the diffusion of innovation theory, trust commitment theory, information systems success model, and Hoffman & Novak's flow model for the computer-mediated environment and verified using the social media data. The methodology used for this study is the social media analytics-based content analysis method (sentiment analysis, hierarchical clustering, topic modeling) for data preparation, followed by lasso and ridge regression for model verification. The results suggest that CX in B2B enterprises using chatbots is influenced by these bots' overall system design, customers' ability to use technology, and customer trust towards brand and system. C1 [Kushwaha, Amit Kumar; Kumar, Prashant; Kar, Arpan Kumar] Indian Inst Technol Delhi, Dept Management Studies, New Delhi, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Delhi RP Kar, AK (autor correspondiente), Indian Inst Technol Delhi, Dept Management Studies, New Delhi, India. EM arpankar@dms.iitd.ac.in RI Kar, Arpan Kumar/B-9999-2009; Kumar, Prashant/AAG-9851-2019 OI Kar, Arpan Kumar/0000-0003-4186-4887; Kumar, Prashant/0000-0001-9160-5811; KUSHWAHA, AMIT KUMAR/0000-0002-5537-1250 CR Adamopoulos P, 2018, INFORM SYST RES, V29, P612, DOI 10.1287/isre.2017.0768 Akter S, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102387 Alter S, 2022, INT J INFORM MANAGE, V67, DOI 10.1016/j.ijinfomgt.2021.102392 [Anonymous], 1962, DIFFUSION INNOVATION Aswani R, 2018, INT J INFORM MANAGE, V38, P107, DOI 10.1016/j.ijinfomgt.2017.07.005 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 Baird A, 2012, J MANAGE INFORM SYST, V29, P293, DOI 10.2753/MIS0742-1222290210 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Barbuceanu M, 2004, AI MAG, V25, P47 Barnum C. M., 2020, USABILITY TESTING ES Bedoui A, 2020, COMPUT STAT DATA AN, V145, DOI 10.1016/j.csda.2020.106917 Benbasat I, 2005, Journal of the Association for Information Systems, V6, P4, DOI [DOI 10.17705/1JAIS.00065, 10.17705/1jais.00065] Berry LL, 2006, ACAD MANAGE PERSPECT, V20, P43, DOI 10.5465/AMP.2006.20591004 Bleier A, 2019, J MARKETING, V83, P98, DOI 10.1177/0022242918809930 Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225 Boyd DE, 2019, J BUS RES, V100, P590, DOI 10.1016/j.jbusres.2018.06.007 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Canhoto AI, 2020, BUS HORIZONS, V63, P183, DOI 10.1016/j.bushor.2019.11.003 Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312 Chae B, 2015, INT J PROD ECON, V165, P247, DOI 10.1016/j.ijpe.2014.12.037 Chang JW, 2016, COMPUT IND, V78, P29, DOI 10.1016/j.compind.2015.10.007 Cheetham W, 2007, AI MAG, V28, P89 Chehreghani MH, 2009, DECIS SUPPORT SYST, V47, P374, DOI 10.1016/j.dss.2009.04.002 Chiu YT, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102379 Collins C, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102383 Dale R., 2001, Computational Linguistics, V27, P602, DOI [DOI 10.1162/COLI.2000.27, 10.1162/coli.2000.27] Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 De Keyser A, 2020, J SERV RES-US, V23, P433, DOI 10.1177/1094670520928390 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 Demlehner Q, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102317 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dubey R, 2021, INT J PROD RES, V59, P1586, DOI 10.1080/00207543.2020.1865583 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Dwivedi YK, 2017, GOV INFORM Q, V34, P211, DOI 10.1016/j.giq.2017.03.001 Dwivedi YK, 2015, INFORM SYST FRONT, V17, P143, DOI 10.1007/s10796-014-9500-y Dwivedi YogeshK., 2015, MARKETING REV, V15, P289, DOI [DOI 10.1111/JAN.13030, 10.1362/146934715X14441363377999, DOI 10.1362/146934715X14441363377999] EY Global, 2017, CHATB CAN ENG YOUR C Farrokhi A, 2020, IND MARKET MANAG, V91, P257, DOI 10.1016/j.indmarman.2020.09.015 Forum W. E., 2020, CHATBOTS RESET FRAME Frow P, 2007, J BRAND MANAG, V15, P89, DOI 10.1057/palgrave.bm.2550120 Garbarino E, 1999, J MARKETING, V63, P70, DOI 10.2307/1251946 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Geva H, 2019, MIS QUART, V43, P501, DOI 10.25300/MISQ/2019/14346 González-Carrasco I, 2019, INFORM SCIENCES, V485, P319, DOI 10.1016/j.ins.2019.02.030 Grewal D, 2018, J MARKET EDUC, V40, P85, DOI 10.1177/0273475318755838 Griffis SE, 2012, J OPER MANAG, V30, P282, DOI 10.1016/j.jom.2012.02.002 Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Grover P, 2019, TECHNOL FORECAST SOC, V145, P438, DOI 10.1016/j.techfore.2018.09.009 Güçdemir H, 2015, IND MANAGE DATA SYST, V115, P1022, DOI 10.1108/IMDS-01-2015-0027 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Hakanen T, 2017, IND MARKET MANAG, V63, P167, DOI 10.1016/j.indmarman.2016.10.011 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Hernandez B, 2009, IND MARKET MANAG, V38, P338, DOI 10.1016/j.indmarman.2007.12.002 Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Iankova S, 2019, IND MARKET MANAG, V81, P169, DOI 10.1016/j.indmarman.2018.01.001 Kao A., 2007, Natural Language Processing and Text Mining, DOI DOI 10.1007/978-1-84628-754-1 Kar AK, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102205 Kar AK, 2021, INFORM SYST FRONT, V23, P1341, DOI 10.1007/s10796-020-10045-0 Kauffmann E, 2020, IND MARKET MANAG, V90, P523, DOI 10.1016/j.indmarman.2019.08.003 Klaus P, 2020, J SERV MARK, V34, P389, DOI 10.1108/JSM-01-2019-0043 Kumar P, 2023, INFORM SYST FRONT, V25, P2197, DOI [10.1007/s10796-021-10136-6, 10.1109/TNSE.2021.3089435] Kumar S., 2021, Int. J. Inf. Manag. Data Insights, V1, P100008, DOI DOI 10.1016/J.JJIMEI.2021.100008 Kushwaha Amit Kumar, 2020, Responsible Design, Implementation and Use of Information and Communication Technology. 19th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12066), P456, DOI 10.1007/978-3-030-44999-5_38 Kushwaha A. K., 2020, IFIP ADV INFORM COMM, P16, DOI 10.1007/978-3-030-64849-7_3 Kushwaha A. K., 2020, IFIP ADV INF COMMUN, P249, DOI [10.1007/978-3-030-64849-7_22, DOI 10.1007/978-3-030-64849-7_22] Kushwaha A.K., 2021, International Journal of Information Management Data Insights, V1, P100017, DOI DOI 10.1016/J.JJIMEI.2021.100017 Lai JY, 2009, IND MARKET MANAG, V38, P263, DOI 10.1016/j.indmarman.2008.01.002 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Lenney P, 2009, IND MARKET MANAG, V38, P553, DOI 10.1016/j.indmarman.2008.12.020 Marakanon L., 2017, Kasetsart Journal of Social Sciences, V38, P24, DOI [10.1016/j.kjss.2016.08.012, DOI 10.1016/J.KJSS.2016.08.012] Martin J, 2015, J RETAIL CONSUM SERV, V25, P81, DOI 10.1016/j.jretconser.2015.03.008 McKinsey, 2019, Driving Impact at Scale from Automation and AI Mendling J, 2018, COMMUN ASSOC INF SYS, V43, P297, DOI 10.17705/1CAIS.04319 MIRVIS PH, 1991, ACAD MANAGE REV, V16, P636, DOI 10.2307/258925 Mithas S, 2011, MIS QUART, V35, P237 Mogaji E, 2021, AUSTRALAS MARK J, V29, P235, DOI 10.1016/j.ausmj.2020.05.003 MORGAN RM, 1994, J MARKETING, V58, P20, DOI 10.2307/1252308 Nanji A., 2019, CONSUMERS FEEL BRAND Nguyen J, 2020, KNOWL-BASED SYST, V190, DOI 10.1016/j.knosys.2019.105308 Nishant R, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102104 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Panda S, 2020, IND MARKET MANAG, V91, P246, DOI 10.1016/j.indmarman.2020.09.011 Paschen J, 2020, BUS HORIZONS, V63, P403, DOI 10.1016/j.bushor.2020.01.003 Pillai R, 2022, PROD PLAN CONTROL, V33, P1517, DOI 10.1080/09537287.2021.1882689 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Prentic C, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102186 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Puccinelli NM, 2009, J RETAILING, V85, P15, DOI 10.1016/j.jretai.2008.11.003 Rathore AK, 2017, DECIS ANAL, V14, P229, DOI 10.1287/deca.2017.0355 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Roy S, 2019, IND MARKET MANAG, V82, P52, DOI 10.1016/j.indmarman.2019.02.017 Shareef MA, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120334 Smelser N.J., 2001, STAT SOC BEHAV SC, V11, DOI DOI 10.1016/B0-08-043076-7/03379-9 Steinhoff L, 2019, J ACAD MARKET SCI, V47, P369, DOI 10.1007/s11747-018-0621-6 STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Suh KS, 2005, MIS QUART, V29, P673 Sung E, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102382 Taylor SA, 2020, IND MARKET MANAG, V87, P256, DOI 10.1016/j.indmarman.2019.10.004 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tiwary NK, 2021, J BUS RES, V131, P121, DOI 10.1016/j.jbusres.2021.03.028 Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Varian HR, 2014, J ECON PERSPECT, V28, P3, DOI 10.1257/jep.28.2.3 Vriens M, 2019, INT J MARKET RES, V61, P130, DOI 10.1177/1470785318810106 Yang XX, 2018, IEEE T RELIAB, V67, P885, DOI 10.1109/TR.2018.2847353 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Yim CK, 2012, J MARKETING, V76, P121, DOI 10.1509/jm.11.0205 Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 NR 110 TC 56 Z9 57 U1 49 U2 208 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD OCT PY 2021 VL 98 BP 207 EP 221 DI 10.1016/j.indmarman.2021.08.011 EA SEP 2021 PG 15 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA WI5ZH UT WOS:000708437700017 DA 2024-03-27 ER PT J AU Wijaya, DR Paramita, NLPSP Uluwiyah, A Rheza, M Zahara, A Puspita, DR AF Wijaya, Dedy Rahman Paramita, Ni Luh Putu Satyaning Pradnya Uluwiyah, Ana Rheza, Muhammad Zahara, Annisa Puspita, Dwi Rani TI Estimating city-level poverty rate based on e-commerce data with machine learning SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Big data; E-commerce; Machine learning; Poverty rate estimation ID SUPPORT VECTOR REGRESSION; ARTIFICIAL NEURAL-NETWORK; ALGORITHMS; PREDICTION; FRAMEWORK; SENTIMENT AB There are many big data sources in Indonesia, for example, data from social media, financial transactions, transportation, call detail records, and e-commerce. These types of data have been considered as potential resources to complement periodic surveys and censuses to monitor development indicators such as poverty levels. Data from e-commerce in particular could potentially represent the real expenditure of households, better complying with the formal calculation of the poverty line than other datasets. The contribution of this research is to propose a framework for poverty rate estimation based on e-commerce data using machine learning algorithms. The influence of items and aspects in e-commerce data was investigated in conjunction with poverty rate estimation. The experimental result showed that e-commerce data could potentially be used as a proxy for calculating city-level poverty rates. It was also found that cars and motorbikes are the two most significant items for poverty prediction in Indonesia. C1 [Wijaya, Dedy Rahman] Telkom Univ, Sch Appl Sci, Bandung, Indonesia. [Paramita, Ni Luh Putu Satyaning Pradnya] Inst Teknol Sepuluh Nopember, Stat Dept, Surabaya, Indonesia. [Uluwiyah, Ana] Stat Indonesia BPS, Educ & Training Ctr, Jakarta, Indonesia. [Rheza, Muhammad; Zahara, Annisa] United Nat Global Pulse, Pulse Lab Jakarta, Jakarta, Indonesia. [Puspita, Dwi Rani] Univ Indonesia, Inst Econ & Social Res, Jakarta, Indonesia. C3 Telkom University; Institut Teknologi Sepuluh Nopember; Statistics Indonesia; University of Indonesia RP Wijaya, DR (autor correspondiente), Telkom Univ, Sch Appl Sci, Bandung, Indonesia. EM dedyrw@tass.telkomuniversity.ac.id; pradnya@statistika.its.ac.id; auluwiyah@bps.go.id; muhammad.rheza@un.or.id; anissa.zahara@un.or.id; dwirani.puspa@ui.ac.id RI Wijaya, Dedy Rahman/P-2905-2015 OI Wijaya, Dedy Rahman/0000-0003-0351-7331; , Ana/0000-0002-3149-6657; Paramita, Ni Luh Putu Satyaning Pradnya/0000-0001-6478-085X FU Pulse Lab Jakarta; Government of Indonesia FX This work was supported by Pulse Lab Jakarta (PLJ), which is a joint initiative of the United Nations and the Government of Indonesia. CR Akib K., 2018, E COMMERCE INDONESIA Babenko B., 2017, 31 C NEUR INF PROC S, P1, DOI 10.1109/vppc.2005.1554579 Baranyi J, 1999, INT J FOOD MICROBIOL, V48, P159, DOI 10.1016/S0168-1605(99)00035-5 Barbancho AM, 2011, INT CONF ACOUST SPEE, P377 Blumenstock J, 2015, SCIENCE, V350, P1073, DOI 10.1126/science.aac4420 BPS-Statistics Indonesia, 2018, KEM DAN KET Braithwaite A, 2016, CONFLICT MANAG PEACE, V33, P45, DOI 10.1177/0738894214559673 Brown G, 2012, J MACH LEARN RES, V13, P27 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Deeplearning4j Development Team, 2017, DEEPLEARNING4J OPENS Du J, 2017, PATTERN RECOGN, V63, P149, DOI 10.1016/j.patcog.2016.10.003 Fund U. N. P, 2014, POP POV Greff K, 2017, IEEE T NEUR NET LEAR, V28, P2222, DOI 10.1109/TNNLS.2016.2582924 Guan W, 2018, OPTICAL MEMORY NEURA, V27, P272, DOI [10.3103/s1060992x18040094, DOI 10.3103/S1060992X18040094] Guo KH, 2012, ADV MATER RES-SWITZ, V403-408, P3805, DOI 10.4028/www.scientific.net/AMR.403-408.3805 Hariyanto, 2017, INT CONF INFORM COMM, P241, DOI 10.1109/ICTS.2017.8265677 Hinton G, 2012, IEEE SIGNAL PROC MAG, V29, P82, DOI 10.1109/MSP.2012.2205597 Indonesia B.-S., 2018, PERS PEND MISK MEN K Indonesia B.-S, 2018, NAT SOC EC SURV Jean N, 2016, SCIENCE, V353, P790, DOI 10.1126/science.aaf7894 Jiang SC, 2017, EXPERT SYST APPL, V82, P216, DOI 10.1016/j.eswa.2017.04.017 Kalman B. L., 1992, IJCNN International Joint Conference on Neural Networks (Cat. No.92CH3114-6), P578, DOI 10.1109/IJCNN.1992.227257 KipkosgeiLagat, 2018, AM J THEORETICAL APP, V7, P67, DOI [10.11648/j.ajtas.20180702.13, DOI 10.11648/J.AJTAS.20180702.13] Lee S, 2017, ELECTRON COMMER R A, V26, P35, DOI 10.1016/j.elerap.2017.09.006 Li JD, 2018, ACM COMPUT SURV, V50, DOI 10.1145/3136625 Li YX, 2018, MULTIMED TOOLS APPL, V77, P897, DOI 10.1007/s11042-016-4332-z Liu XJ, 2020, NEUROCOMPUTING, V397, P393, DOI 10.1016/j.neucom.2019.08.108 Målqvist M, 2015, ARCH DIS CHILD, V100, pS5, DOI 10.1136/archdischild-2013-305722 Mellander C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139779 Mirzaei A, 2020, NEUROCOMPUTING, V383, P396, DOI 10.1016/j.neucom.2019.12.017 Mustakim M., 2016, JURNAL ILMU KOMPUTER, V9, P1, DOI [10.21609/jiki.v9i1.287, DOI 10.21609/JIKI.V9I1.287] Naguib IA, 2012, SPECTROCHIM ACTA A, V86, P515, DOI 10.1016/j.saa.2011.11.003 Njuguna C, 2017, J BUS RES, V70, P318, DOI 10.1016/j.jbusres.2016.08.005 OECD, 2018, POV RAT IND Ou W, 2018, ELECTRON COMMER R A, V32, P13, DOI 10.1016/j.elerap.2018.10.003 Pandey SM, 2018, AAAI CONF ARTIF INTE, P7793 Perez A., 2017, Poverty Prediction with Public Landsat 7 Satellite Imagery and Machine Learning Pokhriyal N, 2017, P NATL ACAD SCI USA, V114, pE9783, DOI 10.1073/pnas.1700319114 Portugal I, 2018, EXPERT SYST APPL, V97, P205, DOI 10.1016/j.eswa.2017.12.020 Rout JK, 2018, ELECTRON COMMER RES, V18, P181, DOI 10.1007/s10660-017-9257-8 Shirzad A, 2014, KSCE J CIV ENG, V18, P941 Steele JE, 2017, J R SOC INTERFACE, V14, DOI 10.1098/rsif.2016.0690 Tian F, 2016, ELECTRON COMMER R A, V16, P66, DOI 10.1016/j.elerap.2015.10.003 Tseng KK, 2018, ELECTRON COMMER RES, V18, P65, DOI 10.1007/s10660-017-9272-9 United Nations, 2015, MILL DEV GOALS REP Vapnik V, 1998, STAT LEARNING THEORY, V3 Vincent OR, 2017, ELECTRON COMMER R A, V25, P59, DOI 10.1016/j.elerap.2017.08.002 Wang L, 2019, J THEOR BIOL, V461, P230, DOI 10.1016/j.jtbi.2018.10.029 Wang YR, 2018, ELECTRON COMMER R A, V29, P1, DOI 10.1016/j.elerap.2018.03.003 Wijaya D. R., 2016, International Review on Computers and Software, V11, P659, DOI [10.15866/irecos.v11i8.9425, DOI 10.15866/IRECOS.V11I8.9425, DOI 10.15866/IREC0S.V11I8.9425] Wijaya DR, 2020, IEEE ACCESS, V8, P33944, DOI 10.1109/ACCESS.2020.2974982 Wijaya DR, 2019, COMPUT ELECTRON AGR, V157, P305, DOI 10.1016/j.compag.2019.01.001 Yang S, 2021, ELECTRON COMMER RES, V21, P727, DOI 10.1007/s10660-019-09337-8 Yu LP, 2003, ANN NY ACAD SCI, V1005, P1, DOI 10.1196/annals.1288.002 Zhang W, 2018, ELECTRON COMMER R A, V31, P12, DOI 10.1016/j.elerap.2018.08.001 NR 55 TC 17 Z9 17 U1 7 U2 37 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD MAR PY 2022 VL 22 IS 1 SI SI BP 195 EP 221 DI 10.1007/s10660-020-09424-1 EA JUN 2020 PG 27 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA ZN0VD UT WOS:000541207900001 DA 2024-03-27 ER PT J AU Laurell, C Sandström, C Berthold, A Larsson, D AF Laurell, Christofer Sandstrom, Christian Berthold, Adam Larsson, Daniel TI Exploring barriers to adoption of Virtual Reality through Social Media Analytics and Machine Learning - An assessment of technology, network, price and trialability SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Virtual reality; Oculus rift; HTC vive; Social media analytics; Machine learning; Adoption ID INFORMATION-TECHNOLOGY; EXPERIENCE AB This paper aims to assess how diffusion of Virtual Reality (VR) technology is taking place and identify potential barriers to increased adoption. This is done by utilising Social Media Analytics to collect a data set covering an empirical material of 6044 user-generated content concerning the market-leading VR headsets Oculus Rift and HTC Vive, and machine learning to identify critical barriers to adoption. Our findings suggest that there is a lack of sufficient technological performance of these headsets and that more applications are required for this technology to take off. We contribute to literature on VR by providing a systematic assessment of current barriers to adoption while also pointing out implications for marketing. C1 [Laurell, Christofer] Stockholm Sch Econ, Inst Res, Box 6501, SE-11383 Stockholm, Sweden. [Laurell, Christofer; Sandstrom, Christian] Jonkoping Int Business Sch, Box 1026, SE-55111 Jonkoping, Sweden. [Sandstrom, Christian] Chalmers Univ Technol, Sci & Technol Studies, SE-41296 Gothenburg, Sweden. [Sandstrom, Christian] Ratio Inst, POB 3203, SE-10364 Stockholm, Sweden. [Berthold, Adam; Larsson, Daniel] Chalmers Univ Technol, Vera Sandbergs Alle 8B, SE-41296 Gothenburg, Sweden. C3 Stockholm School of Economics; Jonkoping University; Chalmers University of Technology; Chalmers University of Technology RP Laurell, C (autor correspondiente), Stockholm Sch Econ, Inst Res, Box 6501, SE-11383 Stockholm, Sweden. EM christofer.laurell@hhs.se; christian.sandstrom@chalmers.se OI Sandstrom, Christian/0000-0002-8625-8744 FU Jan Wallander and Tom Hedelius Foundation; Tore Browaldh Foundation; Marianne and Marcus Wallenberg Foundation, Sweden FX This work was supported by the Jan Wallander and Tom Hedelius Foundation and Tore Browaldh Foundation; and Marianne and Marcus Wallenberg Foundation, Sweden. CR Adner R, 2016, STRATEGIC MANAGE J, V37, P625, DOI 10.1002/smj.2363 Amend J. M., 2016, GM USES VIRTUAL WORL Arthur WB, 1996, HARVARD BUS REV, V74, P100 Berg LP, 2017, VIRTUAL REAL-LONDON, V21, P1, DOI 10.1007/s10055-016-0293-9 BMW, 2017, VIRT OCH AUGM REAL Brooker P, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716658060 Carr C., 2016, MAKING SENSE VIRTUAL, V38, P68 Charron JP, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00800 Christensen Clayton M., 1997, INNOVATORS DILEMMA N ClassVR, 2017, RED COSTS MIL TRAIN Geissinger A, 2020, TECHNOL FORECAST SOC, V155, DOI 10.1016/j.techfore.2018.06.012 Gleasure R, 2016, J ASSOC INF SYST, V17, P708, DOI 10.17705/1jais.00439 Griffin T., 2017, 2017 TTRA INT C Gronstedt A., 2016, TD: Talent Development, V70, P54 Huang YC, 2016, INT J TOUR RES, V18, P116, DOI 10.1002/jtr.2038 IKEA, 2017, VIRT REAL MAG Jung Timothy., 2016, INFORM COMMUNICATION, P621, DOI DOI 10.1007/978-3-319-28231-2_45 Karpf D, 2012, INFORM COMMUN SOC, V15, P639, DOI 10.1080/1369118X.2012.665468 Kumar S, 2016, INT CON ADV INFO NET, P973, DOI 10.1109/AINA.2016.177 Lau K.W., 2016, ADV ADVERTISING RES, V6, P75 Laurell C, 2019, TECHNOL FORECAST SOC, V141, P117, DOI 10.1016/j.techfore.2018.07.015 Laurell C, 2017, TECHNOL FORECAST SOC, V125, P58, DOI 10.1016/j.techfore.2017.05.038 Lee B. Y., 2017, VIRTUAL REALITY IS G Lin JHT, 2017, COMPUT HUM BEHAV, V72, P350, DOI 10.1016/j.chb.2017.02.057 Magnusson J., 2014, ENTERPRISE SYSTEM PL Meissner M., 2017, J BUS RES, DOI [10.1016/j.jbusres.2017.09, DOI 10.1016/J.JBUSRES.2017.09] OBrien J. M., 2016, RACE MAKE VIRTUAL RE Oculus, 2016, OC TOUCH LAUNCH TOD OSKARSSON C, 1994, TECHNOL ANAL STRATEG, V6, P3, DOI 10.1080/09537329408524149 Rogers, 2003, DIFFUSION INNOVATION Schilling M.A., 2010, Strategic Management of Technological Innovation, V3rd Shin D, 2018, COMPUT HUM BEHAV, V78, P64, DOI 10.1016/j.chb.2017.09.012 Steam, 2017, STEAM HARDW SOFTW SU Stieglitz S, 2014, BUS INFORM SYST ENG+, V6, P89, DOI 10.1007/s12599-014-0315-7 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 Van Kerrebroeck H, 2017, COMPUT HUM BEHAV, V77, P437, DOI 10.1016/j.chb.2017.07.019 Van Kerrebroeck H, 2017, VIRTUAL REAL-LONDON, V21, P177, DOI 10.1007/s10055-017-0306-3 van Zoonen W, 2016, COMPUT HUM BEHAV, V63, P132, DOI 10.1016/j.chb.2016.05.028 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 NR 40 TC 55 Z9 56 U1 6 U2 51 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD JUL PY 2019 VL 100 BP 469 EP 474 DI 10.1016/j.jbusres.2019.01.017 PG 6 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA IC4NL UT WOS:000470942500042 DA 2024-03-27 ER PT J AU Lei, ZZ AF Lei, Zhizhong TI Research and analysis of deep learning algorithms for investment decision support model in electronic commerce SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Deep learning; Investment; E-commerce; Decision support model ID NEURAL-NETWORKS; SYSTEM; RECOGNITION AB In order to improve the accuracy of e-commerce decision-making, this paper proposes an investment decision-making support model in e-commerce based on deep learning calculation to support the company. Investment decision-making system is not only an important means of enterprise investment and financing, but also an important way for investors to make profits. It also plays an important role in macroeconomic regulation, resource allocation and other aspects. This paper takes investment data related to Internet and e-commerce business as the research object, studies the theory and method of investment decision-making quality evaluation at home and abroad, and puts forward a prediction model of company decision-making quality evaluation based on deep learning algorithm, aiming at providing decision support for investors. Then a neural network investment quality evaluation model is constructed, including model structure, parameters and algorithm design. The experimental data are input into training, and the data processing process and prediction results are displayed. Experiments show that the evaluation indexes of prediction model is mainly used to judge the quality of investment of Internet or commercial enterprises. Based on this deep learning model, various index data of enterprises are analyzed, which can assist investors in decision-making. C1 [Lei, Zhizhong] Liaoning Univ, Sch Econ, Shenyang 110036, Liaoning, Peoples R China. C3 Liaoning University RP Lei, ZZ (autor correspondiente), Liaoning Univ, Sch Econ, Shenyang 110036, Liaoning, Peoples R China. EM leisheng9960@163.com CR [Anonymous], 2016, BIOMED RES INT Aouadni I, 2017, ANN OPER RES, V256, P3, DOI 10.1007/s10479-016-2154-z Barros P, 2017, NEUROCOMPUTING, V253, P104, DOI 10.1016/j.neucom.2017.01.096 Böttiger Y, 2018, EUR J CLIN PHARMACOL, V74, P365, DOI 10.1007/s00228-017-2391-3 Chen MC, 2018, ACTA MATH APPL SIN-E, V34, P398, DOI 10.1007/s10255-018-0740-3 Chong E, 2017, EXPERT SYST APPL, V83, P187, DOI 10.1016/j.eswa.2017.04.030 Ghadai S, 2018, COMPUT AIDED GEOM D, V62, P263, DOI 10.1016/j.cagd.2018.03.024 Ghasemi F, 2018, DRUG DISCOV TODAY, V23, P1784, DOI 10.1016/j.drudis.2018.06.016 Ifenthaler D, 2014, TECHNOL KNOWL LEARN, V19, P241, DOI 10.1007/s10758-014-9224-6 Kharazmi P, 2018, J MED SYST, V42, DOI 10.1007/s10916-017-0885-2 Kong HF, 2019, IEEE ACCESS, V7, P65174, DOI 10.1109/ACCESS.2019.2917545 Kraus M, 2017, DECIS SUPPORT SYST, V104, P38, DOI 10.1016/j.dss.2017.10.001 Nweke HF, 2018, EXPERT SYST APPL, V105, P233, DOI 10.1016/j.eswa.2018.03.056 Sanfey AG, 2003, SCIENCE, V300, P1755, DOI 10.1126/science.1082976 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Shameer K, 2017, BRIEF BIOINFORM, V18, P105, DOI 10.1093/bib/bbv118 Slezak D, 2018, INFORM SCIENCES, V451, P112, DOI 10.1016/j.ins.2018.04.026 Sultana A, 2017, PEER PEER NETW APPL, V10, P1113, DOI 10.1007/s12083-016-0465-0 Venkateswara H, 2017, IEEE SIGNAL PROC MAG, V34, P117, DOI 10.1109/MSP.2017.2740460 Xiao GL, 2018, INT J PROD RES, V56, P1389, DOI 10.1080/00207543.2017.1328140 Yang YX, 2018, J THORAC DIS, V10, pS867, DOI 10.21037/jtd.2018.02.57 Yau Kok-Lim Alvin, 2017, ACM Computing Surveys, V50, DOI 10.1145/3068287 Zhao FF, 2018, COGN COMPUT, V10, P296, DOI 10.1007/s12559-017-9511-3 NR 23 TC 8 Z9 8 U1 2 U2 20 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD JUN PY 2020 VL 20 IS 2 SI SI BP 275 EP 295 DI 10.1007/s10660-019-09389-w EA NOV 2019 PG 21 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LK9BZ UT WOS:000494384900001 DA 2024-03-27 ER PT J AU Esangbedo, CO Zhang, JX Esangbedo, MO Kone, SD Xu, L AF Esangbedo, Caroline Olufunke Zhang, Jingxiao Esangbedo, Moses Olabhele Kone, Seydou Dramane Xu, Lin TI The role of industry-academia collaboration in enhancing educational opportunities and outcomes under the digital driven Industry 4.0 SO JOURNAL OF INFRASTRUCTURE POLICY AND DEVELOPMENT LA English DT Article DE Industry 4.0; industry-academia collaboration; artificial intelligence; patent development; curriculum; research and development; SEM ID KNOWLEDGE TRANSFER; OPEN-INNOVATION; UNIVERSITY; CHINA; INTERMEDIARIES; PERSPECTIVE; POLICY AB We studied the role of industry-academic collaboration (IAC) in the enhancement of educational opportunities and outcomes under the digital driven Industry 4.0 using research and development, the patenting of products/knowledge, curriculum development, and artificial intelligence as proxies for IAC. Relevant conceptual, theoretical, and empirical literature were reviewed to provide a background for this research. The investigator used mainly principal (primary) data from a sample of 230 respondents. The primary statistics were acquired through a questionnaire. The statistics were evaluated using the structural equation model (SEM) and Stata version 13.0 as the statistical software. The findings indicate that the direct total effect of Artificial intelligence (Aint) on educational opportunities (EduOp) is substantial (Coef. 0.2519916) and statistically significant (p < 0.05), implying that changes in Aint have a pronounced influence on EduOp. Additionally, considering the indirect effects through intermediate variables, Research and Development (Res_dev) and Product Patenting (Patenting) play crucial roles, exhibiting significant indirect effects on EduOp. Res_dev exhibits a negative indirect effect (Coef = -0.009969, p = 0.000) suggesting that increased research and development may dampen the impact of Aint on EduOp against a priori expectation while Patenting has a positive indirect effect (Coef = 0.146621, p = 0.000), indicating that innovation, as reflected by patenting, amplifies the effect of Aint on EduOp. Notably, Curriculum development (Curr_dev) demonstrates a remarkable positive indirect effect (Coef = 0.8079605, p = 0.000) underscoring the strong role of current development activities in enhancing the influence of Aint on EduOp. The study contributes to knowledge on the effective deployment of artificial intelligence, which has been shown to enhance educational opportunities and outcomes under the digital driven Industry 4.0 in the study area. C1 [Esangbedo, Caroline Olufunke; Zhang, Jingxiao; Kone, Seydou Dramane] Changan Univ, Sch Econ & Management, Xian 710000, Peoples R China. [Esangbedo, Moses Olabhele] Xuzhou Univ Technol, Sch Management Engn, Xuzhou 221018, Peoples R China. [Xu, Lin] Northwest Univ, Sch Foreign Languages, Xian 710069, Peoples R China. C3 Chang'an University; Xuzhou University of Technology; Northwest University Xi'an RP Zhang, JX (autor correspondiente), Changan Univ, Sch Econ & Management, Xian 710000, Peoples R China. EM zhangjingxiao964@126.com FU National Social Science Fund projects of China [20BJY010]; National Social Science Fund Post-financing projects of China [19FJYB017]; China Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund [71942006]; China Qinghai Natural Science Foundation [2020-JY-736]; List of Key Science and Technology Projects in China's Transportation Industry in the 2018 International Science and Technology Cooperation Project [2018-GH-006, 2019-MS5-100]; Emerging Engineering Education Research and Practice Project of Ministry of Education of China [E-GKRWJC20202914]; Higher Education Teaching Reform Project in Shaanxi Province, China [19BZ016]; Humanities and Social Sciences Research Project of the Ministry of Education of China [21XJA752003]; British Council ("Integrated Built Environment Teaching & Learning in the Joint Curriculum Development amid Digital-Driven Industry 4.0 among China); International Education Research Program of Chang'an University, China [300108221113]; Going Global Partnership: UK-China-ASEAN, Education Partnership Initiative - British Council; National Natural Science Foundation of China [72074191] FX This research is supported by the National Social Science Fund projects of China (No.20BJY010) ; the National Social Science Fund Post-financing projects of China (No.19FJYB017) ; the China Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund (No.71942006) ; the China Qinghai Natural Science Foundation (No.2020-JY-736) ; the List of Key Science and Technology Projects in China's Transportation Industry in the 2018 International Science and Technology Cooperation Project (No.2018-GH-006 and No.2019-MS5-100) ; the Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No.E-GKRWJC20202914) ; the Higher Education Teaching Reform Project in Shaanxi Province, China (No.19BZ016) ; the Humanities and Social Sciences Research Project of the Ministry of Education of China (21XJA752003) ; the Going Global Partnership: UK-China-ASEAN, Education Partnership Initiative funded by British Council ("Integrated Built Environment Teaching & Learning in the Joint Curriculum Development amid Digital-Driven Industry 4.0 among China, Vietnam, and UK") ; the International Education Research Program of Chang'an University, China, 2022 (No. 300108221113) ; and the National Natural Science Foundation of China (No. 72074191) . CR Abrahams L, 2010, The African Journal of Information and Communication (AJIC), V10, DOI [10.23962/10539/19768, DOI 10.23962/10539/19768] Agrawal A, 2001, INT J MANAG REV, V3, P285, DOI 10.1111/1468-2370.00069 Aiello F, 2019, INT REV APPL ECON, V33, P813, DOI 10.1080/02692171.2019.1608917 Aishath MA, 2019, International Journal of Computer Sciences and Engineering, V7, P1778, DOI [10.26438/ijcse/v7i5.17781790, DOI 10.26438/IJCSE/V7I5.17781790] Albahari A, 2017, TECHNOL FORECAST SOC, V116, P13, DOI 10.1016/j.techfore.2016.11.012 Alexander A, 2020, J TECHNOL TRANSFER, V45, P371, DOI 10.1007/s10961-018-9685-1 Ankrah S, 2015, SCAND J MANAG, V31, P387, DOI 10.1016/j.scaman.2015.02.003 [Anonymous], 2010, CHIN STAT YB López SF, 2015, SERV BUS, V9, P637, DOI 10.1007/s11628-014-0243-0 Fischer BB, 2019, TECHNOL FORECAST SOC, V145, P330, DOI 10.1016/j.techfore.2018.05.001 Gann DM, 2005, RES POLICY, V34, P122, DOI 10.1016/j.respol.2004.10.001 George D., 2021, IBM SPSS STAT 27 STE, V17th, DOI DOI 10.4324/9781003205333 GRILICHES Z, 1990, J ECON LIT, V28, P1661, DOI 10.3386/w3301 Guimon J., 2013, PROMOTING U IND COLL Hair J.F., 2011, INT ENCY STAT SCI, P904, DOI [DOI 10.1007/978-3-642-04898-2_395, 10.1007/978-3-642-04898-2_395] He Y, 2017, How China is Preparing for an AI-powered Future Homma H.N., 2008, INNOVATION TECHNIQUE, P432, DOI [10.1007/978-1-4020-8739-4_76, DOI 10.1007/978-1-4020-8739-4_76] Hong J, 2015, TECHNOL ANAL STRATEG, V27, P1068, DOI 10.1080/09537325.2015.1060310 Hong W, 2008, RES POLICY, V37, P580, DOI 10.1016/j.respol.2007.12.008 Hou BJ, 2019, EUR J INNOV MANAG, V22, P717, DOI 10.1108/EJIM-09-2018-0195 Hou BJ, 2019, TECHNOL ANAL STRATEG, V31, P692, DOI 10.1080/09537325.2018.1543868 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Hughes A, 2012, CAMB J ECON, V36, P723, DOI 10.1093/cje/bes017 Jing M, 2017, Science & Research Khachoo Q, 2018, J ECON BUS, V97, P39, DOI 10.1016/j.jeconbus.2018.03.002 Kim YC, 2019, RES POLICY, V48, P813, DOI 10.1016/j.respol.2018.11.007 Kollo T, 2005, Advanced Multivariate Statistics with Matrices, P98, DOI DOI 10.1007/1-4020-3419-9 Koomsap P, 2019, ADV TRANSDISCIPL ENG, V10, P75, DOI 10.3233/ATDE190110 Kusmin KL, 2018, INTERACT DES ARCHIT, P28 Laursen K, 2004, RES POLICY, V33, P1201, DOI 10.1016/j.respol.2004.07.004 Leydesdorff L, 2004, J AM SOC INF SCI TEC, V55, P991, DOI 10.1002/asi.20045 Li T, 2020, P 2020 ASEE VIRTUAL Liefner I, 2016, SCI PUBL POLICY, V43, P849, DOI 10.1093/scipol/scw002 Liu XL, 2017, SCI PUBL POLICY, V44, P656, DOI 10.1093/scipol/scw092 Luan CJ, 2010, SCIENTOMETRICS, V84, P53, DOI 10.1007/s11192-010-0194-8 Lucietto A, 2021, School of Engineering Education Faculty Publications Manyika J., 2017, JOBS LOST JOBS GAINE Mears L, 2011, J INTELL MANUF, V22, P693, DOI 10.1007/s10845-009-0329-z Mgaiwa SJ, 2021, SAGE OPEN, V11, DOI 10.1177/21582440211006709 Miller K, 2018, R&D MANAGE, V48, P7, DOI 10.1111/radm.12228 Ministry of Education, 2019, Annual Report on the National Higher Education Ministry of Science and Technology China, 2020, Report of the Ministry of Science and Technology of the People's Republic of China on the Development of Industry-Academia Collaboration in 2020 Motohashi Kazuyuki, 2006, [JOURNAL OF TECHNOLOGY INNOVATION, 기술혁신연구], V14, P49 Motohashi K, 2012, TECHNOL SOC, V34, P149, DOI 10.1016/j.techsoc.2012.02.006 Mukherji N, 2021, J TECHNOL TRANSFER, V46, P223, DOI 10.1007/s10961-019-09770-9 Munyoki J., 2011, BUSINESS ADM MANAGEM, V1, P163 Murphy R, 2020, Artificial intelligence applications to support K-12 teachers and teaching: A review of promising applications, challenges, and risks, DOI [10.7249/pe315, DOI 10.7249/PE315, 10.7249/PE315] Nagaoka S, 2010, HBK ECON, V2, P1083, DOI 10.1016/S0169-7218(10)02009-5 O'Dwyer M, 2023, J TECHNOL TRANSFER, V48, P900, DOI 10.1007/s10961-022-09932-2 Payne M., 2007, Project Manager Today Perkmann M, 2007, INT J MANAG REV, V9, P259, DOI 10.1111/j.1468-2370.2007.00225.x Perkmann M, 2013, RES POLICY, V42, P423, DOI 10.1016/j.respol.2012.09.007 Perkmann M, 2011, R&D MANAGE, V41, P202, DOI 10.1111/j.1467-9310.2011.00637.x Polt W., 2001, SCI PUBL POLICY, V284, P247, DOI [10.3152/147154301781781453, DOI 10.3152/147154301781781453] Ponomariov B, 2013, J TECHNOL TRANSFER, V38, P749, DOI 10.1007/s10961-013-9301-3 Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553 Prudhomme D, Patents and Innovation in China and Hong Kong, P29, DOI [10.1017/9781108163583.004, DOI 10.1017/9781108163583.004] Rahm D, 2000, University-Industry R&D Collaboration in the United States, the United Kingdom, and Japan, DOI [10.1007/978-94-015-9574-2, DOI 10.1007/978-94-015-9574-2] Rosell C, 2009, RES POLICY, V38, P1, DOI 10.1016/j.respol.2008.07.014 Ryan S, 2021, The U.S., China, and Artificial Intelligence Competition Factors Scandura A, 2016, RES POLICY, V45, P1907, DOI 10.1016/j.respol.2016.06.009 Smith K., 2005, Oxford handbook of innovation Tessema B.S., 2017, Education Journal, V6, P87, DOI DOI 10.11648/J.EDU.20170602.13 Thorndike RM, 1995, APPL PSYCH MEAS, V19, P303, DOI 10.1177/014662169501900308 Tsai KelleeS., 2015, State Capitalism, Institutional Adaptation, and the Chinese Miracle, P1, DOI DOI 10.1017/CBO9781139962858 TUCKER LR, 1973, PSYCHOMETRIKA, V38, P1, DOI 10.1007/bf02291170 United Nations Educational Scientific and Cultural Organization (UNESCO), 2019, ICT in Education: A Global Outlook Vedaraman S, WIPO Lectures Wang C, 2017, SCI PUBL POLICY, V44, P354, DOI 10.1093/scipol/scw068 Weagle D, 2019, Innov. Solutions for Energy Transitions, V158, P1135, DOI [10.1016/j.egypro.2019.01.279.l, DOI 10.1016/J.EGYPRO.2019.01.279.L] West S. G., 2012, Handbook of structural equation modeling, P209, DOI DOI 10.1016/J.SURFCOAT.2015.05.023 Xie J, 2003, STRUCT EQU MODELING, V10, P566, DOI 10.1207/S15328007SEM1004_5 Yixin Zheng, 2021, E3S Web of Conferences, V235, DOI 10.1051/e3sconf/202123501012 Zhang LX, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.j5910 Ziegler WL, 1983, P 20 ANN COMPUTER PE, DOI [10.1145/800030.800626, DOI 10.1145/800030.800626] NR 75 TC 0 Z9 0 U1 3 U2 3 PU ENPRESS PUBL LLC PI TUSTIN PA 14701 MYFORD RD, STE B-1, TUSTIN, CA, UNITED STATES SN 2572-7923 EI 2572-7931 J9 J INFRASTRUCT POLICY JI J. Infrastruct. Policy Dev. PY 2023 VL 8 IS 1 AR 2569 DI 10.24294/jipd.v8i1.2569 PG 32 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA FJ6U6 UT WOS:001145448200011 OA gold DA 2024-03-27 ER PT J AU Li, YY Xie, Y AF Li, Yiyi Xie, Ying TI Is a Picture Worth a Thousand Words? An Empirical Study of Image Content and Social Media Engagement SO JOURNAL OF MARKETING RESEARCH LA English DT Article DE image processing; natural language processing; social media analytics; user-generated content; visual marketing ID OF-MOUTH; INFORMATION; FORMAT; MODEL AB Are social media posts with pictures more popular than those without? Why do pictures with certain characteristics induce higher engagement than some other pictures? Using data sets of social media posts about major airlines and sport utility vehicle brands collected from Twitter and Instagram, the authors empirically examine the influence of image content on social media engagement. After accounting for selection bias on the inclusion of image content, the authors find a significant and robust positive mere presence effect of image content on user engagement in both product categories on Twitter. They also find that high-quality and professionally shot pictures consistently lead to higher engagement on both platforms for both product categories. However, the effect of colorfulness varies by product category, while the presence of human face and image-text fit can induce higher user engagement on Twitter but not on Instagram. These findings shed light on how to improve social media engagement using image content. C1 [Li, Yiyi] Univ Texas Arlington, Coll Business, Mkt, Arlington, TX 76019 USA. [Xie, Ying] Univ Texas Dallas, Naveen Jindal Sch Management, Mkt, Richardson, TX 75083 USA. C3 University of Texas System; University of Texas Arlington; University of Texas System; University of Texas Dallas RP Li, YY (autor correspondiente), Univ Texas Arlington, Coll Business, Mkt, Arlington, TX 76019 USA. EM yiyi.li@uta.edu; ying.xie@utdallas.edu RI LI, yi/HKO-0480-2023 CR Adam Vavrek, 2012, SKYWORD 0606 Alex Casalboni, 2016, GOOGLE VISION API IM Benjamin Rey, 2014, WISELYTICS 0305 Berger J, 2014, J CONSUM PSYCHOL, V24, P586, DOI 10.1016/j.jcps.2014.05.002 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bruce NI, 2017, J MARKETING RES, V54, P202, DOI 10.1509/jmr.14.0117 Buechel EC, 2018, J CONSUM PSYCHOL, V28, P40, DOI 10.1002/jcpy.1013 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 Chung CM, 2006, MARKET LETT, V17, P4 Cyr D, 2009, MIS QUART, V33, P539 eMarketer, 2011, WHAT ENC FAC ENG eMarketer, 2018, US SOC NETW US EMARK FINN A, 1988, J MARKETING RES, V25, P168, DOI 10.2307/3172648 Gans Joshua S., 2017, 2889388 U TOR Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 Hagtvedt H, 2008, J MARKETING RES, V45, P379, DOI 10.1509/jmkr.45.3.379 HAUSMAN J, 1984, ECONOMETRICA, V52, P909, DOI 10.2307/1911191 HECKLER SE, 1992, J CONSUM RES, V18, P475, DOI 10.1086/209275 HOUSTON MJ, 1987, J MARKETING RES, V24, P359, DOI 10.2307/3151383 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Larry Loeb, 2016, INFORMATIONWEEK Lee YH, 1999, J CONSUM RES, V26, P156, DOI 10.1086/209557 Mary Meeker, 2016, INTERNET TRENDS 2016 Moore Sarah G., 2017, J ASS CONSUMER RES, V2, P22945 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Patricio Robles, 2016, ECONSULTANCY 0308 Peters K, 2013, J INTERACT MARK, V27, P281, DOI 10.1016/j.intmar.2013.09.007 Pieters R, 2004, J MARKETING, V68, P36, DOI 10.1509/jmkg.68.2.36.27794 Pumawirawan N, 2015, J INTERACT MARK, V31, P17, DOI 10.1016/j.intmar.2015.05.001 Rainer W., 2008, ECONOMETRIC ANAL COU ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Seshadri Tirunillai, 2012, MARKET SCI, V31, P19 Statista, 2019, MOST POP MOB SOC NET Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313 Szegedy C, 2016, PROC CVPR IEEE, P2818, DOI 10.1109/CVPR.2016.308 Tan C., 2014, P 52 ANN M ASS COMP Wedel M, 2015, MARKET SCI, V34, P134, DOI 10.1287/mksc.2014.0882 Xiao L, 2014, MARKET SCI, V33, P338, DOI 10.1287/mksc.2013.0837 Zhang S, 2017, WORKING PAPER NR 42 TC 263 Z9 304 U1 82 U2 502 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2437 EI 1547-7193 J9 J MARKETING RES JI J. Mark. Res. PD FEB PY 2020 VL 57 IS 1 BP 1 EP 19 DI 10.1177/0022243719881113 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA KB9GB UT WOS:000506793900001 HC Y HP N DA 2024-03-27 ER PT J AU Cherednichenko, O Ivashchenko, O Lincenyi, M Kovác, M AF Cherednichenko, Olga Ivashchenko, Oksana Lincenyi, Marcel Kovac, Marian TI INFORMATION TECHNOLOGY FOR INTELLECTUAL ANALYSIS OF ITEM DESCRIPTIONS IN E-COMMERCE SO ENTREPRENEURSHIP AND SUSTAINABILITY ISSUES LA English DT Article DE Information Technology; e-Commerce; Product Matching; Text Processing; Model; Artificial Intelligence ID DIGITALIZATION; SYSTEMS AB E-commerce is experiencing a robust surge, propelled by the worldwide digital transformation and the mutual advantages accrued by both consumers and merchants. The integration of information technologies has markedly augmented the efficacy of digital enterprise, ushering in novel prospects and shaping innovative business paradigms. Nonetheless, adopting information technology is concomitant with risks, notably concerning safeguarding personal data. This substantiates the significance of research within the domain of artificial intelligence for e-commerce, with particular emphasis on the realm of recommender systems. This paper is dedicated to the discourse surrounding the construction of information technology tailored for processing textual descriptions pertaining to commodities within the e-commerce landscape. Through a qualitative analysis, we elucidate factors that mitigate the risks inherent in unauthorized data access. The cardinal insight discerned is that the apt utilization of product matching technologies empowers the formulation of recommendations devoid of entailing customers' personal data or vendors' proprietary information. A meticulously devised structural model of this information technology is proffered, delineating the principal functional components essential for processing textual data found within electronic trading platforms. Central to our exposition is the exploration of the product comparison predicated on textual depictions. The resolution of this challenge stands to enhance the efficiency of product searches and facilitate product juxtaposition and categorization. The prospective implementation of the propounded information technology, either in its entirety or through its constituent elements, augurs well for sellers, enabling them to improve a pricing strategy and heightened responsiveness to market sales trends. Concurrently, it streamlines the procurement journey for buyers by expediting the identification of requisite goods within the intricate milieu of e-commerce platforms. C1 [Cherednichenko, Olga; Ivashchenko, Oksana; Lincenyi, Marcel; Kovac, Marian] Bratislava Univ Econ & Management, Furdekova 16, Bratislava 85104, Slovakia. RP Cherednichenko, O (autor correspondiente), Bratislava Univ Econ & Management, Furdekova 16, Bratislava 85104, Slovakia. EM olga.cherednichenko@vsemba.sk; oksana.ivashchenko@vsemba.sk; marcel.lincenyi@vsemba.sk; marian.kovac@vsemba.sk FU EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia [09I03-03-V01-00078, 09I03-03-V01-00080] FX This research is funded by the EU NextGenerationEU through the Recovery and Resilience Plan for Slovakia under the project No. 09I03-03-V01-00078 and the project No. 09I03-03-V01-00080 CR Ahmed M, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9081295 Akritidis L, 2019, Arxiv, DOI [arXiv:1903.04276, 10.1007/s10462-020-09807-8, DOI 10.1007/S10462-020-09807-8] Akritidis L, 2018, 2018 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA) Andonov A, 2021, TEM J, V10, P1558, DOI 10.18421/TEM104-09 [Anonymous], 2023, Digital transformation: Market insights report [Anonymous], 2019, HIST AM REC ALG Appel A. P., 2022, ARXIV Bharadiya J. P., 2023, Int. J. Comput. (IJC), V48, P123 Bizer Christian, 2019, Datenbank-Spektrum, V19, P127, DOI 10.1007/s13222-019-00313-y bright data, 2023, About us Caputo A, 2021, J BUS RES, V123, P489, DOI 10.1016/j.jbusres.2020.09.053 Chatterjee S, 2015, IEEE INT ADV COMPUT, P393, DOI 10.1109/IADCC.2015.7154737 Cherednichenko O., 2023, ECONOMICS CULTURE, V20, P77, DOI [10.2478/jec-2023-0007, DOI 10.2478/JEC-2023-0007] Crescenzi V, 2021, Arxiv, DOI arXiv:2101.11259 Dou W., 2023, SOFT TARGET ENHANCED, DOI [10.1609/aaai.v37i4.25544, DOI 10.1609/AAAI.V37I4.25544] Foxcroft J., 2021, CANADIAN C, DOI [10.21428/594757db.08c5079, DOI 10.21428/594757DB.08C5079] Gopalakrishnan V., 2012, P 21 ACM INT C INFOR, P605, DOI 10.1145/2396761.2396839 Guru S, 2020, DECISION-INDIA, V47, P137, DOI 10.1007/s40622-020-00241-x Jamra RK, 2020, INT CONF ELECT ENG, P142, DOI 10.1109/ICELTICS50595.2020.9315437 Kannan Anitha, 2011, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'11, P404, DOI DOI 10.1145/2020408.2020474 Konda P, 2016, PROC VLDB ENDOW, V9, P1581, DOI 10.14778/3007263.3007314 Konda PradapVenkatramanan., 2018, Magellan: Toward building entity matching management systems Kopcke Hanna., 2012, P 15 INT C EXTENDING, P545 Korovkinas K, 2019, BALT J MOD COMPUT, V7, P47, DOI 10.22364/bjmc.2019.7.1.04 Kumar D. R., 2019, INT J RES ANALYTICAL, V6, P276 Li YL, 2020, Arxiv, DOI arXiv:2004.00584 Lukasik Szymon, 2021, Computational Science - ICCS 2021. 21st International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12743), P92, DOI 10.1007/978-3-030-77964-1_8 Magnolia Market, 2023, US McKinsey and company, 2013, RETAILERS CAN KEEP C Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Mikolov T, 2013, Advances in neural information processing systems, DOI DOI 10.48550/ARXIV.1310.4546 Mudgal S, 2018, INT CONF MANAGE DATA, P19, DOI 10.1145/3183713.3196926 Nigam P, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2876, DOI 10.1145/3292500.3330759 Oxylabs, 2023, US Peeters Ralph, 2020, WIMS 2020: Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, P195, DOI 10.1145/3405962.3405964 Peeters R., 2020, SMALL, V745, P2 Peeters R, 2023, Arxiv, DOI [arXiv:2301.09521, 10.48550/arXiv.2301.09521, DOI 10.48550/ARXIV.2301.09521] Primpeli A, 2021, LECT NOTES COMPUT SC, V12922, P182, DOI 10.1007/978-3-030-88361-4_11 Primpeli A, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P3101, DOI 10.1145/3340531.3412781 Primpeli A, 2019, COMPANION OF THE WORLD WIDE WEB CONFERENCE (WWW 2019 ), P381, DOI 10.1145/3308560.3316609 Ristoski P, 2018, SEMANT WEB, V9, P707, DOI 10.3233/SW-180300 Shah K., 2018, P 2018 C ASS COMPUTA, V3, P8, DOI [DOI 10.18653/V1/N18-3002, 10.18653/v1/N18-3002] Singh AK, 2019, INT J ADV COMPUT SC, V10, P305 Smartproxy, 2023, US Smith B, 2017, IEEE INTERNET COMPUT, V21, P12, DOI 10.1109/MIC.2017.72 Statista Market Insights, 2023, COMMERCE RETAIL SALE Strauss O, 2019, WEBIST: PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES, P242, DOI 10.5220/0008069402420249 Taher G., 2021, International Journal of Academic Research in Accounting, Finance and Management Sciences, V11, DOI [https://doi.org/10.6007/IJARAFMS/v11-i1/8987, DOI 10.6007/IJARAFMS/V11-I1/8987] Vaska S, 2021, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.539363 Wachsmuth H, 2015, LECT NOTES COMPUT SC, V9383, P1, DOI 10.1007/978-3-319-25741-9 Wachsmuth Henning, 2013, Computational Linguistics and Intelligent Text Processing. 14th International Conference, CICLing 2013. Proceedings, P38, DOI 10.1007/978-3-642-37247-6_4 Wang P, 2021, PROC INT CONF DATA, P1296, DOI 10.1109/ICDE51399.2021.00116 Wang T., 2022, ARXIV, DOI [10.48550/arXiv.2205.05889, DOI 10.48550/ARXIV.2205.05889] Winters-Hilt S, 2007, BMC BIOINFORMATICS, V8, DOI 10.1186/1471-2105-8-S7-S18 Yao YK, 2013, J COMPUT, V8, P2632, DOI 10.4304/jcp.8.10.2632-2639 Ye C, 2022, KNOWL-BASED SYST, V251, DOI 10.1016/j.knosys.2022.109033 Zheng XS, 2022, TRANSFORM BUS ECON, V21, P772 Zuo Zhen, 2020, KDD WORKSH IND REC S NR 58 TC 0 Z9 0 U1 5 U2 5 PU ENTERPRENEURSHIP & SUSTAINABILITY CENTER PI VILNUS PA M K CIURLIONIO STR 86A, VILNUS, 03100, LITHUANIA SN 2345-0282 J9 ENTREP SUSTAIN ISS JI Entrepreneurship. Sustain. PD SEP PY 2023 VL 11 IS 1 BP 178 EP 190 DI 10.9770/jesi.2023.11.1(10) PG 13 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA X8HW3 UT WOS:001100803400009 OA gold DA 2024-03-27 ER PT J AU Zhou, C Li, H Zhang, LL Ren, YF AF Zhou, Chi Li, He Zhang, Linlin Ren, Yufei TI Optimal Recommendation Strategies for AI-Powered E-Commerce Platforms: A Study of Duopoly Manufacturers and Market Competition SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE recommendation strategy; platform operations; duopoly competition; pricing strategies; product substitutability ID PRICE-COMPETITION; CHANNEL; COOPERATION; SYSTEM AB Artificial intelligence-powered recommendation systems have gained popularity as a tool to enhance user experience and boost sales. Platforms often need to make decisions about which seller to recommend and the strength of the recommendation when conducting recommendations. Therefore, it is necessary to explore the recommendation strategy of the platform in the case of duopoly competition. We develop a game model where two competing manufacturers sell products through an agency contract on a common platform, and they can decide whether or not to provide recommendations to the manufacturers. Our highlight lies in the endogenous recommendation strength of the platform. The findings suggest that it is optimal for the platform to offer recommendation services when the commission rate is high. The platform also prefers to only recommend one manufacturer in the market with low or high competition, but it prefers to recommend both manufacturers in moderately competitive markets. From the view of manufacturers, they can benefit from the recommendation service as long as the commission rate is not too low. Moreover, recommending only one manufacturer consistently yields stronger recommendations compared to recommending multiple manufacturers. However, the impact of recommendation on prices is influenced by the commission rate and product substitutability. These results have significant implications for platform decision making and provide valuable insights into the trade-offs involved in the development of recommendation systems. C1 [Zhou, Chi; Li, He] Tianjin Univ Technol, Sch Management, Tianjin 300384, Peoples R China. [Zhang, Linlin] Beijing Technol & Business Univ, Sch E Commerce & Logist, Beijing 100048, Peoples R China. [Ren, Yufei] Univ Minnesota Duluth, Labovitz Sch Business & Econ, Duluth, MN 55812 USA. C3 Tianjin University of Technology; Beijing Technology & Business University; University of Minnesota System; University of Minnesota Duluth; University of Minnesota Twin Cities; University of Minnesota Hospital RP Li, H (autor correspondiente), Tianjin Univ Technol, Sch Management, Tianjin 300384, Peoples R China.; Zhang, LL (autor correspondiente), Beijing Technol & Business Univ, Sch E Commerce & Logist, Beijing 100048, Peoples R China. EM czhou@tju.edu.cn; lh300384@163.com; zhanglinlin@btbu.edu.cn; yren@d.umn.edu RI Zhang, Linlin/HGE-7116-2022 OI Zhang, Linlin/0000-0003-4553-448X; Zhou, Chi/0000-0002-3267-6107 FU Tianjin Philosophy and Social Science Planning FX This work is supported by the Tianjin Philosophy and Social Science Planning Project (No. TJGL22-013), the Innovation Centre for Digital Business and Capital Development of Beijing Technology and Business University (No. SZSK202209). CR Adomavicius G, 2018, INFORM SYST RES, V29, P84, DOI 10.1287/isre.2017.0703 Anderson EG, 2014, INFORM SYST RES, V25, P152, DOI 10.1287/isre.2013.0505 Cai GS, 2012, MARKET SCI, V31, P172, DOI 10.1287/mksc.1110.0688 Chen PP, 2020, OMEGA-INT J MANAGE S, V94, DOI 10.1016/j.omega.2019.07.001 CHOI SC, 1991, MARKET SCI, V10, P271, DOI 10.1287/mksc.10.4.271 Choi TM, 2020, EUR J OPER RES, V284, P1031, DOI 10.1016/j.ejor.2020.01.049 Ding Y, 2018, OMEGA-INT J MANAGE S, V77, P58, DOI 10.1016/j.omega.2017.05.007 Dogan O, 2023, J THEOR APPL EL COMM, V18, P831, DOI 10.3390/jtaer18020043 Ettl M, 2020, M&SOM-MANUF SERV OP, V22, P461, DOI 10.1287/msom.2018.0756 Ghose A, 2007, INFORM SYST RES, V18, P300, DOI 10.1287/isre.1070.0130 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Huang H, 2016, INT J PROD ECON, V178, P12, DOI 10.1016/j.ijpe.2016.04.022 Jena SK, 2014, INT J PROD ECON, V156, P346, DOI 10.1016/j.ijpe.2014.06.018 Jeuland AP, 2008, MARKET SCI, V27, P52, DOI 10.1287/mksc.1070.0332 Lee D, 2021, MANAGE SCI, V67, P524, DOI 10.1287/mnsc.2019.3546 Li G, 2019, TRANSPORT RES E-LOG, V130, P108, DOI 10.1016/j.tre.2019.08.014 Li LS, 2018, INFORM SYST RES, V29, P1003, DOI 10.1287/isre.2017.0765 Lu QH, 2018, EUR J OPER RES, V264, P1074, DOI 10.1016/j.ejor.2017.07.002 Mantin B, 2014, PROD OPER MANAG, V23, P1937, DOI 10.1111/poms.12203 Martínez-de-Albéniz V, 2022, M&SOM-MANUF SERV OP, V24, P2367, DOI 10.1287/msom.2022.1105 Shen YL, 2019, PROD OPER MANAG, V28, P1173, DOI 10.1111/poms.12977 SPENCE M, 1976, AM ECON REV, V66, P407 Tang F, 2023, EUR J OPER RES, V310, P397, DOI 10.1016/j.ejor.2023.03.020 Taylor TA, 2018, M&SOM-MANUF SERV OP, V20, P704, DOI 10.1287/msom.2017.0678 Tsunoda Y, 2021, PROD OPER MANAG, V30, P4219, DOI 10.1111/poms.13518 Wang RH, 2022, IEEE T ENG MANAGE, V69, P2260, DOI [10.1155/2020/2676210, 10.1109/TEM.2020.3007347] Wei J, 2020, EUR J OPER RES, V280, P508, DOI 10.1016/j.ejor.2019.07.048 Wu H, 2015, PROD OPER MANAG, V24, P1768, DOI 10.1111/poms.12363 Yoon N, 2021, J THEOR APPL EL COMM, V16, P1912, DOI 10.3390/jtaer16050107 Yu J, 2022, J THEOR APPL EL COMM, V17, P1769, DOI 10.3390/jtaer17040089 Zha Y, 2023, MARKET SCI, V42, P659, DOI 10.1287/mksc.2022.1397 Zhang JQ, 2019, EUR J OPER RES, V272, P928, DOI 10.1016/j.ejor.2018.07.023 Zhang T, 2023, INT J PROD RES, V61, P3829, DOI 10.1080/00207543.2021.1884308 Zhen XP, 2022, EUR J OPER RES, V299, P168, DOI 10.1016/j.ejor.2021.06.030 Zhou B., 2022, MARK SCI, V41, P1 Zhou C, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3262318 Zhou C, 2022, ELECTRON COMMER R A, V53, DOI 10.1016/j.elerap.2022.101144 Zhu XX, 2016, EUR J OPER RES, V248, P856, DOI 10.1016/j.ejor.2015.07.053 NR 38 TC 1 Z9 1 U1 23 U2 35 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD JUN PY 2023 VL 18 IS 2 BP 1086 EP 1106 DI 10.3390/jtaer18020055 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA K2SY0 UT WOS:001015001000001 OA gold, Green Published DA 2024-03-27 ER PT J AU Dhote, S Vichoray, C Pais, R Baskar, S Shakeel, PM AF Dhote, Sunita Vichoray, Chandan Pais, Rupesh Baskar, S. Shakeel, P. Mohamed TI Hybrid geometric sampling and AdaBoost based deep learning approach for data imbalance in E-commerce SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE E-commerce; Deep learning; AdaBoost; Data imbalance; Geometric analysis ID PREDICTION AB Presently, significance of deep learning techniques starts to overlook the world of E-commerce with their endless customizable online shopping experience to the users. Though huge data is streaming constantly during online commerce, data imbalance problem is still unaddressed due to insufficient analytical algorithms to handle huge datasets for smooth outliers. This leads to high congestion in the network as well as the extraordinary cost problem during online commerce. The foremost objective of this work is to resolve the classification task of imbalance data and churn rate using hybrid geometric sampling and AdaBoost based deep learning classification approach that uses diverse solution to provide a balance among prediction, accuracy, precision, specificity, sensitivity, and usability of data in E-commerce. This proposed solution helps to reduce the data imbalance problem and prediction of churn as well as non-churn customers in E-commerce web links. The experimental analysis has been carried out for the proposed algorithm in accordance with conventional techniques to check the practicability of the algorithm in real time practice. C1 [Dhote, Sunita; Vichoray, Chandan; Pais, Rupesh] Shri Ramdeobaba Coll Engn & Management, Dept Management Technol, Nagpur, Maharashtra, India. [Baskar, S.] Karpagam Acad Higher Educ, Dept Elect & Commun Engn, Coimbatore, Tamil Nadu, India. [Shakeel, P. Mohamed] Univ Tekn Malaysia Melaka, Fac Informat & Commun Technol, Melaka, Malaysia. C3 Rashtrasant Tukadoji Maharaj Nagpur University; Shri Ramdeobaba College of Engineering & Management; Karpagam Academy of Higher Education (KAHE); University Teknikal Malaysia Melaka RP Dhote, S (autor correspondiente), Shri Ramdeobaba Coll Engn & Management, Dept Management Technol, Nagpur, Maharashtra, India. EM sunitadhote@outlook.com RI Pais, Rupesh/AAB-3101-2021; Vichoray, Chandan/AAD-4273-2021; S, Baskar/R-6346-2017; Mohamed Shakeel, Pethuraj/P-4135-2019 OI Vichoray, Chandan/0000-0002-2072-735X; S, Baskar/0000-0003-3570-3059; CR Aydin F., 2019, ARXIV PREPRINT ARXIV Barbado R, 2019, INFORM PROCESS MANAG, V56, P1234, DOI 10.1016/j.ipm.2019.03.002 Berger P, 2019, IEEE INTELL SYST, V34, P44, DOI 10.1109/MIS.2019.2895788 Dolfen Paul, 2019, W25610 NAT BUR EC Fader PS, 2005, APPL STOCH MODEL BUS, V21, P461, DOI 10.1002/asmb.592 Gao SL, 2019, 2019 4TH ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS 2019), P155, DOI [10.1109/acirs.2019.8935950, 10.1109/ACIRS.2019.8935950] Golwalkar Y. V, 2019, U.S. Patent Application, Patent No. [10/169,806, 10169806] Goolsbee AD, 2018, AEA PAP P, V108, P488, DOI 10.1257/pandp.20181038 Lafkihi M, 2019, TRANSPORT RES E-LOG, V125, P348, DOI 10.1016/j.tre.2019.03.021 Leung KH, 2018, EXPERT SYST APPL, V91, P386, DOI 10.1016/j.eswa.2017.09.026 Liu DR, 2020, EXPERT SYST, V37, DOI 10.1111/exsy.12511 Nolan J, 2019, COMPUTER SCI INFORM, V2, P1 Patil Megharani, 2019, Smart Intelligent Computing and Applications. Proceedings of the Second International Conference on SCI 2018. Smart Innovation, Systems and Technologies (SIST 105), P197, DOI 10.1007/978-981-13-1927-3_20 Pei Z, 2019, IND MARKET MANAG, V76, P12, DOI 10.1016/j.indmarman.2018.06.013 Raj ED, 2017, NEUROCOMPUTING, V219, P412, DOI 10.1016/j.neucom.2016.09.036 Shaikh Javed R., 2019, Applications of Computing, Automation and Wireless Systems in Electrical Engineering. Proceedings of MARC 2018. Lecture Notes in Electrical Engineering (LNEE 553), P551, DOI 10.1007/978-981-13-6772-4_48 Sivasankar E, 2019, INT J BUSINESS INFOR, V31, P1, DOI DOI 10.1504/IJBIS.2019.099524 Sohaib O, 2019, COMPUT IND ENG, V132, P47, DOI 10.1016/j.cie.2019.04.020 Sun J, 2018, ROUTL CONTEMP CHINA, P1, DOI 10.4324/9781315626758 Wang C, 2019, NAT MICROBIOL, V18, P1, DOI DOI 10.1142/S1469026819500032 NR 20 TC 43 Z9 44 U1 5 U2 44 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD JUN PY 2020 VL 20 IS 2 SI SI BP 259 EP 274 DI 10.1007/s10660-019-09383-2 PG 16 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA LM3OZ UT WOS:000532161800001 DA 2024-03-27 ER PT J AU Cao, YL Shao, Y Zhang, HX AF Cao, Yali Shao, Yue Zhang, Hongxia TI Study on early warning of E-commerce enterprise financial risk based on deep learning algorithm SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Financial risks; E-commerce enterprises; Deep learning; Early warning AB With the development trend of economic progress, the capital business of e-commerce enterprises has become complicated. The financial risk of listed companies is a problem that needs to be paid attention to. The financial risk of e-commerce companies is a complex and gradual process, and its unique reasons may be many. E-commerce companies are facing financial risks or difficulties, and bankruptcy and liquidation are also increasing. Financial risk has seriously affected e-commerce companies and society. As a result, the early warning methods of financial risks have been constantly improved. With the arrival of the new economic era in the era of knowledge economy, the early warning of financial risks in e-commerce companies has become a hot issue in the financial management of e-commerce companies. Based on the deep learning algorithm, this paper studies from the perspective of establishing the financial early warning model based on deep learning and constructing the financial risk early warning mechanism of e-commerce companies, and analyzes and forecasts the financial risks of listed companies. Through the construction of financial security early warning system, crisis signals can be diagnosed as soon as possible, and crisis signals can be prevented and solved timely and effectively. C1 [Cao, Yali] Beijing Technol & Business Univ, Business Sch, Beijing 100048, Peoples R China. [Shao, Yue] Univ Int Business & Econ, Business Sch, Beijing 100029, Peoples R China. [Zhang, Hongxia] Zhejiang Agr & Forestry Univ, Jiyang Coll, Zhuji 311800, Peoples R China. C3 Beijing Technology & Business University; University of International Business & Economics; Zhejiang A&F University RP Zhang, HX (autor correspondiente), Zhejiang Agr & Forestry Univ, Jiyang Coll, Zhuji 311800, Peoples R China. EM zhanghxia1982@163.com RI Liu, Jing/IQX-0664-2023 FU Collaborative Innovation Center of State Owned Assets Management of BTBU [GZGL-KFKT-2019-02]; project of The Research Foundation for Youth Scholars of Beijing Technology and Business University [PXM2019_014213_000007]; Planning of philosophy and social sciences in Zhejiang province [20NDJC220YB] FX This work was supported by the opening project of Collaborative Innovation Center of State Owned Assets Management of BTBU (No. GZGL-KFKT-2019-02), the project of The Research Foundation for Youth Scholars of Beijing Technology and Business University (No. PXM2019_014213_000007) and Planning of philosophy and social sciences in Zhejiang province (No. 20NDJC220YB). CR Bologna P, 2015, J FINANC SERV RES, V47, P81, DOI 10.1007/s10693-013-0180-4 Cheng Z, 2016, BUILD ENVIRON, V108, P85, DOI 10.1016/j.buildenv.2016.08.019 Denglin L., 2016, RES MODERN STATE OWN, V18, P89 Frost J, 2014, REV INT ECON, V22, P722, DOI 10.1111/roie.12124 Furong L., 2019, FINANCE ACCOUNTING S, V222, P77 Gan Wei, 2017, T CHINA ELECTROTECHN, V32, P11 Giudici P, 2017, QUANT FINANC, V17, P1995, DOI 10.1080/14697688.2017.1357968 Haiyan W, 2016, CHINA EC TRADE, V21, P236 Huilin Y, 2016, FINANCE ACCOUNTING S, V20, P49 Iazzolino G, 2013, APPL ECON LETT, V20, P1310, DOI 10.1080/13504851.2013.806771 Jobst AA, 2013, INT REV FINANC ANAL, V28, P112, DOI 10.1016/j.irfa.2013.01.005 Keith JL, 2014, J BUS ETHICS, V130, P1 Korol T, 2013, ECON MODEL, V31, P22, DOI 10.1016/j.econmod.2012.11.017 Lei Z, 2016, CHINA COLLECTIVE EC, V12, P108 Lodi G, 2015, PHYS EDUC, V2, P1379 Ma Y, 2014, CHINA WORLD ECON, V22, P64, DOI 10.1111/cwe.12092 Oet MV, 2013, J BANK FINANC, V37, P4510, DOI 10.1016/j.jbankfin.2013.02.016 Sha L, 2015, FINANCE ACCOUNTING N, V11, P106 Sun W, 2015, J INFORM COMPUTATION, V12, P601 Wenping Z, 2015, J FINANCE ACCOUNTING, V23, P68 Xiaoying S, 2015, ELECT DESIGN ENG, V23, P58 Yang Xiutuan Lu, 2015, FINANCE ACCOUNTING, V10, P73 Yanyan T, 2015, FINANCE ACCOUNTING N, V2, P45 Ying Z, 2015, COOPERATIVE EC SCI T, V4, P134 Yingchao Du, 2015, ENTERPRISE REFORM MA, V9, P123 Zhongxi T, 2015, ENTERPRISE REFORM MA, V23, P139 NR 26 TC 24 Z9 25 U1 19 U2 116 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD MAR PY 2022 VL 22 IS 1 SI SI BP 21 EP 36 DI 10.1007/s10660-020-09454-9 EA JAN 2021 PG 16 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA ZN0VD UT WOS:000605860500001 DA 2024-03-27 ER PT J AU Pessanha, GRG Soares, EA AF Gomes Pessanha, Gabriel Rodrigo Soares, Eduardo Almeida TI JUST ONE POST? FORECASTS OF DAILY SALES OF BEAUTY AND COSMETICS RETAIL COMPANIES BASED ON THE INFLUENCE OF SOCIAL MEDIA SO REVISTA BRASILEIRA DE MARKETING LA English DT Article DE Social media; Images; Artificial intelligence; Sales forecasting; Digital marketing; Digital influencer ID WORD-OF-MOUTH; MANAGEMENT JUDGMENT; IMPACT; PURCHASE; INFORMATION; PRODUCT; ENGAGEMENT; TWITTER; BRANDS; IDENTIFICATION AB Objective: To study the relevance of Instagram posts in the construction of forecasting models for the variation of daily sales revenues for retail companies in the beauty and cosmetics sector. Methodology: Time series of daily sales between the years 2017 and 2019 of 10 retail companies in the beauty and cosmetics sector were considered. Methods based on machine learning were used and the forecasting models were increased with numerical variables from the official profile of the company, from the posting made by the contracted digital influencer and the characteristics of the images posted by the digital influencer were included in the models. Relevance and Originality: The study is innovative, as it goes beyond qualitative reflections on the theme and provides empirical evidence regarding the impacts on forecast accuracy from the inclusion of social media variables. A data fusion strategy (numerics and images) was also presented to forecast daily sales of retail companies in the beauty and cosmetics sector. Main results: The models proved to be efficient in forecasting and the importance of the likes and engagement variables reinforces the idea that the identification and social reference generated by the ID are important aspects in the purchase decision process. It was found that the images are responsible for adding exclusive attributes that help in forecasting and understanding the patterns of the sales series. Theoretical and methodological contributions:The study showed in a promising way the efficiency of methods based on machine learning in forecasting sales from Instagram data, especially with regard to the incorporation and extraction of image data. C1 [Gomes Pessanha, Gabriel Rodrigo] Fed Univ Alfenas UNIFAL, Inst Appl Social Sci ICSA, Business, Varginha, MG, Brazil. [Soares, Eduardo Almeida] Univ Lancaster, Lancaster, England. C3 Universidade Federal de Alfenas; Lancaster University RP Pessanha, GRG (autor correspondiente), Fed Univ Alfenas UNIFAL, Inst Appl Social Sci ICSA, Business, Varginha, MG, Brazil. EM gabriel.pessanha@unifal-mg.edu.br; e.almeidasoares@lancaster.ac.uk RI Soares, Eduardo/AAU-8358-2020 OI Soares, Eduardo/0000-0002-2634-8270 CR Agnihotri R, 2016, IND MARKET MANAG, V53, P172, DOI 10.1016/j.indmarman.2015.09.003 Alalwan AA, 2018, INT J INFORM MANAGE, V42, P65, DOI 10.1016/j.ijinfomgt.2018.06.001 Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008 Araujo T, 2017, INT J ADVERT, V36, P496, DOI 10.1080/02650487.2016.1173765 Arora A, 2019, J RETAIL CONSUM SERV, V49, P86, DOI 10.1016/j.jretconser.2019.03.012 Asur S., 2010, Proceedings 2010 IEEE/ACM International Conference on Web Intelligence-Intelligent Agent Technology (WI-IAT), P492, DOI 10.1109/WI-IAT.2010.63 Audrezet A, 2020, J BUS RES, V117, P557, DOI 10.1016/j.jbusres.2018.07.008 Bakhshi S, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P965, DOI 10.1145/2556288.2557403 BUCKLAND ST, 1993, J APPL ECOL, V30, P478, DOI 10.2307/2404188 Casalo LV, 2020, J BUS RES, V117, P510, DOI 10.1016/j.jbusres.2018.07.005 Chen IF, 2017, NEURAL COMPUT APPL, V28, P2633, DOI 10.1007/s00521-016-2215-x Childers CC, 2019, J CURR ISS RES AD, V40, P258, DOI 10.1080/10641734.2018.1521113 Cui RM, 2018, PROD OPER MANAG, V27, P1749, DOI 10.1111/poms.12707 De Veirman M, 2017, INT J ADVERT, V36, P798, DOI 10.1080/02650487.2017.1348035 De Vries NJ, 2014, J BRAND MANAG, V21, P495, DOI 10.1057/bm.2014.18 Dhanesh GS, 2019, PUBLIC RELAT REV, V45, P40, DOI 10.1016/j.pubrev.2019.03.002 Djafarova E, 2017, COMPUT HUM BEHAV, V68, P1, DOI 10.1016/j.chb.2016.11.009 Tien DH, 2019, ASIA PAC MANAG REV, V24, P238, DOI 10.1016/j.apmrv.2018.06.003 Erkan I, 2016, COMPUT HUM BEHAV, V61, P47, DOI 10.1016/j.chb.2016.03.003 Fahimnia A, 2019, ARXIV PREPRINT ARXIV Felix R, 2017, J BUS RES, V70, P118, DOI 10.1016/j.jbusres.2016.05.001 Fildes R, 2007, INTERFACES, V37, P570, DOI 10.1287/inte.1070.0309 Fildes R, 2019, INT J FORECASTING, V35, P144, DOI 10.1016/j.ijforecast.2017.12.006 Fuchs C., 2017, SOCIAL MEDIA CRITICA Gensler S, 2013, J INTERACT MARK, V27, P242, DOI 10.1016/j.intmar.2013.09.004 Gillon K, 2014, COMMUN ASSOC INF SYS, V34, P287 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Goodwin P, 2002, OMEGA-INT J MANAGE S, V30, P127, DOI 10.1016/S0305-0483(01)00062-7 Gruhl D., 2005, P 11 ACM SIGKDD INT, P78, DOI DOI 10.1145/1081870.1081883 Hajli MN, 2014, INT J MARKET RES, V56, P387, DOI 10.2501/IJMR-2014-025 Hajli N, 2015, TECHNOL FORECAST SOC, V94, P350, DOI 10.1016/j.techfore.2015.01.012 Highfield Tim, 2015, First Monday, V20, DOI 10.5210/fm.v20i1.5563 Huang T, 2014, EUR J OPER RES, V237, P738, DOI 10.1016/j.ejor.2014.02.022 Hudson S, 2016, INT J RES MARK, V33, P27, DOI 10.1016/j.ijresmar.2015.06.004 Hughes C, 2019, J MARKETING, V83, P78, DOI 10.1177/0022242919854374 Hwang KJ, 2018, COMPUT HUM BEHAV, V87, P155, DOI 10.1016/j.chb.2018.05.029 Hyndman RobJ., 2014, Foresight: The International Journal of Applied Forecasting, P42 Jiménez-Castillo D, 2019, INT J INFORM MANAGE, V49, P366, DOI 10.1016/j.ijinfomgt.2019.07.009 Jin SV, 2018, COMPUT HUM BEHAV, V79, P154, DOI 10.1016/j.chb.2017.10.033 Johnston R., 2009, ADM PRODUCAO, V2 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kambhampati S., 2014, P INT AAAI C WEB SOC, V8 Kim E, 2021, COMMUN RES, V48, P717, DOI 10.1177/0093650218782819 Kim N, 2018, INT J INFORM MANAGE, V39, P38, DOI 10.1016/j.ijinfomgt.2017.10.006 Kourentzes N, 2016, INT J PROD ECON, V181, P145, DOI 10.1016/j.ijpe.2015.09.011 Kremer M, 2016, MANAGE SCI, V62, P2745, DOI 10.1287/mnsc.2015.2259 Kulkarni G, 2012, DECIS SUPPORT SYST, V52, P604, DOI 10.1016/j.dss.2011.10.017 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Lahuerta-Otero E, 2016, COMPUT HUM BEHAV, V64, P575, DOI 10.1016/j.chb.2016.07.035 Lassen NB, 2014, IEEE INT ENTERP DIST, P81, DOI 10.1109/EDOC.2014.20 Lawrence M, 2006, INT J FORECASTING, V22, P493, DOI 10.1016/j.ijforecast.2006.03.007 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Lin HC, 2018, BUS HORIZONS, V61, P431, DOI 10.1016/j.bushor.2018.01.010 Lipizzi C, 2015, INT J INFORM MANAGE, V35, P490, DOI 10.1016/j.ijinfomgt.2015.04.001 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Lou C., 2019, Journal of Interactive Advertising, V19, P58, DOI DOI 10.1080/15252019.2018.1533501 Lu BZ, 2016, COMPUT HUM BEHAV, V56, P225, DOI 10.1016/j.chb.2015.11.057 Luo RB, 2012, GIGASCIENCE, V1, DOI 10.1186/2047-217X-1-18 More Jyoti Sunil, 2019, Applied Computing and Informatics, V15, P102, DOI 10.1016/j.aci.2017.11.001 Oliva R, 2009, PROD OPER MANAG, V18, P138, DOI 10.1111/j.1937-5956.2009.01003.x Ramanathan R, 2010, MANAGE DECIS, V48, P1493, DOI 10.1108/00251741011090298 Ramanathan U, 2011, EXPERT SYST APPL, V38, P5544, DOI 10.1016/j.eswa.2010.10.082 Rosario AB, 2016, J MARKETING RES, V53, P297, DOI 10.1509/jmr.14.0380 Schivinski B., 2014, J MARK COMMUN, V22, P1, DOI DOI 10.1080/13527266.2013.871323 Schouten AP, 2020, INT J ADVERT, V39, P258, DOI 10.1080/02650487.2019.1634898 Shiau WL, 2018, INT J INFORM MANAGE, V43, P52, DOI 10.1016/j.ijinfomgt.2018.06.006 Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556] Sokolova K, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.01.011 Suykens JAK, 1999, NEURAL PROCESS LETT, V9, P293, DOI 10.1023/A:1018628609742 Syntetos AA, 2016, EUR J OPER RES, V252, P1, DOI 10.1016/j.ejor.2015.11.010 Trapero JR, 2015, J OPER RES SOC, V66, P299, DOI 10.1057/jors.2013.174 Welbourne DJ, 2016, PUBLIC UNDERST SCI, V25, P706, DOI 10.1177/0963662515572068 NR 72 TC 0 Z9 0 U1 16 U2 56 PU UNIV NOVE JULHO PI SAO PAULO PA AV FRANCISCO MATARAZZO 612, AGUA BRANCA, SAO PAULO, C05001-100, BRAZIL SN 2177-5184 J9 REV BRASIL MARK JI Rev. Brasil. Mark. PD OCT-DEC PY 2021 VL 20 IS 4 BP 241 EP 267 DI 10.5585/remark.v20i4.17914 PG 27 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA XN9IQ UT WOS:000729811400001 OA gold DA 2024-03-27 ER PT J AU Pang, H Zhang, WK AF Pang, He Zhang, Wukang TI RETRACTADO: Decision support model of e-commerce strategic planning enhanced by machine learning (Retracted Article) SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article; Retracted Publication DE E-commerce strategic planning; Decision support; Machine learning; Intelligent decision AB The effectiveness of e-commerce strategic planning determines whether e-commerce can achieve the expected goals and performance. Technology adoption has become the main research idea for research organizations to adopt e-commerce, but the study of strategic planning process is still in its infancy. Construct a supervised machine learning model with strong generalization ability to solve the decision support problem of e-commerce strategic planning more effectively. A decision support method integrating rough set and support vector machine (SVM) is proposed, which is based on a three-stage SVM hybrid model. Decision support method, e-commerce strategic planning crisis early warning decision model is based on parallel meta-heuristic strategy and FKNN. Experiments show that the intelligent decision-making methods proposed in this paper can obtain good performance, and achieve the expected results and objectives, and promote the further development of the machine learning method itself, which has certain theoretical significance and practical application value. C1 [Pang, He; Zhang, Wukang] XiAn Univ Finance & Econ, Sch Econ, Xian 710100, Shaanxi, Peoples R China. C3 Xi'an University of Finance & Economics RP Pang, H (autor correspondiente), XiAn Univ Finance & Econ, Sch Econ, Xian 710100, Shaanxi, Peoples R China. EM panghecandy@126.com; zhangwukang@xaufe.edu.cn CR Andersson H, 2020, INT J MED INFORM, V133, DOI 10.1016/j.ijmedinf.2019.103975 Arnolds IV, 2018, ANN OPER RES, V263, P453, DOI 10.1007/s10479-017-2485-4 Babita P., 2018, J HEALTHC ENG, V2018 Bai, 2017, J COMPUT THEOR NANOS, V14, P189, DOI [10.1166/jctn.2017.6147, DOI 10.1166/JCTN.2017.6147] Bai, 2017, C E CA, V42, P1460 Caradot N, 2018, J HYDROINFORM, V20, P1131, DOI 10.2166/hydro.2018.217 Costin Y, 2019, J ENTERP CULT, V27, P471, DOI 10.1142/S0218495819500171 Crick JM, 2020, J BUS RES, V113, P158, DOI 10.1016/j.jbusres.2018.11.033 Dutta G, 2019, COMPUT IND ENG, V128, P985, DOI 10.1016/j.cie.2018.06.033 Dutta G, 2018, COMPUT IND ENG, V124, P36, DOI 10.1016/j.cie.2018.07.016 Farani AY, 2019, APPL ECON, V51, P2326, DOI 10.1080/00036846.2018.1543940 Friedman Y, 2018, INNOV-ORGAN MANAG, V20, P61, DOI 10.1080/14479338.2017.1369141 Griffin M, 2016, BIG DATA-US, V4, P60, DOI 10.1089/big.2015.0043 Hanchen Zhou, 2019, Journal of Physics: Conference Series, V1237, DOI 10.1088/1742-6596/1237/2/022002 Hu N, 2016, LAND USE POLICY, V57, P356, DOI 10.1016/j.landusepol.2016.06.004 Lin SJ, 2017, INT J FUZZY SYST, V19, P659, DOI 10.1007/s40815-016-0196-7 Mao, 2019, J INTELL FUZZY SYST, V37, P1 Menon Karan, 2018, International Journal of Entrepreneurship and Small Business, V33, P575 Murça MCR, 2018, TRANSPORT RES C-EMER, V97, P301, DOI 10.1016/j.trc.2018.10.020 Peng PF, 2016, ITM WEB CONF, V7, DOI 10.1051/itmconf/20160706003 Ranjan S, 2017, INT J ADV MANUF TECH, V88, P369, DOI 10.1007/s00170-016-8770-6 Raval V, 2018, J BUS ETHICS, V150, P741, DOI 10.1007/s10551-016-3199-2 Shafi K, 2017, IEEE COMPUT INTELL M, V12, P42, DOI 10.1109/MCI.2016.2627670 Sirén C, 2019, J BUS RES, V101, P555, DOI 10.1016/j.jbusres.2018.11.025 Tian L, 2018, PROD OPER MANAG, V27, P1595, DOI 10.1111/poms.12885 Vazquez P, 2018, J BUS ETHICS, V150, P691, DOI 10.1007/s10551-016-3171-1 Wyness L., 2019, J SMALL BUS ENTERP D, V31, P183, DOI [10.1080/08276331.2018.1493338, DOI 10.1080/08276331.2018.1493338] Yan MR, 2018, KNOWL MAN RES PRACT, V16, P173, DOI 10.1080/14778238.2018.1442994 Zhang WG, 2019, MANAGE DECIS, V57, P2414, DOI 10.1108/MD-05-2018-0538 Zheng Y, 2020, NEURAL COMPUT APPL, V32, P1869, DOI 10.1007/s00521-019-04567-1 NR 30 TC 0 Z9 0 U1 9 U2 34 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD AUG PY 2023 VL 21 IS SUPPL 1 SU 1 BP 11 EP 11 DI 10.1007/s10257-021-00506-7 EA FEB 2021 PG 1 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA T4NO4 UT WOS:000613583600003 DA 2024-03-27 ER PT J AU Islam, M Al Mamun, A Afrin, S Quaosar, GMAA Uddin, MA AF Islam, Muhaiminul Al Mamun, Abdullah Afrin, Samina Quaosar, G. M. Azmal Ali Uddin, Md Aftab TI Technology Adoption and Human Resource Management Practices: The Use of Artificial Intelligence for Recruitment in Bangladesh SO SOUTH ASIAN JOURNAL OF HUMAN RESOURCE MANAGEMENT LA English DT Article DE Actual use; artificial intelligence; Bangladesh; human resource professionals; intention to use; recruiting talents; UTAUT; SEM-PLS ID INFORMATION-TECHNOLOGY; BEHAVIORAL INTENTION; UNIFIED THEORY; UTAUT MODEL; ACCEPTANCE; BANKING; SYSTEM; STUDENTS; IMPACT; SMES AB Artificial intelligence (AI) is now considered indispensable in undertaking operational activities, especially in the area of human resource analytics. However, in practice, the rate of the adoption of such modern algorithms in organisations is still in its early stages. Consequently, the primary objective of this study is to identify the main antecedents of the adoption of Al-based technologies in recruitment, using the lens of the unified theory of acceptance and use of technology (UTAUT) model, alongside perceived credibility and moderating variables, in the context of an emerging nation in South Asia, namely Bangladesh. Data were collected from 283 human resource professionals employed in different manufacturing and service firms in Bangladesh through the administration of a questionnaire, which was analysed by applying PLS-SEM. The outcomes of the study show that all the direct hypothesised relationships were found to be significant, apart from the extended variable of perceived credibility. However, no moderating effect of gender or firm size was found in any of the hypothesised propositions. Finally, policy implications and recommendations for future researchers are proposed. C1 [Islam, Muhaiminul] Univ Dhaka, Dept Org Strategy & Leadership, Dhaka, Bangladesh. [Al Mamun, Abdullah; Afrin, Samina; Uddin, Md Aftab] Univ Chittagong, Dept Human Resource Management, Chattogram 4331, Bangladesh. [Quaosar, G. M. Azmal Ali] Comilla Univ, Dept Management Studies, Cumilla, Bangladesh. C3 University of Dhaka; University of Chittagong; Comilla University RP Uddin, MA (autor correspondiente), Univ Chittagong, Dept Human Resource Management, Chattogram 4331, Bangladesh. EM mdaftabuddin@cu.ac.bd RI Mamun, Abdullah Al/ABC-7588-2021; Uddin, Md. Aftab/E-5896-2017 OI Mamun, Abdullah Al/0000-0001-9042-8163; Quaosar, G. M. Azmal Ali/0000-0001-9125-7378; Uddin, Md. Aftab/0000-0002-9101-7451; Islam, Muhaiminul/0000-0002-5927-3762 CR Absar M., 2012, Indian Journal Of Industrial Relations, V47, P436 Adikaram AS, 2021, S ASIAN J HUM RE MAN, V8, P192, DOI 10.1177/23220937211018021 Ahmadi H, 2018, TECHNOL FORECAST SOC, V134, P124, DOI 10.1016/j.techfore.2018.05.021 Al Mamun Abdullah, 2022, International Journal of Technology and Human Interaction, V18, P1, DOI 10.4018/IJTHI.299070 Alam M.S., 2019, J. Manag. Res., V6, P1 Alam M.S., 2020, Bus Perspect Rev, V2, P15, DOI [10.38157/business-perspective-review.v2i2.122, DOI 10.38157/BUSINESS-PERSPECTIVE-REVIEW.V2I2.122] Albert Edward Tristram, 2019, Strategic HR Review, V18, P215, DOI 10.1108/SHR-04-2019-0024 Alhammadi A., 2015, DETERMINANTS CLOUD C Alshamaila Y, 2013, J ENTERP INF MANAG, V26, P250, DOI 10.1108/17410391311325225 Argyris YA, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102347 Azim MT, 2019, MANAG RES REV, V42, P837, DOI 10.1108/MRR-08-2018-0286 Babu Kudrat-E-Khuda, 2021, International Journal of Public Law and Policy, V7, P319 Barrane FZ, 2018, INT J INNOV TECHNOL, V15, DOI 10.1142/S0219877019500044 Bhalgat, 2019, EXPLORATION ARTIFICI Bhatiasevi V, 2016, INFORM DEV, V32, P799, DOI 10.1177/0266666915570764 Black JS, 2020, BUS HORIZONS, V63, P215, DOI 10.1016/j.bushor.2019.12.001 BRISLIN RW, 1970, J CROSS CULT PSYCHOL, V1, P185, DOI 10.1177/135910457000100301 Byrne B, 2010, INTERNATIONAL HANDBOOK OF PSYCHOLOGY IN EDUCATION, P3 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Cohen J., 1977, STAT POWER ANAL EHAV Cruz-Jesus Frederico, 2018, Trends and Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 745), P1094, DOI 10.1007/978-3-319-77703-0_106 Cukurova M, 2020, INT J ARTIF INTELL E, V30, P205, DOI 10.1007/s40593-019-00188-w Dangi N, 2020, J ASIA BUS STUD, V14, P599, DOI 10.1108/JABS-12-2019-0364 Dey T., 2020, IMPLEMENTATION HRIS Dijkstra TK, 2015, MIS QUART, V39, P297, DOI 10.25300/MISQ/2015/39.2.02 Dwivedi YK, 2017, GOV INFORM Q, V34, P211, DOI 10.1016/j.giq.2017.03.001 El-Gohary H, 2012, TOURISM MANAGE, V33, P1256, DOI 10.1016/j.tourman.2011.10.013 Fan L, 2019, ASIA PAC EDUC REV, V20, P101, DOI 10.1007/s12564-018-9572-3 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Geetha R., 2018, INT J MECH ENG TECHN, V9, P63, DOI DOI 10.34218/IJMET.12.9.2021.005 Ghalandari K., 2012, MIDDLE EAST J SCI RE, V12, P801, DOI DOI 10.5829/idosi.mejsr.2012.12.6.2536 Gudergan SP, 2008, J BUS RES, V61, P1238, DOI 10.1016/j.jbusres.2008.01.012 Hair J.F., 2009, Multivariate data analysis Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hemalatha A., 2021, 2021 INT C ART INT S, P60 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hossin MS., 2021, Int Fellowship J of Interdiscip Res, V1, P66 ICTD, 2019, NAT STRAT ART INT BA Iqbal FM., 2018, Asian J Soc Manag Stud, V5, P102 Isaac O, 2019, ASIA PAC MANAG REV, V24, P335, DOI 10.1016/j.apmrv.2018.12.003 Jacobsen D.I., 2018, Public Organization Review, V18, P111 Jahanshahi D, 2020, CASE STUD TRANSP POL, V8, P1212, DOI 10.1016/j.cstp.2020.08.002 Jilani MMAK, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19052752 Kaba B, 2014, J ASSOC INF SCI TECH, V65, P1662, DOI 10.1002/asi.23069 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Khan IU, 2022, J INTERNET COMMER, V21, P183, DOI 10.1080/15332861.2021.1882749 Kmail AB, 2015, PROC INT C TOOLS ART, P620, DOI 10.1109/ICTAI.2015.95 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015010101 Lisa A.K., 2021, THESIS UMEA U SWEDEN Mahmood M., 2015, South Asian Journal of Human Resources Management, V2, P171, DOI DOI 10.1177/2322093715599481 Mahmood M, 2019, MANAGE DECIS, V57, P741, DOI 10.1108/MD-07-2017-0707 Mahmood M, 2015, ASIA PAC J HUM RESOU, V53, P331, DOI 10.1111/1744-7941.12057 McGovern S., 2018, NEW AGE ARTIFICIAL I Mehrotra S., 2022, METAMORPHOSIS-AFR, V21, P31, DOI [10.1177/09726225211066220, DOI 10.1177/09726225211066220] MUDULI A, 2020, BENCHMARKING Nisha N, 2019, J GLOB INF MANAG, V27, P19, DOI 10.4018/JGIM.2019010102 OConnor S. W., 2020, ARTIF INTELL Onaolapo Sodiq, 2018, Interdisciplinary Journal of e-Learning and Learning Objects, V14, P92, DOI 10.28945/4085 Palau-Saumell R, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041210 Palshikar G. K., 2018, ADV ANAL APPL, P141, DOI [10.1007/978-981-13-1208-3_13, DOI 10.1007/978-981-13-1208-3_13] Pan Y, 2022, INT J HUM RESOUR MAN, V33, P1125, DOI 10.1080/09585192.2021.1879206 Patel C, 2019, J BUS RES, V103, P397, DOI 10.1016/j.jbusres.2017.11.007 Patil P, 2020, INT J INFORM MANAGE, V54, DOI 10.1016/j.ijinfomgt.2020.102144 Pillai R, 2020, BENCHMARKING, V27, P2599, DOI 10.1108/BIJ-04-2020-0186 Quaosar G.M. A. A., 2018, International Business Research, V11, P133, DOI DOI 10.5539/IBR.V11N4P133 Rabiul MK, 2021, INT J HOSP MANAG, V92, DOI 10.1016/j.ijhm.2020.102712 Rajan CA, 2015, IIMB MANAG REV, V27, P105, DOI 10.1016/j.iimb.2015.04.008 Ramayah T, 2016, TELEMAT INFORM, V33, P150, DOI 10.1016/j.tele.2015.06.007 Rubel MRB, 2020, S ASIAN J HUM RE MAN, V7, P9, DOI 10.1177/2322093719875567 Salah OH, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243355 Salleh KA, 2019, PROCEDIA COMPUT SCI, V164, P168, DOI 10.1016/j.procs.2019.12.169 Samat MF., 2020, ASIAN J UNI EDU, V16, P220 Sarstedt M, 2011, ADV INT MARKETING, V22, P195, DOI 10.1108/S1474-7979(2011)0000022012 Saunders Mark., 2009, Research Methods for Business Students Sen S., 2018, AIHR DIGITAL Senarathna I, 2018, AUSTRALAS J INF SYST, V22 Sharma A., 2018, AI REINVENTED HIRING Shiferaw Kirubel Biruk, 2019, Informatics in Medicine Unlocked, V17, P26, DOI 10.1016/j.imu.2019.100182 Soleimani M, 2022, INT J KNOWL MANAG, V18, DOI 10.4018/IJKM.290022 Suki NM, 2017, INT J MANAG EDUC-OXF, V15, P528, DOI 10.1016/j.ijme.2017.10.002 Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910 Tsourela M., 2015, J HIGH TECHNOLOGY MA, V26, P124, DOI [10.1016/j.hitech.2015.09.003, DOI 10.1016/J.HITECH.2015.09.003] Uddin M., 2020, J OPEN INNOV-TECHNOL, V6, P2, DOI DOI 10.3390/JOITMC6010002 Uddin M.A., 2021, ESSENTIALS MACHINE L, P211 Uddin MA, 2020, EUR J INNOV MANAG, V23, P877, DOI 10.1108/EJIM-06-2019-0168 Upadhyay Ashwani Kumar, 2018, Strategic HR Review, V17, P255, DOI 10.1108/SHR-07-2018-0051 van Esch P, 2019, COMPUT HUM BEHAV, V90, P215, DOI 10.1016/j.chb.2018.09.009 Vardarlier P., 2020, DIGITAL BUSINESS STR, P355 Vedapradha R., 2019, J Serv Sci Manag, V12, P382 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Wang J, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10051654 Wang YS, 2003, INT J SERV IND MANAG, V14, P501, DOI 10.1108/09564230310500192 WEF, 2018, IS ART INT REPL JOBS Yu CS, 2012, J ELECTRON COMMER RE, V13, P104 NR 97 TC 7 Z9 7 U1 16 U2 46 PU SAGE PUBLICATIONS INDIA PVT LTD PI NEW DELHI PA B-1-I-1 MOHAN CO-OPERATIVE INDUSTRIAL AREA, MATHURA RD, POST BAG NO 7, NEW DELHI 110 044, INDIA SN 2322-0937 EI 2349-5790 J9 S ASIAN J HUM RE MAN JI South Asian J. Hum. Resour. Manag. PD DEC PY 2022 VL 9 IS 2 SI SI BP 324 EP 349 DI 10.1177/23220937221122329 EA OCT 2022 PG 26 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 6G0WS UT WOS:000863950400001 DA 2024-03-27 ER PT J AU Guo, LN AF Guo, Lina TI Cross-border e-commerce platform for commodity automatic pricing model based on deep learning SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Deep learning; Cross-border e-commerce; Automatic image description; Pricing model ID SYSTEM AB With the innovation of information technology and the rise of the Internet economy, cross-border e-commerce has grown up to be an important means and strategy for enterprises to seek rapid development. This paper proposes a model that fuses CNN (Convolutional Neural Network) and attention mechanism to encode image features, and selects the image features of commodities. A 5-layer CNN without a fully connected layer is constructed to initially extract image features, and then a set of attention mechanism strategies is designed. This strategy is used to select the image features that have the greatest impact when generating words at different times. Considering the characteristics of quantitative indicators of the pricing model, this paper transforms this evaluation process of consumers into price perception. Corresponding mathematical model is set up to improve and expand the original probability unit model. The consumer selection model is utilized to obtain a prediction of product market share, and a nonlinear constraint programming is established to determine the optimal price. The strategy takes into account the changed market shares of consumer characteristics and product quality evaluation results. In the two-layer hybrid channel supply chain model, retailers and manufacturers all use third-party platforms when they achieve maximum benefits; when price cross-elasticity coefficients and third-party platform usage fees are independent variables of influencing factors, retailers are dispersed on CNN to get the most profit under the pricing strategy. Similarly, when the unit product tax difference is the independent variable of the influencing factors, the manufacturer is also the most profitable under the CNN decentralized pricing strategy. C1 [Guo, Lina] Xinxiang Univ, Sch Management, Xinxiang 453000, Henan, Peoples R China. C3 Xinxiang University RP Guo, LN (autor correspondiente), Xinxiang Univ, Sch Management, Xinxiang 453000, Henan, Peoples R China. EM xxxygln@163.com RI N'Dri, Amoin Bernadine/IWD-7811-2023 FU Research project of Henan science and technology think tank in 2020 (hnkjzk-2020-46c): Research on the optimization of rural industrial structure in Henan Province from the perspective of urban-rural integration development FX This work was supported by the Research project of Henan science and technology think tank in 2020 (hnkjzk-2020-46c): Research on the optimization of rural industrial structure in Henan Province from the perspective of urban-rural integration development. CR Agrawal DR, 2017, INT TAX PUBLIC FINAN, V24, P903, DOI 10.1007/s10797-016-9422-3 Hanna N., 2016, Journal of Innovation Management, V4, P4 Hong Jin Young, 2018, [The Journal of International Trade & Commerce, 무역연구], V14, P179, DOI 10.16980/jitc.14.2.201804.179 Hu R., 2016, WORLD CUSTOMS J, V10, P65 Kristof G., 2018, CENTRAL EUR EC J, V3, P53 Leung KH, 2019, INT J PROD RES, V57, P6528, DOI 10.1080/00207543.2019.1566674 Li F, 2017, AM J IND BUSINESMA, V7, P581, DOI DOI 10.4236/AJIBM.2017.75043 Li G, 2019, ELECTRON COMMER RES, V19, P779, DOI 10.1007/s10660-019-09334-x Liu AH, 2017, IEEE AERO EL SYS MAG, V32, P4, DOI 10.1109/MAES.2017.150104 Qiao PL, 2018, WIRELESS PERS COMMUN, V103, P847, DOI 10.1007/s11277-018-5481-3 ROSENBLATT F, 1959, ACTA PSYCHOL, V15, P296, DOI 10.1016/S0001-6918(59)80143-8 Ruiz M, 2018, CHINA STUDIES REV, V6, P133, DOI [10.18002/sin.v1i6.5492, DOI 10.18002/SIN.V1I6.5492] Tian M, 2019, EKOLOJI, V28, P2861 Ting Bai, 2016, [Asia Marketing Journal, 아시아마케팅저널], V18, P63 Wang FF, 2019, ELECTRON COMMER RES, V19, P863, DOI 10.1007/s10660-019-09368-1 Wang P., 2018, Mod. Econ, V9, P1665, DOI DOI 10.4236/ME.2018.910105 Wang W., 2016, OPEN JOURNAL OF BUSI, V04, P500, DOI DOI 10.4236/OJBM.2016.43053 Wang W., 2016, MOD EC, V7, P880, DOI [10.4236/me.2016.78091, DOI 10.4236/ME.2016.78091] Yang N., 2017, REV FACULTAD INGENIE, V32, P490 Zhang XX, 2018, J ELECTRON COMMER OR, V16, P53, DOI 10.4018/JECO.2018100104 NR 20 TC 17 Z9 17 U1 9 U2 94 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD MAR PY 2022 VL 22 IS 1 SI SI BP 1 EP 20 DI 10.1007/s10660-020-09449-6 EA NOV 2020 PG 20 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA ZN0VD UT WOS:000588875200001 DA 2024-03-27 ER PT J AU Melnychenko, S Volosovych, S Baraniuk, Y AF Melnychenko, Svitlana Volosovych, Svitlana Baraniuk, Yurii TI DOMINANT IDEAS OF FINANCIAL TECHNOLOGIES IN DIGITAL BANKING SO BALTIC JOURNAL OF ECONOMIC STUDIES LA English DT Article DE digital banking; financial technologies; cloud services; blockchain; big data; artificial intelligence; biometrics AB The purpose of the research is the definition of the dominant ideas of financial technologies in digital banking. The methods of theoretical generalization, qualitative, quantitative and correlation analysis, causality tests, description and explanation are used, which made it possible to establish the relationship between the volume of investments in financial technologies and the performance of the banking system, identify the areas of application of financial technologies in the activities of the bank, determine the dominant ideas of financial technologies in digital banking and to uncover the factors and prospects of intensifying the use of financial technologies in digital banking in Ukraine. Results of the research are to substantiate the impact of artificial intelligence, biometrics, cloud services, big data, blockchain and open banking services on digital banking. Due to financial technologies in digital banking, it is possible to generate and store large amounts of data, simultaneously analyze and apply the results of their analysis, provide personalized banking services, perform the functions of central storage of information about the client of financial and non-financial nature, which facilitates the effective investment and credit decision-making, as well as improving the level of information security of banking operations. Practical implications. Financial services markets are transformed by the impact of financial technologies. Development of financial technology instruments by non-banking institutions necessitates the identification of opportunities for their use in banks.The set of financial technologies used by banksforms the digital banking system, the development level of which is the main competitive advantage of the bank in the business environment. Digital banking is characterized by the continuity and security of banking services, which provide the consumer with the ability to receive them online anywhere around the clock, personalization of banking services, digital authentication of users and digitization of banking transactions with the replacement of paperwork. The use of financial technologies in digital banking enables to automate customer segmentation processes, reduce costs on payment transactions, optimize accounting, financial and tax accounting, improve customer service and expand your customer base while maximizing revenue in certain business segments. Value/originalliy. The basic spheres of the use of financial technologies in digital banking, as well as the factors and prospects of intensifying the use of their instruments in Ukraine are revealed. The main areas of use of financial technologies in digital banking are customer behavior analysis, transaction monitoring, customer identification and segmentation, fraud management, banking services personification, risk assessment and regulatory compliance, customer response analysis, process automation, financial advice, investment decision-making, trade facilitation, syndicated loan services, and P2P transfers. The prospects for developing financial technology tools in digital banking include strengthening the interaction between regulators, banks and financial technology companies, the increased use of biometrics, the development of neo-banking and open banking services. C1 [Melnychenko, Svitlana; Volosovych, Svitlana; Baraniuk, Yurii] Kyiv Natl Univ Trade & Econ, Kiev, Ukraine. C3 State University of Trade & Economics RP Melnychenko, S (autor correspondiente), Kyiv Natl Univ Trade & Econ, Kiev, Ukraine. EM melnichenko@knteu.kiev.ua; volosovich_sv@ukr.net; baraniukyurii@gmail.com RI Svitlana, Volosovych/AFL-9941-2022; Baraniuk, Yurii/AAF-2487-2020; Melnychenko, Svitlana/N-9535-2016 OI Svitlana, Volosovych/0000-0003-3143-7582; Baraniuk, Yurii/0000-0003-1289-2248; Melnychenko, Svitlana/0000-0002-5162-6324 CR [Anonymous], 2019, FINT GAIN FAV B2B PA Bainazarov N., 2018, RUSBASE Baranovskyi OI, 2018, FINANC CREDIT ACT, V3, P350 Binance, 2019, 10 WAYS BLOCKCH IMPR Debonis J., 2017, BANKING CLOUD WHY BA Euro area statistics, 2019, BANKS BAL SHEET FinTech Futures, 2014, 6 REAS WHY CLOUD COM Five Degrees Solutions, 2019, DIG BANK ANYWH ANYT Hontar A., 2017, VESTNYK VOLZHSKOHO U, V4, P1 Ifrim O., 2019, PAYPERS KPMG, 2019, PULS FINT 2018 END O KPMG, 2018, PULS FINT BIANN GLOB Mazaraki A., 2018, UKRAINIAN EC GROWTH, P310 Mazaraki A., 2015, EC ANN, V3-4, P42 Melnyk T, 2019, BALT J ECON STUD, V5, P148, DOI 10.30525/2256-0742/2019-5-4-148-154 Mnykh Ye., 2011, KONTROL SFERI INNOVA National Bank of Ukraine, 2018, FACEBOOK NEWS Rysin M., 2017, VISNYK UNIVERSYTETU, V3, P71 Scheele J., 2018, GLOBALSIGN BLOG Springfield C., 2018, IMPACT CLOUD COMPUTI Thakkar D., 2019, BAYOMETRIC W.UP, 2018, MACH LEARN BANK RIS Williams-Grut O., 2015, Business Insider NR 23 TC 3 Z9 6 U1 8 U2 91 PU BALTIC JOURNAL ECONOMIC STUDIES PI RIGA PA VALDEKU IELA 62-156, RIGA, LV-1058, LATVIA SN 2256-0742 EI 2256-0963 J9 BALT J ECON STUD JI Balt. J. Econ. Stud. PY 2020 VL 6 IS 1 BP 92 EP 99 DI 10.30525/2256-0742/2020-6-1-92-99 PG 8 WC Economics WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA KV5JN UT WOS:000520519100013 OA Green Submitted, gold DA 2024-03-27 ER PT J AU Hartmann, J Heitmann, M Schamp, C Netzer, O AF Hartmann, Jochen Heitmann, Mark Schamp, Christina Netzer, Oded TI The Power of Brand Selfies SO JOURNAL OF MARKETING RESEARCH LA English DT Article DE user-generated content; social media; image analysis; deep learning; natural language processing; interpretable machine learning ID WORD-OF-MOUTH; SOCIAL MEDIA; MENTAL SIMULATION; IMPACT AB Smartphones have made it nearly effortless to share images of branded experiences. This research classifies social media brand imagery and studies user response. Aside from packshots (standalone product images), two types of brand-related selfie images appear online: consumer selfies (featuring brands and consumers' faces) and an emerging phenomenon the authors term "brand selfies" (invisible consumers holding a branded product). The authors use convolutional neural networks to identify these archetypes and train language models to infer social media response to more than a quarter-million brand-image posts (185 brands on Twitter and Instagram). They find that consumer-selfie images receive more sender engagement (i.e., likes and comments), whereas brand selfies result in more brand engagement, expressed by purchase intentions. These results cast doubt on whether conventional social media metrics are appropriate indicators of brand engagement. Results for display ads are consistent with this observation, with higher click-through rates for brand selfies than for consumer selfies. A controlled lab experiment suggests that self-reference is driving the differential response to selfie images. Collectively, these results demonstrate how (interpretable) machine learning helps extract marketing-relevant information from unstructured multimedia content and that selfie images are a matter of perspective in terms of actual brand engagement. C1 [Hartmann, Jochen] Univ Hamburg, Fac Business Adm, Hamburg, Germany. [Heitmann, Mark] Univ Hamburg, Fac Business Adm, Mkt & Customer Insight, Hamburg, Germany. [Schamp, Christina] Vienna Univ Econ & Business, Digital Mkt & Behav Insights, Vienna, Austria. [Netzer, Oded] Columbia Univ, Columbia Business Sch, Business, New York, NY 10027 USA. C3 University of Hamburg; University of Hamburg; Vienna University of Economics & Business; Columbia University RP Hartmann, J (autor correspondiente), Univ Hamburg, Fac Business Adm, Hamburg, Germany. EM jochen.hartmann@uni-hamburg.de RI Hartmann, Jochen/IUN-2216-2023 OI Hartmann, Jochen/0000-0002-1178-8708 FU German Research Foundation (DFG) [HE 6703/1-2] FX The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the German Research Foundation (DFG) (grant number HE 6703/1-2). CR Adams Peter., 2019, MARKETING DIVE 0717 Akpinar E, 2017, J MARKETING RES, V54, P318, DOI 10.1509/jmr.13.0350 [Anonymous], 2020, Most popular social networks worldwide as of April 2020, ranked by number of active users Aribarg A, 2020, J MARKETING RES, V57, P20, DOI 10.1177/0022243719879711 Bakhshi S, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P965, DOI 10.1145/2556288.2557403 Barasch A, 2018, J CONSUM RES, V44, P1220, DOI 10.1093/jcr/ucx112 BOWER GH, 1979, J RES PERS, V13, P420, DOI 10.1016/0092-6566(79)90005-9 BURNKRANT RE, 1995, J CONSUM RES, V22, P17, DOI 10.1086/209432 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chung J, 2022, J CONSUM RES, V48, P817, DOI 10.1093/jcr/ucab034 Chung JS, 2017, PROC CVPR IEEE, P3444, DOI 10.1109/CVPR.2017.367 Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055 Colicev Anatoli., 2021, REAL VALUE FACEBOOK Dean A, 2017, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-3-319-52250-0 Debevec K., 1992, J CONSUM PSYCHOL, V1, P83, DOI DOI 10.1016/S1057-7408(08)80046-0 Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848 Dzyabura D, 2021, J MARKETING, V85, P44, DOI 10.1177/0022242921996661 Elder RS, 2022, J CONSUM PSYCHOL, V32, P293, DOI 10.1002/jcpy.1242 Elder RS, 2012, J CONSUM RES, V38, P988, DOI 10.1086/661531 Escalas JE, 2007, J CONSUM RES, V33, P421, DOI 10.1086/510216 Feehan Blair., 2021, RIVAL IQ 0216 Glum J., 2015, INT BUSINESS TIMES Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 Grewal L, 2019, J MARKETING RES, V56, P197, DOI 10.1177/0022243718821960 Grewal R, 2020, J MARKETING RES, V57, P985, DOI 10.1177/0022243720965237 Guido Gianluigi., 2018, J ADVERTISING RES, V58, P1 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Herhausen D, 2019, J MARKETING, V83, P1, DOI 10.1177/0022242918822300 Hughes C, 2019, J MARKETING, V83, P78, DOI 10.1177/0022242919854374 John LK, 2017, J MARKETING RES, V54, P144, DOI 10.1509/jmr.14.0237 Johnson GA, 2017, J MARKETING RES, V54, P867, DOI 10.1509/jmr.15.0297 Kane G.C., 2016, MIT SLOAN MANAGE REV Li YY, 2020, J MARKETING RES, V57, P1, DOI 10.1177/0022243719881113 Liu L, 2020, MARKET SCI, V39, P669, DOI 10.1287/mksc.2020.1226 Liu Y, 2020, ABS190711692 CORR Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Manning CD, 2020, P NATL ACAD SCI USA, V117, P30046, DOI 10.1073/pnas.1907367117 McFerran B, 2010, J CONSUM PSYCHOL, V20, P306, DOI 10.1016/j.jcps.2010.06.017 Meeker Mary., 2016, KLEINER PERKINS 0531 Melumad S, 2020, J MARKETING, V84, P28, DOI 10.1177/0022242920912732 MeyersLevy J, 1996, J CONSUM RES, V22, P408, DOI 10.1086/209458 Moe WW, 2017, INT SER OPER RES MAN, V254, P483, DOI 10.1007/978-3-319-56941-3_16 Moe WW, 2017, J PROD INNOVAT MANAG, V34, P697, DOI 10.1111/jpim.12405 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Ordenes FV, 2019, J CONSUM RES, V45, P988, DOI 10.1093/jcr/ucy032 Pendlebury Ty., 2016, CNET Pennebaker JW., 2015, LIWC 2015 OPERATORS Petit O, 2022, J RETAILING, V98, P277, DOI 10.1016/j.jretai.2021.04.003 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Ribeiro MT, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1135, DOI 10.1145/2939672.2939778 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Selvaraju RR, 2017, IEEE I CONF COMP VIS, P618, DOI 10.1109/ICCV.2017.74 Sheldon P, 2016, COMPUT HUM BEHAV, V58, P89, DOI 10.1016/j.chb.2015.12.059 Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556] Statista, 2021, MOST POP DAT APPS WO Symons CS, 1997, PSYCHOL BULL, V121, P371, DOI 10.1037/0033-2909.121.3.371 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 To RN, 2021, J CONSUM RES, V48, P123, DOI 10.1093/jcr/ucaa063 Vicinitas, 2018, 2018 RES 100000000 T Xiao L, 2014, MARKET SCI, V33, P338, DOI 10.1287/mksc.2013.0837 Yosinski J, 2014, ADV NEUR IN, V27 Zhang Mengxia., 2021, Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp, DOI DOI 10.2139/SSRN.3108288 Zhang S., 2017, AIRBNB PROPERTY DEMA, DOI [10.2139/ssrn.2976021, DOI 10.2139/SSRN.2976021] Zhao M, 2011, J MARKETING RES, V48, P827, DOI 10.1509/jmkr.48.5.827 NR 66 TC 38 Z9 41 U1 54 U2 279 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2437 EI 1547-7193 J9 J MARKETING RES JI J. Mark. Res. PD DEC PY 2021 VL 58 IS 6 SI SI BP 1159 EP 1177 AR 00222437211037258 DI 10.1177/00222437211037258 EA OCT 2021 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA WX9LI UT WOS:000709525700001 OA Green Published, Green Accepted, hybrid DA 2024-03-27 ER PT J AU Nanduri, J Jia, YT Oka, A Beaver, J Liu, YW AF Nanduri, Jay Jia, Yuting Oka, Anand Beaver, John Liu, Yung-Wen TI Microsoft Uses Machine Learning and Optimization to Reduce E-Commerce Fraud SO INFORMS JOURNAL ON APPLIED ANALYTICS LA English DT Article DE e-commerce fraud; fraud protection; knowledge graph; machine learning; dynamic prospective control; dynamic programming; multiple-party decisions AB Many merchants conduct their businesses through e-commerce. One major challenge in tackling e-commerce fraud results from dynamic fraud patterns, which can degrade the detection power of risk models and can lead to them failing to detect fraud that has emerging unrecognized patterns. The problem is further exacerbated by the conventional decision frameworks that ignore the follow-up decisions made by other associated parties (e.g., payment-instrument-issuing banks and manual review agents). Microsoft developed a new fraud-management system (FMS) that effectively tackles these two challenges. It keeps features used by the machine learning (ML) risk models up to date by using real-time archiving, dynamic risk tables, and knowledge graphs. The FMS uses customized long-term and short-term sequential ML models to detect both historical and emerging fraud patterns. It also makes rapid real-time optimal decisions using a dynamic programming approach to optimize the long-term profit by taking into account the aforementioned multiple-party decisions. After implementing these innovations over a two-year period (2016-2018), Microsoft reduced its fraud loss by 0.52%, thus generating $75 million in additional savings; reduced the incorrect fraud rejection rate by 1.38%; and improved its bank authorization rate by 7.7 percentage points. The result was many millions of dollars in additional revenue. These innovations simultaneously prevent fraud and increase bank acceptance. In April 2019, Microsoft launched Microsoft Dynamics 365 Fraud Protection, a cloud-based service available for all e-commerce merchants. C1 [Nanduri, Jay; Jia, Yuting; Oka, Anand; Beaver, John; Liu, Yung-Wen] Microsoft Corp, Dynam 365 Fraud Protect, Redmond, WA 98052 USA. C3 Microsoft RP Nanduri, J (autor correspondiente), Microsoft Corp, Dynam 365 Fraud Protect, Redmond, WA 98052 USA. EM jay.nanduri@microsoft.com; yutjia@microsoft.com; anoka@microsoft.com; johnbea@microsoft.com; yungliu@microsoft.com CR [Anonymous], 2018, 2018 TRUE COST FRAUD [Anonymous], 2001, INTRO GRAPH THEORY Bertsekas D. P., 2005, DYNAMIC PROGRAMMING, VI Cowan R, 2004, J ECON DYN CONTROL, V28, P1557, DOI 10.1016/j.jedc.2003.04.002 eMarketer, 2018, WORLDW RET EC SAL EM Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Geffner H., 1998, WORKING NOTES FALL A, P61 Jia Y, 2019, U.S. Patent, Patent No. [US20190066109, 20190066109] Jia Y, 2019, U.S. Patent, Patent No. [US20190087821, 20190087821] Li J, 2018, MICROSOFT J APPL RES, V10, P14 Lin Z-Z, 1998, 9825 U MICH Nanduri J, 2020, J SYSTEMS SCI INFORM Puterman ML., 1994, Markov decision processes: discrete stochastic dynamic programming, V1 SMALLWOOD RD, 1973, OPER RES, V21, P1071, DOI 10.1287/opre.21.5.1071 Venkatesan R, 2016, NEUROCOMPUTING, V207, P310, DOI 10.1016/j.neucom.2016.05.006 NR 15 TC 17 Z9 19 U1 11 U2 61 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 2644-0865 EI 2644-0873 J9 INFORMS J APPL ANAL JI INFORMS J. Appl. Anal. PD JAN-FEB PY 2020 VL 50 IS 1 BP 64 EP 79 DI 10.1287/inte.2019.1017 PG 16 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA KF8EC UT WOS:000509469100007 DA 2024-03-27 ER PT J AU Yang, Y AF Yang, Ying TI RETRACTADO: Research on the optimization of the supplier intelligent management system for cross-border e-commerce platforms based on machine learning (Retracted Article) SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article; Retracted Publication DE Machine learning; Cross-border e-commerce; System optimization AB At present, with the continuous development of the intelligent system, it is used in many industries. In e-commerce industry, the intelligent system has also been used, especially in supplier management. Based on the machine learning theory, this paper studies the optimization of the supplier management intelligent system of cross-border e-commerce platforms. Based on the wisdom algorithm and machine learning perspective, the optimization of cross-border e-commerce platform supplier credit system is studied in this paper. Firstly, the calculation of the traditional supplier credit evaluation is optimized by introducing the decision matrix algorithm of the difference matrix and the cloud model evaluation method. Then a multi-objective joint decision model of supplier selection and order allocation is established, and the multi-objective evolutionary algorithm combined with actual examples is applied to verify the effectiveness and feasibility of the algorithm and model. Finally, the decision makers' preferences are integrated into the intelligent decision-making, and the cloud model evaluation method is adopted. The rough set and gray relational analysis mathematical tools are used to construct the procurement supply evaluation system. The research results show that the comparison of the three general indicators of the procurement supply chain can be obtained through the cloud model evaluation calculation, which indirectly reflects the preference decision weights of the three objective functions of the cross-border e-commerce supplier selection and order allocation multi-objective optimization model. This indicates that the procurement supply evaluation system constructed in this paper has achieved the purpose of scientific evaluation and selection of suppliers, and has played a theoretical reference role for supplier management of cross-border e-commerce platform. C1 [Yang, Ying] Jilin Univ, Northeast Asian Studies Coll, Changchun 130012, Peoples R China. C3 Jilin University RP Yang, Y (autor correspondiente), Jilin Univ, Northeast Asian Studies Coll, Changchun 130012, Peoples R China. EM BertDrewsS@yahoo.com RI N'Dri, Amoin Bernadine/IWD-7811-2023 CR Ahmed RR, 2015, EUR J SCI RES, V39, P130 Feng X., 2015, BUS EC, V10, P78 Gan ST, 2017, VALUE ENG, V64, P369 Ghose A, 2009, MIS QUART, V33, P263 Kim DJ, 2012, INF SYST E-BUS MANAG, V10, P219, DOI 10.1007/s10257-010-0136-2 Lamba K, 2017, PROD PLAN CONTROL, V28, P877, DOI 10.1080/09537287.2017.1336787 Lin FT, 2015, INF SYST E-BUS MANAG, V13, P267, DOI 10.1007/s10257-014-0268-x Luo BJ, 2013, INF SYST E-BUS MANAG, V11, P141, DOI 10.1007/s10257-011-0182-4 Pappas IO, 2018, INF SYST E-BUS MANAG, V16, P479, DOI 10.1007/s10257-018-0377-z Rong DI., 2017, TECHNOECONOMICS MANA, V7, P14 Sanderson J., 2015, HEALTH TECHNOL ASSES, V3, P12 Shan SN, 2017, J HUBEI CORRESP U, V36, P230 Vaidya K, 2016, INFORM SYST FRONT, V18, P333, DOI 10.1007/s10796-014-9536-z Wang YY, 2018, J HEILONGJIANG VOCAT, V10, P21 Yang LJ, 2016, CHINA BUS MARK, V5, P42 NR 15 TC 11 Z9 11 U1 5 U2 77 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD DEC PY 2020 VL 18 IS 4 SI SI BP 851 EP 870 DI 10.1007/s10257-019-00402-1 PG 20 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA PA8KC UT WOS:000595877400023 DA 2024-03-27 ER PT J AU Blomster, M Koivumäki, T AF Blomster, Miikka Koivumaki, Timo TI Exploring the resources, competencies, and capabilities needed for successful machine learning projects in digital marketing SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article DE Case study; Machine learning; Organizational capabilities; Agile-Stage-Gate; Digital marketing ID AGILE SOFTWARE-DEVELOPMENT; DYNAMIC CAPABILITIES; STAGE-GATE; ARTIFICIAL-INTELLIGENCE; COMPETITIVE ADVANTAGE; MANAGEMENT; PERFORMANCE; MODEL; INNOVATION; ANALYTICS AB This study aimed to explore the organizational resources, competencies, and capabilities needed for the successful implementation of machine learning development projects for digital marketing operations in marketing organizations. The structure of the machine learning development project was investigated via the Agile-Stage-Gate model to identify the workflow, tasks, and roles of the marketing management and development teams during the project. With the accomplished project illustration, the necessary resources, competencies, and capabilities were identified. The findings suggest that marketing organizations' capability to understand and refine data by taking into the notion the impact of the marketing environment is the most crucial competence of machine learning development projects because it forms a solid base for algorithm execution and successful project implementation for marketing purposes. Marketing organizations must develop rigorous business processes and management procedures to support data governance and thus provide suitable data for machine learning purposes. Personnel's understanding of the data's characteristics and capabilities for running successful machine learning projects were also seen as key competencies for marketing organizations. C1 [Blomster, Miikka] Oulu Univ Appl Sci, Business Sch, POB 222, Oulu 90101, Finland. [Koivumaki, Timo] Univ Oulu, Oulu Business Sch, POB 8000, Oulu 90014, Finland. C3 University of Oulu; University of Oulu RP Blomster, M (autor correspondiente), Oulu Univ Appl Sci, Business Sch, POB 222, Oulu 90101, Finland. EM miikka.blomster@oamk.fi; timo.koivumaki@oulu.fi OI Koivumaki, Timo/0000-0002-9559-6913; Blomster, Miikka/0000-0002-5928-6635 FU Oulu University of Applied Sciences; University of Oulu FX This study was funded by Oulu University of Applied Sciences and the University of Oulu. No external funding exists. CR Ambrosini V, 2009, INT J MANAG REV, V11, P29, DOI 10.1111/j.1468-2370.2008.00251.x AMIT R, 1993, STRATEGIC MANAGE J, V14, P33, DOI 10.1002/smj.4250140105 Annosi MC, 2020, J BUS RES, V110, P554, DOI 10.1016/j.jbusres.2018.05.011 Ansari A, 2018, MARKET SCI, V37, P987, DOI 10.1287/mksc.2018.1113 Baden-Fuller C, 2020, IND MARKET MANAG, V89, P105, DOI 10.1016/j.indmarman.2019.11.008 Balducci B, 2018, J ACAD MARKET SCI, V46, P557, DOI 10.1007/s11747-018-0581-x BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Barney J. B., 1986, Management Science, V32, P1231, DOI 10.1287/mnsc.32.10.1231 Barney JB, 2001, ACAD MANAGE REV, V26, P41, DOI 10.2307/259393 Barreto I, 2010, J MANAGE, V36, P256, DOI 10.1177/0149206309350776 Batt PJ, 2012, IND MARKET MANAG, V41, P379, DOI 10.1016/j.indmarman.2012.02.002 Baxendale S, 2015, J RETAILING, V91, P235, DOI 10.1016/j.jretai.2014.12.008 Beverland M, 2010, IND MARKET MANAG, V39, P56, DOI 10.1016/j.indmarman.2008.09.005 Bini SA, 2018, J ARTHROPLASTY, V33, P2358, DOI 10.1016/j.arth.2018.02.067 Blazquez D, 2018, TECHNOL FORECAST SOC, V130, P99, DOI 10.1016/j.techfore.2017.07.027 Bughin J., 2017, Artificial Intelligence the Next Digital Frontier Camisón C, 2014, J BUS RES, V67, P2891, DOI 10.1016/j.jbusres.2012.06.004 Capriati M, 2022, ECON INNOV NEW TECH, V31, P447, DOI 10.1080/10438599.2020.1823674 Capron L, 1999, J MARKETING, V63, P41, DOI 10.2307/1251944 Castanon, 2019, DATA SCI Chern CC, 2015, INF SYST E-BUS MANAG, V13, P445, DOI 10.1007/s10257-014-0265-0 Colicev A, 2019, INT J RES MARK, V36, P100, DOI 10.1016/j.ijresmar.2018.09.005 COLLIS DJ, 1994, STRATEGIC MANAGE J, V15, P143, DOI 10.1002/smj.4250150910 Coombs JE, 2006, R&D MANAGE, V36, P421, DOI 10.1111/j.1467-9310.2006.00444.x Cooper R.G., 2013, PDMA HDB NEW PRODUCT, P3 COOPER RG, 1990, BUS HORIZONS, V33, P44, DOI 10.1016/0007-6813(90)90040-I Cooper RG, 2016, IND MARKET MANAG, V59, P167, DOI 10.1016/j.indmarman.2016.10.006 Cooper RobertG., 2001, Winning at New Products: Accelerating the Process from Idea to Launch, V3rd Creswell J. W., 2018, Qualitative inquiry research design: choosing among five approaches, V4th ed. Damanpour F, 2009, J MANAGE STUD, V46, P650, DOI 10.1111/j.1467-6486.2008.00814.x Day G.S., 2010, PROFITING CUSTOMER V Day GS, 2008, MIT SLOAN MANAGE REV, V49, P43 Day GS, 2016, CALIF MANAGE REV, V58, P59, DOI 10.1525/cmr.2016.58.4.59 Day GS, 2014, J ACAD MARKET SCI, V42, P27, DOI 10.1007/s11747-013-0348-3 Day GS, 2011, J MARKETING, V75, P183, DOI 10.1509/jmkg.75.4.183 Denzin N.K., 1994, HDB QUALITATIVE RES, V2nd Dubois A, 2010, IND MARKET MANAG, V39, P129, DOI 10.1016/j.indmarman.2009.08.003 Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E EISENHARDT KM, 1989, ACAD MANAGE REV, V14, P532, DOI 10.2307/258557 Eisenhardt KM, 1999, SLOAN MANAGE REV, V40, P65 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Fecher F, 2020, J BUS RES, V110, P567, DOI 10.1016/j.jbusres.2018.05.039 Galende J, 2003, RES POLICY, V32, P715, DOI 10.1016/S0048-7333(02)00082-3 Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007 GRANT RM, 1991, CALIF MANAGE REV, V33, P114, DOI 10.2307/41166664 Grant RM, 1996, STRATEGIC MANAGE J, V17, P109, DOI 10.1002/smj.4250171110 Guest G, 2006, FIELD METHOD, V18, P59, DOI 10.1177/1525822X05279903 Guo T, 2020, MARKET SCI, V39, P516, DOI 10.1287/mksc.2019.1181 Helfat CE, 2003, STRATEGIC MANAGE J, V24, P997, DOI 10.1002/smj.332 Hirt R., 2017, DESIGNING DIGITAL TR, P55 Höppner S, 2020, EUR J OPER RES, V284, P920, DOI 10.1016/j.ejor.2018.11.072 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Hunt SD, 2020, IND MARKET MANAG, V89, P129, DOI 10.1016/j.indmarman.2019.07.004 Hyde K.F., 2000, QUAL MARK RES, V3, P82, DOI DOI 10.1108/13522750010322089 Inan GG, 2015, PROCD SOC BEHV, V210, P310, DOI 10.1016/j.sbspro.2015.11.371 Järvinen J, 2015, IND MARKET MANAG, V50, P117, DOI 10.1016/j.indmarman.2015.04.009 Joo M, 2014, MANAGE SCI, V60, P56, DOI 10.1287/mnsc.2013.1741 Kachouie R, 2018, EUR J MARKETING, V52, P1007, DOI 10.1108/EJM-10-2016-0588 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Karlström D, 2006, EMPIR SOFTW ENG, V11, P203, DOI 10.1007/s10664-006-6402-8 Karlström D, 2005, IEEE SOFTWARE, V22, P43, DOI 10.1109/MS.2005.59 Katkalo VS, 2010, IND CORP CHANGE, V19, P1175, DOI 10.1093/icc/dtq026 Kietzmann J, 2020, EUR J MARKETING, V54, P473, DOI 10.1108/EJM-01-2020-0007 Kuehl N, 2020, ELECTRON MARK, V30, P351, DOI 10.1007/s12525-019-00351-0 Lawrence ND, 2019, DATA SCI DIGITAL SYS, P1 Lawrence ND, 2017, DATA READINESS LEVEL, P1 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Li HS, 2020, J MARKETING RES, V57, P1019, DOI 10.1177/0022243720954376 Li HS, 2014, J MARKETING RES, V51, P40, DOI 10.1509/jmr.13.0050 Luksha P, 2008, STRATEG ENTREP J, V2, P269, DOI 10.1002/sej.57 Ma L, 2019, IMAGE NETWORK INTERE Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 MacCormack A, 2003, J PROD INNOVAT MANAG, V20, P217, DOI 10.1111/1540-5885.2003004 Maijanen P, 2017, J MEDIA BUS STUD, V14, P146, DOI 10.1080/16522354.2017.1290025 Makadok R, 2001, STRATEGIC MANAGE J, V22, P387, DOI 10.1002/smj.158 Martínez A, 2020, EUR J OPER RES, V281, P588, DOI 10.1016/j.ejor.2018.04.034 Masoudinia F, 2020, INT J ELECTRON, V107, P1177, DOI 10.1080/00207217.2020.1726484 Mikalef P, 2018, INF SYST E-BUS MANAG, V16, P547, DOI 10.1007/s10257-017-0362-y Miles M. B., 1994, Qualitative Data Analysis: An Expanded Sourcebook, V2nd ed., DOI DOI 10.1016/0149-7189(96)88232-2 Mitchell T. M., 1997, MACH LEARN Mol MJ, 2009, J BUS RES, V62, P1269, DOI 10.1016/j.jbusres.2009.01.001 Moorman C, 2016, J MARKETING, V80, P6, DOI 10.1509/jm.15.0423 Nenonen S, 2019, J ACAD MARKET SCI, V47, P617, DOI 10.1007/s11747-019-00643-z Nerur S, 2007, COMMUN ACM, V50, P79, DOI 10.1145/1226736.1226739 O'Connor GC, 2013, J PROD INNOVAT MANAG, V30, P209, DOI 10.1111/j.1540-5885.2012.00996.x O'Reilly CA, 2013, ACAD MANAGE PERSPECT, V27, P324, DOI 10.5465/amp.2013.0025 Palmer Adrian, 2006, J RELATIONSHIP MARKE, V4, P1, DOI DOI 10.1300/J366V04N03_01 Pavlou PA, 2011, DECISION SCI, V42, P239, DOI 10.1111/j.1540-5915.2010.00287.x Perri 6., 2012, PRINCIPLES METHODOLO PETERAF MA, 1993, STRATEGIC MANAGE J, V14, P179, DOI 10.1002/smj.4250140303 Petrillo A, 2018, BUS PROCESS MANAG J, V24, P128, DOI 10.1108/BPMJ-03-2016-0071 Piekkari R, 2010, IND MARKET MANAG, V39, P109, DOI 10.1016/j.indmarman.2008.04.017 Polat V., 2015, J BUS STUD Q, V7, P1, DOI [10.4018/978-1-4666-8751-6.ch093, DOI 10.4018/978-1-4666-8751-6.CH093] Portugal I, 2018, EXPERT SYST APPL, V97, P205, DOI 10.1016/j.eswa.2017.12.020 Proserpio D, 2020, MARKET LETT, V31, P393, DOI 10.1007/s11002-020-09538-4 Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Ribeiro B., 2017, International Journal of Machine Intelligence and Sensory Signal Processing, P32, DOI DOI 10.1504/IJMISSP.2017.088173 Ortega MJR, 2010, J BUS RES, V63, P1273, DOI 10.1016/j.jbusres.2009.09.007 Rust RT, 2020, INT J RES MARK, V37, P15, DOI 10.1016/j.ijresmar.2019.08.002 Saldana J., 2016, CODING MANUAL QUALIT Schmidt J, 2019, NPJ COMPUT MATER, V5, DOI 10.1038/s41524-019-0221-0 Schoemaker PJH, 2018, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125618790246 SCHROEDER R., 1989, RES MANAGEMENT INNOV, P107 Silverman D., 2001, Interpreting qualitative data Stadler C, 2013, ORGAN SCI, V24, P1782, DOI 10.1287/orsc.1120.0810 Stettina CJ, 2015, INT J PROJ MANAG, V33, P140, DOI 10.1016/j.ijproman.2014.03.008 Tang HK, 1998, TECHNOVATION, V18, P297, DOI 10.1016/S0166-4972(98)00009-1 Teece D, 2003, HDB KNOWLEDGE MANAGE, V2 Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640 Teece DJ, 2018, J MANAGE ORGAN, V24, P359, DOI 10.1017/jmo.2017.75 Teece DJ, 2017, CAMB J ECON, V41, P693, DOI 10.1093/cje/bew063 Teece DJ, 2016, EUR ECON REV, V86, P202, DOI 10.1016/j.euroecorev.2015.11.006 Teece DJ, 2014, ACAD MANAGE PERSPECT, V28, P328, DOI 10.5465/amp.2013.0116 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Thummadi B. V., 2011, Proceedings of the 2011 Agile Conference, P67, DOI 10.1109/AGILE.2011.29 Trusov M, 2016, MARKET SCI, V35, P405, DOI 10.1287/mksc.2015.0956 Urban G, 2020, MIT SLOAN MANAGE REV, V61, P71 Vermeer SAM, 2019, INT J RES MARK, V36, P492, DOI 10.1016/j.ijresmar.2019.01.010 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wan ZY, 2021, IEEE T SOFTWARE ENG, V47, P1331, DOI 10.1109/TSE.2019.2921343 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Williams L, 2003, COMPUTER, V36, P39, DOI 10.1109/MC.2003.1204373 Winter SG, 2003, STRATEGIC MANAGE J, V24, P991, DOI 10.1002/smj.318 WOLFE RA, 1994, J MANAGE STUD, V31, P405, DOI 10.1111/j.1467-6486.1994.tb00624.x Yang CS, 2015, INF SYST E-BUS MANAG, V13, P403, DOI 10.1007/s10257-014-0266-z Yang CC, 2009, INT J PROD ECON, V122, P4, DOI 10.1016/j.ijpe.2009.03.016 Ye WJ, 2021, INF SYST E-BUS MANAG, V19, P107, DOI 10.1007/s10257-020-00482-4 Yin R.K., 1989, Case Study Research: Design and Research Zahra SA, 2002, ACAD MANAGE REV, V27, P185, DOI 10.2307/4134351 Zahra SA, 2006, J MANAGE STUD, V43, P917, DOI 10.1111/j.1467-6486.2006.00616.x NR 131 TC 7 Z9 7 U1 8 U2 67 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD MAR PY 2022 VL 20 IS 1 BP 123 EP 169 DI 10.1007/s10257-021-00547-y EA NOV 2021 PG 47 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 0D5EU UT WOS:000722832900001 DA 2024-03-27 ER PT J AU Dwivedi, YK Balakrishnan, J Baabdullah, AM Das, R AF Dwivedi, Yogesh K. Balakrishnan, Janarthanan Baabdullah, Abdullah M. Das, Ronnie TI Do chatbots establish "humanness" in the customer purchase journey? An investigation through explanatory sequential design SO PSYCHOLOGY & MARKETING LA English DT Article DE AI humanness; chatbots; customer journey; elaboration likelihood model (ELM); marketing automation; recommendation intention ID ELABORATION LIKELIHOOD MODEL; ARTIFICIAL-INTELLIGENCE; BEHAVIORAL-RESEARCH; EXPERIENCE; SATISFACTION; VARIABLES; STEREOTYPES; MECHANISMS; PERSUASION; COMPETENCE AB Chatbots incorporate various behavioral and psychological marketing elements to satisfy customers at various stages of their purchase journey. This research follows the foundations of the Elaboration Likelihood Model (ELM) and examines how cognitive and peripheral cues impact experiential dimensions, leading to chatbot user recommendation intentions. The study introduced warmth and competence as mediating variables in both the purchase and postpurchase stages, utilizing a robust explanatory sequential mixed-method research design. The researchers tested and validated the proposed conceptual model using a 3 x 3 factorial design, collecting 354 responses in the purchase stage and 286 responses in the postpurchase stage. In the second stage, they conducted in-depth qualitative interviews (Study 2) to gain further insights into the validity of the experimental research (Study 1). The results obtained from Study 1 revealed that "cognitive cues" and "competence" significantly influence recommendation intentions among chatbot users. On the other hand, "peripheral cues" and warmth significantly contribute to positive experiences encountered during the purchase stage. The researchers further identified 69 thematic codes through exploratory research, providing a deeper understanding of the variables. Theoretically, this study extends the ELM by introducing new dimensions to human-machine interactions at the heart of digital transformation. From a managerial standpoint, the study emphasizes the significance of adding a "humanness" element in chatbot development to create more engaging and positive customer experiences actively. C1 [Dwivedi, Yogesh K.] Swansea Univ, Digital Futures Sustainable Business & Soc Res Grp, Dept Business, Sch Management, Swansea, Wales. [Dwivedi, Yogesh K.] Pune & Symbiosis Int Deemed Univ, Symbiosis Inst Business Management, Dept Management, Pune, Maharashtra, India. [Balakrishnan, Janarthanan] Natl Inst Technol Tiruchirappalli, Dept Management Studies, Tiruchirappalli, Tamil Nadu, India. [Baabdullah, Abdullah M.] King Abdulaziz Univ, Fac Econ & Adm, Dept Management Informat Syst, Jeddah, Saudi Arabia. [Das, Ronnie] Audencia Business Sch, Dept Mkt, Nantes, France. [Dwivedi, Yogesh K.] Swansea Univ, Digital Futures Sustainable Business & Soc Res Grp, Sch Management, Bay Campus, Swansea SA1 8EN, Wales. C3 Swansea University; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune; National Institute of Technology (NIT System); National Institute of Technology Tiruchirappalli; King Abdulaziz University; Audencia; Swansea University RP Dwivedi, YK (autor correspondiente), Swansea Univ, Digital Futures Sustainable Business & Soc Res Grp, Sch Management, Bay Campus, Swansea SA1 8EN, Wales. EM y.k.dwivedi@swansea.ac.uk RI Baabdullah, Abdullah M./AAX-8282-2020; Balakrishnan, Janarthanan/H-9687-2012; Dwivedi, Yogesh Kumar/A-5362-2008 OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990 CR Akdim K, 2023, INT J CONTEMP HOSP M, V35, P2816, DOI 10.1108/IJCHM-12-2020-1406 Al-Ansi A, 2019, INT J HOSP MANAG, V83, P210, DOI 10.1016/j.ijhm.2018.10.017 Apperly IA, 2012, Q J EXP PSYCHOL, V65, P825, DOI 10.1080/17470218.2012.676055 Areni CS, 2003, PSYCHOL MARKET, V20, P349, DOI 10.1002/mar.10077 Ayyildiz AY, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.101995 Babbar S, 2008, INT J OPER PROD MAN, V28, P804, DOI 10.1108/01443570810895267 BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 Balakrishnan J, 2023, J SUSTAIN TOUR, V31, P2506, DOI 10.1080/09669582.2021.1995398 Balakrishnan J, 2024, ANN OPER RES, V333, P653, DOI 10.1007/s10479-021-04049-5 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Banik S, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102739 Baron-Cohen S., 1995, MINDBLINDNESS ESSAY, DOI DOI 10.7551/MITPRESS/4635.001.0001 Barta S, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103149 Belanche D, 2021, PSYCHOL MARKET, V38, P2357, DOI 10.1002/mar.21532 Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 Belanche D, 2021, ELECTRON MARK, V31, P477, DOI 10.1007/s12525-020-00432-5 Belk R, 2021, SERV IND J, V41, P860, DOI 10.1080/02642069.2020.1727892 Bennett AM, 2012, J CONSUM PSYCHOL, V22, P199, DOI 10.1016/j.jcps.2011.10.005 BENTLER PM, 1990, PSYCHOL BULL, V107, P238, DOI 10.1037/0033-2909.107.2.238 Bian XM, 2020, J BRAND MANAG, V27, P438, DOI 10.1057/s41262-020-00189-4 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bolton RN, 2018, J SERV MANAGE, V29, P776, DOI 10.1108/JOSM-04-2018-0113 Borau S, 2021, PSYCHOL MARKET, V38, P1052, DOI 10.1002/mar.21480 Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Calder BJ, 2009, J INTERACT MARK, V23, P321, DOI 10.1016/j.intmar.2009.07.002 Cao XY, 2017, COMPUT HUM BEHAV, V73, P403, DOI 10.1016/j.chb.2017.03.060 Chang RCS, 2018, COMPUT HUM BEHAV, V84, P194, DOI 10.1016/j.chb.2018.02.025 Chang YP, 2019, J ACAD MARKET SCI, V47, P1027, DOI 10.1007/s11747-019-00632-2 Chang Y, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107544 Chen CJ, 2022, ASIA PAC BUS REV, V28, P380, DOI 10.1080/13602381.2021.1872912 Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chen J, 2023, IEEE T INTELL TRANSP, V24, P10067, DOI 10.1109/TITS.2023.3269794 Chen Q, 2023, INTERNET RES, V33, P2205, DOI 10.1108/INTR-09-2021-0686 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Cheung CMK, 2012, DECIS SUPPORT SYST, V54, P461, DOI 10.1016/j.dss.2012.06.008 Chopra IP, 2022, TOUR RECREAT RES, DOI 10.1080/02508281.2022.2088007 Clement J, 2007, J MARKET MANAG-UK, V23, P917, DOI 10.1362/026725707X250395 Pinochet LHC, 2018, INNOV MANAG REV, V15, P303, DOI 10.1108/INMR-05-2018-0028 Crandall CS, 2011, PERS SOC PSYCHOL B, V37, P1488, DOI 10.1177/0146167211411723 Cyr D, 2018, INFORM MANAGE-AMSTER, V55, P807, DOI 10.1016/j.im.2018.03.009 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Djelassi S, 2018, DECIS SUPPORT SYST, V111, P38, DOI 10.1016/j.dss.2018.04.004 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Dwivedi YK, 2023, PSYCHOL MARKET, V40, P750, DOI 10.1002/mar.21767 Dwivedi YK, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102542 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Epley N., 2018, Journal of the Association for Consumer Research, V3, P591 Fadel KJ, 2009, INT J KNOWL MANAG, V5, P26, DOI 10.4018/jkm.2009062902 Fan H, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113526 Fan XJ, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101986 Fiske ST, 2007, TRENDS COGN SCI, V11, P77, DOI 10.1016/j.tics.2006.11.005 Flavián C, 2022, J SERV MANAGE, V33, P293, DOI 10.1108/JOSM-10-2020-0378 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Glikson E, 2020, ACAD MANAG ANN, V14, P627, DOI 10.5465/annals.2018.0057 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Grewal D, 2020, J RETAILING, V96, P3, DOI 10.1016/j.jretai.2020.02.002 Hassenzahl M, 2006, BEHAV INFORM TECHNOL, V25, P91, DOI 10.1080/01449290500330331 Henseler J, 2017, J ADVERTISING, V46, P178, DOI 10.1080/00913367.2017.1281780 Heung VCS, 2012, INT J HOSP MANAG, V31, P1167, DOI 10.1016/j.ijhm.2012.02.004 Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424 Hu P, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106727 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Huang R, 2020, J BUS RES, V121, P616, DOI 10.1016/j.jbusres.2020.04.034 Jiang Y, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107485 Judd CM, 2005, J PERS SOC PSYCHOL, V89, P899, DOI 10.1037/0022-3514.89.6.899 Kar AK, 2023, INFORM SYST FRONT, V25, P1351, DOI 10.1007/s10796-021-10219-4 Kaur P, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102091 Kelley H.H., 1967, NEBRASKA S MOTIVATIO Kerr G, 2015, J ADVERTISING RES, V55, P390, DOI 10.2501/JAR-2015-001 Klaus P, 2013, INT J MARKET RES, V55, P227, DOI 10.2501/IJMR-2013-021 Kong M., 2007, MANAG SERV QUAL, V17, P275, DOI DOI 10.1108/09604520710744308 Konya-Baumbach E, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107513 Kushwaha AK, 2021, IND MARKET MANAG, V98, P207, DOI 10.1016/j.indmarman.2021.08.011 Kushwaha AK, 2021, INFORM SYST FRONT, DOI 10.1007/s10796-021-10184-y Lazzeri N, 2018, APPL SCI-BASEL, V8, DOI 10.3390/app8020302 Lee J, 2016, INT J INFORM MANAGE, V36, P360, DOI 10.1016/j.ijinfomgt.2016.01.001 Liu BJ, 2018, CYBERPSYCH BEH SOC N, V21, P625, DOI 10.1089/cyber.2018.0110 Loupiac P, 2019, INT J RETAIL DISTRIB, V48, P92, DOI 10.1108/IJRDM-07-2018-0146 Loureiro SMC, 2024, INT J HUM-COMPUT INT, V40, P782, DOI 10.1080/10447318.2022.2124346 Lu CC, 2019, INT J INFORM MANAGE, V47, P101, DOI 10.1016/j.ijinfomgt.2018.12.020 Lu ZL, 2000, J EXP PSYCHOL HUMAN, V26, P1534, DOI 10.1037//0096-1523.26.5.1534 Maar D, 2023, J SERV MANAGE, V34, P208, DOI 10.1108/JOSM-06-2021-0237 MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 Maier C, 2023, INT J INFORM MANAGE, V70, DOI 10.1016/j.ijinfomgt.2023.102625 Martini MC, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146310 McCrudden MT, 2019, J MIX METHOD RES, V13, P381, DOI 10.1177/1558689818762576 McLean G, 2019, COMPUT HUM BEHAV, V99, P28, DOI 10.1016/j.chb.2019.05.009 Mishra A, 2022, INT J INFORM MANAGE, V67, DOI 10.1016/j.ijinfomgt.2021.102413 Mishra R, 2021, INT J CONSUM STUD, V45, P147, DOI 10.1111/ijcs.12617 Mogaji E, 2021, TELEMAT INFORM, V65, DOI 10.1016/j.tele.2021.101711 Moriuchi E, 2021, J STRATEG MARK, V29, P375, DOI 10.1080/0965254X.2020.1740766 Moriuchi E, 2019, PSYCHOL MARKET, V36, P489, DOI 10.1002/mar.21192 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Nguyen QN, 2022, COMPUT HUM BEHAV, V128, DOI 10.1016/j.chb.2021.107093 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Papadimitriou D, 2018, J HOSP TOUR RES, V42, P503, DOI 10.1177/1096348015584443 PARASURAMAN A, 1988, J RETAILING, V64, P12 Petty R., 1986, Communication and persuasion: Central and peripheral routes to attitude change, DOI [DOI 10.1016/S0065-2601(08)60214-2, 10.1016/S0065-2601(08)60214-2] Pizzi G, 2023, PSYCHOL MARKET, V40, P1372, DOI 10.1002/mar.21813 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Portney LG., 2009, Foundations of Clinical Research: Applications to Practice, V892 PREMACK D, 1978, BEHAV BRAIN SCI, V1, P515, DOI 10.1017/S0140525X00076512 Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Qin XB, 2019, J ADVERTISING, V48, P338, DOI 10.1080/00913367.2019.1652122 Quach S, 2022, J ACAD MARKET SCI, V50, P1299, DOI 10.1007/s11747-022-00845-y Rapp A, 2021, INT J HUM-COMPUT ST, V151, DOI 10.1016/j.ijhcs.2021.102630 Ren XY, 2018, J SERV MARK, V32, P223, DOI 10.1108/JSM-04-2017-0133 Martín SS, 2011, PSYCHOL MARKET, V28, P145, DOI 10.1002/mar.20384 Schepers J, 2022, J SERV RES-US, V25, P565, DOI 10.1177/10946705221107704 Schmeichel B.J., 2018, Self-Regulation and Self-Control, P310, DOI [10.4324/9781315175775-10, DOI 10.4324/9781315175775-10] Shahab MH, 2021, INT J CONSUM STUD, V45, P664, DOI 10.1111/ijcs.12658 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shi S, 2020, INT J INFORM MANAGE, V50, P325, DOI 10.1016/j.ijinfomgt.2019.09.001 Shin D, 2022, NEW MEDIA SOC, V24, P2680, DOI 10.1177/1461444821993801 Shin D, 2018, COMPUT HUM BEHAV, V78, P64, DOI 10.1016/j.chb.2017.09.012 Sirdeshmukh D, 2002, J MARKETING, V66, P15, DOI 10.1509/jmkg.66.1.15.18449 Smid SC, 2020, STRUCT EQU MODELING, V27, P131, DOI 10.1080/10705511.2019.1577140 Söderlund M, 2021, EUR J MARKETING, V55, P94, DOI 10.1108/EJM-09-2019-0748 Soderlund M, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102401 Sridevi G., 2022, INT J INFORM MANAGEM, V2 Todd PM, 2003, J ECON PSYCHOL, V24, P143, DOI 10.1016/S0167-4870(02)00200-3 Tsohou A, 2015, COMPUT SECUR, V52, P128, DOI 10.1016/j.cose.2015.04.006 Tueanrat Y, 2021, J BUS RES, V125, P336, DOI 10.1016/j.jbusres.2020.12.028 Van den Broeck E, 2019, COMPUT HUM BEHAV, V98, P150, DOI 10.1016/j.chb.2019.04.009 Votto A M., 2021, International Journal of Information Management Data Insights, V1 Walker C, 2019, INT J QUAL METH, V18, DOI 10.1177/1609406919834379 Wang CC, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103325 WEINER B, 1985, PSYCHOL REV, V92, P548, DOI 10.1037/0033-295X.92.4.548 Yang SC, 2006, PSYCHOL MARKET, V23, P429, DOI 10.1002/mar.20120 Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309 Yoo CW, 2017, TECHNOL FORECAST SOC, V123, P330, DOI 10.1016/j.techfore.2016.10.071 Youn S, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106721 Zha XJ, 2018, COMPUT HUM BEHAV, V79, P227, DOI 10.1016/j.chb.2017.10.038 Zhang X, 2019, TOTAL QUAL MANAG BUS, V30, P579, DOI 10.1080/14783363.2017.1317587 Zhang Y, 1996, PSYCHOL MARKET, V13, P531, DOI 10.1002/(SICI)1520-6793(199609)13:6<531::AID-MAR1>3.3.CO;2-V Zhou XY, 2019, J CONSUM RES, V45, P953, DOI 10.1093/jcr/ucy012 NR 139 TC 1 Z9 1 U1 79 U2 105 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0742-6046 EI 1520-6793 J9 PSYCHOL MARKET JI Psychol. Mark. PD NOV PY 2023 VL 40 IS 11 BP 2244 EP 2271 DI 10.1002/mar.21888 EA AUG 2023 PG 28 WC Business; Psychology, Applied WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA T8XT9 UT WOS:001050655700001 OA hybrid DA 2024-03-27 ER PT J AU Dhillon, PS Aral, S AF Dhillon, Paramveer S. Aral, Sinan TI Modeling Dynamic User Interests: A Neural Matrix Factorization Approach SO MARKETING SCIENCE LA English DT Article DE machine learning; deep learning; natural language processing; digital marketing; user profiling ID ONLINE; PATH AB In recent years, there has been significant interest in understanding users' online content consumption patterns. But the unstructured, high-dimensional, and dynamic nature of such data makes extracting valuable insights challenging. Here we propose a model that combines the simplicity of matrix factorization with the flexibility of neural networks to efficiently extract nonlinear patterns from massive text data collections relevant to consumers' online consumption patterns. Our model decomposes a user's content consumption journey into nonlinear user and content factors that are used to model their dynamic interests. This natural decomposition allows us to summarize each user's content consumption journey with a dynamic probabilistic weighting over a set of underlying content attributes. The model is fast to estimate, easy to interpret, and can harness external data sources as an empirical prior. These advantages make our method well suited to the challenges posed by modern data sets used by digital marketers. We use our model to understand the dynamic news consumption interests of Boston Globe readers over five years. Thorough qualitative studies, including a crowdsourced evaluation, highlight our model's ability to accurately identify nuanced and coherent consumption patterns. These results are supported by our model's superior and robust predictive performance over several competitive baseline methods. C1 [Dhillon, Paramveer S.] Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA. [Aral, Sinan] MIT, MIT Sloan Sch Management, Cambridge, MA 02142 USA. C3 University of Michigan System; University of Michigan; Massachusetts Institute of Technology (MIT) RP Dhillon, PS (autor correspondiente), Univ Michigan, Sch Informat, Ann Arbor, MI 48109 USA. EM dhillonp@umich.edu; sinan@mit.edu OI /0000-0002-0994-9488; Aral, Sinan/0000-0002-2762-058X CR Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473] Bengio Y, 2001, ADV NEUR IN, V13, P932 Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Bird Steven., 2006, P 21 INT C COMP LING, P69 Blei D. M., 2006, P 23 INT C MACH LEAR, P113, DOI DOI 10.1145/1143844.1143859 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bodapati AV, 2008, J MARKETING RES, V45, P77, DOI 10.1509/jmkr.45.1.77 Bruce NI, 2008, MARKET SCI, V27, P659, DOI 10.1287/mksc.1070.0317 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Chang Jonathan, 2009, ADV NEURAL INFORM PR, P288, DOI DOI 10.5555/2984093.2984126 Charlin L., 2015, P 9 ACM C REC SYST, P155, DOI DOI 10.1145/2792838.2800174 DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 Dew R, 2020, J MARKETING RES, V57, P55, DOI 10.1177/0022243719874047 Dhillon P., 2011, P NIPS, P199 Dhillon PS, 2015, J MACH LEARN RES, V16, P3035 Dhillon PS, 2012, P 29 INT C MACHINE L, P1551 Dube Jean-pierreSanjog Misra., 2017, Scalable Price Targeting Eckart C, 1936, PSYCHOMETRIKA, V1, P211, DOI 10.1007/BF02288367 Farias VF, 2019, MANAGE SCI, V65, P3131, DOI 10.1287/mnsc.2018.3092 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gopalan P, 2015, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P326 Guadagni PM, 2008, MARKET SCI, V27, P29, DOI 10.1287/mksc.1070.0331 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hui L., 2020, Evaluation of neural architectures trained with square loss vs cross-entropy in classification tasks. arXiv Hui SK, 2009, J CONSUM RES, V36, P478, DOI 10.1086/599046 King DB, 2015, ACS SYM SER, V1214, P1 Koren Y, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P447 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Lee DD, 2001, ADV NEUR IN, V13, P556 Liu J, 2018, MARKET SCI, V37, P930, DOI 10.1287/mksc.2018.1112 Mairal J, 2010, J MACH LEARN RES, V11, P19 Martens D, 2016, MIS QUART, V40, P869, DOI 10.25300/MISQ/2016/40.4.04 Mela C.F, 2018, HARVARD BUS REV, V30, P1 Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Mnih Andriy, 2007, ADV NEURAL INFORM PR, P1257, DOI DOI 10.1145/1390156.1390267 Moe WW, 2004, MANAGE SCI, V50, P326, DOI 10.1287/mnsc.1040.0153 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Montgomery AL, 2004, MARKET SCI, V23, P579, DOI 10.1287/mksc.1040.0073 Murphy KP, 2012, MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE, P1 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Paszke A, 2019, ADV NEUR IN, V32 Pennington J., EMPIRICAL METHODS NA, P1532, DOI [DOI 10.3115/V1/D14-1162, 10.3115/v1/D14-1162] Perlich C, 2014, MACH LEARN, V95, P103, DOI 10.1007/s10994-013-5375-2 Sarwar B.M., 2002, P 5 INT C COMP INF T, V50, P158 Schwartz H., 2013, P 7 INT AAAI C WEBL, P583, DOI DOI 10.1609/ICWSM.V7I1.14442 Sinnenberg L, 2017, AM J PUBLIC HEALTH, V107, pE1, DOI 10.2105/AJPH.2016.303512 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Trusov M, 2016, MARKET SCI, V35, P405, DOI 10.1287/mksc.2015.0956 Urban GL, 2014, MARKET SCI, V33, P27, DOI 10.1287/mksc.2013.0803 Xavier Glorot, 2011, 14 INT C ARTIF INTEL, P315, DOI DOI 10.1002/ECS2.1832 Xiong L., 2010, SDM, P211 Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 NR 55 TC 6 Z9 6 U1 7 U2 75 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD NOV-DEC PY 2021 VL 40 IS 6 BP 1059 EP 1080 DI 10.1287/mksc.2021.1293 PG 23 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA XN0MD UT WOS:000729208200004 OA Green Submitted DA 2024-03-27 ER PT J AU Dellaert, BGC Shu, SB Arentze, TA Baker, T Diehl, K Donkers, B Fast, NJ Häubl, G Johnson, H Karmarkar, UR Oppewal, H Schmitt, BH Schroeder, J Spiller, SA Steffel, M AF Dellaert, Benedict G. C. Shu, Suzanne B. Arentze, Theo A. Baker, Tom Diehl, Kristin Donkers, Bas Fast, Nathanael J. Haubl, Gerald Johnson, Heidi Karmarkar, Uma R. Oppewal, Harmen Schmitt, Bernd H. Schroeder, Juliana Spiller, Stephen A. Steffel, Mary TI Consumer decisions with artificially intelligent voice assistants SO MARKETING LETTERS LA English DT Article DE Artificial intelligence; Voice assistants; Consumer decision-making; Consumer dialogs; Digital marketing; Consumer models ID SEARCH; CHOICES; ADVICE; OTHERS; AGENTS; MIND AB Consumers are widely adopting Artificially Intelligent Voice Assistants (AIVAs). AIVAs now handle many different everyday tasks and are also increasingly assisting consumers with purchasing decisions, making AIVAs a rich topic for marketing researchers. We develop a series of propositions regarding how consumer decision-making processes may change when moved from traditional online purchase environments to AI-powered voice-based dialogs, in the hopes of encouraging further academic thinking and research in this rapidly developing, high impact area of consumer-firm interaction. We also provide suggestions for marketing managers and policymakers on points to pay attention to when they respond to the proposed effects of AIVAs on consumer decisions. C1 [Dellaert, Benedict G. C.; Donkers, Bas] Erasmus Univ, Erasmus Sch Econ, Rotterdam, Netherlands. [Dellaert, Benedict G. C.; Oppewal, Harmen] Monash Univ, Monash Business Sch, Caulfield, Australia. [Shu, Suzanne B.] Cornell Univ, Dyson Sch Appl Econ & Management, Ithaca, NY USA. [Arentze, Theo A.] Eindhoven Univ Technol, Dept Built Environm, Eindhoven, Netherlands. [Baker, Tom] Univ Penn, Sch Law, Philadelphia, PA 19104 USA. [Diehl, Kristin; Fast, Nathanael J.] Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90007 USA. [Haubl, Gerald] Univ Alberta, Alberta Sch Business, Edmonton, AB, Canada. [Johnson, Heidi] Financial Hlth Network, Washington, DC USA. [Karmarkar, Uma R.] Univ Calif San Diego, Rady Sch Management, San Diego, CA USA. [Karmarkar, Uma R.] Univ Calif San Diego, Sch Global Policy & Strategy, San Diego, CA USA. [Schmitt, Bernd H.] Columbia Univ, Columbia Business Sch, New York, NY USA. [Schroeder, Juliana] Univ Calif Berkeley, Haas Sch Business, Berkeley, CA 94720 USA. [Spiller, Stephen A.] UCLA, Anderson Sch Management, Los Angeles, CA USA. [Steffel, Mary] Northeastern Univ, DAmore McKim Sch Business, Boston, MA 02115 USA. C3 Erasmus University Rotterdam; Erasmus University Rotterdam - Excl Erasmus MC; Monash University; Cornell University; Eindhoven University of Technology; University of Pennsylvania; University of Southern California; University of Alberta; University of California System; University of California San Diego; University of California System; University of California San Diego; Columbia University; University of California System; University of California Berkeley; University of California System; University of California Los Angeles; Northeastern University RP Dellaert, BGC (autor correspondiente), Erasmus Univ, Erasmus Sch Econ, Rotterdam, Netherlands.; Dellaert, BGC (autor correspondiente), Monash Univ, Monash Business Sch, Caulfield, Australia. EM dellaert@ese.eur.nl; suzanne.shu@cornell.edu; T.A.Arentze@tue.nl; tombaker@law.upernedu; kdiehl@marshall.usc.edu; denkers@ese.eur.nl; nathanael.fast@marshall.usc.edu; gerald.haeubl@ualberta.ca; hjohnson@finhealthnetwork.org; ukarmarkar@ucsd.edu; harmen.oppewal@monash.edu; bhs1@gsb.columbia.edu; jschroeder@berkeley.edu; Stephen.spiller@anderson.ucla.edu; m.steffel@neu.edu RI Baker, Tom/JFK-7280-2023; Spiller, Stephen A/A-2208-2012; Oppewal, Harmen/C-1457-2013; Dellaert, Benedict/D-1020-2010 OI Oppewal, Harmen/0000-0002-5221-2043; Shu, Suzanne/0000-0002-6187-3177; Baker, Tom/0000-0002-0876-2312; Dellaert, Benedict/0000-0003-4637-1192 CR ALBA JW, 1987, J CONSUM RES, V13, P411, DOI 10.1086/209080 [Anonymous], 1993, ADAPTIVE DECISION MA, DOI DOI 10.1017/CBO9781139173933 Arentze TA, 2015, TRANSPORT SCI, V49, P577, DOI 10.1287/trsc.2013.0513 Baker T, 2018, IOWA LAW REV, V103, P713 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Castelo Noah., 2019, Journal of the Association for Consumer Research, V4, P217, DOI DOI 10.1086/703462 Diehl K, 2003, J CONSUM RES, V30, P56, DOI 10.1086/374698 Diehl K, 2005, J MARKETING RES, V42, P313, DOI 10.1509/jmkr.2005.42.3.313 Epley N, 2013, NEBR SYM MOTIV, V60, P127, DOI 10.1007/978-1-4614-6959-9_6 Fast NJ, 2020, CURR OPIN PSYCHOL, V33, P172, DOI 10.1016/j.copsyc.2019.07.039 Ge X, 2015, J CONSUM PSYCHOL, V25, P245, DOI 10.1016/j.jcps.2014.09.003 Giddens CL, 2013, J VOICE, V27, DOI 10.1016/j.jvoice.2012.12.010 Griffin JG, 2010, J MARKETING RES, V47, P323, DOI 10.1509/jmkr.47.2.323 Häubl G, 2010, MARKET SCI, V29, P438, DOI 10.1287/mksc.1090.0525 Harvey N, 1997, ORGAN BEHAV HUM DEC, V70, P117, DOI 10.1006/obhd.1997.2697 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Kim SY, 2019, MARKET LETT, V30, P1, DOI 10.1007/s11002-019-09485-9 Lieberman A, 2020, CURR OPIN PSYCHOL, V31, P16, DOI 10.1016/j.copsyc.2019.06.022 Loewenstein G, 2011, AM ECON REV, V101, P423, DOI 10.1257/aer.101.3.423 Lucas GM, 2014, COMPUT HUM BEHAV, V37, P94, DOI 10.1016/j.chb.2014.04.043 Mathur Arunesh, 2019, Proceedings of the ACM on Human-Computer Interaction, V3, DOI 10.1145/3359183 Meissner M, 2020, J BUS RES, V111, P163, DOI 10.1016/j.jbusres.2019.01.008 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Munz K., 2019, NOT SO EASY LISTENIN NEDUNGADI P, 1990, J CONSUM RES, V17, P263, DOI 10.1086/208556 Newman DT, 2020, ORGAN BEHAV HUM DEC, V160, P149, DOI 10.1016/j.obhdp.2020.03.008 Raveendhran R., 2019, HUMANS JUDGE A UNPUB Raveendhran R, 2019, CAMB HANDB PSYCHOL, P921 Ryan RM, 2000, AM PSYCHOL, V55, P68, DOI 10.1037/0003-066X.55.1.68 Sawchak MW, 2017, ANTITRUST LAW J, V81, P903 Schroeder J, 2016, J EXP PSYCHOL GEN, V145, P1427, DOI 10.1037/xge0000214 Schroeder J, 2015, PSYCHOL SCI, V26, P877, DOI 10.1177/0956797615572906 Schuller B, 2013, COMPUT SPEECH LANG, V27, P4, DOI 10.1016/j.csl.2012.02.005 Shu SB, 2008, J BEHAV DECIS MAKING, V21, P352, DOI 10.1002/bdm.593 Simon D, 2016, PSYCHOL SCI, V27, P1588, DOI 10.1177/0956797616666501 Slovic Paul., 1972, Oregon Research Institute Research Monograph, V12, P10, DOI DOI 10.1037/E310462005-001 Soman D, 2003, MANAGE SCI, V49, P1229, DOI 10.1287/mnsc.49.9.1229.16574 Steffel M, 2018, J CONSUM RES, V44, P1015, DOI 10.1093/jcr/ucx080 Steffel M, 2016, ORGAN BEHAV HUM DEC, V135, P32, DOI 10.1016/j.obhdp.2016.04.006 Usta M, 2011, J MARKETING RES, V48, P403, DOI 10.1509/jmkr.48.2.403 Wang SS, 2015, REV GEN PSYCHOL, V19, P393, DOI 10.1037/gpr0000056 West PM, 1996, J CONSUM RES, V23, P120, DOI 10.1086/209471 Xiao B, 2007, MIS QUART, V31, P137 Yalcin ÖN, 2018, BIOL INSPIR COGN ARC, V26, P20, DOI 10.1016/j.bica.2018.07.010 NR 44 TC 40 Z9 40 U1 20 U2 145 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0923-0645 EI 1573-059X J9 MARKET LETT JI Mark. Lett. PD DEC PY 2020 VL 31 IS 4 SI SI BP 335 EP 347 DI 10.1007/s11002-020-09537-5 EA AUG 2020 PG 13 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA OT6PT UT WOS:000560285300001 OA Green Published, hybrid, Green Submitted DA 2024-03-27 ER PT J AU Filieri, R Lin, ZB Li, YL Lu, XQ Yang, XW AF Filieri, Raffaele Lin, Zhibin Li, Yulei Lu, Xiaoqian Yang, Xingwei TI Customer Emotions in Service Robot Encounters: A Hybrid Machine-Human Intelligence Approach SO JOURNAL OF SERVICE RESEARCH LA English DT Article DE emotion; emotion detection; online customer reviews; machine learning; thematic analysis; service robot ID BIG DATA; CONSUMER-BEHAVIOR; EXPERIENCE; ANALYTICS; TOURISM; NETNOGRAPHY; HOSPITALITY; FIELD AB Understanding consumer emotions arising from robot-customers encounters and shared through online reviews is critical for forecasting consumers' intention to adopt service robots. Qualitative analysis has the advantage of generating rich insights from data, but it requires intensive manual work. Scholars have emphasized the benefits of using algorithms for recognizing and differentiating among emotions. This study critically addresses the advantages and disadvantages of qualitative analysis and machine learning methods by adopting a hybrid machine-human intelligence approach. We extracted a sample of 9707 customers reviews from two major social media platforms (Ctrip and TripAdvisor), encompassing 412 hotels in 8 countries. The results show that the customer experience with service robots is overwhelmingly positive, revealing that interacting with robots triggers emotions of joy, love, surprise, interest, and excitement. Discontent is mainly expressed when customers cannot use service robots due to malfunctioning. Service robots trigger more emotions when they move. The findings further reveal the potential moderation effect of culture on customer emotional reactions to service robots. The study highlights that the hybrid approach can take advantage of the scalability and efficiency of machine learning algorithms while overcoming its shortcomings, such as poor interpretative capacity and limited emotion categories. C1 [Filieri, Raffaele] Audencia Business Sch, Dept Mkt, 8 Route Joneliere, F-44312 Nantes, Pays De Ia Loir, France. [Lin, Zhibin; Li, Yulei] Univ Durham, Business Sch, Mill Hill Lane, Durham, England. [Lu, Xiaoqian] Jimei Univ, Sch Business Adm, Xiamen, Peoples R China. [Yang, Xingwei] Queens Univ, Smith Sch Business, Kingston, ON, Canada. C3 Audencia; Durham University; Jimei University; Queens University - Canada RP Filieri, R (autor correspondiente), Audencia Business Sch, Dept Mkt, 8 Route Joneliere, F-44312 Nantes, Pays De Ia Loir, France.; Lu, XQ (autor correspondiente), Jimei Univ, Sch Business Adm, Xiamen, Peoples R China. EM raffaele.filieri@audencia.com; xiaoqianlu@jmu.edu.cn RI Paleja, Heer/IQT-1538-2023; xiaoqian, Lu/JED-5231-2023; Lin, Zhibin/ACD-8628-2022; Lin, Zhibin/R-7541-2018; Filieri, Raffaele/AAK-2553-2021 OI Lin, Zhibin/0000-0001-5575-2216; Lin, Zhibin/0000-0001-5575-2216; Li, Yulei/0000-0003-3579-6179; Filieri, Raffaele/0000-0002-3534-8547; lu, xiaoqian/0000-0001-6276-0142 CR Akdim K, 2023, INT J CONTEMP HOSP M, V35, P2816, DOI 10.1108/IJCHM-12-2020-1406 Alba-Juez Laura, 2019, EMOTION DISCOURSE Antons D, 2018, J SERV RES-US, V21, P17, DOI 10.1177/1094670517738373 Bagozzi RP, 1999, J ACAD MARKET SCI, V27, P184, DOI 10.1177/0092070399272005 Bartneck C, 2007, AI SOC, V21, P217, DOI 10.1007/s00146-006-0052-7 Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bolukbasi T., 2021, ARXIV PREPRINT ARXIV Boughorbel S, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0177678 Bougie R, 2003, J ACAD MARKET SCI, V31, P377, DOI 10.1177/0092070303254412 Boyatzis R.E., 1998, Transforming qualitative information: Thematic analysis and code development Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cabibihan JJ, 2013, INT J SOC ROBOT, V5, P593, DOI 10.1007/s12369-013-0202-2 Caic M, 2018, J SERV MANAGE, V29, P178, DOI 10.1108/JOSM-07-2017-0179 Carroll BA, 2006, MARKET LETT, V17, P79, DOI 10.1007/s11002-006-4219-2 Chuah SHW, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102551 COLBY BN, 1989, CONTEMP SOCIOL, V18, P957, DOI 10.2307/2074241 D'Acunto D, 2021, INT J CONTEMP HOSP M, V33, P2773, DOI 10.1108/IJCHM-11-2020-1329 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Dhaoui C, 2017, J CONSUM MARK, V34, P480, DOI 10.1108/JCM-03-2017-2141 EKMAN P, 1992, COGNITION EMOTION, V6, P169, DOI 10.1080/02699939208411068 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Fereday J., 2006, INT J QUAL METH, V5, P80, DOI [https://doi.org/10.1177/160940690600500107, DOI 10.1177/160940690600500107, 10.1177/160940690600500107] Filieri R, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104291 Filieri R, 2021, PSYCHOL MARKET, V38, P431, DOI 10.1002/mar.21440 Filieri R, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106527 Filieri R, 2015, J BUS RES, V68, P1261, DOI 10.1016/j.jbusres.2014.11.006 Gaind B., 2019, Global Journal of Engineering Science and Researches, P78, DOI 1901.08458.pdf Gonzlez-Carvajal S., 2020, ARXIV PREPRINT ARXIV Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Hayes JL, 2021, J ADVERTISING, V50, P81, DOI 10.1080/00913367.2020.1809576 Heinonen K, 2018, J SERV MARK, V32, P657, DOI 10.1108/JSM-08-2017-0294 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Ivanov S, 2020, TOURISM ECON, V26, P1065, DOI 10.1177/1354816619879583 Izard C., 1977, HUMAN EMOTIONS, DOI 10.1007/978-1-4899-2209-0 Jörling M, 2019, J SERV RES-US, V22, P404, DOI 10.1177/1094670519842334 Kanda T, 2004, HUM-COMPUT INTERACT, V19, P61, DOI 10.1207/s15327051hci1901&2_4 Kozinets RV, 2002, J MARKETING RES, V39, P61, DOI 10.1509/jmkr.39.1.61.18935 Kubler RV, 2020, J INTERACT MARK, V50, P136, DOI 10.1016/j.intmar.2019.08.001 Kulviwat S, 2007, PSYCHOL MARKET, V24, P1059, DOI 10.1002/mar.20196 Laros FJM, 2005, J BUS RES, V58, P1437, DOI 10.1016/j.jbusres.2003.09.013 LaValley MP, 2008, CIRCULATION, V117, P2395, DOI 10.1161/CIRCULATIONAHA.106.682658 Lazarus R. S., 1991, Emotion and adaptation Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Lee S, 2011, J BUS RES, V64, P1195, DOI 10.1016/j.jbusres.2011.06.022 Li DJ, 2010, INT J SOC ROBOT, V2, P175, DOI 10.1007/s12369-010-0056-9 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 MacDorman KF, 2009, AI SOC, V23, P485, DOI 10.1007/s00146-008-0181-2 MATTHEWS BW, 1975, BIOCHIM BIOPHYS ACTA, V405, P442, DOI 10.1016/0005-2795(75)90109-9 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Mirzaalian F, 2019, J HOSP TOUR TECHNOL, V10, P764, DOI 10.1108/JHTT-08-2018-0078 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Murphy J, 2017, EUR J TOUR RES, V15, P104 Ordenes FV, 2014, J SERV RES-US, V17, P278, DOI 10.1177/1094670514524625 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Plutchik R., 1980, EMOTION THEORY RES E, DOI DOI 10.1016/B978-0-12-558701-3.50007-7 Pumawirawan N, 2015, J INTERACT MARK, V31, P17, DOI 10.1016/j.intmar.2015.05.001 Rau PLP, 2009, COMPUT HUM BEHAV, V25, P587, DOI 10.1016/j.chb.2008.12.025 Richins ML, 1997, J CONSUM RES, V24, P127, DOI 10.1086/209499 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Romani S, 2012, INT J RES MARK, V29, P55, DOI 10.1016/j.ijresmar.2011.07.001 RUSSELL JA, 1977, J RES PERS, V11, P273, DOI 10.1016/0092-6566(77)90037-X Ryoo JH, 2021, J MARKETING, V85, P70, DOI 10.1177/0022242920937703 Saravia E, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3687 SMITH CA, 1993, COGNITION EMOTION, V7, P233, DOI 10.1080/02699939308409189 SPIGGLE S, 1994, J CONSUM RES, V21, P491, DOI 10.1086/209413 Stahl BC, 2016, ROBOT AUTON SYST, V86, P152, DOI 10.1016/j.robot.2016.08.018 Statista, 2022, AM DAT CREAT CONS ST Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tung VWS, 2018, INT J CONTEMP HOSP M, V30, P2680, DOI 10.1108/IJCHM-06-2017-0322 Turja T, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103220 Tussyadiah I.P., 2018, Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference, P308, DOI DOI 10.1007/978-3-319-72923-7_24 Tussyadiah IP, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102886 Ullah R, 2016, DECIS SUPPORT SYST, V81, P41, DOI 10.1016/j.dss.2015.10.007 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Vermeer SAM, 2019, INT J RES MARK, V36, P492, DOI 10.1016/j.ijresmar.2019.01.010 Watson L, 2007, EUR J MARKETING, V41, P487, DOI 10.1108/03090560710737570 Wirtz J., 2021, Eur. Bus. Rev., V29, P909 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wong A., 2004, MANAG SERV QUAL, V14, P365, DOI 10.1108/09604520410557976 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Yang Zhilin, 2019, ARXIV ABS190608237 Ye F, 2022, J SERV RES-US, V25, P301, DOI 10.1177/1094670520975143 Yin DZ, 2014, MIS QUART, V38, P539, DOI 10.25300/MISQ/2014/38.2.10 Yu CE, 2020, J HOSP MARKET MANAG, V29, P22, DOI 10.1080/19368623.2019.1592733 NR 92 TC 29 Z9 30 U1 56 U2 253 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1094-6705 EI 1552-7379 J9 J SERV RES-US JI J. Serv. Res. PD NOV PY 2022 VL 25 IS 4 SI SI BP 614 EP 629 AR 10946705221103937 DI 10.1177/10946705221103937 EA MAY 2022 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 5I4NZ UT WOS:000805270400001 OA Green Accepted DA 2024-03-27 ER PT J AU Zhang, H Fan, LJ Chen, M Qiu, C AF Zhang, Hui Fan, Lijun Chen, Min Qiu, Chen TI The Impact of SIPOC on Process Reengineering and Sustainability of Enterprise Procurement Management in E-Commerce Environments Using Deep Learning SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Deep Learning; E-Commerce; Enterprise Procurement Management Process; SIPOC Model AB In order to better promote the healthy and long-term development of enterprise procurement management process, under the background of e-commerce environment, suppliers-inputs-process-outputs-customers (SIPOC) model, deep learning, and related theories of enterprise procurement management are expounded and proposed. Then, D electric power enterprise is studied as a sample. After understanding the current situation of procurement management of the enterprise, there are a series of problems in the enterprise, such as complex process, and no correlation between procurement management process and overall strategic planning. Finally, through the analysis of the early warning indicators of the enterprise by the deep learning algorithm, the procurement management process has caused certain risks to the financial management level of the enterprise, and the procurement management process of the enterprise needs to be adjusted. The material record and consumption scheme of the enterprise is optimized by using the SIPOC organizational system model. C1 [Zhang, Hui] Pai Chai Univ, Daejeon, South Korea. [Fan, Lijun] Hunan Univ Technol & Business, Sch Business Adm, Changsha, Peoples R China. [Chen, Min] Wenzhou Univ, Sch Business, Wenzhou, Peoples R China. [Qiu, Chen] Wuhan Univ, Sch Econ & Management, Wuhan, Peoples R China. C3 Pai Chai University; Hunan University of Technology & Business; Wenzhou University; Wuhan University RP Chen, M (autor correspondiente), Wenzhou Univ, Sch Business, Wenzhou, Peoples R China. RI Chen, Min/AAD-4064-2019 OI Fan, Lijun/0009-0000-4432-8604 FU Philosophy and Social Science Project of Zhejiang Province [21NDJC144YB]; Wenzhou Philosophy and Social Science Planning [21wsk169]; second batch of industry-University Collaborative Education Program of The Higher Education Department of the Ministry of Education [202102586003] FX This research was supported by the project of "Executives' Dynamic Relationship Network, System Differences, and Chinese Enterprises' Internationalization Strategy: Internal Mechanism and Empirical Test" (Grant No.: 21NDJC144YB) (2021 Philosophy and Social Science Project of Zhejiang Province). This research was supported by the project of "Research on the dynamic evolution mechanism of network public opinion of public emergencies and the ability of local governments to cope with them"(Grant No.: 21wsk169)(Wenzhou Philosophy and Social Science Planning in 2021). This research was supported by the second batch of industry-University Collaborative Education Program of The Higher Education Department of the Ministry of Education in 2021 with project name of "Smart Enterprise Business Data Analysis and Operation Decision Teaching Ability Improvement Teacher Training Project" (Grant no. 202102586003). CR Ancarani A., 2005, Journal of Purchasing and Supply Management, V11, P232, DOI 10.1016/j.pursup.2005.12.004 Cerqueus T, 2022, ELECTRON COMMER RES, V22, P513, DOI 10.1007/s10660-020-09438-9 Deng LR, 2022, EMERG MARK FINANC TR, V58, P3034, DOI 10.1080/1540496X.2021.2025047 Haidong Zhong, 2021, International Journal of Technology, Policy and Management, V21, P140, DOI 10.1504/IJTPM.2021.116514 He Y, 2020, IEEE COMMUN LETT, V24, P2221, DOI 10.1109/LCOMM.2020.3005947 Lei ZZ, 2020, ELECTRON COMMER RES, V20, P275, DOI 10.1007/s10660-019-09389-w Liu AJ, 2022, J THEOR APPL EL COMM, V17, P69, DOI 10.3390/jtaer17010004 [刘程军 Liu Chengjun], 2019, [地理科学, Scientia Geographica Sinica], V39, P1719 Liu F, 2020, IEEE T NEUR NET LEAR, V31, P5588, DOI 10.1109/TNNLS.2020.2973293 Liu Y, 2020, IND MARKET MANAG, V87, P18, DOI 10.1016/j.indmarman.2020.02.027 Liu ZC, 2022, IEEE T POWER ELECTR, V37, P8767, DOI 10.1109/TPEL.2022.3153797 Meng FQ, 2021, KSII T INTERNET INF, V15, P4028, DOI 10.3837/tiis.2021.11.009 Pochynok N., 2021, TECHNOLOGY AUDIT PRO, V4, P60, DOI [10.15587/2706-5448.2021.238858, DOI 10.15587/2706-5448.2021.238858] Sitar-Taut DA, 2020, INFORM TECHNOL MANAG, V21, P131, DOI 10.1007/s10799-019-00309-w Westland JC, 2020, ELECTRON COMMER RES, V20, P1, DOI 10.1007/s10660-020-09407-2 Wu XX, 2021, INFORM SOFTWARE TECH, V133, DOI 10.1016/j.infsof.2021.106530 Wu ZA, 2020, IEEE T CLOUD COMPUT, V8, P508, DOI 10.1109/TCC.2017.2700842 Xia HS, 2021, ELECTRON MARK, V31, P295, DOI 10.1007/s12525-020-00435-2 Yang WD, 2021, INFORM SCIENCES, V570, P526, DOI 10.1016/j.ins.2021.05.009 Zheng W, 2021, IEEE T RELIAB, V70, P1658, DOI 10.1109/TR.2021.3118026 Zheng WF, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12073416 Zheng WF, 2021, IEEE ACCESS, V9, P91476, DOI 10.1109/ACCESS.2021.3074937 Zhu MX, 2021, ENERGY REP, V7, P2703, DOI 10.1016/j.egyr.2021.05.009 NR 23 TC 29 Z9 29 U1 13 U2 55 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2022 VL 34 IS 8 AR 70 DI 10.4018/JOEUC.306270 PG 17 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 4I9HG UT WOS:000850882800002 OA gold DA 2024-03-27 ER PT J AU Trivedi, SK Patra, P Srivastava, PR Zhang, JZ Zheng, LJ AF Trivedi, Shrawan Kumar Patra, Pradipta Srivastava, Praveen Ranjan Zhang, Justin Zuopeng Zheng, Leven J. TI What prompts consumers to purchase online? A machine learning approach SO ELECTRONIC COMMERCE RESEARCH LA English DT Article; Early Access DE Consumer; E-commerce; Purchase intention; Machine learning; Artificial intelligence; Feature selection ID BIG DATA ANALYTICS; E-COMMERCE; ARTIFICIAL-INTELLIGENCE; RELATIONSHIP MANAGEMENT; ENERGY-CONSUMPTION; RANDOM FOREST; INTENTION; TRUST; IMPACT; ADOPTION AB With e-commerce emerging as a prominent mode of purchasing, there is a pressing need for businesses across the globe to understand online consumer purchase behavior and, in particular, their purchase intention. Information on purchase behavior provides valuable insights for designing marketing activities to reach wider target audiences, promote greater customer involvement, and achieve higher investment returns. This research builds a novel algorithm for predicting the purchase intention of e-commerce website users. The dataset for the study was publically available online. Under-sampling was used to remove the imbalance in the dataset, and two-stage feature selection was applied to identify the most important consumer characteristics. Then, the greedy search and the wrapper methods were used to generate a dataset comprising the five most relevant features. Subsequently, an improved machine learning model was proposed based on stacking well-known classifiers and compared against state-of-the-art Machine Learning classifiers using various measures to evaluate its performance. Our results showed that the proposed algorithm returned the best overall accuracies for 50-50, 66-34, and 80-20 splits of the dataset. It also outperformed other classifiers in extant literature. Our findings help e-commerce sites offer their users predictive and personalized recommendations. C1 [Trivedi, Shrawan Kumar] Rajiv Gandhi Inst Petr Technol, Amethi, India. [Patra, Pradipta] Indian Inst Management, Sirmaur, Himachal Prades, India. [Srivastava, Praveen Ranjan] Indian Inst Management Rohtak, Rohtak, Haryana, India. [Zhang, Justin Zuopeng] Univ North Florida, Coggin Coll Business, Dept Management, Jacksonville, FL 32224 USA. [Zheng, Leven J.] Hong Kong Metropolitan Univ, Ho Man Tin, Hong Kong, Peoples R China. C3 Indian Institute of Management (IIM System); Indian Institute of Management Sirmaur; Indian Institute of Management (IIM System); Indian Institute of Management Rohtak; State University System of Florida; University of North Florida; Hong Kong Metropolitan University RP Zheng, LJ (autor correspondiente), Hong Kong Metropolitan Univ, Ho Man Tin, Hong Kong, Peoples R China. EM strivedi@rgipt.ac.in; pradipta.patra@iimsirmaur.ac.in; praveen.ranjan@iimrohtak.ac.in; justin.zhang@unf.edu; lzheng@hkmu.edu.hk RI Zhang, Justin/M-9298-2019 OI Zhang, Justin/0000-0002-4074-9505; Srivastava, Praveen Ranjan/0000-0001-7467-5500 CR Abdou D, 2020, J GLOB INF MANAG, V28, P38, DOI 10.4018/JGIM.2020100103 Aggawal R., 2017, COMMON PITFALLS STAT, DOI [10.4103/picr.PICR_87_17, DOI 10.4103/PICR.PICR_87_17] Ahluwalia P, 2020, J GLOB INF MANAG, V28, P1, DOI 10.4018/JGIM.2020010101 Akram U, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102669 Akroush MN, 2015, BUS PROCESS MANAG J, V21, P1353, DOI 10.1108/BPMJ-02-2015-0022 Akter S, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa3 Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Al-Hasan A, 2021, J GLOB INF MANAG, V29, P194, DOI 10.4018/JGIM.20210401.oa1 Alfonso V., 2021, BIS Bulletin, P36 Ali M, 2021, J GLOB INF MANAG, V29, P46, DOI 10.4018/JGIM.2021050103 Alismaili SZ, 2020, J GLOB INF MANAG, V28, P73, DOI 10.4018/JGIM.2020040104 Aljarah I, 2018, COGN COMPUT, V10, P478, DOI 10.1007/s12559-017-9542-9 Alt R, 2019, ELECTRON MARK, V29, P143, DOI 10.1007/s12525-019-00353-y Amoroso DL., 2016, ENCY E COMMERCE DEV, P1610, DOI [10.4018/978-1-4666-9787-4.ch114, DOI 10.4018/978-1-4666-9787-4.CH114] Ariffin SK, 2018, J RES INTERACT MARK, V12, P309, DOI 10.1108/JRIM-11-2017-0100 Baati Karim, 2020, IFIP INT C ARTIFICIA, P43 Bag S, 2019, J BUS RES, V94, P408, DOI 10.1016/j.jbusres.2017.11.031 Balgomera K., 2022, J BUSINESS MANAGEMEN, V4, P100 Bawack RE, 2022, ELECTRON MARK, V32, P297, DOI 10.1007/s12525-022-00537-z Belgiu M, 2016, ISPRS J PHOTOGRAMM, V114, P24, DOI 10.1016/j.isprsjprs.2016.01.011 Boroon L, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa34 BROWN M., 2003, EUR J MARKETING, V37, P1666, DOI DOI 10.1108/03090560310495401 Cai J, 2018, NEUROCOMPUTING, V300, P70, DOI 10.1016/j.neucom.2017.11.077 Chaffey, 2022, ECOMMERCE ECOMMERCE Changchit C, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa51 Chaudhary Archana, 2016, Information Processing in Agriculture, V3, P215, DOI 10.1016/j.inpa.2016.08.002 Chaudhuri N, 2021, DECIS SUPPORT SYST, V149, DOI 10.1016/j.dss.2021.113622 Chen MY, 2013, ELECTRON COMMER RES, V13, P1, DOI 10.1007/s10660-013-9104-5 Chen N, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102344 Chen YF, 2016, ELECTRON COMMER RES, V16, P355, DOI 10.1007/s10660-015-9206-3 Cheng GP, 2021, J THEOR APPL EL COMM, V16, P1025, DOI 10.3390/jtaer16040058 Cheng LC, 2021, J GLOB INF MANAG, V29, P61, DOI 10.4018/JGIM.2021030104 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Chevalier, 2022, STAT 1286420 CONSUME Chou S, 2015, INTERNET RES, V25, P542, DOI 10.1108/IntR-01-2014-0006 Cisco Systems, 2019, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2017-2022 Cision, 2022, NEWS REL GLOB E COMM Dastane O., 2020, J ASIAN BUSINESS STR, V10, P142, DOI DOI 10.18488/JOURNAL.1006.2020.101.142.158 Dwivedi YK, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2020.102168 Erlangga H., 2021, Turkish Journal of Computer and Mathematics Education (TURCOMAT), V12, P3672, DOI DOI 10.17762/TURCOMAT.V12I3.1648 Esmeli R, 2021, ELECTRON MARK, V31, P697, DOI 10.1007/s12525-020-00448-x Faraoni M, 2019, BRIT FOOD J, V121, P574, DOI 10.1108/BFJ-04-2018-0216 Feng QL, 2015, WATER-SUI, V7, P1437, DOI 10.3390/w7041437 Gallego-Gomez C, 2021, J GLOB INF MANAG, V29, P103, DOI 10.4018/JGIM.2021010106 Gholami R, 2021, J GLOB INF MANAG, V29, P166, DOI 10.4018/JGIM.2021030109 Gholami R, 2020, J GLOB INF MANAG, V28, P21, DOI 10.4018/JGIM.2020100102 Guo L, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1984, DOI 10.1145/3292500.3330670 Guo YY, 2020, J GLOB INF MANAG, V28, P52, DOI 10.4018/JGIM.2020040103 Hamami F, 2021, AIP CONF PROC, V2329, DOI 10.1063/5.0043452 Haponik, 2021, BEST MACHINE LEARNIN Harzevili NS, 2018, APPL SOFT COMPUT, V69, P516, DOI 10.1016/j.asoc.2018.04.020 Hong L, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa44 Hung WH, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa5 Ibrahim O., 2018, NEW MODEL CUSTOMER P Islam M, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa52 Kabir MT, 2019, IEEE WCNC, DOI 10.1109/wcnc.2019.8885804 Kaur S, 2017, J INTERNET COMMER, V16, P343, DOI 10.1080/15332861.2017.1347861 Kim JB, 2012, ELECTRON COMMER RES, V12, P125, DOI 10.1007/s10660-012-9089-5 Kondrateva G, 2020, J GLOB INF MANAG, V28, P1, DOI 10.4018/JGIM.2020070101 Kumar, 2021, E COMMERCE MACHINE L Kumar A, 2018, INT J RETAIL DISTRIB, V46, P247, DOI 10.1108/IJRDM-08-2017-0161 Kumar A, 2019, NEURAL COMPUT APPL, V31, P877, DOI 10.1007/s00521-017-3047-z KUMAR UD, 2017, BUSINESS ANAL SCI DA Lam HY, 2021, J GLOB INF MANAG, V29, P1, DOI 10.4018/JGIM.2021050101 Laxman L. K. P., 2021, HDB RES INNOVATION D, P1 Li C, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa46 Li Q, 2018, ELECTRON COMMER RES, V18, P693, DOI 10.1007/s10660-018-9299-6 Li Q, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1048, DOI 10.1109/ICDMW.2015.172 Liao SH, 2021, TELEMAT INFORM, V62, DOI 10.1016/j.tele.2021.101621 Lim YJ, 2016, PROC ECON FINANC, V35, P401, DOI 10.1016/S2212-5671(16)00050-2 Lin JB, 2021, ELECTRON COMMER R A, V50, DOI 10.1016/j.elerap.2021.101103 Ling C, 2019, IEEE ACCESS, V7, P112963, DOI 10.1109/ACCESS.2019.2935121 Lissitsa S, 2021, ELECTRON COMMER RES, V21, P545, DOI 10.1007/s10660-019-09381-4 Liu QH, 2021, J GLOB INF MANAG, V29, P26, DOI 10.4018/JGIM.2021050102 Liu YM, 2020, J GLOB INF MANAG, V28, P17, DOI 10.4018/JGIM.2020070102 Lu BZ, 2016, COMPUT HUM BEHAV, V56, P225, DOI 10.1016/j.chb.2015.11.057 Ma SZ, 2021, J GLOB INF MANAG, V29, P86, DOI 10.4018/JGIM.20210901.oa6 Meghani, 2018, ARTICLE LEADERBOARD Meng L, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102733 Mokryn O, 2019, ELECTRON COMMER R A, V34, DOI 10.1016/j.elerap.2019.100836 Mou J, 2020, J GLOB INF MANAG, V28, P167, DOI 10.4018/JGIM.2020010109 Mursalin M, 2017, NEUROCOMPUTING, V241, P204, DOI 10.1016/j.neucom.2017.02.053 Nagy S, 2021, AMFITEATRU ECON, V23, P155, DOI 10.24818/EA/2021/56/155 Nair-Ghaswalla Amrita, 2021, NEWS WHY BUILDING TR Namogoo, 2021, BLOG CONS BEH PSYCH Nanduri J, 2020, INFORMS J APPL ANAL, V50, P64, DOI 10.1287/inte.2019.1017 Narang N., 2020, EPRA INT J MULTIDISC, V6, P58 Necula SC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10061955 Netti K., 2015, NOVEL METHOD MINIMIS, DOI [10.1109/ICCIC.2015.7435801, DOI 10.1109/ICCIC.2015.7435801] Chau NT, 2021, J GLOB INF MANAG, V29, P44, DOI 10.4018/JGIM.2021010103 Noviantoro T., 2021, Rev Bus Account Financ, V1, P130 Omigie NO, 2020, J GLOB INF MANAG, V28, P36, DOI 10.4018/JGIM.2020070103 Panda, 2020, ART COMP INS FIRMS L Pandya J., 2015, C5 0 ALGORITHM IMPRO Patel, 2021, M GLOBAL IDENTITY RE Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Potempa A., 2015, CLASSIFICATION E CUS, DOI [10.7148/2015-0594, DOI 10.7148/2015-0594] Rahman MS, 2020, J GLOB INF MANAG, V28, P39, DOI 10.4018/JGIM.2020010103 Rehman IH., 2021, J GLOBAL INFORM MANA, V29, P1 Sakar CO, 2019, NEURAL COMPUT APPL, V31, P6893, DOI 10.1007/s00521-018-3523-0 Santo PE, 2022, BALT J MANAG, V17, P56, DOI 10.1108/BJM-04-2021-0140 SCCG, 2022, FEAT ART TRUST INBL Sengupta S, 2020, J GLOB INF MANAG, V28, P131, DOI 10.4018/JGIM.2020040107 Sethi R.S., 2018, Academy of Marketing Studies Journal, V22, P1 Shankar A, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa19 Shaouf A, 2016, COMPUT HUM BEHAV, V60, P622, DOI 10.1016/j.chb.2016.02.090 Shareef MA, 2019, INFORM TECHNOL PEOPL, V32, P1345, DOI 10.1108/ITP-05-2018-0241 Shaw, 2022, BLOG ECOMMERCE MACHI Shihab MR, 2019, ELECTRON COMMER RES, V19, P159, DOI 10.1007/s10660-018-9294-y Shin D, 2021, J GLOB INF MANAG, V29, P77, DOI 10.4018/JGIM.2021030105 Siknun GP, 2016, PROCEDIA ENVIRON SCI, V33, P332, DOI 10.1016/j.proenv.2016.03.084 Singh, 2019, VIEWS WEBS TRUST DEF Soleimani M, 2022, INF SYST E-BUS MANAG, V20, P57, DOI 10.1007/s10257-021-00545-0 Song PY, 2020, TEH VJESN, V27, P1467, DOI 10.17559/TV-20200808113807 Srivastava PR, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa23 Statista, 2022, FOR 1262881 MOB APP Statista, 2022, STAT 607716 WORLDW A Statista, 2022, STAT 251666 NUMB DIG Statista, 2022, STAT 617136 DIG POP Statista, 2021, TOP 846 AM DOSSIERKE Sumarliah E, 2022, RES J TEXT APPAR, V26, P90, DOI 10.1108/RJTA-11-2020-0121 Sun Y, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa32 Talukder MS, 2020, J GLOB INF MANAG, V28, P74, DOI 10.4018/JGIM.2020100105 Ballestar MT, 2019, REV MANAG SCI, V13, P589, DOI 10.1007/s11846-018-0316-x Trivedi SK, 2019, KNOWL INF SYST, V60, P1427, DOI 10.1007/s10115-018-1271-1 Trivedi SK, 2018, ELECTRON LIBR, V36, P590, DOI 10.1108/EL-08-2017-0182 Trivedi SK, 2014, APPL COMPUT REV, V14, P53, DOI 10.1145/2600617.2600622 Trivedi SK, 2013, IEEE INT C COMPUT, P1153, DOI 10.1109/CSE.2013.171 Vali H, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa7 Varsha PS, 2021, J GLOB INF MANAG, V29, P221, DOI 10.4018/JGIM.20210701.oa10 Ventre I, 2020, J INT CONSUM MARK, V32, P287, DOI 10.1080/08961530.2020.1712293 Verhagen T, 2018, ELECTRON COMMER RES, V18, P537, DOI 10.1007/s10660-017-9270-y Wu M. Y., 2022, ARTICLES BUILD TRUST Xiao L, 2021, J GLOB INF MANAG, V29, P138, DOI 10.4018/JGIM.20210901.oa8 Yang GJ, 2021, J GLOB INF MANAG, V29, P55, DOI 10.4018/JGIM.20210901.oa4 Yaseen A., 2021, LAHORE GARRISON U RE, V5, P62, DOI [10.54692/lgurjcsit.2021.0502209, DOI 10.54692/LGURJCSIT.2021.0502] Yim MYC, 2017, J INTERACT MARK, V39, P89, DOI 10.1016/j.intmar.2017.04.001 Zhang C, 2021, J GLOB INF MANAG, V29, P103, DOI 10.4018/JGIM.2021050105 Zhang D, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102304 Zhao SK, 2020, J GLOB INF MANAG, V28, P121, DOI 10.4018/JGIM.2020010107 Zheng BC, 2018, IEEE ICCE Zhu BAK, 2022, IEEE ACCESS, V10, P36637, DOI 10.1109/ACCESS.2021.3054044 NR 142 TC 3 Z9 3 U1 24 U2 64 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD 2022 NOV 9 PY 2022 DI 10.1007/s10660-022-09624-x EA NOV 2022 PG 37 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 6A2XW UT WOS:000880523000002 DA 2024-03-27 ER PT J AU Nguyen, N Johnson, J Tsiros, M AF Nguyen, Nguyen Johnson, Joseph Tsiros, Michael TI Unlimited Testing: Let's Test Your Emails with AI SO MARKETING SCIENCE LA English DT Article DE email marketing; machine learning; text mining; emotion detection; NLP; deep learning AB Testing email marketing effectiveness is an active research area because email remains an important channel for customer acquisition and retention. Email open rates are a key measure of campaign effectiveness. Scholars identify three predictors of open rates: recipients' characteristics, headline characteristics, and sending time. The industry-favored A/B testing has three drawbacks: it takes hours, depletes lists available for main campaigns, and limits testable email versions because of sample size and power requirements. These limitations continue to motivate researchers to build and improve open rate prediction models. Although they reduce testing time, models developed in marketing use only recipients' past open rates as predictors. By contrast, models in computer science typically use only email headline characteristics as predictors. Consequently, current models' open rate prediction errors are high. The authors address the limitations of both literature streams and use all three predictors and machine learning to build an email open rate predictor (EMOP) based on their universal emotion detector (UED). They test EMOP on data from four brands and set state-of-the-art prediction results. Experimental validation shows that EMOP can pick the best headline from a set of professionally generated headlines. Also, UED ranked second at the SemEval 2018 Task 1 E-c competition as of January 5, 2023. C1 [Nguyen, Nguyen; Johnson, Joseph; Tsiros, Michael] Univ Miami, Miami Herbert Business Sch, Coral Gables, FL 33124 USA. C3 University of Miami RP Johnson, J (autor correspondiente), Univ Miami, Miami Herbert Business Sch, Coral Gables, FL 33124 USA. EM nnguyenlethanh@mbs.miami.edu; jjohnson@bus.miami.edu; tsiros@miami.edu OI Nguyen, Nguyen/0000-0002-8174-4065 CR Alhuzali H, 2021, PREPRINT Ameer I, 2023, EXPERT SYST APPL, V213, DOI 10.1016/j.eswa.2022.118534 [Anonymous], 2022, Statista [Anonymous], 2016, STATISTA [Anonymous], 2016, Statista Balakrishnan R, 2014, IEEE INT CONF BIG DA, P579, DOI 10.1109/BigData.2014.7004277 Baziotis Christos., 2018, P 12 INT WORKSHOP SE, P245, DOI DOI 10.18653/V1/S18-1037 Blattberg RC, 2009, DATABASE MARKETING A Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bonfrer A, 2009, MARKET SCI, V28, P251, DOI 10.1287/mksc.1080.0393 Boyd R, 2022, DEV PSYCHOMETRIC PRO, DOI DOI 10.13140/RG.2.2.23890.43205 Chakraborty I, 2022, J MARKETING RES, V59, P600, DOI 10.1177/00222437211052500 Chatterjee A., 2019, P 13 INT WORKSHOP SE, P39, DOI DOI 10.18653/V1/S19-2005 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chochlakis G, 2022, PREPRINT Clark K, 2020, PREPRINT Cortiz D, 2021, PREPRINT Demszky D, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4040 Devlin J., 2018, ARXIV Dorogush AV, 2018, PREPRINT Duppada V, 2018, P 12 INT WORKSH SEM, P1 Fei H, 2020, AAAI CONF ARTIF INTE, V34, P7692 Feit EM, 2019, MARKET SCI, V38, P1038, DOI 10.1287/mksc.2019.1194 Fong NM, 2017, MANAGE SCI, V63, P2353, DOI 10.1287/mnsc.2016.2447 Hanson W, 2000, PRINCIPLES INTERNET Hartmann J, 2022, EMOTION ENGLISH DIST Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] HOLBROOK MB, 1980, J ADVERTISING RES, V20, P53 Jaidka K, 2018, WEBSCI'18: PROCEEDINGS OF THE 10TH ACM CONFERENCE ON WEB SCIENCE, P177, DOI 10.1145/3201064.3201071 Joulin A, 2017, P 15 C EUR CHAPT ASS, V2, P427, DOI [10.48550/arxiv.1607.01759, DOI 10.48550/ARXIV.1607.01759] Kant N, 2018, PREPRINT Ke G, 2019, LIGHTGBM HIGHLY EFFI Kim Y, 2014, ACL ANTHOLOGY Kristensen E, 2022, ECOMMERCE REVENUE EN Kumar V, 2014, J MARKETING RES, V51, P403, DOI 10.1509/jmr.13.0169 Li J, 2021, J MARKETING, V85, P123, DOI 10.1177/0022242920959043 Liu Y, 2019, PREPRINT Loshchilov I, 2019, P INT C LEARN REPR Manning CD, 2008, INTRO INFORM RETRIEV McCorkle S, 2015, EMAIL MARKETING IS S McInnes L., 2018, arXiv, DOI 10.21105/joss.00861 McInnes L, 2017, INT CONF DAT MIN WOR, P33, DOI 10.1109/ICDMW.2017.12 Meisheri H, 2018, P 12 INT WORKSH SEM, P291, DOI [DOI 10.18653/V1/S18-1043, 10.18653/v1/S18-1043] Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Neuendorf K. A., 2017, CONTENT ANAL GUIDEBO, DOI [DOI 10.4135/9781071802878, 10.4135/9781071802878] Ogilvy D., 1983, Ogilvy on Advertising Ohman E, 2018, P 9 WORKSH COMP APPR, P24 Padilla N, 2021, J MARKETING RES, V58, P981, DOI 10.1177/00222437211032938 Park JiHo., 2018, Proceedings of The 12th International Workshop on Semantic Evaluation, P264 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162 Poria S, 2014, KNOWL-BASED SYST, V69, P108, DOI 10.1016/j.knosys.2014.06.011 Qiang JP, 2022, IEEE T KNOWL DATA EN, V34, P1427, DOI 10.1109/TKDE.2020.2992485 Radford A., 2019, OPENAI BLOG, V1, P1, DOI DOI 10.18653/V1/P19-1195 Raffel C, 2020, PREPRINT Reimers N, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P567 ROSSITER JR, 1981, J ADVERTISING RES, V21, P63 Sahni NS, 2018, MARKET SCI, V37, P236, DOI 10.1287/mksc.2017.1066 Sahni NS, 2017, MANAGE SCI, V63, P2688, DOI 10.1287/mnsc.2016.2450 Sanh Victor., 2020, PREPRINT Saravia E, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P3687 Schuster M, 1997, IEEE T SIGNAL PROCES, V45, P2673, DOI 10.1109/78.650093 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 Shi X, 2021, PREPRINT Shwartz-Ziv R, 2021, PREPRINT Sinha M, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P531, DOI 10.1145/3159652.3159683 Strapparava C, 2007, P 4 INT WORKSH SEM E, P70, DOI DOI 10.3115/1621474.1621487 Tellis GJ, 2019, J MARKETING, V83, P1, DOI 10.1177/0022242919841034 Vaswani A., 2017, ADV NEURAL INFORM PR, P6000 Wang A., 2018, PREPRINT Wells W., 1992, Advertising: Principles and practice, V2nd WILBUR WJ, 1994, J INFORM SCI, V20, P270, DOI 10.1177/016555159402000405 Williams P, 2002, J CONSUM RES, V28, P636, DOI 10.1086/338206 Wood SN, 2015, J ROY STAT SOC C, V64, P139, DOI 10.1111/rssc.12068 Xu P, 2020, PREPRINT Yang Z, 2020, ARXIV Ying W, 2019, P 5 WORKSH NOIS US G, P316, DOI DOI 10.18653/V1/D19-5541 Zhang M, 2014, SIGIR'14: PROCEEDINGS OF THE 37TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P73, DOI 10.1145/2600428.2609599 Zhou D, 2016, P 2016 C EMP METH NA, P638, DOI DOI 10.18653/V1/D16-1061 NR 79 TC 0 Z9 0 U1 45 U2 48 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD MAR-APR PY 2024 VL 43 IS 2 DI 10.1287/mksc.2021.0126 EA JUL 2023 PG 22 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA LM6E7 UT WOS:001044243600001 DA 2024-03-27 ER PT J AU Bhattacharya, C Sinha, M AF Bhattacharya, Chandrima Sinha, Manish TI Role of Artificial Intelligence in Banking for Leveraging Customer Experience SO AUSTRALASIAN ACCOUNTING BUSINESS AND FINANCE JOURNAL LA English DT Article DE Artificial Intelligence; Digital Banking; Chatbots; Customer Experience AB Purpose: In light of digital advancements, banks need to create customer experiences that strengthen loyalty and trust. For establishing a strong digital banking base, it is crucial for banks to make their processes efficient and fast. The purpose of the paper is to analyze the efficacy of banking functions on implementing Artificial Intelligence for enhancing customer engagement and improving customer satisfaction. It targets banks in metropolitan cities of India having tech-savvy customers, leading a fast-paced life who desire personalization and expect faultless and seamless services.Methodology: The study focusses on front, middle and back-office banking processes. The data for middle and back-office processes is collected through 10 interviews of senior officials and head of IT team in major banks. Literature review and theoretical research is carried out for various international and Indian banks with respect to the integration of AI to improve customer interactions and internal banking processes. For understanding the front-office user experience with AI-Banking, data has been gathered through a survey regarding usage of Chatbots on online banking platforms. A quantitative analysis using the Relative Importance Index reveals major use-cases ranked by customers. Spearman correlation is applied to find the relationship between the two most popular use-cases.Findings: The research paper reveals banking features integrated with AI. Chatbot use-cases on banking platforms are ranked based on customer experience. It is proved that there is a positive correlation (0.247) between the two most popular use-cases. The paper proposes IT Architecture and best practices for the Practical/Theoretical implications: Based on the complete picture of AI integration with banking operations, evolving Indian banks could focus on the most popular use-cases to attract customers. A comparison with the features developed for various banks may provide a way for growth in the digital banking sector. The correlation between Chatbot use-cases may benefit the established Indian banks to further expand business.Originality/value: Implementation of AI in banking is identified for Indian Banks. It is proved that if a person uses Chatbot for assistance in customer service, they are likely to use Chatbot for recommendation regarding offers and discounts. C1 [Bhattacharya, Chandrima; Sinha, Manish] Symbiosis Int Univ, Symbiosis Ctr Management & Human Resource Dev, SIU, Pune, India. C3 Symbiosis International University; Symbiosis Centre for Management & Human Resource Development (SCMHRD) RP Bhattacharya, C (autor correspondiente), Symbiosis Int Univ, Symbiosis Ctr Management & Human Resource Dev, SIU, Pune, India. EM chandrima994@gmail.com; manish_sinha@scmhrd.edu CR Agarwal P., 2019, ADV SCI ENG TECHNOLO, DOI [10.1109/ICASET.2019.8714305, DOI 10.1109/ICASET.2019.8714305] [Anonymous], 2016, HADOOP BANKING GAME Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Bhandari A., 2020, BUILD YOUR OWN OPTIC Biswas S., 2020, BANK FUTURE CAN BANK Euart J., 2020, GLOBAL VIEW FINANCIA Gallego-Gomez C, 2020, INT J ENTERP INF SYS, V16, P20, DOI 10.4018/IJEIS.2020070102 Indriasari Elisa, 2019, 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI), P863, DOI 10.1109/IIAI-AAI.2019.00175 Königstorfer F, 2020, J BEHAV EXP FINANC, V27, DOI 10.1016/j.jbef.2020.100352 Korobov G., 2020, SAAS VS PREMISE DIGI McBride T., 2019, REALIZING OPPORTUNIT Sandu N, 2019, INT CONF INFO TECH, DOI 10.1109/ithet46829.2019.8937382 Sumathi N., 2017, 2 INT C COMPUTING CO, DOI [10.1109/ICCCT2.2017.7972246, DOI 10.1109/ICCCT2.2017.7972246] Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Vaganova O., 2019, HUMANITIES SOCIAL SC, V7, P786, DOI [10.18510/hssr.2019.7599, DOI 10.18510/HSSR.2019.7599] NR 15 TC 1 Z9 1 U1 17 U2 41 PU UNIV WOLLONGONG PI WOLLONGONG PA NORTHFIELDS AVE, WOLLONGONG, NSW 2522, AUSTRALIA SN 1834-2000 EI 1834-2019 J9 AUSTRALAS ACCOUNT BU JI Australas. Account. Bus. Financ. J. PY 2022 VL 16 IS 5 BP 89 EP 105 PG 17 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 7Y1LH UT WOS:000914649300007 DA 2024-03-27 ER PT J AU Kull, AJ Romero, M Monahan, L AF Kull, Alexander J. Romero, Marisabel Monahan, Lisa TI How may I help you? Driving brand engagement through the warmth of an initial chatbot message SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Artificial intelligence; Brand relationships; Brand-self distance; Digital marketing; Stereotype content model; Virtual agent ID ARTIFICIAL-INTELLIGENCE; SOCIAL MEDIA; CONSUMERS; AGENTS; STEREOTYPES; ENCOUNTERS; NONPROFITS; FRAMEWORK; ATTITUDES; BEHAVIOR AB Despite the growing number of brands that rely on chatbots to address customer service inquiries that once required human intervention, academics and practitioners are only beginning to acknowledge the role of chatbots in brand-building activities. Chatbots can initiate online conversations, thereby often serving as a consumer's first brand impression. However, little is known about how managers can strategically tailor a chatbot's initial message to foster consumer-brand connections and, ultimately, engagement. Three studies demonstrate that when chatbots initiate a conversation using a warm (vs. competent) message, brand engagement increases, as assessed using both computerized text analysis and traditional scale measures. Brand-self distance mediates this effect, such that a warm (vs. competent) initial chatbot message makes consumers feel closer to the brand. Further, the authors identify brand affiliation as a theoretically relevant moderator. This research thus offers managers insight into how initial chatbot messages can attract and engage consumers. C1 [Kull, Alexander J.] Univ San Diego, Sch Business, 5998 Alcala Pk, San Diego, CA 92110 USA. [Romero, Marisabel] Colorado State Univ, Coll Business, 1201 Campus Delivery, Ft Collins, CO 80523 USA. [Monahan, Lisa] Meredith Coll, Sch Business, 3800 Hillsborough St, Raleigh, NC 27607 USA. C3 University of San Diego; Colorado State University RP Kull, AJ (autor correspondiente), Univ San Diego, Sch Business, 5998 Alcala Pk, San Diego, CA 92110 USA. EM akull@sandiego.edu; mari.romero_lopez@colostate.edu; lamonahan@meredith.edu RI hajibabaei, hossein/HFB-7762-2022 CR Aaker J, 2010, J CONSUM RES, V37, P224, DOI 10.1086/651566 Aggarwal P, 2004, J CONSUM RES, V31, P87, DOI 10.1086/383426 Aggarwal P, 2007, J CONSUM RES, V34, P468, DOI 10.1086/518544 Allport G. W., 1954, The nature of prejudice Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Bernritter SF, 2016, J INTERACT MARK, V33, P27, DOI 10.1016/j.intmar.2015.10.002 Bloomfield EF, 2020, SCI COMMUN, V42, P369, DOI 10.1177/1075547020927017 Booth RJ, 2015, LINGUISTIC INQUIRY A Brandtzaeg P. B., 2018, Interactions, V25, P38, DOI [DOI 10.1145/3236669, 10.1145/3236669, https://doi.org/10.1145/3236669] Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 Brodie RJ, 2011, J SERV RES-US, V14, P252, DOI 10.1177/1094670511411703 CACIOPPO JT, 1982, J PERS SOC PSYCHOL, V42, P116, DOI 10.1037/0022-3514.42.1.116 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Candello H, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3476, DOI 10.1145/3025453.3025919 Canhoto AI, 2020, BUS HORIZONS, V63, P183, DOI 10.1016/j.bushor.2019.11.003 Chan J., 2019, SINGLE GRAIN 0111 Choi WJ, 2013, J MARKETING, V77, P96, DOI 10.1509/jm.11.0544 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Computer Generated Solutions, 2019, CHATB DEL SPEED CONS Corti K, 2016, COMPUT HUM BEHAV, V58, P431, DOI 10.1016/j.chb.2015.12.039 Currás-Pérez R, 2009, J BUS ETHICS, V89, P547, DOI 10.1007/s10551-008-0016-6 Davenport TH, 2018, HARVARD BUS REV, V96, P108 DeWall CN, 2009, J PERS SOC PSYCHOL, V96, P729, DOI 10.1037/a0014634 EPAM, 2017, CHATB ADD CUST TOUCH Fiske ST, 2002, J PERS SOC PSYCHOL, V82, P878, DOI 10.1037//0022-3514.82.6.878 Fiske ST, 2007, TRENDS COGN SCI, V11, P77, DOI 10.1016/j.tics.2006.11.005 Fournier S, 1998, J CONSUM RES, V24, P343, DOI 10.1086/209515 Fournier S, 2013, J CONSUM PSYCHOL, V23, P253, DOI 10.1016/j.jcps.2013.01.004 Franzen K, 2020, ARE BLOGS RELIABLE S Fung P, 2018, LECT NOTES COMPUT SC, V9624, P173, DOI 10.1007/978-3-319-75487-1_14 Gnewuch Ulrich, 2017, P INT C INF SYST ICI, V6, P4046 Goodman JK, 2018, J CONSUM RES, V45, P365, DOI 10.1093/jcr/ucy010 Gretry A, 2017, J BUS RES, V74, P77, DOI 10.1016/j.jbusres.2017.01.012 Gronroos C., 1990, Service Management and Marketing: Managing the Moments of Truth in Service Competition Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Hayes A. F., 2018, REGRESSION BASED APP Hofstede G., 1997, CULTURES ORG SOFTWAR Hofstede Insights, 2021, COUNTR COMP Hollebeek L, 2011, J STRATEG MARK, V19, P555, DOI 10.1080/0965254X.2011.599493 Hollebeek LD, 2011, J MARKET MANAG-UK, V27, P785, DOI 10.1080/0267257X.2010.500132 Holtgraves TM, 2007, COMPUT HUM BEHAV, V23, P2163, DOI 10.1016/j.chb.2006.02.017 Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Hsieh SH, 2016, J INTERACT MARK, V33, P13, DOI 10.1016/j.intmar.2015.10.001 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang R, 2020, J BUS RES, V121, P616, DOI 10.1016/j.jbusres.2020.04.034 Hur JD, 2015, J CONSUM RES, V42, P340, DOI 10.1093/jcr/ucv017 Johnen M, 2019, J ACAD MARKET SCI, V47, P858, DOI 10.1007/s11747-019-00661-x Jones E.E., 1990, INTERPERSONAL PERCEP Joshi N., 2018, FORBES Jovic D., 2020, SMALLBIZGENIUS 1120 Kees J, 2017, J ADVERTISING, V46, P141, DOI 10.1080/00913367.2016.1269304 Kervyn N, 2014, SOC COGNITION, V32, P256, DOI 10.1521/soco.2014.32.3.256 Kervyn N, 2012, J CONSUM PSYCHOL, V22, P166, DOI 10.1016/j.jcps.2011.09.006 Kim J, 2021, J BUS RES, V130, P552, DOI 10.1016/j.jbusres.2019.09.043 Kirmani A, 2017, J MARKETING, V81, P103, DOI 10.1509/jm.15.0369 Köhler CF, 2011, J MARKETING, V75, P93, DOI 10.1509/jm.75.2.93 Kolbl Z, 2019, J BUS RES, V104, P614, DOI 10.1016/j.jbusres.2018.12.060 Kull AJ, 2016, INT J RES MARK, V33, P77, DOI 10.1016/j.ijresmar.2015.04.005 Kumar V, 2021, J BUS RES, V125, P864, DOI 10.1016/j.jbusres.2020.01.007 Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Leite I, 2013, INT J HUM-COMPUT ST, V71, P250, DOI 10.1016/j.ijhcs.2012.09.005 Lemmink J, 1998, INT J RES MARK, V15, P505, DOI 10.1016/S0167-8116(98)00016-0 LEVENSON RW, 1992, J PERS SOC PSYCHOL, V63, P234, DOI 10.1037/0022-3514.63.2.234 Li XS, 2019, J CONSUM RES, V45, P973, DOI 10.1093/jcr/ucy016 Li YC, 2019, COMMUN REP, V32, P15, DOI 10.1080/08934215.2018.1545859 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Luo J. T., 2016, J SERV MARK, V20, P112 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Macinnis D.J., 2009, Handbook of Brand Relationships MACRAE CN, 1994, J PERS SOC PSYCHOL, V66, P37, DOI 10.1037/0022-3514.66.1.37 Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 Marketing Science Institute, 2020, RES PRIOR 2020 2022 Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001 Misal D., 2018, ANALYTICS INDIA 0907 Murtarelli G, 2021, J BUS RES, V129, P927, DOI 10.1016/j.jbusres.2020.09.018 Nguyen M.-H., 2020, BUSINESS INSIDER Nielsen J., 2011, LONG USERS STAY WEB Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Park C.W., 1985, Research in Consumer Behavior, V1, P201 Park CW, 2013, J CONSUM PSYCHOL, V23, P229, DOI 10.1016/j.jcps.2013.01.002 Paulssen M, 2014, EUR J MARKETING, V48, P964, DOI 10.1108/EJM-11-2011-0657 Pennebaker JW., 2015, LIWC 2015 OPERATORS Phillips C., 2018, CHATBOTS MAGAZINE Rafaeli A, 2017, J SERV RES-US, V20, P91, DOI 10.1177/1094670516679275 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Russell AMT, 2008, EUR J SOC PSYCHOL, V38, P1193, DOI 10.1002/ejsp.539 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Schroll R, 2018, J CONSUM RES, V45, P648, DOI 10.1093/jcr/ucy014 Sela A, 2012, J CONSUM RES, V39, P644, DOI 10.1086/664972 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shum HY, 2018, FRONT INFORM TECH EL, V19, P10, DOI 10.1631/FITEE.1700826 Sirianni NJ, 2013, J MARKETING, V77, P108, DOI 10.1509/jm.11.0485 Statista Research Department, 2021, DIG LEAD GEN AD SPEN Steele I., 2018, CHATBOT DOS DONTS TH Stephen A. T., 2015, 15110 MARK SCI I Stokburger-Sauer N, 2012, INT J RES MARK, V29, P406, DOI 10.1016/j.ijresmar.2012.06.001 Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Tsai WC, 2002, J APPL PSYCHOL, V87, P1001, DOI 10.1037//0021-9010.87.5.1001 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Verma A., 2019, ENTREPRENEUR Vora I., 2018, TOP 5 FUNDAMENTAL RU Wan J., 2015, Strong Brands, Strong Relationships, P119 Wang XH, 2018, J BUS RES, V84, P89, DOI 10.1016/j.jbusres.2017.11.011 Wang Z, 2017, J CONSUM RES, V43, P787, DOI 10.1093/jcr/ucw062 Willis J, 2006, PSYCHOL SCI, V17, P592, DOI 10.1111/j.1467-9280.2006.01750.x Wojciszke B, 1998, PERS SOC PSYCHOL B, V24, P1251, DOI 10.1177/01461672982412001 Wu JT, 2017, J MARKET MANAG-UK, V33, P61, DOI 10.1080/0267257X.2016.1233132 Ybarra O, 2001, MOTIV EMOTION, V25, P85, DOI 10.1023/A:1010633908298 NR 110 TC 59 Z9 60 U1 56 U2 234 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD OCT PY 2021 VL 135 BP 840 EP 850 DI 10.1016/j.jbusres.2021.03.005 EA JUL 2021 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA TY1UF UT WOS:000683570800018 DA 2024-03-27 ER PT J AU Arpaci, I AF Arpaci, Ibrahim TI What drives students' online self-disclosure behaviour on social media? A hybrid SEM and artificial intelligence approach SO INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS LA English DT Article DE social media; self-disclosure; trust; artificial intelligence; machine learning ID PRIVACY CALCULUS; TRUST; COMMERCE; ASSOCIATIONS; INTENTION; LOCATION; ADOPTION; PARADOX; IMPACT AB This study investigated drivers of the online self-disclosure behaviour on social media by employing a complementary structural equation modelling (SEM) and artificial intelligence approach. The study developed a theoretical model based on the 'theory of planned behaviour' (TPB) and 'communication privacy management' (CPM) theory. The predictive model was validated by employing a multi-analytical approach based on the data obtained from 300 undergraduate students. The model focused on the role of security, privacy, and trust perceptions in predicting the attitudes toward the selfie-posting behaviour. The results suggested that privacy and security are significantly associated with the trust, which explains a significant amount of the variance in the attitudes. Consistently, results of the machine-learning classification algorithms suggested that attributes of the security, privacy, and trust could predict the attitudes with an accuracy of more than 61%% in most cases. Further, mediation analysis results indicated that privacy has no direct effect, but an indirect effect on the attitudes. These findings suggested a trade-off between the privacy concerns and perceived benefits of the actual behaviour. C1 [Arpaci, Ibrahim] Tokat Gaziosmanpasa Univ, Dept Comp Educ & Instruct Technol, Fac Educ, TR-60250 Tokat, Turkey. C3 Gaziosmanpasa University RP Arpaci, I (autor correspondiente), Tokat Gaziosmanpasa Univ, Dept Comp Educ & Instruct Technol, Fac Educ, TR-60250 Tokat, Turkey. EM ibrahim.arpaci@gop.edu.tr RI ARPACI, Ibrahim/AAC-2389-2019 OI ARPACI, Ibrahim/0000-0001-6513-4569 CR Aiken KD, 2006, J ACAD MARKET SCI, V34, P308, DOI 10.1177/0092070304271004 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T [Anonymous], 2005, HDB ATTITUDES [Anonymous], SEM CONFIRMATORY FAC Arpaci I, 2019, COMPUT HUM BEHAV, V90, P181, DOI 10.1016/j.chb.2018.09.005 Arpaci I, 2016, COMPUT HUM BEHAV, V58, P150, DOI 10.1016/j.chb.2015.12.067 Arpaci I, 2015, CYBERPSYCH BEH SOC N, V18, P602, DOI 10.1089/cyber.2015.0243 Baek YM, 2014, COMPUT HUM BEHAV, V38, P33, DOI 10.1016/j.chb.2014.05.006 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Barry CT, 2017, PSYCHOL POP MEDIA CU, V6, P48, DOI 10.1037/ppm0000089 Barth S, 2017, TELEMAT INFORM, V34, P1038, DOI 10.1016/j.tele.2017.04.013 Beldad A, 2010, COMPUT HUM BEHAV, V26, P857, DOI 10.1016/j.chb.2010.03.013 Chen JV, 2017, INT J MOB COMMUN, V15, P329, DOI 10.1504/IJMC.2017.083465 Chou YHD, 2018, INT J MOB COMMUN, V16, P117 De Wolf R, 2014, COMPUT HUM BEHAV, V35, P444, DOI 10.1016/j.chb.2014.03.010 DeCew J., 1997, The pursuit of privacy: Law, ethics, and the rise of technology Dhir A, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00815 Dinev T, 2006, INFORM SYST RES, V17, P61, DOI 10.1287/isre.1060.0080 Fogel J, 2009, COMPUT HUM BEHAV, V25, P153, DOI 10.1016/j.chb.2008.08.006 Frampton BD, 2013, COMPUT HUM BEHAV, V29, P2257, DOI 10.1016/j.chb.2013.05.006 Frye NE, 2010, COMPUT HUM BEHAV, V26, P1120, DOI 10.1016/j.chb.2010.03.016 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Hallam C, 2017, COMPUT HUM BEHAV, V68, P217, DOI 10.1016/j.chb.2016.11.033 Halpern D, 2016, PERS INDIV DIFFER, V97, P98, DOI 10.1016/j.paid.2016.03.019 Joinson AN, 2010, HUM-COMPUT INTERACT, V25, P1, DOI 10.1080/07370020903586662 Kim HS, 2018, INT J MOB COMMUN, V16, P135 Kisekka V, 2013, COMPUT HUM BEHAV, V29, P2722, DOI 10.1016/j.chb.2013.07.023 Lauer TW, 2007, INT J INF SECUR, V6, P323, DOI 10.1007/s10207-007-0028-8 Liang H, 2016, NEW MEDIA SOC McCullagh K, 2008, INF COMMUN TECHNOL L, V17, P3, DOI 10.1080/13600830801886984 McKnight DH, 2002, J STRATEGIC INF SYST, V11, P297, DOI 10.1016/S0963-8687(02)00020-3 Mesch GS, 2012, COMPUT HUM BEHAV, V28, P1471, DOI 10.1016/j.chb.2012.03.010 Nissenbaum H, 1998, LAW PHILOS, V17, P559 Olivero N, 2004, J ECON PSYCHOL, V25, P243, DOI 10.1016/S0167-4870(02)00172-1 Petronio S., 2002, BOUNDARY PRIVACY DIA Qiu L, 2015, COMPUT HUM BEHAV, V52, P443, DOI 10.1016/j.chb.2015.06.032 Ridgway JL, 2016, CYBERPSYCH BEH SOC N, V19, P2, DOI 10.1089/cyber.2015.0433 Roca Juan Carlos, 2009, Information Management & Computer Security, V17, P96, DOI 10.1108/09685220910963983 Rong K, 2018, INT J MOB COMMUN, V16, P247, DOI 10.1504/IJMC.2018.10003824 Smith HJ, 2011, MIS QUART, V35, P989 Sobel M.E., 1982, SOCIOLOGICAL METHODO, P290, DOI [DOI 10.2307/270723, 10.2307/270723] Taddei S, 2013, COMPUT HUM BEHAV, V29, P821, DOI 10.1016/j.chb.2012.11.022 Tan X, 2018, INT J MOB COMMUN, V16, P286, DOI 10.1504/IJMC.2018.10004210 Tufekci Z, 2008, B SCI TECHNOL SOC, V28, P20, DOI DOI 10.1177/0270467607311484 Weber Rolf H., 2009, Computer Law and Security Report, V25, P522, DOI 10.1016/j.clsr.2009.09.002 Westin A.F., 1967, PRIVACY FREEDOM Wood JT., 2015, INTERPERSONAL COMMUN NR 47 TC 17 Z9 17 U1 6 U2 50 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1470-949X EI 1741-5217 J9 INT J MOB COMMUN JI Int. J. Mob. Commun. PY 2020 VL 18 IS 2 BP 229 EP 241 PG 13 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA KW4DH UT WOS:000521115300005 DA 2024-03-27 ER PT J AU Ren, XC He, J Huang, ZL AF Ren, Xiaocong He, Jun Huang, Zilong TI RETRACTADO: An empirical study on the behavior of e-commerce strategic planning based on deep learning algorithm (Retracted Article) SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article; Retracted Publication DE E-commerce; Key success factors; Evaluation; Structural equation model; Deep learning algorithm; Data sparse AB On the basis of large-scale literature research, the evaluation and element model for the successful implementation of e-commerce are established, and the key elements (customer, strategy, leadership, technology) and the evaluation elements (system quality, system quality, information quality, service quality) affect the success of e-commerce. First, learn the effective features of the items from the content data through deep learning in advance, and then transform the learned features into the learning task of the collaborative filtering target, and add balance and no relevant constraints to the e-commerce strategic planning behavior values of users and items, using alternating optimization algorithms to learn the value of e-commerce strategic planning behavior and fine-tuning the deep network, and finally get the compact and informative e-commerce strategic planning behavior value of users and items, effectively solving the data sparse problem and cold start in the collaborative filtering algorithm problem. Secondly, the combination of conceptual model and structural equation model has innovated research methods and introduced structural equation model method, which effectively handles the complex relationship between multi-dimensional variables and revises and verifies the hypothetical model. Through path analysis, the interaction and influence between key success factors, success evaluation factors, and successful implementation of e-commerce are explored, and useful attempts are made to expand relevant research data analysis methods. C1 [Ren, Xiaocong; He, Jun; Huang, Zilong] Liaoning Univ, Sch Econ, Shenyang 110036, Liaoning, Peoples R China. C3 Liaoning University RP Huang, ZL (autor correspondiente), Liaoning Univ, Sch Econ, Shenyang 110036, Liaoning, Peoples R China. EM appilerr@163.com; danleerr@163.com; beresun@163.com FU Program of Liaoning Social Science Planning Fund Project: Research on the Reform and Development of Urban Public Utilities PPP in Northeast China [L19CJL004] FX This work is supported by the Program of Liaoning Social Science Planning Fund Project: Research on the Reform and Development of Urban Public Utilities PPP in Northeast China (Grant No.L19CJL004). CR Aringhieri R, 2018, OPER RES PERSPECT, V5, P22, DOI 10.1016/j.orp.2017.12.001 Bai, 2017, C E CA, V42, P1460 Chen, 2018, PAPER ASIA, V1, P14 Chen C., 2015, ADV J FOOD SCI TECHN, V7, P977, DOI [10.19026/ajfst.7.2546, DOI 10.19026/AJFST.7.2546] Dhote S, 2020, ELECTRON COMMER RES, V20, P259, DOI 10.1007/s10660-019-09383-2 Ding K, 2017, J INTELL MANUF, V28, P1303, DOI 10.1007/s10845-015-1051-7 Guo, 2017, B TECNICO TECH B, V55, P352 Hamamoto M, 2019, ENERG POLICY, V125, P286, DOI 10.1016/j.enpol.2018.10.042 Jipp M, 2016, J COGN ENG DECIS MAK, V10, P138, DOI 10.1177/1555343416637517 Menning L, 2017, J INFECT DIS, V216, pS24, DOI 10.1093/infdis/jix059 Mita-Arancibia, 2015, 5 REV FUNDACI N EDUC, V18, P15, DOI [10.4321/S2014-98322015000100004, DOI 10.4321/S2014-98322015000100004] Mocanu E, 2019, IEEE T SMART GRID, V10, P3698, DOI 10.1109/TSG.2018.2834219 Myint K, 2016, MALAYS J MED SCI, V23, P49 Qu BY, 2015, SECUR COMMUN NETW, V8, P68, DOI 10.1002/sec.755 Ting Dai, 2016, International Journal of Web Portals, V8, P13, DOI 10.4018/IJWP.2016010102 Vandecasteele F, 2017, ACM T MULTIM COMPUT, V13, DOI 10.1145/3092834 Wang SY, 2019, WASTE MANAGE, V87, P33, DOI 10.1016/j.wasman.2019.01.038 Wu, 2015, AFR J BUS MANAGE, V9, P3 Wu DH, 2020, BIOSYST ENG, V189, P150, DOI 10.1016/j.biosystemseng.2019.11.017 Yang GL, 2018, ENG AGR-JABOTICABAL, V38, P783, DOI [10.1590/1809-4430-eng.agric.v38n5p783-796/2018, 10.1590/1809-4430-Eng.Agric.v38n5p783-796/2018] Yang YT, 2020, APPL SCI-BASEL, V10, DOI 10.3390/app10030933 Zhang Chichen, 2017, Wei Sheng Yan Jiu, V46, P755 Zhang H., 2016, INT TECHNOL MANAG, V7, P61 Zhou Huilin, 2017, Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, V34, P173, DOI 10.7507/1001-5515.201608055 최종근, 2016, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V17, P538, DOI 10.5762/KAIS.2016.17.5.538 NR 25 TC 0 Z9 0 U1 2 U2 30 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD AUG PY 2023 VL 21 IS SUPPL 1 SU 1 BP 9 EP 9 DI 10.1007/s10257-021-00504-9 EA JAN 2021 PG 1 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA T4NO4 UT WOS:000608670900002 DA 2024-03-27 ER PT J AU Abubakar, AM AF Abubakar, A. Mohammed TI Using hybrid SEM - artificial intelligence Approach to examine the nexus between boreout, generation, career, life and job satisfaction SO PERSONNEL REVIEW LA English DT Article DE Job satisfaction; Quantitative; Nigeria; Service industry; Life satisfaction; Advanced statistical; Career satisfaction; Boreout ID WORK VALUES; NEURAL-NETWORK; EMPLOYEES; WORKPLACE; BOREDOM; ANTECEDENTS; PERFORMANCE; OUTCOMES; CONSERVATION; INCIVILITY AB Purpose Boreout is a psychological state of intense boredom and apathy. Characterized by the absence of mental stimuli (i.e. menial tasks) required to keep employees conscious about their environment, and this incessant decline in mental stimuli may turn employees into "professional zombies." The diversity in work needs and preferences across generations has become a key organizational factor, generational differences have been studied in Western countries, not much information is available about generational cohorts and satisfaction (i.e. career, life and job satisfaction) in developing countries. The purpose of this paper is to provide more insights on these phenomena. Design/methodology/approach Drawing upon conservation of resources theory, this paper examines the potential effects of boreout on important job outcomes (i.e. career, life and job satisfaction) conditioned by generation (Gen-Xers and Gen-Yers) in the service industry. Data analyses with Artificial Intelligence technique (i.e. artificial neural network) and structural equation modeling were conducted with data collated from Nigerian service employees. Findings Results revealed that boreout has a negative impact on career, life and job satisfaction. The hypothesized relationships were significantly moderated by generation cohorts as Gen-Xers and Gen-Yers were found to be distinct cohorts. Originality/value This paper advocates that non-western organizations should avoid utmost service standardization and rigid stylization of work processes and procedures. C1 [Abubakar, A. Mohammed] Antalya Bilim Univ, Coll Business & Social Sci, Antalya, Turkey. C3 Antalya Bilim University RP Abubakar, AM (autor correspondiente), Antalya Bilim Univ, Coll Business & Social Sci, Antalya, Turkey. EM mohammed.abubakar@antalya.edu.tr RI ABUBAKAR, A Mohammed/L-7214-2018 OI ABUBAKAR, A Mohammed/0000-0002-1163-0185 CR Abubakar A.M., 2018, INT J OCCUPATIONAL S, V24, P1 Abubakar A.M., 2016, J MANAGEMENT DEV, V41, P53 Abubakar AM, 2018, J MANAG DEV, V37, P226, DOI 10.1108/JMD-06-2017-0207 Abubakar AM, 2017, TOUR MANAG PERSPECT, V23, P129, DOI 10.1016/j.tmp.2017.06.001 Aiken LS., 1991, MULTIPLE REGRESSION ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 Bagozzi R.P., 1994, PRINCIPLE MARKETING, P386 Bakker A. B., 2008, Career Development International, V13, P209, DOI [DOI 10.1108/13620430810870476, 10.1108/13620430810870476] Bakker AB, 2010, J PERS PSYCHOL, V9, P3, DOI 10.1027/1866-5888/a000006 Batt R., 2002, Human Resource Management Journal, V12, P14 Biggs S., 2011, Generational intelligence: A critical approach to age relations Broadbridge A.M., 2007, CAREER DEV INT, V12, P523 Bruursema K, 2011, WORK STRESS, V25, P93, DOI 10.1080/02678373.2011.596670 Burke R.J., 2001, CROSS CULTURAL MANAG, V8, P117, DOI DOI 10.1108/13527600110797254 Carstensen LL, 2006, SCIENCE, V312, P1913, DOI 10.1126/science.1127488 Cavanaugh MA, 2000, J APPL PSYCHOL, V85, P65, DOI 10.1037/0021-9010.85.1.65 Cennamo L, 2008, J MANAGE PSYCHOL, V23, P891, DOI 10.1108/02683940810904385 Chan D, 2009, STATISTICAL AND METHODOLOGICAL MYTHS AND URBAN LEGENDS: DOCTRINE, VERITY AND FABLE IN THE ORGANIZATIONAL AND SOCIAL SCIENCES, P309 Chuang NK, 2011, J HOSP MARKET MANAG, V20, P551, DOI 10.1080/19368623.2011.570642 Conway JM, 2010, J BUS PSYCHOL, V25, P325, DOI 10.1007/s10869-010-9181-6 Costanza DP, 2012, J BUS PSYCHOL, V27, P375, DOI 10.1007/s10869-012-9259-4 D'Amato A, 2008, J MANAGE PSYCHOL, V23, P929, DOI 10.1108/02683940810904402 Dahling JJ, 2010, PERS INDIV DIFFER, V48, P574, DOI 10.1016/j.paid.2009.12.009 DeMeuse K., 2001, Journal of Managerial Issues, V13, P102 DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13 Erdogan B, 2018, J VOCAT BEHAV, V107, P233, DOI 10.1016/j.jvb.2018.05.003 Fajana S., 2009, PERSONALFUHRUNG, V7, P80 Fisher CD, 1998, J ORGAN BEHAV, V19, P503, DOI 10.1002/(SICI)1099-1379(199809)19:5<503::AID-JOB854>3.0.CO;2-9 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fry R., 2016, THIS YEAR MILLENNIAL GREENHAUS JH, 1990, ACAD MANAGE J, V33, P64, DOI 10.5465/256352 Gursoy D, 2008, INT J HOSP MANAG, V27, P448, DOI 10.1016/j.ijhm.2007.11.002 Gursoy D, 2011, INT J HOSP MANAG, V30, P783, DOI 10.1016/j.ijhm.2010.10.009 Hackman J.R. e., 1980, Work redesign Halbesleben JRB, 2013, J APPL PSYCHOL, V98, P492, DOI 10.1037/a0032242 Harris L.C., 2002, J SERV RES-US, V4, P163, DOI DOI 10.1177/1094670502004003001 Harris LC, 2006, J ACAD MARKET SCI, V34, P543, DOI 10.1177/0092070306287324 Haykin S., 2001, Neural Networks: A Comprehensive Foundation HOBFOLL SE, 1989, AM PSYCHOL, V44, P513, DOI 10.1037/0003-066X.44.3.513 Hobfoll SE, 2011, J OCCUP ORGAN PSYCH, V84, P116, DOI 10.1111/j.2044-8325.2010.02016.x Ineme KM, 2016, J HIGH EDUC POLICY M, V38, P664, DOI 10.1080/1360080X.2016.1211976 Inglehart R., 1997, MODERNIZATION POSTMO, DOI DOI 10.1515/9780691214429 Jackson A., 2005, BETTER ED BADLY PAID Janssen O, 2000, J OCCUP ORGAN PSYCH, V73, P287, DOI 10.1348/096317900167038 Joyner T., 2000, SecuredLender, V56, P64 Karatepe O. M., 2010, FIU Hospitality Review, V28, P48 Karatepe OM, 2015, INT J CONTEMP HOSP M, V27, P1254, DOI 10.1108/IJCHM-01-2014-0028 Karatepe OM, 2014, INT J HOSP MANAG, V36, P14, DOI 10.1016/j.ijhm.2013.08.003 Kass Steven J, 2003, J Atten Disord, V7, P83, DOI 10.1177/108705470300700202 Kline R. B., 2015, PRINCIPLES PRACTICE Kong HY, 2012, INT J HOSP MANAG, V31, P76, DOI 10.1016/j.ijhm.2011.03.002 Kooij DTAM, 2011, J ORGAN BEHAV, V32, P197, DOI 10.1002/job.665 Kupperschmidt B R, 2000, Health Care Manag (Frederick), V19, P65 Lancaster L., 2002, GENERATIONS COLLIDE Lapierre LM, 2018, J ORGAN BEHAV, V39, P385, DOI 10.1002/job.2234 Lee C, 2010, INT J HOSP MANAG, V29, P344, DOI 10.1016/j.ijhm.2009.08.008 Lemire L, 1999, PUBLIC PERS MANAGE, V28, P375, DOI 10.1177/009102609902800305 Leong LY, 2015, EXPERT SYST APPL, V42, P6620, DOI 10.1016/j.eswa.2015.04.043 Lepine JA, 2005, ACAD MANAGE J, V48, P764, DOI 10.2307/20159696 Loukidou L, 2009, INT J MANAG REV, V11, P381, DOI 10.1111/j.1468-2370.2009.00267.x Macey WH, 2008, IND ORGAN PSYCHOL-US, V1, P3, DOI 10.1111/j.1754-9434.2007.0002.x May DR, 2004, J OCCUP ORGAN PSYCH, V77, P11, DOI 10.1348/096317904322915892 McKevitt D, 2017, INT J PROJ MANAG, V35, P1673, DOI 10.1016/j.ijproman.2017.07.010 MIKULAS WL, 1993, PSYCHOL REC, V43, P3 Mncwango B., 2016, PUBLIC ATTITUDES WOR Modderman A.J.T., 2017, THESIS Morris SA, 2004, IND MANAGE DATA SYST, V104, P129, DOI 10.1108/02635570410522099 NEAR JP, 1984, SOC INDIC RES, V15, P351, DOI 10.1007/BF00351444 Netemeyer RG, 1997, J MARKETING, V61, P85, DOI 10.2307/1251791 Ng ESW, 2010, J BUS PSYCHOL, V25, P281, DOI 10.1007/s10869-010-9159-4 Ng TWH, 2005, PERS PSYCHOL, V58, P367, DOI 10.1111/j.1744-6570.2005.00515.x Owoyemi O.A., 2011, EUROPEAN J EC FINANC, V30, P65 Park J, 2012, INT J HOSP MANAG, V31, P1195, DOI 10.1016/j.ijhm.2012.02.007 Parry E, 2011, INT J MANAG REV, V13, P79, DOI 10.1111/j.1468-2370.2010.00285.x Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Purohit B.K., 2010, LEVERAGING INTEGRATI Romero Norma., 2017, Journal of Behavior, Health Social Issues, V9, P1, DOI [DOI 10.1016/J.JBHSI.2017.08.001, DOI 10.1016/J.JBHSI.2017.08] Rothlin P., 2008, Boreout! Overcoming workplace demotivation Russo M, 2016, J POSIT PSYCHOL, V11, P173, DOI 10.1080/17439760.2015.1025424 SCHUMAN H, 1989, AM SOCIOL REV, V54, P359, DOI 10.2307/2095611 Schwartz SH, 2000, J CROSS CULT PSYCHOL, V31, P465, DOI 10.1177/0022022100031004003 Schwartz ShalomS., 1995, WORLD PSYCHOL, V1, P91 Shalley CE, 2009, ACAD MANAGE J, V52, P489, DOI 10.5465/AMJ.2009.41330806 Sheldon K.M., 2018, J HAPPINESS STUD, P1 Sirgy MJ, 2018, APPL RES QUAL LIFE, V13, P229, DOI 10.1007/s11482-017-9509-8 Smola KW, 2002, J ORGAN BEHAV, V23, P363, DOI 10.1002/job.147 Stock RM, 2016, J BUS RES, V69, P4259, DOI 10.1016/j.jbusres.2016.02.037 Stock RM, 2015, J PROD INNOVAT MANAG, V32, P574, DOI 10.1111/jpim.12239 Tetjesen S., 2007, Career Development International, V12, P504, DOI DOI 10.1108/13620430710821994 Tulgan B., 1995, Managing generation x: How to bring out the best in young talent Twenge JM, 2010, J MANAGE, V36, P1117, DOI 10.1177/0149206309352246 van der Heijden GAH, 2012, EUR J WORK ORGAN PSY, V21, P349, DOI 10.1080/1359432X.2011.578824 Van Dyne L, 2002, J ORGAN BEHAV, V23, P57, DOI 10.1002/job.127 Walker D.D., 2009, THESIS Westerman J.W., 2007, Career Development International, V12, P150, DOI DOI 10.1108/13620430710733631 Wilk SL, 2005, J APPL PSYCHOL, V90, P917, DOI 10.1037/0021-9010.90.5.917 Yavas U, 2013, J HOSP MARKET MANAG, V22, P375, DOI 10.1080/19368623.2012.667596 Zacher H, 2009, PSYCHOL AGING, V24, P487, DOI 10.1037/a0015425 Zhao K., 2015, J STAT COMPUT SIM, V86, P1 Zhao XY, 2011, INT J HOSP MANAG, V30, P46, DOI 10.1016/j.ijhm.2010.04.010 NR 100 TC 14 Z9 14 U1 7 U2 45 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0048-3486 EI 1758-6933 J9 PERS REV JI Pers. Rev. PD NOV 19 PY 2019 VL 49 IS 1 BP 67 EP 86 DI 10.1108/PR-06-2017-0180 PG 20 WC Industrial Relations & Labor; Psychology, Applied; Management WE Social Science Citation Index (SSCI) SC Business & Economics; Psychology GA KC0ZL UT WOS:000506916800001 DA 2024-03-27 ER PT J AU Deng, GK Zhang, JY Xu, Y AF Deng, Guangkuan Zhang, Jianyu Xu, Ying TI How e-commerce platforms build channel power: the role of AI resources and market-based assets SO JOURNAL OF BUSINESS & INDUSTRIAL MARKETING LA English DT Article DE Channel power; AI resources; Market-based assets; Intraplatform competition; E-commerce platform ID ARTIFICIAL-INTELLIGENCE; INFORMATION-TECHNOLOGY; COMPETITIVE ADVANTAGE; INFLUENCE STRATEGIES; MEASUREMENT ERROR; FIRM RESOURCES; PERFORMANCE; BUSINESS; COMMITMENT; VIEW AB PurposeConsidering the emergence of e-commerce platforms and their integration into marketing channels, this paper aims to investigate how artificial intelligence (AI) resources - both technological and human - possessed by e-commerce platforms can enhance their channel power by acquiring market-based assets (relational and intellectual). Design/methodology/approachBased on resource-based theory and resource orchestration theory, the authors developed a framework tested using survey data gathered from the sellers, which incorporated six key variables: the e-commerce platform's AI technology resources and human resources, rational and intellectual market-based assets, intraplatform competition and channel power. The analyses are performed using the regression analysis technique. FindingsThe empirical findings indicate that both technological and human AI resources are crucial in building channel power. In addition, market-based assets serve as a mediator in this relationship, while intraplatform competition moderates the effect of intellectual market-based assets on channel power negatively. Originality/valueThis study contributes to the existing literature by exploring how e-commerce platforms' AI resources affect their channel power. The results offer valuable guidance to managers and researchers on optimizing AI resources to improve channel power. C1 [Deng, Guangkuan; Xu, Ying] Southwest Univ Sci & Technol, Sch Econ & Management, Mianyang, Peoples R China. [Zhang, Jianyu] Southwestern Univ Finance & Econ, Sch Business Adm, Chengdu, Peoples R China. C3 Southwest University of Science & Technology - China; Southwestern University of Finance & Economics - China RP Deng, GK (autor correspondiente), Southwest Univ Sci & Technol, Sch Econ & Management, Mianyang, Peoples R China. EM styzdgk@126.com; xncdzjy@126.com; 976394681@qq.com RI G.K., Deng/AAZ-7371-2020 OI G.K., Deng/0000-0002-5071-463X FU Doctoral Project of Southwest University of Science and Technology [21sx7109, 22sx7112] FX The authors would like to thank the Editor-in-Chief, Dr Wesley Johnston, and anonymous reviewers for providing valuable insights and constructive comments. Funding: This research was funded by the Doctoral Project of Southwest University of Science and Technology (Grant No. 21sx7109, 22sx7112). CR Aghaie S, 2022, EUR J MARKETING, V56, P1556, DOI 10.1108/EJM-02-2021-0087 Aguirre E, 2015, J RETAILING, V91, P34, DOI 10.1016/j.jretai.2014.09.005 ANDERSON JC, 1994, J MARKETING, V58, P1, DOI 10.2307/1251912 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Armstrong M, 2006, RAND J ECON, V37, P668, DOI 10.1111/j.1756-2171.2006.tb00037.x BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983 Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Brown JR, 1995, J RETAILING, V71, P363, DOI 10.1016/0022-4359(95)90019-5 Byrd TA, 2000, J MANAGE INFORM SYST, V17, P167 Cennamo C, 2013, STRATEGIC MANAGE J, V34, P1331, DOI 10.1002/smj.2066 Chadwick C, 2015, STRATEGIC MANAGE J, V36, P360, DOI 10.1002/smj.2217 Chakravarty A, 2014, J MARKETING, V78, P1 Clauss T, 2019, IND MARKET MANAG, V77, P75, DOI 10.1016/j.indmarman.2018.12.005 Co HC, 1998, INT J OPER PROD MAN, V18, P87, DOI 10.1108/01443579810192925 Crook TR, 2007, J OPER MANAG, V25, P546, DOI 10.1016/j.jom.2006.05.008 Crook TR, 2008, STRATEGIC MANAGE J, V29, P1141, DOI 10.1002/smj.703 Das TK, 2000, J MANAGE, V26, P31, DOI 10.1016/S0149-2063(99)00037-9 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Deng GK, 2021, INT MARKET REV, V38, P736, DOI 10.1108/IMR-01-2019-0026 Dentchev NA, 2017, BUS SOC, V56, P527, DOI 10.1177/0007650315586179 Dimitrova BV, 2020, J MARK CHANNELS, V26, P60, DOI 10.1080/1046669X.2019.1646187 Dong MC, 2019, J ACAD MARKET SCI, V47, P1064, DOI 10.1007/s11747-018-0614-5 DWYER FR, 1987, J MARKETING, V51, P11, DOI 10.2307/1251126 Eisenmann T, 2006, HARVARD BUS REV, V84, P92 ELANSARY AI, 1972, J MARKETING RES, V9, P47, DOI 10.2307/3149605 Ellram LM, 2019, IND MARKET MANAG, V79, P36, DOI 10.1016/j.indmarman.2019.03.007 Enholm IM, 2022, INFORM SYST FRONT, V24, P1709, DOI 10.1007/s10796-021-10186-w Feng C, 2020, IND MARKET MANAG, V91, P41, DOI 10.1016/j.indmarman.2020.08.003 Ferrier WJ, 2001, ACAD MANAGE J, V44, P858, DOI 10.5465/3069419 FORNELL C, 1981, J MARKETING RES, V18, P382, DOI 10.2307/3150980 FRAZIER GL, 1991, J MARKETING, V55, P52, DOI 10.2307/1252203 French J.R. B., 1959, The bases of social power GASKI JF, 1985, J MARKETING RES, V22, P130, DOI 10.2307/3151359 GASKI JF, 1984, J MARKETING, V48, P9, DOI 10.2307/1251326 Guan Y, 2019, DECIS SUPPORT SYST, V118, P58, DOI 10.1016/j.dss.2019.01.003 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hagiu A, 2014, MIT SLOAN MANAGE REV, V55, P92 Hair J.F., 2009, Multivariate data analysis Hakansson H., 1995, DEV RELATIONSHIPS BU Helfat C., 2007, DYNAMIC CAPABILITIES Hill J, 2015, COMPUT HUM BEHAV, V49, P245, DOI 10.1016/j.chb.2015.02.026 HUNT SD, 1974, J MARKETING RES, V11, P186, DOI 10.2307/3150557 JACCARD J, 1995, PSYCHOL BULL, V117, P348, DOI 10.1037/0033-2909.117.2.348 Jain M, 2014, IND MARKET MANAG, V43, P312, DOI 10.1016/j.indmarman.2013.09.001 JAWORSKI BJ, 1993, J MARKETING, V57, P53, DOI 10.2307/1251854 Johnston WJ, 2018, J ACAD MARKET SCI, V46, P674, DOI 10.1007/s11747-017-0564-3 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Koehler J., 2018, EUROPEAN BUSINESS MA, V4, P55, DOI DOI 10.11648/J.EBM.20180402.12 KUMAR N, 1995, J MARKETING RES, V32, P348, DOI 10.2307/3151986 Kumar V, 2016, J MARKETING, V80, P108, DOI 10.1509/jm.80.5.1 Li P., 2019, MANAG REV, V31, P103 Li SY, 2021, IND MARKET MANAG, V98, P105, DOI 10.1016/j.indmarman.2021.07.015 Lin WL, 2020, CORP SOC RESP ENV MA, V27, P1761, DOI 10.1002/csr.1923 Liu WP, 2018, IND MARKET MANAG, V73, P7, DOI 10.1016/j.indmarman.2018.01.006 Liu Y., 2022, J CONT MARKETING SCI, V5, P81 Mao MS, 2019, INFORM SCIENCES, V471, P269, DOI 10.1016/j.ins.2018.07.029 Melville N, 2004, MIS QUART, V28, P283 Mikalef P, 2022, GOV INFORM Q, V39, DOI 10.1016/j.giq.2021.101596 MORGAN RM, 1994, J MARKETING, V58, P20, DOI 10.2307/1252308 Mustak M, 2021, J BUS RES, V124, P389, DOI 10.1016/j.jbusres.2020.10.044 Palmatier RW., 2014, Marketing Channel Strategy, V8th Park SH, 2001, STRATEGIC MANAGE J, V22, P455, DOI 10.1002/smj.167 Penrose E. T., 1959, The Theory of the Growth of the Firm PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Powell TC, 1997, STRATEGIC MANAGE J, V18, P375, DOI 10.1002/(SICI)1097-0266(199705)18:5<375::AID-SMJ876>3.3.CO;2-Z Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553 Preacher KJ, 2006, J EDUC BEHAV STAT, V31, P437, DOI 10.3102/10769986031004437 Rahman M, 2022, J BUS RES, V138, P422, DOI 10.1016/j.jbusres.2021.08.023 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Ray G, 2004, STRATEGIC MANAGE J, V25, P23, DOI 10.1002/smj.366 Rindfleisch A, 1997, J MARKETING, V61, P30, DOI 10.2307/1252085 Robbins S., 2000, Management, V7th Roson Roberto., 2005, J NETWORK EC, V4, P142, DOI DOI 10.2202/1446-9022.1070 Rutskiy V., 2021, ARTIF INTELL, P895 Santos J.R.Q., 1999, Journal of Extension, V37, DOI DOI 10.1080/09500690802187025 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Siemieniako D, 2018, IND MARKET MANAG, V70, P90, DOI 10.1016/j.indmarman.2017.08.013 Siering M, 2018, DECIS SUPPORT SYST, V107, P52, DOI 10.1016/j.dss.2018.01.002 Sirmon DG, 2007, ACAD MANAGE REV, V32, P273, DOI 10.2307/20159292 Sirmon DG, 2011, J MANAGE, V37, P1390, DOI 10.1177/0149206310385695 Srivastava RK, 2001, J MANAGE, V27, P777, DOI 10.1016/S0149-2063(01)00123-4 Srivastava RK, 1998, J MARKETING, V62, P2, DOI 10.2307/1251799 Steinhoff L, 2021, AUSTRALAS MARK J, V29, P111, DOI 10.1016/j.ausmj.2020.07.003 Thomas LDW, 2014, ACAD MANAGE PERSPECT, V28, P198, DOI 10.5465/amp.2011.0105 Van Alstyne MW, 2016, HARVARD BUS REV, V94, P54 van Esch P, 2019, COMPUT HUM BEHAV, V90, P215, DOI 10.1016/j.chb.2018.09.009 Varadarajan R, 2020, IND MARKET MANAG, V89, P89, DOI 10.1016/j.indmarman.2020.03.003 Vishnoi SK., 2018, Indian Journal of Economics and Business, V17, P167 Wade M, 2004, MIS QUART, V28, P107 Watson GF, 2015, J RETAILING, V91, P546, DOI 10.1016/j.jretai.2015.04.002 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Wodecki A., 2019, ARTIF INTELL, P133, DOI DOI 10.1007/978-3-319-91596-8_3 Xiao D, 2020, COMPUT IND ENG, V150, DOI 10.1016/j.cie.2020.106876 Xu Y, 2023, NANKAI BUS REV NT, V14, P249, DOI 10.1108/NBRI-06-2021-0041 Yang DF, 2013, TOTAL QUAL MANAG BUS, V24, P707, DOI 10.1080/14783363.2013.776763 [张传栋 Zhang Chuandong], 2020, [实验力学, Journal of Experimental Mechanics], V35, P1 Zhang T., 2017, MANAG REV, V29, P134 Zhang T., 2010, Management World, V7, P119 Zhang T, 2017, J BUS IND MARK, V32, P1217, DOI 10.1108/JBIM-12-2016-0286 Zhuang G., 2004, EUROPEAN J MARKING, V38, P675 Zhuang GJ, 2010, IND MARKET MANAG, V39, P137, DOI 10.1016/j.indmarman.2008.07.002 NR 106 TC 1 Z9 1 U1 41 U2 51 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0885-8624 EI 2052-1189 J9 J BUS IND MARK JI J. Bus. Ind. Mark. PD FEB 13 PY 2024 VL 39 IS 2 BP 173 EP 188 DI 10.1108/JBIM-11-2022-0497 EA JUL 2023 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HM9C2 UT WOS:001020025600001 DA 2024-03-27 ER PT J AU Han, QW Lucas, C Aguiar, E Macedo, P Wu, ZZ AF Han, Qiwei Lucas, Carolina Aguiar, Emila Macedo, Patricia Wu, Zhenze TI Towards privacy-preserving digital marketing: an integrated framework for user modeling using deep learning on a data monetization platform SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Deep learning; Digital marketing; Data monetization; Data privacy; Hyperbolic embeddings; Federated learning ID ECONOMICS AB This paper presents a novel approach to privacy-preserving user modeling for digital marketing campaigns using deep learning techniques on a data monetization platform, which enables users to maintain control over their personal data while allowing marketers to identify suitable target audiences for their campaigns. The system comprises of several stages, starting with the use of representation learning on hyperbolic space to capture the latent user interests across multiple data sources with hierarchical structures. Next, Generative Adversarial Networks are employed to generate synthetic user interests from these embeddings. To ensure the privacy of user data, a Federated Learning technique is implemented for decentralized user modeling training, without sharing data with marketers. Lastly, a targeting strategy based on recommendation system is constructed to leverage the learned user interests for identifying the optimal target audience for digital marketing campaigns. Overall, the proposed approach provides a comprehensive solution for privacy-preserving user modeling for digital marketing. C1 [Han, Qiwei; Lucas, Carolina; Aguiar, Emila; Macedo, Patricia; Wu, Zhenze] Nova Sch Business & Econ, Carcavelos, Portugal. C3 Universidade Nova de Lisboa RP Han, QW (autor correspondiente), Nova Sch Business & Econ, Carcavelos, Portugal. EM qiwei.han@novasbe.pt; 44364@novasbe.pt; 44993@novasbe.pt; 44359@novasbe.pt; 44524@novasbe.pt RI Han, Qiwei/HKN-5336-2023 OI Han, Qiwei/0000-0002-6044-4530 FU FCT|FCCN (b-on); Fundacao para a Ciencia e a Tecnologia [UIDB/00124/2020, UIDP/00124/2020, PINFRA/22209/2016]; POR Lisboa and POR Norte [PINFRA/22209/2016] FX Open access funding provided by FCT|FCCN (b-on). This work was funded by Fundacao para a Ciencia e a Tecnologia (UIDB/00124/2020, UIDP/00124/2020 and Social Sciences DataLab-PINFRA/22209/2016), POR Lisboa and POR Norte (Social Sciences DataLab, PINFRA/22209/2016). CR Acquisti A, 2016, J ECON LIT, V54, P442, DOI 10.1257/jel.54.2.442 Agrawal R, 2000, SIGMOD REC, V29, P439, DOI 10.1145/335191.335438 Aiolfi S, 2021, INT J RETAIL DISTRIB, V49, P1089, DOI 10.1108/IJRDM-10-2020-0410 Aivodji Ulrich Matchi, 2019, 2019 IEEE Security and Privacy Workshops (SPW). Proceedings, P175, DOI 10.1109/SPW.2019.00041 AlexPof, 2021, POINCAREKMEANS K MEA, P11 Balazevic I., 2019, Advances in Neural Information Processing Systems, V32 Balazevic I, 2019, ADV NEUR IN, V32 Baowaly MK, 2019, J AM MED INFORM ASSN, V26, P228, DOI 10.1093/jamia/ocy142 Bataineh AS, 2016, PROCEDIA COMPUT SCI, V83, P472, DOI 10.1016/j.procs.2016.04.211 Behera RK, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.026 Cheng Y, 2020, COMMUN ACM, V63, P33, DOI 10.1145/3387107 Choi Edward., 2017, Proceedings of the 2nd Machine Learning for Healthcare Conference, volume 68 of Proceedings of Machine Learning Research, P286 Choi H, 2019, MARKET SCI, V38, P948, DOI 10.1287/mksc.2019.1197 Drainakis G, 2020, IEEE INT SYM N C A, DOI 10.1109/nca51143.2020.9306745 Evans DS, 2009, J ECON PERSPECT, V23, P37, DOI 10.1257/jep.23.3.37 Fan SK, 2015, BIG DATA RES, V2, P28, DOI 10.1016/j.bdr.2015.02.006 Faroukhi AZ, 2020, J BIG DATA-GER, V7, DOI 10.1186/s40537-019-0281-5 Fiore U, 2019, INFORM SCIENCES, V479, P448, DOI 10.1016/j.ins.2017.12.030 Geiping J., 2020, Advances in Neural Information Processing Systems, V33, P16937 Goldfarb A, 2011, MANAGE SCI, V57, P57, DOI 10.1287/mnsc.1100.1246 Goodfellow I, 2020, COMMUN ACM, V63, P139, DOI 10.1145/3422622 Guo YT, 2020, PROC INT CONF PARAL, DOI 10.1145/3404397.3404410 Hunter Tatum, 2023, Washington Post Jain Priyank, 2016, Journal of Big Data, V3, DOI 10.1186/s40537-016-0059-y Jenkings R., 2012, DRUM KAIROUZ P, 2021, MACH LEARN, V14, P1, DOI DOI 10.1561/2200000083 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Ke TT, 2023, MANAGE SCI, V69, P4389, DOI 10.1287/mnsc.2022.4614 Kemppainen L., 2018, J BUSINESS MODELS, V6, P79, DOI [10.5278/ojs.jbm.v6i3.2053, DOI 10.5278/OJS.JBM.V6I3.2053] Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Lambrecht A, 2014, MARKET LETT, V25, P331, DOI 10.1007/s11002-014-9310-5 Li Q, 2021, INT J DIGIT EARTH, V14, P661, DOI 10.1080/17538947.2020.1865466 Li T, 2020, IEEE SIGNAL PROC MAG, V37, P50, DOI 10.1109/MSP.2020.2975749 Lin SY, 2022, DATA TECHNOL APPL, V56, P720, DOI 10.1108/DTA-09-2021-0260 Liu C-H., 2015, NATL GOVERNANCE AGE, P10 Martin KD, 2017, J ACAD MARKET SCI, V45, P135, DOI 10.1007/s11747-016-0495-4 McMahan Brendan, 2017, COLLABORATIVE MACHIN Mehta S, 2021, INFORM SYST RES, V32, P1281, DOI 10.1287/isre.2021.1027 Meta Business Help Center, BEST PRACT CHOOS CAT Moore E., 2017, Artificial intelligence and statistics, P1273, DOI DOI 10.48550/ARXIV.1602.05629 Najjar MS., 2013, MIS Q EXEC, V4, P213 Nickel M, 2017, ADV NEUR IN, V30 Ofulue J., 2022, MANAGEMENT REV Q, DOI [10.1007/s11301-022-00309-1, DOI 10.1007/S11301-022-00309-1] Park N, 2018, PROC VLDB ENDOW, V11, P1071, DOI 10.14778/3231751.3231757 Parvinen P, 2020, COMMUN ASSOC INF SYS, V47, P25, DOI 10.17705/1CAIS.04702 Peukert C, 2022, MARKET SCI, V41, P318, DOI 10.1287/mksc.2021.1339 Radford A., 2015, ARXIV Ray J, 2020, INFORM SYST RES, V31, P1, DOI 10.1287/isre.2019.0872 Rieke N, 2020, NPJ DIGIT MED, V3, DOI 10.1038/s41746-020-00323-1 Silva S, 2019, I S BIOMED IMAGING, P270, DOI [10.1109/ISBI.2019.8759317, 10.1109/isbi.2019.8759317] Singhal K., 2021, Adv. Neural Inf. Process. Syst., V34, P11220 Taylor CR, 2004, RAND J ECON, V35, P631, DOI 10.2307/1593765 Tran LV, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P609, DOI 10.1145/3336191.3371850 Visconti R.M., 2017, BIG DATA ANALYICS, P345 Wu JZ, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P957, DOI 10.1145/3442381.3449926 Xu L, 2019, ADV NEUR IN, V32 Yang P, 2019, ACM T INTEL SYST TEC, V10, DOI 10.1145/3339474 Yang Timothy, 2018, APPL FEDERATED LEARN Yang WS, 2019, LECT NOTES COMPUT SC, V11514, P18, DOI 10.1007/978-3-030-23551-2_2 Yoon J, 2020, IEEE J BIOMED HEALTH, V24, P2378, DOI 10.1109/JBHI.2020.2980262 Zhang HJ, 2020, NEURAL COMPUT APPL, V32, P4519, DOI [10.1007/s00521-018-3691-y, 10.1007/s00521-018-3579-x] Zhang K, 2019, PROCEDIA COMPUT SCI, V147, P400, DOI 10.1016/j.procs.2019.01.256 NR 62 TC 0 Z9 0 U1 11 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD SEP PY 2023 VL 23 IS 3 SI SI BP 1701 EP 1730 DI 10.1007/s10660-023-09713-5 EA JUN 2023 PG 30 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA S4MI7 UT WOS:001004920300001 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Guercini, S AF Guercini, Simone TI Marketing automation and the scope of marketers' heuristics SO MANAGEMENT DECISION LA English DT Article DE Marketing automation; Scope of heuristics; In depth interviews; Marketers' decision-making models; AI in marketing ID ARTIFICIAL-INTELLIGENCE; DECISION; RIGOR AB Purpose - This paper examines the relationship between marketing automation emergence and the marketers' use of heuristics in their decision-making processes. Heuristics play a role for the integration of human decision-making models and automation in augmentation processes, particularly in marketing where automation is widespread.Design/methodology/approach - This study analyzes qualitative data about the impact of marketing automation on the scope of heuristics in decision-making models, and it is based on evidence collected from interviews with twenty-two experienced marketers.Findings - Marketers make extensive use of heuristics to manage their tasks. While the adoption of new automatic marketing tools modify the task environment and field of use of traditional decision-making models, the adoption of heuristics rules with a different scope is essential to defining inputs, interpreting/evaluating outputs and control the marketing automation system.Originality/value - The paper makes a contribution to research on the relationship between marketing automation and decision-making models. In particular, it proposes the results of in-depth interviews with senior decision makers to assess the impact of marketing automation on the scope of heuristics as decision-making models adopted by marketers. C1 [Guercini, Simone] Univ Florence, Dept Econ & Management, Florence, Italy. C3 University of Florence RP Guercini, S (autor correspondiente), Univ Florence, Dept Econ & Management, Florence, Italy. EM simone.guercini@unifi.it OI Guercini, Simone/0000-0002-7542-6984 FU The author thanks two anonymous referees for useful comments to previous draft of this paper. FX The author thanks two anonymous referees for useful comments to previous draft of this paper. CR Agrawal A., 2018, Prediction machines: the simple economics of artificial intelligence Alpaydin, 2016, MACHINE LEARNING NEW Armstrong JS, 2015, J BUS RES, V68, P1717, DOI 10.1016/j.jbusres.2015.03.031 Artinger F, 2015, J ORGAN BEHAV, V36, pS33, DOI 10.1002/job.1950 Bagshaw A., 2015, J DIRECT DATA DIGITA, V17, P84 Bingham CB, 2019, STRATEG ENTREP J, V13, P121, DOI 10.1002/sej.1312 Brock JKU, 2019, CALIF MANAGE REV, V61, P110, DOI 10.1177/1536504219865226 Brynjolfsson E, 2014, The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies Bucklin R.E., 1998, MARKET LETT, V9, P235, DOI [10.1023/A:1008047504898, DOI 10.1023/A:1008047504898] Bucklin RE, 2002, MARKET LETT, V13, P245, DOI 10.1023/A:1020231107662 Camiciottoli BC, 2014, EUR J MARKETING, V48, P1092, DOI 10.1108/EJM-12-2011-0770 Cui DP, 2005, MARKET SCI, V24, P595, DOI 10.1287/mksc.1050.0123 Daugherty P. R., 2018, Human + machine: Reimagining work in the age of AI Dubois A, 2002, J BUS RES, V55, P553, DOI 10.1016/S0148-2963(00)00195-8 Dubois A, 2014, J BUS RES, V67, P1277, DOI 10.1016/j.jbusres.2013.03.036 Eisenhardt KM, 2016, ACAD MANAGE J, V59, P1113, DOI 10.5465/amj.2016.4004 EISENHARDT KM, 1989, ACAD MANAGE REV, V14, P532, DOI 10.2307/258557 Gartner, 2022, MARK TECHN 2022 5 IN Gigerenzer G., 2004, Handbook of Judgment and Decision Making, P62 Gigerenzer G., 2022, STAY SMART SMART WOR Gigerenzer G., 1999, SIMPLE HEURISTICS MA Gigerenzer G, 2021, SYNTHESE, V198, P3547, DOI 10.1007/s11229-019-02296-5 Gigerenzer G, 2011, ANNU REV PSYCHOL, V62, P451, DOI 10.1146/annurev-psych-120709-145346 Gigerenzer G, 2009, TOP COGN SCI, V1, P107, DOI 10.1111/j.1756-8765.2008.01006.x Gioia D.A., 2004, Renewing Research Practice, P97, DOI DOI 10.1177/1094428112452151 Gioia DA, 2013, ORGAN RES METHODS, V16, P15, DOI 10.1177/1094428112452151 Green KC, 2015, J BUS RES, V68, P1678, DOI 10.1016/j.jbusres.2015.03.026 Guercini S., 2019, Mind and Society, V18, P191, DOI DOI 10.1007/S11299-019-00221-4 Guercini S., 2023, MICROMACROMARKETING, V32, P239 Guercini S., 2022, MIND SOC, P1 Guercini S, 2022, IND MARKET MANAG, V105, P380, DOI 10.1016/j.indmarman.2022.06.019 Guercini S, 2020, J INT MANAG, V26, DOI 10.1016/j.intman.2020.100782 Guercini S, 2015, IND MARKET MANAG, V48, P26, DOI 10.1016/j.indmarman.2015.03.008 Guercini S, 2012, J RES MARK ENTREP, V14, P199, DOI 10.1108/14715201211271410 Haesevoets T, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106730 Heimbach I, 2015, BUS INFORM SYST ENG+, V57, P129, DOI 10.1007/s12599-015-0370-8 Hirt M.Wilmott., 2014, McKinsey Quarterly, V5, P1 Hoffman DL, 2022, J MARKETING, V86, P1, DOI 10.1177/00222429211061636 Huang MH, 2022, J RETAILING, V98, P209, DOI 10.1016/j.jretai.2021.03.001 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Jarrahi MH, 2023, BUS HORIZONS, V66, P87, DOI 10.1016/j.bushor.2022.03.002 Johnson CD, 2021, ACAD MANAGE PERSPECT, V35, P292, DOI 10.5465/amp.2017.0159 Katsikopoulos K, 2019, COGN PROCESS, V20, P269, DOI 10.1007/s10339-019-00914-1 Katsikopoulos KV, 2020, CLASSIFICATION IN THE WILD, P1 Kelleher JD, 2019, MIT PRESS ESSENT, P1 Langley A, 2011, RES METHOD STRAT MAN, V6, P201, DOI 10.1108/S1479-8387(2011)0000006007 Leyer M, 2021, BUS HORIZONS, V64, P711, DOI 10.1016/j.bushor.2021.02.026 Lincoln YS., 1985, Naturalistic inquiry Little J.D., 2001, UC BERK 5 INV CHOIC Loock M, 2015, J BUS RES, V68, P2027, DOI 10.1016/j.jbusres.2015.02.016 Luan SH, 2019, ACAD MANAGE J, V62, P1735, DOI 10.5465/amj.2018.0172 Maanen J.V., 2011, Tales of the Field: On Writing Ethnography, VSecond March J.G., 1994, PRIMER DECISION MAKI Mari A., 2019, RISE MACHINE LEARNIN, DOI [10.5167/uzh-197751, DOI 10.5167/UZH-197751] Martignon L, 1999, MIND MACH, V9, P565, DOI 10.1023/A:1008313020307 Mehta P, 2022, PSYCHOL MARKET, V39, P2013, DOI 10.1002/mar.21716 Mero J, 2022, J BUS RES, V145, P583, DOI 10.1016/j.jbusres.2022.03.026 Merton R.K., 1956, The focused interview Newell A., 1981, HEURISTIC GEORGE POL Paschen U, 2020, BUS HORIZONS, V63, P147, DOI 10.1016/j.bushor.2019.10.004 Picone PM, 2021, FAM BUS REV, V34, P12, DOI 10.1177/0894486520985630 Raisch S, 2021, ACAD MANAGE REV, V46, P192, DOI 10.5465/amr.2018.0072 Ritter T, 2020, IND MARKET MANAG, V86, DOI 10.1016/j.indmarman.2019.11.019 Rosenberg N., 1994, EXPLORING BLACK BOX Rust RT, 2021, J MARKETING, V85, P21, DOI 10.1177/0022242921995173 Rusthollkarhu S, 2022, IND MARKET MANAG, V104, P241, DOI 10.1016/j.indmarman.2022.04.014 Shepherd DA, 2015, J MANAGE, V41, P11, DOI 10.1177/0149206314541153 SIMON HA, 1995, ARTIF INTELL, V77, P95, DOI 10.1016/0004-3702(95)00039-H Sinyard DB, 2020, J SMALL BUS MANAGE, V58, P1221, DOI 10.1111/jsbm.12451 Skiera B, 2013, MARKET SCI, V32, P213, DOI 10.1287/mksc.1120.0735 Smith A., 2020, CONSUMER BEHAV ANAL Stone M, 2020, BOTTOM LINE, V33, P183, DOI 10.1108/BL-03-2020-0022 Sull Donald., 2015, SIMPLE RULES THRIVE Tang PM, 2022, ACAD MANAGE J, V65, P1019, DOI 10.5465/amj.2020.1516 Teodorescu MHM, 2021, MIS QUART, V45, P1483, DOI 10.25300/MISQ/2021/16535 Todd P. M., 2012, Ecological Rationality: Intelligence in the World Todd P M., 2012, ABC Research Group, Ecological rationality: Intelligence in the world, P487, DOI DOI 10.1093/ACPROF:OSO/9780195315448.001.0001 Zellner A., 2001, SIMPLICITY INFERENCE, P242 NR 78 TC 0 Z9 0 U1 14 U2 14 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0025-1747 EI 1758-6070 J9 MANAGE DECIS JI Manag. Decis. PD SEP 5 PY 2023 VL 61 IS 13 BP 295 EP 320 DI 10.1108/MD-07-2022-0909 EA SEP 2023 PG 26 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA X4MF9 UT WOS:001072491800001 OA hybrid DA 2024-03-27 ER PT J AU Parise, S Guinan, PJ Kafka, R AF Parise, Salvatore Guinan, Patricia J. Kafka, Ron TI Solving the crisis of immediacy: How digital technology can transform the customer experience SO BUSINESS HORIZONS LA English DT Article DE Digital marketing; Augmented reality; Mobile apps; Video conferencing; Remote expert; Virtual concierge; Digital assistant; Omnichannel; Touchpoints ID SOCIAL COMMERCE; TELEPRESENCE; ENVIRONMENTS; REALITY AB Marketers are currently facing a 'crisis of immediacy' challenge: how to meet consumers' need to receive content, expertise, and personalized solutions in real time during their shopping experience. Today's digital technologies such as video conferencing, location-based mobile apps, and augmented reality provide a highly personalized and immersive environment that allows for interactivity and rich information exchange between the brand and consumer. We conducted in-depth interviews with over 35 retailers, large-scale surveys with international shoppers, and pilot projects with stores and banking institutions to study how companies are leveraging digital technologies to transform the customer experience. Our findings show that there are two main technology-based models that organizations are deploying to support customers' immediate needs: the remote expert and the digital assistant. We provide company examples of both models, as well as when they are most appropriate and success factors to inform managers. (C) 2016 Kelley School of Business, Indiana University. Published by Elsevier Inc. All rights reserved. C1 [Parise, Salvatore; Guinan, Patricia J.] Babson Coll, Babson Hall, Babson Pk, MA 02457 USA. [Kafka, Ron] Cisco Syst, San Francisco Bay Area, CA USA. C3 Babson College; Cisco Systems Inc RP Parise, S (autor correspondiente), Babson Coll, Babson Hall, Babson Pk, MA 02457 USA. EM sparise@babson.edu; guinan@babson.edu; rkafka@cisco.com CR [Anonymous], DEMYSTIFYING ONLINE Biggs J., 2013, TechCrunch Cisco, 2015, CISC REM EXP SMART S Cisco, 2013, Catch and keep digital shoppers Dhebar A, 2013, BUS HORIZONS, V56, P199, DOI 10.1016/j.bushor.2012.11.004 Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Gilbert J., 2014, TRY MAKEUP GENIUS IN Graeber C., 2013, TRENDS 2013 5 TRENDS Gunn M., 2011, INFORM WEEK HubSpot, 2011, MARK FACT VS MARK FA Indvik L., 2012, MASHABLE Klein LR, 2003, J INTERACT MARK, V17, P41, DOI 10.1002/dir.10046 Kohler T, 2011, MIS QUART, V35, P773 Kurylko D. T., 2015, AUTOMOTIVE NEWS Lapowsky I., 2013, ALEX ANI IS PIONEERI Leggett K, 2013, TECHRADAR AD D PROS Liang TP, 2011, INT J ELECTRON COMM, V16, P69, DOI 10.2753/JEC1086-4415160204 McPartlin S., 2012, Understanding how US online shoppers are reshaping the retail experience Mehrabian A., 1974, APPROACH ENV PSYCHOL, V12 Minkara O., 2013, COBROWSING CUSTOMER Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Scholz J, 2016, BUS HORIZONS, V59, P149, DOI 10.1016/j.bushor.2015.10.003 Shaul B., 2014, ADWEEK Suh KS, 2006, BEHAV INFORM TECHNOL, V25, P99, DOI 10.1080/01449290500330398 Suh KS, 2005, MIS QUART, V29, P673 Wisely R., 2014, LINCOLNS CONCIERGE P Zaso A., 2013, MOBILE CHECKOUTS ALE Zhang H, 2015, INFORM MANAGE-AMSTER, V52, P468, DOI 10.1016/j.im.2015.01.008 Zhang H, 2014, INFORM MANAGE-AMSTER, V51, P1017, DOI 10.1016/j.im.2014.07.005 [No title captured] NR 30 TC 137 Z9 160 U1 7 U2 295 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0007-6813 EI 1873-6068 J9 BUS HORIZONS JI Bus. Horiz. PD JUL-AUG PY 2016 VL 59 IS 4 BP 411 EP 420 DI 10.1016/j.bushor.2016.03.004 PG 10 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA DQ1KW UT WOS:000378960900007 DA 2024-03-27 ER PT J AU Ray, A Bala, PK AF Ray, Arghya Bala, Pradip Kumar TI User generated content for exploring factors affecting intention to use travel and food delivery services SO INTERNATIONAL JOURNAL OF HOSPITALITY MANAGEMENT LA English DT Article DE Natural-Language-Processing (NLP); Online-Food-Delivery-Services (OFDs); Online-Travel-Agency-Services (OTAs); Qualitative study; Structural-Equation-Modeling (SEM); User-Generated-Content (UGC) ID PERCEIVED RISK; ONLINE; ADOPTION; QUALITY; SATISFACTION; CONSUMPTION; AGENCIES; MEDIA; MODEL; TRUST AB Customer reviews/comments on product-websites and on social-media pages can serve as great information sources for both customers and service-providers. For exploring the drivers of usage intention in context of Online-Food-Delivery services (OFDs) and Online-Travel-Agency services (OTAs), traditional-based (qualitative or quantitative or mixed-method) approaches may not be enough. This study utilizes a multi-method approach comprising of both traditional and Natural-Language-Processing (NLP)-based approaches. This study has captured the emic-perspectives using qualitative semi-structured-interviews and etic-perspectives using NLPbased analysis of extant literature. The conceptual model developed from the model of online-decision making stance, was tested quantitatively using survey data and by NLP-based approach using online user reviews. The path-model was tested using Structural-Equation-Modeling (SEM). Results of this study reveal that price benefits and trust-in-service are major predictors of customer's usage intention in OFD and OTA contexts. The study concludes with the various implications, limitations and future directions. C1 [Ray, Arghya; Bala, Pradip Kumar] Indian Inst Management Ranchi, 5th Floor,Audrey House Campus,Meurs Rd, Ranchi 834008, Jharkhand, India. C3 Indian Institute of Management (IIM System); Indian Institute of Management Ranchi RP Ray, A (autor correspondiente), Indian Inst Management Ranchi, 5th Floor,Audrey House Campus,Meurs Rd, Ranchi 834008, Jharkhand, India. EM arghya.ray16fpm@iimranchi.ac.in; pkbala@iimranchi.ac.in RI RAY, ARGHYA/N-3898-2017; Ray, Arghya/GXH-3304-2022 OI RAY, ARGHYA/0000-0001-5836-0621 CR Aggarwal GC., 2012, MINING TEXT DATA, pU577 Alalwan AA, 2020, INT J INFORM MANAGE, V50, P28, DOI 10.1016/j.ijinfomgt.2019.04.008 Alvesson M, 1996, LEADERSHIP QUART, V7, P455, DOI 10.1016/S1048-9843(96)90002-8 [Anonymous], 2009, J MARKETING [Anonymous], 2018, BIMS J MANAG, V3, P58 [Anonymous], 2019, INT J HOSP MANAGE [Anonymous], 2018, DEV BUSINESS SIMULAT [Anonymous], 1995, QUANTITATIVE APPL SO [Anonymous], 2013, ENCY CROSS CULTURAL [Anonymous], 2018, ESERVICES REPORT 201 [Anonymous], 2018, INF PROCESS MANAGE [Anonymous], 2017, ADV INTELLIGENT SYST Arnett DB, 2003, J RETAILING, V79, P161, DOI 10.1016/S0022-4359(03)00036-8 Augustin K.I., 2018, RUSS J AGR SOCIOECON, V11, DOI [10.18551/rjoas.2018-11.26, DOI 10.18551/RJOAS.2018-11.26] Baabdullah AM, 2019, INT J INFORM MANAGE, V44, P38, DOI 10.1016/j.ijinfomgt.2018.09.002 Blei DM, 2010, J ACM, V57, DOI 10.1145/1667053.1667056 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Braun V., 2019, HDB RES METHODS HLTH Brill E, 1995, COMPUT LINGUIST, V21, P543 Cassel C, 1999, J APPL STAT, V26, P435, DOI 10.1080/02664769922322 Chai L.T., 2019, Journal of Marketing Advances and Practices, V1, P62, DOI DOI 10.1515/9783110420388-004 Chalabi A., 2007, Patent, Patent No. 7184948 Chang YW, 2019, TOURISM MANAGE, V71, P187, DOI 10.1016/j.tourman.2018.08.026 Charmaz K., 2012, The SAGE Handbook of Interview Research: The Complexity of the Craft, DOI 10.4135/9781452218403.n25 Chatterjee S, 2019, DECIS SUPPORT SYST, V119, P14, DOI 10.1016/j.dss.2019.02.008 Chen CF, 2010, SERV IND J, V30, P2081, DOI 10.1080/02642060903191108 Cho M, 2019, INT J HOSP MANAG, V77, P108, DOI 10.1016/j.ijhm.2018.06.019 Correa JC, 2019, J RETAIL CONSUM SERV, V46, P45, DOI 10.1016/j.jretconser.2018.05.002 Cox C, 2009, J HOSP MARKET MANAG, V18, P743, DOI 10.1080/19368620903235753 Creswell JW., 2014, Research design: qualitative, quantitative, and mixed methods approaches, V4th ed. Daly J., 1997, PUBLIC HLTH RES METH DEERWESTER S, 1990, J AM SOC INFORM SCI, V41, P391, DOI 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 El-Masri M, 2017, ETR&D-EDUC TECH RES, V65, P743, DOI 10.1007/s11423-016-9508-8 Elvandari Cecilia Desvita Ratna, 2018, Journal of Industrial and Information Technology in Agriculture, V1, P1 Fang YH, 2012, COMPUT HUM BEHAV, V28, P1790, DOI 10.1016/j.chb.2012.04.019 Feldman R, 2007, The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data Filieri R, 2015, TOURISM MANAGE, V51, P174, DOI 10.1016/j.tourman.2015.05.007 Fondevila-Gascón JF, 2019, FUTURE INTERNET, V11, DOI 10.3390/fi11030080 Gao LL, 2017, INFORM SYST FRONT, V19, P525, DOI 10.1007/s10796-015-9611-0 Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1 Hair J.F., 2009, Multivariate data analysis Hair JF, 2013, LONG RANGE PLANN, V46, P1, DOI 10.1016/j.lrp.2013.01.001 He Z, 2019, INT J PROD ECON, V215, P61, DOI 10.1016/j.ijpe.2018.05.008 Hopkins DJ, 2010, AM J POLIT SCI, V54, P229, DOI 10.1111/j.1540-5907.2009.00428.x Hu F, 2020, INT J HOSP MANAG, V84, DOI 10.1016/j.ijhm.2019.102317 Huang CM, 2010, BMC MED INFORM DECIS, V10, DOI 10.1186/1472-6947-10-57 Huang J, 2017, INT J HOSP MANAG, V66, P117, DOI 10.1016/j.ijhm.2017.07.003 IBM Watson, PERS INS Jang S, 2019, INT J HOSP MANAG, V78, P27, DOI 10.1016/j.ijhm.2018.11.010 Jedin MA L, 2017, 4INT C E COMM ICOEC, V2, P7 John O. P., 1990, Handbook of personality theory and research, P66 Kim DJ, 2008, DECIS SUPPORT SYST, V44, P544, DOI 10.1016/j.dss.2007.07.001 Krippendorff K., 2018, Content analysis: An introduction to its methodology Kunimoto R., 2014, INT J INNOV MANAG, V5, P417, DOI [https://doi.org/10.7763/IJIMT.2014.V5.551, DOI 10.7763/IJIMT.2014.V5.551] Lee D, 2020, J INT FIN MANAG ACC, V31, P139, DOI 10.1111/jifm.12111 Lerman Kristina., 2010, P 4 INT AAAI C WEBLO, P90 Luminet O, 2001, PSYCHOTHER PSYCHOSOM, V70, P254, DOI 10.1159/000056263 Maimaiti M, 2018, EUR J CLIN NUTR, V72, P1282, DOI 10.1038/s41430-018-0191-1 Neuendorf K. A., 2017, CONTENT ANAL GUIDEBO, DOI [DOI 10.4135/9781071802878, 10.4135/9781071802878] Patton M. Q., 1990, Qualitative research and evaluation methods, V2nd Permatasari Anggraeni, 2018, International Journal of Business and Globalisation, V21, P74 Pigatto G, 2017, BRIT FOOD J, V119, P639, DOI 10.1108/BFJ-05-2016-0207 Ray A, 2020, KNOWL PROCESS MANAG, V27, P63, DOI 10.1002/kpm.1623 Ray A, 2019, J RETAIL CONSUM SERV, V51, P221, DOI 10.1016/j.jretconser.2019.05.025 Ray A, 2019, INT J INFORM MANAGE, V47, P140, DOI 10.1016/j.ijinfomgt.2019.01.015 Roh M, 2019, INT J INFORM MANAGE, V47, P262, DOI 10.1016/j.ijinfomgt.2018.09.017 Saga R, 2016, ARTIF LIFE ROBOT, V21, P155, DOI 10.1007/s10015-016-0270-0 Segura MA, 2019, DATA BRIEF, V25, DOI 10.1016/j.dib.2019.104007 Sell K., 2016, Open Journal of Nursing, V6, P213, DOI DOI 10.4236/OJN.2016.63022 Siering M, 2018, DECIS SUPPORT SYST, V107, P52, DOI 10.1016/j.dss.2018.01.002 Simon T, 2015, INT J INFORM MANAGE, V35, P609, DOI 10.1016/j.ijinfomgt.2015.07.001 StatisticsSolutions, 2019, TEST ASS Tecichert T., 2020, BR FOOD J, V1 Tsang NKF, 2010, J TRAVEL TOUR MARK, V27, P306, DOI 10.1080/10548401003744743 Vaismoradi M, 2013, NURS HEALTH SCI, V15, P398, DOI 10.1111/nhs.12048 van Riel ACR, 2004, TOTAL QUAL MANAG BUS, V15, P475, DOI 10.1080/1478336042000183578 Vijayarani S., 2015, INT J COMPUT SCI COM, V5, P7, DOI DOI 10.1016/J.PR0CS.2013.05.286 Wang SY, 2018, TRANSPORT RES A-POL, V117, P58, DOI 10.1016/j.tra.2018.08.014 WESTBROOK RA, 1991, J CONSUM RES, V18, P84, DOI 10.1086/209243 Xu J., 2018, Topic Modeling with LSA, PLSA, LDA lda2Vec Yeo VCS, 2017, J RETAIL CONSUM SERV, V35, P150, DOI 10.1016/j.jretconser.2016.12.013 Yuan Y., 2018, CONTINUOUS USAGE INT, DOI [10.1007/ s.I.0257-018-0372-4., DOI 10.1007/S.10257-018-0372-4] ZionMarketResearch, 2018, GLOBAL ONLINE TRAVEL NR 83 TC 53 Z9 56 U1 16 U2 129 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0278-4319 EI 1873-4693 J9 INT J HOSP MANAG JI Int. J. Hosp. Manag. PD JAN PY 2021 VL 92 AR 102730 DI 10.1016/j.ijhm.2020.102730 PG 12 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA PB7ZJ UT WOS:000596534500005 DA 2024-03-27 ER PT J AU Rodgers, W Nguyen, T AF Rodgers, Waymond Tam Nguyen TI Advertising Benefits from Ethical Artificial Intelligence Algorithmic Purchase Decision Pathways SO JOURNAL OF BUSINESS ETHICS LA English DT Article DE Ethical considerations; Digital marketing; AI Algorithms ID INTERNET SHOPPING BEHAVIOR; PRIOR KNOWLEDGE; INFORMATION OVERLOAD; ELECTRONIC CHANNELS; PLANNED BEHAVIOR; USER ACCEPTANCE; ONLINE; CONSUMERS; TECHNOLOGY; IMPACT AB Artificial intelligence (AI) has dramatically changed the way organizations communicate, understand, and interact with their potential consumers. In the context of this trend, the ethical considerations of advertising when applying AI should be the core question for marketers. This paper discusses six dominant algorithmic purchase decision pathways that align with ethical philosophies for online customers when buying a product/goods. The six ethical positions include: ethical egoism, deontology (i.e., rule-based), relativist, utilitarianism, virtue ethics, and ethics of care (i.e., stakeholders' perspective). Furthermore, this paper launches an "intelligent advertising" AI theme by examining its present and future as well as identifying the key phases of intelligent advertising. Several research questions are offered to guide future research on intelligent advertising to benefit ethical AI decision-making. Finally, several areas that can be widely applied to ethical intelligent advertising are suggested for future research. C1 [Rodgers, Waymond] Univ Texas El Paso, Univ Hull, 500 W Univ Ave, El Paso, TX 79968 USA. [Tam Nguyen] Univ Da Nang, Univ Econ, Da Nang, Vietnam. [Tam Nguyen] Univ Hull, Cottingham Rd, Kingston Upon Hull HU6 7RX, N Humberside, England. C3 University of Texas System; University of Texas El Paso; University of Danang; University of Hull RP Rodgers, W (autor correspondiente), Univ Texas El Paso, Univ Hull, 500 W Univ Ave, El Paso, TX 79968 USA. EM W.Rodgers@hull.ac.uk; tamntm@due.edu.vn OI Rodgers, Waymond/0000-0003-4349-5667 CR Abbasi A, 2018, MIS QUART, V42, P427, DOI 10.25300/MISQ/2018/13239 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] [Anonymous], 2009, ETHICAL BEGINNINGS P Bakpayev M, 2022, AUSTRALAS MARK J, V30, P90, DOI 10.1016/j.ausmj.2020.04.002 Barnett SB, 2017, J CONSUM RES, V44, P160, DOI 10.1093/jcr/ucw083 Batra R, 2016, J MARKETING, V80, P122, DOI 10.1509/jm.15.0419 Bellman S, 1999, COMMUN ACM, V42, P32, DOI 10.1145/322796.322805 BETTMAN JR, 1980, J CONSUM RES, V7, P234, DOI 10.1086/208812 Bettman JR, 1998, J CONSUM RES, V25, P187, DOI 10.1086/209535 Bhatnagar A, 2000, COMMUN ACM, V43, P98, DOI 10.1145/353360.353371 Bhattachrayya S.K., 2004, European Business Review, V16, P128, DOI DOI 10.1108/09555340410524238 Biswas D, 2004, J INTERACT MARK, V18, P30, DOI 10.1002/dir.20010 Bolstad W. M., 2016, Introduction to Bayesian Statistics, DOI DOI 10.1002/9780470181188 Broder Andrei Z, 2008, Computational advertising and recommender systems, P1 Brown Juanita., 1992, J ACAD MARKET SCI, V20, P235 Bucklin RE, 2002, MARKET LETT, V13, P245, DOI 10.1023/A:1020231107662 Busch O., 2016, PROGRAMMATIC ADVERTI Butler P., 1998, EUR MANAG J, V16, P600 Campbell BM., 1969, ACTA SOCIOL, DOI 10.1177/000169937401700206 Chen G, 2019, J ADVERTISING, V48, P347, DOI 10.1080/00913367.2019.1654421 Chen YM, 2018, J RETAIL CONSUM SERV, V41, P281, DOI 10.1016/j.jretconser.2017.04.004 Chen YC, 2009, ELECTRON COMMER R A, V8, P48, DOI 10.1016/j.elerap.2008.09.001 Cho C.-H., 2018, DIGITAL MARKETING 4 Cho YC., 2015, INT J MANAGEMENT INF, V19, P21, DOI DOI 10.19030/IJMIS.V19I1.9086 Choudhury V, 2008, MIS QUART, V32, P179 Constantinides E, 2004, INTERNET RES, V14, P111, DOI 10.1108/10662240410530835 Court D., 2009, MCKIN Q, V3, P96 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Deng SS, 2019, J ADVERTISING, V48, P356, DOI 10.1080/00913367.2019.1652121 Deng SS, 2019, INFORM MANAGE-AMSTER, V56, P536, DOI 10.1016/j.im.2018.09.013 Dorn C, 2010, LECT NOTES COMPUT SC, V6336, P327, DOI 10.1007/978-3-642-15618-2_23 EDWARDS W, 1954, PSYCHOL BULL, V51, P380, DOI 10.1037/h0053870 Engel BRD., 1990, CONSUMER BEHAV Engel J, 1968, CONSUMER BEHAV Erdem T, 2004, J CONSUM RES, V31, P191, DOI 10.1086/383434 Fishbein M., 1967, Readings in Attitude Theory and Measurement Fishbein M., 1980, Nebraska Symposium on Motivation, 1979, P65 Foss K, 2011, ORGAN STUD, V32, P683, DOI 10.1177/0170840611407017 Frankish Keith, 2014, CAMBRIDGE HDB ARTIFI, DOI 10.1017/CBO9781139046855 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 George JF, 2004, INTERNET RES, V14, P198, DOI 10.1108/10662240410542634 Gupta A, 2004, INT J ELECTRON COMM, V8, P131, DOI 10.1080/10864415.2004.11044302 Gupta A, 2017, J RETAIL CONSUM SERV, V36, P1, DOI 10.1016/j.jretconser.2016.12.012 Hatton Chandler, 2017, Strategy & Leadership, V45, P25, DOI 10.1108/SL-02-2017-0017 He Dehua, 2008, Tsinghua Science and Technology, V13, P287, DOI 10.1016/S1007-0214(08)70046-4 Heeter C, 2000, Journal of Interactive Advertising, V1, P3, DOI DOI 10.1080/15252019.2000.10722040 HERR PM, 1989, J CONSUM RES, V16, P67, DOI 10.1086/209194 Howard J., 1969, Journal of the American Statistical Association Hsu MH, 2006, INT J HUM-COMPUT ST, V64, P889, DOI 10.1016/j.ijhcs.2006.04.004 Huang MH, 2000, INT J INFORM MANAGE, V20, P337, DOI 10.1016/S0268-4012(00)00027-X Huang MX, 2013, ONLINE INFORM REV, V37, P927, DOI 10.1108/OIR-07-2012-0117 IAB, 2014, PROGR EV DAT TECHN A Jiang Z., 2019, JOURNALISM COMMUNICA, V5, P56 Johnson B., 2000, ADVERTISING AGE, V71, P19 Johnson DG, 2015, J BUS ETHICS, V127, P707, DOI 10.1007/s10551-014-2180-1 Johnson EJ, 2003, J MARKETING, V67, P62, DOI 10.1509/jmkg.67.2.62.18615 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kaplan A, 2020, BUS HORIZONS, V63, P37, DOI 10.1016/j.bushor.2019.09.003 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Karimi S., 2013, PURCHASE DECISION PR Karimi S, 2018, J BUS RES, V91, P71, DOI 10.1016/j.jbusres.2018.05.038 Karimi S, 2015, DECIS SUPPORT SYST, V77, P137, DOI 10.1016/j.dss.2015.06.004 Kietzmann J, 2018, J ADVERTISING RES, V58, P263, DOI 10.2501/JAR-2018-035 Kim J, 2005, J FASH MARK MANAG, V9, P106, DOI 10.1108/13612020510586433 Kirsten M., 2019, J BUS ETHICS, DOI 10.1007/s10551-019-04213-9 KIRSTEN M, 2018, J BUS ETHICS Kotler P., 2006, PRINCIPLES MARKETING Koufaris M, 2002, INFORM SYST RES, V13, P205, DOI 10.1287/isre.13.2.205.83 Langley A, 1999, ACAD MANAGE REV, V24, P691, DOI 10.2307/259349 Laohapensang O, 2009, J FASH MARK MANAG, V13, P501, DOI 10.1108/13612020910991367 LeBlanc RonaldP., 2001, MARK INTELL PLAN, V19, P500 Lee HY, 2007, TOURISM MANAGE, V28, P886, DOI 10.1016/j.tourman.2006.04.013 Lee HK, 2020, INT J CULT POLICY, V26, P544, DOI 10.1080/10286632.2019.1577401 Li H., 2019, J ADVERTISING ED, V23, P100 Li HR, 2019, J ADVERTISING, V48, P333, DOI 10.1080/00913367.2019.1654947 Li HR, 2003, J CONSUM PSYCHOL, V13, P395, DOI 10.1207/S15327663JCP1304_07 Li HR, 2002, J ADVERTISING, V31, P37, DOI 10.1080/00913367.2002.10673665 Lian JW, 2008, COMPUT HUM BEHAV, V24, P48, DOI 10.1016/j.chb.2007.01.002 Liao B., 2017, CONT COMMUNICATIONS, V7, P97 Limayem M, 2000, IEEE T SYST MAN CY A, V30, P421, DOI 10.1109/3468.852436 Liu X., 2003, Electronic Commerce Research and Applications, V2, P229, DOI DOI 10.1016/S1567-4223(03)00027-9 Liu YP, 2002, J ADVERTISING, V31, P53, DOI 10.1080/00913367.2002.10673685 Liu YT, 2018, IEEE T FUZZY SYST, V26, P338, DOI 10.1109/TFUZZ.2017.2659764 Lombard M., 2001, Journal of Interactive Advertising, V1, P56, DOI [DOI 10.1080/15252019.2001.10722051, 10.1080/15252019.2001.10722051] Malthouse EC, 2019, J ADVERTISING, V48, P366, DOI 10.1080/00913367.2019.1652123 McGaughey R.E., 1998, J MARKETING THEORY P, V6, P1, DOI DOI 10.1080/10696679.1998.11501800 McMillan SJ, 2002, J ADVERTISING, V31, P29, DOI 10.1080/00913367.2002.10673674 Mick DG, 2004, J BUS ETHICS, V52, P207, DOI 10.1023/B:BUSI.0000035906.74034.d4 Moon B. J., 2004, International Journal of Internet Marketing and Advertising, V1, P104, DOI 10.1504/IJIMA.2004.003692 Pascual-Miguel FJ, 2015, J BUS RES, V68, P1550, DOI 10.1016/j.jbusres.2015.01.050 Paul J, 2016, J RETAIL CONSUM SERV, V29, P123, DOI 10.1016/j.jretconser.2015.11.006 Pavlou PA, 2006, MIS QUART, V30, P115 Pavlou PA., 2015, NEW MEANINGS MARKETI Pavlou PA, 2007, MIS QUART, V31, P105 PAYNE JW, 1988, J EXP PSYCHOL LEARN, V14, P534, DOI 10.1037/0278-7393.14.3.534 Petro G., 2018, Forbes Punj G, 2012, PSYCHOL MARKET, V29, P791, DOI 10.1002/mar.20564 Qin XB, 2019, J ADVERTISING, V48, P338, DOI 10.1080/00913367.2019.1652122 Rahman O., 2018, International Journal of Fashion Design, Technology and Education, V11, P287, DOI DOI 10.1080/17543266.2018.1429498 Ratchford BT, 2003, J MARKETING RES, V40, P193, DOI 10.1509/jmkr.40.2.193.19221 Rehman SU, 2019, J GLOB ENTREP RES, V9, DOI 10.1186/s40497-019-0166-2 ROBERTS JH, 1991, J MARKETING RES, V28, P429, DOI 10.2307/3172783 Roca Juan Carlos, 2009, Information Management & Computer Security, V17, P96, DOI 10.1108/09685220910963983 Rodgers W, 2001, J BUS ETHICS, V31, P355, DOI 10.1023/A:1010777917540 Rodgers W., 2006, Process thinking: six pathways to successful decision making Rodgers W., 2016, DECISION MAKING PERS Rodgers W., 1997, THROUGHPUT MODELING Rodgers W., 2020, IEEE T ENG MANAGE Rodgers W, 2021, J BUS RES, V126, P401, DOI 10.1016/j.jbusres.2020.12.039 Rodgers W, 2019, J WORLD BUS, V54, DOI 10.1016/j.jwb.2019.101012 Rodgers W, 2019, ACCOUNT FORUM, V43, P220, DOI 10.1080/01559982.2019.1605871 Rodgers W, 2015, J BUS ETHICS, V131, P871, DOI 10.1007/s10551-014-2152-5 Rodgers W, 2010, J BUS ETHICS, V91, P83, DOI 10.1007/s10551-009-0069-1 ROSENBERG MJ, 1956, J ABNORM SOC PSYCH, V53, P367, DOI 10.1037/h0044579 RUSSELL STUART J., 2020, Artificial Intelligence: A Modern Approach Sachdeva R., 2015, The IUP Journal of Marketing Management, V14, P7 Saldivar AAF, 2016, IEEE C EVOL COMPUTAT, P5317, DOI 10.1109/CEC.2016.7748366 Shim S, 2001, J RETAILING, V77, P397, DOI 10.1016/S0022-4359(01)00051-3 Sicilia M, 2010, ELECTRON COMMER R A, V9, P183, DOI 10.1016/j.elerap.2009.03.004 Sismeiro C, 2004, J MARKETING RES, V41, P306, DOI 10.1509/jmkr.41.3.306.35985 Solomon M., 2006, Consumer Behaviour: A European Perspective: A European Perspective, V3rd ed Soto-Acosta P, 2014, ONLINE INFORM REV, V38, P543, DOI 10.1108/OIR-01-2014-0008 Tandon Urvashi, 2019, Journal of Information Technology Case and Application Research, V21, P13, DOI 10.1080/15228053.2019.1609779 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 TVERSKY A, 1981, SCIENCE, V211, P453, DOI 10.1126/science.7455683 van Esch P, 2021, J ADVERTISING, V50, P63, DOI 10.1080/00913367.2020.1832939 Varadarajan R, 2010, J INTERACT MARK, V24, P96, DOI 10.1016/j.intmar.2010.02.004 Vijayasarathy LR, 2004, INFORM MANAGE-AMSTER, V41, P747, DOI 10.1016/j.im.2003.08.011 Wang YC, 2017, INT J INFORM MANAGE, V37, P179, DOI 10.1016/j.ijinfomgt.2015.11.005 Waymond Rodgers., 2020, Artificial intelligence in a throughput model: Some major algorithms Xia L, 2002, J CONSUM PSYCHOL, V12, P265, DOI 10.1207/S15327663JCP1203_08 Xu YZ, 2020, AUSTRALAS MARK J, V28, P189, DOI 10.1016/j.ausmj.2020.03.005 NR 134 TC 15 Z9 16 U1 63 U2 213 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4544 EI 1573-0697 J9 J BUS ETHICS JI J. Bus. Ethics PD JUL PY 2022 VL 178 IS 4 SI SI BP 1043 EP 1061 DI 10.1007/s10551-022-05048-7 EA FEB 2022 PG 19 WC Business; Ethics WE Social Science Citation Index (SSCI) SC Business & Economics; Social Sciences - Other Topics GA 2X6TF UT WOS:000754336400002 OA Green Published, hybrid DA 2024-03-27 ER PT J AU Simkova, N Smutny, Z AF Simkova, Nikola Smutny, Zdenek TI Business E-NeGotiAtion: A Method Using a Genetic Algorithm for Online Dispute Resolution in B2B Relationships SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE alternative dispute resolution; B2B relationships; genetic algorithm; artificial intelligence; embedded single-case study; negotiation; e-commerce ID DESIGN SCIENCE RESEARCH; ARTIFICIAL-INTELLIGENCE; DECISION-SUPPORT; EXPERT-SYSTEM; ANGER AB An opportunity to resolve disputes as an out-of-court settlement through computer-mediated communication is usually easier, faster, and cheaper than filing an action in court. Artificial intelligence and law (AI & Law) research has gained importance in this area. The article presents a design of the E-NeGotiAtion method for assisted negotiation in business to business (B2B) relationships, which uses a genetic algorithm for selecting the most appropriate solution(s). The aim of the article is to present how the method is designed and contribute to knowledge on online dispute resolution (ODR) with a focus on B2B relationships. The evaluation of the method consisted of an embedded single-case study, where participants from two countries simulated the realities of negotiation between companies. For comparison, traditional negotiation via e-mail was also conducted. The evaluation confirms that the proposed E-NeGotiAtion method quickly achieves solution(s), approaching the optimal solution on which both sides can decide, and also very importantly, confirms that the method facilitates negotiation with the partner and creates a trusted result. The evaluation demonstrates that the proposed method is economically efficient for parties of the dispute compared to negotiation via e-mail. For a more complicated task with five or more products, the E-NeGotiAtion method is significantly more suitable than negotiation via e-mail for achieving a resolution that favors one side or the other as little as possible. In conclusion, it can be said that the proposed method fulfills the definition of the dual-task of ODR-it resolves disputes and builds confidence. C1 [Simkova, Nikola] Masaryk Univ, Fac Informat, Botanicka 68a, Brno 60200, Czech Republic. [Smutny, Zdenek] Prague Univ Econ & Business, Fac Informat & Stat, W. Churchill Sq. 1938-4, Prague 13067, Czech Republic. C3 Masaryk University Brno; Prague University of Economics & Business RP Smutny, Z (autor correspondiente), Prague Univ Econ & Business, Fac Informat & Stat, W. Churchill Sq. 1938-4, Prague 13067, Czech Republic. EM simkova@fi.muni.cz; zdenek.smutny@vse.cz RI Smutny, Zdenek/L-7498-2016; Simkova, Nikola/V-8092-2017 OI Smutny, Zdenek/0000-0002-6646-2991; Simkova, Nikola/0000-0002-6390-1872 FU Faculty of Informatics and Statistics, Prague University of Economics and Business [IP400040, F4/1/2019] FX The paper was processed with support from an institutional fund IP400040 for long-term conceptual development of science and research and internal grant F4/1/2019 at the Faculty of Informatics and Statistics, Prague University of Economics and Business. CR Abrahams B, 2010, FRONT ARTIF INTEL AP, V212, P297, DOI 10.3233/978-1-60750-577-8-297 Abrahams B, 2012, GROUP DECIS NEGOT, V21, P3, DOI 10.1007/s10726-010-9189-3 Almotairi Khaled., 2020, Acta Informatica Pragensia, V9, P184, DOI DOI 10.18267/J.AIP.141 Anagnostopoulou D, 2018, EUR BUS LAW REV, V29, P975 Andrade F, 2010, LECT NOTES ARTIF INT, V6284, P5 [Anonymous], 2013, DIR 2013 11 EU EUR P [Anonymous], 2013, REG EU 524 2013 EUR [Anonymous], 2020, BUS TO BUS E COMM MA Cáceres E, 2008, FRONT ARTIF INTEL AP, V189, P78, DOI 10.3233/978-1-58603-952-3-78 Carneiro D, 2017, FUTURE GENER COMP SY, V66, P171, DOI 10.1016/j.future.2016.05.019 Carneiro D, 2014, ARTIF INTELL REV, V41, P211, DOI 10.1007/s10462-011-9305-z Carneiro D, 2013, KNOWL INF SYST, V36, P789, DOI 10.1007/s10115-012-0563-0 Carneiro D, 2013, NEUROCOMPUTING, V109, P16, DOI 10.1016/j.neucom.2012.03.024 Cermak R, 2020, ACTA INFORM PRAG, V9, P132, DOI [10.18267/j.aip.137, DOI 10.18267/J.AIP.137] Cobb-Clark DA, 2012, ECON LETT, V115, P11, DOI 10.1016/j.econlet.2011.11.015 Cortes P., 2010, ONLINE DISPUTE RESOL, DOI [10.4324/9780203847756, DOI 10.4324/9780203847756] Cortes P., 2014, MAASTRICHT J EUR COM, V21, P14, DOI [10.1177/1023263X1402100102, DOI 10.1177/1023263X1402100102] Cortés P, 2011, INT J LAW INFORM TEC, V19, P1, DOI 10.1093/ijlit/eaq011 Costa N.M.S., 2010, P 12 INT C ENT INF S, P103 Dantas TET, 2021, SUSTAIN PROD CONSUMP, V26, P213, DOI 10.1016/j.spc.2020.10.005 Doong H.S., 2009, P 42 ANN HAW INT C S, P1 Dresch A, 2015, DESIGN SCI RES METHO EISENHARDT KM, 1991, ACAD MANAGE REV, V16, P620, DOI 10.2307/258921 El Jelali S, 2015, ARTIF INTELL LAW, V23, P1, DOI 10.1007/s10506-015-9162-1 Elziny AA, 2016, AIN SHAMS ENG J, V7, P57, DOI 10.1016/j.asej.2015.05.002 European Commission, 2013, FLASH EUR, V359 European Commission, 2012, BUS TO BUS ALT DISP, V347 European Commission, 2013, DIR EUR PARL COUNC A European Commission, 2015, CONS COND SCOR CONS Eurostat, 2014, INT PURCH IND Fuchs C, 2017, INT J COMMUN-US, V11, P2431 Gabuth Y, 2008, EUR ECON REV, V52, P259, DOI 10.1016/j.euroecorev.2007.04.004 Gerring J, 2004, AM POLIT SCI REV, V98, P341 Goldberg D. E., 1989, GENETIC ALGORITHMS S, V27, DOI 10.5860/CHOICE.27-0936 Gotti M., 2014, LAW CULTURE VISUAL S, P631, DOI [10.1007/978-90-481-9322-6_28, DOI 10.1007/978-90-481-9322-6_28] Grand View Research,, 2020, B2C E COMM MARK SIZ Gudauskas R, 2015, INT J COMPUT COMMUN, V10, P667, DOI 10.15837/ijccc.2015.5.2028 Gupta H, 2021, J CLEAN PROD, V295, DOI 10.1016/j.jclepro.2021.126253 Gurnakova J., 2013, ROZHODOVANIE PROFESI Hevner A, 2010, INTEGR SER INFORM SY, V22, P1, DOI 10.1007/978-1-4419-5653-8 Hynek J., 2008, GENETICKE ALGORITMY Johannesson P., 2014, An introduction to design science, DOI [10.1007/978-3-319-10632-8, DOI 10.1007/978-3-319-10632-8] Johnson NA, 2009, DECIS SUPPORT SYST, V46, P673, DOI 10.1016/j.dss.2008.10.007 Johnson NA, 2009, DECIS SUPPORT SYST, V46, P660, DOI 10.1016/j.dss.2008.10.008 Katsh E., 2007, INT REV LAW COMPUTER, V21, P97, DOI [10.1080/13600860701492096, DOI 10.1080/13600860701492096] Kersten G, 1999, GROUP DECIS NEGOT, V8, P251, DOI 10.1023/A:1008657921819 KOLODNER JL, 1989, COGNITIVE SCI, V13, P507, DOI 10.1207/s15516709cog1304_2 Kumar M., 2011, TRUST TECHNOLOGY B2B Lai HC, 2010, ELECTRON COMMER R A, V9, P537, DOI 10.1016/j.elerap.2010.03.005 Lavrakas P.J., 2008, Encyclopedia of survey research methods Vols, V1-0, DOI DOI 10.4135/9781412963947 Lazansky J., 2001, ARTIFICIAL INTELLIGE, V3 Lin WL, 2020, IND MARKET MANAG, V89, P61, DOI 10.1016/j.indmarman.2019.12.009 Lodder A.R., 2003, P WORKSH ONL DISP RE Loutocky P., 2017, MIMOSOUDNI RESENI SP Mania K., 2015, INT COMPAR JURISPRUD, V1, P76, DOI DOI 10.1016/J.ICJ.2015.10.006 MCCARTY LT, 1977, HARVARD LAW REV, V90, P837, DOI 10.2307/1340132 Mitchell M., 1999, INTRO GENETIC ALGORI Mitterhofer R., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P610, DOI 10.1109/HICSS.2012.334 Muecke N., 2008, P 5 INT WORKSH ONL D, V430, P62 Oskamp A., 1995, Artificial Intelligence and Law, V3, P209, DOI 10.1007/BF00872531 Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Richter N., 2011, P FRONTIERS ED C, P3 Rogers N.H., 2013, DESIGNING SYSTEMS PR Rule C., 2003, Online Dispute Resolution for Business: B2B, Ecommerce, Consumer, Employment, Insurance, and Other Commercial Conflicts Rule C, 2020, ANNU REV LAW SOC SCI, V16, P277, DOI 10.1146/annurev-lawsocsci-101518-043049 Sampani C, 2021, INF COMMUN TECHNOL L, V30, P235, DOI 10.1080/13600834.2021.1875539 Sánchez-Anguix V, 2013, INFORM SCIENCES, V222, P25, DOI 10.1016/j.ins.2010.11.018 Saraf B, 2013, COMPUT LAW SECUR REV, V29, P403, DOI 10.1016/j.clsr.2013.05.004 Sawyer S., 2006, REMEMBRANCE ROB KLIN, V223, DOI [10.1007/978-0-387-37876-3_4, DOI 10.1007/978-0-387-37876-3_4] Schultz T, 2001, ONLINE DISPUTE RESOL SEDLAR Matin, 2014, Psychologie a jeji kontexty, V5, P89 Simkova N., 2017, SLOV EC ASS M SEAM 2, V29 Simková N, 2017, P INT CONF STRAT MAN, P120 Simkova N, 2016, SCHRIFTEN INFORMATIK, V45, P303 Simková N, 2015, SCHRIFTEN INFORMATIK, V44, P247 Sivanandam S., 2008, INTRO GENETIC ALGORI, DOI [DOI 10.1007/978-3-540-73190-0, 10.1007/978-3-540-73190-0_7] Smutny Z, 2016, J INF SCI, V42, P681, DOI 10.1177/0165551515608731 Sudzina F, 2014, PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON FINANCE AND BANKING, P394 Tan YH, 2000, DECIS SUPPORT SYST, V29, P389, DOI 10.1016/S0167-9236(00)00085-3 Van Kleef GA, 2010, J EXP SOC PSYCHOL, V46, P753, DOI 10.1016/j.jesp.2010.03.013 Walsham G., 1997, Information Systems and Qualitative Research. Proceedings of the IFIP TC8 WG 8.2 International Conference on Information Systems and Qualitative Research, P466 Walton N, 2021, TECHNOL FORECAST SOC, V166, DOI 10.1016/j.techfore.2021.120576 Waterman D. A., 1986, Expert Systems, V3, P212, DOI 10.1111/j.1468-0394.1986.tb00203.x WATSON D, 1988, J PERS SOC PSYCHOL, V54, P1063, DOI 10.1037/0022-3514.54.6.1063 Wieringa R. J., 2014, STAKEHOLDER GOAL ANA, DOI DOI 10.1007/978-3-662-43839-8 Winter R, 2008, EUR J INFORM SYST, V17, P470, DOI 10.1057/ejis.2008.44 Xu ZC, 2008, 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, P3966, DOI 10.1109/CCDC.2008.4598076 Xu ZC, 2009, KNOWL-BASED SYST, V22, P18, DOI 10.1016/j.knosys.2008.04.009 Yin R.K., 2016, QUALITATIVE RES STAR Zeleznikow J, 2003, FRONT ARTIF INTEL AP, V106, P21 NR 90 TC 6 Z9 6 U1 6 U2 41 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD AUG PY 2021 VL 16 IS 5 BP 1186 EP 1216 DI 10.3390/jtaer16050067 PG 31 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA SX6MW UT WOS:000665317600001 OA gold DA 2024-03-27 ER PT J AU Wodecki, A AF Wodecki, Andrzej TI THE RESERVE PRICE OPTIMIZATION FOR PUBLISHERS ON REAL-TIME BIDDING ON-LINE MARKETPLACES WITH TIME-SERIES FORECASTING SO FOUNDATIONS OF MANAGEMENT LA English DT Article DE online marketing; real-time bidding; reserve price optimization; machine learning; forecasting AB Today's Internet marketing ecosystems are very complex, with many competing players, transactions concluded within milliseconds, and hundreds of different parameters to be analyzed in the decision-making process. In addition, both sellers and buyers operate under uncertainty, without full information about auction results, purchasing preferences, and strategies of their competitors or suppliers. As a result, most market participants strive to optimize their trading strategies using advanced machine learning algorithms. In this publication, we propose a new approach to determining reserve-price strategies for publishers, focusing not only on the profits from individual ad impressions, but also on maximum coverage of advertising space. This strategy combines the heuristics developed by experienced RTB consultants with machine learning forecasting algorithms like ARIMA, SARIMA, Exponential Smoothing, and Facebook Prophet. The paper analyses the effectiveness of these algorithms, recommends the best one, and presents its implementation in real environment. As such, its results may form a basis for a competitive advantage for publishers on very demanding online advertising markets. C1 [Wodecki, Andrzej] Warsaw Univ Technol, Fac Management, Warsaw, Poland. C3 Warsaw University of Technology RP Wodecki, A (autor correspondiente), Warsaw Univ Technol, Fac Management, Warsaw, Poland. EM andrzej.wodecki@pw.edu.pl OI Wodecki, Andrzej/0000-0002-9077-3191 FU Europejski Fundusz Rozwoju Regionalnego (European Regional Development Fund) [RPMA.01.02.00-14-9523/17] FX This work was supported by Europejski Fundusz Rozwoju Regionalnego (European Regional Development Fund), grant number: RPMA.01.02.00-14-9523/17. CR [Anonymous], 2020, PROPHET [Anonymous], 2020, AD EXCHANGE HIST REP [Anonymous], 2020, Exponential Smoothing Algorithm [Anonymous], 2020, AUTOREGRESSIVE INTEG [Anonymous], 2020, PROPHET DIAGNOSTICS Austin A., 2019, PROGRAMMATIC MARKETI Austin D, 2016, PROCEEDINGS OF 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, (DSAA 2016), P528, DOI 10.1109/DSAA.2016.32 Brownlee J., 2020, Imbalanced Classification with Python: Better Metrics, Balance Skewed Classes, Cost-Sensitive Learning (Machine Learning Mastery) Brownlee J., 2018, Introduction to Time Series Forecasting With Python Cai H, 2017, WSDM'17: PROCEEDINGS OF THE TENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P661, DOI 10.1145/3018661.3018702 Chapman P., 2004, CRISP DM 1 0 Choi H, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20010087 Hipel K., 1994, Dev. Water Sci., V45, P419 Li JJ, 2018, IEEE T COMPUT SOC SY, V5, P583, DOI 10.1109/TCSS.2018.2831234 Li JJ, 2017, IEEE SYS MAN CYBERN, P1256, DOI 10.1109/SMC.2017.8122785 Lu JW, 2019, PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), P1633, DOI 10.1145/3357384.3358027 Makridakis S, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0194889 MYERSON RB, 1981, MATH OPER RES, V6, P58, DOI 10.1287/moor.6.1.58 Radovanovic A., 2012, P 21ST INT C WORLD W, P91 Ren K, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P363, DOI 10.1145/3292500.3330870 RILEY JG, 1981, AM ECON REV, V71, P381 Wang J., 2017, ARXIV 1610 03013 Wang Yuchen., 2016, Joint European Conference on Machine Learning and Knowledge Discovery in Databases, P115 Wu W.C.-H., 2015, P 21TH ACM SIGKDD IN, P1305 Wu W, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P2526, DOI 10.1145/3219819.3220066 Yang C, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00325-1 NR 26 TC 2 Z9 2 U1 0 U2 3 PU SCIENDO PI WARSAW PA BOGUMILA ZUGA 32A, WARSAW, MAZOVIA, POLAND SN 2080-7279 EI 2300-5661 J9 FOUND MANAGE JI Found. Manag. PD JAN PY 2020 VL 12 IS 1 DI 10.2478/fman-2020-0013 PG 14 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA OV7BB UT WOS:000592359400001 OA gold, Green Submitted DA 2024-03-27 ER PT J AU Allil, K AF Allil, Kamaal TI Integrating AI-driven marketing analytics techniques into the classroom: pedagogical strategies for enhancing student engagement and future business success SO JOURNAL OF MARKETING ANALYTICS LA English DT Article; Early Access DE AI-driven marketing analytics; Marketing education; Pedagogical strategies; Curriculum integration; Classroom activities; Industry-academia collaboration ID ARTIFICIAL-INTELLIGENCE; MANAGEMENT; EVOLUTION; ISSUES; SKILLS; MODEL; WORLD AB This paper outlines a practical pedagogical framework for integrating AI-driven analytics into marketing education, tailored to equip students for the fast-evolving industry. Central to this approach is an iterative model that adapts teaching strategies to keep pace with technological advancements and industry demands. The framework emphasizes practical application, steering curriculum development towards the inclusion of AI tools like machine learning and predictive analytics, and crafting experiential learning opportunities. A focused examination of current teaching methods reveals gaps and introduces actionable solutions for fostering analytical skills essential for the AI-enhanced marketing landscape. The model not only advocates for a balance between theory and practice but also addresses challenges such as resource accessibility and the necessity of ethical considerations in AI education. By promoting interdisciplinary collaboration and continual curriculum refreshment, the paper positions the model as an essential blueprint for nurturing future marketing professionals capable of leveraging AI analytics for strategic decision-making. The conclusion calls for academia-industry partnerships to further enrich marketing education and underscores the importance of this framework in preparing students for successful careers in AI-driven marketing. C1 [Allil, Kamaal] Univ Hertfordshire, Hertfordshire Business Sch, Hatfield, England. C3 University of Hertfordshire RP Allil, K (autor correspondiente), Univ Hertfordshire, Hertfordshire Business Sch, Hatfield, England. EM k.allil@herts.ac.uk OI Allil, Kamaal/0000-0001-5466-6519 CR Abadi M., 2016, arXiv, DOI DOI 10.48550/ARXIV.1603.04467 ACM, 2018 ACM Code of Ethics and Professional Conduct Ahmad K., 2020, Data-driven artificial intelligence in education: A comprehensive review Al-Fudail M, 2008, COMPUT EDUC, V51, P1103, DOI 10.1016/j.compedu.2007.11.004 Allen M.J., 2004, ASSESSING ACAD PROGR AMA, 2023, AMA Statement of Ethics Nguyen A, 2023, EDUC INF TECHNOL, V28, P4221, DOI 10.1007/s10639-022-11316-w Anicic KP, 2017, IEEE T EDUC, V60, P191, DOI 10.1109/TE.2016.2633959 [Anonymous], 2015, FALLING SHORT COLL L Ballou B., 2018, J ACCOUNTING ED, V44, P14, DOI DOI 10.1016/J.JACCEDU.2018.05.003 Barbeito-Caamaño A, 2020, CORP SOC RESP ENV MA, V27, P2831, DOI 10.1002/csr.2006 Hernández-Lara AB, 2019, COMPUT HUM BEHAV, V92, P600, DOI 10.1016/j.chb.2018.03.001 Bhutoria A., 2022, Computers and Education: Artificial Intelligence, V3 Bird E., 2020, European Parliamentary Research Service, P634 Bird S, 2009, NATURAL LANGUAGE PRO, DOI DOI 10.5555/1717171 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Bonilla-Chaves EF, 2023, BEHAV SCI-BASEL, V13, DOI 10.3390/bs13030244 Bonk C., 1998, J ACCOUNTING ED, V16, P261, DOI [10.1016/S0748-5751(98)00012-8, DOI 10.1016/S0748-5751(98)00012-8] Bose I, 2009, EUR J OPER RES, V195, P1, DOI 10.1016/j.ejor.2008.04.006 Boud D., 2000, STUD CONTIN EDUC, V22, P151, DOI [https://doi.org/10.1080/713695728, DOI 10.1080/713695728] Broby D., 2022, Journal of Finance and Data Science, V8, DOI DOI 10.1016/J.JFDS.2022.05.003 Celik I, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107468 Chaffey D., 2012, Digital marketing: strategy, implementation and practice, V5th Chandrasekaran S, 2013, INT J ENG EDUC, V29, P1109 Chollet F., 2021, Deep Learning With Python, V2nd ed Clayton PR, 2019, J EDUC BUS, V94, P57, DOI 10.1080/08832323.2018.1502142 Colwell J., 2008, 2008 ANN C EXPOSITIO Cope B, 2021, EDUC PHILOS THEORY, V53, P1229, DOI 10.1080/00131857.2020.1728732 Crittenden WF, 2019, J MARKET EDUC, V41, P5, DOI 10.1177/0273475318820895 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Di Gregorio A, 2019, EUR MANAG J, V37, P251, DOI 10.1016/j.emj.2019.03.004 Elhajjar S., 2021, Marketing Education Review, V31, P2 Ferrell O.C., 2020, MARKETING ED REV, V30, P3, DOI [DOI 10.1080/10528008.2020.1718510, 10.1080/10528008.2020.1718510] Foxall GR, 2017, BEHAV ANALYST, V40, P309, DOI 10.1007/s40614-017-0127-4 Fuglseth AM, 2014, COMPUT HUM BEHAV, V40, P161, DOI 10.1016/j.chb.2014.07.040 García-Marzá D, 2005, J BUS ETHICS, V57, P209, DOI 10.1007/s10551-004-8202-7 GDPR, 2016, REGULATION EU 201667 Geron A., 2022, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow Goldberg J, 2014, INT J ENG EDUC, V30, P6 Gudeta D, 2022, COGENT EDUC, V9, DOI 10.1080/2331186X.2022.2030076 Hair J., 2020, Essentials of Business Research Methods. Essentials of Business Research Methods, DOI [DOI 10.4324/9781315716862, 10.4324/9780429203374, DOI 10.4324/9780429203374] Harambasic S., 2023, P FEB ZAGREB INT ODY, P204 Hargittai E, 2012, SOC SCI COMPUT REV, V30, P95, DOI 10.1177/0894439310397146 Hartmann J., 2023, Artificial intelligence in marketing Hastie T., 2009, ELEMENTS STAT LEARNI, P219, DOI [10.1007/978-0-387-84858-7_7, DOI 10.1007/978-0-387-84858-7] Heaton J., 2018, Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning Herreid C.F., 2007, Start with a story: the case study method of teaching college science Hill A., 2007, New Directions for Teaching and Learning, P33, DOI [DOI 10.1002/TL.296, 10.1002/t1.296, DOI 10.1002/T1.296] Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hochheiser H, 2007, INT J HUM-COMPUT INT, V23, P339, DOI 10.1080/10447310701702717 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Iacobucci D, 2019, J MARK ANAL, V7, P152, DOI 10.1057/s41270-019-00059-2 Imran R, 2023, INT J MANAG EDUC-OXF, V21, DOI 10.1016/j.ijme.2023.100805 Johnson DW, 2009, EDUC RESEARCHER, V38, P365, DOI 10.3102/0013189X09339057 Jongbloed B, 2002, HIGH EDUC, V44, P413, DOI 10.1023/A:1019825803857 Kelleher J.D., 2020, Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies Kim J, 2022, EDUC INF TECHNOL, V27, P6069, DOI 10.1007/s10639-021-10831-6 Kitchenham A, 2008, J TRANSFORM EDUC, V6, P104, DOI 10.1177/1541344608322678 Kohavi R, 2002, COMMUN ACM, V45, P45, DOI 10.1145/545151.545177 Kotler Philip., 1967, MARK MANAG Kurtzke S, 2021, J MARKET EDUC, V43, P298, DOI 10.1177/02734753211042404 Lamberton C, 2016, J MARKETING, V80, P146, DOI 10.1509/jm.15.0415 Lattuca LR., 2001, Creating interdisciplinarity: Interdisciplinary research and teaching among college and university faculty, DOI [10.2307/j.ctv167563f, DOI 10.2307/J.CTV167563F] LAVIDGE RJ, 1961, J MARKETING, V25, P59, DOI 10.2307/1248516 LeClair D., 2018, Marketing Education Review, V28, P6, DOI DOI 10.1080/10528008.2017.1421050 Li T, 2007, J MARKET EDUC, V29, P25, DOI 10.1177/0273475306297380 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 Liu B., 2012, SYNTHESIS LECT HUMAN, V5, P1, DOI [DOI 10.2200/S00416ED1V01Y201204HLT016, DOI 10.1007/978-3-031-02145-9] Liu Y., 2018, MARKETING ED REV, V28, P14, DOI DOI 10.1080/10528008.2017.1421048 Lutz C, 2019, HUM BEHAV EMERG TECH, V1, P141, DOI 10.1002/hbe2.140 Maheshwari S, 2021, INT J PROD RES, V59, P1875, DOI 10.1080/00207543.2020.1793011 Malik KM, 2023, EDUC INF TECHNOL, V28, P3581, DOI 10.1007/s10639-022-11350-8 Mandinach EB, 2013, EDUC RESEARCHER, V42, P30, DOI 10.3102/0013189X12459803 Mangalaraj G, 2023, J COMPUT INFORM SYST, V63, P11, DOI 10.1080/08874417.2021.2015726 Mariani MM, 2022, PSYCHOL MARKET, V39, P755, DOI 10.1002/mar.21619 Martin KE, 2015, MIS Q EXEC, V14, P67 Miranda SM, 2003, INFORM SYST RES, V14, P87, DOI 10.1287/isre.14.1.87.14765 Mittelstadt BD, 2016, BIG DATA SOC, V3, P1, DOI 10.1177/2053951716679679 Ngai EWT, 2009, EXPERT SYST APPL, V36, P2592, DOI 10.1016/j.eswa.2008.02.021 Ngai EWT, 2022, J BUS RES, V145, P35, DOI 10.1016/j.jbusres.2022.02.049 Nicol DJ, 2006, STUD HIGH EDUC, V31, P199, DOI 10.1080/03075070600572090 PEDRO F., 2019, Artificial intelligence in education: Challenges and opportunities for sustainable development Pirker J., 2014, P 2014 C INNOVATION Plangger K, 2022, J ACAD MARKET SCI, V50, P1125, DOI 10.1007/s11747-022-00906-2 Prince M, 2004, J ENG EDUC, V93, P223, DOI 10.1002/j.2168-9830.2004.tb00809.x Ramaswamy S, 2018, PROCEDIA COMPUT SCI, V140, P170, DOI 10.1016/j.procs.2018.10.326 Reddy YM, 2010, ASSESS EVAL HIGH EDU, V35, P435, DOI 10.1080/02602930902862859 Rohm AJ, 2019, J MARKET EDUC, V41, P47, DOI 10.1177/0273475318798086 Rooks RN., 2022, International Journal for the Scholarship of Teaching and Learning, V16, P1, DOI [10.20429/ijsotl.2022.160208, DOI 10.20429/IJSOTL.2022.160208] Rosenboom A., 2023, The Future of Responsible Management Education: University Leadership and the Digital Transformation Challenge Rozo H., 2019, J TECHNOLOGY SCI ED, V9, P308, DOI DOI 10.3926/JOTSE.652 Russell S, 2022, Artificial intelligence: A modern approach, V4th Salminen J, 2022, J INTERACT MARK, V57, P517, DOI 10.1177/10949968221095556 Sanchez-Prieto Jose Carlos, 2020, Learning and Collaboration Technologies. Designing, Developing and Deploying Learning Experiences. 7th International Conference, LCT 2020. Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12205), P292, DOI 10.1007/978-3-030-50513-4_22 Schlee RP, 2017, J MARKET EDUC, V39, P69, DOI 10.1177/0273475317712765 Shmueli G, 2011, MIS QUART, V35, P553 Siedlok F, 2014, INT J MANAG REV, V16, P194, DOI 10.1111/ijmr.12016 Sokhanvar Z, 2021, STUD EDUC EVAL, V70, DOI 10.1016/j.stueduc.2021.101030 Srinivasa KG., 2022, Learning, teaching, and assessment methods for contemporary learners: pedagogy for the digital generation, DOI [10.1007/978-981-19-6734-4, DOI 10.1007/978-981-19-6734-4] Sung B, 2020, ASIA PAC J MARKET LO, V32, P1089, DOI 10.1108/APJML-04-2019-0227 Tan S., 2023, Learning intelligence: Innovative and digital transformative learning strategies: Cultural and social engineering perspectives Thontirawong P., 2021, Marketing Education Review, V31, P58, DOI [10.1080/10528008.2021.1871849, DOI 10.1080/10528008.2021.1871849] Vanslambrouck S, 2018, INTERNET HIGH EDUC, V36, P33, DOI 10.1016/j.iheduc.2017.09.002 Verma S., 2021, INT J INFORM MANAGE, V1, DOI [10.1016/j.jjimei.2020.100002, DOI 10.1016/J.JJIMEI.2020.100002] Vlacic B, 2021, J BUS RES, V128, P187, DOI 10.1016/j.jbusres.2021.01.055 Weathers D., 2019, Marketing Education Review, V29, P266, DOI DOI 10.1080/10528008.2019.1673664 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Wernli D., 2023, Implementing interdisciplinarity in research-intensive universities Wiliam D., 1998, ASSESS EDUC, V5, P7, DOI DOI 10.1080/0969595980050102 Wilson EJ., 2018, Marketing Education Review, V28, P52, DOI [DOI 10.1080/10528008.2017, DOI 10.1080/10528008.2017.1419431] Yogish D., 2019, INT C RECENT TRENDS, DOI [10.1007/978-981-13-9187-3_53, DOI 10.1007/978-981-13-9187-3_53] Younan M., 2021, 2021 17 INT COMPUTER, P101 Zhang CM, 2021, J IND INF INTEGR, V23, DOI 10.1016/j.jii.2021.100224 Zulfiqar S, 2018, COGENT EDUC, V5, DOI 10.1080/2331186X.2018.1424678 NR 114 TC 0 Z9 0 U1 4 U2 4 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 2050-3318 EI 2050-3326 J9 J MARK ANAL JI J. Market. Anal. PD 2024 JAN 27 PY 2024 DI 10.1057/s41270-023-00281-z EA JAN 2024 PG 27 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA FX7V7 UT WOS:001149226200001 DA 2024-03-27 ER PT J AU Sands, S Ferraro, C Demsar, V Chandler, G AF Sands, Sean Ferraro, Carla Demsar, Vlad Chandler, Garreth TI False idols: Unpacking the opportunities and challenges of falsity in the context of virtual influencers SO BUSINESS HORIZONS LA English DT Article DE Influencer marketing; Virtual influencers; Social media marketing; Falsity; Artificial intelligence ID TECHNOLOGY; RESPONSES; IDENTITY; PURCHASE; AVATARS AB Influencer marketing has become a dominant and targeted means for brands to connect with consumers, but it also brings risks associated with influencer transgression and reputation damage. In recent years, virtual influencers have gained popularity and given rise to falsity, or artificially created and manipulated influencers that are revolutionizing the field of influencer marketing. A virtual influ-encer is an entitydhumanlike or notdthat is autonomously controlled by artificial intelligence and visually presented as an interactive, real-time rendered being in a digital environment. As brands increasingly seek to engage virtual influencers to connect with and sell to audiences, we take a step back and discuss the opportu-nities and challenges they present for firms and managers. To help marketers un-derstand this emerging field, we first document the rise of virtual influencers. Then, we discuss consumer reactions to virtual influencers before unpacking their associated opportunities and challenges for brands and marketers. Finally, we conclude with an overview of implications and future considerations.(c) 2022 Kelley School of Business, Indiana University. Published by Elsevier Inc. All rights reserved. C1 [Sands, Sean; Ferraro, Carla; Demsar, Vlad] Swinburne Univ Technol, John St, Hawthorn 3122, Australia. [Chandler, Garreth] Evolved Grp, L2-405 Little Bourke St, Melbourne, Australia. C3 Swinburne University of Technology RP Sands, S (autor correspondiente), Swinburne Univ Technol, John St, Hawthorn 3122, Australia. EM ssands@swin.edu.au; cferraro@swin.edu.au; vdemsar@swin.edu.au; garreth.chandler@theevolvedgroup.com CR Araque J., 2021, BUSINESS INSIDER Arsenyan J, 2021, INT J HUM-COMPUT ST, V155, DOI 10.1016/j.ijhcs.2021.102694 Baklanov N., 2019, HYPE AUDITOR 1114 Balis J., 2022, HARVARD BUS REV Bradley S, 2020, DRUM 0320 Caldwell G., 2019, GLOBAL COSMETIC 0625 Campbell C, 2022, J ADVERTISING, V51, P22, DOI 10.1080/00913367.2021.1909515 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Campbell C, 2015, BUS HORIZONS, V58, P599, DOI 10.1016/j.bushor.2015.06.003 Chitrakorn K, 2021, VOGUE BUSINESS 0804 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Cook J., 2020, HUFFINGTON POST Cooney B., 2021, DEXERTO 0914 Cusumano K, 2019, THE MAGAZINE Dans Enrique., 2019, FORBES Demsar V, 2021, J MARKET MANAG-UK, V37, P1058, DOI 10.1080/0267257X.2021.1900335 Dill-Shackleford KE, 2016, SOC PERSONAL PSYCHOL, V10, P634, DOI 10.1111/spc3.12274 Downie M, 2008, J SOC PSYCHOL, V148, P523, DOI 10.3200/SOCP.148.5.523-534 Edwards C, 2019, COMPUT HUM BEHAV, V90, P357, DOI 10.1016/j.chb.2018.08.027 Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009 Felnhofer A, 2019, INT J HUM-COMPUT ST, V132, P45, DOI 10.1016/j.ijhcs.2019.07.010 Florian A, 2021, THE CNN Gnewuch, 2017, P INT C INF SYST I Grewal D, 2017, J RETAILING, V93, P1, DOI 10.1016/j.jretai.2016.12.008 Guthrie S., 2020, INFLUENCER MARKETING, P271 Handley L., 2020, CNBC Hanus MD, 2015, INT J HUM-COMPUT ST, V84, P33, DOI 10.1016/j.ijhcs.2015.07.004 Harding S., 2019, THE VERDICT Harding S., 2019, MINDSHARE TRENDS REP Haslam N, 2006, PERS SOC PSYCHOL REV, V10, P252, DOI 10.1207/s15327957pspr1003_4 Hiort A, 2021, VIRTUAL INFLUENCERS Hobbs R., 2021, STYLUS 0527 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Hwang KJ, 2018, COMPUT HUM BEHAV, V87, P155, DOI 10.1016/j.chb.2018.05.029 Jackson Lauren Michele, 2018, New Yorker Jerger C, 2017, J SERV RES-US, V20, P362, DOI 10.1177/1094670517728339 Kietzmann J, 2020, BUS HORIZONS, V63, P135, DOI 10.1016/j.bushor.2019.11.006 Kim J., 2021, J INTERACTIVE ADVERT, V21, P141, DOI DOI 10.1080/15252019.2021.2001273 Klein Matt., 2020, Forbes Kramer S. D., 2018, IMPACT INFLUENCER MA LivePerson, 2021, RBS CREAT PERS MOB E Lorenz T., 2018, The Atlantic Mani Z, 2018, J PROD INNOVAT MANAG, V35, P780, DOI 10.1111/jpim.12463 Moustakas E., 2020, P 2020 INT C CYB SEC, P1 Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Naumann S., 2021, OMD 0527 Nguyen H., 2021, SAMM Pan Z, 2017, J MANAGE INFORM SYST, V34, P71, DOI 10.1080/07421222.2017.1296747 Price R., 2016, Business Insider Rasmussen M., 2021, 5 INNOVATIVE COMMERC Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Sands S, 2020, EUR MANAG J, V38, P45, DOI 10.1016/j.emj.2019.10.001 Seymour M., 2020, P 53 HAW INT C SYST, DOI [10.24251/HICSS.2020.574, DOI 10.24251/HICSS.2020.574] Seymour M, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P1748 Seymour M, 2018, J ASSOC INF SYST, V19, P953, DOI 10.17705/1jais.00515 Shechtman N., 2003, P SIGCHI C HUM FACT, P281, DOI [10.1145/642611.642661, DOI 10.1145/642611.642661] Sheehan K., 2009, Journal of Interactive Advertising, V9, P40, DOI DOI 10.1080/15252019.2009.10722154 Söderlund M, 2021, EUR J MARKETING, V55, P94, DOI 10.1108/EJM-09-2019-0748 Statista, 2021, NUMB BRAND SPONS INF Stein JP, 2020, INT J HUM-COMPUT ST, V142, DOI 10.1016/j.ijhcs.2020.102463 Stewart R., 2019, DRUM 1107 Teh C., 2021, Business Insider Thomas VL, 2021, J ADVERTISING, V50, P11, DOI 10.1080/00913367.2020.1810595 Time Staff, 2018, TIME Venkatesh V, 2008, DECISION SCI, V39, P273, DOI 10.1111/j.1540-5915.2008.00192.x Wagman K. B, 2020, FIXING SOCIAL M 0330 Wiese E, 2020, INT J HUM-COMPUT ST, V133, P1, DOI 10.1016/j.ijhcs.2019.08.002 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wong R., 2018, ADWEEK NR 69 TC 35 Z9 35 U1 124 U2 354 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0007-6813 EI 1873-6068 J9 BUS HORIZONS JI Bus. Horiz. PD NOV-DEC PY 2022 VL 65 IS 6 BP 777 EP 788 DI 10.1016/j.bushor.2022.08.002 EA OCT 2022 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 5J6EN UT WOS:000869133900008 DA 2024-03-27 ER PT J AU Pillai, R Sivathanu, B Dwivedi, YK AF Pillai, Rajasshrie Sivathanu, Brijesh Dwivedi, Yogesh K. TI Shopping intention at AI-powered automated retail stores (AIPARS) SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE TRAM; PLS-SEM; Perceived enjoyment; Customization; Interactivity; Artificial intelligence-powered automated; retail stores ID INTEGRATING TECHNOLOGY READINESS; IMAGE INTERACTIVITY TECHNOLOGY; ONLINE PURCHASE INTENTION; ARTIFICIAL-INTELLIGENCE; CONSUMER ACCEPTANCE; AUGMENTED REALITY; USER ACCEPTANCE; VIRTUAL-REALITY; BIG DATA; INTRINSIC MOTIVATION AB Artificial Intelligence (AI) is transforming the way retail stores operate. AI-Powered Automated Retail Stores are the next revolution in physical retail. Consumers are facing fully automated technology in these retail stores. Therefore, it is necessary to scrutinize the antecedents of consumers' intention to shop at AI-Powered Automated Retail Stores. This study delves into this area to find the predictors of consumers' intention to shop at AI-Powered Automated Retail Stores. It extends the technology readiness and acceptance model by the addition of AI context specific constructs such as Perceived Enjoyment, Customization and Interactivity from the present literature. The proposed model is tested by surveying 1250 consumers & the data is analyzed using the PLS-SEM technique and empirically validated. The outcome of the study reveals that Innovativeness and Optimism of consumers affect the perceived ease and perceived usefulness. Insecurity negatively affects the perceived usefulness of AI-powered automated retail stores. Perceived ease of use, perceived usefulness, perceived enjoyment, customization and interactivity are significant predictors of shopping intention of consumers in AI-powered automated stores. This research presents insightful academic and managerial implications in the domain of retailing and technology in retail. C1 [Pillai, Rajasshrie] Pune Inst Business Management, Pune, Maharashtra, India. [Sivathanu, Brijesh] Sri Balaji Univ, Pune, Maharashtra, India. [Dwivedi, Yogesh K.] Swansea Univ, Emerging Markets Res Ctr, Sch Management, Swansea, W Glam, Wales. C3 Swansea University RP Pillai, R (autor correspondiente), Pune Inst Business Management, Pune, Maharashtra, India. EM rajasshrie1@gmail.com; brij.jesh2002@gmail.com; ykdwivedi@gmail.com RI S, BRIJESH/AAQ-4753-2021; Dwivedi, Yogesh Kumar/A-5362-2008; Pillai, Rajasshrie/GRO-0859-2022 OI Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Sivathanu, Dr. Brijesh/0000-0003-2505-9140 CR Adapa S, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101901 Agrebi S, 2015, J RETAIL CONSUM SERV, V22, P16, DOI 10.1016/j.jretconser.2014.09.003 Akroush MN, 2015, BUS PROCESS MANAG J, V21, P1353, DOI 10.1108/BPMJ-02-2015-0022 Aladwani AM, 2002, INFORM MANAGE-AMSTER, V39, P467, DOI 10.1016/S0378-7206(01)00113-6 Alaiad A, 2017, IEEE T PROF COMMUN, V60, P4, DOI 10.1109/TPC.2016.2632822 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alexander B, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2019.101913 Alexandra S., 2018, THESE RETAILERS USE Ali H., 2015, International Journal for Infonomics (IJI), V8, P1029, DOI [DOI 10.20533/IJI.1742.4712.2015.0121, 10.20533/iji.1742.4712.2015.0121] [Anonymous], 2018, GLOB POW RET 2018 TR Armstrong J.S., 1977, J MARK RES, V14 Ashraf AR, 2015, IDEAS IN MARKETING: FINDING THE NEW AND POLISHING THE OLD, P826 Asia I., 2019, AI SPENDING RISE PRE Bai W., 2017, T MACH LEARN ARTIF I, V5, P51, DOI [10.14738/tmlai.53.3390, DOI 10.14738/TMLAI.53.3390] Ballantine PW, 2005, INT J RETAIL DISTRIB, V33, P461, DOI 10.1108/09590550510600870 Basgoze P., 2015, J SCI RES INNOVATIVE, V2, P26 Bauer C, 2018, PROCEDIA COMPUT SCI, V141, P503, DOI 10.1016/j.procs.2018.10.135 Begley S., 2019, AUTOMATION RETAIL EX Beklemysheva A., 2018, GROCERY CHAINS USING Berman B, 2019, BUS HORIZONS, V62, P75, DOI 10.1016/j.bushor.2018.08.006 Bhatia R., 2018, INDIAN RETAILERS EMB Bhutani A., 2019, GLOB MARK INSIGHT, V1 Brill T.M., 2018, Siri, Alexa, and other digital assistants: A study of customer satisfaction with artificial intelligence applications Bruner GC, 2005, J BUS RES, V58, P553, DOI 10.1016/j.jbusres.2003.08.002 Bughin J., 2017, Artificial Intelligence: The next digital frontier? Bulmer S, 2018, J RETAIL CONSUM SERV, V42, P107, DOI 10.1016/j.jretconser.2018.01.016 Buyle R, 2018, MEDIA COMMUN-LISBON, V6, P127, DOI 10.17645/mac.v6i4.1679 Cambre M. A., 1985, Journal of Educational Computing Research, V1, P37, DOI 10.2190/FK5L-092H-T6YB-PYBA Chantal T., 2018, SHOPPERS PREFER RETA Chebat JC, 2014, J RETAIL CONSUM SERV, V21, P610, DOI 10.1016/j.jretconser.2014.04.010 Chen L., 2004, EUR MANAG J, V22, P74, DOI DOI 10.1016/J.EMJ.2003.11.014 Chen MF, 2018, INTERNET RES, V28, P351, DOI 10.1108/IntR-03-2017-0099 Chen MY, 2013, ELECTRON COMMER RES, V13, P1, DOI 10.1007/s10660-013-9104-5 Chen SC, 2013, CYBERPSYCH BEH SOC N, V16, P604, DOI 10.1089/cyber.2012.0606 Chen SC, 2009, IND MANAGE DATA SYST, V109, P1248, DOI 10.1108/02635570911002306 Chen SJ, 2003, INT J SERV IND MANAG, V14, P556, DOI 10.1108/09564230310500228 Chen YF, 2014, INT J TECHNOL HUM IN, V10, P19, DOI 10.4018/ijthi.2014010102 Chen YM, 2018, J RETAIL CONSUM SERV, V41, P281, DOI 10.1016/j.jretconser.2017.04.004 Chin WW, 2008, J MARKET THEORY PRAC, V16, P287, DOI 10.2753/MTP1069-6679160402 Chiu HC, 2011, ELECTRON COMMER R A, V10, P268, DOI 10.1016/j.elerap.2010.07.002 Chiu Y.-T.H., 2012, J SERV MANAG ISS MAN, V23, P479, DOI [10.1108/09564231211260431, DOI 10.1108/09564231211260431] Cho H, 2009, INT J RETAIL DISTRIB, V37, P389, DOI 10.1108/09590550910954892 Cho YC., 2015, INT J MANAGEMENT INF, V19, P21, DOI DOI 10.19030/IJMIS.V19I1.9086 Chong AYL, 2012, DECIS SUPPORT SYST, V53, P34, DOI 10.1016/j.dss.2011.12.001 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Chris A., 2018, WALMART ISSUED PATEN Chung N, 2015, COMPUT HUM BEHAV, V50, P588, DOI 10.1016/j.chb.2015.02.068 Cowan K, 2019, J BUS RES, V100, P483, DOI 10.1016/j.jbusres.2018.10.063 Das Samantak, 2017, THINK INDIA DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x Demirkan H, 2014, J RETAIL CONSUM SERV, V21, P860, DOI 10.1016/j.jretconser.2014.02.012 Dhamdhere P., 2016, 9 EXAMPLES INNOVATIV Driediger F, 2019, J RETAIL CONSUM SERV, V48, P224, DOI 10.1016/j.jretconser.2019.02.005 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Dubey R, 2018, INT J LOGIST MANAG, V29, P485, DOI 10.1108/IJLM-02-2017-0039 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Dwivedi YK, 2017, GOV INFORM Q, V34, P211, DOI 10.1016/j.giq.2017.03.001 Dwivedi YK, 2016, GOV INFORM Q, V33, P174, DOI 10.1016/j.giq.2015.06.003 Elizabeth H., 2018, BEST GROCERY LIST AP Erdogmus N, 2011, PROCD SOC BEHV, V24, DOI 10.1016/j.sbspro.2011.09.131 Etemad-Sajadi R, 2016, COMPUT HUM BEHAV, V61, P227, DOI 10.1016/j.chb.2016.03.045 Evanschitzky H, 2015, J PROD INNOVAT MANAG, V32, P459, DOI 10.1111/jpim.12241 Fan TJ, 2015, INT J PROD ECON, V159, P117, DOI 10.1016/j.ijpe.2014.10.004 Fishbein M., 1975, Beliefs, Attitude, Intention and Behavior: An Introduction to Theory and Research Fornell C., 1981, J MARK RES, V18 Fu SH, 2018, INT J INFORM MANAGE, V40, P88, DOI 10.1016/j.ijinfomgt.2018.01.013 Garaus M, 2016, J BUS RES, V69, P3687, DOI 10.1016/j.jbusres.2016.03.030 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Godoe P., 2012, J EUROPEAN PSYCHOL S, V3, DOI [10.5334/jeps.aq, DOI 10.5334/JEPS.AQ, DOI 10.1037/E537242013-005] GUADAGNOLI E, 1988, PSYCHOL BULL, V103, P265, DOI 10.1037/0033-2909.103.2.265 Gudergan SP, 2008, J BUS RES, V61, P1238, DOI 10.1016/j.jbusres.2008.01.012 Guide VDR, 2015, J OPER MANAG, V37, pV, DOI 10.1016/S0272-6963(15)00056-X Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Ha S, 2009, J BUS RES, V62, P565, DOI 10.1016/j.jbusres.2008.06.016 Hair JF, 2017, LONG RANGE PLANNING Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Han S.L., 2018, 2018 GLOB MARK C TOK, P271 Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Hausman AV, 2009, J BUS RES, V62, P5, DOI 10.1016/j.jbusres.2008.01.018 Hengstler M, 2016, TECHNOL FORECAST SOC, V105, P105, DOI 10.1016/j.techfore.2015.12.014 Henseler J, 2010, STRUCT EQU MODELING, V17, P82, DOI 10.1080/10705510903439003 Ho T.H. L., 2014, International Journal of Business and Management, V9, P145, DOI DOI 10.5539/IJBM.V9N5P145 Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 Hong W., 2002, E SERVICE NEW DIR TH, V6, P21 Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Huang YM, 2012, COMPUT EDUC, V58, P273, DOI 10.1016/j.compedu.2011.08.008 Huilgol M., 2017, COMING SOON AMAZON G IBM, 2019, COM AI REV RET CONS Ibm, 2017, SMART SHOPP PLAYB ST Inman JJ, 2017, J RETAILING, V93, P7, DOI 10.1016/j.jretai.2016.12.006 Ivanov Stanislav Hristov, 2017, ADOPTION ROBOTS SERV Jackson TW., 2014, INT J MARK STUD, V6, P15, DOI [10.5539/ijms.v6n2p15, DOI 10.5539/IJMS.V6N2P15] Jin C, 2013, INFORM MANAGE-AMSTER, V50, P162, DOI 10.1016/j.im.2013.03.002 Joo J, 2013, COMPUT HUM BEHAV, V29, P2512, DOI 10.1016/j.chb.2013.06.002 Kahlert M., 2016, UNDERSTANDING CUSTOM Kahn B.E., 2018, Journal of the Association for Consumer Research, Volume, V3, P255 Kalinic Z, 2016, INF SYST E-BUS MANAG, V14, P367, DOI 10.1007/s10257-015-0287-2 Kallweit K, 2014, J RETAIL CONSUM SERV, V21, P268, DOI 10.1016/j.jretconser.2014.02.002 Kang JH, 2018, ASIA PAC J TOUR RES, V23, P95, DOI 10.1080/10941665.2017.1410190 Kesari B, 2016, J RETAIL CONSUM SERV, V31, P22, DOI 10.1016/j.jretconser.2016.03.005 Kim H.-Y., 2017, International Journal of Fashion Design, Technology and Education, V10, P26, DOI [10.1080/17543266.2016.1177737, DOI 10.1080/17543266.2016.1177737] Kim JB, 2012, ELECTRON COMMER RES, V12, P125, DOI 10.1007/s10660-012-9089-5 Kim T., 2018, TOP MOBILE APPS BARG Kim T, 2019, INT J SPORT MARK SPO, V20, P109, DOI [10.1108/IJSMS-06-2017-0050, 10.1108/ijsms-06-2017-0050] Kimberly W., 2016, ARTIFICIAL INTELLIGE KOTLER Philip., 2012, Marketing. Decimocuarta edicion Kshetri N, 2018, IT PROF, V20, P73, DOI 10.1109/MITP.2018.043141672 Kumar A., 2013, International Journal of Mobile Marketing, V8, P23 Kuo K.-M., 2013, BMC MED INFORM DECIS, V2, P2, DOI [10.1016/j.sbspro.2011.09.131, DOI 10.1016/J.SBSPRO.2011.09.131.] Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153 Lam SY, 2008, J INTERACT MARK, V22, P19, DOI 10.1002/dir.20119 Laukkanen T., 2016, PAC AS C INF SYST PA Lee H, 2018, SOC BEHAV PERSONAL, V46, P683, DOI 10.2224/sbp.6693 Lee HH, 2006, INT J RETAIL DISTRIB, V34, P621, DOI 10.1108/09590550610675949 Lee I, 2015, BUS HORIZONS, V58, P431, DOI 10.1016/j.bushor.2015.03.008 Lee J., 2002, J SERV MARK, V16, P553 Lee KC, 2008, COMPUT HUM BEHAV, V24, P88, DOI 10.1016/j.chb.2007.01.018 Lee W. K., 2017, INT J MOB COMMUN, V16, P1, DOI DOI 10.1504/IJMC.2018.10006137 Lee YE, 2004, INT J ELECTRON COMM, V8, P79, DOI 10.1080/10864415.2004.11044299 Li R, 2017, J RETAIL CONSUM SERV, V34, P19, DOI 10.1016/j.jretconser.2016.09.003 Liao S.S., 2005, COMMUN ASS INF SYST, V15, DOI [10.17705/1CAIS.01528, DOI 10.17705/1CAIS.01528] Liébana-Cabanillas F, 2017, INT J INFORM MANAGE, V37, P14, DOI 10.1016/j.ijinfomgt.2016.10.008 Liljander V, 2006, J RETAIL CONSUM SERV, V13, P177, DOI 10.1016/j.jretconser.2005.08.004 Lin CH, 2007, PSYCHOL MARKET, V24, P641, DOI 10.1002/mar.20177 Lin JSC, 2011, MANAG SERV QUAL, V21, P424, DOI 10.1108/09604521111146289 Liu F., 2018, RES BUSINESS MODEL I, V248, P285, DOI [10.2991/icsser-18.2018.67, DOI 10.2991/ICSSER-18.2018.67] Liu F, 2019, INT J INFORM MANAGE, V45, P107, DOI 10.1016/j.ijinfomgt.2018.09.004 Lu CC, 2019, INT J INFORM MANAGE, V47, P101, DOI 10.1016/j.ijinfomgt.2018.12.020 Lundberg E., 2017, COMPETE EFFECTIVELY, V76 Magrath V, 2013, J FASH MARK MANAG, V17, P98, DOI 10.1108/13612021311305164 Mani Z, 2018, J PROD INNOVAT MANAG, V35, P780, DOI 10.1111/jpim.12463 Mann MK, 2015, IDEAS IN MARKETING: FINDING THE NEW AND POLISHING THE OLD, P752 Marhefka SL, 2019, TELEMED E-HEALTH, V25, P511, DOI 10.1089/tmj.2018.0066 Martens M, 2017, INT J INNOV TECHNOL, V14, DOI 10.1142/S021987701750033X Morosan C, 2014, INT J CONTEMP HOSP M, V26, P246, DOI 10.1108/IJCHM-11-2012-0221 Mukerjee h.S., 2019, Business Perspectives and Research, V7, P1, DOI DOI 10.1177/2278533718800118 Müller-Seitz G, 2009, J RETAIL CONSUM SERV, V16, P31, DOI 10.1016/j.jretconser.2008.08.002 Natarajan T, 2017, J RETAIL CONSUM SERV, V37, P8, DOI 10.1016/j.jretconser.2017.02.010 Niemeier S., 2013, RESHAPING RETAIL WHY, DOI [10.1002/9781119207979, DOI 10.1002/9781119207979] Niemela M., 2017, MONITORING ACCEPTANC, P225, DOI [10.1145/302979, DOI 10.1145/3029798.3038333] Nilsson Nils, 2010, QUEST ARTIFICIAL INT, DOI DOI 10.1017/CBO9780511819346 Nunnally J., 1978, PSYCHOMETRIC METHODS Ogonowski A, 2014, J RETAIL CONSUM SERV, V21, P482, DOI 10.1016/j.jretconser.2014.03.004 Olsson T, 2013, PERS UBIQUIT COMPUT, V17, P287, DOI 10.1007/s00779-011-0494-x Pantano E, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102096 Pantano E, 2019, J RETAIL CONSUM SERV, V49, P297, DOI 10.1016/j.jretconser.2019.01.019 Pantano E, 2017, J RETAIL CONSUM SERV, V38, P81, DOI 10.1016/j.jretconser.2017.05.011 Pantano E, 2014, INT J INFORM MANAGE, V34, P344, DOI 10.1016/j.ijinfomgt.2014.03.002 Pantano E, 2012, J RETAIL CONSUM SERV, V19, P279, DOI 10.1016/j.jretconser.2012.02.002 Papagiannidis S, 2014, J RETAIL CONSUM SERV, V21, P877, DOI 10.1016/j.jretconser.2014.02.010 Parasuraman A, 2015, J SERV RES-US, V18, P59, DOI 10.1177/1094670514539730 Parasuraman A., 2001, TECHNO READY MARKETI Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Park S.R., 2012, ROLE INTERACTIVITY I Pierdicca R, 2015, IEEE INT CONF MULTI Piller FT, 2004, INT J COMPUT INTEG M, V17, P583, DOI 10.1080/0951192042000273140 PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Rahman O, 2016, J RETAIL CONSUM SERV, V28, P155, DOI 10.1016/j.jretconser.2015.09.008 Rahman SA, 2017, TECHNOL FORECAST SOC, V118, P236, DOI 10.1016/j.techfore.2017.01.027 Rana NP, 2016, COMPUT HUM BEHAV, V59, P265, DOI 10.1016/j.chb.2016.02.019 Rese A, 2017, TECHNOL FORECAST SOC, V124, P306, DOI 10.1016/j.techfore.2016.10.010 Rezaei S, 2016, J INTERNET COMMER, V15, P408, DOI 10.1080/15332861.2016.1256749 Ringle C.M., 2005, Smart PLS 2.0 Rojas-mendez J.I., 2015, MARKETING TRANSITION, DOI [10.1007/978-3-319-18687-0, DOI 10.1007/978-3-319-18687-0.] Roy SK, 2017, TECHNOL FORECAST SOC, V124, P257, DOI 10.1016/j.techfore.2016.09.022 Saarijärvi H, 2014, J RETAIL CONSUM SERV, V21, P26, DOI 10.1016/j.jretconser.2013.06.009 San-Martín S, 2015, J RETAIL CONSUM SERV, V23, P1, DOI 10.1016/j.jretconser.2014.11.001 Shamy NE, 2017, PROCEEDINGS OF THE 50TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P4139 Shariff A, 2017, NAT HUM BEHAV, V1, P694, DOI 10.1038/s41562-017-0202-6 Shin S., 2014, Journal of Applied Business Research, V30, P1615, DOI [10.19030/jabr.v30i6.8873, DOI 10.19030/JABR.V30I6.8873] Silbert S., 2018, SARAH SILBERT WHAT I Sivathanu B, 2019, INF RESOUR MANAG J, V32, P27, DOI 10.4018/IRMJ.2019070102 Song SoYoung., 2017, Modeling the consumer acceptance of retail service robots (Doctoral dissertation, University of Tennessee) Speicher M., 2017, J P ACM INTERACT MOB, V1, P1, DOI DOI 10.1145/3130967 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Tamilmani K, 2019, INT J INFORM MANAGE, V46, P222, DOI 10.1016/j.ijinfomgt.2019.01.008 Thamizhvanan A, 2013, J INDIAN BUS RES, V5, P17, DOI 10.1108/17554191311303367 Tom S., 2018, THIS AMAZON GO INSPI Tsai JM, 2019, INT J INFORM MANAGE, V49, P34, DOI 10.1016/j.ijinfomgt.2019.03.003 Tsikriktsis N, 2004, J SERV RES-US, V7, P42, DOI 10.1177/1094670504266132 Tsou HT, 2015, INT J INFORM MANAGE, V35, P1, DOI 10.1016/j.ijinfomgt.2014.09.001 Tussyadiah I., 2012, INFORM COMMUNICATION, DOI [10.1007/978-3-7091-1142-0, DOI 10.1007/978-3-7091-1142-0] Tussyadiah I, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P359, DOI 10.1007/978-3-030-05940-8_28 van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Voropanova E, 2015, INT REV RETAIL DISTR, V25, P529, DOI 10.1080/09593969.2015.1089304 Wagner G, 2017, J RETAIL CONSUM SERV, V34, P278, DOI 10.1016/j.jretconser.2016.01.010 Walczuch R, 2007, INFORM MANAGE-AMSTER, V44, P206, DOI 10.1016/j.im.2006.12.005 Wang YS, 2013, INT J INFORM MANAGE, V33, P199, DOI 10.1016/j.ijinfomgt.2012.09.004 Wang YY, 2018, INT J INFORM MANAGE, V38, P7, DOI 10.1016/j.ijinfomgt.2017.07.003 Wu WY, 2015, SOC BEHAV PERSONAL, V43, P85, DOI 10.2224/sbp.2015.43.1.85 Wünderlich NV, 2015, J SERV MARK, V29, P442, DOI 10.1108/JSM-01-2015-0040 Yang HE, 2009, PROD PLAN CONTROL, V20, P370, DOI 10.1080/09537280902843755 Yang H, 2018, J SENSORS, V2018, DOI 10.1155/2018/6464036 Yang H, 2017, IND MANAGE DATA SYST, V117, P68, DOI 10.1108/IMDS-01-2016-0017 Yeh YS, 2009, ONLINE INFORM REV, V33, P1066, DOI 10.1108/14684520911011016 Yeo VCS, 2017, J RETAIL CONSUM SERV, V35, P150, DOI 10.1016/j.jretconser.2016.12.013 NR 203 TC 142 Z9 146 U1 57 U2 230 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD NOV PY 2020 VL 57 AR 102207 DI 10.1016/j.jretconser.2020.102207 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA NT5NP UT WOS:000572987800012 OA Green Accepted HC Y HP N DA 2024-03-27 ER PT J AU Hartmann, J Huppertz, J Schamp, C Heitmann, M AF Hartmann, Jochen Huppertz, Juliana Schamp, Christina Heitmann, Mark TI Comparing automated text classification methods SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE Text classification; Social media; Machine learning; User-generated content; Sentiment analysis; Natural language processing ID SENTIMENT; EMOTIONS; OPINION; MODEL AB Online social media drive the growth of unstructured text data. Many marketing applications require structuring this data at scales non-accessible to human coding, e.g., to detect communication shifts in sentiment or other researcher-defined content categories. Several methods have been proposed to automatically classify unstructured text. This paper compares the performance of ten such approaches (five lexicon-based, five machine learning algorithms) across 41 social media datasets covering major social media platforms, various sample sizes, and languages. So far, marketing research relies predominantly on support vector machines (SVM) and Linguistic Inquiry and Word Count (LIWC). Across all tasks we study, either random forest (RF) or naive Bayes (NB) performs best in terms of correctly uncovering human intuition. In particular, RF exhibits consistently high performance for three-class sentiment, NB for small samples sizes. SVM never outperform the remaining methods. All lexicon-based approaches, LIWC in particular, perform poorly compared with machine learning. In some applications, accuracies only slightly exceed chance. Since additional considerations of text classification choice are also in favor of NB and RF, our results suggest that marketing research can benefit from considering these alternatives. (C) 2018 Elsevier B.V. All rights reserved. C1 [Hartmann, Jochen; Huppertz, Juliana; Schamp, Christina; Heitmann, Mark] Univ Hamburg, Mkt & Customer Insight, Moorweidenstr 18, D-20148 Hamburg, Germany. C3 University of Hamburg RP Hartmann, J (autor correspondiente), Univ Hamburg, Mkt & Customer Insight, Moorweidenstr 18, D-20148 Hamburg, Germany. EM jochen.hartmann@uni-hamburg.de RI Hartmann, Jochen/IUN-2216-2023 OI Schamp, Christina/0009-0009-8350-7862; Hartmann, Jochen/0000-0002-1178-8708 FU German Research Foundation (DFG) research unit 1452, "How Social Media is Changing Marketing" [HE 6703/1-2] FX This work was funded by the German Research Foundation (DFG) research unit 1452, "How Social Media is Changing Marketing", HE 6703/1-2. CR Aggarwal CC., 2012, MINING TEXT DATA, P77, DOI [10.1007/978-1-4614-3223-4, 10.1007/978-1-4614-3223-4_4] Akpinar E, 2017, J MARKETING RES, V54, P318, DOI 10.1509/jmr.13.0350 Alberto T. C., 2015, P 14 IEEE INT C MACH Almeida TA, 2011, DOCENG 2011: PROCEEDINGS OF THE 2011 ACM SYMPOSIUM ON DOCUMENT ENGINEERING, P259 Annett M., 2008, C CAN SOC COMP STUD [Anonymous], 2009, P 18 ACM C INF KNOWL [Anonymous], 2009, P 15 ACM SIGKDD INT [Anonymous], ADV IND [Anonymous], 2017, MARKETING SCI I WORK Barasch A, 2014, J MARKETING RES, V51, P286, DOI 10.1509/jmr.13.0238 Bellmann R., 1961, ADAPTIVE CONTROL PRO Bennett K. P., 2000, SIGKDD Explorations, V2, P1, DOI DOI 10.1145/380995.380999 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Bermingham A, 2010, CIKM 2010 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boiy Erik, 2007, 11th International Conference on Electronic Publishing. Openness in Digital Publishing: Awareness, Discovery and Access, P349 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Caruana R, 2006, P 23 INT C MACH LEAR, P161, DOI [DOI 10.1145/1143844.1143865, 10.1145/1143844.1143865.] Cavanaugh LA, 2015, J MARKETING RES, V52, P657, DOI 10.1509/jmr.10.0219 Chang Edward., 2008, Advances in Neural Information Processing Systems, V20, P257 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704 DeTienne KB, 2003, ORGAN RES METHODS, V6, P236, DOI 10.1177/1094428103251907 Domingos P, 1997, MACH LEARN, V29, P103, DOI 10.1023/A:1007413511361 Domingos P, 2012, COMMUN ACM, V55, P78, DOI 10.1145/2347736.2347755 Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651 Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533 Fang X., 2015, J BIG DATA, V2, P1, DOI DOI 10.1186/S40537-015-0015-2 Felbermayr A, 2016, J INTERACT MARK, V36, P60, DOI 10.1016/j.intmar.2016.05.004 FERNNDEZDELGADO M, 2014, J MACH LEARN RES, V15, P3133 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 Go A., 2009, TECH REP, V150, P1, DOI DOI 10.1016/J.SEDGEO.2006.07.004 Hanson NJ, 2019, INT J SPORT PHYSIOL, V14, P196, DOI 10.1123/ijspp.2018-0263 Hennig-Thurau T, 2015, J ACAD MARKET SCI, V43, P375, DOI 10.1007/s11747-014-0388-3 Hewett K, 2016, J MARKETING, V80, P1, DOI 10.1509/jm.15.0033 Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448 Hu MQ, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P755 Huang DL, 2016, MARKET SCI, V35, P445, DOI 10.1287/mksc.2015.0946 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Hutto E.E., 2014, 8 INT C WEBL SOC MED Joachims T., 1998, P 10 EUR C MACH LEAR, P137, DOI DOI 10.1007/BFB0026683 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kotziats D., 2015, GROUP INDIVIDUAL LAB, P1 Kuhnen CM, 2012, MANAGE SCI, V58, P1249, DOI 10.1287/mnsc.1110.1490 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Markets and Markets, 2018, TEXT AN MARK COMP McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Mohammad S. M., 2010, P NAACL HLT 2010 WOR, P26 Moraes R, 2013, EXPERT SYST APPL, V40, P621, DOI 10.1016/j.eswa.2012.07.059 Neethu MS., 2013, 2013 4 INT C COMPUTI, P1, DOI [10.1109/ICCCNT.2013.6726818, DOI 10.1109/ICCCNT.2013.6726818] Netter O., 2016, WORKING PAPER Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Ng AY, 2002, ADV NEUR IN, V14, P841 Nielsen F.A., 2011, MSM, V2011, P93, DOI DOI 10.1016/J.KN0SYS.2015.06.015 Ordenes F. V., 2018, J CONSUM RES, P1 Ordenes FV, 2017, J CONSUM RES, V43, P875, DOI 10.1093/jcr/ucw070 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Pang B., 2004, ANN M ASS COMP LING, DOI [DOI 10.3115/1218955.1218990, 10.3115/1218955.1218990] Pennebaker J. W., 2015, The Development and Psychometric Properties of LIWC2015 Puranam D, 2017, MARKET SCI, V36, P726, DOI 10.1287/mksc.2017.1048 Scholkopf B, 2001, LEARNING KERNELS SUP Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Sebastiani F, 2002, ACM COMPUT SURV, V34, P1, DOI 10.1145/505282.505283 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 Wolpert DH, 1996, NEURAL COMPUT, V8, P1341, DOI 10.1162/neco.1996.8.7.1341 Wu XD, 2008, KNOWL INF SYST, V14, P1, DOI 10.1007/s10115-007-0114-2 Xia R, 2011, INFORM SCIENCES, V181, P1138, DOI 10.1016/j.ins.2010.11.023 Yang Y., 1999, P 22 ANN INT ACM SIG Yang Z, 2006, ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 2, P861 Yoganarasimhan H., 2018, MANAGE SCI, P1 Zhang YC, 2017, INT J RES MARK, V34, P100, DOI 10.1016/j.ijresmar.2016.07.003 杨云峰, 1999, [西安公路交通大学学报, Journal of Xian Highway University], P67 NR 74 TC 180 Z9 193 U1 23 U2 183 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD MAR PY 2019 VL 36 IS 1 BP 20 EP 38 DI 10.1016/j.ijresmar.2018.09.009 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HW3WL UT WOS:000466623300003 OA Green Published, hybrid HC Y HP N DA 2024-03-27 ER PT J AU Melumad, S Meyer, R AF Melumad, Shiri Meyer, Robert TI Full Disclosure: How Smartphones Enhance Consumer Self-Disclosure SO JOURNAL OF MARKETING LA English DT Article DE natural language processing; self-disclosure; technology; user-generated content ID COMPUTER-MEDIATED COMMUNICATION; FACE-TO-FACE; INATTENTIONAL BLINDNESS; SENSITIVE TOPICS; PC WEB; MOBILE; AWARENESS; IMPACT; PRIVACY; WALKING AB Results from three large-scale field studies and two controlled experiments show that consumers tend to be more self-disclosing when generating content on their smartphone versus personal computer. This tendency is found in a wide range of domains including social media posts, online restaurant reviews, open-ended survey responses, and compliance with requests for personal information in web advertisements. The authors show that this increased willingness to self-disclose on one's smartphone arises from the psychological effects of two distinguishing properties of the device: (1) feelings of comfort that many associate with their smartphone and (2) a tendency to narrowly focus attention on the disclosure task at hand due to the relative difficulty of generating content on the smaller device. The enhancing effect of smartphones on self-disclosure yields several important marketing implications, including the creation of content that is perceived as more persuasive by outside readers. The authors explore implications for how these findings can be strategically leveraged by managers, including how they may generalize to other emerging technologies. C1 [Melumad, Shiri; Meyer, Robert] Univ Penn, Wharton Sch, Mkt, Philadelphia, PA 19104 USA. C3 University of Pennsylvania RP Melumad, S (autor correspondiente), Univ Penn, Wharton Sch, Mkt, Philadelphia, PA 19104 USA. EM melumad@wharton.upenn.edu; meyerr@wharton.upenn.edu CR Altman I., 1973, Social penetration: The development of interpersonal relationships Andrade EB, 2002, ADV CONSUM RES, V29, P350 Antoun C, 2017, PUBLIC OPIN QUART, V81, P280, DOI 10.1093/poq/nfw088 Bak JinYeong., 2014, P 2014 C EMPIRICAL M, P1986 Bak JY., 2012, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, V2, P60 Balani Sairam., 2015, Proceedings of the 33rd Annual Association for Computing Machinery Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA '15, P1373, DOI DOI 10.1145/2702613.2732733 Barak A, 2007, CYBERPSYCHOL BEHAV, V10, P407, DOI 10.1089/cpb.2006.9938 Bowling A, 2005, J PUBLIC HEALTH-UK, V27, P281, DOI 10.1093/pubmed/fdi031 Brockmeyer T, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01564 Buskirk TD, 2014, FIELD METHOD, V26, P322, DOI 10.1177/1525822X14526146 Carver CS, 1981, ATTENTION SELF REGUL CASTIELLO U, 1990, ACTA PSYCHOL, V73, P195, DOI 10.1016/0001-6918(90)90022-8 CHAIKIN AL, 1976, J COUNS PSYCHOL, V23, P479 Cheever NA, 2014, COMPUT HUM BEHAV, V37, P290, DOI 10.1016/j.chb.2014.05.002 Chen IP, 2011, PERCEPT MOTOR SKILL, V112, P959, DOI 10.2466/22.24.26.PMS.112.3.959-974 Chen PL, 2018, BMC PUBLIC HEALTH, V18, DOI 10.1186/s12889-018-6163-5 Clayton RB, 2015, J COMPUT-MEDIAT COMM, V20, P119, DOI 10.1111/jcc4.12109 COZBY PC, 1973, PSYCHOL BULL, V79, P73, DOI 10.1037/h0033950 DAVIS D, 1975, J EXP SOC PSYCHOL, V11, P381, DOI 10.1016/0022-1031(75)90017-7 Derlega V. J., 1993, SELF DISCLOSURE DERLEGA VJ, 1977, J SOC ISSUES, V33, P102, DOI 10.1111/j.1540-4560.1977.tb01885.x Dienlin T., 2014, Media and private life, P105 Faraji-Rad A, 2015, J CONSUM RES, V42, P458, DOI 10.1093/jcr/ucv032 Forgas JP, 2011, J PERS SOC PSYCHOL, V100, P449, DOI 10.1037/a0021129 GIFFORD R, 1988, J ENVIRON PSYCHOL, V8, P177, DOI 10.1016/S0272-4944(88)80008-2 Grewal L, 2019, J MARKETING RES, V56, P791, DOI 10.1177/0022243719834514 HEBERLEIN TA, 1978, AM SOCIOL REV, V43, P447, DOI 10.2307/2094771 Houghton D. J., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P3480, DOI 10.1109/HICSS.2012.415 Hyman IE, 2010, APPL COGNITIVE PSYCH, V24, P597, DOI 10.1002/acp.1638 Jiang L, 2010, J CONSUM RES, V36, P778, DOI 10.1086/605364 John LK, 2011, J CONSUM RES, V37, P858, DOI 10.1086/656423 Joinson AN, 2001, EUR J SOC PSYCHOL, V31, P177, DOI 10.1002/ejsp.36 JOURARD SM, 1958, J ABNORM SOC PSYCH, V56, P91, DOI 10.1037/h0043357 KIESLER S, 1984, AM PSYCHOL, V39, P1123, DOI 10.1037/0003-066X.39.10.1123 Kim J., 2011, Computer-mediated communication in personal relationships, P156, DOI DOI 10.3726/B12772 King Ed, 2016, KAGGLE Lin MIB, 2017, ACCIDENT ANAL PREV, V101, P87, DOI 10.1016/j.aap.2017.02.005 Manchanda P, 2006, J MARKETING RES, V43, P98, DOI 10.1509/jmkr.43.1.98 Mavletova A, 2013, SURV RES METHODS-GER, V7, P191 Melumad S, 2019, J MARKETING RES, V56, P259, DOI 10.1177/0022243718815429 Melumad Shiri, 2020, J CONSUMER RES Miwa Y, 2006, ENVIRON BEHAV, V38, P484, DOI 10.1177/0013916505280084 Moon Y, 2000, J CONSUM RES, V26, P323, DOI 10.1086/209566 Murphy GL, 2016, PSYCHON B REV, V23, P1035, DOI 10.3758/s13423-015-0834-3 Okdie Bradley, 2011, THESIS Omarzu J, 2000, PERS SOC PSYCHOL REV, V4, P174, DOI 10.1207/S15327957PSPR0402_05 Panova T, 2018, J BEHAV ADDICT, V7, P252, DOI 10.1556/2006.7.2018.49 Pennebaker JW, 2001, CURR DIR PSYCHOL SCI, V10, P90, DOI 10.1111/1467-8721.00123 Pennebaker JW., 2015, LIWC 2015 OPERATORS Ransbotham S, 2019, MARKET SCI, V38, P773, DOI 10.1287/mksc.2018.1115 Ravichander A, 2018, 19TH ANNUAL MEETING OF THE SPECIAL INTEREST GROUP ON DISCOURSE AND DIALOGUE (SIGDIAL 2018), P253 Rituparna, 2018, KAGGLE Ruppel EK, 2017, J COMPUT-MEDIAT COMM, V22, P18, DOI 10.1111/jcc4.12179 Sassenberg K, 2005, EUR J SOC PSYCHOL, V35, P361, DOI 10.1002/ejsp.254 Short J., 1976, SOCIAL PSYCHOL TELEC Skierkowski D, 2012, COMPUT HUM BEHAV, V28, P744, DOI 10.1016/j.chb.2011.11.023 SPEARS R, 1994, COMMUN RES, V21, P427, DOI 10.1177/009365094021004001 Toninelli D, 2016, SURV RES METHODS-GER, V10, P153, DOI 10.18148/srm/2016.v1012.6274 Vahedi Z, 2018, STRESS HEALTH, V34, P347, DOI 10.1002/smi.2805 Veltri GA, 2017, COMPUT HUM BEHAV, V73, P238, DOI 10.1016/j.chb.2017.03.018 Wallace P., 1999, PSYCHOL INTERNET Walther JB, 1996, COMMUN RES, V23, P3, DOI 10.1177/009365096023001001 Wang YC, 2016, ACM CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW 2016), P74, DOI 10.1145/2818048.2820010 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Weisband S., 1996, Human Factors in Computing Systems. Common Ground. CHI 96 Conference Proceedings, P3, DOI 10.1145/238386.238387 Wells T, 2014, SOC SCI COMPUT REV, V32, P238, DOI 10.1177/0894439313505829 NR 66 TC 52 Z9 61 U1 29 U2 285 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2429 EI 1547-7185 J9 J MARKETING JI J. Mark. PD MAY PY 2020 VL 84 IS 3 BP 28 EP 45 DI 10.1177/0022242920912732 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA LH4OS UT WOS:000528765200002 DA 2024-03-27 ER PT J AU Ren, SY Choi, TM Lee, KM Lin, L AF Ren, Shuyun Choi, Tsan-Ming Lee, Ka-Man Lin, Lei TI Intelligent service capacity allocation for cross-border-E-commerce related third-party-forwarding logistics operations: A deep learning approach SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Cross-border e-commerce; Multi-product newsvendor; Logistics service capacity (LSC) allocation; Third-party forwarding logistics (3PFL); Deep learning ID SUPPLY CHAIN; SHARING NETWORK; PREDICTION; DEMAND; MODEL; PERFORMANCE; TECHNOLOGY; BLOCKCHAIN; ALGORITHM; DELIVERY AB With the rise of "cross-border-e-commerce", the third-party-forwarding-logistics (3PFL) service becomes increasingly popular. Different from the traditional third-party-logistics (3PL) service, the 3PFL company provides forwarding services cost-effectively by consolidating orders from different e-tailers/platforms. The random arrivals of orders create a big challenge. Different from most of the existing studies, a deep learning based one-step integration optimal decision making approach S2SCL(Seq2Seq based CNN-LSTM) is proposed in this paper which intelligently integrates inventory optimization and demand-forecasting process. The Seg2Seq based forecasting architecture, which integrates CNN and LSTM network, is able to model the system dynamics and dependency-relations in varying demand for logistics services. Besides generating the point forecasting results, the proposed approach can quantify demand uncertainty via a dynamic distribution and make optimal decision on logistics service capacity allocation. Through a case-study analysis with real data obtained from a 3PFL company in China's Great Bay Area, we compare the proposed S2SCL with two benchmark models, including a one-step statistics based integration approach ARIMA and a two-step optimization based approach PSO-ELM, for two tasks: (1) point forecasting and (2) optimal logistic service capacity (LSC) allocation. Experimental results show that S2SCL outperforms the two benchmark models in both tasks significantly. C1 [Ren, Shuyun] Guangdong Univ Technol, Guangzhou, Peoples R China. [Choi, Tsan-Ming] Hong Kong Polytech Univ, Inst Text & Clothing, Business Div, Hung Hom,Kowloon, Hong Kong, Peoples R China. [Lee, Ka-Man] Hong Kong Polytech Univ, Fac Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China. [Lin, Lei] Univ Rochester, Goergen Inst Data Sci, Rochester, NY 14623 USA. C3 Guangdong University of Technology; Hong Kong Polytechnic University; Hong Kong Polytechnic University; University of Rochester RP Lee, KM (autor correspondiente), Hong Kong Polytech Univ, Fac Engn, Hung Hom, Kowloon, Hong Kong, Peoples R China. EM ckm.lee@polyu.edu.hk RI Lee, Carman/G-5618-2010; Choi, Tsan-Ming/P-6065-2014; Choi, Tsan-Ming/HCH-1964-2022 OI Choi, Tsan-Ming/0000-0003-3865-7043; Choi, Tsan-Ming/0000-0003-3865-7043 FU Innovation and Technology Fund (Project: ZM2K); National Natural Science Foundation of China [71801054] FX This research is supported by Innovation and Technology Fund (Project: ZM2K). Shuyun Ren's research is partially supported by National Natural Science Foundation of China (Project account: 71801054). The author sincerely thank Wah Tung Tai Company Ltd for providing industrial real data for this research. CR [Anonymous], 2015, 150804025 ARXIV Arabzad SM, 2015, INT J PROD RES, V53, P1038, DOI 10.1080/00207543.2014.938836 Ban GY, 2019, OPER RES, V67, P90, DOI 10.1287/opre.2018.1757 Barenji AV, 2019, TRANSPORT RES E-LOG, V126, P15, DOI 10.1016/j.tre.2019.04.002 Bliese PD, 2020, J MANAGE, V46, P1275, DOI 10.1177/0149206319886909 Chen FY, 2001, EUR J OPER RES, V131, P603, DOI 10.1016/S0377-2217(00)00102-8 Chiu CH, 2016, ANN OPER RES, V240, P489, DOI 10.1007/s10479-013-1386-4 Choi TM, 2019, TRANSPORT RES E-LOG, V131, P139, DOI 10.1016/j.tre.2019.09.019 Choi TM, 2019, TRANSPORT RES E-LOG, V127, P178, DOI 10.1016/j.tre.2019.05.007 Choi TM, 2013, INT J PROD RES, V51, P2593, DOI 10.1080/00207543.2012.737949 Choi TM, 2011, DECIS SUPPORT SYST, V51, P130, DOI 10.1016/j.dss.2010.12.002 Crainic TG, 2016, EUR J OPER RES, V253, P404, DOI 10.1016/j.ejor.2016.02.040 Deutsch Y, 2018, INT J PROD RES, V56, P251, DOI 10.1080/00207543.2017.1395490 Farahani RZ, 2015, INT J PROD RES, V53, P3769, DOI 10.1080/00207543.2014.988889 Fei X, 2011, TRANSPORT RES C-EMER, V19, P1306, DOI 10.1016/j.trc.2010.10.005 Gal Y, 2016, PR MACH LEARN RES, V48 Geoffrey EHinton., 2012, Improving neural networks by preventing co-adaptation of feature detectors Hao SY, 2019, TRANSPORT RES C-EMER, V107, P287, DOI 10.1016/j.trc.2019.08.005 Holzapfel A, 2018, EUR J OPER RES, V264, P948, DOI 10.1016/j.ejor.2016.09.013 Huang KC, 2007, TRANSPORT RES C-EMER, V15, P235, DOI 10.1016/j.trc.2006.08.006 Janjevic M, 2019, TRANSPORT RES E-LOG, V131, P37, DOI 10.1016/j.tre.2019.09.001 Kim D., 2019, 190109614 ARXIV Li L, 2015, TRANSPORT RES E-LOG, V75, P115, DOI 10.1016/j.tre.2014.11.003 Li ML, 2020, COMPUTAT GEOSCI, V24, P1815, DOI 10.1007/s10596-019-09925-5 Li SQ, 2019, TRANSPORT RES E-LOG, V122, P463, DOI 10.1016/j.tre.2018.12.007 Li X., 2017, INT J PROD ECON, V215, P144 Lin L, 2018, TRANSPORT RES C-EMER, V97, P258, DOI 10.1016/j.trc.2018.10.011 Lin L, 2018, TRANSPORT RES C-EMER, V92, P323, DOI 10.1016/j.trc.2018.05.012 Lin L, 2014, TRANSPORT RES C-EMER, V43, P158, DOI 10.1016/j.trc.2013.11.018 Lin L, 2014, TRANSPORT RES A-POL, V64, P65, DOI 10.1016/j.tra.2014.03.013 Lin L, 2013, TRANSPORT RES REC, P40, DOI 10.3141/2392-05 Liu N, 2013, MATH PROBL ENG, V2013, DOI 10.1155/2013/738675 Liu WH, 2018, TRANSPORT RES E-LOG, V116, P102, DOI 10.1016/j.tre.2018.05.006 Liu WH, 2015, TRANSPORT RES E-LOG, V83, P65, DOI 10.1016/j.tre.2015.08.009 Liu X., 2015, International Journal of Intelligent Information Systems. Special Issue: Content-based Image Retrieval and Machine Learning, V4, P15, DOI DOI 10.11648/J.IJIIS.S.2015040202.14 Liu XT, 2018, TRANSPORT RES E-LOG, V117, P23, DOI 10.1016/j.tre.2018.01.019 Luo SY, 2019, TRANSPORT RES E-LOG, V131, P68, DOI 10.1016/j.tre.2019.09.013 McAllister R, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4745 Mofidi SS, 2018, TRANSPORT RES E-LOG, V114, P66, DOI 10.1016/j.tre.2018.02.012 Niu BZ, 2019, ELECTRON COMMER RES, V19, P915, DOI 10.1007/s10660-019-09379-y Ren SY, 2019, INT J PROD ECON, V218, P339, DOI 10.1016/j.ijpe.2019.06.020 Ren SY, 2017, ANN OPER RES, V257, P335, DOI 10.1007/s10479-016-2204-6 Ren SY, 2015, IEEE T SYST MAN CY-S, V45, P411, DOI 10.1109/TSMC.2014.2342194 Shao SJ, 2019, TRANSPORT RES E-LOG, V123, P17, DOI 10.1016/j.tre.2019.01.007 Tang CS, 2019, TRANSPORT RES E-LOG, V129, P1, DOI 10.1016/j.tre.2019.06.004 Tappia E, 2019, EUR J OPER RES, V274, P947, DOI 10.1016/j.ejor.2018.10.048 Tongzon JL, 2009, TRANSPORT RES E-LOG, V45, P186, DOI 10.1016/j.tre.2008.02.004 van der Laan E, 2016, J OPER MANAG, V45, P114, DOI 10.1016/j.jom.2016.05.004 Vlahogianni EI, 2007, COMPUT-AIDED CIV INF, V22, P317, DOI 10.1111/j.1467-8667.2007.00488.x Wang JW, 2019, TRANSPORT RES C-EMER, V100, P372, DOI 10.1016/j.trc.2019.02.002 Wang YL, 2015, EUR J OPER RES, V247, P685, DOI 10.1016/j.ejor.2015.05.053 Yeming Gong, 2011, Logistics Research, V3, P191, DOI 10.1007/s12159-011-0057-6 Yu Y, 2011, EXPERT SYST APPL, V38, P7373, DOI 10.1016/j.eswa.2010.12.089 NR 53 TC 76 Z9 77 U1 27 U2 322 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD FEB PY 2020 VL 134 AR 101834 DI 10.1016/j.tre.2019.101834 PG 19 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA KS7MA UT WOS:000518489600010 DA 2024-03-27 ER PT J AU Deng, GK Zhang, JY He, LJ Xu, Y AF Deng, Guangkuan Zhang, Jianyu He, Lijuan Xu, Ying TI Research on the impact of e-commerce platform's AI resources on seller opportunism: a cultivational governance mechanism SO NANKAI BUSINESS REVIEW INTERNATIONAL LA English DT Article DE E-commerce platform; AI resource; Cultivational governance mechanism; Seller opportunism; Xunzi's Philosophy of Humanity ID VALUE CO-CREATION; ARTIFICIAL-INTELLIGENCE; INFORMATION-TECHNOLOGY; RELATIONAL GOVERNANCE; COMPETITIVE ADVANTAGE; DIGITAL EMPOWERMENT; MARKETING CHANNELS; ELECTRONIC MARKETS; ADVERSE SELECTION; MODERATING ROLE AB Purpose - Drawing on the wisdom of ancient Chinese philosopher Xunzi, this paper aims to present a novel mechanism for governing opportunism, referred to as "cultivational governance." By examining the role of artificial intelligence (AI) resources possessed by e-commerce platforms, the authors explore how these resources contribute to mitigating seller opportunism. The central hypothesis of this study posits that two distinct types of AI resources, namely, AI technology resources and AI human resources, serve as crucial factors in curbing seller opportunism. Furthermore, the authors propose that platform digital empowerment and value cocreation act as mediating variables linking AI resources to opportunism. Design/methodology/approach - Based on the resource-based view and resource orchestration theory, the authors developed a framework and tested it using survey data from sellers. This framework encompasses five key variables: e-commerce platform's AI technology resources, AI human resources, platform digital empowerment, value cocreation and seller opportunism. Regression analysis was used for data analysis. Findings - The empirical results validate the effectiveness of cultivational governance mechanisms, as both AI resources effectively suppress seller opportunism through digital empowerment and value cocreation. Specifically, e-commerce platforms' AI technology resources significantly promote value cocreation and platform digital empowerment, while AI human resources primarily contribute to platform digital empowerment. Although platform digital empowerment encourages value cocreation, its direct impact on reducing seller opportunism was not supported. Notably, value cocreation negatively affects seller opportunism. Originality/value - The present research mainly contributes to the marketing channel governance literature by introducing a new approach to inhibit opportunism, namely, the cultivational governance mechanism. C1 [Deng, Guangkuan] Southwest Univ Sci & Technol, Sch Econ & Management, Mianyang, Sichuan, Peoples R China. [Zhang, Jianyu] SouthWestern Univ Finance & Econ, Sch Business Adm, Chengdu, Peoples R China. [He, Lijuan] Party Sch CPC Mianyang Comm, Dept Party Hist & Party Bldg, Mianyang, Sichuan, Peoples R China. [Xu, Ying] Southwest Univ Sci & Technol, Sch Econ & Management, Mianyang, Sichuan, Peoples R China. C3 Southwest University of Science & Technology - China; Southwestern University of Finance & Economics - China; Southwest University of Science & Technology - China RP Deng, GK (autor correspondiente), Southwest Univ Sci & Technol, Sch Econ & Management, Mianyang, Sichuan, Peoples R China. EM styzdgk@126.com; xncdzjy@126.com; hljdgk@gmail.com; 976394681@qq.com RI G.K., Deng/AAZ-7371-2020 OI G.K., Deng/0000-0002-5071-463X FU Doctoral Project of Southwest University of Science and Technology [21sx7109, 22sx7112] FX This research was funded by the Doctoral Project of Southwest University of Science and Technology (Grant No. 21sx7109, 22sx7112). CR Amit R, 2001, STRATEGIC MANAGE J, V22, P493, DOI 10.1002/smj.187 ANDERSON JC, 1994, J MARKETING, V58, P1, DOI 10.2307/1251912 Armstrong M, 2006, RAND J ECON, V37, P668, DOI 10.1111/j.1756-2171.2006.tb00037.x Ba SL, 2002, MIS QUART, V26, P243, DOI 10.2307/4132332 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983 Brislin R.W., 1980, HDB CROSS CULTURAL P, V2, P389, DOI DOI 10.3390/HEALTHCARE6030093 Busser JA, 2018, TOURISM MANAGE, V65, P69, DOI 10.1016/j.tourman.2017.09.014 Byrd TA, 2000, J MANAGE INFORM SYST, V17, P167 Cao Z, 2015, J OPER MANAG, V33-34, P15, DOI 10.1016/j.jom.2014.09.009 Ceccagnoli M, 2012, MIS QUART, V36, P263 Chadwick C, 2015, STRATEGIC MANAGE J, V36, P360, DOI 10.1002/smj.2217 Claro DP, 2010, IND MARKET MANAG, V39, P221, DOI 10.1016/j.indmarman.2009.03.009 Compeau LD, 1998, J BUS RES, V42, P295, DOI 10.1016/S0148-2963(97)00126-4 Crook TR, 2008, STRATEGIC MANAGE J, V29, P1141, DOI 10.1002/smj.703 De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 de Oliveira DT, 2017, BUS HORIZONS, V60, P747, DOI 10.1016/j.bushor.2017.07.002 Deng GK, 2021, INT MARKET REV, V38, P736, DOI 10.1108/IMR-01-2019-0026 Dewan S, 2004, J IND ECON, V52, P497, DOI 10.1111/j.0022-1821.2004.00237.x Dimitrova BV, 2020, J MARK CHANNELS, V26, P60, DOI 10.1080/1046669X.2019.1646187 Dong MC, 2019, J ACAD MARKET SCI, V47, P1064, DOI 10.1007/s11747-018-0614-5 Dong MC, 2015, PROD OPER MANAG, V24, P1657, DOI 10.1111/poms.12247 Eisenmann T, 2006, HARVARD BUS REV, V84, P92 Enholm IM, 2022, INFORM SYST FRONT, V24, P1709, DOI 10.1007/s10796-021-10186-w Feng C, 2020, IND MARKET MANAG, V91, P41, DOI 10.1016/j.indmarman.2020.08.003 FORNELL C, 1981, J MARKETING RES, V18, P382, DOI 10.2307/3150980 Forsstrom Birgitta., 2005, VALUE COCREATION IND Fu WH, 2017, J SERV MANAGE, V28, P348, DOI 10.1108/JOSM-10-2015-0347 Grover V, 2012, MIS QUART, V36, P225 Gummesson E., 2010, J BUSINESS MARKET MA, V4, P181, DOI [DOI 10.1007/S12087-010-0044-2, https://doi.org/10.1007/s12087-010-0044-2] Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hagiu A, 2014, MIT SLOAN MANAGE REV, V55, P92 Hagiu A, 2015, MANAGE SCI, V61, P184, DOI 10.1287/mnsc.2014.2042 Hair J.F., 2009, Multivariate data analysis Handley SM, 2012, J OPER MANAG, V30, P55, DOI 10.1016/j.jom.2011.06.001 Heide JB, 2007, J MARKETING RES, V44, P425, DOI 10.1509/jmkr.44.3.425 Hein Andreas, 2019, Electronic Markets, V29, P503, DOI 10.1007/s12525-019-00337-y Hirst G, 2009, EUR J WORK ORGAN PSY, V18, P231, DOI 10.1080/13594320802394202 Jap SD, 2003, MANAGE SCI, V49, P1684, DOI 10.1287/mnsc.49.12.1684.25112 Jia F, 2021, J BUS RES, V131, P69, DOI 10.1016/j.jbusres.2021.03.039 Knoblock John., 1994, Xunzi: A Translation and Study of the Complete Works, VIII. KUMAR N, 1995, J MARKETING RES, V32, P348, DOI 10.2307/3151986 Lacoste S, 2016, IND MARKET MANAG, V52, P151, DOI 10.1016/j.indmarman.2015.05.018 Lenka S, 2017, PSYCHOL MARKET, V34, P92, DOI 10.1002/mar.20975 Leong C, 2016, MIS QUART, V40, P475, DOI 10.25300/MISQ/2016/40.2.11 Lewis G, 2011, AM ECON REV, V101, P1535, DOI 10.1257/aer.101.4.1535 Li SY, 2021, IND MARKET MANAG, V98, P105, DOI 10.1016/j.indmarman.2021.07.015 Liu Y., 2022, J CONT MARKETING SCI, V5, P81 Liu Y, 2010, IND MARKET MANAG, V39, P844, DOI 10.1016/j.indmarman.2009.09.004 Lui SS, 2009, J BUS RES, V62, P1214, DOI 10.1016/j.jbusres.2008.08.003 Lumineau F, 2022, J BUS RES, V149, P85, DOI 10.1016/j.jbusres.2022.05.011 MAINIERO LA, 1986, ADMIN SCI QUART, V31, P633, DOI 10.2307/2392967 McGregor Douglas., 1960, HUMAN SIDE ENTERPRIS Melville N, 2004, MIS QUART, V28, P283 Mikalef P, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103434 Nadeem W, 2021, J BUS ETHICS, V169, P421, DOI 10.1007/s10551-019-04314-5 Ngo LV, 2009, IND MARKET MANAG, V38, P45, DOI 10.1016/j.indmarman.2007.11.002 Palmatier RW., 2014, Marketing Channel Strategy, V8th Parker Geoffrey G., 2016, Platform Revolution: How Networked Markets are Transforming the Economy and How to Make Them Work for You Payne AF, 2008, J ACAD MARKET SCI, V36, P83, DOI 10.1007/s11747-007-0070-0 Peng H., 2020, PLATFORM ECOSYSTEM V Penrose E. T., 1959, The Theory of the Growth of the Firm PERSKY J, 1995, J ECON PERSPECT, V9, P221, DOI 10.1257/jep.9.2.221 PODSAKOFF PM, 1986, J MANAGE, V12, P531, DOI 10.1177/014920638601200408 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Poppo L, 2002, STRATEGIC MANAGE J, V23, P707, DOI 10.1002/smj.249 Powell TC, 1997, STRATEGIC MANAGE J, V18, P375, DOI 10.1002/(SICI)1097-0266(199705)18:5<375::AID-SMJ876>3.3.CO;2-Z Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553 PROVAN KG, 1989, ACAD MANAGE J, V32, P202, DOI 10.5465/256427 Ray G, 2004, STRATEGIC MANAGE J, V25, P23, DOI 10.1002/smj.366 Ren SJ, 2015, PROD PLAN CONTROL, V26, P969, DOI 10.1080/09537287.2014.1002022 Rutskiy V., 2021, ARTIF INTELL, P895 Santos J.R.Q., 1999, Journal of Extension, V37, DOI DOI 10.1080/09500690802187025 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Sheng SB, 2018, J ACAD MARKET SCI, V46, P1014, DOI 10.1007/s11747-018-0582-9 Sirmon DG, 2007, ACAD MANAGE REV, V32, P273, DOI 10.2307/20159292 Sirmon DG, 2011, J MANAGE, V37, P1390, DOI 10.1177/0149206310385695 Stalnaker A, 2016, DAO COMPAN CHIN PHIL, V7, P35, DOI 10.1007/978-94-017-7745-2_2 Sun Q, 2018, J CLEAN PROD, V184, P414, DOI 10.1016/j.jclepro.2018.02.114 Sun Y, 2016, J BUS RES, V69, P3772, DOI 10.1016/j.jbusres.2015.12.069 Sungmoon K, 2011, DAO, V10, P291, DOI 10.1007/s11712-011-9224-3 Tangpong C, 2010, J OPER MANAG, V28, P398, DOI 10.1016/j.jom.2009.12.001 Thomas LDW, 2014, ACAD MANAGE PERSPECT, V28, P198, DOI 10.5465/amp.2011.0105 Thomaz F, 2015, J MARKETING, V79, P63, DOI 10.1509/jm.12.0404 Van Alstyne MW, 2016, HARVARD BUS REV, V94, P54 Vargo SL, 2004, J MARKETING, V68, P1, DOI 10.1509/jmkg.68.1.1.24036 Vargo SL, 2008, J ACAD MARKET SCI, V36, P1, DOI 10.1007/s11747-007-0069-6 Wade M, 2004, MIS QUART, V28, P107 Wang JX, 2022, ELECTRON COMMER RES, V22, P1377, DOI 10.1007/s10660-021-09469-w Wang MY, 2016, J OPER MANAG, V46, P84, DOI 10.1016/j.jom.2016.07.001 Wang XH, 2013, J BUS IND MARK, V28, P137, DOI 10.1108/08858621311295272 Wathne KH, 2000, J MARKETING, V64, P36, DOI 10.1509/jmkg.64.4.36.18070 Watson GF, 2015, J RETAILING, V91, P546, DOI 10.1016/j.jretai.2015.04.002 WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Williamson O. E., 1975, Markets and hierarchies Wingreen SC, 2019, ELECTRON COMMER RES, V19, P339, DOI 10.1007/s10660-018-9305-z Wirth N, 2018, INT J MARKET RES, V60, P435, DOI 10.1177/1470785318776841 Wong A, 2005, J APPL PSYCHOL, V90, P782, DOI 10.1037/0021-9010.90.4.782 Xiao D, 2020, COMPUT IND ENG, V150, DOI 10.1016/j.cie.2020.106876 Yang DF, 2018, J BUS RES, V90, P1, DOI 10.1016/j.jbusres.2018.04.037 Zhang T., 2017, MANAG REV, V29, P134 Zhang T., 2010, Management World, V7, P119 Zhang T, 2017, J BUS IND MARK, V32, P1217, DOI 10.1108/JBIM-12-2016-0286 Zheng HC, 2019, DECIS SUPPORT SYST, V127, DOI 10.1016/j.dss.2019.113118 Zhou W., 2018, CHINESE J MANAGEMENT, V15, P1110 [朱勤 Zhu Qin], 2019, [科学学研究, Studies in Science of Science], V37, P2026 NR 106 TC 0 Z9 0 U1 12 U2 12 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2040-8749 EI 2040-8757 J9 NANKAI BUS REV NT JI Nankai Bus. Rev. Int. PD NOV 23 PY 2023 VL 14 IS 4 BP 720 EP 745 DI 10.1108/NBRI-07-2022-0074 EA SEP 2023 PG 26 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA Z2XL6 UT WOS:001101963200001 DA 2024-03-27 ER PT J AU Rahman, M Ming, TH Baigh, TA Sarker, M AF Rahman, Mahfuzur Ming, Teoh Hui Baigh, Tarannum Azim Sarker, Moniruzzaman TI Adoption of artificial intelligence in banking services: an empirical analysis SO INTERNATIONAL JOURNAL OF EMERGING MARKETS LA English DT Article DE Artificial intelligence; Bank customers; Intention to adopt; PLS-SEM; Malaysia; G20; G21; L86; 033 ID TECHNOLOGY ACCEPTANCE MODEL; PERCEIVED USEFULNESS; INTERNET BANKING; CONTINUANCE INTENTION; DISCRIMINANT VALIDITY; SOCIAL-INFLUENCE; USER ACCEPTANCE; ONLINE BANKING; E-COMMERCE; PLS-SEM AB Purpose This study aims to understand the importance and challenges of adopting artificial intelligence (AI) in the banking industry in Malaysia and examine the factors that are important in investigating consumers' intention to adopt AI in banking services. Design/methodology/approach The qualitative research was carried out using in-depth interviews from officials in the baking industry to understand the importance and challenges of adopting AI in the banking industry. In the quantitative study, a total of 302 completed questionnaires were received from Malaysian banking customers. The data were analysed using the SmartPLS 3.0 software to identify the important predictors of their intention to adopt AI. Findings The qualitative results reveal that AI is an essential tool for fraud detection and risk prevention. The absence of regulatory requirements, data privacy and security, and lack of relevant skills and IT infrastructure are significant challenges of AI adoption. The quantitative results indicate that attitude towards AI, perceived usefulness, perceived risk, perceived trust, and subjective norms significantly influence intention to adopt AI in banking services while perceived ease of use and awareness do not. The results also show that attitude towards AI significantly mediates the relationship between perceived usefulness and intention to adopt AI in banking services. Practical implications Financial technology (FinTech) is regarded as a critical determinant of strategic planning in the banking industry. While AI provides various disruptive opportunities in the FinTech space in terms of data collection, analysis, safeguarding and streamlining processes, it also poses a sea of threats to incumbent banks. This study provides vital insights for the policymakers of the banking industry to address the challenges of adopting AI in banking. It also provides the important predictors of the bank customers' intention to adopt AI in banking services. Policymakers can devise their strategies to enhance AI adoption considering the facts. Originality/value This study is amongst the pioneer in exploring the importance and potential challenges in implementing AI technology in banking services and identifying the essential factors influencing the intention to adopt AI in Malaysia's banking services. C1 [Rahman, Mahfuzur] Univ Malaya, Fac Business & Econ, Dept Finance, Kuala Lumpur, Malaysia. [Ming, Teoh Hui] Univ Malaya, Fac Business & Econ, Kuala Lumpur, Malaysia. [Baigh, Tarannum Azim] Univ Malaya, Fac Business & Econ, Dept Econ & Adm, Kuala Lumpur, Malaysia. [Sarker, Moniruzzaman] Univ Southampton, Southampton Malaysia Business Sch, Johor Baharu, Kagawa, Malaysia. C3 Universiti Malaya; Universiti Malaya; Universiti Malaya RP Rahman, M (autor correspondiente), Univ Malaya, Fac Business & Econ, Dept Finance, Kuala Lumpur, Malaysia. EM mahfuzur@um.edu.my; hui85ming@gmail.com; tarannum.azimbaigh@gmail.com; mrajib.sarker@gmail.com RI Sarker, Moniruzzaman/ABD-1755-2021; Rahman, Mahfuzur/KFA-7885-2024; Rahman, Mahfuzur/P-5952-2019 OI Sarker, Moniruzzaman/0000-0003-3595-5838; Rahman, Mahfuzur/0000-0003-2072-5829; Rahman, Mahfuzur/0000-0003-2072-5829 FU Ungku Aziz Centre for Development Studies (CPDS), Universiti Malaya [PD010-2018] FX This work is ostensibly supported by the Ungku Aziz Centre for Development Studies (CPDS), Universiti Malaya; project PD010-2018. CR Abdullah D.B., 2017, J SOCIAL SCI HUMANIT, V2, P1 Abe, 2016, FIN CHATB AR TRANSF Acemoglu D, 2020, J POLIT ECON, V128, P2188, DOI 10.1086/705716 Ajzen I., 1985, SSSP SPRINGER SERIES, DOI [10.1007/978-3-642-69746-3_2, DOI 10.1007/978-3-642-69746-3_2] Al-Somali SA, 2009, TECHNOVATION, V29, P130, DOI 10.1016/j.technovation.2008.07.004 Alalwan AA, 2016, J ENTERP INF MANAG, V29, P118, DOI 10.1108/JEIM-04-2015-0035 Albaity M, 2019, INT J EMERG MARK, V14, P988, DOI 10.1108/IJOEM-05-2018-0218 Alsajjan B, 2010, J BUS RES, V63, P957, DOI 10.1016/j.jbusres.2008.12.014 Alsheibani S., 2018, PACIS 2018 P, V37 Alzaidi AA, 2018, INT J COMPUT SCI NET, V18, P140 Alzubi M.M., 2017, J INTERNET BANKING C, V22, P1 An S, 2007, J HEALTH COMMUN, V12, P567, DOI 10.1080/10810730701508633 [Anonymous], 2018, Malay Mail BAGOZZI RP, 1990, J APPL PSYCHOL, V75, P547, DOI 10.1037/0021-9010.75.5.547 Baigh TA, 2021, INT J SOC ECON, V48, P1443, DOI 10.1108/IJSE-02-2021-0085 Bauer R.A., 1967, CONSUMER BEHAV RISK Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Berger T., 2016, DIGITALIZATION JOBS, P51 Bharadwaj R., 2019, FINTECH NEWS Bhattacherjee A, 2000, IEEE T SYST MAN CY A, V30, P411, DOI 10.1109/3468.852435 Bitner M.J., 2001, Managing Service Quality, V11, P375, DOI DOI 10.1108/09604520110410584 Bogue R, 2014, IND ROBOT, V41, P119, DOI 10.1108/IR-01-2014-0300 Caffaro F, 2020, J RURAL STUD, V76, P264, DOI 10.1016/j.jrurstud.2020.04.028 Castañeda JA, 2007, INFORM MANAGE-AMSTER, V44, P384, DOI 10.1016/j.im.2007.02.003 Charbaji A., 2003, CORP GOV-OXFORD, V3, P76, DOI DOI 10.1108/14720700310459872 CHIN W. W., STAT STRATEGIES SMAL, P307 Chin WW, 1998, QUANT METH SER, P295 Chong AYL, 2010, INT J BANK MARK, V28, P267, DOI 10.1108/02652321011054963 Chuah SHW, 2018, IND MANAGE DATA SYST, V118, P1597, DOI 10.1108/IMDS-07-2017-0326 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Crews C, 2019, RES TECHNOL MANAGE, V62, P30, DOI 10.1080/08956308.2019.1541725 Crosman P., 2018, AM BANKER, V183, P1 Curran JM, 2007, J MARKET THEORY PRAC, V15, P283, DOI 10.2753/MTP1069-6679150401 Curran JamesM., 2005, J SERV MARK, V19, P103, DOI [10.1108/08876040510591411, DOI 10.1108/08876040510591411] DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Davis FD, 1996, INT J HUM-COMPUT ST, V45, P19, DOI 10.1006/ijhc.1996.0040 DIGFIN, 2020, 10 REAS WATCH MAL VI EAC Focus, 2017, AI FUT MAL BANK SECT Elhajjar S, 2020, INT J BANK MARK, V38, P352, DOI 10.1108/IJBM-02-2019-0055 Faqih KMS, 2016, J RETAIL CONSUM SERV, V30, P140, DOI 10.1016/j.jretconser.2016.01.016 Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fragata A., 2013, J EC BUSINESS MANAGE, V1, P204 Franke G, 2019, INTERNET RES, V29, P430, DOI 10.1108/IntR-12-2017-0515 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Ghazizadeh M, 2012, COGN TECHNOL WORK, V14, P39, DOI 10.1007/s10111-011-0194-3 Goh J., 2020, EDGE MARKET González-Carrasco I, 2019, INFORM SCIENCES, V485, P319, DOI 10.1016/j.ins.2019.02.030 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Haenlein M, 2019, CALIF MANAGE REV, V61, P5, DOI 10.1177/0008125619864925 Hair J.F., 2009, Multivariate data analysis Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Hanafizadeh P, 2014, TELEMAT INFORM, V31, P492, DOI 10.1016/j.tele.2013.04.003 Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Howcroft B., 2002, International Journal of Bank Marketing, V20, P111, DOI [10.1108/02652320210424205, DOI 10.1108/02652320210424205] International Federation of Robotics, 2017, EX SUMM WORLD ROB 20 Jahangir N, 2008, AFR J BUS MANAGE, V2, P32 Jung D, 2018, ELECTRON MARK, V28, P367, DOI 10.1007/s12525-017-0279-9 Juwaheer TD, 2012, WORLD J SCI TECHNOL, V9, P204, DOI 10.1108/20425941211250552 Kaya O., 2019, Artificial intelligence in banking: A lever for profitability with limited implementation to date KPMG International, 2019, MULT THREAT FRAUD AR Lee J., 2018, Manuf. Lett., V18, P20, DOI [10.1016/j.mfglet.2018.09.002, DOI 10.1016/J.MFGLET.2018.09.002] Lin ZB, 2015, TRANSPORT RES E-LOG, V81, P158, DOI 10.1016/j.tre.2015.07.001 Liu Y, 2021, ARTIF INTELL REV, V54, P3517, DOI 10.1007/s10462-020-09929-z Mallawaarachchi, 2019, IMPORTANCE ARTIFICIA, V1 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 Martins C, 2014, INT J INFORM MANAGE, V34, P1, DOI 10.1016/j.ijinfomgt.2013.06.002 McKnight D. H., 2002, Information Systems Research, V13, P334, DOI 10.1287/isre.13.3.334.81 Meunier S., 2018, INT BANKER Mohd NoorN.R. A., 2019, Procedia Computer Science, V163, P434, DOI DOI 10.1016/J.PROCS.2019.12.126 Mutahar Ahmed M., 2018, International Journal of Services and Standards, V12, P180 Nadimpalli M., 2017, International Journal of Innovative Research in Science, Engineering and Technology, V6 Nagdev K, 2021, INT J EMERG MARK, V16, P51, DOI 10.1108/IJOEM-05-2018-0263 NEWELL A, 1958, PSYCHOL REV, V65, P151, DOI 10.1037/h0048495 O'Cass A., 2003, J RETAIL CONSUM SERV, V10, P81, DOI DOI 10.1016/S0969-6989(02)00004-8 Paramasivam S., 2019, MICROSOFT MALAYSIA N Park J., 2016, Advanced Science and Technology Letters, V141, P104, DOI DOI 10.14257/ASTL.2016.141.21 Pavlou P., 2001, AMCIS 2001 P, P159 Pavlou PA, 2007, MIS QUART, V31, P105 Payne EM, 2018, J RES INTERACT MARK, V12, P328, DOI 10.1108/JRIM-07-2018-0087 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Rahman M, 2020, QUAL RES FINANC MARK, V12, P599, DOI 10.1108/QRFM-09-2019-0117 Ray S., 2018, HISTORY Rehman M, 2012, TRANSFORM GOV-PEOPLE, V6, P258, DOI 10.1108/17506161211251263 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Ringle CM, 2014, REV BRASIL MARK, V13, P54, DOI 10.5585/remark.v13i2.2717 Riquelme HE, 2010, INT J BANK MARK, V28, P328, DOI 10.1108/02652321011064872 Roca Juan Carlos, 2009, Information Management & Computer Security, V17, P96, DOI 10.1108/09685220910963983 Royle V.L.F., 2015, INT J INFORM FUTURIS, V3, P1125 Salimon MG, 2017, INT J BANK MARK, V35, P558, DOI 10.1108/IJBM-05-2016-0060 Sarker M, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102354 Sarstedt M., 2017, HDB MARKET RES, DOI DOI 10.1007/978-3-319-05542-8_15-1 Sathye M., 1999, INT J BANK MARK, V17, P324, DOI [10.1108/02652329910305689, DOI 10.1108/02652329910305689] Schmelzer R., 2019, 5 BENEFITS BANKING I Schrotenboer, 2019, IMPACT ARTIFICIAL IN Shanmugam A., 2014, Acad. Res. Int, V5, P236 Singh J, 2017, J SERV RES-US, V20, P3, DOI 10.1177/1094670516681513 Smith T.J., 2015, The Journal of Business Diversity, V15, P39 Strauss A., 1990, Basics of qualitative research: Grounded theory procedures and techniques Suki Norazah Mohd, 2011, Journal of Information Technology Management, V22, P1 Susanto A, 2016, IND MANAGE DATA SYST, V116, P508, DOI 10.1108/IMDS-05-2015-0195 TAYLOR JW, 1974, J MARKETING, V38, P54, DOI 10.2307/1250198 TAYLOR S, 1995, INFORM SYST RES, V6, P144, DOI 10.1287/isre.6.2.144 Unisys Corporation, 2018, MAL BANK CUST READ E van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Vanneschi L, 2018, EXPERT SYST APPL, V104, P1, DOI 10.1016/j.eswa.2018.03.025 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2000, MIS QUART, V24, P115, DOI 10.2307/3250981 Vijai D. C., 2019, International Journal of Advanced Research, V7, P1581, DOI 10.21474/IJAR01/8987 Walczak Steven, 2016, International Journal of Sociotechnology and Knowledge Development, V8, P1, DOI 10.4018/IJSKD.2016100101 Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411 Wiljer D, 2019, J MED IMAGING RADIAT, V50, pS8, DOI 10.1016/j.jmir.2019.09.010 Yang HD, 2009, J COMPUT INFORM SYST, V50, P25 Young JE, 2009, INT J SOC ROBOT, V1, P95, DOI 10.1007/s12369-008-0006-y Yun T.Z., 2019, EDGE MALAYSIA Zhou T, 2011, INTERNET RES, V21, P527, DOI 10.1108/10662241111176353 NR 124 TC 14 Z9 14 U1 47 U2 183 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1746-8809 EI 1746-8817 J9 INT J EMERG MARK JI Int. J. Emerg. Mark. PD NOV 21 PY 2023 VL 18 IS 10 BP 4270 EP 4300 DI 10.1108/IJOEM-06-2020-0724 EA DEC 2021 PG 31 WC Business; Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA CG5B8 UT WOS:000739401900001 DA 2024-03-27 ER PT J AU Aw, ECX Tan, GWH Cham, TH Raman, R Ooi, KB AF Aw, Eugene Cheng-Xi Tan, Garry Wei-Han Cham, Tat-Huei Raman, Ramakrishnan Ooi, Keng-Boon TI Alexa, what's on my shopping list? Transforming customer experience with digital voice assistants SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Artificial intelligence; Digital voice assistant; Customer experience; Parasocial interactions; Smart-shopping perception; PLS-SEM ID INFORMATION-TECHNOLOGY; SOCIAL-INFLUENCE; ARTIFICIAL-INTELLIGENCE; ADOPTION; ACCEPTANCE; CONSUMERS; CONTINUANCE; INTERNET; VALIDITY; IDENTITY AB Artificial intelligence is disrupting the retail industry. Digital voice assistants as one of the most popular AI technologies are poised to revolutionize consumers' shopping journeys yet we have a sparse understanding of their role in fostering customer experience. The present study seeks to address this issue by proposing and validating a research model encompassing human-like attributes (i.e., perceived anthropomorphism, perceived animacy, and perceived intelligence), technology attributes (i.e., performance expectancy, effort expectancy, and perceived security), and contextual factors (i.e., social influence and facilitating conditions) as the antecedents to continuance usage of digital voice assistants to shop. The effects are facilitated by the formation of several perceptual-based outcomes such as parasocial interactions, smart-shopping perception, and AI-enabled customer experience. Data (n = 411) was collected through an online questionnaire-based survey and analysed using Partial Least Squares Structural Equation Modelling. The results indicated (i) all human-like and technology attributes, except effort expectancy, have a significant impact on parasocial interactions, (ii) perceived intelligence, perceived security, and performance expectancy significantly influence smart-shopping perception, (iii) parasocial interactions and smart-shopping perception foster AI-enabled customer experience, and (iv) AI enabled customer experience and social influence determine the continuance intention to shop using digital voice assistants. Theoretical and practical implications are discussed. C1 [Aw, Eugene Cheng-Xi; Tan, Garry Wei-Han; Cham, Tat-Huei; Ooi, Keng-Boon] UCSI Univ, UCSI Grad Business Sch, Kuala Lumpur, Malaysia. [Tan, Garry Wei-Han; Ooi, Keng-Boon] Nanchang Inst Technol, Nanchang, Peoples R China. [Raman, Ramakrishnan] Symbiosis Int, Symbiosis Inst Business Management Pune, Pune, India. [Ooi, Keng-Boon] Chang Jung Christian Univ, Tainan, Taiwan. C3 UCSI University; Nanchang Institute Technology; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune; Chang Jung Christian University RP Cham, TH; Ooi, KB (autor correspondiente), UCSI Univ, UCSI Grad Business Sch, Kuala Lumpur, Malaysia.; Ooi, KB (autor correspondiente), Nanchang Inst Technol, Nanchang, Peoples R China.; Ooi, KB (autor correspondiente), Chang Jung Christian Univ, Tainan, Taiwan. EM jaysoncham@gmail.com; ooikengboon@gmail.com RI Aw, Eugene Cheng-Xi/K-8475-2019; Tan Wei Han, Garry/C-6565-2011; Pune, SIBM/Z-5178-2019; OOI, Keng-Boon/I-4143-2019; Raman, Ramakrishnan/U-2170-2017 OI Aw, Eugene Cheng-Xi/0000-0001-6712-1171; Tan Wei Han, Garry/0000-0003-2974-2270; OOI, Keng-Boon/0000-0002-3384-1207; Raman, Ramakrishnan/0000-0003-3642-6989 CR Alalwan AA, 2016, INT J BANK MARK, V34, P690, DOI 10.1108/IJBM-06-2015-0093 Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 Atkins KG, 2012, INT J RETAIL DISTRIB, V40, P360, DOI 10.1108/09590551211222349 Aw ECX, 2023, INFORM TECHNOL PEOPL, V36, P66, DOI 10.1108/ITP-07-2021-0548 Aw ECX, 2021, J BUS RES, V132, P146, DOI 10.1016/j.jbusres.2021.04.025 Aw ECX, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102328 Aw ECX, 2020, J CONSUM MARK, V37, P895, DOI 10.1108/JCM-10-2019-3474 Aw ECX, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101991 BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 Balakrishnan J, 2021, INFORM SYST FRONT, DOI 10.1007/s10796-021-10203-y Balakrishnan J, 2024, ANN OPER RES, V333, P653, DOI 10.1007/s10479-021-04049-5 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 BANDURA A, 1977, PSYCHOL REV, V84, P191, DOI 10.1037/0033-295X.84.2.191 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Becker L, 2020, J ACAD MARKET SCI, V48, P630, DOI 10.1007/s11747-019-00718-x Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Boon Liat Cheng, 2019, International Journal of Services, Economics and Management, V10, P289 Burgoon JK, 2000, COMPUT HUM BEHAV, V16, P553, DOI 10.1016/S0747-5632(00)00029-7 Buteau E, 2021, COMMUN RES REP, V38, P336, DOI 10.1080/08824096.2021.1980380 Canziani B, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106714 Carter M, 2020, MIS QUART, V44, P983, DOI 10.25300/MISQ/2020/14607 Cham TH, 2022, INT J BANK MARK, V40, P1017, DOI 10.1108/IJBM-06-2021-0283 Cham TH, 2022, INT J TOUR RES, V24, P140, DOI 10.1002/jtr.2489 Chattaraman V, 2019, COMPUT HUM BEHAV, V90, P315, DOI 10.1016/j.chb.2018.08.048 Cheng TCE, 2006, DECIS SUPPORT SYST, V42, P1558, DOI 10.1016/j.dss.2006.01.002 Chuah SHW, 2021, COMPUT HUM BEHAV, V123, DOI 10.1016/j.chb.2021.106870 de Vaus D. A., 2001, RES DESIGN SOCIAL RE Edwards C, 2019, COMPUT HUM BEHAV, V90, P357, DOI 10.1016/j.chb.2018.08.027 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Gao T, 2019, COGNITIVE SCI, V43, DOI 10.1111/cogs.12775 Gaur L, 2021, INT J CONTEMP HOSP M, V33, P4079, DOI 10.1108/IJCHM-11-2020-1246 Gillath O, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106607 Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Gutierrez A, 2019, COMPUT HUM BEHAV, V95, P295, DOI 10.1016/j.chb.2018.09.015 Hair J. F., 2017, ADV ISSUES PARTIAL L Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Han S, 2018, IND MANAGE DATA SYST, V118, P618, DOI 10.1108/IMDS-05-2017-0214 Hayllar Will., 2018, The Talking Shop: The Rise of Voice Commerce Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hernández-Ortega B, 2022, J SERV MARK, V36, P725, DOI 10.1108/JSM-07-2020-0286 Hew JJ, 2019, TECHNOL FORECAST SOC, V144, P311, DOI 10.1016/j.techfore.2017.10.007 Hew JJ, 2017, TELEMAT INFORM, V34, P914, DOI 10.1016/j.tele.2017.04.001 HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Hu P., COMPUT HUM BEHAV, V128, P2021 Jain S, 2022, J BUS RES, V139, P701, DOI 10.1016/j.jbusres.2021.10.007 Janssen M, 2018, PUBLIC MANAG REV, V20, P647, DOI 10.1080/14719037.2017.1305689 Ketchen DJ, 2013, LONG RANGE PLANN, V46, P184, DOI 10.1016/j.lrp.2013.01.002 Kim HW, 2007, INT J HUM-COMPUT ST, V65, P511, DOI 10.1016/j.ijhcs.2006.11.009 Klaus P, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102490 Kock N., 2018, WarpPLS User Manual Version 6.0, V6th Kock N, 2018, INFORM SYST J, V28, P227, DOI 10.1111/isj.12131 Kulviwat S, 2009, J BUS RES, V62, P706, DOI 10.1016/j.jbusres.2007.04.014 Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Lee K, 2020, INFORM SYST FRONT, V22, P563, DOI 10.1007/s10796-019-09975-1 Lee KY, 2021, INTERNET RES, V31, P1899, DOI 10.1108/INTR-06-2020-0327 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Lim CM, 2011, PSYCHOL MARKET, V28, P763, DOI 10.1002/mar.20411 Linder M., 2020, HUMANIZING DIGITAL 2 McLean G, 2021, J BUS RES, V124, P312, DOI 10.1016/j.jbusres.2020.11.045 McLean G, 2019, COMPUT HUM BEHAV, V99, P28, DOI 10.1016/j.chb.2019.05.009 Meyer C, 2007, HARVARD BUS REV, V85, P116 Mishra A, 2022, INT J INFORM MANAGE, V67, DOI 10.1016/j.ijinfomgt.2021.102413 Moore S, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102755 Moriuchi E, 2021, PSYCHOL MARKET, V38, P21, DOI 10.1002/mar.21407 Moriuchi E, 2019, PSYCHOL MARKET, V36, P489, DOI 10.1002/mar.21192 Nass C, 2000, COMMUN ACM, V43, P36, DOI 10.1145/348941.348976 Nass Clifford Ivar, 2005, WIRED SPEECH VOICE A Ng FZX, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102851 Novak TP, 2019, J ACAD MARKET SCI, V47, P216, DOI 10.1007/s11747-018-0608-3 Pelau C, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106855 Pitardi V, 2021, PSYCHOL MARKET, V38, P626, DOI 10.1002/mar.21457 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Poushneh A, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102283 Prisbell M., 1980, COMMUN Q, V28, P22, DOI [10.1080/01463378009369372, DOI 10.1080/01463378009369372] PwC, 2018, CONS INT SER PREP VO Qiu HL, 2020, J HOSP MARKET MANAG, V29, P247, DOI 10.1080/19368623.2019.1645073 Rabassa V, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121292 Reeves B, 1996, MEDIA EQUATION PEOPL Rhee CE, 2020, COMPUT HUM BEHAV, V109, DOI [10.1016/j.chb.2020.102659, 10.1016/j.chb.2020.106359] Risselada H, 2014, J MARKETING, V78, P52, DOI 10.1509/jm.11.0592 Sarstedt M, 2019, AUSTRALAS MARK J, V27, P197, DOI 10.1016/j.ausmj.2019.05.003 Scates, ACC SPEED AR TOP SUC Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Shareef MA, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120334 Sidaoui K, 2020, J SERV MANAGE, V31, P745, DOI 10.1108/JOSM-11-2019-0341 Tassiello V, 2021, PSYCHOL MARKET, V38, P1069, DOI 10.1002/mar.21488 Tew HT, 2022, J COMPUT INFORM SYST, V62, P527, DOI 10.1080/08874417.2020.1858731 Thong JYL, 2006, INT J HUM-COMPUT ST, V64, P799, DOI 10.1016/j.ijhcs.2006.05.001 Upadhyay N, 2022, INT J ENTREP BEHAV R, V28, P1138, DOI 10.1108/IJEBR-01-2021-0052 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2000, MIS QUART, V24, P115, DOI 10.2307/3250981 Venkatesh V, 2022, ANN OPER RES, V308, P641, DOI 10.1007/s10479-020-03918-9 Venkatesh V, 2012, MIS QUART, V36, P157 Vimalkumar M, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106763 Vlacic B, 2021, J BUS RES, V128, P187, DOI 10.1016/j.jbusres.2021.01.055 Wan SM, 2022, J COMPUT INFORM SYST, V62, P1223, DOI 10.1080/08874417.2021.2004564 Wang G., TECHNOL FORECAST SOC, V175 Whang C, 2021, PSYCHOL MARKET, V38, P581, DOI 10.1002/mar.21437 Wong CH, 2015, ONLINE INFORM REV, V39, P762, DOI 10.1108/OIR-05-2015-0152 Wong CH, 2014, IND MANAGE DATA SYST, V114, P1050, DOI 10.1108/IMDS-05-2014-0146 Wong LW, 2020, INT J PROD RES, V58, P2100, DOI 10.1080/00207543.2020.1730463 Xiu-Ming Loh, 2022, Journal of Computer Information Systems, V62, P39, DOI 10.1080/08874417.2019.1688733 Yan LY, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102300 Yang GY, 2022, ANN OPER RES, V308, P703, DOI 10.1007/s10479-020-03602-y Zhang MY, 2021, INT J CONTEMP HOSP M, V33, P3883, DOI 10.1108/IJCHM-11-2020-1256 Zhou T, 2014, COMPUT HUM BEHAV, V37, P283, DOI 10.1016/j.chb.2014.05.008 NR 109 TC 52 Z9 52 U1 114 U2 256 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD JUL PY 2022 VL 180 AR 121711 DI 10.1016/j.techfore.2022.121711 EA APR 2022 PG 13 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA 1F4NH UT WOS:000795144900001 HC Y HP N DA 2024-03-27 ER PT J AU Zintso, Y Fedorishina, I Zaiachkovska, H Kovalchuk, O Tyagunova, Z AF Zintso, Yuliya Fedorishina, Irina Zaiachkovska, Halyna Kovalchuk, Oleh Tyagunova, Zlata TI ANALYSIS OF CURRENT TRENDS IN THE USE OF DIGITAL MARKETING FOR THE SUCCESSFUL PROMOTION OF GOODS AND SERVICES IN UKRAINE SO FINANCIAL AND CREDIT ACTIVITY-PROBLEMS OF THEORY AND PRACTICE LA English DT Article DE digital marketing; product promotion; trends in digital marketing; social media; artificial intelligence AB One of the main trends in the development of most economic processes in the modern world is digitalization. Marketing is no exception, also subject to general trends and focused today on the promotion of products through the Internet, and social networks; it uses cloud technologies and artificial intelligence to develop the processes of master -ing markets. The main trend of modern digital marketing is becoming more and more customer-oriented, which can be achieved in different ways and with the use of different tools. Businesses are forced to adjust to the global trends of digital marketing because at other times they will miss the opportunity to take full advantage of all the opportunities that are present on the market in a timely manner. In this context the importance and role of personalized advertising and the formation of individual approaches for product promotion, in which digital marketing tools, in particular the use of artificial intelligence and promotion through social networks, help as well. Given the above, the purpose of the study is to analyze current trends in the use of digital marketing for the successful promotion of goods and services in an unstable environment, which will allow modern companies to identify areas for improving their financial condition and developing their potential in the context of using various digital marketing tools.The analysis of the advantages and disadvantages of modern digital marketing tools, as well as the specifics of using various digital product promotion tools, is based on a study that lasted in Ukraine in 2023 for 3 months.The methodological basis of the research is the systematization of the experience of leading scientists and the generalization of scientists' views on the problems of the de-velopment of digital marketing. The methods used in the study were general scientific methods of analysis and synthesis, induction and deduction, generalization, systemati-zation, and graphical methods.The scientific novelty of the study is to identify the main trends of modern digital mar-keting and to specify the limitations of its use, which may adversely affect the develop-ment of the company and the prospects for its promotion in the market. C1 [Zintso, Yuliya] Ivan Franko Natl Univ Lviv, Fac Econ, Dept Mkt, Lvov, Ukraine. [Fedorishina, Irina] State Univ Trade & Econ, Dept Mkt, Kiev, Ukraine. [Zaiachkovska, Halyna] Khmelnytskyi Cooperat Trade & Econ Inst, Dept Mkt & Management, Khmelnytskyi, Ukraine. [Kovalchuk, Oleh] Lutsk Natl Tech Univ, Fac Business & Law, Dept Mkt, Lutsk, Ukraine. [Tyagunova, Zlata] Khmelnytskyi Cooperat Trade Econ Inst, Dept Mkt & Management, Khmelnytskyi, Ukraine. C3 Ministry of Education & Science of Ukraine; Ivan Franko National University Lviv; State University of Trade & Economics; Khmelnytskyi Cooperative Trade & Economic Institute; Ministry of Education & Science of Ukraine; Lutsk National Technical University; Khmelnytskyi Cooperative Trade & Economic Institute RP Zintso, Y (autor correspondiente), Ivan Franko Natl Univ Lviv, Fac Econ, Dept Mkt, Lvov, Ukraine. EM yuliya10.04@gmail.com RI Kovalchuk, Oleh/ABK-3854-2022 OI Kovalchuk, Oleh/0000-0002-0580-8581 CR Abbasi SG, 2021, J PUBLIC AFF, V21, DOI 10.1002/pa.2512 Afonasova MA, 2019, POL J MANAG STUD, V19, P22, DOI 10.17512/pjms.2019.19.2.02 Akter M., 2020, Open Journal of Business and Management, V8, P2696, DOI DOI 10.4236/OJBM.2020.86167 [Anonymous], MAN IT ENG, V8, P321 [Anonymous], 2023, STRAT CHANG DIG MARK Arora D., 2022, LEADERSHIP STRATEGIE, V18, P119, DOI [10.4018/978-1-6684-3453-6.ch009, DOI 10.4018/978-1-6684-3453-6.CH009] Asraf M, 2020, ONLINE INFORM REV, V44, P745, DOI 10.1108/OIR-05-2018-0156 Bala M., 2018, INT J MANAGEMENT IT, V8, P321 Cherniaieva O., 2023, Futurity Economics&Law, V3, P4, DOI [10.57125/FEL.2023.03.25.01, DOI 10.57125/FEL2023.03.25.01] Dey BL, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102057 Girchenko T., 2016, EUROPEAN COOPERATION, V11, P24 Gobble MM, 2018, RES TECHNOL MANAGE, V61, P66, DOI 10.1080/08956308.2018.1495969 Hrynchyshyn Y., 2021, Futurity Economics&Law, V1, P12, DOI [10.57125/FEL2021.06.25.2, DOI 10.57125/FEL2021.06.25.2] Ihnatenko R, 2022, FINANC CREDIT ACT, V1, P428 Levchenko Y., 2022, Futurity Economics & Law, V2, P22, DOI [10.57125/FEL.2022.12.25.03, DOI 10.57125/FEL.2022.12.25.03] Li FF, 2021, J ACAD MARKET SCI, V49, P51, DOI 10.1007/s11747-020-00733-3 Pan WR, 2022, J BUS RES, V139, P303, DOI 10.1016/j.jbusres.2021.09.061 Petrescu M, 2021, J MARK ANAL, V9, P155, DOI 10.1057/s41270-021-00129-4 Redjeki F., 2021, International Journal of Science and Society, V3, P40 Sanakuiev M., 2023, Futurity Economics&Law, V3, P16, DOI [10.57125/FEL.2023.03.25.02, DOI 10.57125/FEL.2023.03.25.02] Saura JR, 2021, IND MARKET MANAG, V98, P161, DOI 10.1016/j.indmarman.2021.08.006 Shahid S, 2022, 3C EMPRESA, V11, P149, DOI 10.17993/3cemp.2022.110149.149-177 Vitsentzatou E, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215228 Yasmin A., 2015, INT J MANAG SCI BUS, V1, P69 NR 24 TC 0 Z9 0 U1 17 U2 21 PU FINTECHALIANCE PI Kyiv PA Highway Kharkivska, bldg 180/21, Kyiv, UKRAINE SN 2306-4994 EI 2310-8770 J9 FINANC CREDIT ACT JI Financ. Credit Act. PY 2023 VL 3 IS 50 BP 174 EP 184 DI 10.55643/fcaptp.3.50.2023.4080 PG 11 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA N2LK2 UT WOS:001035387500014 OA gold DA 2024-03-27 ER PT J AU Darrow, RM AF Darrow, Ross M. TI The future of AI is the market SO JOURNAL OF REVENUE AND PRICING MANAGEMENT LA English DT Article DE Customer Value Chain; Microeconomics; New distribution capability; Multi-armed bandits; Multi-agent systems; Marketplace; Distribution artificial intelligence AB We've made great progress with the current generation of AI, with learning customer preferences embedded in recommender systems to better customize offerings. This is perfect for the New Distribution Capability that IATA is spearheading for the airline industry. To truly make this work, and not just for airlines but for all travel (hotels, rental cars, attractions, concerts, tours, and more), we need to move on from (a) supervised learning built upon masses of data to systems that learn on the fly with little data, and from (b) centralized (even if in the cloud) machine learning to distributed artificial intelligence, and from (c) recommender systems to marketplace approaches. C1 [Darrow, Ross M.] Sabre Res, Bedford, MA 01730 USA. RP Darrow, RM (autor correspondiente), Sabre Res, Bedford, MA 01730 USA. EM ross_darrow@prodigy.net CR [Anonymous], 2018, INTELLIGENCE ITS ROL Bacon Tom, 2019, 4 WAYS NDC IS RESHAP Corea Francesco, 2019, DISTRIBUTED ARTIFICI Deng H., 2019, RECOMMENDER SYSTEMS Diamis PeterH., 2020, EXPONENTIAL TECHNOLO Dinculescu Monica, 2018, INTRO REINFORCEMENT Domingos P., 2015, THE MASTER ALGORITHM Eug?nio Oliveira, 2010, NEGOTIATION BASED AP, DOI 1132120/A_Negotiation_Based_Approach_to_Airline_Operations_Recovery Jordan M. I., 2019, Harvard Data Science Review, V1, P1, DOI [10.1162/99608f92.f06c6e61, DOI 10.1162/99608F92.F06C6E61, 10.1162/99608f92.f06c6-61] Jordan Michael I, 2018, CLARITY THOUGHT AI Michael I. Jordan, 2019, SAFFROM ADAPTIVE ALG Opricovic S, 2004, EUR J OPER RES, V156, P445, DOI [10.1016/S0377-2217(03)00020-1, 10.1016/s0377-2217(03)00020-1] Richard Ratliff, 2019, AGIFORS REV MAN STUD Sabre Inc., 2019, EXPL NDC Sabre Inc., 2019, PREF DRIV AIR SHOPP Sahni H., 2018, REINFORCEMENT LEARNI Salimans T., 2017, EVOLUTION STRATEGIES Shebalov Sergey, 2019, AGIFORS 59 ANN S P Surmenok Pavel, 2017, CONTEXTUAL BANDITS R Teixeria ThalesS, 2019, UNLOCKING CUSTOMER V Veinbergs Jevgenijs, 2019, WHAT SHAPES REVENUE Vinod B., 2015, ASCEND, V4, P11 White J. M., 2013, Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging Wooldridge M., 2009, An introduction to multiagent systems NR 24 TC 1 Z9 1 U1 2 U2 14 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1476-6930 EI 1477-657X J9 J REVENUE PRICING MA JI J. Revenue Pricing Manag. PD JUN PY 2021 VL 20 IS 3 SI SI BP 381 EP 386 DI 10.1057/s41272-021-00321-2 EA MAR 2021 PG 6 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA SE7OG UT WOS:000629106200002 DA 2024-03-27 ER PT J AU Xie, YG Liang, CY Zhou, PY Jiang, L AF Xie, Yuguang Liang, Changyong Zhou, Peiyu Jiang, Li TI Exploring the influence mechanism of chatbot-expressed humor on service satisfaction in online customer service SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Humor; Chatbots; Competence; Entertainment; Social presence; Service satisfaction ID BRAND ENGAGEMENT; ANTHROPOMORPHISM; ROBOTS AB As chatbots gain widespread adoption in online customer service, optimizing their inherent value and enhancing customer satisfaction emerges as an indispensable concern necessitating attention. Therefore, this study focuses on the effect of chatbot-expressed humor on customer service satisfaction from the perspective of emotional expression and constructs three mediating pathways (cognitive, emotional, and social). The results of two online and one laboratory-based experiment show that chatbot-expressed humor can significantly enhance customer service satisfaction. The impact of humor on service satisfaction was mediated by competence, entertainment, and social presence. Moreover, identity disclosure exerts a negative moderating influence on the association between chatbot-expressed humor and both service satisfaction and competence. Through this study, we hope to provide ideas for online service providers to adopt AI strategies and for product designers to improve the design of chatbots. C1 [Xie, Yuguang; Liang, Changyong; Zhou, Peiyu; Jiang, Li] Hefei Univ Technol, Sch Management, Hefei, Peoples R China. [Liang, Changyong] Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei, Peoples R China. C3 Hefei University of Technology RP Liang, CY (autor correspondiente), Hefei Univ Technol, Sch Management, Hefei, Peoples R China. EM cyliang@hfut.edu.cn OI Zhou, Peiyu/0000-0003-2823-5242 FU National Natural Science Foundation of China [72131006] FX Funding This work was supported by the National Natural Science Foundation of China (grant number: 72131006) . CR Andel SA, 2020, COMPUT HUM BEHAV, V113, DOI 10.1016/j.chb.2020.106505 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Barry JM, 2018, J MARKET THEORY PRAC, V26, P158, DOI 10.1080/10696679.2017.1389247 Belanche D, 2021, PSYCHOL MARKET, V38, P2357, DOI 10.1002/mar.21532 CHATTOPADHYAY A, 1990, J MARKETING RES, V27, P466, DOI 10.2307/3172631 Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chen QS, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01578 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chi OH, 2020, J HOSP MARKET MANAG, V29, P757, DOI 10.1080/19368623.2020.1721394 Chuah SHW, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102551 De Cicco R, 2020, INT J RETAIL DISTRIB, V48, P1213, DOI 10.1108/IJRDM-12-2019-0406 Eisend M, 2022, PSYCHOL MARKET, V39, P962, DOI 10.1002/mar.21634 Eisend M, 2009, J ACAD MARKET SCI, V37, P191, DOI 10.1007/s11747-008-0096-y Flaherty Karen., 2004, J CURR ISS RES AD, V26, P25 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Green HN, 2022, ACMIEEE INT CONF HUM, P313, DOI 10.1109/HRI53351.2022.9889353 Gulas CS, 2010, J ADVERTISING, V39, P109, DOI 10.2753/JOA0091-3367390408 Gulfraz MB, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103000 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Han ELZB, 2023, INFORM SYST RES, V34, P1296, DOI 10.1287/isre.2022.1179 Hatfield E., 1993, CURR DIR PSYCHOL SCI, V2, P96, DOI [10.1111/1467-8721.ep10770953, DOI 10.1111/1467-8721.EP10770953] Herrando C, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.712606 Hsu CL, 2023, J RETAIL CONSUM SERV, V71, DOI 10.1016/j.jretconser.2022.103211 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang YS, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103044 Jin EJ, 2022, CYBERPSYCH BEH SOC N, V25, P597, DOI 10.1089/cyber.2021.0318 Johanson D.L., 2020, Technol. Mind Behav., V1, P1, DOI [https://doi.org/10.1037/tmb0000021, DOI 10.1037/TMB0000021#SUPPLEMENTAL-MATERIALS] Kim J, 2022, COMPUT HUM BEHAV, V136, DOI 10.1016/j.chb.2022.107383 Kim SY, 2019, MARKET LETT, V30, P1, DOI 10.1007/s11002-019-09485-9 Kim T, 2020, TELEMAT INFORM, V51, DOI 10.1016/j.tele.2020.101406 Kobel S, 2021, J BUS RES, V132, P260, DOI 10.1016/j.jbusres.2021.04.034 Konya-Baumbach E, 2023, COMPUT HUM BEHAV, V139, DOI 10.1016/j.chb.2022.107513 Li MC, 2023, J RETAIL CONSUM SERV, V71, DOI 10.1016/j.jretconser.2022.103209 Li XG, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2021.106680 Lima XJ, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2020.102422 Liu BJ, 2018, CYBERPSYCH BEH SOC N, V21, P625, DOI 10.1089/cyber.2018.0110 Liu DW, 2023, TECHNOL SOC, V73, DOI 10.1016/j.techsoc.2023.102244 Liu S, 2022, DECIS SUPPORT SYST, V157, DOI 10.1016/j.dss.2022.113754 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Lussier B, 2017, IND MARKET MANAG, V65, P168, DOI 10.1016/j.indmarman.2017.03.012 Ma YY, 2021, TELEMAT INFORM, V59, DOI 10.1016/j.tele.2021.101562 Mathies C, 2016, J SERV THEOR PRACT, V26, P137, DOI 10.1108/JSTP-09-2014-0187 McLean G, 2021, J BUS RES, V124, P312, DOI 10.1016/j.jbusres.2020.11.045 Merrill K, 2022, COMMUN RES REP, V39, P93, DOI 10.1080/08824096.2022.2045929 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Mozafari N, 2022, J SERV MANAGE, V33, P221, DOI 10.1108/JOSM-10-2020-0380 Nguyen TH, 2022, INFORM SYST FRONT, V24, P797, DOI 10.1007/s10796-021-10212-x Niculescu A, 2013, INT J SOC ROBOT, V5, P171, DOI 10.1007/s12369-012-0171-x Nikou S, 2019, TELEMAT INFORM, V45, DOI 10.1016/j.tele.2019.101283 Nuruzzaman M, 2020, KNOWL-BASED SYST, V196, DOI 10.1016/j.knosys.2020.105810 Osei-Frimpong K, 2018, TECHNOL FORECAST SOC, V128, P10, DOI 10.1016/j.techfore.2017.10.010 Pelau C, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106855 Qiu LY, 2023, MIS QUART, V47, P511, DOI 10.25300/MISQ/2022/16300 Rathee S, 2022, J BUS RES, V139, P44, DOI 10.1016/j.jbusres.2021.09.041 Schanke S, 2021, INFORM SYST RES, V32, P736, DOI 10.1287/isre.2021.1015 SCHWARZ N, 1983, J PERS SOC PSYCHOL, V45, P513, DOI 10.1037/0022-3514.45.3.513 Shao C, 2021, HUM BEHAV EMERG TECH, V3, P978, DOI 10.1002/hbe2.293 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shin H, 2023, INT J CONSUM STUD, V47, P545, DOI 10.1111/ijcs.12849 Shin H, 2020, EUR J MARKETING, V54, P2013, DOI 10.1108/EJM-08-2018-0522 Skjuve M., 2019, Human Technology, V15, P30, DOI [DOI 10.17011/HT/URN.201902201607, 10.17011/ht/urn.201902201607] Söderlund M, 2018, J RETAIL CONSUM SERV, V42, P55, DOI 10.1016/j.jretconser.2018.01.013 Song H, 2019, INT J HUM-COMPUT INT, V35, P448, DOI 10.1080/10447318.2018.1455126 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Speck P.S., 1991, CURRENT ISSUES RES A, V13, P1 Sung E, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102382 Tae M, 2020, ACMIEEE INT CONF HUM, P462, DOI 10.1145/3371382.3378267 Tay BTC, 2016, COMPUT HUM BEHAV, V60, P19, DOI 10.1016/j.chb.2016.01.042 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 van Dolen WM, 2008, J ECON PSYCHOL, V29, P160, DOI 10.1016/j.joep.2007.05.001 Warren C., 2016, Journal of Marketing Behavior, V2, P39, DOI [https://doi.org/10.1561/107.00000027, DOI 10.1561/107.00000027] Wojciszke B, 2009, EUR J SOC PSYCHOL, V39, P973, DOI 10.1002/ejsp.595 Wu CL, 2023, CURR PSYCHOL, V42, P16392, DOI 10.1007/s12144-021-01641-7 Wu RJ, 2022, J BUS RES, V141, P299, DOI 10.1016/j.jbusres.2021.12.037 Xu XA, 2022, ANN TOURISM RES, V95, DOI 10.1016/j.annals.2022.103439 Yang HY, 2022, ANN TOURISM RES, V95, DOI 10.1016/j.annals.2022.103425 Yogeeswaran K, 2016, J HUM-ROBOT INTERACT, V5, P29, DOI 10.5898/JHRI.5.2.Yogeeswaran Yuan LY, 2019, J MANAGE INFORM SYST, V36, P450, DOI 10.1080/07421222.2019.1598691 Zhang H, 2022, 2022 31ST IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (IEEE RO-MAN 2022), P572, DOI 10.1109/RO-MAN53752.2022.9900515 Zhang MY, 2021, INT J CONTEMP HOSP M, V33, P3883, DOI 10.1108/IJCHM-11-2020-1256 Zhou H, 2018, AAAI CONF ARTIF INTE, P730 Zhu DH, 2020, INT J CONTEMP HOSP M, V32, P1367, DOI 10.1108/IJCHM-10-2019-0904 NR 84 TC 1 Z9 1 U1 61 U2 61 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JAN PY 2024 VL 76 AR 103599 DI 10.1016/j.jretconser.2023.103599 EA OCT 2023 PG 17 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA Y3MY5 UT WOS:001104355300001 DA 2024-03-27 ER PT J AU Kozinets, RV AF Kozinets, Robert V. TI Algorithmic branding through platform assemblages: core conceptions and research directions for a new era of marketing and service management SO JOURNAL OF SERVICE MANAGEMENT LA English DT Article DE Algorithms; Artificial intelligence; Branding; Brands; Consumer experience; Digital marketing; Marketing; Platforms; Platform management; Service platforms; Social media; Social media marketing ID CONSUMER; AFFORDANCES; EXPERIENCE; COMMUNITY; AGE AB Purpose Contemporary branding transpires in a complex technological and media environment whose key contextual characteristics remain largely unexplained. The article provides a conceptual understanding of the elements of contemporary branding as they take place using networked platforms and explains them as an increasingly important practice that affects customer and manager experience. Design/methodology/approach This article draws on a variety of recent sources to synthesize a model that offers a more contextualized, comprehensive and up-to-date understanding of how branding has become and is being altered because of the use of branded service platforms and algorithms. Findings Core terminology about technoculture, technocultural fields, platform assemblages, affordances, algorithms and networks of desire set the foundation for a deeper conceptual understanding of the novel elements of algorithmic branding. Algorithmic branding transcended the mere attachment of specific "mythic" qualities to a product or experience and has morphed into the multidimensional process of using media to manage communication. The goal of marketers is now to use engagement practices as well as algorithmic activation, amplification, customization and connectivity to drive consumers deeper into the brand spiral, entangling them in networks of brand-related desire. Practical implications The model has a range of important managerial implications for brand management and managerial relations. It promotes a understanding of platform brands as service brands. It underscores and models the interconnected role that consumers, devices and algorithms, as well as technology companies and their own service brands play in corporate branding efforts. It suggests that consumers might unduly trust these service platforms. It points to the growing importance of platforms' service brands and the consequent surrender of branding power to technology companies. And it also provides a range of important ethical and pragmatic questions that curious marketers, researchers and policy-makers may examine. Originality/value This model provides a fresh look at the important topic of branding today, updating prior conceptions with a comprehensive and contextually grounded model of service platforms and algorithmic branding. C1 [Kozinets, Robert V.] Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90007 USA. C3 University of Southern California RP Kozinets, RV (autor correspondiente), Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90007 USA. EM rkozinets@usc.edu OI Kozinets, Robert/0000-0003-1724-8259 CR Arvidsson Adam., 2006, BRANDS MEANING VALUE BERGEN M, 1992, J MARKETING, V56, P1, DOI 10.2307/1252293 Berry LL, 2000, J ACAD MARKET SCI, V28, P128, DOI 10.1177/0092070300281012 Berthon P, 2003, MIT SLOAN MANAGE REV, V44, P49 Brakus JJ, 2009, J MARKETING, V73, P52, DOI 10.1509/jmkg.73.3.52 Breidbach CF, 2020, J SERV MANAGE, V31, P163, DOI 10.1108/JOSM-03-2019-0073 Bruns A., 2008, BLOGS WIKIPEDIA 2 LI Bucher T, 2017, INFORM COMMUN SOC, V20, P30, DOI 10.1080/1369118X.2016.1154086 Bygstad B, 2016, J INF TECHNOL-UK, V31, P83, DOI 10.1057/jit.2015.13 Carah N, 2020, SOCIOL COMPASS, V14, DOI 10.1111/soc4.12752 Carah N, 2018, MEDIA CULT SOC, V40, P178, DOI 10.1177/0163443718754648 Carah N, 2017, NEW MEDIA SOC, V19, P384, DOI 10.1177/1461444815605463 De Landa Manuel, 2006, A New Philosophy of Society: Assemblage Theory and Social Complexity Deleuze Gilles., 1983, Anti-Oedipus: Capitalism and Schizophrenia Field JM, 2018, J SERV MANAGE, V29, P55, DOI 10.1108/JOSM-08-2017-0191 Fischer E, 2004, J BUS VENTURING, V19, P681, DOI 10.1016/j.jbusvent.2003.09.005 Foehr J, 2020, J ASSOC CONSUM RES, V5, P181, DOI 10.1086/707731 Fournier S, 2011, BUS HORIZONS, V54, P193, DOI 10.1016/j.bushor.2011.01.001 FRIESTAD M, 1994, J CONSUM RES, V21, P1, DOI 10.1086/209380 Gäthke J, 2020, J SERV MANAGE, V31, P227, DOI 10.1108/JOSM-05-2019-0151 Giles P, 2019, J CULT ECON-UK, V12, P612, DOI 10.1080/17530350.2019.1639068 Hallinan B, 2016, NEW MEDIA SOC, V18, P117, DOI 10.1177/1461444814538646 Hampton KN, 2016, AM BEHAV SCI, V60, P101, DOI 10.1177/0002764215601714 Hoffman DL, 2018, J CONSUM RES, V44, P1178, DOI 10.1093/jcr/ucx105 Justice-Leibrock J., 2013, USER EXPERIENCE LAB Keiningham TL, 2018, J SERV MANAGE, V29, P2, DOI 10.1108/JOSM-03-2017-0077 Kitchin R, 2017, INFORM COMMUN SOC, V20, P14, DOI 10.1080/1369118X.2016.1154087 Kotliar DM, 2020, NEW MEDIA SOC, V22, P1152, DOI 10.1177/1461444820912535 Kozinets R.V., 2020, Netnography: The essential guide to qualitative socialmedia research, V3e. ed Kozinets R, 2017, J CONSUM RES, V43, P659, DOI 10.1093/jcr/ucw061 Kozinets RV, 2021, J CONSUM RES, V48, P428, DOI 10.1093/jcr/ucab014 Kozinets RV, 2021, J MARKETING, V85, P156, DOI 10.1177/0022242920972933 Kozinets RV, 2019, J CONSUM RES, V46, P620, DOI 10.1093/jcr/ucz034 Kozinets RV, 2016, J CONSUM RES, V42, P834, DOI 10.1093/jcr/ucv090 Kozinets RV, 2010, J MARKETING, V74, P71, DOI 10.1509/jmkg.74.2.71 Kozinets RV, 2008, J MACROMARKETING, V28, P339, DOI 10.1177/0276146708325382 LEE CS, 2021, ONLINE INFORM REV DO Logg JM, 2019, ORGAN BEHAV HUM DEC, V151, P90, DOI 10.1016/j.obhdp.2018.12.005 Lury C., 2009, J CULTURAL EXONOMICS, V2, P67, DOI [DOI 10.1080/17530350903064022, 10.1080/17530350903064022] Lury Celia., 2010, Blowing up the brand: Critical perspectives on promotional culture, P29 Martin KD, 2017, J ACAD MARKET SCI, V45, P135, DOI 10.1007/s11747-016-0495-4 Marwick AE, 2015, PUBLIC CULTURE, V27, P137, DOI 10.1215/08992363-2798379 ONeil C., 2016, Weapons of math destruction: How big data increases inequality and threatens democracy Perren R, 2018, J MARKETING, V82, P20, DOI 10.1509/jm.14.0250 Scaraboto D, 2013, J CONSUM RES, V39, P1234, DOI 10.1086/668298 Schafer J. Ben, 1999, Proceedings of the 1st ACM conference on Electronic commerce, P158, DOI [DOI 10.1145/336992.337035, 10.1145/336992.337035] Schau HJ, 2009, J MARKETING, V73, P30, DOI 10.1509/jmkg.73.5.30 Schull N. D., 2012, ADDICTION DESIGN MAC, DOI DOI 10.2307/J.CTT12F4D0 Seaver N, 2017, BIG DATA SOC, V4, DOI 10.1177/2053951717738104 Sidaoui K, 2020, J SERV MANAGE, V31, P745, DOI 10.1108/JOSM-11-2019-0341 Smith AN, 2021, J ACAD MARKET SCI, V49, P258, DOI 10.1007/s11747-020-00736-0 Srinivasan R, 2021, J MARKETING, V85, P74, DOI 10.1177/0022242921997082 Striphas T, 2015, EUR J CULT STUD, V18, P395, DOI 10.1177/1367549415577392 Strong DM, 2014, J ASSOC INF SYST, V15, P53 van Dijck J., 2013, The Culture of Connectivity: A Critical History of Social Media Wirtz J, 2019, J SERV MANAGE, V30, P452, DOI 10.1108/JOSM-11-2018-0369 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Zeithaml V.A., 2014, Profiting From Services and Solutions: What Product-Centric Firms Need to Know, V1st NR 58 TC 13 Z9 13 U1 11 U2 64 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1757-5818 EI 1757-5826 J9 J SERV MANAGE JI J. Serv. Manage. PD APR 18 PY 2022 VL 33 IS 3 SI SI BP 437 EP 452 DI 10.1108/JOSM-07-2021-0263 EA NOV 2021 PG 16 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 0M9SZ UT WOS:000722753500001 DA 2024-03-27 ER PT J AU Timoshenko, A Hauser, JR AF Timoshenko, Artem Hauser, John R. TI Identifying Customer Needs from User-Generated Content SO MARKETING SCIENCE LA English DT Article DE customer needs; online reviews; machine learning; voice of the customer; user-generated content; market research; text mining; deep learning; natural language processing ID PRODUCT DEVELOPMENT; MANAGEMENT; CONSUMER; DESIGN; MODEL AB Firms traditionally rely on interviews and focus groups to identify customer needs for marketing strategy and product development. User-generated content (UGC) is a promising alternative source for identifying customer needs. However, established methods are neither efficient nor effective for large UGC corpora because much content is noninformative or repetitive. We propose a machine-learning approach to facilitate qualitative analysis by selecting content for efficient review. We use a convolutional neural network to filter out noninformative content and cluster dense sentence embeddings to avoid sampling repetitive content. We further address two key questions: Are UGC-based customer needs comparable to interview-based customer needs? Do the machine-learning methods improve customer-need identification? These comparisons are enabled by a custom data set of customer needs for oral care products identified by professional analysts using industry-standard experiential interviews. The analysts also coded 12,000 UGC sentences to identify which previously identified customer needs and/or new customer needs were articulated in each sentence. We show that (1) UGC is at least as valuable as a source of customer needs for product development, likely more valuable, compared with conventional methods, and (2) machine-learning methods improve efficiency of identifying customer needs from UGC (unique customer needs per unit of professional services cost). C1 [Timoshenko, Artem; Hauser, John R.] MIT, MIT Sloan Sch Management, 77 Massachusetts Ave, Cambridge, MA 02139 USA. C3 Massachusetts Institute of Technology (MIT) RP Timoshenko, A (autor correspondiente), MIT, MIT Sloan Sch Management, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM artem.timoshenko@sloan.mit.edu; hauser@mit.edu RI Timoshenko, Artem/IXN-4676-2023; Hauser, John R/O-3046-2019 OI Timoshenko, Artem/0000-0002-5431-2136; /0000-0001-8510-8640 CR Akao Y., 2004, QUALITY FUNCTION DEP Alam I., 2002, J SERV MARK, V16, P515, DOI DOI 10.1108/08876040210443391 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Baroni M, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P238 BROWN SL, 1995, ACAD MANAGE REV, V20, P343, DOI 10.2307/258850 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Chan LK, 2002, EUR J OPER RES, V143, P463, DOI 10.1016/S0377-2217(02)00178-9 Chiu J. P., 2015, ARXIV151108308, DOI [10.1162/tacl_a_00104, DOI 10.1162/TACL_A_00104] Collobert R, 2011, J MACH LEARN RES, V12, P2493 Colson E, 2016, COMMUNICATION Corrigan KD, 2013, MARKETING NEWS, P39 Dolnicar S., 2003, J MARKET RES, V11, P5, DOI DOI 10.1016/S1441-3582(03)70123-2 Fader PS, 2012, MARKET SCI, V31, P369, DOI 10.1287/mksc.1120.0715 GREEN PE, 1978, J CONSUM RES, V5, P103, DOI 10.1086/208721 GRIFFIN A, 1993, MARKET SCI, V12, P1, DOI 10.1287/mksc.12.1.1 Griffin A, 2009, J PROD INNOVAT MANAG, V26, P222, DOI 10.1111/j.1540-5885.2009.00347.x Harris ZS, 1954, WORD, V10, P146, DOI 10.1080/00437956.1954.11659520 HAUSER JR, 1988, HARVARD BUS REV, V66, P63 Herrmann A, 2000, INT J PROD ECON, V66, P77, DOI 10.1016/S0925-5273(99)00114-0 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Iyyer M, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1681 Jiao JX, 2006, CONCURRENT ENG-RES A, V14, P173, DOI 10.1177/1063293X06068357 Jin J, 2015, ENG APPL ARTIF INTEL, V41, P115, DOI 10.1016/j.engappai.2015.02.006 Kano N, 1984, J JAPANESE SOC QUALI, V41, P39, DOI [10.20684/quality.14.2_147, DOI 10.20684/QUALITY.14.2_147] Kaulio MA, 1998, TOTAL QUAL MANAGE, V9, P141, DOI 10.1080/0954412989333 Kim DS, 2017, MARKET SCI, V36, P54, DOI 10.1287/mksc.2016.1003 Kim Y, 2014, EMNLP, DOI 10.3115/v1/D14-1181 Kiss T, 2006, COMPUT LINGUIST, V32, P485, DOI 10.1162/coli.2006.32.4.485 Krishnan V, 2001, MANAGE SCI, V47, P1, DOI 10.1287/mnsc.47.1.1.10668 Kuehl N, 2016, LECT NOTES BUS INF P, V247, P187, DOI 10.1007/978-3-319-32689-4_14 Lample G, 2016, P NAACL HLT, V2016, P260, DOI 10.18653/v1/n16-1030 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Lei Tao., 2015, EMNLP 2015, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, P1565 Matzler K, 1998, TECHNOVATION, V18, P25, DOI 10.1016/S0166-4972(97)00072-2 McAuley J, 2015, KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2783258.2783381 Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Mikolov T, 2013, Advances in neural information processing systems, DOI DOI 10.48550/ARXIV.1310.4546 Mikulic J, 2011, MANAG SERV QUAL, V21, P46, DOI 10.1108/09604521111100243 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Nguyen T. H., 2015, P 1 WORKSH VECT SPAC, P39, DOI DOI 10.3115/V1/W15-1506 Orme BrianK., 2006, Getting Started with Conjoint Analysis PARK CW, 1986, J MARKETING, V50, P135, DOI 10.2307/1251291 Peng W, 2012, ACM T INTEL SYST TEC, V3, DOI 10.1145/2089094.2089114 Qian YN, 2001, P 20 ACM INT C INF K, P1241 Le Q, 2014, PR MACH LEARN RES, V32, P1188 Santos C.N., 2014, P COLING 2014 25 INT, P69 Schaffhausen CR, 2016, DESIGN STUD, V44, P1, DOI 10.1016/j.destud.2016.01.002 Schaffhausen CR, 2015, J MECH DESIGN, V137, DOI 10.1115/1.4030161 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Socher R., 2013, EMNLP, P935 Stone RB, 2008, J ENG DESIGN, V19, P489, DOI 10.1080/09544820802286711 SULLIVAN LP, 1986, QUAL PROG, V19, P39 Tai KS, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1556 Tieleman T, 2012, ONLINE LECT NEURAL N Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Ulrich K.T., 2008, Product Design and Development, V4th Urban GlenL., 1993, Design and Marketing of New Products, V2nd Wilson TS, 2005, PHIL EDUC, P347, DOI 10.3115/1220575.1220619 Wu HH, 2010, QUAL QUANT, V44, P1139, DOI 10.1007/s11135-009-9267-2 Ying YP, 2006, J MARKETING RES, V43, P355, DOI 10.1509/jmkr.43.3.355 Zahay D, 2004, IND MARKET MANAG, V33, P657, DOI 10.1016/j.indmarman.2003.10.002 NR 61 TC 201 Z9 237 U1 106 U2 741 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD JAN-FEB PY 2019 VL 38 IS 1 BP 1 EP 20 DI 10.1287/mksc.2018.1123 PG 20 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HM0HF UT WOS:000459127200001 OA Green Published, Green Submitted HC Y HP N DA 2024-03-27 ER PT J AU Kohli, G AF Kohli, Guneesha TI PITFALLS OF DIGITIZATION WITH RESPECT TO TRADITIONAL BUSINESSES AND EMPLOYMENT SO JIMS8M-THE JOURNAL OF INDIAN MANAGEMENT & STRATEGY LA English DT Article DE Digitization; Retail Apocalypse; E-commerce; Deep Discounting; Artificial Intelligence; Unemployment AB From Artificial Intelligence (AI) to E-commerce, Digitization has created possibilities in the business world for companies, entrepreneurs and self-employed workers, for new opportunities and innovation. It has enabled companies to bring perfect products and services reaching larger and remote markets making customers happy by enhancing their daily life. It has enabled remote working which has made free-lancing popular and preferable and made both internal and external communication instant, making action and reaction to opportunities and problems much faster. While there is no end to the benefits of digitization, it also has some pitfalls which need to be worked upon to benefit from it sustainably. E-commerce and deep discounting done by platforms like Amazon and Flipkart have left competing small traditional businesses and retail giants bankrupt and out of business. According to the Geneva-based World Economic Forum (WEF), by 2025 more than half of all current workplace tasks will be taken over by robots as compared to 29% currently. While experts say, that AI will be creating much more jobs than it takes, the key to this is education for humans to overtake technology. This overlooks the rural workforce such as women working in farmlands losing their jobs due to modern machinery, who have limited or no access to high quality education and will take a very long time to catch up with technology to get employed. In this paper, we will be looking at the extent to which digitization has a fected traditional businesses and employment opportunities and what is being done to cope with it. C1 [Kohli, Guneesha] Malika Int Gurgaon, Footwear & Accessories, Gurgaon, Haryana, India. RP Kohli, G (autor correspondiente), Malika Int Gurgaon, Footwear & Accessories, Gurgaon, Haryana, India. CR Bloomberg J., 2018, Digitization, digitalization, and digital transformation: confuse them at your peril Bughin Jacques., 2018, Why digital strategies fail Chakraborty S., 2019, DEEP DISCOUNTING NOT Dash D., 2019, DRAFT RULES ISSUED B Dominguez A., 2018, DIGITIZATION BUSINES Frankenfield J., 2020, ARTIFICIAL INTELLIGE Kumar S., 2019, Advantages and disadvantages of artificial intelligence [WWW Document] Martin S., 2019, WARNING MACHINES WIL Picchi A., 2019, STORE CLOSINGS WHO A Reisinger D., 2019, I EXPERT SAYS AUTOMA Tandon S., 2019, 12MN INDIAN WOMEN MA Urie D., 2020, PIER 1 IMPORTS MACYS NR 12 TC 0 Z9 0 U1 3 U2 26 PU JAGANNATH INT MANAGEMENT SCH PI NEW DELHI PA OCF POCKET 9, SECTOR-B, VASANT KUNJ, NEW DELHI, 110 070, INDIA SN 0973-9335 EI 0973-9343 J9 JIMS8M-J INDIAN MANA JI JIMS8M-J. Indian Manag. Strategy PD JAN-MAR PY 2020 VL 25 IS 1 BP 28 EP 33 DI 10.5958/0973-9343.2020.00004.6 PG 6 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA OH1QR UT WOS:000582346600004 DA 2024-03-27 ER PT J AU Le, TH Arcodia, C Novais, MA Kralj, A Phan, TC AF Le, Truc H. Arcodia, Charles Novais, Margarida Abreu Kralj, Anna Thanh Cong Phan TI Exploring the multi-dimensionality of authenticity in dining experiences using online reviews SO TOURISM MANAGEMENT LA English DT Article DE Authenticity; Restaurant; User-generated content (UGC); Text mining; Integrated learning; Human-machine learning; Machine learning; Classification ID MODEL AB The quest for authenticity in dining experiences has become increasingly important. This paper explores authenticity dimensions that are of value to customers in dining experiences, and by that gains a multidimensional understanding of authenticity in this context. Following an integrated learning approach using text mining and classification techniques, this paper explores and confirms different dimensions of authenticity by identifying and classifying authenticity judgements in online restaurant reviews. The results suggest that authenticity is a multi-dimensional concept encompassing Authenticity of the Other, Authenticity of the Producer, and Authenticity of the Self as first-level dimensions. Additionally, besides historical and categorical authenticity which have been previously explored in the literature, a new type of authenticity - Deviated Authenticity - emerged as a second-level dimension falling under Authenticity of the Other. This paper enhances existing conceptualisations of authenticity and establishes avenues for exploring the multi-dimensionality of other consumer research concepts using user-generated content. C1 [Le, Truc H.; Arcodia, Charles; Novais, Margarida Abreu] Griffith Univ, Dept Tourism Sport & Hotel Management, 170 Kessels Rd, Nathan, Qld 4111, Australia. [Kralj, Anna] Griffith Univ, Dept Tourism Sport & Hotel Management, Parklands Dr, Southport, Qld 4215, Australia. [Thanh Cong Phan] Griffith Univ, Sch Informat & Commun Technol, Parklands Dr, Southport, Qld 4215, Australia. C3 Griffith University; Griffith University; Griffith University - Gold Coast Campus; Griffith University; Griffith University - Gold Coast Campus RP Le, TH (autor correspondiente), Griffith Univ, 170 Kessels Rd, Nathan, Qld 4111, Australia. EM truc.le@griffith.edu.au; c.arcodia@griffith.edu.au; m.abreunovais@griffith.edu.au; a.kralj@griffith.edu.au; thanhcong.phan@griffithuni.edu.au OI Phan, Cong/0000-0002-4715-1610; Abreu Novais, Margarida/0000-0002-5046-4159; Le, Truc H/0000-0001-6201-1504 FU Griffith Institute for Tourism (GIFT) FX This work was partially supported by Griffith Institute for Tourism (GIFT) in 2018 under the Higher Degree by Research Data Collection Support Scheme. We also sincerely thank Dr Quoc Viet Hung (Henry) Nguyen -Senior Lecturer and ARC DECRA Fellow at School of Information and Communication Technology at Griffith University for his guidance in the analytical approach. CR Alaei AR, 2019, J TRAVEL RES, V58, P175, DOI 10.1177/0047287517747753 Ansari F, 2018, PROCEDIA MANUF, V23, P117, DOI 10.1016/j.promfg.2018.04.003 Belhassen Y, 2006, ANN TOURISM RES, V33, P853, DOI 10.1016/j.annals.2006.03.009 Beverland MB, 2010, J CONSUM RES, V36, P838, DOI 10.1086/615047 Björk P, 2016, CURR ISSUES TOUR, V19, P1260, DOI 10.1080/13683500.2013.868412 Bojanowski P., 2017, Trans. Assoc. Comput. Ling., V5, P135, DOI DOI 10.1162/TACL_A_00051 Carroll G.R., 2015, EMERGING TRENDS SOCI, DOI DOI 10.1002/9781118900772.ETRDS0020 Carroll GR, 2009, RES ORGAN BEHAV, V29, P255, DOI 10.1016/j.riob.2009.06.003 Chhabra D., 2013, Leisure/Loisir, V37, P361 Chhabra D, 2013, J HERIT TOUR, V8, P145, DOI 10.1080/1743873X.2013.767816 Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110 COHEN E, 1988, ANN TOURISM RES, V15, P371, DOI 10.1016/0160-7383(88)90028-X COHEN E, 1979, SOCIOLOGY, V13, P179, DOI 10.1177/003803857901300203 Demetry D, 2019, ORGAN SCI, V30, P937, DOI 10.1287/orsc.2018.1260 Devlin Jacob, 2019, P N AM CHAPT ASS COM, P4171 Dutton Denis, 2003, OXFORD HDB AESTHETIC, P258 Gilmore JamesH., 2007, Authenticity: What Consumers Really Want Godinho Bilro R., 2019, 48 ANN EUR MARK ACAD Grayson K, 2004, J CONSUM RES, V31, P296, DOI 10.1086/422109 Gurney K., 2018, INTRO NEURAL NETWORK Hall CM, 2007, TOURISM MANAGE, V28, P1139, DOI 10.1016/j.tourman.2006.09.008 Hashimi H, 2015, COMPUT HUM BEHAV, V51, P729, DOI 10.1016/j.chb.2014.10.062 Hsiao YH, 2017, TELEMAT INFORM, V34, P284, DOI 10.1016/j.tele.2016.08.002 Jones S, 2010, J MAT CULT, V15, P181, DOI 10.1177/1359183510364074 Keller G., 2014, BUSINESS STAT AUSTR, V6th Kim JH, 2020, INT J HOSP MANAG, V85, DOI 10.1016/j.ijhm.2019.102354 Kirilenko AP, 2018, J TRAVEL RES, V57, P1012, DOI 10.1177/0047287517729757 Kolar T, 2010, TOURISM MANAGE, V31, P652, DOI 10.1016/j.tourman.2009.07.010 Kovács B, 2019, REV GEN PSYCHOL, V23, P32, DOI 10.1177/1089268019829469 Kovács B, 2017, SOCIOL SCI, V4, P80, DOI 10.15195/v4.a4 Kovács B, 2014, ORGAN SCI, V25, P458, DOI 10.1287/orsc.2013.0843 Le TH, 2021, CURR ISSUES TOUR, V24, P1640, DOI 10.1080/13683500.2020.1829568 Le TH, 2021, TOUR RECREAT RES, V46, P360, DOI 10.1080/02508281.2020.1805932 Le TH, 2019, TOURISM MANAGE, V74, P258, DOI 10.1016/j.tourman.2019.02.012 Le Truc H., 2020, CAUTHE 2020 20 20 VI Lehman D.W., 2018, SOCIUS SOCIOLOGICAL, V4 Lopez R., 2019, INT J HOSP MANAG Ma YF, 2018, INT J HOSP MANAG, V71, P120, DOI 10.1016/j.ijhm.2017.12.008 MACCANNELL D, 1973, AM J SOCIOL, V79, P589, DOI 10.1086/225585 Mandros P, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P355, DOI 10.1145/3097983.3098062 Margarida Abreu Novais, 2018, CAUTHE 2018 Mazutis DD, 2015, J BUS ETHICS, V131, P137, DOI 10.1007/s10551-014-2253-1 Mkono M., 2013, THESIS S CROSS U Mkono M, 2013, INT J CULT TOUR HOSP, V7, P353, DOI 10.1108/IJCTHR-03-2013-0010 Mkono M, 2012, INT J HOSP MANAG, V31, P387, DOI 10.1016/j.ijhm.2011.06.013 Munoz C.L., 2006, J CONSUM BEHAV, V5, P222, DOI DOI 10.1002/CB.174 Newman GE, 2019, REV GEN PSYCHOL, V23, P8, DOI 10.1037/gpr0000158 Newman GE, 2016, PHILOS COMPASS, V11, P609, DOI 10.1111/phc3.12343 O'Connor K, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0179187 Pang L, 2018, IEEE 3 ADV INF TECH Pine B.Joseph., 2011, The Experience Economy Reisinger Y, 2006, ANN TOURISM RES, V33, P65, DOI 10.1016/j.annals.2005.04.003 Rickly-Boyd JM, 2012, ANN TOURISM RES, V39, P269, DOI 10.1016/j.annals.2011.05.003 Rocha RM., 2011, DISABIL REHABIL, V11 Shalizi Cosma Rohilla, 2006, P33 Sidali KL, 2014, BRIT FOOD J, V116, P1692, DOI 10.1108/BFJ-02-2014-0056 Smart P, 2019, SELENIUM SCRAPING NO Stepchenkova S, 2021, J TRAVEL RES, V60, P401, DOI 10.1177/0047287519899989 Svozil D, 1997, CHEMOMETR INTELL LAB, V39, P43, DOI 10.1016/S0169-7439(97)00061-0 Toral SL, 2018, J TRAVEL RES, V57, P908, DOI 10.1177/0047287517724918 Vásquez C, 2015, FOOD FOODWAYS, V23, P231, DOI 10.1080/07409710.2015.1102483 Wang N, 1999, ANN TOURISM RES, V26, P349, DOI 10.1016/S0160-7383(98)00103-0 Xiang Z, 2018, INF TECHNOL TOUR, V18, P43, DOI 10.1007/s40558-017-0098-z Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001 Xu X, 2016, INT J HOSP MANAG, V55, P57, DOI 10.1016/j.ijhm.2016.03.003 Zeng G., 2019, Restaurant chains in China-The dilemma of standardisation versus authenticity Zhang L, 2018, INT J HOSP MANAG, V68, P115, DOI 10.1016/j.ijhm.2017.10.008 NR 67 TC 19 Z9 21 U1 18 U2 118 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-5177 EI 1879-3193 J9 TOURISM MANAGE JI Tourism Manage. PD AUG PY 2021 VL 85 AR 104292 DI 10.1016/j.tourman.2021.104292 EA FEB 2021 PG 15 WC Environmental Studies; Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Social Sciences - Other Topics; Business & Economics GA RQ5QZ UT WOS:000642474700003 DA 2024-03-27 ER PT J AU Gerlich, M AF Gerlich, Michael TI The Power of Virtual Influencers: Impact on Consumer Behaviour and Attitudes in the Age of AI SO ADMINISTRATIVE SCIENCES LA English DT Article DE virtual influencers; consumer behaviour; artificial intelligence; consumer perception; social media marketing; influencer marketing ID CELEBRITY ENDORSER; COMMUNICATION AB In recent years, a new type of influencer has emerged in the field of social media marketing: virtual influencers. Though it is spreading fast, the trend is still new and, therefore, limited research has been conducted on the topic. This study aims to investigate the impact of virtual influencers on customers and whether there is a direct impact on human influencers due to the rise of virtual influencers in the industry. The study employed a questionnaire-based survey method to collect and analyse responses from a sample of 357 participants. The questions focus on trust, credibility, expertise, and contribution to purchase intention by the virtual influencers. The results indicate that customers are increasingly attracted to virtual influencers and that virtual influences are perceived as more trustworthy, credible, and relevant to customers' preferences, leading to an increase in purchase intention. The study also discusses the implications of these findings for managers designing marketing campaigns. C1 [Gerlich, Michael] SBS Swiss Business Sch, Dept Management, Flughafenstr 3, CH-8302 Zurich, Switzerland. C3 SBS Swiss Business School RP Gerlich, M (autor correspondiente), SBS Swiss Business Sch, Dept Management, Flughafenstr 3, CH-8302 Zurich, Switzerland. EM michael.gerlich@cantab.net RI Gerlich, Michael/GQA-3552-2022 OI Gerlich, Michael/0000-0003-4033-4403 CR Alboqami H, 2023, J RETAIL CONSUM SERV, V72, DOI 10.1016/j.jretconser.2022.103242 Amelina D., 2016, PACIS 2016 Proceedings, P232 Amos C, 2008, INT J ADVERT, V27, P209, DOI 10.1080/02650487.2008.11073052 Anisa Matthews, 2021, VIRTUAL LY BLACK INF Arsenyan J, 2021, INT J HUM-COMPUT ST, V155, DOI 10.1016/j.ijhcs.2021.102694 Balakrishnan BKPD, 2014, PROCD SOC BEHV, V148, P177, DOI 10.1016/j.sbspro.2014.07.032 Block E, 2021, PUBLIC RELAT INQ, V10, P265, DOI 10.1177/2046147X211026936 Brown D, 2008, INFLUENCER MARKETING Chaudhuri A, 2001, J MARKETING, V65, P81, DOI 10.1509/jmkg.65.2.81.18255 Chung SY, 2017, PSYCHOL MARKET, V34, P481, DOI 10.1002/mar.21001 Oliveira ABD, 2021, AUSTRALAS J INF SYST, V25, DOI 10.3127/ajis.v25i0.3223 Franke C, 2023, J ADVERTISING, V52, P523, DOI 10.1080/00913367.2022.2154721 Gerlich M., 2023, TRANSNATL MARK J, V11, P131, DOI [10.58262/tmj.v11i1.1010, DOI 10.58262/TMJ.V11I1.1010] Gerlich Michael., 2022, J DIGITAL SOCIAL MED, V9, P337 HAASE RF, 1983, EDUC PSYCHOL MEAS, V43, P35, DOI 10.1177/001316448304300105 Henson R., 2015, Brain Mapping, P477, DOI [10.1016/B978-0-12-397025-1.00319-5, DOI 10.1016/B978-0-12-397025-1.00319-5, https://doi.org/10.1016/B978-0-12-397025-1.00319-5] HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Hovland CI, 1953, Communication and Persuasion, DOI 10.1007/BF02713272 Hsu CL, 2013, INTERNET RES, V23, P69, DOI 10.1108/10662241311295782 Jiménez-Castillo D, 2019, INT J INFORM MANAGE, V49, P366, DOI 10.1016/j.ijinfomgt.2019.07.009 Kádeková Z, 2018, COMMUN TODAY, V9, P90 Kapitan S, 2016, MARKET LETT, V27, P553, DOI 10.1007/s11002-015-9363-0 La Ferle C., 2005, Journal of Current Issues and Research in Advertising, V27, P67, DOI DOI 10.1080/10641734.2005.10505182 Lazarsfeld Paul., 1944, The People's Choice Liu X, 2012, J MOD APPL STAT METH, V11, P242, DOI 10.22237/jmasm/1335846000 Lou C., 2019, Journal of Interactive Advertising, V19, P58, DOI DOI 10.1080/15252019.2018.1533501 Maria Lewczyk, 2021, WHY BRANDS SHOULD WO McCormick K, 2016, J RETAIL CONSUM SERV, V32, P39, DOI 10.1016/j.jretconser.2016.05.012 MCCRACKEN G, 1989, J CONSUM RES, V16, P310, DOI 10.1086/209217 Miao F, 2022, J MARKETING, V86, P67, DOI 10.1177/0022242921996646 Moustakas E., 2020, P 2020 INT C CYB SEC, P1 Nowak KL, 2018, REV COMMUN RES, V6, P30, DOI 10.12840/issn.2255-4165.2018.06.01.015 Ralf Hirschmann, 2021, VIRTUAL INFLUENCERS Sands S, 2022, EUR J MARKETING, V56, P1721, DOI 10.1108/EJM-12-2019-0949 Silva MJD, 2022, SOC NETW ANAL MIN, V12, DOI 10.1007/s13278-022-00966-w Stein JP, 2022, NEW MEDIA SOC, DOI 10.1177/14614448221102900 Tallarida R.J., 1987, MANUAL PHARM CALCULA Thomas VL, 2021, J ADVERTISING, V50, P11, DOI 10.1080/00913367.2020.1810595 Torres P, 2019, PSYCHOL MARKET, V36, P1267, DOI 10.1002/mar.21274 Vivek SD, 2012, J MARKET THEORY PRAC, V20, P127, DOI 10.2753/MTP1069-6679200201 Williams C., 2007, J BUSINESS EC RES, V5, P65, DOI DOI 10.19030/JBER.V5I3.2532 NR 41 TC 2 Z9 2 U1 95 U2 105 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND EI 2076-3387 J9 ADM SCI JI Adm. Sci. PD AUG PY 2023 VL 13 IS 8 AR 178 DI 10.3390/admsci13080178 PG 21 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA Q2YL1 UT WOS:001056220800001 OA gold DA 2024-03-27 ER PT J AU Rahman, MS Hossain, MA Fattah, FAMA AF Rahman, Muhammad Sabbir Hossain, Md Afnan Fattah, Fadi Abdel Muniem Abdel TI Does marketing analytics capability boost firms' competitive marketing performance in data-rich business environment? SO JOURNAL OF ENTERPRISE INFORMATION MANAGEMENT LA English DT Article DE Marketing analytics capability; Artificial intelligence; Holistic marketing decision; Competitive marketing performance ID BIG DATA ANALYTICS; RESOURCE-BASED VIEW; ARTIFICIAL-INTELLIGENCE; INFORMATION-TECHNOLOGY; KNOWLEDGE MANAGEMENT; DECISION-MAKING; MODERATING ROLE; VALUE CREATION; DYNAMIC CAPABILITIES; SYSTEMS AB Purpose Few well-documented studies have explained the importance of researching firms' marketing analytics capability (FMAC). In spite of its significance, there is scant attention to conceptualising and empirically investigating FMAC and its consequences in a data-driven business context. Thus, this study aims to develop and test a conceptual model that relates FMAC and its repercussions in the data-rich business environment. Design/methodology/approach This study analysed the data from 250 managers amongst large and medium-sized manufacturing and service-intensive firms. Furthermore, this research performed an empirical study by using operationalised questionnaire survey method to verify the hypotheses and reach its theoretical and managerial implications. Structural equation modelling with maximum-likelihood estimation method was applied to verify the validity of the proposed research model. Findings Multivariate analysis results show that FMAC significantly influences firms' competitive marketing performance (FCMP) with the presence of holistic marketing decision-making (HMDM) as a mediator. Moreover, adoption of artificial intelligence (AAI) enhances the relationship of FMAC-HMDM and FMAC-FCMP linkages. Practical implications This study analyses how FMAC can enhance FCMP and contributes to resource-based views and technological capability theories. From a managerial perspective, guidelines are provided for marketers to adopt advance technologies, such as AI, to optimise FMAC and HMDM to achieve competitive marketing performance. Originality/value Believing that "how to be competitive in marketing performance under data-rich-environment", this research is the first to use the data of a firm manager to facilitate the understanding of FMAC, which provides a new direction for improving marketing performance. In addition, HMDM and AAI are also proposed for firms to optimise FCMP. C1 [Rahman, Muhammad Sabbir] North South Univ, Dept Mkt & Int Business, Dhaka, Bangladesh. [Hossain, Md Afnan] Univ Wollongong, Sch Business, Wollongong, NSW, Australia. [Hossain, Md Afnan] North South Univ, Sch Business & Econ, Dhaka, Bangladesh. [Fattah, Fadi Abdel Muniem Abdel] ASharqiyah Univ, Coll Business Adm, Ibra, Oman. C3 North South University (NSU); University of Wollongong; North South University (NSU) RP Rahman, MS (autor correspondiente), North South Univ, Dept Mkt & Int Business, Dhaka, Bangladesh. EM sabbiriiu@gmail.com RI AbdelFattah, Fadi/L-7441-2014; Hossain, Dr Md Afnan/M-6626-2017; Rahman, Muhammad/G-3968-2018 OI AbdelFattah, Fadi/0000-0002-4665-4777; Hossain, Dr Md Afnan/0000-0003-2954-1823; Rahman, Muhammad/0000-0003-1613-7944 FU North South University (NSU) FX The authors acknowledge North South University (NSU) for awarding research grant to conduct this research. CR Aderemi Helen Olubunmi, 2012, International Journal of Business Information Systems, V11, P127, DOI 10.1504/IJBIS.2012.048887 Agarwal Sanjeev., 2003, J SERV MARK, V17, P68, DOI DOI 10.1108/08876040310461282 Ageeva E, 2019, J BUS RES, V98, P15, DOI 10.1016/j.jbusres.2018.12.079 Ahmed E, 2017, COMPUT NETW, V129, P459, DOI 10.1016/j.comnet.2017.06.013 Alsheibani S., 2018, PACIS 2018 P, V37 ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 ANDERSON P, 1990, ADMIN SCI QUART, V35, P604, DOI 10.2307/2393511 Anfer Omar, 2019, New Knowledge in Information Systems and Technologies. Advances in Intelligent Systems and Computing (AISC 931), P633, DOI 10.1007/978-3-030-16184-2_60 [Anonymous], 2016, INT J BUSINESS SOCIA ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Ashrafi A, 2019, INT J INFORM MANAGE, V47, P1, DOI 10.1016/j.ijinfomgt.2018.12.005 Atuahene-Gima K, 2004, J MARKETING, V68, P33, DOI 10.1509/jmkg.68.4.33.42732 Atuahene-Gima K, 2004, ACAD MANAGE J, V47, P583, DOI [10.2307/20159603, 10.5465/20159603] Aydiner AS, 2019, J BUS RES, V96, P228, DOI 10.1016/j.jbusres.2018.11.028 BACON DR, 1995, EDUC PSYCHOL MEAS, V55, P394, DOI 10.1177/0013164495055003003 BAGOZZI RP, 1991, ADMIN SCI QUART, V36, P421, DOI 10.2307/2393203 BAGOZZI RP, 1981, MULTIVAR BEHAV RES, V16, P323, DOI 10.1207/s15327906mbr1603_4 BARIUS B, 1994, IND MARKET MANAG, V23, P145, DOI 10.1016/0019-8501(94)90016-7 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Bharadwaj AS, 2000, MIS QUART, V24, P169, DOI 10.2307/3250983 BHARADWAJ SG, 1993, J MARKETING, V57, P83, DOI 10.2307/1252221 Booth D., 2019, APPL MARKETING ANAL, V4, P214 Bruni DS, 2009, BRIT J MANAGE, V20, pS101, DOI 10.1111/j.1467-8551.2008.00615.x Brynjolfsson E., 2017, Harvard Business Review, V95, P3 Cacciolatti L, 2016, J BUS RES, V69, P5597, DOI 10.1016/j.jbusres.2016.03.067 Camisón C, 2014, J BUS RES, V67, P2891, DOI 10.1016/j.jbusres.2012.06.004 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Cao GM, 2019, IND MARKET MANAG, V76, P72, DOI 10.1016/j.indmarman.2018.08.002 Cao GM, 2017, J ENTERP INF MANAG, V30, P874, DOI 10.1108/JEIM-04-2016-0080 Capron L, 1999, J MARKETING, V63, P41, DOI 10.2307/1251944 Challagalla G, 2014, J MARKETING, V78, P4, DOI 10.1509/jm.12.0314 Chang W, 2010, J BUS RES, V63, P849, DOI 10.1016/j.jbusres.2009.07.003 Chen DQ, 2015, J MANAGE INFORM SYST, V32, P4, DOI 10.1080/07421222.2015.1138364 Choi H, 2015, J PROD INNOVAT MANAG, V32, P233, DOI 10.1111/jpim.12175 Chuang SH, 2004, EXPERT SYST APPL, V27, P459, DOI 10.1016/j.eswa.2004.05.008 Chung W, 2005, J MANAGE INFORM SYST, V21, P57, DOI 10.1080/07421222.2005.11045821 Cleeren K, 2017, J ACAD MARKET SCI, V45, P593, DOI 10.1007/s11747-017-0558-1 Coombs JE, 2006, R&D MANAGE, V36, P421, DOI 10.1111/j.1467-9310.2006.00444.x Côrte-Real N, 2017, J BUS RES, V70, P379, DOI 10.1016/j.jbusres.2016.08.011 Cruz-Cárdenas J, 2021, J BUS RES, V122, P217, DOI 10.1016/j.jbusres.2020.08.054 Davcik NS, 2016, J BUS RES, V69, P5547, DOI 10.1016/j.jbusres.2016.04.169 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davenport TH, 2018, HARVARD BUS REV, V96, P108 DAY GS, 1994, J MARKETING, V58, P37, DOI 10.2307/1251915 De Luca LM, 2021, J ACAD MARKET SCI, V49, P790, DOI 10.1007/s11747-020-00739-x Duan L, 2015, J MANAG ANAL, V2, P1, DOI 10.1080/23270012.2015.1020891 Dubey R, 2019, BRIT J MANAGE, V30, P341, DOI 10.1111/1467-8551.12355 Dutta S, 1999, MARKET SCI, V18, P547, DOI 10.1287/mksc.18.4.547 Duysters G., 2000, J High Technol Manag Res, V11, P75, DOI DOI 10.1016/S1047-8310(00)00022-5 Dwivedi YK, 2015, INFORM SYST FRONT, V17, P143, DOI 10.1007/s10796-014-9500-y Edgeman R, 2013, CORP GOV-INT J BUS S, V13, P527, DOI 10.1108/CG-06-2013-0073 Eisenhardt KM, 2000, STRATEGIC MANAGE J, V21, P1105, DOI 10.1002/1097-0266(200010/11)21:10/11<1105::AID-SMJ133>3.0.CO;2-E Fethi MD, 2010, EUR J OPER RES, V204, P189, DOI 10.1016/j.ejor.2009.08.003 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 France SL, 2019, EXPERT SYST APPL, V119, P456, DOI 10.1016/j.eswa.2018.11.002 Gatignon H, 1997, J MARKETING RES, V34, P77, DOI 10.2307/3152066 Germann F, 2013, INT J RES MARK, V30, P114, DOI 10.1016/j.ijresmar.2012.10.001 Goodboy AK, 2017, COMMUN RES REP, V34, P68, DOI 10.1080/08824096.2016.1214121 GRANT RM, 1991, CALIF MANAGE REV, V33, P114, DOI 10.2307/41166664 Grant RM, 1996, ORGAN SCI, V7, P375, DOI 10.1287/orsc.7.4.375 Griffith DA, 2010, J WORLD BUS, V45, P217, DOI 10.1016/j.jwb.2009.09.008 Grossman R. L., 2014, J ORG DESIGN, V3, P20, DOI DOI 10.7146/JOD.9799 Gupta M, 2016, INFORM MANAGE-AMSTER, V53, P1049, DOI 10.1016/j.im.2016.07.004 Hair J.F., 2009, Multivariate data analysis Han JK, 1998, J MARKETING, V62, P30, DOI 10.2307/1252285 Hanssens DM, 2016, J MARKETING, V80, P173, DOI 10.1509/jm.15.0417 He W, 2019, J ENTERP INF MANAG, V32, P152, DOI 10.1108/JEIM-02-2018-0031 Hossain M. A., 2020, TECHNOLOGICAL INNOVA, P117, DOI [10.4018/978-1-5225-9940-1.ch001, DOI 10.4018/978-1-5225-9940-1.CH001] Hossain MA, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102187 Hossain Tasnim M. Taufique, 2020, Industrial Marketing Management, V87, P225, DOI 10.1016/j.indmarman.2019.12.006 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Iacobucci D, 2019, J MARK ANAL, V7, P152, DOI 10.1057/s41270-019-00059-2 Jain V, 2016, INT J PROD ECON, V171, P84, DOI 10.1016/j.ijpe.2015.10.024 Jaklic J, 2018, INT J INFORM MANAGE, V43, P305, DOI 10.1016/j.ijinfomgt.2018.08.017 Kamal MM, 2020, INT J INFORM MANAGE, V55, DOI 10.1016/j.ijinfomgt.2020.102206 Keller, 2012, PRENTICE HALL VIDEO Kenny D.A., 2014, Mediation Kim N, 2013, J PROD INNOVAT MANAG, V30, P136, DOI 10.1111/j.1540-5885.2012.00992.x Kumar V, 2008, J MARKETING, V72, P50, DOI 10.1509/jmkg.72.5.50 Kyriazos T.A., 2018, PSYCHOLOGY, V09, P2207, DOI [DOI 10.4236/PSYCH.2018.98126, https://doi.org/10.4236/psych.2018.98126, 10.4236/psych.2018.98126] Liang XN, 2020, J BUS RES, V109, P545, DOI 10.1016/j.jbusres.2019.01.021 Lindell MK, 2001, J APPL PSYCHOL, V86, P114, DOI 10.1037//0021-9010.86.1.114 Mabert V.A., 2000, PRODUCTION INVENTORY, V41, P52 MacKinnon DP, 2007, ANNU REV PSYCHOL, V58, P593, DOI 10.1146/annurev.psych.58.110405.085542 Mandal S, 2017, J BUS IND MARK, V32, P1021, DOI 10.1108/JBIM-08-2016-0187 Marsh HW, 2014, ANNU REV CLIN PSYCHO, V10, P85, DOI 10.1146/annurev-clinpsy-032813-153700 Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001 McEvily SK, 2004, STRATEGIC MANAGE J, V25, P713, DOI 10.1002/smj.425 McNaughton M, 2017, J ENTERP INF MANAG, V30, P701, DOI 10.1108/JEIM-06-2016-0121 Melville N, 2004, MIS QUART, V28, P283 Mikalef P, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.004 Moller K., 1987, Journal of Marketing Management, V3, P185, DOI [DOI 10.1080/0267257X.1987.9964038, 10.1080/0267257X.1987.9964038] NARVER JC, 1990, J MARKETING, V54, P20, DOI 10.2307/1251757 Nason RS, 2018, J MANAGE, V44, P32, DOI 10.1177/0149206315610635 Nath P, 2010, IND MARKET MANAG, V39, P317, DOI 10.1016/j.indmarman.2008.09.001 Nemati HR, 2002, DECIS SUPPORT SYST, V33, P143, DOI 10.1016/S0167-9236(01)00141-5 Newbert SL, 2008, TECHNOVATION, V28, P6, DOI 10.1016/j.technovation.2007.07.002 Nicolae P.A., 2009, ANN U ORADEA EC SCI, V18, P808 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Ogrean, 2017, PALGRAVE HDB MANAGIN, P513 PETERAF MA, 1993, STRATEGIC MANAGE J, V14, P179, DOI 10.1002/smj.4250140303 Petter S, 2013, J MANAGE INFORM SYST, V29, P7, DOI 10.2753/MIS0742-1222290401 Plakoyiannaki E., 2002, J DATABASE MARKETING, V9, P228, DOI DOI 10.1057/PALGRAVE.JDM.3240004 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Pontes HM, 2016, INT J MENT HEALTH AD, V14, P1062, DOI 10.1007/s11469-016-9694-y Pop N A., 2012, Management Marketing, V7, P631 Qi JY, 2016, INFORM MANAGE-AMSTER, V53, P951, DOI 10.1016/j.im.2016.06.002 Radhakrishnan A, 2008, OMEGA-INT J MANAGE S, V36, P1105, DOI 10.1016/j.omega.2006.06.003 Rahman MS, 2020, J SERV THEOR PRACT, V30, P681, DOI 10.1108/JSTP-04-2020-0077 Rahman MS, 2020, J GLOB INF MANAG, V28, P39, DOI 10.4018/JGIM.2020010103 Rajaraman V, 2014, RESONANCE, V19, P198, DOI 10.1007/s12045-014-0027-9 Ramachandran, 2018, HDB ADV MARKETING ER, P360, DOI DOI 10.4135/9789353287733.N31 Ransbotham S., 2016, MIT Sloan Management Review, V57, P1 Ransbotham S., 2017, Reshaping Business With Artificial Intelligence Ravichandran T, 2005, J MANAGE INFORM SYST, V21, P237, DOI 10.1080/07421222.2005.11045820 Rossi PE, 2003, MARKET SCI, V22, P304, DOI 10.1287/mksc.22.3.304.17739 Rothaermel FT, 2004, STRATEGIC MANAGE J, V25, P201, DOI 10.1002/smj.376 Ortega MJR, 2010, J BUS RES, V63, P1273, DOI 10.1016/j.jbusres.2009.09.007 Russell S.J., 2003, ARTIF INTELL, V2 Rust RT, 2012, J MARKETING, V76, P47, DOI 10.1509/jm.10.0441 Sabherwal R, 2006, MANAGE SCI, V52, P1849, DOI 10.1287/mnsc.1060.0583 Sanchez R, 2008, RES COMPET-BASED MAN, V4, P3, DOI 10.1016/S1744-2117(08)04001-2 Seddon PB, 2017, INFORM SYST J, V27, P237, DOI 10.1111/isj.12101 Sharma P, 2016, J BUS RES, V69, P5662, DOI 10.1016/j.jbusres.2016.03.074 Sharma R, 2014, EUR J INFORM SYST, V23, P433, DOI 10.1057/ejis.2014.17 Simsek S, 2021, J ENTERP INF MANAG, V34, P718, DOI 10.1108/JEIM-12-2019-0375 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Son I, 2014, INFORM MANAGE-AMSTER, V51, P653, DOI 10.1016/j.im.2014.05.006 Song M, 2005, STRATEGIC MANAGE J, V26, P259, DOI 10.1002/smj.450 Song M, 2008, J INT MARKETING, V16, P4, DOI 10.1509/jimk.16.1.4 Song M, 2007, J ACAD MARKET SCI, V35, P18, DOI 10.1007/s11747-006-0005-1 Spanos YE, 2001, STRATEGIC MANAGE J, V22, P907, DOI 10.1002/smj.174 Sterne J., 2017, Artificial intelligence for marketing: practical applications Syam N, 2018, IND MARKET MANAG, V69, P135, DOI 10.1016/j.indmarman.2017.12.019 Tallon PP, 2000, J MANAGE INFORM SYST, V16, P145, DOI 10.1080/07421222.2000.11518269 Tang Z., 2011, International Journal of Computer Applications, V29, P13 Taylor GA, 2005, J RETAILING, V81, P293, DOI 10.1016/j.jretai.2004.11.004 Teece DJ, 1997, STRATEGIC MANAGE J, V18, P509, DOI 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z Teng BS, 2007, J MANAGE STUD, V44, P119, DOI 10.1111/j.1467-6486.2006.00645.x Tippins MJ, 2003, STRATEGIC MANAGE J, V24, P745, DOI 10.1002/smj.337 Trieu VH, 2017, DECIS SUPPORT SYST, V93, P111, DOI 10.1016/j.dss.2016.09.019 Tsai K., 2004, J HIGH TECHNOLOGY MA, V15, P183, DOI 10.1016/j.hitech.2004.03.002 Tucminen M., 1997, Proceedings ofthe Annual Conference ofthe European Marketing Academy, P1220 van Bruggen GH, 1998, MANAGE SCI, V44, P645, DOI 10.1287/mnsc.44.5.645 Vargo SL, 2008, J SERV RES-US, V11, P211, DOI 10.1177/1094670508324260 Verhoef PC, 2003, DECIS SUPPORT SYST, V34, P471, DOI 10.1016/S0167-9236(02)00069-6 Verhoef PC, 2010, J INTERACT MARK, V24, P121, DOI 10.1016/j.intmar.2010.02.009 Verma S, 2017, J ENTERP INF MANAG, V30, P354, DOI 10.1108/JEIM-10-2015-0099 Verona G, 1999, ACAD MANAGE REV, V24, P132, DOI 10.2307/259041 Viaene S, 2013, IT PROF, V15, P12, DOI 10.1109/MITP.2013.93 Vorhies D.W., 1999, EUR J MARKETING, V33, P1171 Wade M, 2004, MIS QUART, V28, P107 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wang E, 2007, INT J PROD RES, V45, P2419, DOI 10.1080/00207540601020437 Weber FD, 2019, DIGIT POLICY REGUL G, V21, P264, DOI 10.1108/DPRG-09-2018-0050 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Weerawardena J., 2003, Journal of Strategic Marketing, V11, P15, DOI [DOI 10.1080/0965254032000096766, 10.1080/0965254032000096766] WERNERFELT B, 1984, STRATEGIC MANAGE J, V5, P171, DOI 10.1002/smj.4250050207 Wilden R, 2015, J ACAD MARKET SCI, V43, P181, DOI 10.1007/s11747-014-0380-y Wu WW, 2020, TECHNOL ANAL STRATEG, V32, P1098, DOI 10.1080/09537325.2020.1743261 Xu ZN, 2016, J BUS RES, V69, P1562, DOI 10.1016/j.jbusres.2015.10.017 Yang, 2020, INFORM MANAGE-AMSTER, V57 Yonghong Z., 2005, Singapore Management Review, V27, P81 Zahra SA, 2007, J BUS RES, V60, P1070, DOI 10.1016/j.jbusres.2006.12.014 Zhang GQ, 1999, EUR J OPER RES, V116, P16, DOI 10.1016/S0377-2217(98)00051-4 Zhou KZ, 2010, STRATEGIC MANAGE J, V31, P547, DOI 10.1002/smj.830 Zongyang Leng, 2015, Management Decision, V53, P1247, DOI 10.1108/MD-07-2013-0367 이영화, 2007, [Journal of Korea Design Forum, 한국디자인포럼], V16, P303 NR 171 TC 21 Z9 21 U1 16 U2 88 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1741-0398 EI 1758-7409 J9 J ENTERP INF MANAG JI J. Enterp. Inf. Manag. PD MAR 8 PY 2022 VL 35 IS 2 BP 455 EP 480 DI 10.1108/JEIM-05-2020-0185 EA APR 2021 PG 26 WC Computer Science, Interdisciplinary Applications; Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA ZQ1YV UT WOS:000646305000001 DA 2024-03-27 ER PT J AU Lee, YS Sikora, R AF Lee, Yoon Sang Sikora, Riyaz TI Application of adaptive strategy for supply chain agent SO INFORMATION SYSTEMS AND E-BUSINESS MANAGEMENT LA English DT Article DE Multi-agent systems; Artificial intelligence; E-commerce; Simulation; Supply chain management AB With the tremendous increase in the globalization of trade the corresponding supply chains supporting the manufacture, distribution and supply of goods has become extremely complex. Intelligent agents can help with the problem of effective management of these complex supply chains. In this paper we introduce the design, implementation and testing of an intelligent agent for handling procurement, customer sales, and scheduling of production in a stylized supply chain environment. The supply chain environment used in this paper is modeled after the trading agent competition that is held annually to choose the best agent for managing a supply chain. Our supply chain agent, which we call SCMaster, uses dynamic inventory control and various reinforcement learning techniques like Q-learning, Softmax, epsilon-greedy, and sliding window protocol to make our agent adapt dynamically to the changing environment created by competing agents. A multi-agent simulation environment is developed in Java to test the efficacy of our agent design. Two competing agents are created modeled after the winners of past trading agent competitions and are tested against our agent in various experimental designs. Results of simulations show that our agent has better performance compared to the other agents. C1 [Lee, Yoon Sang] Columbus State Univ, D Abbott Turner Coll Business, 4225 Univ Ave, Columbus, GA 31907 USA. [Sikora, Riyaz] Univ Texas Arlington, Coll Business, 701 West St, Arlington, TX 76019 USA. C3 University System of Georgia; Columbus State University; University of Texas System; University of Texas Arlington RP Sikora, R (autor correspondiente), Univ Texas Arlington, Coll Business, 701 West St, Arlington, TX 76019 USA. EM lee_yoon@columbusstate.edu; rsikora@uta.edu RI N'Dri, Amoin Bernadine/IWD-7811-2023 OI Lee, Yoon Sang/0000-0003-3877-1567 CR Abadie A, 2005, REV ECON STUD, V72, P1, DOI 10.1111/0034-6527.00321 Acquity Group, 2014, UNC SHIFT LANDSC B2B Adami C, 2016, PHYS LIFE REV, V19, P1, DOI 10.1016/j.plrev.2016.08.015 Alpaydin E, 2014, ADAPT COMPUT MACH LE, P115 Benisch M., 2004, ACM T COMPUT LOG, V4, P29 Benisch M, 2009, ELECTRON COMMER R A, V8, P78, DOI 10.1016/j.elerap.2008.09.005 Benisch Michael., 2004, 5 ACM C ELECT COMMER, P152, DOI DOI 10.1145/988772.988796 Borghetti B, 2006, AAAI, P1857 Burke DA, 2006, AAMAS 2006 WORKSH TR, P29 Chaturvedi A.R., 2006, INFORM SYSTEMS E BUS, V4, P25 Chatzidimitriou KC, 2008, EXPERT SYST APPL, V35, P591, DOI 10.1016/j.eswa.2007.07.050 CHENG F, 2002, MANUFACTURING SERVIC, V4, P114, DOI DOI 10.1287/MS0M.4.2.114.282 Choi TY, 2001, J OPER MANAG, V19, P351, DOI 10.1016/S0272-6963(00)00068-1 Collins J, 2009, ELECTRON COMMER R A, V8, P91, DOI 10.1016/j.elerap.2008.09.004 Collins John., 2006, SUPPLY CHAIN MANAGEM Eriksson J, 2006, AI COMMUN, V19, P1 Forbes Technology Council, 2016, UPC TECHN 10 TRENDS Kiekintveld C., 2004, ACM SIGECOM EXCH, V4, P9 Kiekintveld Christopher., 2006, 7 ACM C ELECT COMMER, P208, DOI DOI 10.1145/1134707.1134730 McLaren T., 2004, INF SYST E BUS MANAG, V2, P207 O'Leary DE, 2008, INF SYST E-BUS MANAG, V6, P239, DOI 10.1007/s10257-008-0086-0 Pardoe D, 2009, HANDB INFO SYST, V3, P141 Podobnik V, 2006, LECT NOTES COMPUT SC, V4277, P752 Saar-Tsechansky M, 2015, MIS QUART, V39, pIII Sibdari Soheil, 2012, International Journal of Operational Research, V14, P121, DOI 10.1504/IJOR.2012.046644 Sikora RT, 2008, DECIS SUPPORT SYST, V46, P101, DOI 10.1016/j.dss.2008.05.005 Sikora RT, 2008, KNOWL-BASED SYST, V21, P800, DOI 10.1016/j.knosys.2008.03.041 Simchi-Levi D., 2008, STRATEGIES CASE STUD Sutton R. S., 1998, INTRO REINFORCEMENT, V2 VEPSALAINEN APJ, 1987, MANAGE SCI, V33, P1035, DOI 10.1287/mnsc.33.8.1035 Vilalta R, 2002, ARTIF INTELL REV, V18, P77, DOI 10.1023/A:1019956318069 WELLMAN MP, 2006, AAMAS 06 WORKSH GAM NR 32 TC 4 Z9 5 U1 6 U2 50 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1617-9846 EI 1617-9854 J9 INF SYST E-BUS MANAG JI Inf. Syst. E-Bus. Manag. PD MAR PY 2019 VL 17 IS 1 BP 117 EP 157 DI 10.1007/s10257-018-0378-y PG 41 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA HX6AC UT WOS:000467485100005 DA 2024-03-27 ER PT J AU Nayyar, V AF Nayyar, Varun TI The role of marketing analytics in the ethical consumption of online consumers SO TOTAL QUALITY MANAGEMENT & BUSINESS EXCELLENCE LA English DT Article DE marketing analytics; consumer privacy; artificial intelligence; online retailing; mobile apps; marketing mix ID PLS-SEM; PRIVACY; FUTURE; CONSEQUENCES; KNOWLEDGE; REVIEWS; PRODUCT; TRUST; STATE; POWER AB Modern marketing requires a dynamic shift from traditional to digital worlds where technology with data handling significantly needs marketing analytics effectiveness with a customised approach, leading to ethical online consumption for consumers. This current study validated the model developed from the contributions of Davis et al. (2021) and Grewal et al. (2020) by focusing on the effectiveness of marketing analytics. Data was collected from 435 respondents who were either business heads or employees working at a managerial level through a well-drafted questionnaire. Hair et al. (2017) incitation on PLS-SEM robust measuring standards helped in model validation through internal consistency, validity, reliability, multicollinearity, nonlinearity, effect size, HTMT, R2 and finally model fitness. The empirical prediction of this research gives a clear signal to corporate to redesign their present online marketing models by using marketing analytics and then critically analysing the role of consumer privacy, artificial intelligence, and marketing mix while promoting their products or services through web or mobile apps. Finally, to what extent marketing analyses can help in generating a user-friendly interface for online consumers by capturing their personality traits with a cognitive mindset is still critical to understand and may encourage future work. C1 [Nayyar, Varun] Apeejay Inst Management & Engn Tech Campus, Jalandhar, Punjab, India. RP Nayyar, V (autor correspondiente), Apeejay Inst Management & Engn Tech Campus, Jalandhar, Punjab, India. EM varunnayyar90@gmail.com RI Nayyar, Dr Varun/AAS-8058-2020 OI Nayyar, Dr Varun/0000-0001-5609-9327 CR Agarwal R, 2020, J ACAD MARKET SCI, V48, P9, DOI 10.1007/s11747-019-00692-4 Agrawal A., 2018, Prediction machines: the simple economics of artificial intelligence Ajayi S, 2023, EUROMED J BUS, V18, P397, DOI 10.1108/EMJB-10-2021-0164 Aljumah AI, 2021, BUS PROCESS MANAG J, V27, P1108, DOI 10.1108/BPMJ-11-2020-0527 Appel G, 2020, J ACAD MARKET SCI, V48, P79, DOI 10.1007/s11747-019-00695-1 Bornschein R, 2020, J PUBLIC POLICY MARK, V39, P135, DOI 10.1177/0743915620902143 BRISLIN RW, 1970, J CROSS CULT PSYCHOL, V1, P185, DOI 10.1177/135910457000100301 Byun KA, 2021, J INTERACT MARK, V55, P81, DOI 10.1016/j.intmar.2021.01.003 Chae I, 2019, J MARKETING RES, V56, P57, DOI 10.1177/0022243718820587 Chen R, 2003, TOTAL QUAL MANAG BUS, V14, P677, DOI 10.1080/1478336032000053825 Chin W, 2020, IND MANAGE DATA SYST, V120, P2161, DOI 10.1108/IMDS-10-2019-0529 COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Loureiro SMC, 2021, J BUS RES, V129, P911, DOI 10.1016/j.jbusres.2020.11.001 Loureiro SMC, 2021, INT J CONTEMP HOSP M, V33, P3840, DOI 10.1108/IJCHM-09-2020-1032 Cowley S, 2021, J MARKET EDUC, V43, P189, DOI 10.1177/0273475320948570 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Davis B, 2021, J PUBLIC POLICY MARK, V40, P447, DOI 10.1177/07439156211042372 Dzyabura D, 2019, MARKET SCI, V38, P417, DOI 10.1287/mksc.2018.1144 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Ganguli D., 2021, ANAL INSIGHT 0614 Goldstein DG, 2014, J MARKETING RES, V51, P742, DOI 10.1509/jmr.13.0439 Grewal D, 2020, J ACAD MARKET SCI, V48, P96, DOI 10.1007/s11747-019-00697-z Grewal L, 2019, J MARKETING RES, V56, P791, DOI 10.1177/0022243719834514 Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2019, EUR J MARKETING, V53, P566, DOI 10.1108/EJM-10-2018-0665 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hayes AF, 2015, MULTIVAR BEHAV RES, V50, P1, DOI 10.1080/00273171.2014.962683 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Herhausen D, 2019, J MARKETING, V83, P1, DOI 10.1177/0022242918822300 Hildebrand C, 2019, J ACAD MARKET SCI, V47, P291, DOI 10.1007/s11747-018-0599-0 Hoffman DL, 2018, J CONSUM RES, V44, P1178, DOI 10.1093/jcr/ucx105 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Iacobucci D, 2019, J MARK ANAL, V7, P152, DOI 10.1057/s41270-019-00059-2 Kejriwal M., 2021, Online Social Networks and Media, V24, P100149, DOI [10.1016/j.osnem.2021.100149, DOI 10.1016/J.OSNEM.2021.100149] Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015040101 Kopalle PK, 2021, J PUBLIC POLICY MARK, V40, P453, DOI 10.1177/0743915621999031 Kurtzke S, 2021, J MARKET EDUC, V43, P298, DOI 10.1177/02734753211042404 Langan R, 2019, J MARKET EDUC, V41, P32, DOI 10.1177/0273475318823849 Li Y, 2020, INTERNET RES, V30, P511, DOI 10.1108/INTR-02-2018-0066 Liu X., 2018, Marketing Education Review, V28, P28, DOI [10.1080/10528008.2017.1421049, DOI 10.1080/10528008.2017.1421049] Loureiro S.M.C., 2022, J PROMOTION MANAGEME, V28, P111, DOI [https://doi.org/10.1080/10496491.2021.1987942, DOI 10.1080/10496491.2021.1987942] Lourenço CJS, 2020, J INTERACT MARK, V49, P107, DOI 10.1016/j.intmar.2019.10.003 MacKenzie SB, 2012, J RETAILING, V88, P542, DOI 10.1016/j.jretai.2012.08.001 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Mintu-Wimsatt A., 2018, MARKETING ED REV, V28, P1, DOI DOI 10.1080/10528008.2018.1436974 Mondal T., 2022, MATER TODAY-PROC, V1 Nayyar V, 2022, SYST RES BEHAV SCI, V39, P542, DOI 10.1002/sres.2857 Nayyar V, 2020, INT REV PUB NON MARK, V17, P277, DOI 10.1007/s12208-020-00248-1 Okazaki S, 2020, J RETAILING, V96, P458, DOI 10.1016/j.jretai.2020.05.007 Petrescu M, 2020, J CONSUM MARK, V37, P675, DOI 10.1108/JCM-02-2019-3080 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Presthus W, 2018, PROCEDIA COMPUT SCI, V138, P603, DOI 10.1016/j.procs.2018.10.081 Purcarea VL, 2015, PROC ECON FINANC, V26, P1020, DOI 10.1016/S2212-5671(15)00925-9 RAMSEY JB, 1969, J ROY STAT SOC B, V31, P350 Rigdon E., 2017, Marketing: ZFP-Journal of Research and Management, V39, P4, DOI [DOI 10.15358/0344-1369-2017-3-4, 10.15358/0344-1369-2017-3-4] Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Schlee RP, 2017, J MARKET EDUC, V39, P69, DOI 10.1177/0273475317712765 Shiu JY, 2017, TOTAL QUAL MANAG BUS, V28, P746, DOI 10.1080/14783363.2015.1121094 Sivarajah U, 2017, J BUS RES, V70, P263, DOI 10.1016/j.jbusres.2016.08.001 Stocchi L, 2022, J ACAD MARKET SCI, V50, P195, DOI 10.1007/s11747-021-00815-w Tapscott D., 1995, DIGITAL EC PROMISE P Thomaz F, 2020, J ACAD MARKET SCI, V48, P43, DOI 10.1007/s11747-019-00704-3 Tong SL, 2020, J ACAD MARKET SCI, V48, P64, DOI 10.1007/s11747-019-00693-3 Wang X, 2021, J RETAILING, V97, P658, DOI 10.1016/j.jretai.2020.12.001 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Wong K.K.-K., 2016, MARKETING B, V26, DOI DOI 10.13140/RG.2.1.1643.0562 Wu KW, 2012, COMPUT HUM BEHAV, V28, P889, DOI 10.1016/j.chb.2011.12.008 NR 69 TC 2 Z9 2 U1 6 U2 24 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-3363 EI 1478-3371 J9 TOTAL QUAL MANAG BUS JI Total Qual. Manag. Bus. Excell. PD MAY 19 PY 2023 VL 34 IS 7-8 BP 1015 EP 1031 DI 10.1080/14783363.2022.2139676 EA NOV 2022 PG 17 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA C8NJ7 UT WOS:000877443500001 DA 2024-03-27 ER PT J AU Al-Emran, M AlQudah, AA Abbasi, GA Al-Sharafi, MA Iranmanesh, M AF Al-Emran, Mostafa AlQudah, Adi Ahmad Abbasi, Ghazanfar Ali Al-Sharafi, Mohammed A. Iranmanesh, Mohammad TI Determinants of Using AI-Based Chatbots for Knowledge Sharing: Evidence From PLS-SEM and Fuzzy Sets (fsQCA) SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Chatbots; Behavioral sciences; Artificial intelligence; Mathematical models; Fuzzy sets; Predictive models; Knowledge engineering; Chatbot; fuzzy set qualitative comparative analysis (fsQCA); knowledge sharing; partial least squares-structural equation modeling (PLS-SEM); technology adoption ID INFORMATION-TECHNOLOGY; UNIFIED THEORY; ACCEPTANCE; IMPACT; AVOIDANCE; BEHAVIORS; STANDARDS; STUDENTS; MODEL AB While adopting chatbots powered by artificial intelligence could enhance knowledge sharing, it also causes challenges due to the "dark side " of these agents. However, research on the factors influencing chatbots for knowledge sharing is lacking. To bridge this gap, we developed the integrated chatbot acceptance-avoidance model, which looks at the positive and negative determinants of using chatbots for knowledge sharing. Through a comprehensive questionnaire survey of 447 students, the research model is evaluated using the partial least squares-structural equation modeling (PLS-SEM), a symmetric approach, and fuzzy set qualitative comparative analysis (fsQCA) as an asymmetric approach. The PLS-SEM results supported the positive role of performance expectancy, effort expectancy, and habit and the negative role of perceived threats in affecting chatbot use for knowledge sharing. Although PLS-SEM results revealed that social influence, facilitating conditions, and hedonic motivation have no impact on chatbot use, the fsQCA analysis revealed that all factors might play a role in shaping the use of chatbots. In addition to the theoretical contributions, the findings provide several managerial implications for universities, instructors, and chatbot developers to help them make insightful decisions and promote the use of chatbots. C1 [Al-Emran, Mostafa; AlQudah, Adi Ahmad] British Univ Dubai, Fac Engn & IT, Dubai, U Arab Emirates. [Al-Emran, Mostafa] Dijlah Univ Coll, Dept Comp Tech Engn, Baghdad, Iraq. [Abbasi, Ghazanfar Ali] King Fahd Univ Petr & Minerals, Dept Management & Mkt, Dhahran 31261, Saudi Arabia. [Abbasi, Ghazanfar Ali] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Finance & Digital Econ, KFUPM Business Sch, Dhahran 31261, Saudi Arabia. [Al-Sharafi, Mohammed A.] Univ Teknol Malaysia, Dept Informat Syst, Skudai 81310, Malaysia. [Al-Sharafi, Mohammed A.] Sunway Univ, Dept Business Analyt, Bandar Sunway 47500, Malaysia. [Iranmanesh, Mohammad] Edith Cowan Univ, Sch Business & Law, Joondalup, WA 6027, Australia. C3 Dijlah University College; King Fahd University of Petroleum & Minerals; King Fahd University of Petroleum & Minerals; Universiti Teknologi Malaysia; Sunway University; Edith Cowan University RP Al-Emran, M (autor correspondiente), British Univ Dubai, Fac Engn & IT, Dubai, U Arab Emirates. EM mustafa.n.alemran@gmail.com; adi.qudah@gmail.com; ghazanfar.abbasi@hotmail.co.uk; alsharafi@ieee.org; m.iranmanesh@ecu.edu.au RI Al-Emran, Mostafa/W-4466-2018; Iranmanesh, Mohammad/G-2321-2012; Al-Sharafi, Mohammed A./E-1530-2017; ABBASI, GHAZANFAR ALI/Y-9112-2018 OI Al-Emran, Mostafa/0000-0002-5269-5380; Iranmanesh, Mohammad/0000-0001-6964-6238; Al-Sharafi, Mohammed A./0000-0003-0726-6031; AlQudah, Adi/0000-0003-3942-5869; ABBASI, GHAZANFAR ALI/0000-0003-0748-8996 CR Abbasi GA, 2022, J CLEAN PROD, V359, DOI 10.1016/j.jclepro.2022.132137 Abbasi GA, 2022, TECHNOL SOC, V68, DOI 10.1016/j.techsoc.2022.101937 Abu Gharrah A., 2021, Journal of Technology and Science Education, V11, P53, DOI DOI 10.3926/JOTSE.1081 Acosta-maestre H. A., 2021, THESIS NOVA SE U FOR Agogo D, 2018, EUR J INFORM SYST, V27, P570, DOI 10.1080/0960085X.2018.1435230 Al-Azawei A, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101325 Al-Sharafi MA, 2023, INTERACT LEARN ENVIR, V31, P7491, DOI 10.1080/10494820.2022.2075014 Albanna H, 2022, INT J INFORM MANAGE, V63, DOI 10.1016/j.ijinfomgt.2021.102452 Almahri FAJ, 2020, 2020 THE 6TH IEEE INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2020), P284, DOI [10.1109/ICIM49319.2020.244712, 10.1109/icim49319.2020.244712] AlQudah A. A., 2021, PROC INT C EMERG TEC, P969, DOI [10.1007/978-3-030-85990-9_77, DOI 10.1007/978-3-030-85990-9_77] AlQudah AA, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112210537 Alt M. A., 2021, STUDIA U, V66, P13, DOI [https://doi.org/10.2478/subboec-2021-0002, DOI 10.2478/SUBBOEC-2021-0002] ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Arpaci I, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102120 Atwell E., 2007, Ldv forum, V22, P29 Bagozzi R, 2003, J BEHAV DECIS MAKING, V16, P273, DOI 10.1002/bdm.446 Binsawadi M, 2022, PEERJ COMPUT SCI, V8, DOI 10.7717/peerj-cs.926 Bodea Constanta-Nicoleta, 2021, Research on Project, Programme and Portfolio Management. Integrating Sustainability into Project Management. Lecture Notes in Management and Industrial Engineering (LNMIE), P249, DOI 10.1007/978-3-030-60139-3_17 Boonsiritomachai W., 2017, KASETSART J SOCIAL S, DOI [DOI 10.1016/J.KJSS.2017.10, 10.1016/j.kjss.2017.10.005, DOI 10.1016/J.KJSS.2017.10.005] Breward M, 2017, INFORM SYST RES, V28, P760, DOI 10.1287/isre.2017.0706 Cao GM, 2021, TECHNOVATION, V106, DOI 10.1016/j.technovation.2021.102312 Carpenter D, 2019, COMMUN ASSOC INF SYS, V44, P380, DOI 10.17705/1CAIS.04422 Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7 Chen DQ, 2019, IEEE T ENG MANAGE, V66, P552, DOI 10.1109/TEM.2018.2835461 Chen HL, 2020, J EDUC COMPUT RES, V58, P1161, DOI 10.1177/0735633120929622 Chen Y, 2016, MIS QUART, V40, P205, DOI 10.25300/MISQ/2016/40.1.09 De Nieva JO, 2020, CHIUXID 2020: 6TH INTERNATIONAL ACM IN-COOPERATION HCI AND UX CONFERENCE, P1, DOI 10.1145/3431656.3431657 Douglas E, 2019, J BUS RES, V99, P69, DOI 10.1016/j.jbusres.2019.02.031 Dul J, 2016, ORGAN RES METHODS, V19, P10, DOI 10.1177/1094428115584005 Dwivedi YK, 2020, CURR OPIN PSYCHOL, V36, P13, DOI 10.1016/j.copsyc.2020.03.008 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Dwivedi YK, 2017, GOV INFORM Q, V34, P211, DOI 10.1016/j.giq.2017.03.001 Foroughi B, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103158 Foth M, 2012, J PUBLIC HEALTH-HEID, V20, P253, DOI 10.1007/s10389-011-0456-9 Frangoudes Fotos, 2021, Learning and Collaboration Technologies Games and Virtual Environments for Learning. 8th International Conference, LCT 2021. Held as Part of the 23rd HCI International Conference, HCII 2021. Proceedings. Lecture Notes in Computer Science (LNCS 12785), P170, DOI 10.1007/978-3-030-77943-6_11 Fuller CM, 2016, J BUS RES, V69, P3192, DOI 10.1016/j.jbusres.2015.12.008 Gansser OA, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101535 Gao H.-L., 2021, FUTURE INTERNET, V13, DOI [10.3390/fi13070162, DOI 10.3390/FI13070162] Gazulla ED, 2023, EDUC INF TECHNOL, V28, P109, DOI 10.1007/s10639-022-11162-w Gnewuch U, 2022, BUS INFORM SYST ENG+, V64, P773, DOI 10.1007/s12599-022-00755-x Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Huang WJ, 2022, J COMPUT ASSIST LEAR, V38, P237, DOI 10.1111/jcal.12610 Jantavongso S., 2019, WORLD J PEDIATR, V2, P1, DOI DOI 10.14456/JTI.2019.1 Jeng DJF, 2012, COMPUT IND ENG, V62, P819, DOI 10.1016/j.cie.2011.12.016 Joshi H, 2021, PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST), P197, DOI 10.5220/0010718400003058 Juniper, 2018, CHATB DEL 11BN ANN Kim AJ, 2021, JMIR MHEALTH UHEALTH, V9, DOI 10.2196/26424 Laleye FAA, 2020, PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), P859, DOI 10.1145/3341105.3373936 Li F, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103039 Li L, 2021, ELECTRON MARK, V31, P575, DOI 10.1007/s12525-020-00454-z Liang HG, 2009, MIS QUART, V33, P71 Liébana-Cabanillas F, 2021, INFORM TECHNOL MANAG, V22, P133, DOI 10.1007/s10799-021-00328-6 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Mcaulay J. R., 2021, 15 CHATBOT STAT 2022 Mehran J, 2020, J TRAVEL TOUR MARK, V37, P112, DOI 10.1080/10548408.2020.1720890 Mikalef Patrick, 2013, J. theor. appl. electron. commer. res., V8, P17, DOI 10.4067/S0718-18762013000100003 Mleczko K., 2021, Multidisciplinary Aspects Prod Eng, V4, P499, DOI [10.2478/mape-2021-0045, DOI 10.2478/MAPE-2021-0045] Moorthy K, 2019, AUSTRALAS J EDUC TEC, V35, P174, DOI 10.14742/ajet.4432 Nikolopoulou K, 2021, COMPUT EDUC OPEN, V2, DOI 10.1016/j.caeo.2021.100041 Nikolopoulou K, 2020, EDUC INF TECHNOL, V25, P4139, DOI 10.1007/s10639-020-10157-9 Okonkwo C.W., 2021, Comput. Educ.: Artif. Intell., V2, DOI DOI 10.1016/J.CAEAI.2021.100033 Ong R. J., 2021, Journal of Physics: Conference Series, V1755, DOI 10.1088/1742-6596/1755/1/012051 Pagaling GT, 2022, NEUROL SCI, V43, P811, DOI 10.1007/s10072-021-05705-1 Pappas IO, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2021.102310 Pappas IO, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102128 Paulin D, 2011, PROCEEDINGS OF THE 12TH EUROPEAN CONFERENCE ON KNOWLEDGE MANAGEMENT, VOLS 1 AND 2, P752 Peng MH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13179946 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Ragin C. C., 2008, Config. Comp. Methods, V51, P87, DOI DOI 10.4135/9781452226569.N5 Ragin CC, 2005, SOCIOL METHOD RES, V33, P423, DOI 10.1177/0049124105274499 Rese A, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102176 Rodriguez Cardona D., 2021, P 54 HAW INT C SYST, DOI [10.24251/HICSS.2021.068, DOI 10.24251/HICSS.2021.068] Schneider CQ, 2010, COMP SOCIOL, V9, P397, DOI 10.1163/156913210X12493538729793 Schuetzler RM, 2020, J MANAGE INFORM SYST, V37, P875, DOI 10.1080/07421222.2020.1790204 Selamat MA, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101685 Sitar-Taut DA, 2021, HUM BEHAV EMERG TECH, V3, P366, DOI 10.1002/hbe2.261 Sugumar M., 2020, PEER PEER NETW APPL, V30 Tegos S, 2014, INT J ARTIF INTELL E, V24, P62, DOI 10.1007/s40593-013-0007-3 Varshneya G, 2017, GLOB BUS REV, V18, P478, DOI 10.1177/0972150916668620 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Warkentin M, 2017, J ASSOC INF SYST, V18, P758, DOI 10.17705/1jais.00474 Wei XY, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3140952 Woodside AG, 2014, J BUS RES, V67, P2495, DOI 10.1016/j.jbusres.2014.07.006 YILDIZDURAK H, 2022, EDUC INF TECHNOL, DOI DOI 10.1007/S10639-022-11149 NR 86 TC 26 Z9 26 U1 166 U2 252 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 JAN 31 PY 2023 DI 10.1109/TEM.2023.3237789 EA JAN 2023 PG 15 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA 8Y6SL UT WOS:000932825300001 HC Y HP N DA 2024-03-27 ER PT J AU Wu, YL Liu, QY AF Wu, Yingli Liu, Qiuyan TI A Novel Deep Learning-Based Visual Search Engine in Digital Marketing for Tourism E-Commerce Platforms SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE CLIP; CLIP-ItP; Multimodal Data; Top-K Product Recommendation; Tourism E-Commerce; Visual Search Engine AB Visual search technology, because of its convenience and high efficiency, is widely used by major tourism e-commerce platforms in product search functions. This study introduces an innovative visual search engine model, namely CLIP-ItP, aiming to thoroughly explore the application potential of visual search in tourism e-commerce. The model is an extension of the CLIP (contrastive languageimage pre-training) framework and is developed through three pivotal stages. Firstly, by training an image feature extractor and a linear model, the visual search engine labels images, establishing an experimental visual search engine. Secondly, CLIP-ItP jointly trains multiple text and image encoders, facilitating the integration of multimodal data, including product image labels, categories, names, and attributes. Finally, leveraging user-uploaded images and jointly selected product attributes, CLIP-ItP provides personalized top-k product recommendations. C1 [Wu, Yingli] Jiaxing Nanhu Univ, Sch Business Management, Jiaxing, Peoples R China. [Liu, Qiuyan] Zhejiang Univ Water Resources & Elect Power, Sch Econ & Management, Hangzhou, Peoples R China. C3 Zhejiang University of Water Resources and Electric Power RP Liu, QY (autor correspondiente), Zhejiang Univ Water Resources & Elect Power, Sch Econ & Management, Hangzhou, Peoples R China. FU Ministry of Education's Industry University Cooperation Collaborative Education Project [230821141307061]; Research and Creation Project of Zhejiang Provincial Department of Culture and Tourism [2023KYY039]; General Research Project of Zhejiang Provincial Department of Education [Y202352193] FX This work was supported by The Ministry of Education's Industry University Cooperation Collaborative Education Project (Grant No. 230821141307061) , Research and Creation Project of Zhejiang Provincial Department of Culture and Tourism (Grant No. 2023KYY039) , and General Research Project of Zhejiang Provincial Department of Education (Grant No. Y202352193) . CR Abouelnaga Y, 2016, 2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), P1192, DOI [10.1109/CSCI.2016.224, 10.1109/CSCI.2016.0225] Abubakr AG, 2022, J ELECTRON IMAGING, V31, DOI 10.1117/1.JEI.31.5.051604 Anand G, 2021, Applications of Machine Learning Arumugam S., 2022, AIP Conference Proceedings Berg T, 2014, PROC CVPR IEEE, P2019, DOI 10.1109/CVPR.2014.259 Chen CK, 2022, NAT BIOMED ENG, V6, P1420, DOI 10.1038/s41551-022-00929-8 Chen M, 2022, ENTERP INF SYST-UK, V16, DOI 10.1080/17517575.2020.1856422 Dagan A, 2023, INFORM RETRIEVAL J, V26, DOI 10.1007/s10791-023-09418-1 Du M., 2022, P 28 ACM SIGKDD C KN Eswaran A, 2022, 2022 8 INT C ADV COM Feng ZT, 2022, J GLOB INF MANAG, V30, DOI 10.4018/JGIM.306271 Foping F, 2022, Journal of Computer Vision and Pattern Recognition, V1, P1 Gaafar AS, 2022, INFORM-INT J COMPUT, V46, P21, DOI 10.31449/inf.v46i5.3872 Guang J. Y, 2021, Journal of Jilin University, V59 He GH, 2021, J ORGAN END USER COM, V33, DOI 10.4018/JOEUC.20211101.oa16 Hou J, 2021, J ORGAN END USER COM, V33, DOI 10.4018/JOEUC.20211101.oa13 Kang W, Investigating the potential of gan-based interactive image editing for novel image search Li Y, 2022, 2022 IEEE 2 INT C PO Mete B. R, 2019, 2019 3 INT S MULT ST Monjur M. E. I, 2023, Open Journal of Business and Management, V11, P2389, DOI [10.4236/ojbm.2023.115132, DOI 10.4236/OJBM.2023.115132] Mustafic F, 2019, 2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), DOI 10.1109/icat47117.2019.8939009 Nayeem T. A, 2022, 2022 12 INT C EL COM Ning X, 2024, INFORM FUSION, V102, DOI 10.1016/j.inffus.2023.102033 Parkhi OM, 2012, PROC CVPR IEEE, P3498, DOI 10.1109/CVPR.2012.6248092 Radford A., 2021, INT C MACH LEARN Shen CW, 2019, COMPUT HUM BEHAV, V101, P474, DOI 10.1016/j.chb.2018.09.031 Singh D, 2023, ENG APPL ARTIF INTEL, V126, DOI 10.1016/j.engappai.2023.106833 Tian SS, 2024, NEURAL NETWORKS, V169, P307, DOI 10.1016/j.neunet.2023.10.039 Varish N, 2022, MULTIMED TOOLS APPL, V81, P20373, DOI 10.1007/s11042-022-12289-1 Waqas U, 2023, CMC-COMPUT MATER CON, V75, P243, DOI 10.32604/cmc.2023.035716 Wolfe JM, 2021, PSYCHON B REV, V28, P1060, DOI 10.3758/s13423-020-01859-9 Ye SY, 2023, PSYCHOL REP, DOI 10.1177/00332941231172707 Ye SY, 2023, MANAGE DECIS, V61, P77, DOI 10.1108/MD-09-2021-1166 Yu M, 2022, Mathematical Problems in Engineering Yuan LJ, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.843428 Zhang H, 2022, J ORGAN END USER COM, V34, DOI 10.4018/JOEUC.306270 NR 36 TC 0 Z9 0 U1 0 U2 0 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2024 VL 36 IS 1 AR 340386 DI 10.4018/JOEUC.340386 PG 27 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA LF6P2 UT WOS:001185409200011 OA gold DA 2024-03-27 ER PT J AU Bharti, SS Prasad, K Sudha, S Kumari, V AF Bharti, Swaraj S. Prasad, Kanika Sudha, Shwati Kumari, Vineeta TI Customer acceptability towards AI-enabled digital banking: a PLS-SEM approach SO JOURNAL OF FINANCIAL SERVICES MARKETING LA English DT Article DE Customer acceptance; Banking industry; Artificial Intelligence; Technology acceptance model; Structural equation modelling; Partial least square ID PERFORMANCE; CHATBOT AB Artificial Intelligence (AI) has proved its significance in every field and is yet to be explored in the banking sector in India. The study aims to understand the customers' perception of using AI-based technologies in banks. Satisfaction is the first step towards acceptability and retention of customers towards lesser-known technology and automated process implemented in banks. The constructs of the study are referred from the technology acceptance model to define their level of acceptance and are divided into independent and dependent variables. The independent variables are "transparency", "awareness level", "security", "efficiency", "trust", and "social influence", and the dependent variable is "customer satisfaction". Therefore, the structural equation model was developed from the customers' (N = 500) response to retail banks in northern India. The study reveals that trust is the most significant factor for greater customers' satisfaction towards AI-enabled technologies in banks, followed by the customers' awareness level. The security of AI-based banks is the least important contributor to customer satisfaction. Additionally, the control variables, i.e., age and gender, govern the customers' perception. Understanding customer acceptability towards AI-based technology in retail banks is rare in emerging nations such as India. The findings provide insight into the formulation of compliance. It also highlights the regulation applicable to digital banks by the competent authority in India. The paper concludes by stating practical implications for banking authorities and decision-makers to incorporate AI into their system for customer service. C1 [Bharti, Swaraj S.; Prasad, Kanika; Sudha, Shwati] Natl Inst Technol Jamshedpur, Dept Humanities Social Sci & Management, Jamshedpur 831014, India. [Kumari, Vineeta] Magadh Univ, PG Dept Commerce, Bodhgaya 824234, India. C3 National Institute of Technology (NIT System); National Institute of Technology Jamshedpur RP Kumari, V (autor correspondiente), Magadh Univ, PG Dept Commerce, Bodhgaya 824234, India. EM 2020rshs006@nitjsr.ac.in; kprasad.prod@nitjsr.ac.in; ssudha.hum@nitjsr.ac.in; vidhatamu@gmail.com RI Kumari, Vineeta/AAD-5154-2021 OI Kumari, Vineeta/0000-0001-8231-1213; Bharti, Swaraj S/0000-0001-8655-4263 CR Abdulquadri A, 2021, J ENTERP COMMUNITIES, V15, P258, DOI 10.1108/JEC-06-2020-0126 Abikari M, 2023, J FINANC SERV MARK, V28, P691, DOI 10.1057/s41264-022-00172-x Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Agarwal P, 2022, J SCI TECHNOL POLICY, DOI 10.1108/JSTPM-08-2021-0122 Aitken M, 2021, TECHNOL SOC, V66, DOI 10.1016/j.techsoc.2021.101666 Arif I, 2020, TECHNOL SOC, V61, DOI 10.1016/j.techsoc.2020.101231 Auh S, 2019, J MARKETING RES, V56, P1012, DOI 10.1177/0022243719866408 Banna H, 2021, STUD ECON FINANC, V38, P504, DOI 10.1108/SEF-09-2020-0388 Bawack RE, 2021, J ENTERP INF MANAG, V34, P645, DOI 10.1108/JEIM-07-2020-0284 Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Bellini S, 2017, J RETAIL CONSUM SERV, V36, P164, DOI 10.1016/j.jretconser.2017.02.001 Bhatia A, 2021, QUAL RES FINANC MARK, V13, P632, DOI 10.1108/QRFM-10-2020-0199 Boot A, 2021, J FINANC STABIL, V53, DOI 10.1016/j.jfs.2020.100836 Boustani NM, 2022, J ASIA BUS STUD, V16, P267, DOI 10.1108/JABS-09-2020-0376 Cabrera-Sánchez JP, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101888 Chauhan S, 2022, INT J QUAL SERV SCI, V14, P311, DOI 10.1108/IJQSS-02-2021-0027 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Choinski TC., 2020, ARTIF INTELL, DOI [10.1108/978-1-78973-811-720201002, DOI 10.1108/978-1-78973-811-720201002] Chong LL, 2021, TECHNOL SOC, V64, DOI 10.1016/j.techsoc.2020.101497 Danyali AA, 2018, J ORGAN CHANGE MANAG, V31, P1226, DOI 10.1108/JOCM-07-2017-0269 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dehnert M, 2022, ELECTRON MARK, V32, P1503, DOI 10.1007/s12525-022-00524-4 Dvoretskaya A., 2021, ROLE FINANCIAL INTER, DOI [10.1007/978-3-030-71337-9_4, DOI 10.1007/978-3-030-71337-9_4] Egala SB, 2021, INT J BANK MARK, V39, P1420, DOI 10.1108/IJBM-02-2021-0072 Fan H, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2022.102937 Flavián C, 2022, J SERV MANAGE, V33, P293, DOI 10.1108/JOSM-10-2020-0378 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gambhir Bhumika, 2022, Development and Learning in Organizations: An International Journal, V36, P17, DOI 10.1108/DLO-01-2021-0016 Gansser OA, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101535 Garcia-Almanza AL., 2013, STUDIES COMPUTATIONA, V427, P633, DOI [10.1007/978-3-642-29694-9_24, DOI 10.1007/978-3-642-29694-9_24] Guerra-Leal EM, 2023, REV BEHAV FINANCE, V15, P257, DOI 10.1108/RBF-08-2021-0150 Gunawardane G, 2023, J FINANC SERV MARK, V28, P255, DOI 10.1057/s41264-022-00148-x Gupta A, 2018, INT SYMP EC, V25, P215, DOI 10.1108/S1571-038620180000025010 Gupta R., 2020, 1 INT C CYB EM DIG E, DOI [10.1007/978-3-030-84842-2_5, DOI 10.1007/978-3-030-84842-2_5] Gupta S, 2023, RES INT BUS FINANC, V66, DOI 10.1016/j.ribaf.2023.101993 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hamdan A., 2020, 4 IND REVOLUTION IMP Hasal M, 2021, CONCURR COMP-PRACT E, V33, DOI 10.1002/cpe.6426 Jaksic M, 2019, RISK MANAG-UK, V21, P1, DOI 10.1057/s41283-018-0039-y Ji Y, 2022, PAC-BASIN FINANC J, V72, DOI 10.1016/j.pacfin.2022.101731 Jiménez-Barreto J, 2021, INT J CONTEMP HOSP M, V33, P3860, DOI 10.1108/IJCHM-10-2020-1244 Kamboj S, 2022, INT J BANK MARK, V40, P128, DOI 10.1108/IJBM-10-2020-0534 Kaur B, 2021, RISKS, V9, DOI 10.3390/risks9110209 Kavale K. A., 2020, BLOCKCHAIN ARTIFICIA, DOI [10.4324/9780203052990-10, DOI 10.4324/9780203052990-10] Khan MTI., 2017, RES INT BUS FINANC, DOI [10.1016/j.techsoc.2021.101822, DOI 10.1016/J.TECHSOC.2021.101822] Kohnke L, 2023, RELC J, V54, P828, DOI 10.1177/00336882211067054 Ladhari R, 2011, J FINANC SERV MARK, V16, P111, DOI 10.1057/fsm.2011.10 Lappeman J, 2023, J FINANC SERV MARK, V28, P337, DOI 10.1057/s41264-022-00154-z Lee JC, 2022, INT J BANK MARK, V40, P631, DOI 10.1108/IJBM-08-2021-0394 Lei SI, 2021, INT J CONTEMP HOSP M, V33, P3977, DOI 10.1108/IJCHM-12-2020-1399 Levy S, 2022, INT J BANK MARK, V40, P679, DOI 10.1108/IJBM-08-2021-0383 Li L, 2021, ELECTRON MARK, V31, P575, DOI 10.1007/s12525-020-00454-z Luo SM, 2022, TECHNOL SOC, V68, DOI 10.1016/j.techsoc.2021.101821 Mainardes EW, 2023, J FINANC SERV MARK, V28, P378, DOI 10.1057/s41264-022-00156-x Mogaji E, 2022, INT J BANK MARK, V40, P1272, DOI 10.1108/IJBM-09-2021-0440 Nambiar BK, 2023, J FINANC SERV MARK, V28, P58, DOI 10.1057/s41264-022-00139-y Oino I, 2018, RES INT BUS FINANC, V44, P309, DOI 10.1016/j.ribaf.2017.07.099 Paulet Elisabeth, 2019, Journal of Business Strategy, V41, P19 Payne EHM, 2021, J RES INTERACT MARK, V15, P200, DOI 10.1108/JRIM-12-2020-0252 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Rahman M, 2023, INT J EMERG MARK, V18, P4270, DOI 10.1108/IJOEM-06-2020-0724 Robinson SC, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101421 Rodrigues ARD, 2022, RES INT BUS FINANC, V60, DOI 10.1016/j.ribaf.2022.101616 Seiler V, 2021, RES INT BUS FINANC, V58, DOI 10.1016/j.ribaf.2021.101490 Shankar A, 2020, AUSTRALAS MARK J, V28, P273, DOI 10.1016/j.ausmj.2020.06.008 Singh S, 2020, MANAGE DECIS, V58, P1675, DOI 10.1108/MD-09-2019-1318 Somya G, 2022, RES INT BUS FINANC, V63, DOI 10.1016/j.ribaf.2022.101757 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Srivastava S, 2023, J FINANC SERV MARK, V28, P236, DOI 10.1057/s41264-022-00147-y Subero-Navarro A, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102813 Suhartanto D, 2022, J ISLAMIC MARK, V13, P1958, DOI 10.1108/JIMA-12-2020-0380 Tabesh Pooya, 2022, Journal of Business Strategy, P373, DOI 10.1108/JBS-05-2021-0090 Taneja S, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102418 Tölö E, 2020, J FINANC STABIL, V49, DOI 10.1016/j.jfs.2020.100746 Tsindeliani IA, 2022, J MONEY LAUND CONTRO, V25, P165, DOI 10.1108/JMLC-02-2021-0011 Udoka OS., 2022, INT J ENTREPRENEURSH, V5, P16, DOI [10.52589/IJEBI-FN3AWAFN, DOI 10.52589/IJEBI-FN3AWAFN] van Tonder E, 2018, J RETAIL CONSUM SERV, V45, P92, DOI 10.1016/j.jretconser.2018.08.011 Vedapradha R, 2021, ASIA PAC J INNOV ENT, V15, P51, DOI 10.1108/APJIE-09-2020-0142 Venkatesan R, 2017, J ACAD MARKET SCI, V45, P289, DOI 10.1007/s11747-016-0513-6 Vieira A., 2017, DIGITAL MARKETPLACES, DOI [10.1007/978-3-662-49275-8_31, DOI 10.1007/978-3-662-49275-8_31] Wongsansukcharoen J, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102826 Wu CG, 2022, INT J BANK MARK, V40, P68, DOI 10.1108/IJBM-09-2020-0465 Xue MN, 2021, ELECTRON LIBR, V39, P539, DOI 10.1108/EL-07-2020-0207 Yi HT, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102598 Yun Joo A., 2021, BLOCKCHAIN CRYPTOCUR, DOI [10.1007/978-981-33-6137-9, DOI 10.1007/978-981-33-6137-9] NR 86 TC 2 Z9 2 U1 10 U2 14 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1363-0539 EI 1479-1846 J9 J FINANC SERV MARK JI J. Financ. Serv. Mark. PD DEC PY 2023 VL 28 IS 4 SI SI BP 779 EP 793 DI 10.1057/s41264-023-00241-9 EA AUG 2023 PG 15 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA AJ1R6 UT WOS:001049146300001 DA 2024-03-27 ER PT J AU Sharma, S Islam, N Singh, G Dhir, A AF Sharma, Shavneet Islam, Nazrul Singh, Gurmeet Dhir, Amandeep TI Why Do Retail Customers Adopt Artificial Intelligence (AI) Based Autonomous Decision-Making Systems? SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Decision making; Cultural differences; Artificial intelligence; Mathematical models; Uncertainty; Social networking (online); Autonomous systems; Artificial Intelligence (AI); autonomous decision-making; covariance-based structural equation modeling (CB-SEM); Hofstede' s cultural dimensions; unified theory of acceptance and use of technology (UTAUT) model ID NATIONAL CULTURAL-VALUES; INFORMATION-TECHNOLOGY; BEHAVIORAL INTENTIONS; USER ACCEPTANCE; CONSUMERS ACCEPTANCE; MODERATING ROLE; MOBILE BANKING; HEALTH-CARE; UTAUT MODEL; IMPACT AB Advancements in Artificial Intelligence (AI) have led to the development of autonomous decision-making processes, allowing customers to delegate decisions and tasks. Such technologies have the potential to alter the retailing landscape. Grounded in the unified theory of acceptance and use of technology and Hofstede's cultural theory, this article investigates customers' adoption of AI-based autonomous decision-making processes by analyzing 454 customer responses using covariance-based structural equation modeling. The results reveal that effort expectancy, performance expectancy, facilitating conditions, and social influence are positively associated with customers' adoption of autonomous decision-making processes. Collectivism strengthened the positive association of social influence with customer attitude, whereas uncertainty avoidance dampened the associations of performance expectancy, effort expectancy, and social influence with attitude. The findings provide useful implications for system developers and managers while providing future researchers with directions to further explore autonomous decision-making processes. C1 [Sharma, Shavneet; Singh, Gurmeet] Univ South Pacific, Sch Management & Publ Adm, Suva 00679, Fiji. [Islam, Nazrul] Univ Exeter Business Sch, Dept Management, Exeter EX4 4PU, Devon, England. [Dhir, Amandeep] Univ Agder, Sch Business & Law, N-4630 Kristiansand, Norway. C3 University of the South Pacific; University of Agder RP Islam, N (autor correspondiente), Univ Exeter Business Sch, Dept Management, Exeter EX4 4PU, Devon, England. EM shavneet.sharma@usp.ac.fj; n.islam@exeter.ac.uk; gurmeet.singh@usp.ac.fj; amandeep.dhir@uia.no RI Sharma, Shavneet/ABH-2566-2020; Singh, Gurmeet/Q-7326-2019; Islam, Nazrul/AAO-9069-2020; Islam, Professor Nazrul/JQX-2250-2023; Dhir, Amandeep/F-1826-2013 OI Sharma, Shavneet/0000-0001-5523-5091; Singh, Gurmeet/0000-0003-2931-0670; Islam, Nazrul/0000-0002-9276-8388; Islam, Professor Nazrul/0000-0003-0515-1134; Dhir, Amandeep/0000-0002-6006-6058 CR Abadi B, 2021, J CLEAN PROD, V279, DOI 10.1016/j.jclepro.2020.123802 Abbasi MS, 2015, J ENTERP INF MANAG, V28, P747, DOI 10.1108/JEIM-12-2014-0124 Ajzen I, 2001, ANNU REV PSYCHOL, V52, P27, DOI 10.1146/annurev.psych.52.1.27 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Alalwan AA, 2020, INT J INFORM MANAGE, V50, P28, DOI 10.1016/j.ijinfomgt.2019.04.008 Ali A, 2020, J FOOD PROD MARK, V26, P581, DOI 10.1080/10454446.2020.1846148 Alsaleh DA, 2019, J RES INTERACT MARK, V13, P119, DOI 10.1108/JRIM-10-2017-0092 Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 Arendt H., 1958, The Human Condition Behl A, 2021, J GLOB INF MANAG, V29, DOI 10.4018/JGIM.20211101.oa14 Belanche D, 2019, IND MANAGE DATA SYST, V119, P1411, DOI 10.1108/IMDS-08-2018-0368 Blut M, 2020, J ACAD MARKET SCI, V48, P649, DOI 10.1007/s11747-019-00680-8 Botti S, 2004, J PERS SOC PSYCHOL, V87, P312, DOI 10.1037/0022-3514.87.3.312 Carter M, 2020, MIS QUART, V44, P983, DOI 10.25300/MISQ/2020/14607 Cha SS, 2020, INT J CONTEMP HOSP M, V32, P2947, DOI 10.1108/IJCHM-01-2020-0046 Chatterjee S., LNF SYST FRONT, DOI [10.1007/s10796-021-1.0181-1, DOI 10.1007/S10796-021-1.0181-1] Chatterjee S, 2020, EDUC INF TECHNOL, V25, P3443, DOI 10.1007/s10639-020-10159-7 Chen CF, 2020, ENERGY RES SOC SCI, V69, DOI 10.1016/j.erss.2020.101616 Chen R, 2011, DECIS SUPPORT SYST, V52, P73, DOI 10.1016/j.dss.2011.05.005 Chi OHX, 2022, J TRAVEL RES, V61, P170, DOI 10.1177/0047287520971054 Chopra K, 2019, INT J RETAIL DISTRIB, V47, P331, DOI 10.1108/IJRDM-11-2018-0251 Coeckelbergh M, 2012, ETHICS INF TECHNOL, V14, P53, DOI 10.1007/s10676-011-9279-1 Cui YY, 2022, EUR J MARKETING, V56, P1650, DOI 10.1108/EJM-02-2020-0122 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 de Bellis E, 2020, J RETAILING, V96, P74, DOI 10.1016/j.jretai.2019.12.004 Dhir A, 2021, J CLEAN PROD, V312, DOI 10.1016/j.jclepro.2021.127443 Dhir A, 2021, INT J CONSUM STUD, V45, P1373, DOI 10.1111/ijcs.12659 Dong JQ, 2009, ASIAN J TECHNOL INNO, V17, P129 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Erjavec J, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2021.102867 Fan WJ, 2020, ANN OPER RES, V294, P567, DOI 10.1007/s10479-018-2818-y Fernandes T, 2021, J BUS RES, V122, P180, DOI 10.1016/j.jbusres.2020.08.058 Fishbein M., 1980, UNDERSTANDING ATTITU Ford DP, 2003, IEEE T ENG MANAGE, V50, P8, DOI 10.1109/TEM.2002.808265 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gaur L, 2021, INT J CONTEMP HOSP M, V33, P4079, DOI 10.1108/IJCHM-11-2020-1246 Gupta M, 2019, J BUS RES, V97, P20, DOI 10.1016/j.jbusres.2018.12.018 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Hair J.F., 2009, Multivariate data analysis Heitmann M, 2007, J MARKETING RES, V44, P234, DOI 10.1509/jmkr.44.2.234 Hofstede G., 1994, Values survey modules manual Hofstede G., 2011, ONLINE READINGS PSYC, V2, P2307, DOI [10.9707/2307-0919.1014, DOI 10.9707/2307-0919.1014] Hoftede G., 1980, INT STUD MANAG ORG, P15, DOI DOI 10.1080/00208825.1980.11656300 Hu Q, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102250 Huang F, 2019, COMPUT EDUC, V133, P69, DOI 10.1016/j.compedu.2019.01.012 Hung CL, 2014, INT J INNOV TECHNOL, V11, DOI 10.1142/S0219877014500102 Hwang J, 2019, INT J HOSP MANAG, V81, P94, DOI 10.1016/j.ijhm.2019.03.002 Il Im, 2011, Information & Management, V48, P1, DOI 10.1016/j.im.2010.09.001 Jadil Y, 2021, J BUS RES, V132, P354, DOI 10.1016/j.jbusres.2021.04.052 Kaba B, 2014, J ASSOC INF SCI TECH, V65, P1662, DOI 10.1002/asi.23069 Kapser S, 2020, TRANSPORT RES C-EMER, V111, P210, DOI 10.1016/j.trc.2019.12.016 Kaur P, 2021, TECHNOL FORECAST SOC, V172, DOI 10.1016/j.techfore.2021.121039 Kaye SA, 2020, ACCIDENT ANAL PREV, V137, DOI 10.1016/j.aap.2020.105441 Khanra S, 2020, ENTERP INF SYST-UK, V14, P878, DOI 10.1080/17517575.2020.1812005 Kim D, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120448 Knein E, 2020, J INT MANAG, V26, DOI 10.1016/j.intman.2019.100731 Lai C, 2016, COMPUT HUM BEHAV, V62, P676, DOI 10.1016/j.chb.2016.04.039 Leidner DE, 2006, MIS QUART, V30, P357 Li J, 2019, TOURISM MANAGE, V73, P172, DOI 10.1016/j.tourman.2019.02.006 Lin HX, 2020, J HOSP MARKET MANAG, V29, P530, DOI 10.1080/19368623.2020.1685053 Lin XL, 2020, INT J INFORM MANAGE, V50, P45, DOI 10.1016/j.ijinfomgt.2019.05.004 Ling HC, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102331 Lu J, 2017, COMPUT HUM BEHAV, V75, P130, DOI 10.1016/j.chb.2017.05.002 Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Lv XY, 2021, ANN TOURISM RES, V87, DOI 10.1016/j.annals.2020.103114 McCoy S, 2005, COMMUN ASSOC INF SYS, V15, P211 Mehta A, 2019, COMPUT EDUC, V141, DOI 10.1016/j.compedu.2019.103617 Moriuchi E, 2021, PSYCHOL MARKET, V38, P21, DOI 10.1002/mar.21407 Pan JX, 2019, INT J PROD RES, V57, P5801, DOI 10.1080/00207543.2018.1550272 Park C, 2015, INT MARKET REV, V32, P414, DOI 10.1108/IMR-09-2013-0213 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Png IPL, 2001, IEEE T ENG MANAGE, V48, P36, DOI 10.1109/17.913164 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Poushneh A, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102283 Raffaghelli JE, 2022, COMPUT EDUC, V182, DOI 10.1016/j.compedu.2022.104468 Roggeveen AL, 2020, J RETAILING, V96, P299, DOI 10.1016/j.jretai.2020.08.0O1 Ruparel N, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101335 Shaikh AA., 2021, Research Anthology on Securing Mobile Technologies and Applications, V14, P39, DOI 10.4018/978-17998-8545-0.ch038 Sharma Rashmini, 2020, International Journal of Information Management, V53, P68, DOI 10.1016/j.ijinfomgt.2020.102116 Sharma R, 2021, PSYCHOL MARKET, V38, P965, DOI 10.1002/mar.21469 Sharma S., 2020, IEEE T ENG MANAGE, DOI DOI 10.1109/TEM.2020.3019033 Sharma S, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102363 Sharma S, 2020, AUSTRALAS J INF SYST, V24, DOI 10.3127/ajis.v24i0.2751 Sharma S, 2021, INT J CULT TOUR HOSP, V15, P227, DOI 10.1108/IJCTHR-03-2020-0064 Sharma S, 2020, J INTERNET COMMER, V19, P62, DOI 10.1080/15332861.2019.1695180 Shavitt S, 2020, J RETAILING, V96, P40, DOI 10.1016/j.jretai.2019.11.009 Shi S, 2021, J TRAVEL RES, V60, P1714, DOI 10.1177/0047287520966395 Shi S, 2020, INT J INFORM MANAGE, V50, P325, DOI 10.1016/j.ijinfomgt.2019.09.001 Shin HH, 2020, INT J CONTEMP HOSP M, V32, P2613, DOI 10.1108/IJCHM-09-2019-0798 Shiu E, 2015, J BUS RES, V68, P534, DOI 10.1016/j.jbusres.2014.09.009 Sia CL, 2004, IEEE T ENG MANAGE, V51, P253, DOI 10.1109/TEM.2004.830859 Singh G, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121094 Singh G, 2021, TQM J, V33, P1753, DOI 10.1108/TQM-07-2020-0163 Smith A, 2009, INT MARKET REV, V26, P580, DOI 10.1108/02651330911001305 Sohn K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101324 Srite M, 2006, MIS QUART, V30, P679 Srite M, 2006, AUSTRALAS J INF SYST, V14, P5 Straub D., 2004, Communications of the Association for Information Systems, V13, P380, DOI [DOI 10.17705/1CAIS.01324, 10.17705/1CAIS.01324] Styvén ME, 2020, PSYCHOL MARKET, V37, P724, DOI 10.1002/mar.21334 Sun S, 2020, J HOSP TOUR MANAG, V44, P61, DOI 10.1016/j.jhtm.2020.04.012 Talwar S, 2020, AUSTRALAS MARK J, V28, P286, DOI 10.1016/j.ausmj.2020.06.014 Tam C, 2019, INFORM MANAGE-AMSTER, V56, P356, DOI 10.1016/j.im.2018.07.009 Tamilmani K, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102269 Tan E, 2016, YOUNG CONSUM, V17, P18, DOI 10.1108/YC-07-2015-00537 Tandon A, 2021, J BUS RES, V136, P186, DOI 10.1016/j.jbusres.2021.07.036 Tandon A, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102667 Tandon A, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120931 Tandon A, 2021, INTERNET RES, V31, P782, DOI 10.1108/INTR-11-2019-0455 Tandon A, 2020, COMPUT HUM BEHAV, V113, DOI 10.1016/j.chb.2020.106487 Tandon A, 2020, COMPUT IND, V122, DOI 10.1016/j.compind.2020.103290 Taras V, 2009, J INT MANAG, V15, P357, DOI 10.1016/j.intman.2008.08.005 Tarhini A, 2017, INTERACT LEARN ENVIR, V25, P306, DOI 10.1080/10494820.2015.1122635 Thong JYL, 2011, IEEE T ENG MANAGE, V58, P613, DOI 10.1109/TEM.2010.2058851 Tubadji A, 2021, J ECON ISSUES, V55, P38, DOI 10.1080/00213624.2021.1873046 Tubadji A, 2021, ECON INQ, V59, P1234, DOI 10.1111/ecin.12978 Tubadji A, 2016, LETT SPAT RESOUR SCI, V9, P247, DOI 10.1007/s12076-015-0155-1 Tubadji A, 2012, INT J SOC ECON, V39, P690, DOI 10.1108/03068291211245718 Upadhyay N, 2022, INT J BANK MARK, V40, P960, DOI 10.1108/IJBM-06-2021-0262 Usta M, 2011, J MARKETING RES, V48, P403, DOI 10.1509/jmkr.48.2.403 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Willems K, 2017, TECHNOL FORECAST SOC, V124, P228, DOI 10.1016/j.techfore.2016.10.066 Yip KHT, 2021, ONLINE INFORM REV, V45, P389, DOI 10.1108/OIR-07-2020-0287 Yoo B, 2011, J INT CONSUM MARK, V23, P193, DOI 10.1080/08961530.2011.578059 Yu LT, 2018, ACAD MANAGE J, V61, P2296, DOI 10.5465/amj.2015.0183 Yuen YY, 2015, MARK INTELL PLAN, V33, P292, DOI 10.1108/MIP-08-2013-0126 Zhang Y, 2018, INT J INFORM MANAGE, V40, P76, DOI 10.1016/j.ijinfomgt.2018.01.015 Zhao Y, 2021, BRIT J EDUC TECHNOL, V52, P20, DOI 10.1111/bjet.13002 Zhao YY, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2020.102683 Zhou M, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101911 Zhu G, 2020, TRANSPORT RES F-TRAF, V73, P80, DOI 10.1016/j.trf.2020.06.004 NR 132 TC 22 Z9 22 U1 34 U2 120 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PY 2024 VL 71 BP 1846 EP 1861 DI 10.1109/TEM.2022.3157976 EA APR 2022 PG 16 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA EO4E7 UT WOS:000785780800001 OA Green Accepted DA 2024-03-27 ER PT J AU Ben Saad, S Choura, F AF Ben Saad, Sihem Choura, Fatma TI Towards better interaction between salespeople and consumers: the role of virtual recommendation agent SO EUROPEAN JOURNAL OF MARKETING LA English DT Article DE E-commerce; Digital transformation; Artificial intelligence; Innovation; Digital technologies; Augmented reality; Virtual recommendation agent (VRA); Perceived enjoyment; Online impulse buying; Perceived risk; Gender ID PLAY ONLINE GAMES; EXAMINING GENDER-DIFFERENCES; PERCEIVED RISK; ARTIFICIAL-INTELLIGENCE; TECHNOLOGY ACCEPTANCE; DIGITAL TRANSFORMATION; INTRINSIC MOTIVATION; CUSTOMER EXPERIENCE; ELECTRONIC COMMERCE; PURCHASE INTENTION AB PurposeIn the context of a profound digital transformation, the need for social interactivity is becoming fundamental for consumers on e-commerce sites. It allows them to interact with the company in the same way as with salespeople in physical stores. Among the different existing virtual agents used by companies to offer online solid interaction, this study focuses on virtual recommendation agents (VRAs). The purpose of this paper is to investigate the effectiveness of VRA on consumers' psychological states and online impulse buying. Design/methodology/approachAn experimental website was designed for this study. After interacting with VRA, respondents had to take part in a survey. The questionnaire included measures of perception of the VRA, perceived enjoyment, online impulse buying and perceived risk. Structural equation modelling was used to test the research model. FindingsThe results confirm the positive influence of the VRA on perceived enjoyment, which is positively associated with online impulse buying. The effect of the VRA's presence on perceived enjoyment is moderated by gender. Research limitations/implicationsOnly one product category was studied, for which the advice of VRAs is undoubtedly essential. However, this could also be valid for other products, such as technological products, where the consumer's level of expertise may be low. Hence, the authors propose to extend this study to various products for a better generalization of the results. Practical implicationsThis study provides practitioners with relevant findings on the efficiency of VRAs and offers them guidelines to design more interactive commercial websites with higher levels of social interactions. Such interactions should reduce perceived risks and make visitors more confident. This can encourage more traffic and sales, which implies growth in incomes and revenues. Social implicationsThrough this technology, VRAs can create more humanized links between consumers and companies. Originality/valueWorking on VRAs is original as they represent the technology that can replace salespeople. In addition, to the best of the authors' knowledge, this research is the first to test the impact of VRA on online impulse buying. By examining the VRA's set of fundamental capabilities, this study contributes to existing research on how companies should integrate digital technologies in their sales interactions with consumers, which to date has focused on other sales channels such as social media platforms. C1 [Ben Saad, Sihem] Univ Tunis Carthage, Business Dept, Carthage Business Sch, Tunis, Tunisia. [Choura, Fatma] Univ Tunis El Manar, Higher Inst Comp Sci, Ariana, Tunisia. [Choura, Fatma] Univ La Manouba, LIGUE Lab, Manouba, Tunisia. C3 Universite de Tunis-El-Manar; Universite de la Manouba RP Ben Saad, S (autor correspondiente), Univ Tunis Carthage, Business Dept, Carthage Business Sch, Tunis, Tunisia. EM sihem.bensaad87@gmail.com; fatma.choura@isi.utm.tn CR Agarwal S., 2001, J MARKET THEORY PRAC, V9, P1, DOI 10.1080/10696679.2001 Aggarwal P, 2007, J CONSUM RES, V34, P468, DOI 10.1086/518544 Ahn T, 2007, INFORM MANAGE-AMSTER, V44, P263, DOI 10.1016/j.im.2006.12.008 Akman H, 2019, EUR J MARKETING, V53, P1205, DOI 10.1108/EJM-12-2016-0780 Akrout F., 2010, Les Methodes des Equations Structurelle, V1iere Al-Natour S, 2005, SIGHCI 2005 P, P4 Algharabat R, 2017, J RETAIL CONSUM SERV, V36, P203, DOI 10.1016/j.jretconser.2017.02.007 [Anonymous], 2002, D CISIONS MARKETING [Anonymous], 1996, REV FRANCAISE GESTIO [Anonymous], 2010, MANAGEMENT AVENIR Anshu K, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102798 Arioli M, 2018, BIOMED RES INT, V2018, DOI 10.1155/2018/4283427 Ayub R., 2018, MARKET FORCES RES J, V13, P1 Azuma RT, 1997, PRESENCE-VIRTUAL AUG, V6, P355, DOI 10.1162/pres.1997.6.4.355 Barakat M A., 2019, Journal of Marketing Management, V7, P120, DOI DOI 10.15640/JMM.V7N1A10 Barari M, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101985 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Bauer R. A., 1960, CONSUMER BEHAV RISK Beneke J, 2013, J PROD BRAND MANAG, V22, P218, DOI 10.1108/JPBM-02-2013-0262 Benlian A, 2020, INFORM SYST J, V30, P1010, DOI 10.1111/isj.12243 Bianchi I, 2014, ACTA PSYCHOL, V151, P117, DOI 10.1016/j.actpsy.2014.06.003 BIERSTEDT R, 1965, AM SOCIOL REV, V30, P789, DOI 10.2307/2091154 Blazevic V, 2014, J INTERACT MARK, V28, P87, DOI 10.1016/j.intmar.2013.09.003 Bleier A, 2019, J MARKETING, V83, P98, DOI 10.1177/0022242918809930 Blinka L., 2014, Cyberpsychology, V8, P1, DOI DOI 10.5817/CP2014-2-6 Boksberger PE, 2007, J AIR TRANSP MANAG, V13, P90, DOI 10.1016/j.jairtraman.2006.10.003 Bonetti F, 2018, PROGR IS, P119, DOI 10.1007/978-3-319-64027-3_9 Borges A, 2013, INT J RETAIL DISTRIB, V41, P498, DOI 10.1108/IJRDM-02-2012-0014 Bressolles G., 2007, Journal of Customer Behaviour, V6, P37, DOI [10.1362/147539207x198365, DOI 10.1362/147539207X198365] Brom C., 2009, LECT NOTES COMPUTER, V5773, DOI 10.1007/978-3-642-04380-2_8 CARLSON R, 1971, PSYCHOL BULL, V75, P203 Caru A., 2007, ACR EUROPEAN ADV Chan TKH, 2017, INFORM MANAGE-AMSTER, V54, P204, DOI 10.1016/j.im.2016.06.001 Chandler J, 2010, J CONSUM PSYCHOL, V20, P138, DOI 10.1016/j.jcps.2009.12.008 Chang CC, 2013, TELEMAT INFORM, V30, P311, DOI 10.1016/j.tele.2012.10.006 Chang CC, 2011, INT J ONLINE MARKET, V1, P29, DOI 10.4018/ijom.2011070103 Chang YW, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102325 Charfi A., 2011, REV FRAN AISE MARKET, V20, P49 Chaudhuri A, 2001, J MARKETING, V65, P81, DOI 10.1509/jmkg.65.2.81.18255 Chen Diane, 2016, Transgend Health, V1, P117, DOI 10.1089/trgh.2016.0009 Chen MF, 2007, FOOD QUAL PREFER, V18, P662, DOI 10.1016/j.foodqual.2006.10.002 Chen YS, 2013, J BUS ETHICS, V114, P489, DOI 10.1007/s10551-012-1360-0 Choi DS, 2004, CYBERPSYCHOL BEHAV, V7, P11, DOI 10.1089/109493104322820066 Cissé-Depardon K, 2009, RECH APPL MARKET-ENG, V24, P43, DOI 10.1177/076737010902400103 Clemons EK, 2009, DECIS SUPPORT SYST, V48, P46, DOI 10.1016/j.dss.2009.05.003 Cohen Andrew., 1994, Assessing Language Ability in the Classroom Cortez RM, 2020, IND MARKET MANAG, V88, P125, DOI 10.1016/j.indmarman.2020.05.004 Cova B., 2008, DECISIONS MARKETING, V50, P19 Crandall JW, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02597-8 Cyr D, 2013, COMPUT HUM BEHAV, V29, P1358, DOI 10.1016/j.chb.2013.01.050 Dacko SG, 2017, TECHNOL FORECAST SOC, V124, P243, DOI 10.1016/j.techfore.2016.09.032 Daugherty T, 2008, PSYCHOL MARKET, V25, P568, DOI 10.1002/mar.20225 DAVIS FD, 1992, J APPL SOC PSYCHOL, V22, P1111, DOI 10.1111/j.1559-1816.1992.tb00945.x de Almeida SO, 2014, J INTERACT MARK, V28, P196, DOI 10.1016/j.intmar.2014.02.003 De Keyser A, 2020, J SERV RES-US, V23, P433, DOI 10.1177/1094670520928390 de Ruyter A., 2018, Journal of International Affairs, V72, P37 Dholakia R.R., 1999, INT J RETAIL DISTRIB, V27, P154, DOI [10.1108/09590559910268499, DOI 10.1108/09590559910268499] Dickson PR, 2000, J CONSUM RES, V27, P115, DOI 10.1086/314313 DION K, 1972, J PERS SOC PSYCHOL, V24, P285, DOI 10.1037/h0033731 Dittmar H, 2004, SEX ROLES, V50, P423, DOI 10.1023/B:SERS.0000018896.35251.c7 Doofinder, 2021, US DOWLING GR, 1994, J CONSUM RES, V21, P119, DOI 10.1086/209386 Du SC, 2014, P NATL ACAD SCI USA, V111, pE1454, DOI 10.1073/pnas.1322355111 DuPuis E.Melanie., 2004, Smoke and Mirrors: The Politics and Culture of Air Pollution Durand E., 2015, MANAGEMENT AVENIR, V83, P33 Dwivedi A, 2019, EUR J MARKETING, V53, P1176, DOI 10.1108/EJM-09-2016-0511 EAGLY AH, 1987, J PERS SOC PSYCHOL, V53, P451, DOI 10.1037/0022-3514.53.3.451 Eagly AH, 1997, AM PSYCHOL, V52, P1380, DOI 10.1037/0003-066X.52.12.1380.b EDGINGTON ES, 1985, EDUC ADMIN QUART, V21, P235, DOI 10.1177/0013161X85021003007 Emerson R.M., 1981, SOCIAL PSYCHOL SOCIO Engeser S, 2008, MOTIV EMOTION, V32, P158, DOI 10.1007/s11031-008-9102-4 Epley N., 2018, Journal of the Association for Consumer Research, V3, P591 Epley N, 2008, SOC COGNITION, V26, P143, DOI 10.1521/soco.2008.26.2.143 Etemad-Sajadi R, 2016, COMPUT HUM BEHAV, V61, P227, DOI 10.1016/j.chb.2016.03.045 Eyal T, 2018, J PERS SOC PSYCHOL, V114, P547, DOI 10.1037/pspa0000115 Featherman M., 2003, 36 ANN HI INT C SYST, DOI 10.1109/hicss.2003.1174433 Featherman MS, 2003, INT J HUM-COMPUT ST, V59, P451, DOI 10.1016/S1071-5819(03)00111-3 Febrilia I., 2021, SOC SCI HUMANIT OPEN, V4, DOI [10.1016/j.ssaho.2021.100182, DOI 10.1016/J.SSAHO.2021.100182] Ferreira I, 2007, OBES REV, V8, P129, DOI 10.1111/j.1467-789X.2006.00264.x Figueiredo B, 2016, J CONSUM RES, V43, P509, DOI 10.1093/jcr/ucw038 Filser M., 1996, REV FRAN AISE GESTIO, V110, P90 Filser M., 2002, Decisions Marketing, V28, P13, DOI DOI 10.2307/40592824 Fiore AM, 2005, PSYCHOL MARKET, V22, P669, DOI 10.1002/mar.20079 Floh A, 2013, ELECTRON COMMER R A, V12, P425, DOI 10.1016/j.elerap.2013.06.001 FORNELL C, 1981, J MARKETING RES, V18, P382, DOI 10.2307/3150980 Forsythe SM, 2003, J BUS RES, V56, P867, DOI 10.1016/S0148-2963(01)00273-9 Fryer LK, 2017, COMPUT HUM BEHAV, V75, P461, DOI 10.1016/j.chb.2017.05.045 Fu SH, 2018, INT J INFORM MANAGE, V40, P88, DOI 10.1016/j.ijinfomgt.2018.01.013 Fyrberg A, 2009, J SERV MANAGE, V20, P420, DOI 10.1108/09564230910978511 Gilbert MH, 2011, EUR REV APPL PSYCHOL, V61, P195, DOI 10.1016/j.erap.2011.09.001 Mieres CG, 2006, EUR J MARKETING, V40, P61, DOI 10.1108/03090560610637310 Gray DE, 2003, SOC SCI MED, V56, P631, DOI 10.1016/S0277-9536(02)00059-X Grewal D, 2020, J RETAILING, V96, P3, DOI 10.1016/j.jretai.2020.02.002 Guo YM, 2009, INFORM SYST J, V19, P369, DOI 10.1111/j.1365-2575.2007.00292.x Gurviez P., 2002, RECHERCHE APPL MARKE, V17, P41, DOI DOI 10.1177/076737010201700304 Hair J.F., 2009, Multivariate data analysis Hamari J, 2014, COMPUT HUM BEHAV, V40, P133, DOI 10.1016/j.chb.2014.07.048 Handayani W., 2018, Management Science Letters, V8, P283, DOI DOI 10.5267/J.MSL.2018.4.019 Hashmi FK, 2020, J RELIG HEALTH, V59, P2697, DOI 10.1007/s10943-020-01063-y Hassan L, 2019, INT J INFORM MANAGE, V46, P151, DOI 10.1016/j.ijinfomgt.2018.12.004 Hassani Naghmeh Sheikh, 2021, International Journal of Business Innovation and Research, V25, P242, DOI 10.1504/IJBIR.2021.115459 Hetzel P, 2002, REV FRANCAISE MARKET, V187, P61 Hirschman E.C., 1986, PERSPECTIVES METHODO, P213 Hirschman E.C., 1989, MEANING CHRISTMAS Hoffman DL, 1996, J MARKETING, V60, P50, DOI 10.2307/1251841 Hoffman DL, 2009, J INTERACT MARK, V23, P23, DOI 10.1016/j.intmar.2008.10.003 Holdack E, 2022, J RETAIL CONSUM SERV, V65, DOI 10.1016/j.jretconser.2020.102259 Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Horst M, 2007, COMPUT HUM BEHAV, V23, P1838, DOI 10.1016/j.chb.2005.11.003 Hostler RE, 2011, INFORM MANAGE-AMSTER, V48, P336, DOI 10.1016/j.im.2011.08.002 Hsu CL, 2007, COMPUT HUM BEHAV, V23, P1642, DOI 10.1016/j.chb.2005.09.001 Hsu CL, 2004, INFORM MANAGE-AMSTER, V41, P853, DOI 10.1016/j.im.2003.08.014 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Huang YC, 2016, INT J TOUR RES, V18, P116, DOI 10.1002/jtr.2038 Hwang YJ, 2007, DECIS SUPPORT SYST, V43, P746, DOI 10.1016/j.dss.2006.12.008 Iacobucci D., 2008, MEDIATION ANAL Ibarra-Cantu C, 2021, J BUS RES, V134, P70, DOI 10.1016/j.jbusres.2021.05.012 Itani OS, 2020, IND MARKET MANAG, V90, P264, DOI 10.1016/j.indmarman.2020.07.015 Jacobson J, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.001 Jacoby Jacob., 1972, ACR SPECIAL VOLUMES, DOI DOI 10.4337/9781843768708.00081 Jafari-Sadeghi V, 2021, J BUS RES, V124, P100, DOI 10.1016/j.jbusres.2020.11.020 Jahan N., 2021, Prince Sultan University Research Review, V5, P85, DOI [DOI 10.1108/PRR-12-2019-0036, 10.1108/PRR-12-2019-0036] Javornik A, 2016, J RETAIL CONSUM SERV, V30, P252, DOI 10.1016/j.jretconser.2016.02.004 Jeffrey Scott A., 2007, Electronic Commerce Research, V7, P367, DOI 10.1007/s10660-007-9011-8 Jin CH, 2014, COMPUT HUM BEHAV, V39, P29, DOI 10.1016/j.chb.2014.06.022 Johnstone Micael-Lee., 2005, Journal of Consumer Behaviour, V4, P234, DOI DOI 10.1002/CB.11 KAHNEMAN D, 1979, COGNITION, V7, P409, DOI 10.1016/0010-0277(79)90024-6 KAPLAN LB, 1974, J APPL PSYCHOL, V59, P287, DOI 10.1037/h0036657 Kapoor R, 2018, MEASUREMENT, V120, P52, DOI 10.1016/j.measurement.2018.02.008 Kasap Z, 2009, IEEE COMPUT GRAPH, V29, P20, DOI 10.1109/MCG.2009.26 Kätsyri J, 2020, NEUROIMAGE, V204, DOI 10.1016/j.neuroimage.2019.116216 Kauffman RJ, 2001, INT J ELECTRON COMM, V5, P5, DOI 10.1080/10864415.2001.11044222 Kegel LC, 2020, SOC COGN AFFECT NEUR, V15, P347, DOI 10.1093/scan/nsaa039 Kim DJ, 2008, DECIS SUPPORT SYST, V44, P544, DOI 10.1016/j.dss.2007.07.001 Kim J, 2008, J INTERACT MARK, V22, P45, DOI 10.1002/dir.20113 Klerck D, 2007, PSYCHOL MARKET, V24, P171, DOI 10.1002/mar.20157 KOTLER P, 1974, J MARKETING, V38, P20, DOI 10.2307/1249846 KOTLER P, 1974, J RETAILING, V49, P48 Kozinets RV, 2021, J MARKETING, V85, P156, DOI 10.1177/0022242920972933 Kuppelwieser VG, 2021, J BUS RES, V126, P624, DOI 10.1016/j.jbusres.2020.01.042 Laranjo L, 2018, J AM MED INFORM ASSN, V25, P1248, DOI 10.1093/jamia/ocy072 Laroche M, 1996, J BUS RES, V37, P115, DOI 10.1016/0148-2963(96)00056-2 Lee JW, 2019, EUR J MARKETING, V53, P1125, DOI 10.1108/EJM-12-2016-0788 Lee MC, 2010, INT J HUM-COMPUT INT, V26, P601, DOI 10.1080/10447311003781318 Lemoine J.F., 2008, Revue Francaise du Marketing, V217, P45 Lemoine J-F., 2011, Decisions Marketing, V31, P47 Lennon SJ, 2007, PSYCHOL MARKET, V24, P375, DOI 10.1002/mar.20165 Leong LY, 2017, INTERNET RES, V27, P786, DOI 10.1108/IntR-04-2016-0107 Li H., 2001, Journal of Interactive Marketing, V15, P13, DOI [https://doi.org/10.1002/dir.1013, DOI 10.1002/DIR.1013, 10.1002/dir.1013] Li J, 2015, INT J HUM-COMPUT ST, V77, P23, DOI 10.1016/j.ijhcs.2015.01.001 Li XG, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2021.106680 Liang CC, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2020.102434 Lin KY, 2011, COMPUT HUM BEHAV, V27, P1152, DOI 10.1016/j.chb.2010.12.009 Lin XL, 2020, INT J INFORM MANAGE, V50, P45, DOI 10.1016/j.ijinfomgt.2019.05.004 Liu YW, 2017, PERS INDIV DIFFER, V104, P224, DOI 10.1016/j.paid.2016.08.011 Lobova SV, 2020, J INTELLECT CAP, V21, P623, DOI 10.1108/JIC-11-2019-0277 Lowry PB, 2013, J ASSOC INF SYST, V14, P617 Luna-Arocas R., 2000, INT J ORG THEORY BEH, V13, P55 LURIGIO AJ, 1985, J PERS SOC PSYCHOL, V48, P1112, DOI 10.1037/0022-3514.48.5.1112 Lusch RF, 2015, MIS QUART, V39, P155 Macedonia M, 2014, MIND BRAIN EDUC, V8, P74, DOI 10.1111/mbe.12047 Maff esoli, 1990, TELOS, V85, P89, DOI DOI 10.3817/0990085089 Mao LL, 2015, J INTEGR AGR, V14, P1542, DOI 10.1016/S2095-3119(15)61039-5 Marschner L, 2015, INT J PSYCHOPHYSIOL, V97, P85, DOI 10.1016/j.ijpsycho.2015.05.007 McCarthy M, 2005, FOOD QUAL PREFER, V16, P435, DOI 10.1016/j.foodqual.2004.08.003 MEREDITH W, 1992, PSYCHOMETRIKA, V57, P289, DOI 10.1007/BF02294510 MEYERSLEVY J, 1991, J MARKETING RES, V28, P84, DOI 10.2307/3172728 Milfont TL, 2010, INT J PSYCHOL RES, V3, P111 Mishra AS, 2015, PSYCHOL MARKET, V32, P1158, DOI 10.1002/mar.20846 Mitchell V.W., 1999, EUR J MARKETING, V33, P163, DOI [10.1108/03090569910249229, DOI 10.1108/03090569910249229] Mohan G, 2013, EUR J MARKETING, V47, P1711, DOI 10.1108/EJM-03-2011-0110 Molinillo S, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2020.102404 Moncrief WC, 2000, J BUS RES, V49, P245, DOI 10.1016/S0148-2963(99)00019-3 Nghia HT, 2022, ASIA PAC J MARKET LO, V34, P594, DOI 10.1108/APJML-09-2020-0668 Norouzi* N., 2019, S SPATIAL USER INTER, P1, DOI DOI 10.1007/978-3-030-04110-6_1 Novak TP, 2019, J ACAD MARKET SCI, V47, P216, DOI 10.1007/s11747-018-0608-3 Novak TP, 2000, MARKET SCI, V19, P22, DOI 10.1287/mksc.19.1.22.15184 Nowak KL, 2018, REV COMMUN RES, V6, P30, DOI 10.12840/issn.2255-4165.2018.06.01.015 O'Keefe DJ, 2003, COMMUN THEOR, V13, P251, DOI 10.1111/j.1468-2885.2003.tb00292.x Ong EYL, 2011, PERS INDIV DIFFER, V50, P180, DOI 10.1016/j.paid.2010.09.022 Oppenheimer DM, 2009, J EXP SOC PSYCHOL, V45, P867, DOI 10.1016/j.jesp.2009.03.009 Otnes C, 2001, J RETAILING, V77, P111, DOI 10.1016/S0022-4359(00)00047-6 Paavilainen J, 2013, SIMULAT GAMING, V44, P794, DOI 10.1177/1046878113514808 Pandey S, 2018, INT J RETAIL DISTRIB, V46, P323, DOI 10.1108/IJRDM-01-2017-0005 Pantano E., 2014, Procedia Environmental Science, V22, P101, DOI [10.1016/j.proenv.2014.11.010, DOI 10.1016/J.PROENV.2014.11.010] Pantano E, 2012, J RETAIL CONSUM SERV, V19, P279, DOI 10.1016/j.jretconser.2012.02.002 Pantano Eleonora, 2012, Journal of Technology Management & Innovation, V7, P1 Pantano E, 2010, J RETAIL CONSUM SERV, V17, P200, DOI 10.1016/j.jretconser.2010.03.010 Parboteeah DV, 2009, INFORM SYST RES, V20, P60, DOI 10.1287/isre.1070.0157 Pe-Than EPP, 2014, COMPUT HUM BEHAV, V39, P88, DOI 10.1016/j.chb.2014.06.023 Petrick J. F., 2004, Journal of Travel Research, V42, P397, DOI 10.1177/0047287504263037 Pitt CS, 2020, EUR J MARKETING, V54, P305, DOI 10.1108/EJM-01-2019-0083 POLEGATO R, 1994, J CONSUM AFF, V28, P278, DOI 10.1111/j.1745-6606.1994.tb00852.x Ponsignon F, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100723 POORTINGA YH, 1987, J CROSS CULT PSYCHOL, V18, P259, DOI 10.1177/0022002187018003001 Pras B., 2009, MARKET FONDEMENTS ME Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Pura M., 2005, MANAG SERV QUAL, V15, P509, DOI [10.1108/09604520510634005, DOI 10.1108/09604520510634005] Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Ramaswamy VenkatFrancis Gouillart., 2010, POWER COCREATION BUI Rauschnabel Philipp A., 2016, International Journal of Technology Marketing, V11, P123 Rentschler R., 1996, Accounting, Auditing Accountability Journal, V9, P100, DOI DOI 10.1108/09513579610151971 Rese A, 2017, TECHNOL FORECAST SOC, V124, P306, DOI 10.1016/j.techfore.2016.10.010 Rihova I, 2015, INT J TOUR RES, V17, P356, DOI 10.1002/jtr.1993 Rook DW, 1995, J CONSUM RES, V22, P305, DOI 10.1086/209452 ROOK DW, 1987, J CONSUM RES, V14, P189, DOI 10.1086/209105 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 ROSENTHAL R, 1995, PSYCHOL BULL, V118, P183, DOI 10.1037/0033-2909.118.2.183 Sachs JD, 2019, NAT SUSTAIN, V2, P805, DOI 10.1038/s41893-019-0352-9 Martín SS, 2011, ELECTRON MARK, V21, P267, DOI 10.1007/s12525-011-0074-y Sarah FH, 2021, J INTERNET COMMER, V20, P25, DOI 10.1080/15332861.2020.1836593 Satyavani B., 2018, J BUSINESS MANAGEMEN, V20, P77, DOI DOI 10.9790/487X-2008047783 Schlosser AE, 2006, J MARKETING, V70, P133, DOI 10.1509/jmkg.70.2.133 Schmidt S, 2019, COMPUT GRAPH-UK, V83, P1, DOI 10.1016/j.cag.2019.06.002 Schmitt N, 1996, PSYCHOL ASSESSMENT, V8, P350, DOI 10.1037/1040-3590.8.4.350 Septianto F, 2019, J BUS RES, V99, P12, DOI 10.1016/j.jbusres.2019.02.021 Shaw N, 2019, INT J INFORM MANAGE, V45, P44, DOI 10.1016/j.ijinfomgt.2018.10.024 SHETH JN, 1991, J BUS RES, V22, P159, DOI 10.1016/0148-2963(91)90050-8 Shiau WL, 2018, INT J INFORM MANAGE, V43, P52, DOI 10.1016/j.ijinfomgt.2018.06.006 Shin DH, 2008, CYBERPSYCHOL BEHAV, V11, P378, DOI 10.1089/cpb.2007.0117 Shin DH, 2011, COMPUT HUM BEHAV, V27, P852, DOI 10.1016/j.chb.2010.11.010 Shin DH, 2010, INT J HUM-COMPUT INT, V26, P317, DOI 10.1080/10447310903575473 Sigala M., 2006, Managing Service Quality: An International Journal, V16, P395, DOI [10.1108/09604520610675720/FULL/PDF, DOI 10.1108/09604520610675720] Sin, 2020, HUM-COMPUT INTERACT, V45, P1, DOI [https://doi.org/10.1080/07370024.2020.1731696, DOI 10.1080/07370024.2020.1731696] Sin J, 2020, HUM-COMPUT INTERACT, V35, P481, DOI 10.1080/07370024.2020.1731690 Smith JB, 2007, J MARKET THEORY PRAC, V15, P7, DOI 10.2753/MTP1069-6679150101 Söderlund GBW, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00034 Spence J. T., 1979, Masculinity and femininity: Their psychological dimensions, correlates, and antecedents STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Sun NY, 2021, COMPUT HUM BEHAV REP, V4, DOI 10.1016/j.chbr.2021.100146 Sweeney JC, 2001, J RETAILING, V77, P203, DOI 10.1016/S0022-4359(01)00041-0 Sweetser P., 2005, COMPUTERS ENTERTAINM, V3, P1 Tam JLM, 2012, MARK INTELL PLAN, V30, P33, DOI 10.1108/02634501211193903 TAYLOR MC, 1982, PSYCHOL BULL, V92, P347, DOI 10.1037/0033-2909.92.2.347 TAYLOR SA, 1994, J RETAILING, V70, P163, DOI 10.1016/0022-4359(94)90013-2 Thaichon P, 2018, J PERS SELL SALES M, V38, P277, DOI 10.1080/08853134.2018.1441718 Trepte S, 2012, COMPUT HUM BEHAV, V28, P832, DOI 10.1016/j.chb.2011.12.003 Tsichla E., 2014, J MARK COMMUN, V22, P563, DOI [10.1080/13527266.2014.903507, DOI 10.1080/13527266.2014.903507] Tuu HH, 2009, ASIA PAC J MARKET LO, V21, P521, DOI 10.1108/13555850910997571 Uysal E, 2022, J ACAD MARKET SCI, V50, P1153, DOI 10.1007/s11747-022-00856-9 Vaitonyt J., 2021, COMPUT HUM BEHAV, V3 Van den Poel D, 1999, J BUS RES, V45, P249, DOI 10.1016/S0148-2963(97)00236-1 van der Heijden H, 2004, MIS QUART, V28, P695, DOI 10.2307/25148660 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Venkatesh V, 2000, MIS QUART, V24, P115, DOI 10.2307/3250981 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Viot C., 2014, D CISIONS MARKETING, V65, P45 Vitale G, 2020, J MANAG CONTROL, V31, P123, DOI 10.1007/s00187-020-00298-w Vorderer P, 2004, COMMUN THEOR, V14, P388, DOI 10.1111/j.1468-2885.2004.tb00321.x WALSH J, 2000, EUROPEAN MANAGEMENT, V18, P85, DOI [DOI 10.1016/S0263-2373(99)00071-7, 10.1016/S0263-2373(99)00071-7] Wang FY, 2007, IEEE INTELL SYST, V22, P79, DOI 10.1109/MIS.2007.41 Wang H, 2016, J BUS RES, V69, P3827, DOI 10.1016/j.jbusres.2016.04.007 Wang W, 2019, COMPUT HUM BEHAV, V93, P176, DOI 10.1016/j.chb.2018.12.007 Wei PS, 2014, INTERNET RES, V24, P313, DOI 10.1108/IntR-04-2013-0082 Weigel P, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9245350 Weiser EB, 2000, CYBERPSYCHOL BEHAV, V3, P167, DOI 10.1089/109493100316012 Wells JD, 2011, J ASSOC INF SYST, V12, P32 Wiese E, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.01663 WOOLDRIDGE M, 1995, KNOWL ENG REV, V10, P115, DOI 10.1017/S0269888900008122 Wu IL, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2020.102099 Wu IL, 2016, INT J INFORM MANAGE, V36, P284, DOI 10.1016/j.ijinfomgt.2015.11.015 Wu J., 2007, Journal of Electronic Commerce Research, V8, P128, DOI DOI 10.4018/JEBR.2012070103 Wu KW, 2015, J RETAIL CONSUM SERV, V25, P36, DOI 10.1016/j.jretconser.2015.03.007 Xiao SH, 2013, INT J MANAG REV, V15, P333, DOI 10.1111/j.1468-2370.2012.00345.x Xu YR, 2002, IND MANAGE DATA SYST, V102, P442, DOI 10.1108/02635570210445871 Yan ZJ, 2016, INFORM MANAGE-AMSTER, V53, P643, DOI 10.1016/j.im.2016.02.001 Yüksel A, 2007, TOURISM MANAGE, V28, P703, DOI 10.1016/j.tourman.2006.04.025 ZEITHAML VA, 1985, J MARKETING, V49, P64, DOI 10.2307/1251616 Montenegro JLZ, 2019, EXPERT SYST APPL, V129, P56, DOI 10.1016/j.eswa.2019.03.054 Zhang KZK, 2018, INTERNET RES, V28, P522, DOI 10.1108/IntR-12-2016-0377 Zhao F, 2016, INNOVATION, ENTREPRENEURSHIP AND DIGITAL ECOSYSTEMS, P2156 Zhao X., 2011, Recherche et Applications en Marketing, V26, P81, DOI [10.1177/076737011102600105, DOI 10.1177/076737011102600105] Zheng XB, 2019, INT J INFORM MANAGE, V48, P151, DOI 10.1016/j.ijinfomgt.2019.02.010 Zhou LN, 2013, ELECTRON COMMER R A, V12, P61, DOI 10.1016/j.elerap.2013.02.003 Zhu K, 2006, EUR J INFORM SYST, V15, P601, DOI 10.1057/palgrave.ejis.3000650 NR 277 TC 9 Z9 9 U1 29 U2 89 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0309-0566 EI 1758-7123 J9 EUR J MARKETING JI Eur. J. Market. PD FEB 13 PY 2023 VL 57 IS 3 SI SI BP 858 EP 903 DI 10.1108/EJM-11-2021-0892 EA NOV 2022 PG 46 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 9B9AS UT WOS:000882762200001 DA 2024-03-27 ER PT J AU Deng, YP Zheng, JY Khern-Am-Nuai, W Kannan, K AF Deng, Yipu Zheng, Jinyang Khern-Am-Nuai, Warut Kannan, Karthik TI More than the Quantity: The Value of Editorial Reviews for a User-Generated Content Platform SO MANAGEMENT SCIENCE LA English DT Article DE natural language processing; editorial review; user-generated content; difference-in-differences; herding effect ID WORD-OF-MOUTH; NEGATIVE REVIEWS; FILM-CRITICS; ONLINE; PRODUCT; IMPACT; INFORMATION; BEHAVIOR; RATINGS; COMMUNITY AB We investigate an editorial review program for which a review platform supplements user reviews with editorial ones written by professional writers. Specifically, we examine whether and how editorial reviews influence subsequent user reviews (reviews written by noneditor reviewers). A quasiexperiment conducted on a leading review platform in Asia, based on several econometric and natural language processing techniques, yields empirical evidence of an overall positive effect of editorial reviews on subsequent user reviews from the platform's perspective. First, more reviews are provided for restaurants that receive editorial reviews. In addition, these reviews discuss substantive topics while also including a discussion on other topics, leading to a net increase in content length and variety. They also are more neutral in sentiment and are associated with lower rating valences. Further analysis of the mechanism reveals that the subsequent user reviews of the restaurants that receive editorial reviews become more similar to the editorial reviews in regard to topics, sentiment/rating, length, and readability, indicating a herding effect in how to write a review as the main driver of the change in the subsequent reviews. We further empirically isolate this herding effect among long-time reviewers. The findings suggest that review platforms could use an editorial review program not only to boost the quantitative aspect of user reviews but also, to manage the qualitative aspect as well. C1 [Deng, Yipu] Univ Hong Kong, Fac Business & Econ, Hong Kong, Peoples R China. [Zheng, Jinyang; Kannan, Karthik] Purdue Univ, Krannert Sch Management, West Lafayette, PA 47907 USA. [Khern-Am-Nuai, Warut] McGill Univ, Desautels Fac Management, Montreal, PQ H3A IG5, Canada. C3 University of Hong Kong; Purdue University System; Purdue University; McGill University RP Deng, YP (autor correspondiente), Univ Hong Kong, Fac Business & Econ, Hong Kong, Peoples R China. EM yipudeng@hku.hk; zhengjy@purdue.edu; warut.khern-am-nuai@mcgill.ca; kkarthik@purdue.edu RI Kannan, Dr. Karthik/X-8987-2019; Khern-am-nuai, Warut/B-8633-2018 OI Kannan, Dr. Karthik/0000-0001-5438-2460; Khern-am-nuai, Warut/0000-0002-1028-1593; Deng, Yipu/0000-0003-0924-8689; Zheng, Jinyang/0000-0001-5028-4193 FU Social Sciences and Humanities Research Council [435-2020-0163] FX The authors acknowledge financial support fromthe Social Sciences and Humanities Research Council [Grant 435-2020-0163]. CR Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Autor DH, 2003, J LABOR ECON, V21, P1, DOI 10.1086/344122 Basuroy S, 2003, J MARKETING, V67, P103, DOI 10.1509/jmkg.67.4.103.18692 Bateman PJ, 2011, INFORM SYST RES, V22, P841, DOI 10.1287/isre.1090.0265 Berger J, 2010, MARKET SCI, V29, P815, DOI 10.1287/mksc.1090.0557 Bertrand M, 2004, Q J ECON, V119, P249, DOI 10.1162/003355304772839588 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Burtch G, 2022, Management Sci. Burtch G, 2018, MANAGE SCI, V64, P2065, DOI 10.1287/mnsc.2016.2715 Cabral L, 2015, MANAGE SCI, V61, P2052, DOI 10.1287/mnsc.2014.2074 Cai HB, 2009, AM ECON REV, V99, P864, DOI 10.1257/aer.99.3.864 Cao J, 2009, NEUROCOMPUTING, V72, P1775, DOI 10.1016/j.neucom.2008.06.011 Chan J, 2014, MIS QUART, V38, P955, DOI 10.25300/MISQ/2014/38.4.01 Cheema A, 2010, J MARKETING RES, V47, P553, DOI 10.1509/jmkr.47.3.553 Chen Y, 2010, AM ECON REV, V100, P1358, DOI 10.1257/aer.100.4.1358 Chen YB, 2005, MARKET SCI, V24, P218, DOI 10.1287/mksc.1040.0089 Chen YB, 2012, J MARKETING, V76, P116, DOI 10.1509/jm.09.0034 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Cui RM, 2019, MANAGE SCI, V65, P1216, DOI 10.1287/mnsc.2017.2950 Dellarocas C, 2003, MANAGE SCI, V49, P1407, DOI 10.1287/mnsc.49.10.1407.17308 Diestre L, 2020, MANAGE SCI, V66, P3677, DOI 10.1287/mnsc.2019.3386 Eliashberg J, 1997, J MARKETING, V61, P68, DOI 10.2307/1251831 Geetha M, 2017, TOURISM MANAGE, V61, P43, DOI 10.1016/j.tourman.2016.12.022 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Goes PB, 2014, INFORM SYST RES, V25, P222, DOI 10.1287/isre.2013.0512 Goh KY, 2013, INFORM SYST RES, V24, P88, DOI 10.1287/isre.1120.0469 Griffiths TL, 2004, P NATL ACAD SCI USA, V101, P5228, DOI 10.1073/pnas.0307752101 Ho YC, 2017, INFORM SYST RES, V28, P626, DOI 10.1287/isre.2017.0694 Hosanagar K, 2014, MANAGE SCI, V60, P805, DOI 10.1287/mnsc.2013.1808 Hu N, 2009, COMMUN ACM, V52, P144, DOI 10.1145/1562764.1562800 Huang N, 2019, MANAGE SCI, V65, P327, DOI 10.1287/mnsc.2017.2944 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Jiang Y, 2020, INFORM SYST RES, V31, P715, DOI 10.1287/isre.2019.0909 Jin GZ, 2003, Q J ECON, V118, P409, DOI 10.1162/003355303321675428 Khern-am-nuai W, 2018, INFORM SYST RES, V29, P871, DOI 10.1287/isre.2017.0750 Lappas T, 2016, INFORM SYST RES, V27, P940, DOI 10.1287/isre.2016.0674 Lee YJ, 2015, MANAGE SCI, V61, P2241, DOI 10.1287/mnsc.2014.2082 Lee YJ, 2013, J MANAGE INFORM SYST, V30, P213, DOI 10.2753/MIS0742-1222300308 Ma M, 2007, INFORM SYST RES, V18, P42, DOI 10.1287/isre.1070.0113 MANSKI CF, 1993, REV ECON STUD, V60, P531, DOI 10.2307/2298123 MARSH C, 1985, BRIT J POLIT SCI, V15, P51, DOI 10.1017/S0007123400004063 Mayzlin D, 2014, AM ECON REV, V104, P2421, DOI 10.1257/aer.104.8.2421 McKinney V, 2002, INFORM SYST RES, V13, P296, DOI 10.1287/isre.13.3.296.76 Moe WW, 2012, MARKET SCI, V31, P372, DOI 10.1287/mksc.1110.0662 Moe WW, 2011, J MARKETING RES, V48, P444, DOI 10.1509/jmkr.48.3.444 Moffitt Robert A., 2001, Social dynamics, DOI DOI 10.7551/MITPRESS/6294.003.0005 Nair HS, 2010, J MARKETING RES, V47, P883, DOI 10.1509/jmkr.47.5.883 Özpolat K, 2013, INFORM SYST RES, V24, P1100, DOI 10.1287/isre.2013.0489 Pamuru V, 2021, INFORM SYST RES, V32, P950, DOI 10.1287/isre.2021.1004 Qiao D, 2017, P 50 HAW INT C SYST, V7, P1 Ransbotham S, 2019, MARKET SCI, V38, P773, DOI 10.1287/mksc.2018.1115 Reddy SK, 1998, J MARKETING RES, V35, P370, DOI 10.2307/3152034 Schlosser AE, 2005, J CONSUM RES, V32, P260, DOI 10.1086/432235 Shaffer G, 2002, MARKET SCI, V21, P273, DOI 10.1287/mksc.21.3.273.137 Tirole J, 1988, THEORY IND ORG Xu KQ, 2017, MANAGE SCI, V63, P1469, DOI 10.1287/mnsc.2015.2406 Yazdani E, 2018, MARKET SCI, V37, P838, DOI 10.1287/mksc.2018.1101 Yin DZ, 2016, INFORM SYST RES, V27, P131, DOI 10.1287/isre.2015.0617 Yu Y, 2022, MIS Quart Zeng XH, 2013, INFORM SYST RES, V24, P71, DOI 10.1287/isre.1120.0464 Zhang JJ, 2012, MANAGE SCI, V58, P892, DOI 10.1287/mnsc.1110.1459 Zhang XQ, 2011, AM ECON REV, V101, P1601, DOI 10.1257/aer.101.4.1601 Zhao WZ, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/1471-2105-16-S13-S8 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 65 TC 13 Z9 13 U1 32 U2 113 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD SEP PY 2022 VL 68 IS 9 BP 6865 EP 6888 DI 10.1287/mnsc.2021.4238 EA DEC 2021 PG 24 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA R5JR4 UT WOS:000828467900001 DA 2024-03-27 ER PT J AU Economides, AA Grousopoulou, A AF Economides, Anastasios A. Grousopoulou, Amalia TI Use of mobile phones by male and female Greek students SO INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS LA English DT Article DE analysis of questionnaire; cell phone; gender difference; handheld device; higher education; mobile communications; mobile device; mobile phone; Personal Digital Assistant; PDA; smart phone; user experience ID INTERNET USE; GENDER; TECHNOLOGY; USAGE; TIME AB Mobile technology is a continuously growing domain, and research activities regarding its use are quite intensive. A questionnaire regarding the use of mobile devices was developed and distributed to 416 students in it Greek University. There were completed 384 questionnaires. The results revealed that students Use their mobiles mostly for phone calls and Short Message Service (SMS). They also tend to use their mobiles to take photos and activate the reminder. However, they do not deal with many of the devices' operations. They use their mobiles to communicate (telephone, SMS and e-mail) mostly with their boy/girl friend, then with their friends. They use their mobiles mostly at home, then at the University. Also, they consider health issues as the main reason to limit the use of their mobiles. Finally, there was not a statistically significant relationship between genders and their preferences. C1 [Economides, Anastasios A.; Grousopoulou, Amalia] Univ Macedonia, Dept Informat Syst, Thessaloniki 54006, Greece. C3 University of Macedonia RP Economides, AA (autor correspondiente), Univ Macedonia, Dept Informat Syst, Egnatia 156, Thessaloniki 54006, Greece. EM economid@uom.gr; amalia.grous@hotmail.com RI Economides, Anastasios A/F-8585-2012 OI Economides, Anastasios A/0000-0001-8056-1024 CR Anderson P., 2004, JISC TECHNOLOGY STAN Attewell J., 2004, MOBILE TECHNOLOGIES Auter P. J., 2007, International Journal of Mobile Communications, V5, P139, DOI 10.1504/IJMC.2007.011813 BIMBER B, 2000, SOCIAL SCI Q, V81, P858 Boneva B, 2001, AM BEHAV SCI, V45, P530, DOI 10.1177/00027640121957204 Brenner V, 1997, PSYCHOL REP, V80, P879, DOI 10.2466/pr0.1997.80.3.879 Brown B, 2002, COMP SUPP COMP W SER, P3 Campbell SW, 2006, COMMUN EDUC, V55, P280, DOI 10.1080/03634520600748573 CAMPBELL SW, 2004, P ANN M NAT COMM ASS Cheung W, 2005, BRIT J EDUC TECHNOL, V36, P237, DOI 10.1111/j.1467-8535.2005.00455.x COLLIS BA, 1987, J EDUC RES, V81, P17, DOI 10.1080/00220671.1987.10885792 *COMSC, 2007, MOR ON Q WIR SUBSCR Cutshall R, 2006, EDUC TECHNOL SOC, V9, P112 DIVITINI M, 2002, IEEE WORKSH WMTE 02 DORING N, 2004, SENSE PLACE GLOBAL L, P209 Goodson P, 2001, ARCH SEX BEHAV, V30, P101, DOI 10.1023/A:1002724116437 Green N, 2002, INFORM SOC, V18, P281, DOI 10.1080/01972240290075129 ITU, 2006, WORLD TEL IND *ITU MIC, 2004, P WORKSH SHAP FUT MO Jackson LA, 2001, SEX ROLES, V44, P363, DOI 10.1023/A:1010937901821 Jennings S. E., 2001, Journal of Educational Computing Research, V25, P367 Katz J., 2005, A sense of place: The global and the local in mobile communication, P305 Lee H, 2002, INFORM SOC, V18, P235, DOI 10.1080/01972240290075084 Li N, 2007, COMPUT EDUC, V48, P301, DOI 10.1016/j.compedu.2005.01.007 LING R, 2000, ADOPTION MOBILE TELE LIUKKUNEN K, 2005, P WORLD C ED MULT HY, P1579 Makrakis V, 1996, COMPUT EDUC, V26, P225, DOI 10.1016/0360-1315(95)00085-2 McDonough K, 2006, TURK ONLINE J DISTAN, V7, P153 *MED REP WOM, 2000, MED REP WOM, V28, P1 Mifsud L., 2004, RES USE HANDHELD TEC Mitra A, 2005, J COMPUT-MEDIAT COMM, V10 Newburger EricC., 1999, COMPUTER USE US Odell PM, 2000, CYBERPSYCHOL BEHAV, V3, P855, DOI 10.1089/10949310050191836 Ono H, 2003, SOC SCI QUART, V84, P111, DOI 10.1111/1540-6237.t01-1-8401007 Petruk S, 2007, RNA BIOL, V4, P1 Saunders B., 2002, Educational Technology and Society, V5, P1436 Scornavacca E., 2006, International Journal of Mobile Communications, V4, P558 Selwyn N, 2007, BRIT J EDUC TECHNOL, V38, P744, DOI 10.1111/j.1467-8535.2006.00659.x Sharples M, 2000, COMPUT EDUC, V34, P177, DOI 10.1016/S0360-1315(99)00044-5 Shashaani L, 2001, COMPUT EDUC, V37, P363, DOI 10.1016/S0360-1315(01)00059-8 Shaw LH, 2002, CYBERPSYCHOL BEHAV, V5, P517, DOI 10.1089/109493102321018150 Sismanidis E., 2007, UBIQUITOUS COMPUTING, V2, P27 Smith B.N., 1996, Education, V117, P188 Sugai P., 2007, International Journal of Mobile Communications, V5, P281, DOI 10.1504/IJMC.2007.012395 Switzer S., 2005, ISSUES INFORM SYSTEM, VVI, P127 *TMG, 2005, PRIM MOB TERM RAT *TMG, 2004, SUP MOB INT TOP 10 M Triantafillou E., 2008, INT J WEB BASED LEAR, V3, P13 Trifonova A., 2006, International Journal of Mobile Communications, V4, P459, DOI 10.1504/IJMC.2006.008952 Trifonova A., 2004, P IEEE INT C ADV LEA Trifonova A., 2006, WSEAS Transactions on Advances in Engineering Educatio, V3, P1790 Turel O, 2006, TELECOMMUN POLICY, V30, P314, DOI 10.1016/j.telpol.2005.10.003 Vahey P., 2002, PALM ED PIONEERS PRO Vasiliou A., 2007, International Journal of Mobile Communications, V5, P423, DOI 10.1504/IJMC.2007.012789 *VNUN, 2006, PICT MESS STILL TOO Waycott J, 2003, PERS UBIQUIT COMPUT, V7, P30, DOI 10.1007/s00779-002-0211-x Wei R., 1999, TELEMAT INFORM, V16, P11, DOI [10.1016/S0736-5853(99)00016-7, DOI 10.1016/S0736-5853(99)00016-7] WILSON T, 2000, INTERNETWEEK, V28, P827 Wireless Intelligence, 2005, WIR INT MARK DAT AN Zhang YX, 2002, CYBERPSYCHOL BEHAV, V5, P143, DOI 10.1089/109493102753770534 2005, MOBILEDIA NEWS NR 61 TC 37 Z9 43 U1 0 U2 30 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1470-949X EI 1741-5217 J9 INT J MOB COMMUN JI Int. J. Mob. Commun. PY 2008 VL 6 IS 6 BP 729 EP 749 DI 10.1504/IJMC.2008.019822 PG 21 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA 384WF UT WOS:000261774200005 DA 2024-03-27 ER PT J AU Paas, LJ AF Paas, Leonard J. TI Marketing analytics stages: Demystifying and deploying machine learning SO INTERNATIONAL JOURNAL OF MARKET RESEARCH LA English DT Article DE big data; machine learning; artificial intelligence; business applications; data maturity ID CUSTOMER LIFETIME VALUE; PATTERNS; ACQUISITION; MARKOV; TIME AB Organisations that develop analytical capabilities can leverage advanced data platforms and cloud-based solutions; they may also experiment with sophisticated machine learning algorithms. But when business analysts or data scientists fail to bridge the gaps among data, analytics, and decision-making, it might imply a premature implementation of complex data analytics. This article aims to derive clear guidelines from management literature to formulate a stepwise approach for deploying marketing analytics with increasing levels of complexity. Furthermore, we demystify the relevant jargon. C1 [Paas, Leonard J.] Univ Auckland, Business Sch, Auckland, New Zealand. [Paas, Leonard J.] Univ Auckland, Business Sch, Dept Mkt, Post Private Bag 92019, Auckland 1142, New Zealand. C3 University of Auckland; University of Auckland RP Paas, LJ (autor correspondiente), Univ Auckland, Business Sch, Dept Mkt, Post Private Bag 92019, Auckland 1142, New Zealand. EM Leo.Paas@auckland.ac.nz OI Paas, Leo/0000-0002-6611-3038 CR Balducci B, 2018, J ACAD MARKET SCI, V46, P557, DOI 10.1007/s11747-018-0581-x BERGER PD, 1998, J INTERACT MARK, V12, P17 Bhat SA, 2016, INT J BANK MARK, V34, P388, DOI 10.1108/IJBM-11-2014-0160 Birkett A., 2019, 160 DOWNLOADED, V16 Borle S, 2008, MANAGE SCI, V54, P100, DOI 10.1287/mnsc.1070.0746 Bowerman B. L., 2019, BUSINESS STAT ANAL P Breur T., 2000, J DATABASE MARKETING, V8, P9, DOI [10.1057/palgrave.jdm.3240013, DOI 10.1057/PALGRAVE.JDM.3240013] Camm J.D., 2019, BUSINESS ANAL, DOI 10.1109/IS48319.2020.9199954 Chapman P., 1999, CRISP DM10 STEP BY S Chung TS, 2016, J ACAD MARKET SCI, V44, P66, DOI 10.1007/s11747-015-0441-x Coussement K, 2014, J BUS RES, V67, P2751, DOI 10.1016/j.jbusres.2012.09.024 Davenport T., 2018, DOWNLOADED, V28, P2021 Davenport T.H., 2014, Big data at work Davenport Thomas., 2017, Competing on Analytics Ebbes P., 2022, HDB MARKET RES Fader P., 2022, The customer-base audit: The first step on the journey to customer centricity Geertsema P., 2022, SSRN DOWNLOADED, V1, P2022 Golder PN, 2023, J MARKETING, V87, P319, DOI 10.1177/00222429221129200 Hahsler M, 2005, J STAT SOFTW, V14 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 HEBDEN JJ, 1974, OXFORD B ECON STAT, V36, P67 HOMMEL G, 1988, BIOMETRIKA, V75, P383, DOI 10.2307/2336190 Huang MH, 2022, J RETAILING, V98, P209, DOI 10.1016/j.jretai.2021.03.001 Hudson E. A., 2019, DOWNLOADED, V17 Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Juhl HJ, 2017, J CONSUM RES, V44, P519, DOI 10.1093/jcr/ucx052 Kamakura W.A., 1991, INT J RES MARK, V8, P329 Kamakura WA, 2003, STAT NEERL, V57, P46, DOI 10.1111/1467-9574.00220 Kamakura WA, 2012, MARKET LETT, V23, P505, DOI 10.1007/s11002-012-9181-6 Kellar G. M., 2012, ACAD MARKETING STUDI, V16, P87 Kerremans M., 2022, BUILDING DIGITAL FUT Knott A., 2002, J INTERACT MARK, V16, P59, DOI [DOI 10.1002/DIR.10038, 10.1002/dir.10038] Ko KC, 2023, INT J MARKET RES, V65, P402, DOI 10.1177/14707853231158605 Lee SJ, 2023, NEURAL COMPUT APPL, V35, P10945, DOI 10.1007/s00521-023-08276-8 Leenheer J, 2007, INT J RES MARK, V24, P31, DOI 10.1016/j.ijresmar.2006.10.005 Liebman E, 2019, MIS QUART, V43, P765, DOI 10.25300/MISQ/2019/14750 Lipton ZC, 2018, COMMUN ACM, V61, P36, DOI 10.1145/3233231 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Marchand A, 2020, J RETAILING, V96, P328, DOI 10.1016/j.jretai.2020.01.001 MCFALL J, 1969, J MARKETING, V33, P50, DOI 10.2307/1248673 Paas L. J., 1999, J MARKET FOCUSED MAN, V3, P275, DOI [10.1023/a:1009851006779, DOI 10.1023/A:1009851006779] Paas L. J., 1999, J DATABASE MARKETING, V6, P321 Paas LJ, 2007, J R STAT SOC A STAT, V170, P955, DOI 10.1111/j.1467-985X.2007.00478.x Paas LJ, 2021, INT J MARKET RES, V63, P27, DOI 10.1177/1470785320938293 Paas LJ, 1998, J ECON PSYCHOL, V19, P353, DOI 10.1016/S0167-4870(98)00011-7 PAROUSH J, 1965, ECONOMETRICA, V33, P225, DOI 10.2307/1911897 Pauwels K, 2014, It's Not the Size of the Data: It's How You Use it: Smarter Marketing with Analytics and Dashboards Peterson R., 1992, Journal of The Academy of Marketing Science, V20, P61, DOI [DOI 10.1007/BF02723476, 10.1007/BF02723476] Prinzie A, 2006, EUR J OPER RES, V170, P710, DOI 10.1016/j.ejor.2004.05.004 Rivera DS, 2015, J DECIS SYST, V24, P73, DOI 10.1080/12460125.2015.994335 Shankar V, 2022, J ACAD MARKET SCI, V50, P1324, DOI 10.1007/s11747-022-00840-3 Sheth J, 2021, J BUS RES, V125, P780, DOI 10.1016/j.jbusres.2020.04.050 Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994 van der Ark LA, 2012, J STAT SOFTW, V48, P1 Verhoef P. C., 2022, CREATING VALUE DATA Wedel M., 2000, MARKET SEGMENTATION Yang A.X., 2004, J TARGETING MEASUREM, V13, P50, DOI DOI 10.1057/PALGRAVE.JT.5740131 Zhang G., 2006, International Technology and Innovation Conference, P1710 NR 58 TC 0 Z9 0 U1 5 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1470-7853 EI 2515-2173 J9 INT J MARKET RES JI Int. J. Market Res. PD NOV PY 2023 VL 65 IS 6 BP 687 EP 707 DI 10.1177/14707853231191726 EA AUG 2023 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA U5BJ8 UT WOS:001047347200001 DA 2024-03-27 ER PT J AU Kim, D Song, Y Kim, S Lee, S Wu, YQ Shin, J Lee, D AF Kim, Doha Song, Yeosol Kim, Songyie Lee, Sewang Wu, Yanqin Shin, Jungwoo Lee, Daeho TI How should the results of artificial intelligence be explained to users?- Research on consumer preferences in user-centered explainable artificial intelligence SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Explainable artificial intelligence; Explanation interface; User-centered design; User experience; Interpretability; Conjoint analysis ID BLACK-BOX; CONJOINT-ANALYSIS; EXPLANATIONS; CHALLENGES; LIGHT AB Artificial intelligence (AI) has become part of our everyday lives, and its presence and influence are expected to grow exponentially. Regardless of its expanding impact, the perplexing algorithms and processes that drive AI's decision and output can lead to decreased trust, and thus impede the adoption of future AI services. Explainable AI (XAI) in recommender systems has surfaced as a solution that can help users understand how and why an AI recommended a specific product or service. However, there is no standardized explanation method that satisfies users' preferences and needs. Therefore, the main objective of this study is to explore a unified explanation method that centers around human perspective. This study examines the preference for AI interfaces by inves-tigating the components of user-centered explainability, including scope (global and local) and format (text and visualization). A mixed logit model is used to analyze data collected by a conjoint survey. Results show that local explanation and visualization are preferred, and users dislike lengthy textual interfaces. Our findings incorporate the extraction of monetary value from each attribute. C1 [Kim, Doha; Song, Yeosol; Kim, Songyie; Lee, Sewang; Wu, Yanqin; Lee, Daeho] Sungkyunkwan Univ, Dept Human AI Interact, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea. [Lee, Sewang; Lee, Daeho] Sungkyunkwan Univ, Dept Appl Artificial Intelligence, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea. [Lee, Daeho] Sungkyunkwan Univ, Dept Interact Sci, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea. [Shin, Jungwoo] Kyung Hee Univ, Dept Ind & Management Syst Engn, 1732 Deogyeong Daero, Yongin 17104, South Korea. C3 Sungkyunkwan University (SKKU); Sungkyunkwan University (SKKU); Sungkyunkwan University (SKKU); Kyung Hee University RP Lee, D (autor correspondiente), Sungkyunkwan Univ, Dept Human AI Interact, 25-2 Sungkyunkwan Ro, Seoul 03063, South Korea. EM daeho.lee@skku.edu OI Wu, Yanqin/0000-0001-6759-6353; Kim, Doha/0000-0003-3138-3510; Kim, Song Yie/0000-0001-8409-5657 FU Ministry of Education of the Republic of Korea; NRF [2020S1A5A8045556, 2020R1F1A1048202] FX Funding This research was supported by the Ministry of Education of the Republic of Korea and the NRF (No. 2020S1A5A8045556, 2020R1F1A1048202) . CR Adadi A, 2018, IEEE ACCESS, V6, P52138, DOI 10.1109/ACCESS.2018.2870052 Allenby GM, 1999, J ECONOMETRICS, V89, P57 Antona B, 2018, APPL ERGON, V68, P12, DOI 10.1016/j.apergo.2017.10.014 Araujo T, 2020, AI SOC, V35, P611, DOI 10.1007/s00146-019-00931-w Asatiani A, 2020, MIS Q EXEC, V19, P259, DOI 10.17705/2msqe.00037 Bader V, 2019, ORGANIZATION, V26, P655, DOI 10.1177/1350508419855714 Arrieta AB, 2020, INFORM FUSION, V58, P82, DOI 10.1016/j.inffus.2019.12.012 Beaudouin V, 2020, Arxiv, DOI [arXiv:2003.07703, DOI 10.2139/SSRN.3559477] Bond R.R., 2019, HUMAN CTR ARTIFICIAL, P2 Calegari R, 2020, INTELL ARTIF, V14, P7, DOI 10.3233/IA-190036 Champion EM, 2017, DIGIT SCHOLARSH HUM, V32, P25, DOI 10.1093/llc/fqw053 Chung WY, 2022, TELEMAT INFORM, V70, DOI 10.1016/j.tele.2022.101799 Das A., 2020, arXiv Deeney TA, 2010, READ TEACH, V63, P440, DOI 10.1598/RT.63.6.1 Doshi-Velez Finale, 2018, EXPLAINABLE INTERPRE, P3, DOI [DOI 10.1007/978-3-319-98131-4_1, 10.1007/978-3-319-98131-4_1] Durán JM, 2021, J MED ETHICS, V47, P329, DOI [10.1136/medethics-2021-107531, 10.1136/medethics-2020-106820] Ebbers F, 2021, ELECTRON MARK, V31, P411, DOI 10.1007/s12525-020-00447-y Edwards YD, 2003, J MARKETING RES, V40, P321, DOI 10.1509/jmkr.40.3.321.19233 Fang Q, 2014, IEEE T MULTIMEDIA, V16, P796, DOI 10.1109/TMM.2014.2298216 Ferreira Juliana J., 2020, Design, User Experience, and Usability. Design for Contemporary Interactive Environments. 9th International Conference, DUXU 2020 Held as Part of the 22nd HCI International Conference, HCII 2020. Proceedings. Lecture Notes in Computer Science (LNCS 12201), P56, DOI 10.1007/978-3-030-49760-6_4 Gilpin LH, 2018, PR INT CONF DATA SC, P80, DOI 10.1109/DSAA.2018.00018 GREEN PE, 1978, J CONSUM RES, V5, P103, DOI 10.1086/208721 Gregor S, 1999, MIS QUART, V23, P497, DOI 10.2307/249487 Gryz J, 2021, INTERNET POLICY REV, V10, DOI 10.14763/2021.2.1564 Guidotti R, 2019, ACM COMPUT SURV, V51, DOI 10.1145/3236009 Gunning D., 2021, Appl. AI Lett., DOI [DOI 10.1002/AIL2.61, 10.1002/ail2.61] Gunning D, 2019, SCI ROBOT, V4, DOI 10.1126/scirobotics.aay7120 Gunning D, 2019, AI MAG, V40, P44, DOI 10.1609/aimag.v40i2.2850 Hair J.F., 2009, Multivariate data analysis Hohman F, 2019, CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, DOI 10.1145/3290605.3300809 Holm EA, 2019, SCIENCE, V364, P26, DOI 10.1126/science.aax0162 Huber J, 2001, MARKET LETT, V12, P259, DOI 10.1023/A:1011120928698 Klein A, 2014, TELEMAT INFORM, V31, P410, DOI 10.1016/j.tele.2013.11.006 Ko S, 2023, ENERG POLICY, V173, DOI 10.1016/j.enpol.2022.113385 König PD, 2022, BIG DATA SOC, V9, DOI 10.1177/20539517211069632 Kouki P, 2017, PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), P84, DOI 10.1145/3109859.3109915 Larsson Stefan, 2020, Internet Policy Review, V9, DOI DOI 10.14763/2020.2.1469 Liao QV, 2020, PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), DOI 10.1145/3313831.3376590 Liao Q Vera, 2021, EXTENDED ABSTRACTS S, P1 Lim BY, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P2119 Linden G, 2003, IEEE INTERNET COMPUT, V7, P76, DOI 10.1109/MIC.2003.1167344 Lipton Z.C., 2018, Queue, V16, P31, DOI DOI 10.1145/3236386.3241340 Maeng K, 2020, TELEMAT INFORM, V47, DOI 10.1016/j.tele.2019.101327 Martens D, 2014, MIS QUART, V38, P73, DOI 10.25300/MISQ/2014/38.1.04 Miller T, 2017, Arxiv, DOI [arXiv:1712.00547, 10.48550/arXiv.1712.00547] Miller T, 2019, ARTIF INTELL, V267, P1, DOI 10.1016/j.artint.2018.07.007 Mucha H, 2021, EXTENDED ABSTRACTS OF THE 2021 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'21), DOI 10.1145/3411763.3451759 Newell S, 2015, J STRATEGIC INF SYST, V24, P3, DOI 10.1016/j.jsis.2015.02.001 Palacio S., 2021, P IEEE CVF INT C COM, P3766 Pedreschi D, 2019, AAAI CONF ARTIF INTE, P9780 Pinotsis DA., 2017, INT REV LAW COMPUTER, V31, P170, DOI [10.1080/13600869.2017.1298499, DOI 10.1080/13600869.2017.1298499] Rader E, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3173677 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Ramon Y, 2021, Arxiv, DOI [arXiv:2107.02624, DOI 10.48550/ARXIV.2107.02624] Ras G, 2022, J ARTIF INTELL RES, V73, P329 Ren JP, 2021, IEEE SENS J, V21, P25190, DOI 10.1109/JSEN.2021.3104038 ROLLER CM, 1985, READ RES QUART, V20, P437, DOI 10.2307/747853 Ryan M, 1999, SOC SCI MED, V48, P535, DOI 10.1016/S0277-9536(98)00374-8 Samek Wojciech, 2019, Explainable AI: interpreting, explaining and visualizing deep learning, V11700 Sarker Iqbal H, 2021, SN Comput Sci, V2, P160, DOI 10.1007/s42979-021-00592-x Shin J, 2016, TECHNOL FORECAST SOC, V112, P329, DOI 10.1016/j.techfore.2016.08.004 Smirnova A., 2020, INT C DIG TRANSF GLO, P107 Szymanski M, 2021, IUI '21 - 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, P109, DOI 10.1145/3397481.3450662 Train K., 2005, APPL SIMULATION METH, P117, DOI DOI 10.1007/1-4020-3684-1_7 Train KE, 2009, DISCRETE CHOICE METHODS WITH SIMULATION, 2ND EDITION, P1, DOI 10.1017/CBO9780511805271 Ribeiro MT, 2016, Arxiv, DOI arXiv:1606.05386 Venolia G.D., 2003, Proceedings of the SIGCHI conference on Human factors in computing systems, P361 Wachter S., 2018, HARVARD J LAW TECHNO, V31, P841, DOI DOI 10.2139/SSRN.3063289 Waltl B., 2018, Jusletter IT, V4, P1 Wang DD, 2019, I C OPT COMMUN NETW, DOI [10.1109/icocn.2019.8934212, 10.1145/3290605.3300831] Woo J, 2022, J RETAIL CONSUM SERV, V69, DOI 10.1016/j.jretconser.2022.103084 Yu R, 2019, LEG INF MANAG, V19, P2, DOI 10.1017/S1472669619000021 NR 72 TC 2 Z9 2 U1 40 U2 72 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAR PY 2023 VL 188 AR 122343 DI 10.1016/j.techfore.2023.122343 EA JAN 2023 PG 8 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA C8ZK1 UT WOS:000964734200001 DA 2024-03-27 ER PT J AU Moriuchi, E Landers, VM Colton, D Hair, N AF Moriuchi, Emi Landers, V. Myles Colton, Deborah Hair, Neil TI Engagement with chatbots versus augmented reality interactive technology in e-commerce SO JOURNAL OF STRATEGIC MARKETING LA English DT Article DE Augmented reality interactive technology; chatbots; technology engagement; e-commerce; consumers; retail ID SELF-SERVICE; CUSTOMER SATISFACTION; PLS-SEM; ACCEPTANCE; INTENTIONS; CONSUMERS; ADOPTION; COMPANY; QUALITY; ROLES AB As competition intensifies in the retail industry organizations are increasingly turning to forms of artificial intelligence as a means of differentiation. E-commerce companies are moving towards integrating technologies such as chatbots and augmented reality interactive technology which have proved to be popular solutions to customer service in the practitioner domain. However, little is known about consumers' attitude and engagement with these emerging technologies when used in a retail environment. A theory-based research model which was designed to uncover the motivational mechanisms needed to provide engagement and effective decision-making processes in this context. Empirical testing conducted with a field study supported the proposed model. C1 [Moriuchi, Emi; Landers, V. Myles; Colton, Deborah; Hair, Neil] Rochester Inst Technol, E Philip Saunders Coll Business, Rochester, NY 14623 USA. C3 Rochester Institute of Technology RP Moriuchi, E (autor correspondiente), Rochester Inst Technol, E Philip Saunders Coll Business, Rochester, NY 14623 USA. EM emoriuchi@saunders.rit.edu CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 [Anonymous], 2013, UNDERSTANDING AUGMEN [Anonymous], 2016, PARTIALLY OBSERVED M, DOI DOI 10.1017/CBO9781316471104 [Anonymous], 2004, SERVICES MARKETING P Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Ayanso A, 2015, DECIS SUPPORT SYST, V77, P112, DOI 10.1016/j.dss.2015.06.003 Ayeh JK, 2013, TOURISM MANAGE, V35, P132, DOI 10.1016/j.tourman.2012.06.010 Bagozzi RP, 2012, J ACAD MARKET SCI, V40, P8, DOI 10.1007/s11747-011-0278-x BETTMAN JR, 1979, J MARKETING, V43, P37, DOI 10.1177/002224297904300205 Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Caro F, 2019, BUS HORIZONS, V62, P47, DOI 10.1016/j.bushor.2018.08.002 Collier JE, 2015, J BUS RES, V68, P703, DOI 10.1016/j.jbusres.2014.08.001 Coniam D, 2014, TEXT TALK, V34, P545, DOI 10.1515/text-2014-0018 Cook DP, 1999, PROD OPER MANAG, V8, P318, DOI 10.1111/j.1937-5956.1999.tb00311.x Cronin JJ, 2000, J RETAILING, V76, P193, DOI 10.1016/S0022-4359(00)00028-2 Dabholkar PA, 2002, J ACAD MARKET SCI, V30, P184, DOI 10.1177/0092070302303001 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 de Ruyter K, 2001, INT J SERV IND MANAG, V12, P184, DOI 10.1108/09564230110387542 Doshi-Velez F., 2009, Advances in Neural Information Processing Systems, P477 Eastlick MA, 2012, INT REV RETAIL DISTR, V22, P337, DOI 10.1080/09593969.2012.690775 Faggella D, 2018, 3 DOOR MEDIA Ferrara E, 2016, COMMUN ACM, V59, P96, DOI 10.1145/2818717 Fliess S, 2004, J BUS RES, V57, P392, DOI 10.1016/S0148-2963(02)00273-4 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Hair JF, 2017, J ADVERTISING, V46, P163, DOI 10.1080/00913367.2017.1281777 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Kaczorowska-Spychalska D, 2019, MANAG-POL, V23, P251, DOI 10.2478/manment-2019-0015 Karami AB, 2010, ACMIEEE INT CONF HUM, P155, DOI 10.1109/HRI.2010.5453219 Kim J, 2008, PSYCHOL MARKET, V25, P901, DOI 10.1002/mar.20245 Kim J, 2008, J INTERACT MARK, V22, P45, DOI 10.1002/dir.20113 Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lee HJ, 2015, INT J RETAIL DISTRIB, V43, P676, DOI 10.1108/IJRDM-04-2014-0049 Lis B, 2013, J MEDIA BUS STUD, V10, P41, DOI 10.1080/16522354.2013.11073571 McCarthy J., 2004, TECHNOLOGY EXPERIENC, DOI [10.1145/1015530.1015549, DOI 10.1145/1015530.1015549] Migge B. H., 2013, THESIS, DOI [10.3929/ethz-a-009976669, DOI 10.3929/ETHZ-A-009976669] Moriuchi E, 2018, J BUS RES, V82, P381, DOI 10.1016/j.jbusres.2017.07.024 Mugan J, 2017, CHATBOTS THEORY PRAC O'Brien HL, 2008, J AM SOC INF SCI TEC, V59, P938, DOI 10.1002/asi.20801 Ohta Y., 2014, MIXED REALITY MERGIN PASK G, 1980, INT J MAN MACH STUD, V13, P357, DOI 10.1016/S0020-7373(80)80002-2 R Vyas, 2017, WHY CHATBOTS CANNOT Rosenthal V., 2017, FORBES CHATBOT ENGAG RUST RT, 1994, J ADVERTISING, V23, P71, DOI 10.1080/00913367.1943.10673460 Sanzo M. J., 2003, British Food Journal, V105, P771, DOI 10.1108/00070700310511807 Sivadas E., 2000, INT J RETAIL DISTRIB, V28, P73 Sivaramakrishnan S, 2007, J INTERACT MARK, V21, P60, DOI 10.1002/dir.20075 TAYLOR SA, 1994, J RETAILING, V70, P163, DOI 10.1016/0022-4359(94)90013-2 Waghmare C., 2019, INTRO AZURE BOT SERV, P147 Wakefield KL, 2016, J SERV MARK, V30, P686, DOI 10.1108/JSM-08-2016-0291 Williams JD, 2007, COMPUT SPEECH LANG, V21, P393, DOI 10.1016/j.csl.2006.06.008 Wong K.K.-K., 2013, MARKETING B, V24, P1, DOI DOI 10.1108/EBR-10-2013-0128 NR 56 TC 65 Z9 67 U1 11 U2 84 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0965-254X EI 1466-4488 J9 J STRATEG MARK JI J. Strateg. Mark. PD JUL 4 PY 2021 VL 29 IS 5 BP 375 EP 389 DI 10.1080/0965254X.2020.1740766 EA MAR 2020 PG 15 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA SP5BC UT WOS:000524440500001 DA 2024-03-27 ER PT J AU Sáez-Ortuño, L Huertas-Garcia, R Forgas-Coll, S Puertas-Prats, E AF Saez-Ortuno, Laura Huertas-Garcia, Ruben Forgas-Coll, Santiago Puertas-Prats, Eloi TI How can entrepreneurs improve digital market segmentation? A comparative analysis of supervised and unsupervised learning algorithms SO INTERNATIONAL ENTREPRENEURSHIP AND MANAGEMENT JOURNAL LA English DT Article DE Digital marketing; Clusters; AI algorithms; Unsupervised algorithms; Supervised algorithms; XGBoost; K-means ID MODEL; IMPLEMENTATION AB The identification of digital market segments to make value-creating propositions is a major challenge for entrepreneurs and marketing managers. New technologies and the Internet have made it possible to collect huge volumes of data that are difficult to analyse using traditional techniques. The purpose of this research is to address this challenge by proposing the use of AI algorithms to cluster customers. Specifically, the proposal is to compare the suitability of supervised algorithms, XGBoost, versus unsupervised algorithms, K-means, for segmenting the digital market. To do so, both algorithms have been applied to a sample of 5 million Spanish users captured between 2010 and 2022 by a lead generation start-up. The results show that supervised learning with this type of data is more useful for segmenting markets than unsupervised learning, as it provides solutions that are better suited to entrepreneurs' commercial objectives. C1 [Saez-Ortuno, Laura; Huertas-Garcia, Ruben; Forgas-Coll, Santiago] Univ Barcelona, Business Dept, Avda Diagonal 690, Barcelona 08034, Spain. [Puertas-Prats, Eloi] Univ Barcelona, Maths & Comp Sci Dept, Gran Via 585, Barcelona 08007, Spain. C3 University of Barcelona; University of Barcelona RP Sáez-Ortuño, L (autor correspondiente), Univ Barcelona, Business Dept, Avda Diagonal 690, Barcelona 08034, Spain. EM laurasaez@ub.edu; rhuertas@ub.edu; Santiago.forgas@ub.edu; epuertas@ub.edu RI Sáez Ortuño, Laura/HKN-3995-2023; Forgas-Coll, Santiago/R-2620-2017; Puertas Prats, Eloi/F-9425-2016 OI Sáez Ortuño, Laura/0000-0001-6660-9458; Forgas-Coll, Santiago/0000-0003-2288-3716; Puertas Prats, Eloi/0000-0001-6292-6448 FU CRUE-CSIC agreement; Springer Nature FX Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. CR Ahsan MM, 2021, TECHNOLOGIES, V9, DOI 10.3390/technologies9030052 Ali I, 2023, INT J INFORM MANAGE, V69, DOI 10.1016/j.ijinfomgt.2022.102510 Alonso-González MJ, 2020, TRANSPORT RES A-POL, V132, P378, DOI 10.1016/j.tra.2019.11.022 Amit R, 2012, MIT SLOAN MANAGE REV, V53, P41 [Anonymous], 2009, The elements of statistical learning, DOI DOI 10.1007/978-0-387-84858-7_7 Arabie P., 1996, CLUSTERING CLASSIFIC Audretsch DB, 2020, INT ENTREP MANAG J, V16, P373, DOI 10.1007/s11365-020-00648-z Bala M., 2018, INT J MANAGEMENT IT, V8, P321 Baliouskas P, 2023, INT ENTREP MANAG J, V19, P2037, DOI 10.1007/s11365-022-00810-9 BALL GH, 1967, BEHAV SCI, V12, P153, DOI 10.1002/bs.3830120210 Basu D., 2022, ADV REDOX RES, V5, P100034, DOI [10.1016/j.arres.2022.100034, DOI 10.1016/J.ARRES.2022.100034] Bishop C. M, 2007, Pattern Recognition and Machine Learning, DOI DOI 10.1007/978-0-387-45528-0 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Boone DS, 2002, INT J RES MARK, V19, P287, DOI 10.1016/S0167-8116(02)00080-0 Bremer L, 2017, INT J RES MARK, V34, P516, DOI 10.1016/j.ijresmar.2016.10.001 Buhmann A, 2020, J BUS ETHICS, V163, P265, DOI 10.1007/s10551-019-04226-4 Chakraborty H, 2009, CONTEMP CLIN TRIALS, V30, P71, DOI 10.1016/j.cct.2008.07.008 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Silva FJ, 2013, INT ENTREP MANAG J, V9, P619, DOI 10.1007/s11365-013-0266-3 Dahle Y, 2023, INT ENTREP MANAG J, V19, P1583, DOI 10.1007/s11365-023-00874-1 Dahle Y, 2018, INT ICE CONF ENG Dayan N, 2021, PROC VLDB ENDOW, V14, P2932, DOI 10.14778/3476311.3476373 Desai V., 2019, International Journal of Trend in Scientific Research and Development, V5, P196, DOI DOI 10.31142/IJTSRD23100 DeSarbo W.S., 1998, Marketing Letters, V9, P115, DOI DOI 10.1023/A:1007997714444 Desarbo WS, 2005, STRATEGIC MANAGE J, V26, P47, DOI 10.1002/smj.431 Eskerod P., 2020, Oxford Research Encyclopedia of Business and Management, P1 Fernández-Delgado M, 2014, J MACH LEARN RES, V15, P3133 GAREY MR, 1978, J ACM, V25, P499, DOI 10.1145/322077.322090 Gonzalez Philippe, 2023, ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), P1, DOI 10.1109/ICASSP49357.2023.10097075 Guerola-Navarro V, 2022, INT ENTREP MANAG J, DOI 10.1007/s11365-022-00800-x Gultom Syawal, 2018, IOP Conference Series: Materials Science and Engineering, V420, DOI 10.1088/1757-899X/420/1/012092 Hartmann J, 2023, INT J RES MARK, V40, P75, DOI 10.1016/j.ijresmar.2022.05.005 Hartmann J, 2019, INT J RES MARK, V36, P20, DOI 10.1016/j.ijresmar.2018.09.009 Henriques J, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9071164 Ibrahim Ibrahim, 2021, Journal of Applied Science and Technology Trends, V2, P10, DOI DOI 10.38094/JASTT20179 Jain AK, 1999, ACM COMPUT SURV, V31, P264, DOI 10.1145/331499.331504 Jain AK, 2010, PATTERN RECOGN LETT, V31, P651, DOI 10.1016/j.patrec.2009.09.011 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Jordan MI, 2015, SCIENCE, V349, P255, DOI 10.1126/science.aaa8415 Kamthania Deepali, 2018, CIT. Journal of Computing and Information Technology, V26, P57, DOI 10.20532/cit.2018.1003863 Kaufman L., 2009, Finding groups in data: an introduction to cluster analysis, V344 Ke GL, 2017, ADV NEUR IN, V30 Kodinariya T.M., 2013, International Journal, V1, DOI DOI 10.18576/AMIS/100428 Kohavi R., 1998, MACH LEARN, V30, P271, DOI DOI 10.1023/A:1017181826899 Kohonen T, 1996, P IEEE, V84, P1358, DOI 10.1109/5.537105 Kraus S, 2020, INT ENTREP MANAG J, V16, P1023, DOI 10.1007/s11365-020-00635-4 Kuo RJ, 2002, COMPUT OPER RES, V29, P1475, DOI 10.1016/S0305-0548(01)00043-0 Liang YX, 2019, 2019 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION (AIPR 2019), P150, DOI 10.1145/3357254.3357290 Liao YK, 2022, INT ENTREP MANAG J, V18, P1623, DOI 10.1007/s11365-022-00803-8 Likas A, 2003, PATTERN RECOGN, V36, P451, DOI 10.1016/S0031-3203(02)00060-2 Liu JL, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0246306 Liu Y, 2010, MARKET SCI, V29, P880, DOI 10.1287/mksc.1100.0565 LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489 MacQueen J., 1967, P 5 BERKELEY S MATH, P281, DOI DOI 10.1234/12345678 Memarsadeghi N, 2007, INT J COMPUT GEOM AP, V17, P71, DOI 10.1142/S0218195907002252 MILLIGAN GW, 1988, J CLASSIF, V5, P181, DOI 10.1007/BF01897163 Mitchell R, 2017, PEERJ COMPUT SCI, DOI 10.7717/peerj-cs.127 Murray PW, 2017, COMPUT IND ENG, V109, P233, DOI 10.1016/j.cie.2017.04.017 Natekin A, 2013, FRONT NEUROROBOTICS, V7, DOI 10.3389/fnbot.2013.00021 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Olhede SC, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2017.0364 Ordabayeva N, 2022, J MARKETING, V86, P70, DOI 10.1177/00222429221074704 Hung PD, 2019, PROCEEDINGS OF THE 2019 5TH INTERNATIONAL CONFERENCE ON E-BUSINESS AND APPLICATIONS (ICEBA 2019), P100, DOI 10.1145/3317614.3317626 Poongodi M, 2022, INT J SYST ASSUR ENG, V13, P16, DOI 10.1007/s13198-021-01130-x Raschka S., 2019, PYTHON MACHINE LEARN, V3rd Ravikumar P, 2010, ANN STAT, V38, P1287, DOI 10.1214/09-AOS691 Sáez-Ortuño L, 2023, J INNOV KNOWL, V8, DOI 10.1016/j.jik.2023.100349 Sáez-Ortuño L, 2023, J BUS RES, V158, DOI 10.1016/j.jbusres.2023.113702 Sathya R., 2013, International Journal of Advanced Research in Artificial Intelligence, V2, P34 Sculley David, 2010, P 19 INT C WORLD WID, P1177, DOI [DOI 10.1145/1772690.1772862, 10.1145/1772690.1772862] SMITH WR, 1956, J MARKETING, V21, P3, DOI 10.2307/1247695 Sommer L, 2011, INT ENTREP MANAG J, V7, P111, DOI 10.1007/s11365-010-0162-z Stead M, 2007, HEALTH EDUC, V107, P126, DOI 10.1108/09654280710731548 Strehl A, 2003, INFORMS J COMPUT, V15, P208, DOI 10.1287/ijoc.15.2.208.14448 Sujatha S., 2013, INT J ENG RES TECHNO, V2, P1 Syakur MA, 2018, IOP CONF SER-MAT SCI, V336, DOI 10.1088/1757-899X/336/1/012017 Tadelis S, 2016, ANNU REV ECON, V8, P321, DOI 10.1146/annurev-economics-080315-015325 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tsamados A, 2022, AI SOC, V37, P215, DOI 10.1007/s00146-021-01154-8 TUKEY JW, 1962, ANN MATH STAT, V33, P1, DOI 10.1214/aoms/1177704711 Vassiliadis P, 2009, INT J DATA WAREHOUS, V5, P1, DOI 10.4018/jdwm.2009070101 Wedel M., 2000, MARKET SEGMENTATION Zamri Nurnadiah, 2022, Procedia Computer Science, P172, DOI 10.1016/j.procs.2022.08.021 Zhou ZH, 2018, NATL SCI REV, V5, P44, DOI 10.1093/nsr/nwx106 NR 85 TC 3 Z9 3 U1 6 U2 9 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1554-7191 EI 1555-1938 J9 INT ENTREP MANAG J JI Int. Entrep. Manag. J. PD DEC PY 2023 VL 19 IS 4 BP 1893 EP 1920 DI 10.1007/s11365-023-00882-1 EA AUG 2023 PG 28 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA AI7J9 UT WOS:001042771900001 OA hybrid DA 2024-03-27 ER PT J AU Bhuiyan, KH Ahmed, S Jahan, I AF Bhuiyan, Kamrul Hasan Ahmed, Selim Jahan, Israt TI Consumer attitude toward using artificial intelligence (AI) devices in hospitality services SO JOURNAL OF HOSPITALITY AND TOURISM INSIGHTS LA English DT Article; Early Access DE Consumer attitude; Artificial intelligence; Hospitality; Technology acceptance; PLS-SEM ID PLS-SEM; USER ACCEPTANCE; TECHNOLOGY; ROBOTS AB PurposeThe study investigates the consumer's attitude to using artificial intelligence (AI) devices in hospitality service settings considering social influence, hedonic motivation, anthropomorphism, effort expectancy, performance expectancy and emotions.Design/methodology/approachThis study employed a quantitative methodology to collect data from Bangladeshi consumers who utilized AI-enabled technologies in the hospitality sector. A total of 343 data were collected using a purposive sampling method. The SmartPLS 4.0 software was used to determine the constructs' internal consistency, reliability and validity. This study also applied the partial least squares structural equation modeling (PLS-SEM) to test the research model and hypotheses.FindingsThe finding shows that consumer attitude toward AI is influenced by social influence, hedonic motivation, anthropomorphism, performance and effort expectancy and emotions. Specifically, hedonic motivation, social influence and anthropomorphism affect performance and effort expectations, affecting consumer emotion. Moreover, emotions ultimately influenced the perceptions of hotel customers' willingness to use AI devices.Practical implicationsThis study provides a practical understanding of issues when adopting more stringent AI-enabled devices in the hospitality sector. Managers, practitioners and decision-makers will get helpful information discussed in this article.Originality/valueThis study investigates the perceptions of guests' attitudes toward the use of AI devices in hospitality services. This study emphasizes the cultural context of the hospitality industry in Bangladesh, but its findings may be reflected in other areas and regions. C1 [Bhuiyan, Kamrul Hasan] Univ Glasgow, Sch Interdisciplinary Studies, Glasgow, Scotland. [Ahmed, Selim] World Univ Bangladesh, Dept Business Adm, Dhaka, Bangladesh. [Ahmed, Selim] INTI Int Univ, Nilai, Malaysia. [Jahan, Israt] Univ Glasgow, Sch Social & Polit Sci, Glasgow, Scotland. C3 University of Glasgow; INTI International University; University of Glasgow RP Ahmed, S (autor correspondiente), World Univ Bangladesh, Dept Business Adm, Dhaka, Bangladesh.; Ahmed, S (autor correspondiente), INTI Int Univ, Nilai, Malaysia. EM selim.ahmed@business.wub.edu.bd RI Ahmed, Selim/R-3327-2017 OI Ahmed, Selim/0000-0002-0361-6797 CR Al Amin M, 2021, EUR J MANAG BUS ECON, V30, P211, DOI 10.1108/EJMBE-04-2020-0066 Alegre J, 2010, ANN TOURISM RES, V37, P52, DOI 10.1016/j.annals.2009.07.001 Althuizen N, 2018, INFORM SYST J, V28, P879, DOI 10.1111/isj.12172 Ameen N, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106548 Anthes G, 2017, COMMUN ACM, V60, P19, DOI 10.1145/3088342 Bappy T.A., 2021, Technology Application in the Tourism and Hospitality Industry of Bangladesh Bhuiyan KH, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142215043 Chi OH, 2020, J HOSP MARKET MANAG, V29, P757, DOI 10.1080/19368623.2020.1721394 Davenport TH, 2015, HARVARD BUS REV, V93, P59 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Fam KS, 2023, J HOSP TOUR RES, V47, P257, DOI 10.1177/10963480211014944 Fan AL, 2020, J HOSP MARKET MANAG, V29, P269, DOI 10.1080/19368623.2019.1639095 Fernandez Robin Cristobal, 2014, HCI in Business. First International Conference, HCIB 2014. Held as Part of HCI International 2014. Proceedings: LNCS 8527, P609, DOI 10.1007/978-3-319-07293-7_59 Gani M.O., 2023, International Journal of Spa and Wellness, V6, P54, DOI [10.1080/24721735.2022.2096292, DOI 10.1080/24721735.2022.2096292] Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hasan M.D.R., 2019, Journal of Business and Retail Management Research (JBRMR), V14, P20, DOI [10.24052/jbrmr/v14is01/art-03, DOI 10.24052/JBRMR/V14IS01/ART-03] Henseler J, 2018, QUAL QUANT, V52, P1, DOI 10.1007/s11135-018-0689-6 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Im J, 2017, J HOSP MARKET MANAG, V26, P361, DOI 10.1080/19368623.2017.1248805 Islam Md Zahirul, 2023, Advanced Information Networking and Applications: Proceedings of the 37th International Conference on Advanced Information Networking and Applications (AINA-2023). Lecture Notes in Networks and Systems (655), P446, DOI 10.1007/978-3-031-28694-0_43 Islam Md. M., 2022, INT J TOURISM POLICY, V12, P203, DOI [10.1504/ijtp.2022.122236, DOI 10.1504/IJTP.2022.122236] Jahan I., 2020, International Journal of Management, V11, P114 Kim HY, 2018, J CONSUM RES, V45, P429, DOI 10.1093/jcr/ucy006 Kumar V, 2019, CALIF MANAGE REV, V61, P135, DOI 10.1177/0008125619859317 Lalicic L, 2021, J BUS RES, V129, P891, DOI 10.1016/j.jbusres.2020.11.005 Lee B, 2018, J HOSP MARKET MANAG, V27, P61, DOI 10.1080/19368623.2017.1337539 Lim JS, 2022, TECHNOL SOC, V69, DOI 10.1016/j.techsoc.2022.101965 Lin HX, 2020, J HOSP MARKET MANAG, V29, P530, DOI 10.1080/19368623.2020.1685053 Ltd Huawei Technologies Co, 2023, Artificial Intelligence Technology, DOI [10.1007/978-981-19-2879-6_1, DOI 10.1007/978-981-19-2879-6_1] Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Manrai R, 2023, J FINANC SERV MARK, V28, P1, DOI 10.1057/s41264-021-00134-9 Martin BAS, 2020, J HOSP TOUR MANAG, V44, P108, DOI 10.1016/j.jhtm.2020.06.004 Memon M.A., 2020, J APPL STRUCTURAL EQ, V4, P1, DOI [DOI 10.47263/JASEM.4, 10.47263/JASEM.4(2)01, DOI 10.47263/JASEM.4(2)01] Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Murphy J., 2021, Future of Tourism Marketing, P16 Oborn E, 2011, J HEALTH SERV RES PO, V16, P46, DOI 10.1258/jhsrp.2010.010001 Qiu HL, 2020, J HOSP MARKET MANAG, V29, P247, DOI 10.1080/19368623.2019.1645073 Ross J.R., 2019, 5 Ways Artificial Intelligence Offers Real ROI Roy P, 2020, GLOB BUS REV, DOI 10.1177/0972150920939753 Russell S., 2010, Artificial intelligence a modern approach, V3rd Schuetzler RM, 2018, PROCEEDINGS OF THE 51ST ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS), P283 Shani A, 2009, CORNELL HOSP Q, V50, P446, DOI 10.1177/1938965509344294 Shiau WL, 2019, INTERNET RES, V29, P398, DOI 10.1108/IntR-10-2018-0447 Siau K., 2017, 12 ANN MIDW ASS INF, V48, P18 Srite M, 2006, AUSTRALAS J INF SYST, V14, P5 Trejos N., 2016, USA Today, V9 Tussyadiah I.P., 2018, Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference, P308, DOI DOI 10.1007/978-3-319-72923-7_24 Vecchiato R, 2015, TECHNOL FORECAST SOC, V101, P25, DOI 10.1016/j.techfore.2014.08.016 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Wan J., 2015, Strong Brands, Strong Relationships, P119 Wang B, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010030 NR 54 TC 0 Z9 0 U1 8 U2 8 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2514-9792 EI 2514-9806 J9 J HOSP TOUR INSIGHTS JI J. Hosp. Tour. Insights PD 2024 FEB 16 PY 2024 DI 10.1108/JHTI-08-2023-0551 EA FEB 2024 PG 18 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA IR6R4 UT WOS:001168101200001 DA 2024-03-27 ER PT J AU Nilashi, M Abumalloh, RA Minaei-Bidgoli, B Zogaan, WA Alhargan, A Mohd, S Azhar, SNFS Asadi, S Samad, S AF Nilashi, Mehrbakhsh Abumalloh, Rabab Ali Minaei-Bidgoli, Behrouz Zogaan, Waleed Abdu Alhargan, Ashwaq Mohd, Saidatulakmal Azhar, Sharifah Nurlaili Farhana Syed Asadi, Shahla Samad, Sarminah TI Revealing travellers' satisfaction during COVID-19 outbreak: Moderating role of service quality SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Online customers' reviews; Customers' satisfaction; Machine learning; Service quality; Survey study ID USER-GENERATED CONTENT; WORD-OF-MOUTH; CUSTOMER SATISFACTION; BIG DATA; LEARNING APPROACH; ONLINE RATINGS; SLEEP QUALITY; SOCIAL MEDIA; REVIEWS; TOURISM AB User-Generated-Content (UGC) has gained increasing attention as an important indicator of business success in the tourism and hospitality sectors. Previous literature has analyzed travelers' satisfaction through quantitative approaches using questionnaire surveys. Another direction of research has explored the dimensions of satisfaction based on online customers' reviews using the machine learning approach. This study aims to present a new method that combines machine learning and survey-based approaches for customers' satisfaction analysis during the COVID-19 outbreak. In addition, we investigate the moderating role of service quality on the relationship between hotels' performance criteria and customers' satisfaction. To achieve this, the Latent Dirichlet Allocation (LDA) was used for textual data analysis, k-means was used for data segmentation, dimensionality reduction approach was used for the imputation of the missing values, and fuzzy rule-based was used for the prediction of satisfaction level. Following that, a survey-based approach was used to validate the research model by distributing the questionnaire and analyzing the collected data using the Structural Equation Modeling technique. The result of this research presents important contributions from the methodological and practical perspectives in the context of customers' satisfaction in tourism and hospitality during the COVID-19 outbreak. The outcomes of this research confirm the significant influence of the quality of services during the COVID-19 crisis on the relationship between hotel services and travellers' satisfaction. C1 [Nilashi, Mehrbakhsh; Azhar, Sharifah Nurlaili Farhana Syed] Univ Sains Malaysia, Ctr Global Sustainabil Studies CGSS, Usm Penang 11800, Malaysia. [Nilashi, Mehrbakhsh; Minaei-Bidgoli, Behrouz] Iran Univ Sci & Technol, Sch Comp Engn, Tehran, Iran. [Abumalloh, Rabab Ali] Imam Abdulrahman Bin Faisal Univ, Community Coll, Comp Dept, POB 1982, Dammam, Saudi Arabia. [Zogaan, Waleed Abdu] Jazan Univ, Fac Comp Sci & Informat Technol, Dept Comp Sci, Jazan 45142, Saudi Arabia. [Alhargan, Ashwaq] Saudi Elect Univ, Coll Comp & Informat, Comp Sci Dept, Riyadh, Saudi Arabia. [Mohd, Saidatulakmal] Univ Sains, Ctr Global Sustainabil Studies, George Town, Malaysia. [Mohd, Saidatulakmal] Univ Sains, Sch Social Sci, George Town, Malaysia. [Asadi, Shahla] Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Ctr Software Technol & Management, Bangi 43600, Selangor, Malaysia. [Samad, Sarminah] Princess Nourah Bint Abdulrahman Univ, Coll Business & Adm, Dept Business Adm, Riyadh, Saudi Arabia. C3 Universiti Sains Malaysia; Iran University Science & Technology; Imam Abdulrahman Bin Faisal University; Jazan University; Saudi Electronic University; Universiti Sains Malaysia; Universiti Sains Malaysia; Universiti Kebangsaan Malaysia; Princess Nourah bint Abdulrahman University RP Nilashi, M (autor correspondiente), Univ Sains Malaysia, Ctr Global Sustainabil Studies CGSS, Usm Penang 11800, Malaysia. EM nilashidotnet@hotmail.com RI Samad, Sarminah/AAX-7406-2021; Abumalloh, Rabab/AAD-9682-2022; Zogaan, Waleed Abdu/JGM-6769-2023; Nilashi, Mehrbakhsh/C-4311-2016; Minaei-Bidgoli, Behrouz/L-2779-2018; Abumalloh, Rabab/KBQ-4135-2024; Syed Azhar, Sharifah Nurlaili Farhana/Y-3485-2018; Mohd, Saidatulakmal/J-1535-2014; Abumalloh, Rabab/C-8963-2017 OI Zogaan, Waleed Abdu/0000-0002-1087-7549; Nilashi, Mehrbakhsh/0000-0003-0099-8299; Minaei-Bidgoli, Behrouz/0000-0002-9327-7345; Syed Azhar, Sharifah Nurlaili Farhana/0000-0002-2987-353X; Mohd, Saidatulakmal/0000-0002-7947-7324; Abumalloh, Rabab/0000-0003-2805-3764; ALhargan, Ashwaq/0000-0001-9541-8415 CR Abideen AZ, 2020, J HEALTH RES, V34, P547, DOI 10.1108/JHR-04-2020-0109 Ahani A, 2019, J RETAIL CONSUM SERV, V51, P331, DOI 10.1016/j.jretconser.2019.06.014 Ahani A, 2019, INT J HOSP MANAG, V80, P52, DOI 10.1016/j.ijhm.2019.01.003 Al-Qudah Yousef, 2017, International Journal of Applied Decision Sciences, V10, P175 Alnawas I, 2019, J HOSP MARKET MANAG, V28, P833, DOI 10.1080/19368623.2019.1568339 Amaral F., 2014, INT J STRATEGIC INNO, V1, P137, DOI DOI 10.15556/IJSIM.01.03.002 Anderson M, 2012, ECON J, V122, P957, DOI 10.1111/j.1468-0297.2012.02512.x Ayeh JK, 2013, TOURISM MANAGE, V35, P132, DOI 10.1016/j.tourman.2012.06.010 Azlan AA, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233668 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 Bakar AYA, 2020, ASIAN J PSYCHIATR, V54, DOI 10.1016/j.ajp.2020.102272 Bhatnagar E., 2019, PRABANDHAN INDIAN J, V12, P46 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Botta A, 2008, INT J INTELL SYST, V23, P397, DOI 10.1002/int.20273 Cenni I, 2017, DISCOURSE CONTEXT ME, V16, P22, DOI 10.1016/j.dcm.2017.01.004 Chan I.C. C., 2021, Information and Communication Technologies in Tourism 2021, P549, DOI [10.1007/978-3-030-65785-7_52, DOI 10.1007/978-3-030-65785-7_52] Chang YC, 2019, INT J INFORM MANAGE, V48, P263, DOI 10.1016/j.ijinfomgt.2017.11.001 Chau M, 2012, MIS QUART, V36, P1189 Chen CF, 2008, TOURISM MANAGE, V29, P1166, DOI 10.1016/j.tourman.2008.02.019 Chen RY, 2018, DECIS SUPPORT SYST, V108, P96, DOI 10.1016/j.dss.2018.02.008 Chow CKW, 2015, J AIR TRANSP MANAG, V47, P39, DOI 10.1016/j.jairtraman.2015.04.003 Christodoulides G, 2012, J ADVERTISING RES, V52, P53, DOI 10.2501/JAR-52-1-053-064 Chua A, 2016, TOURISM MANAGE, V57, P295, DOI 10.1016/j.tourman.2016.06.013 Cox C, 2009, J HOSP MARKET MANAG, V18, P743, DOI 10.1080/19368620903235753 Creswell JW., 2018, Research design: Qualitative, quantitative, and mixed methods approaches, V5th, DOI DOI 10.7748/NR.12.1.82.S2 Cró S, 2017, TOURISM MANAGE, V63, P3, DOI 10.1016/j.tourman.2017.05.009 Dimitriou L, 2008, TRANSPORT RES C-EMER, V16, P554, DOI 10.1016/j.trc.2007.11.003 Dong J, 2014, IFIP ADV INF COMM TE, V445, P238 Evermann J, 2016, J BUS RES, V69, P4565, DOI 10.1016/j.jbusres.2016.03.050 Fan A, 2018, INT J CONTEMP HOSP M, V30, P1508, DOI [10.1108/IJCHM-01-2017-0050, 10.1108/ijchm-01-2017-0050] Felbermayr A, 2016, J INTERACT MARK, V36, P60, DOI 10.1016/j.intmar.2016.05.004 Fernandes AAR, 2018, J MANAG DEV, V37, P76, DOI 10.1108/JMD-12-2016-0315 Flanagin AJ, 2013, COMPUT HUM BEHAV, V29, P1626, DOI 10.1016/j.chb.2013.02.001 Forgas S, 2010, J AIR TRANSP MANAG, V16, P229, DOI 10.1016/j.jairtraman.2010.01.001 Gavilan D, 2018, TOURISM MANAGE, V66, P53, DOI 10.1016/j.tourman.2017.10.018 Ghasemaghaei M, 2020, J BUS RES, V108, P147, DOI 10.1016/j.jbusres.2019.09.062 Godnov U, 2016, ANN TOURISM RES, V58, P162, DOI 10.1016/j.annals.2016.02.005 González-Rodríguez MR, 2021, J DESTIN MARK MANAGE, V19, DOI 10.1016/j.jdmm.2020.100543 Gour A, 2021, INT J CONTEMP HOSP M, V33, P490, DOI 10.1108/IJCHM-07-2020-0760 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Gursoy D, 2020, J HOSP MARKET MANAG, V29, P527, DOI 10.1080/19368623.2020.1788231 Hair JF, 2020, J BUS RES, V109, P101, DOI 10.1016/j.jbusres.2019.11.069 Hair JF, 2013, LONG RANGE PLANN, V46, P1, DOI 10.1016/j.lrp.2013.01.001 Hao JX, 2015, TOURISM MANAGE, V48, P231, DOI 10.1016/j.tourman.2014.11.009 Hashem IAT, 2015, INFORM SYST, V47, P98, DOI 10.1016/j.is.2014.07.006 Hoisington, 2018, WHY HOTELIERS CANT I Hu F, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104320 Hu Y, 2018, INT J HOSP MANAG, V75, P27, DOI 10.1016/j.ijhm.2018.03.004 Huang WJ, 2018, J HOSP MARKET MANAG, V27, P833, DOI 10.1080/19368623.2018.1448315 KHUONG MaiNgoc., 2014, INT J TRADE EC FINAN, V5, P490, DOI [10.7763/IJTEF.2014.V5.421, DOI 10.7763/IJTEF.2014.V5.421] Knoll J, 2016, INT J ADVERT, V35, P266, DOI 10.1080/02650487.2015.1021898 Lee M, 2020, J HOSP TOUR TECHNOL, V11, P137, DOI 10.1108/JHTT-07-2018-0054 Li HX, 2020, INT J CONTEMP HOSP M, V32, P1713, DOI 10.1108/IJCHM-06-2019-0581 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Loh S., 2003, Information Technology and Tourism, V6, P157, DOI 10.3727/1098305031436980 Lu WL, 2015, J HOSP MARKET MANAG, V24, P119, DOI 10.1080/19368623.2014.907758 Lucini FR, 2020, J AIR TRANSP MANAG, V83, DOI 10.1016/j.jairtraman.2019.101760 Luo LJ, 2021, ONLINE INFORM REV, V45, P614, DOI 10.1108/OIR-05-2020-0186 Mattila AS, 2004, INT J SERV IND MANAG, V15, P134, DOI 10.1108/09564230410532475 Mehraliyev F, 2020, TOURISM MANAGE, V79, DOI 10.1016/j.tourman.2020.104096 Mendes-Filho L., 2009, PACIS 2009 P Mitra S, 2020, J BUS RES, V114, P213, DOI 10.1016/j.jbusres.2020.04.003 Moon S, 2021, INT J RES MARK, V38, P343, DOI 10.1016/j.ijresmar.2020.08.001 Moon S, 2019, J BUS RES, V102, P83, DOI 10.1016/j.jbusres.2019.05.016 MORGAN RM, 1994, J MARKETING, V58, P20, DOI 10.2307/1252308 Mou J, 2019, ELECTRON COMMER RES, V19, P749, DOI 10.1007/s10660-019-09338-7 Namukasa J., 2013, TQM Journal, V25, P520, DOI DOI 10.1108/TQM-11-2012-0092 Nieto-Garcia M, 2019, INT J HOSP MANAG, V77, P583, DOI 10.1016/j.ijhm.2018.09.002 Nilashi M, 2021, TELEMAT INFORM, V61, DOI 10.1016/j.tele.2021.101597 Nilashi M, 2019, J CLEAN PROD, V215, P767, DOI 10.1016/j.jclepro.2019.01.012 Nilashi M, 2018, J COMPUT SCI-NETH, V28, P168, DOI 10.1016/j.jocs.2018.09.006 Nilashi M, 2016, ELECTRON COMMER R A, V19, P70, DOI 10.1016/j.elerap.2016.09.003 Nunkoo R, 2020, INT J HOSP MANAG, V91, DOI 10.1016/j.ijhm.2019.102414 Nunkoo R, 2017, INT J CONTEMP HOSP M, V29, P2978, DOI 10.1108/IJCHM-11-2016-0610 Nusair K, 2019, INT J CONTEMP HOSP M, V31, P2691, DOI 10.1108/IJCHM-06-2018-0489 OLIVER RL, 1980, J MARKETING RES, V17, P460, DOI 10.2307/3150499 Pacheco L, 2017, TOUR ANAL, V22, P337, DOI 10.3727/108354217X14955605216087 Padlee SF, 2019, TOUR HOSP MANAG-CROA, V25, P121, DOI 10.20867/thm.25.1.9 Park JH, 2014, COMPUT HUM BEHAV, V31, P1, DOI 10.1016/j.chb.2013.10.002 Radojevic T, 2018, TOURISM MANAGE, V67, P326, DOI 10.1016/j.tourman.2018.02.007 Rauch DA, 2015, INT J CONTEMP HOSP M, V27, P87, DOI 10.1108/IJCHM-06-2013-0254 Ray A, 2021, INT J HOSP MANAG, V92, DOI 10.1016/j.ijhm.2020.102730 Ren LP, 2015, J QUAL ASSUR HOSP TO, V16, P45, DOI 10.1080/1528008X.2015.966299 Rhee HT, 2015, ELECTRON MARK, V25, P211, DOI 10.1007/s12525-014-0161-y Ritchie BW, 2019, ANN TOURISM RES, V79, DOI 10.1016/j.annals.2019.102812 Rivera MA, 2020, INT J HOSP MANAG, V87, DOI 10.1016/j.ijhm.2020.102528 Román C, 2016, TOURISM MANAGE, V52, P488, DOI 10.1016/j.tourman.2015.08.001 Selvachandran Ganeshsree, 2018, International Journal of Fuzzy Systems Applications, V7, P22, DOI 10.4018/IJFSA.2018010102 Shamim S, 2021, COMPUT HUM BEHAV, V121, DOI 10.1016/j.chb.2021.106777 Sharma PN, 2021, DECISION SCI, V52, P567, DOI 10.1111/deci.12329 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Siering M, 2018, DECIS SUPPORT SYST, V107, P52, DOI 10.1016/j.dss.2018.01.002 Sparks BA, 2016, TOURISM MANAGE, V53, P74, DOI 10.1016/j.tourman.2015.09.011 Suhartanto D, 2013, TOUR REV INT, V17, P47, DOI 10.3727/154427213X13649094288106 Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020 Talón-Ballestero P, 2018, TOURISM MANAGE, V68, P187, DOI 10.1016/j.tourman.2018.03.017 Tareq Z., 2015, REV ENERGY TECHNOL P, V2, P29 Tian G, 2021, FOOD QUAL PREFER, V88, DOI 10.1016/j.foodqual.2020.104060 TripAdvisor, 2020, IMPR GUEST CONF TRIP Tsakiridis NL, 2017, EXPERT SYST APPL, V83, P257, DOI 10.1016/j.eswa.2017.04.026 Tung F., 2013, African Journal of Business Management, V7, P1730, DOI [https://doi.org/10.5897/AJBM10.383, DOI 10.5897/AJBM10.383] Ukpabi DC, 2018, TOUR MANAG PERSPECT, V28, P251, DOI 10.1016/j.tmp.2018.03.006 Viglia G, 2016, INT J CONTEMP HOSP M, V28, P2035, DOI 10.1108/IJCHM-05-2015-0238 Wan Y, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1318, DOI 10.1109/ICDMW.2015.7 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Xie K, 2016, INFORM MANAGE-AMSTER, V53, P1034, DOI 10.1016/j.im.2016.06.003 Xu X, 2021, DECIS SUPPORT SYST, V142, DOI 10.1016/j.dss.2020.113467 Yadegaridehkordi E, 2021, TECHNOL SOC, V65, DOI 10.1016/j.techsoc.2021.101528 Yang Y, 2018, J TRAVEL RES, V57, P243, DOI 10.1177/0047287517691153 Yuan H, 2018, ANN OPER RES, V270, P553, DOI 10.1007/s10479-017-2421-7 ZADEH LA, 1983, FUZZY SET SYST, V11, P199, DOI 10.1016/S0165-0114(83)80081-5 Zadeh LA, 1996, FUZZY SETS FUZZY LOG, P775, DOI DOI 10.1145/175247.175255 Zhang N, 2018, BUILD ENVIRON, V137, P198, DOI 10.1016/j.buildenv.2018.04.007 Zhang T, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123437 Zhang YC, 2021, SUSTAIN ENERGY TECHN, V45, DOI 10.1016/j.seta.2020.100986 Zhao Y, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102205 Zheng TX, 2021, INT J HOSP MANAG, V92, DOI 10.1016/j.ijhm.2020.102658 Zhi TF, 2016, ARCH GERONTOL GERIAT, V65, P211, DOI 10.1016/j.archger.2016.03.023 NR 119 TC 26 Z9 27 U1 9 U2 110 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JAN PY 2022 VL 64 AR 102783 DI 10.1016/j.jretconser.2021.102783 EA OCT 2021 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA WI9NN UT WOS:000708679900003 DA 2024-03-27 ER PT J AU Zhang, ZL Yang, KJ Zhang, JZ Palmatier, RW AF Zhang, Zelin Yang, Kejia Zhang, Jonathan Z. Palmatier, Robert W. TI Uncovering Synergy and Dysergy in Consumer Reviews: A Machine Learning Approach SO MANAGEMENT SCIENCE LA English DT Article DE user-generated content; opinion mining; interaction effects; machine learning ID IMPACT; AGREEMENT AB Massive online text reviews can be a powerful market research tool for understanding consumer experiences and helping firms improve and innovate. This research exploits the rich semantic properties of text reviews and proposes a novel machine learning modeling framework that can reliably and efficiently extract consumer opinions and uncover potential interaction effects across these opinions, thereby identifying hidden and nuanced areas for product and service improvement beyond existingmodeling approaches in this domain. In particular, we develop an opinion extraction and effect estimation framework that allows for uncovering customer opinions' average effects and their interaction effects. Interactions among opinions can be synergistic when the co-occurrence of two opinions yields an effect greater than the sum of two parts, or as what we call dysergistic, when the co-occurrence of two opinions results in dampened effect. We apply themodel in the context of large-scale customer ratings and text reviews for hotels and demonstrate our framework's ability to screen synergy and dysergy effects among opinions. Our model also flexibly and efficiently accommodates a large number of opinions, which provides insights into rare yet potentially important opinions. Themodel can guidemanagers to prioritize joint areas of product and service improvement and innovation by uncovering the most prominent synergistic pairs. Model comparison with extant machine learning approaches demonstrates our improved predictive ability andmanagerial insights. C1 [Zhang, Zelin] Renmin Univ China, Sch Business, Dept Mkt, Beijing 100872, Peoples R China. [Yang, Kejia] Mercatus Inc, Beijing 100025, Peoples R China. [Zhang, Jonathan Z.] Colorado State Univ, Coll Business, Dept Mkt, Ft Collins, CO 80523 USA. [Palmatier, Robert W.] Univ Washington, Foster Sch Business, Dept Mkt, Seattle, WA 98195 USA. C3 Renmin University of China; Colorado State University; University of Washington; University of Washington Seattle RP Yang, KJ (autor correspondiente), Mercatus Inc, Beijing 100025, Peoples R China. EM zhangzelin@rmbs.ruc.edu.cn; philipy1219@gmail.com; jonathan.zhang@colostate.edu; palmatrw@uw.edu OI zhang, zelin/0000-0002-2182-4303; Yang, Kejia/0000-0002-8121-0186 FU National Natural Science Foundation of China [72072173] FX The authors acknowledge the support of research funding from the National Natural Science Foundation of China [Grant 72072173]. CR [Anonymous], MACH LEARN Ansari A, 2018, MARKET SCI, V37, P987, DOI 10.1287/mksc.2018.1113 Athey S, 2019, ANN STAT, V47, P1148, DOI 10.1214/18-AOS1709 Benjamini Y., 1995, J. R. Stat. Soc. B, V57, P289, DOI DOI 10.1111/J.2517-6161.1995.TB02031.X Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Carmeli CEOGFRN, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3419, DOI 10.1145/3442381.3450081 COHEN J, 1960, EDUC PSYCHOL MEAS, V20, P37, DOI 10.1177/001316446002000104 Crump RK, 2009, BIOMETRIKA, V96, P187, DOI 10.1093/biomet/asn055 Dan Pelleg AM, 2000, P 17 INT C MACH LEAR, P727, DOI [10.1007/3-540-44491-2_3, DOI 10.1007/3-540-44491-2_3, DOI 10.1007/3] Dens N, 2018, INT J MARKET RES, V60, P268, DOI 10.1177/1470785317751333 Devlin J., 2018, ARXIV Fan JQ, 2008, ANN STAT, V36, P2605, DOI 10.1214/07-AOS504 Fan YY, 2015, ANN STAT, V43, P1243, DOI 10.1214/14-AOS1308 FLEISS JL, 1971, PSYCHOL BULL, V76, P378, DOI 10.1037/h0031619 Gandomi A, 2015, INT J INFORM MANAGE, V35, P137, DOI 10.1016/j.ijinfomgt.2014.10.007 He RD, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P388, DOI 10.18653/v1/P17-1036 Ji YF, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P996, DOI 10.18653/v1/P17-1092 Jindal RP, 2016, J MARKETING, V80, P72, DOI 10.1509/jm.15.0036 Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kiss T, 2006, COMPUT LINGUIST, V32, P485, DOI 10.1162/coli.2006.32.4.485 Kobayashi N, 2020, AAAI CONF ARTIF INTE, V34, P8099 Kocisk T., 2015, Reasoning about entailment with neural attention Kolluru K, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P3748 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Lee JD, 2016, ANN STAT, V44, P907, DOI 10.1214/15-AOS1371 Li YL, 2019, PROC VLDB ENDOW, V12, P1330, DOI 10.14778/3342263.3342271 Lin ZH, 2014, NAT LANG ENG, V20, P151, DOI 10.1017/S1351324912000307 Loshchilov I., 2017, DECOUPLED WEIGHT DEC MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Mittal V, 1998, J MARKETING, V62, P33, DOI 10.2307/1251801 Naik PA, 2003, J MARKETING RES, V40, P375, DOI 10.1509/jmkr.40.4.375.19385 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Popescu A.-M, 2007, NATURAL LANGUAGE PRO, P9, DOI DOI 10.1007/978-1-84628-754-1_2 Reimers N, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P3982 Rendle Steffen, 2010, Proceedings 2010 10th IEEE International Conference on Data Mining (ICDM 2010), P995, DOI 10.1109/ICDM.2010.127 ROBINS JM, 1994, J AM STAT ASSOC, V89, P846, DOI 10.2307/2290910 ROBINSON PM, 1988, ECONOMETRICA, V56, P931, DOI 10.2307/1912705 Ruppert D., 2003, SEMIPARAMETRIC REGRE Shine BC, 2007, J MARKETING RES, V44, P663, DOI 10.1509/jmkr.44.4.663 Taylor J, 2015, P NATL ACAD SCI USA, V112, P7629, DOI 10.1073/pnas.1507583112 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 van der Laan M.J., 2006, INT J BIOSTAT, V2, P1, DOI DOI 10.2202/1557-4679.1043 Vaswani A, 2017, ADV NEUR IN, V30 Wang J, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1706 Westreich D, 2010, J CLIN EPIDEMIOL, V63, P826, DOI 10.1016/j.jclinepi.2009.11.020 Wu Z., 2020, P C EMPIRICAL METHOD, P2576, DOI DOI 10.18653/V1/2020.FINDINGS-EMNLP.234 Zhao QY, 2022, J ROY STAT SOC B, V84, P382, DOI 10.1111/rssb.12483 Zhao QY, 2019, J R STAT SOC B, V81, P735, DOI 10.1111/rssb.12327 NR 49 TC 5 Z9 5 U1 28 U2 145 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD APR PY 2023 VL 69 IS 4 BP 2339 EP 2360 DI 10.1287/mnsc.2022.4443 EA MAY 2022 PG 22 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA Q1CB5 UT WOS:000827170100001 DA 2024-03-27 ER PT J AU Alqtati, N Wilson, JAJ De Silva, V AF Alqtati, Nael Wilson, Jonathan A. J. De Silva, Varuna TI Mining Arabic Twitter conversations on health care: a new approach to analysing Arabic language on social media SO JOURNAL OF ISLAMIC MARKETING LA English DT Article DE Islamic markets; Twitter; The Muslim consumer; Arabic; Social media analysis; Digital marketing; Natural language processing; Social media analytics; Health care; Middle East ID SENTIMENT ANALYSIS; EMERGING MARKETS; CHALLENGES; ETHICS AB Purpose This paper aims to equip professionals and researchers in the fields of advertising, branding, public relations, marketing communications, social media analytics and marketing with a simple, effective and dynamic means of evaluating consumer behavioural sentiments and engagement through Arabic language and script, in vivo. Design/methodology/approach Using quantitative and qualitative situational linguistic analyses of Classical Arabic, found in Quranic and religious texts scripts; Modern Standard Arabic, which is commonly used in formal Arabic channels; and dialectical Arabic, which varies hugely from one Arabic country to another: this study analyses rich marketing and consumer messages (tweets) - as a basis for developing an Arabic language social media methodological tool. Findings Despite the popularity of Arabic language communication on social media platforms across geographies, currently, comprehensive language processing toolkits for analysing Arabic social media conversations have limitations and require further development. Furthermore, due to its unique morphology, developing text understanding capabilities specific to the Arabic language poses challenges. Practical implications This study demonstrates the application and effectiveness of the proposed methodology on a random sample of Twitter data from Arabic-speaking regions. Furthermore, as Arabic is the language of Islam, the study is of particular importance to Islamic and Muslim geographies, markets and marketing. Social implications The findings suggest that the proposed methodology has a wider potential beyond the data set and health-care sector analysed, and therefore, can be applied to further markets, social media platforms and consumer segments. Originality/value To remedy these gaps, this study presents a new methodology and analytical approach to investigating Arabic language social media conversations, which brings together a multidisciplinary knowledge of technology, data science and marketing communications. C1 [Alqtati, Nael] Qtaticom, London, England. [Wilson, Jonathan A. J.] Regents Univ London, Provosts Grp, London, England. [De Silva, Varuna] Loughborough Univ, Inst Digital Technol, London, England. C3 Loughborough University RP Wilson, JAJ (autor correspondiente), Regents Univ London, Provosts Grp, London, England. EM jw@islamicmarketing.co.uk RI Alqtati, Nael/ABD-9120-2021; Wilson, Jonathan A.J./AAB-2744-2021 OI Alqtati, Nael/0000-0002-4667-4292; CR Abdul-Mageed M, 2014, COMPUT SPEECH LANG, V28, P20, DOI 10.1016/j.csl.2013.03.001 Aggarwal CC., 2012, MINING TEXT DATA, P77, DOI [10.1007/978-1-4614-3223-4, 10.1007/978-1-4614-3223-4_4] Agrawal, 2013, INTRO STUDY TIME SER, DOI [10.13140/2.1.2771.8084, DOI 10.13140/2.1.2771.8084] Akbar YH, 2005, THUNDERBIRD INT BUS, V47, P389, DOI 10.1002/tie.20059 Al-Shalabi R., 2004, Proceedings. 2004 International Conference on Information and Communication Technologies: From Theory to Applications (IEEE Cat. No.04EX852), DOI 10.1109/ICTTA.2004.1307875 Al-Twairesh N, 2018, Sentiment analysis of Arabic tweets: feature engineering and a hybrid APPROACH Alhawarat M, 2015, INT J ADV COMPUT SC, V6, P262 Alrefaie, 2019, LARGEST LIST F ARABI [Anonymous], 2019, TWITTER [Anonymous], 2017, INT C SMART CIT INFR [Anonymous], 2014, Arab Social Media Report [Anonymous], 2012, TWITTER REACHES HALF Azam N, 2015, INT CONF SOFT COMP, P79, DOI 10.1109/ISCMI.2015.33 Baccouche A, 2018, IEEE INT SYMP SIGNAL, P382, DOI 10.1109/ISSPIT.2018.8642685 Behdenna S., 2018, J DIGITAL INFORM MAN, V16, P324 Brandenburg, 2013, QUANTITATIVE MARKET Burgess SM, 2006, INT J RES MARK, V23, P337, DOI 10.1016/j.ijresmar.2006.08.001 DOMO, 2019, DAT NEV SLEEPS 7 0 Duwairi RM, 2014, 2014 5TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS) Duwairi R, 2014, J INF SCI, V40, P501, DOI 10.1177/0165551514534143 Duwairi RM, 2016, INT CONF INFORM COMM, P127, DOI 10.1109/IACS.2016.7476098 Erickson G., 2017, New methods of market research and analysis Extra Digital, 2019, PROM AR SOC MED Gridach Mourad., 2016, WSSANLP 2016, P23 Habash N., 2010, SYNTHESIS LECT HUMAN, V3, P1, DOI DOI 10.2200/S00277ED1V01Y201008HLT010 Hague P.N., 2004, MARKET RES PRACTICE Hmeidi I, 2015, J INF SCI, V41, P114, DOI 10.1177/0165551514558172 Holes C., 2004, GEORGETOWN CLASSICS Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Jardaneh G, 2019, 2019 IEEE JORDAN INTERNATIONAL JOINT CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY (JEEIT), P596, DOI 10.1109/JEEIT.2019.8717386 Kao A., 2007, Natural Language Processing and Text Mining, P1, DOI [DOI 10.1007/978-1-84628-754-1, 10.1007/978-1-84628-754-1] Khorsheed MS, 2018, IEEE ACCESS, V6, P36522, DOI 10.1109/ACCESS.2018.2852619 Khosrow-Pour D.B.A., 2009, Encyclopedia of Information Science and Technology, VSecond, DOI [DOI 10.4018/978-1-60566-026-4, 10.4018/978-1-60566-026-4.ch063, DOI 10.4018/978-1-60566-026-4.CH063] Lages CR, 2015, INT MARKET REV, V32, P52, DOI 10.1108/IMR-12-2014-0374 Lasik-Eyes.co.uk, 2020, LAS EYE SURG COST Ma JW, 2017, J BUS RES, V74, P139, DOI 10.1016/j.jbusres.2016.10.025 Mills T, 2018, FORBES Mohammad S., 2013, 2 JOINT C LEX COMP S Mooi E, 2011, CONCISE GUIDE TO MARKET RESEARCH: THE PROCESS, DATA, AND METHODS USING IBM SPSS STATISTICS, P237, DOI 10.1007/978-3-642-12541-6_9 MrInsights, 2019, GLOB LASIK EYE SURG Muhammad A.B., 2012, Annotation of Conceptual Co-Reference and Text Mining the Qur'an Mullen L. A., 2018, Journal of Open Source Software, V3, P655, DOI [10.21105/joss.00655, DOI 10.21105/JOSS.00655] Nabil Mahmoud, 2015, P 2015 C EMPIRICAL M, P2515, DOI DOI 10.18653/V1/D15-1299 NHS, 2018, LAS EYE SURG LENS SU NLTK, 2019, 2 ACC TEXT CORP LEX nltk, 2019, NATURAL LANGUAGE TOO Nunan D, 2013, INT J MARKET RES, V55, P505, DOI 10.2501/IJMR-2013-015 Pandas, 2019, PYTH DAT AN LIB PAND Peter J.P., 1987, Consumer behavior, marketing strategy perspectives Punel A, 2018, J AIR TRANSP MANAG, V73, P67, DOI 10.1016/j.jairtraman.2018.08.004 Python Software Foundation, 2019, REREG EXPR OP PYTH 3 Python Software Foundation, 2019, UN HOWTO PYTH 3 3 7 Python Software Foundation, 2019, IT FUNCT CREAT IT EF Python Software Foundation, 2019, STRING COMM STRING O Ranks.nl, 2019, ARABIC Saad, 2017, PREPROCESS ARABIC TE Salloum S A., 2017, International Journal of Information Technology and Language Studies, V1, P8 Semiocast, 2011, AR HIGH GROWTH TWITT Shabbir HA, 2019, J BUS ETHICS, V159, P727, DOI 10.1007/s10551-018-3784-7 SocialBakers, 2019, AI POW SOC MED DIG Stanford University, 2019, STANF NAT LANG PROC Tableau Software, 2019, TABLEAU BUSINESS INT The Social Clinic, 2013, SAUD AR RANKS 1 TWIT Vijayarani S., 2015, INT J COMPUT SCI COM, V5, P7, DOI DOI 10.1016/J.PR0CS.2013.05.286 Wamda, 2019, TRISKA HAMID Wankhede S, 2018, PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), P723, DOI 10.1109/ICICCT.2018.8473277 Weedoo, 2017, TWITTER ARAB WORLD S Wilson J.A., 2018, HALAL BRANDING Wilson JAJ, 2011, J BRAND MANAG, V19, P91, DOI 10.1057/bm.2011.7 Wilson JAJ, 2013, J ISLAMIC MARK, V4, P7, DOI 10.1108/17590831311306327 Wilson JAJ, 2011, J ISLAMIC MARK, V2, P28, DOI 10.1108/17590831111115222 Wilson JAJ, 2013, J ISLAMIC MARK, V4, P22, DOI 10.1108/17590831311306336 Wilson Jonathan A. J., 2014, Social Business, V4, P255 Yoon YS, 2018, I C INF COMM TECH CO, P1194, DOI 10.1109/ICTC.2018.8539363 NR 74 TC 1 Z9 1 U1 0 U2 9 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1759-0833 EI 1759-0841 J9 J ISLAMIC MARK JI J. Islamic Mark. PD DEC 1 PY 2022 VL 13 IS 12 BP 2649 EP 2671 DI 10.1108/JIMA-12-2020-0355 EA AUG 2021 PG 23 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 6R8EC UT WOS:000685615500001 DA 2024-03-27 ER PT J AU Roelen-Blasberg, T Habel, J Klarmann, M AF Roelen-Blasberg, Tobias Habel, Johannes Klarmann, Martin TI Automated inference of product attributes and their importance from user-generated content: Can we replace traditional market research? SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE User-generated content; Marketing research automation; Natural language processing; Conjoint analysis; Satisfaction driver analysis; Involvement ID CUSTOMER SATISFACTION; TEXT ANALYSIS; ONLINE; PREFERENCES; INFORMATION; PERFORMANCE; EXPERIENCE AB User-generated content, particularly online product reviews by customers, provide mar-keters with rich data of customer evaluations of product attributes. This study proposes, benchmarks, and validates a new approach for inferring attribute-level evaluations from user-generated content. Moreover, little is known about whether and when insights from product reviews gained in such a way are consistent with traditional research methods, such as conjoint analysis and satisfaction driver analysis. To provide first insights into this question, the authors apply their approach to a dataset with almost one million product reviews from 52 product categories and run conjoint and satisfaction driver analyses for these categories. Results indicate that the consistency between methods largely varies across product categories. Initial exploratory analyses suggest that consistency might be higher for categories characterized by low experience qualities, high hedonic value, and high customer willingness to post online reviews-but further work will be necessary to validate these findings.(c) 2022 Elsevier B.V. All rights reserved. C1 [Roelen-Blasberg, Tobias] MARA, Mannheim, Germany. [Habel, Johannes] Univ Houston, CT Bauer Coll Business, Houston, TX USA. [Klarmann, Martin] Karlsruhe Inst Technol KIT, Mkt & Sales Res Grp Inst Informat Syst & Mkt IISM, Karlsruhe, Germany. [Klarmann, Martin] Karlsruhe Inst Technol KIT, Mkt & Sales Res Grp, Zirkel 2,Bldg 20-21, D-76131 Karlsruhe, Germany. C3 University of Houston System; University of Houston; Helmholtz Association; Karlsruhe Institute of Technology; Helmholtz Association; Karlsruhe Institute of Technology RP Klarmann, M (autor correspondiente), Karlsruhe Inst Technol KIT, Mkt & Sales Res Grp, Zirkel 2,Bldg 20-21, D-76131 Karlsruhe, Germany. EM martin.klarmann@kit.edu CR Aerts G, 2017, COMPUT HUM BEHAV, V75, P855, DOI 10.1016/j.chb.2017.06.023 Alavi S, 2021, J PERS SELL SALES M, V41, P301, DOI 10.1080/08853134.2021.1915794 [Anonymous], 2021, LOWE Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Bi JW, 2019, TOURISM MANAGE, V70, P460, DOI 10.1016/j.tourman.2018.09.010 Blair-Goldensohn S., 2008, P WWW 2008 WORKSHOP, V14, P339 Branavan SRK, 2009, J ARTIF INTELL RES, V34, P569, DOI 10.1613/jair.2633 Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Büschken J, 2013, MARKET SCI, V32, P533, DOI 10.1287/mksc.2013.0779 Chakraborty I., 2021, J MARKETING RES Chen L., 2022, STRUCTURAL TOPIC SEN, DOI [10.2139/ssrn.4020651, DOI 10.2139/SSRN.4020651] Chen YX, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242920913025 Decker R, 2010, INT J RES MARK, V27, P293, DOI 10.1016/j.ijresmar.2010.09.001 Dzyabura D, 2019, MARKET SCI, V38, P88, DOI 10.1287/mksc.2018.1124 Fang Luo, 2011, Proceedings of the 2011 Fourth International Conference on Business Intelligence and Financial Engineering (BIFE 2011), P86, DOI 10.1109/BIFE.2011.101 Feldman R, 2007, IEEE DATA MINING, P469, DOI 10.1109/ICDM.2007.27 Gatti L, 2016, IEEE T AFFECT COMPUT, V7, P409, DOI 10.1109/TAFFC.2015.2476456 GREEN PE, 1990, J MARKETING, V54, P3, DOI 10.2307/1251756 Guo T, 2021, J MARKETING RES, V58, P115, DOI 10.1177/0022243720972106 Habel J, 2015, J ACAD MARKET SCI, V43, P768, DOI 10.1007/s11747-014-0400-y Hamilton RW, 2017, J MARKETING RES, V54, P540, DOI 10.1509/jmr.14.0012 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 HOLBROOK MB, 1984, J CONSUM RES, V11, P728, DOI 10.1086/209009 Hu MQ, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P755 Huang P, 2009, J MARKETING, V73, P55, DOI 10.1509/jmkg.73.2.55 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Jianxing Y, 2011, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, V1, P1496, DOI DOI 10.1109/CC.2013.6488828 Joung J, 2021, J MECH DESIGN, V143, DOI 10.1115/1.4049865 Joung J, 2021, J MECH DESIGN, V143, DOI 10.1115/1.4048960 Kapferer J.-N., 1993, Psychology and Marketing, V10, P347, DOI [DOI 10.1002/MAR.4220100408, https://doi.org/10.1002/mar.4220100408] Kivetz R, 2002, J MARKETING RES, V39, P155, DOI 10.1509/jmkr.39.2.155.19084 Kubler R. V., 2017, MARKETING SCI I WORK, V17 LAURENT G, 1985, J MARKETING RES, V22, P41, DOI 10.2307/3151549 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Liu B., 2012, SYNTHESIS LECT HUMAN, V5, P1, DOI [DOI 10.2200/S00416ED1V01Y201204HLT016, DOI 10.1007/978-3-031-02145-9] Lowe, 2021, INV FACT SHEET Manning CD, 2008, INTRO INFORM RETRIEV Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Moe WW, 2012, MARKET SCI, V31, P372, DOI 10.1287/mksc.1110.0662 Moe WW, 2014, SOCIAL MEDIA INTELLIGENCE, P1, DOI 10.1017/CBO9781139381338 Moon S, 2017, INT J RES MARK, V34, P265, DOI 10.1016/j.ijresmar.2016.05.007 NELSON P, 1970, J POLIT ECON, V78, P311, DOI 10.1086/259630 NELSON P, 1974, J POLIT ECON, V82, P729, DOI 10.1086/260231 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Okada EM, 2005, J MARKETING RES, V42, P43, DOI 10.1509/jmkr.42.1.43.56889 Pauwels K, 2009, J SERV RES-US, V12, P175, DOI 10.1177/1094670509344213 Peck J, 2003, J CONSUM RES, V30, P430, DOI 10.1086/378619 Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162 Popescu Ana-Maria, 2005, P HUMAN LANGUAGE TEC, P339 Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009 Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034 Reimann M, 2010, INT J RES MARK, V27, P188, DOI 10.1016/j.ijresmar.2009.10.001 Salton G., 1986, INTRO MODERN INFORM Schoenmueller V, 2020, J MARKETING RES, V57, P853, DOI 10.1177/0022243720941832 SHAFIR E, 1993, COGNITION, V49, P11, DOI 10.1016/0010-0277(93)90034-S Simmons JP, 2011, PSYCHOL SCI, V22, P1359, DOI 10.1177/0956797611417632 Smith AK, 1999, J MARKETING RES, V36, P356, DOI 10.2307/3152082 Somprasertsri G, 2008, PROCEEDINGS OF THE 2008 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, P250 Sundaram DS., 1998, Word-of-mouth communications: A motivational analysis Taddy M, 2013, J AM STAT ASSOC, V108, P755, DOI 10.1080/01621459.2012.734168 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Voss KE, 2003, J MARKETING RES, V40, P310, DOI 10.1509/jmkr.40.3.310.19238 Wang X, 2022, J MARKETING, V86, P155, DOI 10.1177/00222429211047822 Wittink DickR., 1990, Marketing Letters, V1, P113, DOI DOI 10.1007/BF00435295 Wu S, 2012, INT CONF DAT MIN WOR, P874, DOI 10.1109/ICDMW.2012.129 Zhai Z., 2011, P 4 ACM INT C WEB SE, P347, DOI DOI 10.1145/1935826.1935884 Zhang L, 2014, STUD BIG DATA, V1, P1, DOI 10.1007/978-3-642-40837-3_1 Zhang Lei., 2011, P 49 ANN M ASS COMPU, V2[81, P575 Zhang Lei., 2010, Proceedings of the 23rd International Conference on Computational Linguistics: Posters, P1462 Zhuang L., 2006, P 15 ACM INT C INF K, P43, DOI [DOI 10.1145/1183614.1183625, 10.1145/1183614.1183625] NR 72 TC 2 Z9 2 U1 13 U2 29 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD MAR PY 2023 VL 40 IS 1 BP 164 EP 188 DI 10.1016/j.ijresmar.2022.04.004 EA MAR 2023 PG 25 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA A0CX5 UT WOS:000951903100001 DA 2024-03-27 ER PT J AU van Dieijen, M Borah, A Tellis, GJ Franses, PH AF van Dieijen, Myrthe Borah, Abhishek Tellis, Gerard J. Franses, Philip Hans TI Big Data Analysis of Volatility Spillovers of Brands across Social Media and Stock Markets SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE User-generated content; Stock market performance; Volatility; Multivariate GARCH model; Spillover effects; Natural language processing ID WORD-OF-MOUTH; MULTIVARIATE GARCH MODELS; DYNAMICS; SALES; CAPABILITIES; UNCERTAINTY; INVESTMENT; REVIEWS; CHATTER; IMPACT AB Volatility is an important metric of financial performance, indicating uncertainty or risk. So, predicting and managing volatility is of interest to both company managers and investors. This study investigates whether volatility in user-generated content (UGC) can spill over to volatility in stock returns and vice versa. Sources for user-generated content include tweets, blog posts, and Google searches. The authors test the presence of these spillover effects by a multivariate GARCH model. Further, the authors use multivariate regressions to reveal which type of company-related events increase volatility in user-generated content. Results for two studies in different markets show significant volatility spillovers between the growth rates of user-generated content and stock returns. Further, specific marketing events drive the volatility in user-generated content. In particular, new product launches significantly increase the volatility in the growth rates of user-generated content, which in turn can spill over to volatility in stock returns. Moreover, the spillover effects differ in sign depending on the valence of the user-generated content in Twitter. The authors discuss the managerial implications. C1 [van Dieijen, Myrthe] Erasmus Univ, Erasmus Sch Econ ESE, Dept Econometr, Rotterdam, Netherlands. [Borah, Abhishek] INSEAD, Mkt, Blvd Constance, F-77305 Fontainebleau, France. [Tellis, Gerard J.] Univ Southern Calif, Mkt & Management & Org, POB 90089-1421, Los Angeles, CA 90007 USA. [Tellis, Gerard J.] Univ Southern Calif, Ctr Global Innovat, POB 90089-1421, Los Angeles, CA 90007 USA. [Tellis, Gerard J.] Univ Southern Calif, Amer Enterprise, Marshall Sch Business, POB 90089-1421, Los Angeles, CA 90007 USA. [Franses, Philip Hans] Erasmus Univ, Appl Econometr, Erasmus Sch Econ ESE, ET-25,Burgemeester Oudlaan 50, NL-3062 PA Rotterdam, Netherlands. [Franses, Philip Hans] Erasmus Univ, Mkt Res, Erasmus Sch Econ ESE, ET-25,Burgemeester Oudlaan 50, NL-3062 PA Rotterdam, Netherlands. C3 Erasmus University Rotterdam - Excl Erasmus MC; Erasmus University Rotterdam; INSEAD Business School; University of Southern California; University of Southern California; University of Southern California; Erasmus University Rotterdam; Erasmus University Rotterdam - Excl Erasmus MC; Erasmus University Rotterdam - Excl Erasmus MC; Erasmus University Rotterdam RP Borah, A (autor correspondiente), INSEAD, Mkt, Blvd Constance, F-77305 Fontainebleau, France. EM vandieijen@ese.eur.nl; abhishek.borah@insead.edu; tellis@usc.edu; franses@ese.eur.nl OI Franses, Philip Hans/0000-0002-2364-7777 FU foundation A.A. van Beek-Fonds FX We thank seminar participants at the International Symposium on Forecasting in 2014, the European Marketing Academy Conference in 2015, the Marketing Science Conference in 2015, the Centre for European Economic Research (ZEW) Conference on the Economics of Information and Communication Technologies in 2016, and the Marketing Dynamics Conference in 2016. Myrthe van Dieijen is grateful for the generous hospitality extended during the visit to the University of Southern California in facilitating the collaboration on this project. Financial support from the foundation A.A. van Beek-Fonds for this visit is gratefully acknowledged. CR Alom F, 2011, ECON BULL, V31, P1439 Andersen TG, 1998, INT ECON REV, V39, P885, DOI 10.2307/2527343 Andersen TG, 2010, HANDB FINANC, P67, DOI 10.1016/B978-0-444-50897-3.50005-5 Asur S., 2010, WORKING PAPER Bauwens L, 2006, J APPL ECONOMET, V21, P79, DOI 10.1002/jae.842 Bloom N, 2007, REV ECON STUD, V74, P391, DOI 10.1111/j.1467-937X.2007.00426.x Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 BOLLERSLEV T, 1992, J ECONOMETRICS, V52, P5, DOI 10.1016/0304-4076(92)90064-X Bollevslev T., 1992, ECONOMET REV, V11, P143, DOI 10.1080/07474939208800229 Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222 Chang CC, 2011, ACM T INTEL SYST TEC, V2, DOI 10.1145/1961189.1961199 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 Christoffersen P, 2004, MANAGE SCI, V50, P1204, DOI 10.1287/mnsc.1040.0276 Comte F, 2003, J MULTIVARIATE ANAL, V84, P61, DOI 10.1016/S0047-259X(02)00009-X CUNHA SS, 2008, PRACTICAL FINANCIAL, V2, DOI DOI 10.1371/JOURNAL.PNTD.0000167 Day G.S., 2010, Strategy from the outside in: Profiting from customer value Day GS, 2011, J MARKETING, V75, P183, DOI 10.1509/jmkg.75.4.183 DAY GS, 1994, J MARKETING, V58, P37, DOI 10.2307/1251915 Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Doan T.A., 2013, ESTIMA WINRATS Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Elyasani E., 1998, Journal of Multinational Financial Management, V8, P89 Engle R, 2001, J ECON PERSPECT, V15, P157, DOI 10.1257/jep.15.4.157 ENGLE RF, 1995, ECONOMET THEOR, V11, P122, DOI 10.1017/S0266466600009063 Fama EF, 2004, J ECON PERSPECT, V18, P25, DOI 10.1257/0895330042162430 FLETCHER R, 1970, COMPUT J, V13, P317, DOI 10.1093/comjnl/13.3.317 Franses P. H., 2000, Nonlinear Time Series Models in Empirical Finance Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 GOLDFARB D, 1970, MATH COMPUT, V24, P23, DOI 10.2307/2004873 Gopinath S, 2014, MARKET SCI, V33, P241, DOI 10.1287/mksc.2013.0820 Hafner C. M., 2004, WORKING PAPER Hafner CM, 2006, J INT MONEY FINANC, V25, P719, DOI 10.1016/j.jimonfin.2006.04.006 Hennig-Thurau T, 2015, J ACAD MARKET SCI, V43, P375, DOI 10.1007/s11747-014-0388-3 Joshi P, 2011, SAGE OPEN, V1, DOI 10.1177/2158244011413474 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 Leahy JV, 1996, J MONEY CREDIT BANK, V28, P64, DOI 10.2307/2077967 Li H, 2008, RES INT BUS FINANC, V22, P247, DOI 10.1016/j.ribaf.2007.06.001 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Luo XM, 2007, J MARKETING, V71, P75, DOI 10.1509/jmkg.71.3.75 Luo XM, 2013, INFORM SYST RES, V24, P146, DOI 10.1287/isre.1120.0462 Luo XM, 2009, MARKET SCI, V28, P148, DOI 10.1287/mksc.1080.0389 McAlister L, 2012, MARKET LETT, V23, P1, DOI 10.1007/s11002-011-9142-5 Mizik N, 2003, J MARKETING, V67, P63, DOI 10.1509/jmkg.67.1.63.18595 Moe WW, 2011, J MARKETING RES, V48, P444, DOI 10.1509/jmkr.48.3.444 Moorman C, 2016, J MARKETING, V80, P6, DOI 10.1509/jm.15.0423 Mu JF, 2018, IND MARKET MANAG, V75, P37, DOI 10.1016/j.indmarman.2018.03.010 Mu JF, 2015, IND MARKET MANAG, V49, P151, DOI 10.1016/j.indmarman.2015.05.003 Nam H, 2014, J MARKETING, V78, P21, DOI 10.1509/jm.12.0151 Onishi H, 2012, INT J RES MARK, V29, P221, DOI 10.1016/j.ijresmar.2011.11.003 Rui HX, 2013, DECIS SUPPORT SYST, V55, P863, DOI 10.1016/j.dss.2012.12.022 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 SHANNO DF, 1970, MATH COMPUT, V24, P647, DOI 10.2307/2004840 Sonnier GP, 2011, MARKET SCI, V30, P702, DOI 10.1287/mksc.1110.0642 Srinivasan S, 2009, J MARKETING RES, V46, P293, DOI 10.1509/jmkr.46.3.293 Tellis GJ, 2006, MARKET SCI, V25, P217, DOI 10.1287/mksc.1050.0178 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 Trusov M, 2009, J MARKETING, V73, P90, DOI 10.1509/jmkg.73.5.90 Urbig D, 2013, J MANAGE, V39, P985, DOI 10.1177/0149206311416120 Worthington A, 2004, INT J FINANC ECON, V9, P71, DOI 10.1002/ijfe.222 NR 60 TC 15 Z9 16 U1 10 U2 60 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD JUL PY 2020 VL 88 BP 465 EP 484 DI 10.1016/j.indmarman.2018.12.006 PG 20 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA MQ2ZP UT WOS:000552766500046 OA Green Published DA 2024-03-27 ER PT J AU Reisenbichler, M Reutterer, T Schweidel, DA Dan, D AF Reisenbichler, Martin Reutterer, Thomas Schweidel, David A. Dan, Daniel TI Frontiers: Supporting Content Marketing with Natural Language Generation SO MARKETING SCIENCE LA English DT Article DE SEO; content marketing; natural language generation; transfer learning ID SEARCH ENGINE OPTIMIZATION; ARTIFICIAL-INTELLIGENCE AB Advances in natural language generation (NLG) have facilitated technologies such as digital voice assistants and chatbots. in this research, we demonstrate how NLG can support content marketing by using it to draft content for the landing page of a website in search engine optimization (SEO). Traditional SEO projects rely on hand-crafted content that is both time consuming and costly to produce. To address the costs associated with producing SEO content, we propose a semiautomated methodology using state-of-the-art NLG and demonstrate that the content-writing machine can create unique, human-like SEO content. As part of our research, we demonstrate that although the machine-generated content is designed to perform well in search engines, the role of the human editor remains essential. Comparing the resulting content with human refinement to traditional human-written SEO texts, we find that the revised, machine-generated texts are virtually indistinguishable from those created by SEO experts along a number of human perceptual dimensions. We conduct field experiments in two industries to demonstrate our approach and show that the resulting SEO content outperforms that created by human writers (including SEO experts) in search engine rankings. Additionally, we illustrate how our approach can substantially reduce the production costs associated with content marketing, increasing their return on investment. C1 [Reisenbichler, Martin; Reutterer, Thomas] Vienna Univ Econ & Business, Dept Mkt, A-1020 Vienna, Austria. [Schweidel, David A.] Emory Univ, Goizueta Business Sch, Mkt Area, Atlanta, GA 30322 USA. [Dan, Daniel] Modul Univ, Sch Appl Data Sci, A-1190 Vienna, Austria. C3 Vienna University of Economics & Business; Emory University RP Reisenbichler, M (autor correspondiente), Vienna Univ Econ & Business, Dept Mkt, A-1020 Vienna, Austria. EM martin.reisenbichter@wu.ac.at; thomas.reutterer@wu.ac.at; dschweidel@emory.edu; daniel.dan@modul.ac.at RI dan, dan/KEH-7711-2024 OI Dan, Daniel/0000-0002-7251-7899 CR Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897 Ascarza E., 2021, HARVARD BUS REV, V99, P48 Azzopardi L, 2018, ACM/SIGIR PROCEEDINGS 2018, P605, DOI 10.1145/3209978.3210027 Bar-Ilan J, 2006, COMPUT NETW, V50, P1448, DOI 10.1016/j.comnet.2005.10.020 Baye MR, 2016, J ECON MANAGE STRAT, V25, P6, DOI 10.1111/jems.12141 Berger J, TEXTANALYZER Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Berman R, 2013, MARKET SCI, V32, P644, DOI 10.1287/mksc.2013.0783 Booth RJ, 2015, LINGUISTIC INQUIRY A Brown T., 2020, NEURIPS, P1877, DOI 10.48550/arXiv.2005.14165 Brynjolfsson E, 2017, SCIENCE, V358, P1530, DOI 10.1126/science.aap8062 Carnevale M, 2017, INT J RES MARK, V34, P572, DOI 10.1016/j.ijresmar.2017.01.003 Danaher PJ, 2006, J MARKETING RES, V43, P182, DOI 10.1509/jmkr.43.2.182 Dathathri Sumanth, 2020, 8 INT C LEARN REPR I Davenport TH, 2021, Harvard Business Review Ghose A, 2019, MANAGE SCI, V65, P1363, DOI 10.1287/mnsc.2017.2991 Google, 2020, OPT YOUR CONT SEARCH Heaven WD, 2020, OpenAI's New Language Generator GPT-3 Is Shockingly Good-And Completely Mindless Kamoen N, 2013, SURV RES METHODS-GER, V7, P181 Liu J, 2018, MARKET SCI, V37, P930, DOI 10.1287/mksc.2018.1112 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Luh CJ, 2016, ONLINE INFORM REV, V40, P239, DOI 10.1108/OIR-04-2015-0112 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Marchenko OO, 2020, CYBERN SYST ANAL+, V56, P13, DOI 10.1007/s10559-020-00216-x Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Pitler E, 2008, P C EMP METH NAT LAN Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Radford A., 2018, IMPROVING LANGUAGE U Radford Alec, 2019, LANGUAGE MODELS ARE Roberts C, 2010, AM BEHAV SCI, V54, P43, DOI 10.1177/0002764210376310 Rocklage MD, 2018, PSYCHOL SCI, V29, P749, DOI 10.1177/0956797617744797 Salminen J., 2019, P 9 INT C INF SYST T, P1, DOI [10.1145/3361570.3361578, DOI 10.1145/3361570.3361578] Sheffield JP, 2020, BUS PROF COMMUN Q, V83, P153, DOI 10.1177/2329490619890335 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Vaswani A, 2017, ADV NEUR IN, V30 Wilson HJ, 2017, MIT SLOAN MANAGE REV, V58, P14 NR 36 TC 8 Z9 8 U1 66 U2 154 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD MAY-JUN PY 2022 VL 41 IS 3 BP 441 EP 452 DI 10.1287/mksc.2022.1354 PG 13 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 1T0PR UT WOS:000804442500002 DA 2024-03-27 ER PT J AU Zhao, L Zhang, ML Tu, JB Li, JL Zhang, Y AF Zhao, Lu Zhang, Mingli Tu, Jianbo Li, Jialing Zhang, Yan TI Can users embed their user experience in user-generated images? Evidence from JD.com SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE User experience; User -generated images; Deep learning model; Image semantic feature; e -commerce platform ID E-COMMERCE; SOCIAL MEDIA; PRODUCT-EXPERIENCE; CUSTOMER LOYALTY; INFORMATION; IMPACT; CONSUMPTION; CONSUMERS; FEELINGS; SERVICES AB Nowadays, massive user-generated images (UGIs) are posted online to convey users' experiences with specific brands or products. Thus, this visual information is precious, as it conveys users' actual and subjective feelings about brands and products. Because of the unprecedented quantity of images and the heterogeneity of their content, it is quite challenging for brand marketers and retailers to probe into subjective user experience in largescale UGIs. To address this gap, this study aims to identify the connection between user experience and different image semantic features (i.e. centrality and richness) by using deep learning models. By employing objective data (8963 images) from JD.com and using deep learning algorithms (faster R-CNN), we found that users with positive user experience prefer to generate high-centrality and high-richness pictures. Our study enriches the relevant literature and provides valuable practical implications for brand marketers and e-commerce retailers. Based on findings of this work, relevant stakeholders can understand their users' experience better from objective UGIs and devise corresponding recommendation and service strategies. C1 [Zhao, Lu] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China. [Zhang, Mingli] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China. [Tu, Jianbo] North China Univ Technol, Sch Econ & Management, Beijing, Peoples R China. [Li, Jialing] Chem Ind Press, Beijing, Peoples R China. [Zhang, Yan] Beijing Forestry Univ, Beijing, Peoples R China. C3 Chinese Academy of Sciences; Academy of Mathematics & System Sciences, CAS; Beihang University; North China University of Technology; Beijing Forestry University RP Zhang, ML (autor correspondiente), Beihang Univ, Sch Econ & Management, Beijing, Peoples R China. EM zhaolu@amss.ac.cn; zhang_ml_ml@126.com; tujianbo19820416@163.com; jennylee_cip@163.com; zhangyanmkt@outlook.com RI Li, Jialing/F-4875-2013 OI zhang, yan/0000-0003-1022-8642 FU Humanities and Social Science Fund of Ministry of Education of the People's Republic of China [21YJC630129]; China Postdoctoral Sci-ence Foundation [E2909318] FX Acknowledgement Authors thank Dr. Yu Wang for her great efforts in the paper proof-reading. We would like to thank Humanities and Social Science Fund of Ministry of Education of the People's Republic of China, 20YJA630091; Humanities and Social Science Fund of Ministry of Education of the People's Republic of China, 21YJC630129 and China Postdoctoral Sci-ence Foundation, E2909318 for funding our research. CR Abrate G, 2019, TOURISM MANAGE, V74, P224, DOI 10.1016/j.tourman.2019.03.013 Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Alomari HW, 2020, HELIYON, V6, DOI 10.1016/j.heliyon.2020.e03917 [Anonymous], 2020, WIKIPEDIA [Anonymous], 2009, 9241 210 2010 ERGONO, DOI DOI 10.3403/30388991 [Anonymous], 2022, J RETAILING CONSUM S, V70 Argyris YA, 2020, COMPUT HUM BEHAV, V112, DOI 10.1016/j.chb.2020.106443 Arrigo E, 2018, J RETAIL CONSUM SERV, V44, P170, DOI 10.1016/j.jretconser.2018.06.011 Bakri M, 2020, J SERV MARK, V34, P429, DOI 10.1108/JSM-11-2018-0341 Barger V, 2016, J RES INTERACT MARK, V10, P268, DOI 10.1108/JRIM-06-2016-0065 Basu S, 2018, ELECTRON COMMER R A, V30, P25, DOI 10.1016/j.elerap.2018.05.004 Bechara A, 2005, GAME ECON BEHAV, V52, P336, DOI 10.1016/j.geb.2004.06.010 Belk R, 2014, J BUS RES, V67, P1595, DOI 10.1016/j.jbusres.2013.10.001 BITNER MJ, 1992, J MARKETING, V56, P57, DOI 10.2307/1252042 Bornemann T, 2011, J CONSUM RES, V38, P490, DOI 10.1086/659874 Brubaker PJ, 2018, PUBLIC RELAT REV, V44, P342, DOI 10.1016/j.pubrev.2018.04.010 Bruce NI, 2017, J MARKETING RES, V54, P202, DOI 10.1509/jmr.14.0117 Cai XW, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103141 Chen LCE, 2018, LECT NOTES COMPUT SC, V11211, P833, DOI 10.1007/978-3-030-01234-2_49 Chen N, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102344 com J.D., 2019, INTRO JD DAFT RL, 1987, MIS QUART, V11, P355, DOI 10.2307/248682 Deng N, 2019, TOUR MANAG PERSPECT, V30, P182, DOI 10.1016/j.tmp.2019.02.016 Dolbec PY, 2013, J RETAILING, V89, P460, DOI 10.1016/j.jretai.2013.06.003 Dydata, 2020, ABOUT US Feng BY, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106812 Flavián C, 2006, J RETAIL CONSUM SERV, V13, P363, DOI 10.1016/j.jretconser.2005.11.003 Follett J., 2015, DESIGNING EMERGING T, P130 Freeman LC, 2008, J SOC STRUCT, V9, P1 Geise S, 2015, COMMUN THEOR, V25, P46, DOI 10.1111/comt.12048 Giglio S, 2019, TOURISM MANAGE, V72, P306, DOI 10.1016/j.tourman.2018.12.007 Godovykh M, 2021, TOUR REV, V76, P277, DOI 10.1108/TR-01-2020-0025 Goldfarb A, 2011, MARKET SCI, V30, P389, DOI 10.1287/mksc.1100.0583 Gulfraz MB, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103000 Guo MZ, 2020, OMEGA-INT J MANAGE S, V96, DOI 10.1016/j.omega.2019.05.010 Gupta P, 2010, J BUS RES, V63, P1041, DOI 10.1016/j.jbusres.2009.01.015 HASSENZAHL M., 2008, 20 INT C ASS FRANCOP, P11, DOI [10.1145/1512714.1512717, DOI 10.1145/1512714.1512717] Haugeland IKF, 2022, INT J HUM-COMPUT ST, V161, DOI 10.1016/j.ijhcs.2022.102788 He W, 2017, ONLINE INFORM REV, V41, P921, DOI 10.1108/OIR-07-2016-0201 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 HOLBROOK MB, 1982, J CONSUM RES, V9, P132, DOI 10.1086/208906 Hovy EH, 2015, TEXT SPEECH LANG TEC, V48, P13, DOI 10.1007/978-3-319-08043-7_2 Hu X, 2019, J INF SCI, V45, P16, DOI 10.1177/0165551518762070 Huang J, 2021, J BUS RES, V122, P761, DOI 10.1016/j.jbusres.2020.06.065 Hui H.W., 2010, INT J IMAGE PROCESS, V4, P192 Hussain S, 2021, EXPERT SYST APPL, V170, DOI 10.1016/j.eswa.2020.114545 Jansen BJ, 2009, J AM SOC INF SCI TEC, V60, P2169, DOI 10.1002/asi.21149 Jetter H., 2007, International Open Workshop "User experience - Towards a unified view", P106 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017 Kanani R, 2021, ELECTRON COMMER R A, V48, DOI 10.1016/j.elerap.2021.101059 KATZ D, 1960, PUBLIC OPIN QUART, V24, P163, DOI 10.1086/266945 Kim J, 2021, INT J HOSP MANAG, V92, DOI 10.1016/j.ijhm.2020.102708 Klostermann J, 2018, INT J RES MARK, V35, P538, DOI 10.1016/j.ijresmar.2018.08.002 Kolotylo-Kulkarni M, 2021, J BUS RES, V126, P221, DOI 10.1016/j.jbusres.2020.12.006 Kumari Parveen, 2020, International Journal of Electronic Customer Relationship Management, V12, P191, DOI 10.1504/IJECRM.2020.110037 Laros FJM, 2005, J BUS RES, V58, P1437, DOI 10.1016/j.jbusres.2003.09.013 Lee J, 2008, ELECTRON COMMER R A, V7, P341, DOI 10.1016/j.elerap.2007.05.004 Lee S.W., 2020, MULTIMEDIA TOLLS APP, V80, P625 Li HW, 2023, MANAGE SCI, V69, P5209, DOI 10.1287/mnsc.2022.4616 Lim JS, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2020.106327 Lim KH, 2000, INFORM SYST RES, V11, P115, DOI 10.1287/isre.11.2.115.11776 Liu M, 2021, J RURAL STUD, V83, P106, DOI 10.1016/j.jrurstud.2021.02.021 Liu W., 2016, PROC EUR C COMPUT VI, P21 Liu XL, 2019, ARTIF INTELL REV, V52, P1089, DOI 10.1007/s10462-018-9641-3 Mikellides B., 2017, COLOUR PSYCHOL EMOTI, Vsecond Mugge R., 2005, DES J, V8, P38, DOI DOI 10.2752/146069205789331637 Ordenes FV, 2019, J SERV MANAGE, V30, P593, DOI 10.1108/JOSM-08-2019-0254 Palvia P, 2011, DECIS SUPPORT SYST, V51, P657, DOI 10.1016/j.dss.2011.03.006 Park E, 2019, J RETAIL CONSUM SERV, V51, P14, DOI 10.1016/j.jretconser.2019.05.019 Petit O, 2019, J INTERACT MARK, V45, P42, DOI 10.1016/j.intmar.2018.07.004 Pham MT, 1998, J CONSUM RES, V25, P144, DOI 10.1086/209532 Preece J., 2015, INTERACTION DESIGN B, P12 Presi C, 2014, EUR J MARKETING, V48, P1600, DOI 10.1108/EJM-07-2012-0400 Qin JD, 2022, DECIS SUPPORT SYST, V163, DOI 10.1016/j.dss.2022.113859 Quach S, 2022, J BUS RES, V150, P538, DOI 10.1016/j.jbusres.2022.06.046 Ren S., 2016, CVPR Rose G, 2019, ENVIRON PLANN D, V37, P411, DOI 10.1177/0263775818771080 Schau HJ, 2003, J CONSUM RES, V30, P385 Schiffersrin H.N., 2008, PRODUCT EXPERIENCE Schulze K., 2010, P 7 INT C METH TECHN, V14 Septianto F, 2018, J RETAIL CONSUM SERV, V44, P1, DOI 10.1016/j.jretconser.2018.05.006 Setchi R, 2019, IEEE T AFFECT COMPUT, V10, P182, DOI 10.1109/TAFFC.2017.2705691 Shahbaznezhad H, 2021, J INTERACT MARK, V53, P47, DOI 10.1016/j.intmar.2020.05.001 Shavitt S., 1989, ADV CONSUM RES, V16, P200 Shavitt S., 1992, J CONSUM PSYCHOL, V1, P337 Shrirao A.S., 2017, INT C CURR TRENDS CO Smeulders AWM, 2000, IEEE T PATTERN ANAL, V22, P1349, DOI 10.1109/34.895972 Smith AN, 2012, J INTERACT MARK, V26, P102, DOI 10.1016/j.intmar.2012.01.002 SNYDER M, 1985, J PERS SOC PSYCHOL, V49, P586, DOI 10.1037/0022-3514.49.3.586 Son Y, 2023, J RETAIL CONSUM SERV, V71, DOI 10.1016/j.jretconser.2022.103210 Sousa R, 2009, INT J OPER PROD MAN, V29, P834, DOI 10.1108/01443570910977715 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 Statista, 2017, ABOUT US Sun XY, 2019, DECIS SUPPORT SYST, V124, DOI 10.1016/j.dss.2019.113099 VanMeter R, 2018, J INTERACT MARK, V43, P83, DOI 10.1016/j.intmar.2018.03.003 Wakefield LT, 2018, J INTERACT MARK, V41, P44, DOI 10.1016/j.intmar.2017.09.005 Wang M.Y., 2022, BACKGROUND COMPOSITI, DOI [10.2139/ssrn.4044841, DOI 10.2139/SSRN.4044841] Wang Y, 2022, BEHAV INFORM TECHNOL, V41, P3044, DOI 10.1080/0144929X.2021.1970807 Wang Y, 2022, INFORM TECHNOL PEOPL, V35, P2241, DOI 10.1108/ITP-12-2020-0869 WESTBROOK RA, 1991, J CONSUM RES, V18, P84, DOI 10.1086/209243 Wilcox K, 2009, J MARKETING RES, V46, P247, DOI 10.1509/jmkr.46.2.247 Wu KW, 2016, J RETAIL CONSUM SERV, V28, P17, DOI 10.1016/j.jretconser.2015.08.009 Xia HS, 2020, DECIS SUPPORT SYST, V131, DOI 10.1016/j.dss.2019.113235 Xiao Y, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103013 Xu X, 2017, INT J INFORM MANAGE, V37, P673, DOI 10.1016/j.ijinfomgt.2017.06.004 Yang Y, 2023, ELECTRON COMMER R A, V57, DOI 10.1016/j.elerap.2022.101232 Yoo K. H., 2008, Information Technology and Tourism, V10, P283, DOI 10.3727/109830508788403114 Yu CE, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104110 Yu W, 2018, COMPUT VIS IMAGE UND, V169, P40, DOI 10.1016/j.cviu.2018.01.001 Zhang M., 2021, MANAGE SCI Zhang M.L., 2021, COMPUT HUM BEHAV, V127 Zhang ML, 2020, J BUS RES, V118, P389, DOI 10.1016/j.jbusres.2020.07.008 Zhang ML, 2017, INTERNET RES, V27, P839, DOI 10.1108/IntR-06-2016-0148 Zhang SY, 2022, MANAGE SCI, V68, P5644, DOI 10.1287/mnsc.2021.4175 Zhao L., 2021, INT J PSYCHOL BEHAV, V17, P1 Zhao Y, 2020, ELECTRON COMMER R A, V41, DOI 10.1016/j.elerap.2020.100980 Zhou ZM, 2020, INTERNET RES, V30, P575, DOI 10.1108/INTR-12-2018-0531 Zhu J, 2019, J INTERACT MARK, V46, P101, DOI 10.1016/j.intmar.2018.10.002 NR 119 TC 2 Z9 2 U1 23 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD SEP PY 2023 VL 74 AR 103379 DI 10.1016/j.jretconser.2023.103379 EA JUN 2023 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA K5AW9 UT WOS:001016575200001 DA 2024-03-27 ER PT J AU Urban, G Timoshenko, A Dhillon, P Hauser, JR AF Urban, Glen Timoshenko, Artem Dhillon, Paramveer Hauser, John R. TI Is Deep Learning a Game Changer for Marketing Analytics? SO MIT SLOAN MANAGEMENT REVIEW LA English DT Article C1 [Urban, Glen] MIT Sloan Sch Management, Cambridge, MA 02142 USA. [Timoshenko, Artem] Northwestern Univ, Mkt, Evanston, IL 60208 USA. [Dhillon, Paramveer] Univ Michigan, Informat, Ann Arbor, MI 48109 USA. [Hauser, John R.] MIT Sloan Sch Management, Mkt, Cambridge, MA USA. C3 Massachusetts Institute of Technology (MIT); Northwestern University; University of Michigan System; University of Michigan; Massachusetts Institute of Technology (MIT) RP Urban, G (autor correspondiente), MIT Sloan Sch Management, Cambridge, MA 02142 USA. RI Hauser, John R/O-3046-2019; Timoshenko, Artem/IXN-4676-2023 OI Timoshenko, Artem/0000-0002-5431-2136 FU Suruga Bank; MIT's Initiative on the Digital Economy FX We would like to thank Suruga Bank and MIT's Initiative on the Digital Economy for their funding support, and NerdWallet and Comscore for providing the data used in the research. CR [Anonymous], 2015, DEEP LEARNING Burnap A., 2019, DESIGN EVALUATION PR Dhillon P., 2019, WORKING PAPER Geron A., 2017, HANDS ON MACHINE LEA Liu L., 2019, Working Paper Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Urban GL, 2009, MIT SLOAN MANAGE REV, V50, P53 NR 8 TC 15 Z9 18 U1 0 U2 16 PU SLOAN MANAGEMENT REVIEW ASSOC, MIT SLOAN SCHOOL MANAGEMENT PI CAMBRIDGE PA 77 MASSACHUSETTS AVE, E60-100, CAMBRIDGE, MA 02139-4307 USA SN 1532-9194 J9 MIT SLOAN MANAGE REV JI MIT Sloan Manage. Rev. PD WIN PY 2020 VL 61 IS 2 BP 71 EP 76 PG 6 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA NW3JD UT WOS:000574904600013 DA 2024-03-27 ER PT J AU Yu, J Egger, R AF Yu, Joanne Egger, Roman TI Looking behind the scenes at dark tourism: a comparison between academic publications and user-generated-content using natural language processing SO JOURNAL OF HERITAGE TOURISM LA English DT Article DE Dark tourism; Instagram; tourism movements; scatterplot; tourist experience; natural language processing ID DEATH; SITES; THANATOURISM; ATTRACTIONS; MOTIVATION; EXPERIENCE; MANAGEMENT AB Although scholars have discussed the topic of dark tourism from various angles, little is known from tourists' perspectives. Thus, it remains largely unanswered whether the research agendas in the field of dark tourism also correspond to the reality of tourism or whether relevant topics remain unaddressed. This study uses natural language processing approaches to uncover the differences and similarities in knowledge between tourists and researchers based on academic publications and Instagram posts. The results provide insights into underexplored tourist experiences at various dark places, such as Vienna, Philadelphia, Estonia, and the Czech Republic. The findings also uncover activities rarely considered as a form of dark tourism, such as urban exploration and ghost hunting. By highlighting the differences in perceptions between scholars and tourists, this study points to future research directions and offers insights into what interests tourists to various stakeholders. C1 [Yu, Joanne] Modul Univ Vienna, Dept Tourism & Serv Management, Vienna, Austria. [Egger, Roman] Salzburg Univ Appl Sci, Dept Innovat & Management Tourism, Salzburg, Austria. RP Yu, J (autor correspondiente), Modul Univ Vienna, Dept Tourism & Serv Management, Vienna, Austria. EM joanne.yu@modul.ac.at RI Yu, Joanne/P-1427-2019; Egger, Roman/AAS-1732-2020 OI Yu, Joanne/0000-0001-7605-6367; Egger, Roman/0000-0003-4888-6026 CR Abraham V, 2022, J HERIT TOUR, V17, P264, DOI 10.1080/1743873X.2021.1955892 Ashworth G.J., 2002, Journal of International Research in Geographical and Environmental Education, V11, P363, DOI [10.1080/10382040208667504, DOI 10.1080/10382040208667504] Biran A, 2014, ANN TOURISM RES, V47, P1, DOI 10.1016/j.annals.2014.03.004 Biran A, 2011, ANN TOURISM RES, V38, P820, DOI 10.1016/j.annals.2010.12.001 Bolan P., 2018, SHINING DIGITAL LIGH, P727 Bryce D, 2015, TOURISM MANAGE, V46, P571, DOI 10.1016/j.tourman.2014.08.012 Buda DM, 2014, ANN TOURISM RES, V46, P102, DOI 10.1016/j.annals.2014.03.005 Causevic S, 2011, ANN TOURISM RES, V38, P780, DOI 10.1016/j.annals.2010.12.004 Chronis A, 2012, ANN TOURISM RES, V39, P1797, DOI 10.1016/j.annals.2012.05.028 Cohen EH, 2011, ANN TOURISM RES, V38, P193, DOI 10.1016/j.annals.2010.08.003 Commane G., 2019, Holocaust Studies, P158, DOI [DOI 10.1080/17504902.2018.1472879, 10.1080/17504902.2018.1472879] Domingo-Carrillo MA, 2020, CURR ISSUES TOUR, V23, P880, DOI 10.1080/13683500.2018.1564738 DUNKLEY R.A., 2007, ASIAN J TOURISM HOSP, V1, P54 Dunkley R, 2011, TOURISM MANAGE, V32, P860, DOI 10.1016/j.tourman.2010.07.011 Egger R., 2022, INFORM COMMUNICATION, P343, DOI DOI 10.1007/978-3-030-94751-4_31 Egger R., 2022, Applied Data Science in Tourism, P85, DOI DOI 10.1007/978-3-030-88389-8_6 Egger R, 2022, TOUR REV, V77, P1234, DOI 10.1108/TR-05-2021-0244 Falagas ME, 2008, FASEB J, V22, P338, DOI 10.1096/fj.07-9492LSF Farkic J, 2021, ANN TOURISM RES, V90, DOI 10.1016/j.annals.2021.103256 Filep S., 2017, Positive Tourism Foley M., 1996, International Journal of Heritage Studies, V2, P198, DOI [10.1080/13527259608722175, https://doi.org/10.1080/13527259608722175, DOI 10.1080/13527259608722175] Gao J, 2016, PROCEEDINGS 2016 IEEE SYMPOSIUM ON SERVICE-ORIENTED SYSTEM ENGINEERING SOSE 2016, P433, DOI 10.1109/SOSE.2016.63 Geru M., 2018, EC APPL INFORM, V24, P5, DOI DOI 10.1109/SOSE.2016.63 Gibbs M, 2015, INFORM COMMUN SOC, V18, P255, DOI 10.1080/1369118X.2014.987152 Hartmann R, 2014, J HERIT TOUR, V9, P166, DOI 10.1080/1743873X.2013.807266 Hauser D, 2022, J DESTIN MARK MANAGE, V24, DOI 10.1016/j.jdmm.2022.100702 Iliev D, 2021, TOURISM GEOGR, V23, P963, DOI 10.1080/14616688.2020.1722215 Isaac RK, 2021, J HERIT TOUR, V16, P363, DOI 10.1080/1743873X.2021.1920963 Isaac RK, 2014, CURR ISSUES TOUR, V17, P164, DOI 10.1080/13683500.2013.776021 Kang EJ, 2012, TOURISM MANAGE, V33, P257, DOI 10.1016/j.tourman.2011.03.004 Kennell J, 2021, J HERIT TOUR, V16, P367, DOI 10.1080/1743873X.2020.1782924 Kessler J.S., 2017, ARXIV PREPRINT ARXIV, P1, DOI [10.48550/arXiv.1703.00565, DOI 10.48550/ARXIV.1703.00565] Kidron CA, 2013, ANN TOURISM RES, V41, P175, DOI 10.1016/j.annals.2012.12.009 Korstanje ME, 2012, WORLDW HOSP TOUR THE, V4, P8, DOI 10.1108/17554211211198552 Lacanienta A, 2020, J HERIT TOUR, V15, P626, DOI 10.1080/1743873X.2020.1739055 Lagos E., 2015, Tourismos, V10, P153 Lemelin H, 2010, CURR ISSUES TOUR, V13, P477, DOI 10.1080/13683500903406367 Lennon J.J., 2018, The Palgrave handbook of dark tourism studies, P585 Lennon JohnJ., 2000, DARK TOURISM Light D, 2017, TOURISM MANAGE, V61, P275, DOI 10.1016/j.tourman.2017.01.011 Magee R, 2015, SERV IND J, V35, P898, DOI 10.1080/02642069.2015.1090980 Marrone M, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0242283 Martini A, 2020, CURR ISSUES TOUR, V23, P679, DOI 10.1080/13683500.2018.1518972 Miles S, 2014, J HERIT TOUR, V9, P134, DOI 10.1080/1743873X.2013.871017 Mott C, 2014, ANTIPODE, V46, P229, DOI 10.1111/anti.12033 Mowatt RA, 2011, ANN TOURISM RES, V38, P1410, DOI 10.1016/j.annals.2011.03.012 Munoz CL, 2017, J POLITICAL MARKETIN, V16, P290, DOI 10.1080/15377857.2017.1334254 Neuhofer B, 2021, ANN TOURISM RES, V91, DOI 10.1016/j.annals.2021.103310 Oren G, 2021, TOURISM MANAGE, V82, DOI 10.1016/j.tourman.2020.104194 Podoshen JS, 2013, TOURISM MANAGE, V35, P263, DOI 10.1016/j.tourman.2012.08.002 Podoshen JS, 2011, TOURISM MANAGE, V32, P1332, DOI 10.1016/j.tourman.2011.01.007 Prayag G, 2021, J SUSTAIN TOUR, V29, P1508, DOI 10.1080/09669582.2020.1823398 Raab Nigel A., 2020, The Humanities in Transition from Postmodernism to the Digital Age Raine R, 2013, INT J CULT TOUR HOSP, V7, P242, DOI 10.1108/IJCTHR-05-2012-0037 Roberts Catherine., 2018, The Palgrave Handbook of Dark Tourism Studies, DOI [DOI 10.1057/978-1-137-47566-4_25, https://doi.org/10.1057/978-1-137-47566-4_25] Seaton A.V., 1996, International Journal of Heritage Studies, V2, P234, DOI DOI 10.1080/13527259608722178 Sharpley R, 2009, ASPEC TOUR, P3 Sigala M, 2021, J HERIT TOUR, V16, P412, DOI 10.1080/1743873X.2020.1851697 Smith VL, 1998, ANN TOURISM RES, V25, P202, DOI 10.1016/S0160-7383(97)00086-8 Stone P, 2008, ANN TOURISM RES, V35, P574, DOI 10.1016/j.annals.2008.02.003 Stone P, 2013, INT J CULT TOUR HOSP, V7, P307, DOI 10.1108/IJCTHR-06-2013-0039 Stone PR, 2012, ANN TOURISM RES, V39, P1565, DOI 10.1016/j.annals.2012.04.007 Stone PR, 2006, TOURISM, V54, P145 Strange C, 2003, ANN TOURISM RES, V30, P386, DOI 10.1016/S0160-7383(02)00102-0 Sun JJ, 2021, ANN TOURISM RES, V86, DOI 10.1016/j.annals.2020.103087 Turner J, 2021, J MED INTERNET RES, V23, DOI 10.2196/27307 Walter T, 2009, ASPEC TOUR, P39 Waltman L, 2013, J AM SOC INF SCI TEC, V64, P372, DOI 10.1002/asi.22775 Wight AC, 2007, TOURISM MANAGE, V28, P519, DOI 10.1016/j.tourman.2006.03.006 Winter C, 2011, INT J TOUR RES, V13, P164, DOI 10.1002/jtr.806 Wyatt B, 2021, J HERIT TOUR, V16, P433, DOI 10.1080/1743873X.2020.1858087 Yan BJ, 2016, TOURISM MANAGE, V53, P108, DOI 10.1016/j.tourman.2015.09.014 Yang WQ, 2011, TOURISM MANAGE, V32, P949, DOI 10.1016/j.tourman.2010.07.007 Zheng CH, 2020, TOURISM GEOGR, V22, P105, DOI 10.1080/14616688.2019.1618903 NR 74 TC 2 Z9 2 U1 1 U2 7 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1743-873X EI 1747-6631 J9 J HERIT TOUR JI J. Herit. Tour. PD SEP 3 PY 2022 VL 17 IS 5 BP 548 EP 562 DI 10.1080/1743873X.2022.2097011 EA JUL 2022 PG 15 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA 4N4WH UT WOS:000827544000001 DA 2024-03-27 ER PT J AU Philp, M Jacobson, J Pancer, E AF Philp, Matthew Jacobson, Jenna Pancer, Ethan TI Predicting social media engagement with computer vision: An examination of food marketing on Instagram SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Social media marketing; Consumer engagement; Machine learning; Food; Processing fluency; Google Vision AI ID WORD-OF-MOUTH; CUSTOMER ENGAGEMENT; PROCESSING FLUENCY; MESSAGE STRATEGY; PROTOTYPICALITY; FACEBOOK; POPULARITY; COMPLEXITY; SELECTION; BEHAVIOR AB In a crowded social media marketplace, restaurants often try to stand out by showcasing elaborate "Instagrammable" foods. Using an image classification machine learning algorithm (Google Vision AI) on restaurants' Instagram posts, this study analyzes how the visual characteristics of product offerings (i.e., their food) relate to social media engagement. Results demonstrate that food images that are more confidently evaluated by Google Vision AI (a proxy for food typicality) are positively associated with engagement (likes and comments). A followup experiment shows that exposure to typical-appearing foods elevates positive affect, suggesting they are easier to mentally process, which drives engagement. Therefore, contrary to conventional social media practices and food industry trends, the more typical a food appears, the more social media engagement it receives. Using Google Vision AI to identify what product offerings receive engagement presents an accessible method for marketers to understand their industry and inform their social media marketing strategies. C1 [Philp, Matthew; Jacobson, Jenna] Toronto Metropolitan Univ, Ted Rogers Sch Management, 350 Victoria St, Toronto, ON M5B 2K3, Canada. [Pancer, Ethan] St Marys Univ, Sobey Sch Business, 903 Robie St, Halifax, NS B3H 3C2, Canada. C3 Toronto Metropolitan University; Saint Marys University - Canada RP Philp, M (autor correspondiente), Toronto Metropolitan Univ, Ted Rogers Sch Management, 350 Victoria St, Toronto, ON M5B 2K3, Canada. EM mphilp@ryerson.ca; jenna.jacobson@ryerson.ca; ethan.pancer@smu.ca RI Pancer, Ethan/IQW-3081-2023 OI Philp, Matthew/0000-0003-2130-8840; Jacobson, Jenna/0000-0002-1371-1077 FU Social Sciences and Humanities Research Council of Canada [435-2018-1319, 430-2019-00218, 139286] FX The authors gratefully acknowledge the help from Ngoc My Vo, Maxwell Poole, Portchia Sedlezky-Anselmo, Alyssa Counsell, Rishad Habib, Shengkun Xie, Ali Tezer, and Zhe Zhang in preparing this manuscript. Additionally, the authors would like to thank the Social Sciences and Humanities Research Council of Canada (#435-2018-1319, #430-2019-00218, and #139286) for their financial support. CR [Anonymous], 2019, Cloud vision api [Anonymous], 1963, MEASUREMENT READABIL Bakhshi S, 2014, 32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), P965, DOI 10.1145/2556288.2557403 BELK RW, 1988, J CONSUM RES, V15, P139, DOI 10.1086/209154 Berger J, 2007, J CONSUM RES, V34, P121, DOI 10.1086/519142 Berger J, 2014, J CONSUM PSYCHOL, V24, P586, DOI 10.1016/j.jcps.2014.05.002 Berger J, 2013, J CONSUM RES, V40, P567, DOI 10.1086/671345 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Berger J, 2011, J MARKETING RES, V48, P869, DOI 10.1509/jmkr.48.5.869 Bernritter SF, 2016, J INTERACT MARK, V33, P27, DOI 10.1016/j.intmar.2015.10.002 Bolin JH, 2014, J EDUC MEAS, V51, P335, DOI 10.1111/jedm.12050 Brown K. V, 2016, GIZMODO Cao DM, 2021, J BUS RES, V122, P835, DOI 10.1016/j.jbusres.2020.06.025 Carbone L, 2019, THIS IS INSTAGRAM AL Chall Jeanne Sternlicht, 1995, Readability Revisited: The New Dale-Chall Readability Formula Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 De Luca LM, 2021, J ACAD MARKET SCI, V49, P790, DOI 10.1007/s11747-020-00739-x de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Dubay W., 2004, IMPACT INFORM Eigenraam AW, 2018, J INTERACT MARK, V44, P102, DOI 10.1016/j.intmar.2018.07.002 Fantozzi J, 2017, THE INSIDER Flesch R, 1948, J APPL PSYCHOL, V32, P221, DOI 10.1037/h0057532 Google, 2019, VISION AI Gunning R., 1952, TECHNIQUE CLEAR WRIT Heath C, 2001, J PERS SOC PSYCHOL, V81, P1028, DOI 10.1037//0022-3514.81.6.1028 Heath C., 2005, EXTREME COMP BIASED HEKKERT P, 1990, BRIT J PSYCHOL, V81, P483, DOI 10.1111/j.2044-8295.1990.tb02374.x Hitz L, 2019, SPROUT SOCIAL Hosseini H, 2017, 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), P101, DOI 10.1109/ICMLA.2017.0-172 Instagram, 2021, 2022 INSTAGRAM TREND Jaakonmäki R, 2017, PROCEEDINGS OF THE 50TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P1152 Janiszewski C, 2001, J CONSUM RES, V28, P18, DOI 10.1086/321945 Janiszewski C, 2021, J CONSUM PSYCHOL, V31, P633, DOI 10.1002/jcpy.1263 Kaiser C, 2020, J BUS RES, V117, P707, DOI 10.1016/j.jbusres.2019.09.017 Kim C, 2017, PUBLIC RELAT REV, V43, P441, DOI 10.1016/j.pubrev.2017.02.006 Kim S, 2015, INT J HOSP MANAG, V49, P40, DOI 10.1016/j.ijhm.2015.05.006 Klauda SL, 2008, J EDUC PSYCHOL, V100, P310, DOI 10.1037/0022-0663.100.2.310 Kludt A, 2014, EATER Kong HM, 2021, J BUS RES, V131, P640, DOI 10.1016/j.jbusres.2020.08.021 Landwehr JR, 2013, J MARKETING, V77, P92, DOI 10.1509/jm.11.0286 LANGLOIS JH, 1990, PSYCHOL SCI, V1, P115, DOI 10.1111/j.1467-9280.1990.tb00079.x Lee S, 2017, BBC Lepkowska-White E, 2017, J INTERNET COMMER, V16, P323, DOI 10.1080/15332861.2017.1317148 Lewis-Kraus G., 2015, The New York Times Magazine Li YY, 2020, J MARKETING RES, V57, P1, DOI 10.1177/0022243719881113 Liu L, 2020, MARKET SCI, V39, P669, DOI 10.1287/mksc.2020.1226 Liu X, 2021, J BUS RES, V125, P815, DOI 10.1016/j.jbusres.2019.04.042 Luckerson V., 2015, TIME MARTINDALE C, 1988, J EXP PSYCHOL HUMAN, V14, P661, DOI 10.1037/0096-1523.14.4.661 Mayer S, 2018, PSYCHOL AESTHET CREA, V12, P399, DOI 10.1037/aca0000187 Mazloom Masoud, 2016, P 24 ACM INT C MULT, P197, DOI DOI 10.1145/2964284.2967210 McCarthy A, 2021, EATER MCCLELLAND JL, 1981, PSYCHOL REV, V88, P375, DOI 10.1037/0033-295X.88.5.375 MCLAUGHLIN GH, 1969, J READING, V12, P639 Meta for Business, 2013, WHAT INCR CONT SHAR Mittal A, 2011, CONF REC ASILOMAR C, P723, DOI 10.1109/ACSSC.2011.6190099 Moldovan S, 2011, INT J RES MARK, V28, P109, DOI 10.1016/j.ijresmar.2010.11.003 Moore S., 2020, Consumer Psychology Review, V3, P34, DOI DOI 10.1002/ARCP.1055 Nanne AJ, 2020, J INTERACT MARK, V50, P156, DOI 10.1016/j.intmar.2019.09.003 Needles A., 2013, Cornell Hospitality Reports, V13, P6 Ngai EWT, 2016, J ORGAN END USER COM, V28, P13, DOI 10.4018/JOEUC.2016040102 Noseworthy TJ, 2014, J CONSUM RES, V41, P1108, DOI 10.1086/678301 Pancer E, 2022, J CONSUM PSYCHOL, V32, P336, DOI 10.1002/jcpy.1246 Pancer E, 2019, J CONSUM PSYCHOL, V29, P262, DOI 10.1002/jcpy.1073 Philp M, 2020, J BUS RES, V116, P283, DOI 10.1016/j.jbusres.2020.05.018 Philp M, 2018, MARKET LETT, V29, P101, DOI 10.1007/s11002-018-9447-8 POSNER MI, 1968, J EXP PSYCHOL, V77, P353, DOI 10.1037/h0025953 Reber R, 2004, PERS SOC PSYCHOL REV, V8, P364, DOI 10.1207/s15327957pspr0804_3 Rhodes G, 1996, PSYCHOL SCI, V7, P105, DOI 10.1111/j.1467-9280.1996.tb00338.x Rietveld R, 2020, J INTERACT MARK, V49, P20, DOI 10.1016/j.intmar.2019.06.003 Selye H., 1975, STRESS LIFE Shimamura A.P., 2012, Aesthetic Science: Connecting Minds, Brains, and Experience Simonson I, 2000, J CONSUM RES, V27, P49, DOI 10.1086/314308 SMITH EE, 1974, PSYCHOL REV, V81, P214, DOI 10.1037/h0036351 So KKF, 2021, J BUS RES, V129, P474, DOI 10.1016/j.jbusres.2020.05.054 Sokolov E.N., 1963, PERCEPTION CONDITION Statista, 2021, MED US INT MIN AUG 2 Statista, 2022, DAIL TIM SPENT SOC N Stewart J.B., 2016, IT WANTS MORE Swani K, 2017, J BUS RES, V79, P123, DOI 10.1016/j.jbusres.2017.06.003 Swani K, 2013, J RES INTERACT MARK, V7, P269, DOI 10.1108/JRIM-05-2013-0026 Tafesse W, 2018, J CONSUM MARK, V35, P241, DOI 10.1108/JCM-08-2016-1905 Tubular, 2022, MOST VIEWS OV CREAT WHITFIELD TWA, 1979, BRIT J PSYCHOL, V70, P65, DOI 10.1111/j.2044-8295.1979.tb02144.x Winkielman P, 2003, PSYCHOLOGY OF EVALUATION, P189 Winkielman P, 2001, J PERS SOC PSYCHOL, V81, P989, DOI 10.1037//0022-3514.81.6.989 Winkielman P, 2006, PSYCHOL SCI, V17, P799, DOI 10.1111/j.1467-9280.2006.01785.x NR 88 TC 13 Z9 15 U1 35 U2 98 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD OCT PY 2022 VL 149 BP 736 EP 747 DI 10.1016/j.jbusres.2022.05.078 EA JUN 2022 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 2F6RY UT WOS:000813036000016 OA hybrid DA 2024-03-27 ER PT J AU Le, T Ho, T Nguyen, VH Le, HS AF Le, Thien Ho, Thanh Nguyen, Van-Ho Le, Hoanh-Su TI How to deeply understand the voice of the customer? A proposal for a synthesis of techniques for analyzing online reviews in the hospitality industry SO JOURNAL OF HOSPITALITY AND TOURISM INSIGHTS LA English DT Article; Early Access DE Voice of the customer; Hospitality management; User-generated content; Graph model; Topic modeling; Natural language processing ID TEXT ANALYTICS; EXPERIENCE; MANAGEMENT; MODEL AB PurposeThis study aims to use the voice of the customer (VoC) strategy to collect user-generated content (UGC) compare customer expectations with reality, make the necessary improvements for the business and create personalized strategies for each customer to maximize revenue, focus on hospitality industry in Vietnam market.Design/methodology/approachThis study proposes a synthesis of techniques for a deep understanding of the VoC based on online reviews in the hospitality industry. First, 409,054 comments were collected from websites in the hospitality sector. Second, the data will be organized, stored, cleaned, analyzed and evaluated. Next, research using business intelligence (BI) solutions integrating three models, including net promoter score (NPS), graph model and latent Dirichlet allocation (LDA), based on natural language processing (NLP) technique, experiment on Vietnamese and English data to explore the multidimensional voice of customer's row. Finally, a dashboard system will be implemented to visualize analysis results and recommendations on marketing strategies to improve product and service quality.FindingsExperimental results allow analysts and managers to "listen to the customer's voice" accurately and effectively, identify relationships between entities, topics of discussion in favor of positive and negative trends.Originality/valueThe novelty in this study is the integration of three models, including NPS, graph model and LDA. These models are combined based on the BI solution and NLP technique. The study also conducted experiments on both Vietnamese and English languages, which ensures more effective practical application. C1 [Le, Hoanh-Su] Univ Econ & Law, Ho Chi Minh City, Vietnam. Vietnam Natl Univ, Ho Chi Minh City, Vietnam. C3 VNUHCM - University of Economics & Law; Vietnam National University Hochiminh City RP Le, HS (autor correspondiente), Univ Econ & Law, Ho Chi Minh City, Vietnam. EM sulh@uel.edu.vn RI Ho, Thanh/ACK-8182-2022; Nguyen Van, Ho/HSG-6733-2023 OI Ho, Thanh/0000-0002-9033-3735; Le, Hoanh-Su/0000-0002-3132-2550; Nguyen Van, Ho/0000-0001-6706-0276 FU University of Economics and Law, Vietnam National University Ho Chi Minh City, Vietnam FX This research is funded by University of Economics and Law, Vietnam National University Ho Chi Minh City, Vietnam. CR Aguwa C, 2017, KNOWL-BASED SYST, V125, P136, DOI 10.1016/j.knosys.2017.03.019 Alamsyah Andry, 2022, 2022 7th International Workshop on Big Data and Information Security (IWBIS), P45, DOI 10.1109/IWBIS56557.2022.9924920 Alamsyah A, 2021, INFORMATION, V12, DOI 10.3390/info12100413 Balducci B., 2022, Handbook of Research on Customer Loyalty, V107 Barravecchia F, 2022, INT J QUAL RELIAB MA, V39, P1453, DOI 10.1108/IJQRM-07-2021-0217 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Buhalis D, 2008, TOURISM MANAGE, V29, P609, DOI 10.1016/j.tourman.2008.01.005 Cherkasov A., 2021, Marketing Analysis Das B.K., 2021, Library Philosophy and Practice, P5818 Didimo W, 2020, IEEE ACCESS, V8, P16073, DOI 10.1109/ACCESS.2020.2967974 Fedyk W., 2023, Journal of Environmental Management and Tourism, V14, P442, DOI [10.14505/jemt.14.2(66).14, DOI 10.14505/JEMT.14.2(66).14] Fisher NI, 2019, APPL STOCH MODEL BUS, V35, P138, DOI 10.1002/asmb.2417 Found P, 2012, INT J LEAN SIX SIG, V3, P251, DOI 10.1108/20401461211282736 Gallagher C, 2019, INT J DATA WAREHOUS, V15, P21, DOI 10.4018/IJDWM.2019100102 GRIFFIN A, 1993, MARKET SCI, V12, P1, DOI 10.1287/mksc.12.1.1 Hocevar M, 2021, INT J TOUR CITIES, V7, P818, DOI 10.1108/IJTC-05-2020-0110 Hu N, 2019, TOURISM MANAGE, V72, P417, DOI 10.1016/j.tourman.2019.01.002 김유신, 2013, [Journal of Intelligence and Information Systems, 지능정보연구], V19, P113, DOI 10.13088/jiis.2013.19.3.113 Laitinen MA, 2018, J LIBR ADM, V58, P394, DOI 10.1080/01930826.2018.1448655 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Lipkin M, 2022, J SERV MARK, V36, P1, DOI 10.1108/JSM-03-2021-0080 Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011 Marcolin CB, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2020.102853 Melander L, 2019, BENCHMARKING, V27, P215, DOI 10.1108/BIJ-04-2018-0112 Min H, 2019, INT J HOSP MANAG, V82, P59, DOI 10.1016/j.ijhm.2019.03.017 Müller O, 2016, MIS Q EXEC, V15, P243 Nguyen TTT, 2023, J MARK ANAL, V11, P443, DOI 10.1057/s41270-022-00174-7 Nicholas C.K.W., 2017, P 1 INT C BIG DATA R, P104 Pereira LN, 2022, CURR ISSUES TOUR, V25, P2733, DOI 10.1080/13683500.2021.1999397 Price R, 2016, J INT CONSUM MARK, V28, P92, DOI 10.1080/08961530.2015.1092405 Rajendran S, 2023, BENCHMARKING, V30, P1, DOI 10.1108/BIJ-12-2020-0650 Rajendran S, 2021, INT J LOGIST-RES APP, V24, P473, DOI 10.1080/13675567.2020.1769042 Ramadhani Dian Puteri, 2022, 2022 10th International Conference on Information and Communication Technology (ICoICT), P310, DOI 10.1109/ICoICT55009.2022.9914859 Ramadhani Dian Puteri, 2021, 2021 9th International Conference on Information and Communication Technology (ICoICT), P219, DOI 10.1109/ICoICT52021.2021.9527445 Schuckert M, 2015, J TRAVEL TOUR MARK, V32, P608, DOI 10.1080/10548408.2014.933154 Sezgen E, 2019, J AIR TRANSP MANAG, V77, P65, DOI 10.1016/j.jairtraman.2019.04.001 Sharma GD, 2021, TOUR MANAG PERSPECT, V37, DOI 10.1016/j.tmp.2020.100786 Spoor JM, 2023, J MARK ANAL, V11, P747, DOI 10.1057/s41270-022-00185-4 Stylos N, 2021, INT J CONTEMP HOSP M, V33, P1015, DOI 10.1108/IJCHM-07-2020-0644 Nguyen VH, 2021, J INF PROCESS SYST, V17, P586, DOI 10.3745/JIPS.04.0217 Wang G, 2023, J HOSP TOUR INSIGHTS, V6, P509, DOI 10.1108/JHTI-09-2021-0260 Zhang JR, 2019, J CONSUM MARK, V36, P655, DOI 10.1108/JCM-02-2018-2581 Zobnina M, 2018, WORLDW HOSP TOUR THE, V10, P436, DOI [10.1108/WHATT-03-2018-0020, 10.1108/whatt-03-2018-0020] NR 43 TC 0 Z9 0 U1 5 U2 5 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 2514-9792 EI 2514-9806 J9 J HOSP TOUR INSIGHTS JI J. Hosp. Tour. Insights PD 2024 FEB 2 PY 2024 DI 10.1108/JHTI-07-2023-0460 EA FEB 2024 PG 21 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA GR0G2 UT WOS:001154273700001 DA 2024-03-27 ER PT J AU Richter, NF Tudoran, AA AF Richter, Nicole Franziska Tudoran, Ana Alina TI Elevating theoretical insight and predictive accuracy in business research: Combining PLS-SEM and selected machine learning algorithms SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Partial least squares-structural equation; modeling (PLS-SEM); Machine learning (ML); Prediction; Method triangulation; Unified theory of acceptance and use of; technology (UTAUT) ID INFORMATION-TECHNOLOGY; BAYESIAN NETWORKS; ACCEPTANCE; PERFORMANCE; ANALYTICS; SERVICES; QUALITY; MODELS AB We propose a routine for combining partial least squares-structural equation modeling (PLS-SEM) with selected machine learning (ML) algorithms to exploit the two method's causal-predictive and causal-exploratory capa-bilities. Triangulating these two methods can improve the predictive accuracy of research models, enhance the understanding of relationships, assist in identifying new relationships and therewith contribute to theorizing. We demonstrate the advantages and challenges of triangulating the two methods on an illustrative example along a four-step-routine: (1) Develop a PLS-SEM on a baseline conceptual model and use its standards to assess mea-surement model quality and generate latent variables scores. (2) Apply specific ML algorithms on the extracted data to validate relationships and identify new (linear) relationships that may go beyond the initial hypotheses; similarly, assess model advancements in the form of nonlinearities and interaction effects. (3) Evaluate the theoretical plausibility of alternative models. (4) Integrate alternative models in PLS-SEM and compare these with the baseline model using a recently proposed prediction-oriented test procedure in PLS-SEM. C1 [Richter, Nicole Franziska] Univ Southern Denmark, Esbjerg, Denmark. [Tudoran, Ana Alina] Aarhus Univ, Aarhus, Denmark. C3 University of Southern Denmark; Aarhus University RP Richter, NF (autor correspondiente), Univ Southern Denmark, Esbjerg, Denmark. EM nicole@sam.sdu.dk; anat@econ.au.dk RI Tudoran, Ana/HMU-9691-2023; Richter, Nicole Franziska/AEN-0137-2022 OI Tudoran, Ana/0000-0002-1380-4775; Richter, Nicole Franziska/0000-0002-1278-176X CR AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Al-Gahtani SS, 2007, INFORM MANAGE-AMSTER, V44, P681, DOI 10.1016/j.im.2007.09.002 [Anonymous], 2003, Learning Bayesian Networks Basco R, 2022, J FAM BUS STRATEG, V13, DOI 10.1016/j.jfbs.2021.100457 Becker JM, 2023, INT J CONTEMP HOSP M, V35, P321, DOI 10.1108/IJCHM-04-2022-0474 Becker JM, 2015, MARKET LETT, V26, P643, DOI 10.1007/s11002-014-9299-9 Blut M, 2022, J ASSOC INF SYST, V23, P13, DOI 10.17705/1jais.00719 Boehmke B, 2019, Hands-on machine learning with R, DOI DOI 10.1201/9780367816377 Bollen K. A., 2013, Handbook of causal analysis for social research, P301, DOI DOI 10.1007/978-94-007-6094-3_15 Bouckaert R. R, 2003, C P 20 INT C MACH LE Bozan K, 2016, P ANN HICSS, P3105, DOI 10.1109/HICSS.2016.391 Bruno A, 2022, PATTERN RECOGN IMAGE, V32, P519, DOI 10.1134/S1054661822030087 Buckler F, 2008, Marketing-Journal of Research in Management, V4, P49 Burton RM, 2011, ORGAN SCI, V22, P1195, DOI 10.1287/orsc.1100.0635 Canhoto AI, 2021, J BUS RES, V131, P441, DOI 10.1016/j.jbusres.2020.10.012 Carvalho E. C. A. d., 2021, Knowledge-Based Systems, V223 Cho G, 2022, MANAGE INT REV, V62, P569, DOI 10.1007/s11575-022-00479-w Cho G, 2022, STRUCT EQU MODELING, V29, P611, DOI 10.1080/10705511.2022.2057315 Contractor FJ, 2003, J INT BUS STUD, V34, P5, DOI 10.1057/palgrave.jibs.8400003 Danks N., 2017, EVALUATING PREDICTIV Díez-Mesa F, 2018, TRANSPORT RES A-POL, V118, P1, DOI 10.1016/j.tra.2018.08.012 Druzdzel M. J, 1993, Causality in Bayesian Belief Networks Elwert F., 2013, Handbook OfCausal Analysis for Social Research, P245, DOI [DOI 10.1007/978-94-007-6094-3_13, DOI 10.1007/978-1-4471-6699-3_13] Ferreira MB, 2021, J BUS RES, V131, P411, DOI 10.1016/j.jbusres.2020.10.035 FRIEDMAN JH, 1991, ANN STAT, V19, P1, DOI 10.1214/aos/1176347963 Garbe JN, 2009, J INT MANAG, V15, P413, DOI 10.1016/j.intman.2008.10.002 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gregor S, 2006, MIS QUART, V30, P611 Guenther P, 2023, IND MARKET MANAG, V111, P127, DOI 10.1016/j.indmarman.2023.03.010 Gupta S, 2008, EUR J OPER RES, V190, P818, DOI 10.1016/j.ejor.2007.05.054 Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Hair J. F., 2017, ADV ISSUES PARTIAL L Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair JF, 2017, J ACAD MARKET SCI, V45, P616, DOI 10.1007/s11747-017-0517-x Hair JF, 2021, J MARKET THEORY PRAC, V29, P65, DOI 10.1080/10696679.2020.1860683 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Jaeger RG, 1998, HERPETOLOGICA, V54, pS64 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] Joreskog K. G., 1982, Systems under Indirect Observation, Part I, V1, P263 Kenett RS, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph19084859 Kohavi R., 1995, INT JOINT C ART INT, DOI DOI 10.1067/MOD.2000.109031 Koller D., 2009, Probabilistic Graphical Models: Principles and Techniques Kuhn M., 2013, APPL PREDICTIVE MODE, P600, DOI [10.1007/978-1-4614-6849-3, DOI 10.1007/978-1-4614-6849-3] Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Leong LY, 2020, J BUS RES, V110, P24, DOI 10.1016/j.jbusres.2019.11.056 Liengaard BD, 2021, DECISION SCI, V52, P362, DOI 10.1111/deci.12445 Liew BXW, 2023, J PAIN, V24, P426, DOI 10.1016/j.jpain.2022.10.003 Lo PS, 2022, J BUS RES, V147, P325, DOI 10.1016/j.jbusres.2022.04.013 Loh XM, 2022, EXPERT SYST APPL, V205, DOI 10.1016/j.eswa.2022.117659 MacKay DJ, 2003, Information theory, inference, and learning algorithms Mandhani J, 2020, TRANSPORT RES A-POL, V140, P320, DOI 10.1016/j.tra.2020.08.014 Margaritis D., 2003, Learning Bayesian network model structure from data McQuarrie A.D.R., 1998, REGRESSION TIME SERI MITTELSTAEDT RA, 1976, J CONSUM RES, V3, P84, DOI 10.1086/208655 Neapolitan R., 2007, Probabilistic Methods for Financial and Marketing Informatics Nielsen BB, 2020, J INT BUS STUD, V51, P1478, DOI 10.1057/s41267-020-00372-4 Ooi KB, 2018, EXPERT SYST APPL, V93, P376, DOI 10.1016/j.eswa.2017.10.009 Pearl J., 2021, HDB STRUCTURAL EQUAT, P68, DOI DOI 10.21236/ADA557445 Pearl J, 2000, Causality: Models, Reasoning and Inference, V64 Pearl J, 2012, Arxiv, DOI arXiv:1207.4173 Perl J., 1988, PROBABILISTIC REASON Provost F., 2013, Data science for business: What you need to know about data mining and data-analytic thinking Rau M. A., 2012, Searching for variables and models to investigate mediators of learning from multiple representations Ray A, 2021, J BUS RES, V128, P391, DOI 10.1016/j.jbusres.2021.02.028 Refaeilzadeh, 2009, ENCY DATABASE SYST, DOI [DOI 10.1007/978-1-4899-7993-3_565-2, 10.1007/978-0-387-39940-9_565] Richter N, 2007, RES GLOB STRATEG MAN, V13, P359, DOI 10.1016/S1064-4857(07)13015-1 Richter NF, 2022, MANAGE INT REV, V62, P449, DOI 10.1007/s11575-022-00475-0 Richter NF, 2016, INT MARKET REV, V33, P376, DOI 10.1108/IMR-04-2014-0148 Richter NF, 2016, EUR MANAG J, V34, P589, DOI 10.1016/j.emj.2016.08.001 Rigdon EE, 2019, PSYCHOMETRIKA, V84, P772, DOI 10.1007/s11336-019-09677-2 Rigdon EE, 2010, REV MARKET RES, V7, P255, DOI 10.1108/S1548-6435(2010)0000007011 Ringle C M., 2022, SmartPLS 4 Ringle CM, 2023, DATA BRIEF, V48, DOI 10.1016/j.dib.2023.109074 Sachan S, 2020, EXPERT SYST APPL, V144, DOI 10.1016/j.eswa.2019.113100 Sanchez-Franco MJ, 2019, INTERNET RES, V29, P478, DOI 10.1108/IntR-12-2017-0531 Sánchez-Franco MJ, 2019, J BUS RES, V101, P499, DOI 10.1016/j.jbusres.2018.12.051 Sarstedt M., 2017, HDB MARKET RES, DOI DOI 10.1007/978-3-319-05542-8_15-1 Sarstedt M, 2023, J MARKET THEORY PRAC, V31, P261, DOI 10.1080/10696679.2022.2056488 Sarstedt M, 2022, PSYCHOL MARKET, V39, P1035, DOI 10.1002/mar.21640 Sarstedt M, 2022, J BUS RES, V138, P398, DOI 10.1016/j.jbusres.2021.08.051 Sarstedt M, 2020, TOURISM ECON, V26, P531, DOI 10.1177/1354816618823921 Schubring S, 2016, J BUS RES, V69, P4604, DOI 10.1016/j.jbusres.2016.03.052 SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 Scutari M., 2021, Bayesian networks: with examples in R Scutari M, 2007, The bnlearn Package-Bayesian network structure learning Scutari M, 2013, ARTIF INTELL MED, V57, P207, DOI 10.1016/j.artmed.2012.12.006 Sener A, 2019, J BUS RES, V99, P87, DOI 10.1016/j.jbusres.2019.01.070 Sharma PN, 2023, EUR J MARKETING, V57, P1662, DOI 10.1108/EJM-08-2020-0636 Sharma PN, 2021, DECISION SCI, V52, P567, DOI 10.1111/deci.12329 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Shmueli G, 2016, J BUS RES, V69, P4552, DOI 10.1016/j.jbusres.2016.03.049 Shmueli G, 2011, MIS QUART, V35, P553 Shmueli G, 2010, STAT SCI, V25, P289, DOI 10.1214/10-STS330 Spirtes P., 2000, CAUSATION PREDICTION Srivastava A, 2023, IEEE T PARALL DISTR, V34, P1699, DOI 10.1109/TPDS.2023.3244135 Torgo L., 2017, Data mining with R: Learning with case studies, V2nd Tsamardinos I., 2003, C P 9 ACM SIGKDD INT Tudoran AA, 2022, ELECTRON MARK, V32, P351, DOI 10.1007/s12525-021-00515-x Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Wood S, 2022, Package 'mgcv'. R package version, 1, 729 Wood S. N., 2017, GEN ADDITIVE MODELS, DOI DOI 10.1201/9781315370279 Yaramakala S, 2005, Fifth IEEE International Conference on Data Mining, Proceedings, P809, DOI 10.1109/ICDM.2005.134 NR 104 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD FEB PY 2024 VL 173 AR 114453 DI 10.1016/j.jbusres.2023.114453 EA DEC 2023 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA GB3L3 UT WOS:001150157500001 OA hybrid DA 2024-03-27 ER PT J AU Sharma, V Kapse, M Poulose, J Mahajan, Y AF Sharma, Vinod Kapse, Manohar Poulose, Jeanne Mahajan, Yogesh TI Robotic dining delight unravelling the key factors driving customer satisfaction in service robot restaurants using PLS-SEM and ML SO COGENT BUSINESS & MANAGEMENT LA English DT Article DE robotics; PLS-SEM; machine learning; repeat experience; trust; service restaurants ID DELIVERY; REGULARIZATION; TECHNOLOGY; INTENTIONS; MODELS AB In the past few years there has been a remarkable surge in demand for robot service restaurants. However, as both the technology and the concept of such restaurants are relatively new, there is a limited understanding of how consumers would react to this new change in the service industry. This study focuses on the key factors influencing customer satisfaction and their intention to repeat the experience by using two staged hybrid PLS-SEM and Machine Learning approaches. The finding confirms that perceived enjoyment, speed, and novelty influence customer satisfaction, whereas perceived usefulness has no influence. Additionally, the study uncovers that customer satisfaction and trust positively mediate the relationship and establish the link with repeat experience. The machine learning models (Artificial Neural Network, Support Vector Machines, Random Forest, K-Nearest Neighbors, Elastic Net) predict the intention to repeat the experience of the service robot with an overall model fit of around 57%. We also discussed several new and useful theoretical and practical implications for enhancing the customer experience during the visit to the restaurants. C1 [Sharma, Vinod; Kapse, Manohar; Mahajan, Yogesh] Symbiosis Int, SCMHRD, Pune, India. [Poulose, Jeanne] CHRIST, Sch Business & Management, Delhi, India. C3 Symbiosis International University; Symbiosis Centre for Management & Human Resource Development (SCMHRD) RP Mahajan, Y (autor correspondiente), Symbiosis Int, SCMHRD, Pune, India. EM yogesh_mahajan@scmhrd.edu RI Sharma, Vinod/E-4283-2018; Poulose, Jeanne/E-4477-2018; Kapse, Manohar/EVO-8855-2022 OI Sharma, Vinod/0000-0002-0815-8502; Poulose, Jeanne/0000-0002-3370-4026; Kapse, Manohar/0000-0002-1258-8599 CR Agrawal G., 2023, Indian Journal of Marketing, V53, P8, DOI [https://doi.org/10.17010/ijom/2023/v53/i4/172687, DOI 10.17010/IJOM/2023/V53/I4/172687] AHA DW, 1991, MACH LEARN, V6, P37, DOI 10.1023/A:1022689900470 Ahmed S, 2023, TQM J, V35, P519, DOI 10.1108/TQM-06-2021-0158 Atulkar S, 2017, J RETAIL CONSUM SERV, V39, P23, DOI 10.1016/j.jretconser.2017.06.013 Becker M, 2023, SERV BUS, V17, P137, DOI 10.1007/s11628-022-00499-4 Bello D. C., 1985, Journal of Travel Research, V24, P20, DOI 10.1177/004728758502400104 Bonfanti A, 2023, INT J HOSP MANAG, V109, DOI 10.1016/j.ijhm.2022.103416 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Cepeda-Carrion G, 2019, J KNOWL MANAG, V23, P67, DOI 10.1108/JKM-05-2018-0322 Chen CR, 2023, COGENT BUS MANAG, V10, DOI 10.1080/23311975.2023.2188987 Chi OH, 2023, INT J INFORM MANAGE, V70, DOI 10.1016/j.ijinfomgt.2023.102623 Chin WW, 2003, INFORM SYST RES, V14, P189, DOI 10.1287/isre.14.2.189.16018 Chin WW, 1998, QUANT METH SER, P295 Choi M, 2023, INT J CONTEMP HOSP M, V35, P469, DOI 10.1108/IJCHM-02-2022-0157 Clarke J, 2021, J DESTIN MARK MANAGE, V20, DOI 10.1016/j.jdmm.2021.100605 Correa JC, 2022, COGENT BUS MANAG, V9, DOI 10.1080/23311975.2022.2071099 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Das A. R., 2022, Vision: The Journal of Business Perspective, p09722629221131101, DOI [https://doi.org/10.1177/09722629221131101, DOI 10.1177/09722629221131101] DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 de Graaf MMA, 2016, INT J SOC ROBOT, V8, P589, DOI 10.1007/s12369-016-0368-5 De Keyser A, 2019, J SERV MANAGE, V30, P156, DOI 10.1108/JOSM-03-2018-0082 Dong P, 2013, TOURISM MANAGE, V36, P541, DOI 10.1016/j.tourman.2012.09.004 El-Said O, 2022, HELIYON, V8, DOI 10.1016/j.heliyon.2022.e08986 El-Said OA, 2021, J HOSP MARKET MANAG, V30, P799, DOI 10.1080/19368623.2021.1888368 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Gaber HR, 2019, COGENT BUS MANAG, V6, DOI 10.1080/23311975.2019.1618431 Go H, 2020, TOUR REV, V75, P625, DOI 10.1108/TR-02-2019-0062 Gupta KP, 2023, YOUNG CONSUM, V24, P331, DOI 10.1108/YC-09-2022-1598 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair JF, 2019, RAUSP MANAG J, V54, P490, DOI [10.1108/RAUSP-05-2019-0098, 10.1108/rausp-05-2019-0098] Han J, 2012, MOR KAUF D, P1 Hare C, 2023, POLIT ANAL, V31, P537, DOI 10.1017/pan.2022.24 HARMAN GH, 1967, J PHILOS, V64, P75, DOI 10.2307/2023773 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Hastie T. J., 1986, Generalized additive models Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hwang J, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15076253 Hwang J, 2019, J HOSP TOUR MANAG, V38, P102, DOI 10.1016/j.jhtm.2019.01.004 Jang HW, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12103998 Kamran Q, 2021, COGENT BUS MANAG, V8, DOI 10.1080/23311975.2021.1901643 Kim T, 2023, INT J HOSP MANAG, V108, DOI 10.1016/j.ijhm.2022.103358 Kim Y, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097563 Kock N, 2012, J ASSOC INF SYST, V13, P546, DOI 10.17705/1jais.00302 Kuhn Max, 2023, CRAN Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lee C.Joanna., 2011, International Journal of Business and Social Science, V2, P1 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Leung XY, 2023, INT J HOSP MANAG, V108, DOI 10.1016/j.ijhm.2022.103380 McKnight D.H., 2011, ACM T MANAG INF SYST, V2, P1, DOI [10.1145/1985347.1985353, DOI 10.1145/1985347.1985353] Meyer P, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103173 Moon HY, 2022, INT J CONTEMP HOSP M, V34, P2176, DOI 10.1108/IJCHM-09-2021-1151 Negnevitsky M, 2002, ARTIFICIAL INTELLIGE Nicodemus KK, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-110 Pai CK, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su142013483 Podsakoff PM, 2012, ANNU REV PSYCHOL, V63, P539, DOI 10.1146/annurev-psych-120710-100452 Rasheed HMW, 2023, TECHNOL FORECAST SOC, V192, DOI 10.1016/j.techfore.2023.122555 Ringle C M., 2022, SmartPLS 4 Rodrigues F, 2019, PERCEPT MOTOR SKILL, V126, P949, DOI 10.1177/0031512519863188 Roozen I, 2023, INT J SOC ROBOT, V15, P15, DOI 10.1007/s12369-022-00949-z Ruiz-Palomino P, 2023, ACAD-REV LATINOAM AD, V36, P269, DOI 10.1108/ARLA-11-2022-0201 Ruiz-Palomino P, 2021, TOUR MANAG PERSPECT, V40, DOI 10.1016/j.tmp.2021.100891 Ryan RM, 2001, ANNU REV PSYCHOL, V52, P141, DOI 10.1146/annurev.psych.52.1.141 Sagi O, 2018, WIRES DATA MIN KNOWL, V8, DOI 10.1002/widm.1249 Scholkopf B, 2001, LEARNING KERNELS SUP, DOI DOI 10.7551/MITPRESS/4175.001.0001 Seo KH, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084431 Seo W., 2022, The Journal of Internet Electronic Commerce Resarch, V22, P25, DOI [https://doi.org/10.37272/JIECR.2022.10.22.5.25, DOI 10.37272/JIECR.2022.10.22.5.25] Shah TR, 2023, ASIA PAC J MARKET LO, DOI 10.1108/APJML-09-2022-0780 Skandrani H, 2011, QUAL MARK RES, V14, P391, DOI 10.1108/13522751111163227 Song B, 2022, INT J HOSP MANAG, V106, DOI 10.1016/j.ijhm.2022.103278 Strobl C, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-307 Tiwari P, 2022, FIIB BUS REV, DOI 10.1177/23197145221113377 Tiwari P, 2023, BENCHMARKING, V30, P4536, DOI 10.1108/BIJ-06-2022-0392 Tussyadiah IP, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102886 Tuv E, 2006, STUD FUZZ SOFT COMP, V207, P187 Venables W.N., 2002, Modern Applied Statistics with S Fourth, DOI DOI 10.2307/2685660 Lu VN, 2020, J SERV THEOR PRACT, V30, P361, DOI 10.1108/JSTP-04-2019-0088 Wali AF, 2016, COGENT BUS MANAG, V3, DOI 10.1080/23311975.2016.1183555 Wang QW, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0286034 Wang XV, 2021, J MANUF SYST, V60, P823, DOI 10.1016/j.jmsy.2021.02.005 Wang YW, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103002 Wijesekera A. T., 2023, Journal of Business Management, V1, P174, DOI [https://doi.org/10.47747/jbm.v1i2.1115, DOI 10.47747/JBM.V1I2.1115] Wirtz J., 2023, Italian Journal of Marketing, V2023, P289, DOI [https://doi.org/10.1007/s43039-023-00076-1, DOI 10.1007/S43039-023-00076-1] Wirtz J, 2020, ORGAN DYN, V49, DOI 10.1016/j.orgdyn.2019.04.005 Won D, 2023, ASIA PAC J MARKET LO, V35, P1112, DOI 10.1108/APJML-09-2021-0709 Wood SN, 2004, J AM STAT ASSOC, V99, P673, DOI 10.1198/016214504000000980 Wright Marvin N, 2019, CRAN Xiaoqin Feng, 2019, Journal of Physics: Conference Series, V1237, DOI 10.1088/1742-6596/1237/2/022045 Xie LS, 2023, J RETAIL CONSUM SERV, V75, DOI 10.1016/j.jretconser.2023.103448 Xu JJ, 2023, INT J HOSP MANAG, V113, DOI 10.1016/j.ijhm.2023.103523 Yang CF, 2024, INTERNET RES, V34, P563, DOI 10.1108/INTR-02-2022-0120 Yani-de-Soriano M, 2019, EUR J MARKETING, V53, P708, DOI 10.1108/EJM-09-2017-0570 ZEITHAML VA, 1988, J MARKETING, V52, P35, DOI 10.2307/1251263 Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x NR 96 TC 0 Z9 0 U1 6 U2 6 PU TAYLOR & FRANCIS AS PI OSLO PA KARL JOHANS GATE 5, NO-0154 OSLO, NORWAY SN 2331-1975 J9 COGENT BUS MANAG JI Cogent Bus. Manag. PD DEC 11 PY 2023 VL 10 IS 3 AR 2281053 DI 10.1080/23311975.2023.2281053 PG 21 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA Y8ZH4 UT WOS:001108083800001 OA gold DA 2024-03-27 ER PT J AU Ginzarly, M Srour, FJ Roders, AP AF Ginzarly, Manal Srour, F. Jordan Roders, Ana Pereira TI THE INTERPLAY OF CONTEXT, EXPERIENCE, AND EMOTION AT WORLD HERITAGE SITES: A QUALITATIVE AND MACHINE LEARNING APPROACH SO TOURISM CULTURE & COMMUNICATION LA English DT Article DE World Heritage; Machine learning; Visitors' experience; User-generated content; Heritage values ID SOCIAL MEDIA DATA; VISITOR EXPERIENCE; CO-CREATION; TOURISM RESEARCH; PROTECTED AREA; NATIONAL-PARK; SATISFACTION; PERCEPTIONS; INFORMATION; AUTHENTICITY AB This study illustrates how user-generated content, posted in the form of heritage site reviews on social media, can serve to reveal the relationship between the cocreated interpretation of World Heritage Sites (WHSs)-in terms of values, tangible and intangible attributes, as well as site visit logistics-and the emotional experience of the site. Two WHSs are taken as a case study. More than 2,000 reviews were retrieved from TripAdvisor and analyzed through the application of a mixed method that integrates qualitative digital ethnography and machine learning. Results show that TripAdvisor reviews capture tourists' emotional reactions from personal encounters with heritage and provide insights into the range of values-including the social, historic, and aesthetical values-that visitors experience when engaging with aspects of the past to associate meanings for the present. Results also show that the relation between experiences gained at WHSs and contextual aspects is not linear; instead, it is a complex one that results from the interaction of different factors and their associated sentiments. We discuss our results by reflecting on their theoretical and practical implications. C1 [Ginzarly, Manal] Lebanese Amer Univ, Sch Architecture & Design, Beirut, Lebanon. [Srour, F. Jordan] Lebanese Amer Univ, Adnan Kassar Sch Business, Beirut, Lebanon. [Roders, Ana Pereira] Delft Univ Technol, Dept Architectural Engn & Technol, Delft, Netherlands. C3 Lebanese American University; Lebanese American University; Delft University of Technology RP Ginzarly, M (autor correspondiente), Lebanese Amer Univ, Sch Architecture & Design, Beirut, Lebanon. EM manal.ginzarly@lau.edu.lb RI Srour, F. Jordan/F-3312-2018; Ginzarly, Manal/AAH-1458-2019; Pereira Roders, Ana/G-3836-2012 OI Srour, F. Jordan/0000-0001-7623-723X; Ginzarly, Manal/0000-0003-3693-9258; Pereira Roders, Ana/0000-0003-2571-9882 CR Adelman Leslie M., 2000, Curator, V43, P33 Aigner A, 2016, INT J HERIT STUD, V22, P181, DOI 10.1080/13527258.2015.1107615 Alabau-Montoya J, 2020, J HERIT TOUR, V15, P500, DOI 10.1080/1743873X.2019.1692853 Alazaizeh MM, 2019, J TOUR CULT CHANGE, V17, P269, DOI 10.1080/14766825.2018.1455693 Caldito LA, 2015, TOURISM IN RUSSIA: A MANAGEMENT HANDBOOK, P101 [Anonymous], 1972, Convention Concerning the Protection of the World Cultural and Natural Heritage, DOI DOI 10.1111/J.1468-0033.1973.TB02056.X [Anonymous], 2011, Recommendation on the Historic Urban Landscape, including a glossary of definitions [Anonymous], 1994, Nara Document on Authenticity [Anonymous], 2015, Itb world travel trends report 2015/2016 [Anonymous], 2013, THE BURR CHART [Anonymous], 2005, Making Tourism More Sustainable: A Guide for Policy Makers Baniya R, 2021, J HERIT TOUR, V16, P632, DOI 10.1080/1743873X.2020.1833892 Baral N, 2017, J SUSTAIN TOUR, V25, P1494, DOI 10.1080/09669582.2017.1291647 Bertacchini F, 2018, EDULEARN PROC, P4155 BITNER MJ, 1992, J MARKETING, V56, P57, DOI 10.2307/1252042 Boccardi G, 2019, HIST ENVIRON POLICY, V10, P4, DOI 10.1080/17567505.2018.1531647 Bonn M. A., 2007, Journal of Travel Research, V45, P345, DOI 10.1177/0047287506295947 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Bruyere B, 2009, ENVIRON MANAGE, V43, P49, DOI 10.1007/s00267-008-9190-7 Bubalo M, 2019, LANDSCAPE URBAN PLAN, V184, P101, DOI 10.1016/j.landurbplan.2019.01.001 Buckley R, 2018, J TRAVEL RES, V57, P563, DOI 10.1177/0047287517713723 Byon KK, 2010, MARK INTELL PLAN, V28, P508, DOI 10.1108/02634501011053595 Cameron C, 2020, PLURAL HIST CULTURE, V8, P17 Campos AC, 2018, CURR ISSUES TOUR, V21, P369, DOI 10.1080/13683500.2015.1081158 Castellanos-Verdugo M, 2016, J CLEAN PROD, V124, P226, DOI 10.1016/j.jclepro.2016.02.126 Caust J, 2017, J CULT HERIT, V27, P1, DOI 10.1016/j.culher.2017.02.004 Cetin G, 2016, CURR ISSUES TOUR, V19, P137, DOI 10.1080/13683500.2014.994595 Chaddad R, 2021, J TOUR CULT CHANGE, V19, P805, DOI 10.1080/14766825.2020.1802470 Chawla NV, 2002, J ARTIF INTELL RES, V16, P321, DOI 10.1613/jair.953 Cox C, 2009, J HOSP MARKET MANAG, V18, P743, DOI 10.1080/19368620903235753 da Mota VT, 2020, J OUTDOOR REC TOUR, V30, DOI 10.1016/j.jort.2020.100295 Dai TC, 2021, HABITAT INT, V107, DOI 10.1016/j.habitatint.2020.102307 de la Torre M., 2002, ASSESSING VALUES CUL de la Torre M, 2013, HERIT SOC, V6, P155, DOI 10.1179/2159032X13Z.00000000011 de Rojas C, 2008, TOURISM MANAGE, V29, P525, DOI 10.1016/j.tourman.2007.06.004 Domínguez-Quintero AM, 2020, CURR ISSUES TOUR, V23, P248, DOI 10.1080/13683500.2018.1502261 Dunkel A, 2015, LANDSCAPE URBAN PLAN, V142, P173, DOI 10.1016/j.landurbplan.2015.02.022 Duval M, 2019, INT J HERIT STUD, V25, P1279, DOI 10.1080/13527258.2019.1590449 Ek R, 2008, SCAND J HOSP TOUR, V8, P122, DOI 10.1080/15022250802110091 Excel, TRANSL TEXT DIFF LAN Falk J.H., 1992, MUSEUM EXPERIENCE Falk JohnH. Lynn D. Dierking., 2000, Learning From Museums: Visitor Experiences and the Making of Meaning Freeman C. G., 2017, PARTICIPATORY CULTUR Gao J, 2020, ASIA PAC J TOUR RES, V25, P1042, DOI 10.1080/10941665.2018.1564340 Gentry K, 2019, INT J HERIT STUD, V25, P1148, DOI 10.1080/13527258.2019.1570964 Gibson Lisanne., 2009, VALUING HIST ENV Giglio S, 2019, TOURISM MANAGE, V72, P306, DOI 10.1016/j.tourman.2018.12.007 Ginzarly M, 2021, J CULT HERIT MANAG S, V11, P361, DOI 10.1108/JCHMSD-02-2020-0023 Gonzalez PA, 2014, CULT STUD, V28, P359, DOI 10.1080/09502386.2013.789067 Guo Y, 2017, TOURISM MANAGE, V59, P467, DOI 10.1016/j.tourman.2016.09.009 Gursoy D, 2022, J TOUR CULT CHANGE, V20, P311, DOI 10.1080/14766825.2021.1937193 Hand Martin., 2008, MAKING DIGITAL CULTU Harrison Rodney., 2010, UNDERSTANDING POLITI, P5 Hausmann A, 2018, CONSERV LETT, V11, DOI 10.1111/conl.12343 Heinich N., 2011, The Nordic Journal of Aesthetics, V22, P40, DOI DOI 10.7146/NJA.V22I40-41.5203 HEINICH Nathalie., 2017, VALEURS APPROCHE SOC Holdgaard N, 2014, DIGIT CREAT, V25, P190, DOI 10.1080/14626268.2014.904364 Hosany S, 2010, J TRAVEL RES, V49, P351, DOI 10.1177/0047287509346859 Huang K, 2019, TOURIST STUD, V19, P549, DOI 10.1177/1468797619850107 Huh J., 2006, Journal of Hospitality & Leisure Marketing, V14, P81, DOI 10.1300/J150v14n03_07 ICOMOS, 2008, ICOMOS CHART INT PRE Jafari A, 2013, J MARKET MANAG-UK, V29, P1729, DOI 10.1080/0267257X.2013.811095 Jensen Bente, 2013, 2013 Digital Heritage International Congress (DigitalHeritage). Federating the 19th Int'I VSMM, 10th Eurographics GCH, & 2nd UNESCO Memory of the World Conferences, plus special sessions from CAA, Arqueologico 2.0, Space2Place, ICOMOS ICIP & CIPA, EU projects, et al. Proceedings, P311 Kempiak J, 2017, INT J HERIT STUD, V23, P375, DOI 10.1080/13527258.2016.1277776 Khirfan L., 2016, World Heritage, Urban Design and Tourism: Three Cities in the Middle East Kim JH, 2021, CURR ISSUES TOUR, V24, P304, DOI 10.1080/13683500.2020.1711711 Kim JH, 2018, J TRAVEL RES, V57, P856, DOI 10.1177/0047287517721369 Kim JH, 2010, J TRAVEL TOUR MARK, V27, P780, DOI 10.1080/10548408.2010.526897 Knudsen D. C., 2016, LANDSCAPE TOURISM ME, P1, DOI [10.4324/9781315591407-6, DOI 10.4324/9781315591407-6] Knutson B. J., 2006, Journal of Hospitality & Leisure Marketing, V15, P31, DOI 10.1300/J150v15n03_03 Kreziak D., 2011, Decisions Marketing, V64, P23 Labadi Sophia., 2010, Heritage and Globalisation. Milton Park Lam JMS, 2020, J DESTIN MARK MANAGE, V18, DOI 10.1016/j.jdmm.2020.100490 Laurajane Smith., 2006, USES HERITAGE Laws E., 2007, QUALITY ISSUES HERIT, P61, DOI [10.4324/9780080515489-15, DOI 10.4324/9780080515489-15] Levin N, 2017, APPL GEOGR, V79, P115, DOI 10.1016/j.apgeog.2016.12.009 Lewis S, 2010, SOC SCI INFORM, V49, P351, DOI 10.1177/0539018410370726 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Litvin SW, 2008, TOURISM MANAGE, V29, P458, DOI 10.1016/j.tourman.2007.05.011 Liu Y, 2021, HERITAGE-BASEL, V4, P316, DOI 10.3390/heritage4010020 Loader BD, 2011, INFORM COMMUN SOC, V14, P757, DOI 10.1080/1369118X.2011.592648 Martí P, 2019, COMPUT ENVIRON URBAN, V74, P161, DOI 10.1016/j.compenvurbsys.2018.11.001 Mason R., 2002, Assessing the Values of Cultural Heritage, P5 Miller ZD, 2019, ELGAR RES AGENDAS, P53 Minkiewicz J, 2014, J MARKET MANAG-UK, V30, P30, DOI 10.1080/0267257X.2013.800899 Mkono M, 2013, J HOSP TOUR RES, V37, P184, DOI 10.1177/1096348011425502 Mohammadi F, 2021, TOUR REV, V76, P305, DOI 10.1108/TR-10-2019-0425 Munar AM, 2013, TOUR SOC SCI SER, V18, P1, DOI 10.1108/S1571-5043(2013)0000018003 Munar AM, 2014, TOURISM MANAGE, V43, P46, DOI 10.1016/j.tourman.2014.01.012 Munar AM, 2013, SCAND J HOSP TOUR, V13, P1, DOI 10.1080/15022250.2013.764511 Nowacki M, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13084383 Oh H. M., 2007, Journal of Travel Research, V46, P119, DOI 10.1177/0047287507304039 Owuor I, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9090526 Park E, 2019, TOURISM MANAGE, V74, P99, DOI 10.1016/j.tourman.2019.03.001 Payne AF, 2008, J ACAD MARKET SCI, V36, P83, DOI 10.1007/s11747-007-0070-0 Pine BJ, 1998, HARVARD BUS REV, V76, P97 Ponsignon F, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100723 Poria Y, 2003, ANN TOURISM RES, V30, P238, DOI 10.1016/S0160-7383(02)00064-6 Poria Y, 2013, TOURISM MANAGE, V35, P272, DOI 10.1016/j.tourman.2012.02.011 Prebensen N. K., 2018, Creating experience value in tourism, P1, DOI 10.1079/9781786395030.0001 Radder L., 2015, J APPL BUS RES, V31, P455, DOI [10.19030/jabr.v31i2.9129, DOI 10.19030/JABR.V31I2.9129] Reichenberger I, 2017, INT J TOUR RES, V19, P629, DOI 10.1002/jtr.2135 Reisinger Y., 2006, Current Issues in Tourism, V9, P481, DOI 10.2167/cit280.0 Rihova I, 2015, INT J TOUR RES, V17, P356, DOI 10.1002/jtr.1993 Roberts H, 2019, URBAN STUD, V56, P818, DOI 10.1177/0042098017748544 González-Rodríguez MR, 2016, INT J CONTEMP HOSP M, V28, P2609, DOI 10.1108/IJCHM-02-2015-0057 Ross D, 2020, CURR ISSUES TOUR, V23, P2811, DOI 10.1080/13683500.2020.1782355 Sáez JA, 2015, INFORM SCIENCES, V291, P184, DOI 10.1016/j.ins.2014.08.051 Sanjbod HS, 2016, HIST ENVIRON POLICY, V7, P177, DOI 10.1080/17567505.2016.1172786 Scarpi D, 2019, TOURISM MANAGE, V71, P389, DOI 10.1016/j.tourman.2018.10.030 Schuckert M, 2015, J TRAVEL TOUR MARK, V32, P608, DOI 10.1080/10548408.2014.933154 Serageldin M., 2000, VALUES HERITAGE CONS, P51 Silberman N., 2012, Heritage and Social Media: Understanding heritage in a participatory culture, P13 Silberman N., 2018, MUSEUM STUDIES APPRO Sorensen F, 2018, TOUR HOSP EVENT MAN, P1, DOI 10.1007/978-3-319-78553-0_1 Steffan-Dewenter I., 2002, Ecology, V83, P1421, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Stephenson J, 2008, LANDSCAPE URBAN PLAN, V84, P127, DOI 10.1016/j.landurbplan.2007.07.003 Stoleriv OM, 2019, VISIT STUD, V22, P192, DOI 10.1080/10645578.2019.1665390 Stuedahl D., 2011, Nordic Museology, V1, p3.14, DOI [10.5617/nm.3142, DOI 10.5617/NM.3142] Suntikul W, 2016, INT J TOUR RES, V18, P308, DOI 10.1002/jtr.2050 Tan SK, 2014, TOURISM MANAGE, V42, P248, DOI 10.1016/j.tourman.2013.11.008 Tenkanen H, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18007-4 Thapa Brijesh, 2017, Journal of Ecotourism, V16, P112, DOI 10.1080/14724049.2016.1245737 Timothy DJ, 2018, TOUR MANAG PERSPECT, V25, P177, DOI 10.1016/j.tmp.2017.11.018 Toivonen T, 2019, BIOL CONSERV, V233, P298, DOI 10.1016/j.biocon.2019.01.023 TRIBE J., 2007, CRITICAL TURN TOURIS, P29 UNESCO, 2018, Interpretation of Sites of Memory UNESCO, 2010, WHC1034COM8EADD UNES UNESCO, 2019, OP GUID IMPL WORLD H UNESCO, 2010, WHC1034COM8E UNESCO, P23 van der Duim R., 2007, The critical turn in tourism studies: Innovative research methods, P149 Walden-Schreiner C, 2018, APPL GEOGR, V90, P44, DOI 10.1016/j.apgeog.2017.11.004 Wang D, 2012, J TRAVEL RES, V51, P371, DOI 10.1177/0047287511426341 Wang S, 2017, J TRAVEL TOUR MARK, V34, P680, DOI 10.1080/10548408.2016.1224751 Wang Y, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17124206 Weng LS, 2020, J DESTIN MARK MANAGE, V16, DOI 10.1016/j.jdmm.2020.100431 WTTC, 2020, SUSTAINABLE DEV GOAL Xu H, 2023, TOUR RECREAT RES, V48, P173, DOI 10.1080/02508281.2021.1913022 Zeng BX, 2014, TOUR MANAG PERSPECT, V10, P27, DOI 10.1016/j.tmp.2014.01.001 Zhang R., 2020, CHINESE HERITAGE SIT, P20 Zhang RR, 2019, TOURISM MANAGE, V74, P212, DOI 10.1016/j.tourman.2019.03.004 Zhu YJ, 2018, INT J HERIT STUD, V24, P181, DOI 10.1080/13527258.2017.1347886 NR 142 TC 1 Z9 1 U1 4 U2 11 PU COGNIZANT COMMUNICATION CORP PI PUTNAM VALLEY PA 18 PEEKSKILL HOLLOW RD, PO BOX 37, PUTNAM VALLEY, NY 10579 USA SN 1098-304X EI 1943-4146 J9 TOUR CULT COMMUN JI Tour. Cult. Commun. PY 2022 VL 22 IS 4 BP 321 EP 340 DI 10.3727/109830421X16345418234065 PG 20 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA D4TX0 UT WOS:000968685300003 DA 2024-03-27 ER PT J AU Gruettner, A Wambsganss, T Back, A AF Gruettner, Arne Wambsganss, Thiemo Back, Andrea TI From data to dollar: using the wisdom of an online tipster community to improve sports betting returns SO EUROPEAN JOURNAL OF INTERNATIONAL MANAGEMENT LA English DT Article DE data mining; natural language processing; online communities; sports betting; sports innovation; user-generated content; wisdom-of-crowds AB With thousands of (online) bookmakers accepting wagers on sporting events, sports betting has become a billion-dollar business worldwide. Therefore, researchers and practitioners have gathered interest in investigating the "wisdom-of-crowds" effect in online tipster communities to predict the outcomes of sports events. We extracted 1,534,041 tips of 3484 tipsters from Blogabet.com and used this user-generated content to investigate whether there is wisdom in online tipster communities that can be used to improve betting returns. We applied state-of-the-art data mining and natural language processing techniques and tested our hypotheses using quantitative research methods. Our results demonstrate that there is indeed wisdom in such online tipster communities that can improve sports betting returns. Tipsters won 3.29% more tips than the implied win probability set by bookmakers and produced averaged yields of 3.97%. We further identified four characteristics that are significant indicators for smarter sub-crowds within the overall crowd of an online tipster community. C1 [Gruettner, Arne; Wambsganss, Thiemo; Back, Andrea] Univ St Gallen, Inst Informat Management, St Gallen, Switzerland. C3 University of St Gallen RP Gruettner, A (autor correspondiente), Univ St Gallen, Inst Informat Management, St Gallen, Switzerland. EM arne.gruettner@unisg.ch; thiemo.wambsganss@unisg.ch; andrea.back@unisg.ch RI Wambsganss, Thiemo/HIK-0071-2022 OI Wambsganss, Thiemo/0000-0002-7440-9357 CR [Anonymous], 2019, About WordNet Back A, 2020, P 53 HAW INT C SYST Beretta M, 2019, J PROD INNOVAT MANAG, V36, P5, DOI 10.1111/jpim.12439 Bird S., 2009, NATURAL LANGUAGE PRO Brown A, 2019, EUR J OPER RES, V272, P1073, DOI 10.1016/j.ejor.2018.07.015 Budescu DV, 2015, MANAGE SCI, V61, P267, DOI 10.1287/mnsc.2014.1909 Byrum J, 2016, MIT SLOAN MANAGE REV, V57, P43 Chen HL, 2014, REV FINANC STUD, V27, P1367, DOI 10.1093/rfs/hhu001 Da Z, 2020, MANAGE SCI, V66, P1847, DOI 10.1287/mnsc.2019.3294 de Oliveira S, 2018, P NATL ACAD SCI USA, V115, P2066, DOI 10.1073/pnas.1717632115 Deutscher Sportwettenverband, 2020, SPORTW DTSCH BRICHT Elaad G, 2020, FINANC RES LETT, V35, DOI 10.1016/j.frl.2019.09.006 Fayyad U., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P82 Fitzmaurice G. M., 2012, APPL LONGITUDINAL AN, V998 Flesch R, 1943, Teachers college contributions to education Goldstein D.G., 2014, P 15 ACM C EC COMP A, P1 Gruettner A, 2019, P 25 AM C INF SYST A, P1 Gruettner A, 2020, DATA SET THE WISDOM Haan M., 2005, Journal of Cultural Economics, V29, P59 Hedeker D., 2006, LONGITUDINAL DATA AN, V451 Hoornaert S, 2017, J PROD INNOVAT MANAG, V34, P580, DOI 10.1111/jpim.12396 Klein M, 2015, DECIS SUPPORT SYST, V78, P39, DOI 10.1016/j.dss.2015.06.005 Krumm J, 2008, IEEE PERVAS COMPUT, V7, P10, DOI 10.1109/MPRV.2008.85 LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876 Lamberson PJ, 2012, MANAGE SCI, V58, P805, DOI 10.1287/mnsc.1110.1441 Levitt SD, 2013, GEORGETOWN LAW J, V101, P581 Ma JF, 2019, DECIS SUPPORT SYST, V117, P113, DOI 10.1016/j.dss.2018.11.003 Maechler M., 2014, CONVERGENCE, V12, P2 Marcus N., 2010, P 15 INT C INT US IN, DOI [10.1145/1719970.1720024, DOI 10.1145/1719970.1720024] Mollick E, 2016, MANAGE SCI, V62, P1533, DOI 10.1287/mnsc.2015.2207 O'Leary DE, 2017, EUR J OPER RES, V260, P715, DOI 10.1016/j.ejor.2016.12.043 Otterbacher J, 2009, CHI2009: PROCEEDINGS OF THE 27TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, VOLS 1-4, P955 Peeters T, 2018, INT J FORECASTING, V34, P17, DOI 10.1016/j.ijforecast.2017.08.002 Peurala J, 2013, INT SPORTS LAW J, V13, P268, DOI 10.1007/s40318-013-0027-z Ratten V., 2017, Sports innovation management Ratten V, 2011, INT ENTREP MANAG J, V7, P57, DOI 10.1007/s11365-010-0138-z Rhyn M, 2019, P INT C INF SYST ICI, P1 Riedl C, 2013, INT J ELECTRON COMM, V17, P7, DOI 10.2753/JEC1086-4415170301 Schumaker RP, 2016, DECIS SUPPORT SYST, V88, P76, DOI 10.1016/j.dss.2016.05.010 Simmons JP, 2011, J CONSUM RES, V38, P1, DOI 10.1086/658070 Surowiecki James., 2004, WISDOM SHAPES BUSINE van Dijk H, 2012, ORGAN BEHAV HUM DEC, V119, P38, DOI 10.1016/j.obhdp.2012.06.003 Vermunt JK, 2005, MULTIVAR BEHAV RES, V40, P281, DOI 10.1207/s15327906mbr4003_1 Walther JB, 2007, COMPUT HUM BEHAV, V23, P2538, DOI 10.1016/j.chb.2006.05.002 Wambsganss T, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P1184 Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 Weimer M., 2007, P C REC ADV NAT LANG, P1 Wincent J., 2019, J BUS VENTURING INSI, V11, P1, DOI DOI 10.1016/J.JBVI.2018.E00109 NR 48 TC 0 Z9 0 U1 0 U2 10 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1751-6757 EI 1751-6765 J9 EUR J INT MANAG JI Eur. J. Int. Manag. PY 2021 VL 15 IS 2-3 SI SI BP 314 EP 338 PG 25 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA QQ7MC UT WOS:000624704500008 DA 2024-03-27 ER PT J AU Manovich, L AF Manovich, Lev TI 100 Billion Data Rows per Second: Media Analytics in the Early 21st Century SO INTERNATIONAL JOURNAL OF COMMUNICATION LA English DT Article DE machine learning; social media; culture industry; user-generated content; data science AB This article describes the newest stage in the development of modern technological media. I call this stage "media analytics." It follows the previous stages of massive reproduction (1500-), broadcasting (1920-), the use of computers for media creation workflows (1981-), the Web as global content creation and distribution network (1993-), and social media platforms (2004-), to name just a few such stages. Unlike other stages, the new stage is not focused on new mechanisms for creation, publishing, or distribution of media, although it also affects these operations. Instead, this new stage is about automatic computational analysis of the content of all online digital media, personal online behaviors and communication, and automatic actions based on this analysis. C1 [Manovich, Lev] CUNY, New York, NY 10021 USA. [Manovich, Lev] Cultural Analyt Lab, New York, NY USA. C3 City University of New York (CUNY) System RP Manovich, L (autor correspondiente), CUNY, New York, NY 10021 USA.; Manovich, L (autor correspondiente), Cultural Analyt Lab, New York, NY USA. EM Manovich.lev@gmail.com OI Lopez Castro, Raquel/0000-0002-3968-9955 CR Ananny M., 2015, AUDITING ALGORITHMS [Anonymous], 2016, How Search Works [Anonymous], 2015, NY TIMES [Anonymous], 1 MONDAY [Anonymous], 2011, NY TIMES [Anonymous], 2016, TINEYE 0221 [Anonymous], 2013, CHRONICLE REV Asay M., 2015, INFOWORLD Association for Psychological Science, 2015, SCIENCEDAILY Beaufays F, 2015, NEURAL NETWORKS GOOG Bordwell David., 1988, CLASSICAL HOLLYWOOD Chartbeat, 2015, AB Dey A., 1999, BETTER UNDERSTANDING Dredge S., 2014, The Guardian Garfield E, 1997, SCIENTIST, V11, P9 Google, 2016, CONT ID WORKS VID FI Gupta A., 2013, Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2013, P507, DOI DOI 10.1109/ICACCI.2013.6637223 Horkheimer MaxTheodor Adorno., 1969, DIALECTIC ENLIGHTENM Huss M, 2014, DATA SIZE ESTIMATES Kaplan Karen., 2015, Los Angeles Times LeCompte C., 2015, NIEMAN REPORTS Luckerson V., 2015, TIME Madrigal A.C., 2014, The Atlantic MailChimp, 2017, US SEND TIM OPT Manovich L., 2015, SCI CULTURE SOCIAL C Manovich L., 2013, SOFTWARE TAKES COMMA Mencar C., 2013, RESEARCHGATE Pichai Sundar, 2015, TENSORFLOW SMARTER M Richter Felix, 2014, STATISTA 0930 Ritzer G, 2010, J CONSUM CULT, V10, P13, DOI 10.1177/1469540509354673 Sanderson M, 2012, P IEEE, V100, P1444, DOI 10.1109/JPROC.2012.2189916 Sawers P., 2014, THE NEXT WEB Schifanella Rossano, 2015, IMAGE IS WORTH MORE Serrà J, 2012, SCI REP-UK, V2, DOI 10.1038/srep00521 Twitter, 2017, FOLL TARG TWITT Vanderbilt T., 2013, Wired Wiener Janet., 2014, Facebook Woodie A, 2015, DATANAMI 0209 Zhou R., 2010, P 2010 ACM INT MEAS NR 39 TC 15 Z9 16 U1 0 U2 6 PU USC ANNENBERG PRESS PI LOS ANGELES PA UNIV SOUTHERN CALIFORNIA, KERCKHOFF HALL, 734 W ADAMS BLVD, MC7725, LOS ANGELES, CA 90089 USA SN 1932-8036 J9 INT J COMMUN-US JI Int. J. Commun. PY 2018 VL 12 BP 473 EP 488 PG 16 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA GF3CG UT WOS:000431821400034 DA 2024-03-27 ER PT J AU Hartmann, MC Koblet, O Baer, MF Purves, RS AF Hartmann, Maximilian C. Koblet, Olga Baer, Manuel F. Purves, Ross S. TI Automated motif identification: Analysing Flickr images to identify popular viewpoints in Europe's protected areas SO JOURNAL OF OUTDOOR RECREATION AND TOURISM-RESEARCH PLANNING AND MANAGEMENT LA English DT Article DE Landscape perception; User-generated content; Computer vision; Image similarity; Places of interest; Social media ID CULTURAL ECOSYSTEM SERVICES; SOCIAL MEDIA DATA; LANDSCAPE; VISITORS; TOURISM; FUTURE AB Visiting landscapes and appreciating them from specific viewpoints is not a new phenomenon. Such so-called motifs were popularised by travel guides and art in the romantic era, and find their contemporary digital twins through images captured in social media. We developed and implemented a conceptual model of motifs, based around spatial clustering, image similarity and the appreciation of a motif by multiple individuals. We identified 119 motifs across Europe, using 2146176 georeferenced Creative Commons Flickr images found in Natura 2000 protected areas. About 65% of motifs contain cultural elements such as castles or bridges. The remaining 35% are natural features, and biased towards coastal elements such as cliffs. Characterisation and localisation of motifs could allow identification of locations subject to increased pressure, and thus disturbance, especially since the visual characteristics of motifs allow managers to explore why sites are being visited. Future work will include methods of calculating image similarity using tags, explore different algorithms for assessing content similarity and study the behaviour of motifs through time. C1 [Hartmann, Maximilian C.; Koblet, Olga; Baer, Manuel F.; Purves, Ross S.] Univ Zurich, Dept Geog, Winterthurerstr 190, CH-8057 Zurich, Switzerland. C3 University of Zurich RP Hartmann, MC (autor correspondiente), Univ Zurich, Dept Geog, Winterthurerstr 190, CH-8057 Zurich, Switzerland. EM maximilianchristoph.hartmann@geo.uzh.ch OI Baer, Manuel/0000-0002-9474-3299; Hartmann, Maximilian Christoph/0000-0002-6013-3820 FU Swiss National Science Foundation [200020E_186389]; Swiss National Science Foundation (SNF) [200020E_186389] Funding Source: Swiss National Science Foundation (SNF) FX Acknowledgments We gratefully acknowledge funding from the Swiss National Science Foundation (200020E_186389) . We also are very grateful for the constructive comments of the referees. CR [Anonymous], 2021, UNWTO WORLD TOUR BAR, V19, P1, DOI [10.18111/wtobarometereng.2021.19.1.3, DOI 10.18111/WTOBAROMETERENG.2021.19.1.1] [Anonymous], P 8 INT C WEBL SOC M [Anonymous], 2014, A World That Counts Arts K, 2015, AMBIO, V44, pS661, DOI 10.1007/s13280-015-0705-1 Bate Jonathan., 2002, SONG EARTH Bay H, 2008, COMPUT VIS IMAGE UND, V110, P346, DOI 10.1016/j.cviu.2007.09.014 Bell C., 2002, Tourism: between place and performance, P21 Beunen R, 2011, J ENVIRON PLANN MAN, V54, P1041, DOI 10.1080/09640568.2010.549034 Bommert A, 2017, COMPUT MATH METHOD M, V2017, DOI 10.1155/2017/7907163 Butler R. W., 2014, Tourism Today, P7 Cooper D, 2011, T I BRIT GEOGR, V36, P89, DOI 10.1111/j.1475-5661.2010.00405.x Di Minin E, 2015, FRONT ENV SCI-SWITZ, V3, DOI 10.3389/fenvs.2015.00063 EEA, 2021, EUR NAT 2000 SIT Figueroa-Alfaro RW, 2017, J ENVIRON PLANN MAN, V60, P266, DOI 10.1080/09640568.2016.1151772 Ghermandi A, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104002 Ghermandi A, 2016, WATER RES, V105, P297, DOI 10.1016/j.watres.2016.09.009 Ginsberg J, 2009, NATURE, V457, P1012, DOI 10.1038/nature07634 Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y Hadwen Wade L., 2007, Ecological Management & Restoration, V8, P177, DOI 10.1111/j.1442-8903.2007.00364.x Hampton SE, 2013, FRONT ECOL ENVIRON, V11, P156, DOI 10.1890/120103 Hausmann A, 2018, CONSERV LETT, V11, DOI 10.1111/conl.12343 Hausmann A, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-00858-6 Hays S, 2013, CURR ISSUES TOUR, V16, P211, DOI 10.1080/13683500.2012.662215 Heikinheimo V, 2020, LANDSCAPE URBAN PLAN, V201, DOI 10.1016/j.landurbplan.2020.103845 Heikinheimo V, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6030085 Hiltmann A., 2018, AMAZINGAESCHER EIN G Hu YJ, 2018, GEOGR COMPASS, V12, DOI 10.1111/gec3.12404 Jenkins O. H., 2003, Tourism Geographies, V5, P305, DOI 10.1080/14616680309715 Rota JJ, 2019, GEOGR TIDSSKR-DEN, V119, P69, DOI 10.1080/00167223.2019.1573409 Kahootz M, 2018, SOCIAL MEDIA DEMOGRA Komossa F, 2021, LANDSCAPE URBAN PLAN, V212, DOI 10.1016/j.landurbplan.2021.104105 Lee H, 2019, ECOL INDIC, V96, P505, DOI 10.1016/j.ecolind.2018.08.035 Leung Y. F., 2018, TOURISM VISITOR MANA, DOI [10.2305/iucn.ch.2018.pag.27.en. https://portals.iucn.org/library/node/47918, DOI 10.2305/IUCN.CH.2018.PAG.27.EN.HTTPS://PORTALS.IUCN.ORG/LIBRARY/NODE/47918] Lovelace R, 2016, J REGIONAL SCI, V56, P722, DOI 10.1111/jors.12293 Lowe DG, 2004, INT J COMPUT VISION, V60, P91, DOI 10.1023/B:VISI.0000029664.99615.94 Naidoo R, 2005, ENVIRON DEV ECON, V10, P159, DOI 10.1017/S1355770X0400186X Nüst D, 2018, PEERJ, V6, DOI 10.7717/peerj.5072 O'Connor N, 2014, J TOUR CULT CHANGE, V12, P1, DOI 10.1080/14766825.2013.862253 Oteros-Rozas E, 2018, ECOL INDIC, V94, P74, DOI 10.1016/j.ecolind.2017.02.009 Pavord A., 2016, LANDSKIPPING PAINTER Pickering C, 2020, J OUTDOOR REC TOUR, V29, DOI 10.1016/j.jort.2019.100252 Pickering C, 2018, J OUTDOOR REC TOUR, V21, P10, DOI 10.1016/j.jort.2017.11.002 Ramachandram D, 2017, IEEE SIGNAL PROC MAG, V34, P96, DOI 10.1109/MSP.2017.2738401 Richards DR, 2015, ECOL INDIC, V53, P187, DOI 10.1016/j.ecolind.2015.01.034 Rublee E, 2011, IEEE I CONF COMP VIS, P2564, DOI 10.1109/ICCV.2011.6126544 Simmonds C., 2018, The Guardian Suzman M, 2020, VIRT WORLD DAT FOR O Tenkanen H, 2017, SCI REP-UK, V7, DOI 10.1038/s41598-017-18007-4 Tieskens KF, 2018, LANDSCAPE URBAN PLAN, V177, P128, DOI 10.1016/j.landurbplan.2018.05.002 Toivonen T, 2019, BIOL CONSERV, V233, P298, DOI 10.1016/j.biocon.2019.01.023 Väisänen T, 2021, CONSERV BIOL, V35, P424, DOI 10.1111/cobi.13704 van Zanten BT, 2016, P NATL ACAD SCI USA, V113, P12974, DOI 10.1073/pnas.1614158113 Wartmann FM, 2021, URBAN FOR URBAN GREE, V64, DOI 10.1016/j.ufug.2021.127261 Wartmann FM, 2019, APPL GEOGR, V113, DOI 10.1016/j.apgeog.2019.102112 NR 54 TC 6 Z9 6 U1 7 U2 26 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2213-0780 EI 2213-0799 J9 J OUTDOOR REC TOUR JI J. Outdo. Recreat. Tour. Res. Plan. PD MAR PY 2022 VL 37 AR 100479 DI 10.1016/j.jort.2021.100479 EA JAN 2022 PG 10 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA 0D6OX UT WOS:000776113500004 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Salari, N Liu, S Shen, ZJM AF Salari, Nooshin Liu, Sheng Shen, Zuo-Jun Max TI Real-Time Delivery Time Forecasting and Promising in Online Retailing: When Will Your Package Arrive? SO M&SOM-MANUFACTURING & SERVICE OPERATIONS MANAGEMENT LA English DT Article DE logistics; online retail; forecasting; machine learning ID EMERGENCY-DEPARTMENT; SCORING RULES; BIG DATA; PREDICTION; DEMAND AB Problem definition: Providing fast and reliable delivery services is key to running a successful online retail business. To achieve a better delivery time guarantee policy, we study how to estimate and promise delivery time for new customer orders in real time. Academic/practical relevance: Delivery time promising is critical to managing customer expectations and improving customer satisfaction. Simply overpromising or underpromising is undesirable because of the negative impacts on short-/long-term sales. To the best of our knowledge, we are the first to develop a data-driven framework to predict the distribution of order delivery time and set promised delivery time to customers in a cost-effective way. Methodology: We apply and extend tree-based models to generate distributional forecasts by exploiting the complicated relationship between delivery time and relevant operational predictors. To account for the cost-sensitive decision-making problem structure, we develop a new split rule for quantile regression forests that incorporates an asymmetric loss function in split point selection. We further propose a cost-sensitive decision rule to decide the promised delivery day from the predicted distribution. Results: Our decision rule is proven to be optimal given certain cost structures. Tested on a real-world data set shared from JD.com, our proposed machine learning-based models deliver superior forecasting performance. In addition, we demonstrate that our framework has the potential to provide better promised delivery time in terms of sales, cost, and accuracy as compared with the conventional promised time set by JD.com. Specifically, our simulation results indicate that the proposed delivery time promise policy can improve the sales volume by 6.1% over the current policy. Managerial implications: Through a more accurate estimation of the delivery time distribution, online retailers can strategically set the promised time to maximize customer satisfaction and boost sales. Our data-driven framework reveals the importance of modeling fulfillment operations in delivery time forecasting and integrating the decision-making problemstructure with the forecasting model. C1 [Salari, Nooshin; Liu, Sheng] Univ Toronto, Rotman Sch Management, Toronto, ON M5S 1A1, Canada. [Salari, Nooshin] Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USA. [Shen, Zuo-Jun Max] Univ Hong Kong, Fac Engn, Hong Kong, Peoples R China. [Shen, Zuo-Jun Max] Univ Hong Kong, Fac Business & Econ, Hong Kong, Peoples R China. [Shen, Zuo-Jun Max] Univ Calif Berkeley, Coll Engn, Berkeley, CA 94720 USA. C3 University of Toronto; University of California System; University of California Berkeley; University of Hong Kong; University of Hong Kong; University of California System; University of California Berkeley RP Liu, S (autor correspondiente), Univ Toronto, Rotman Sch Management, Toronto, ON M5S 1A1, Canada. EM nsalari@mie.utoronto.ca; sheng.liu@rotman.utoronto.ca; maxshen@berkeley.edu RI Shen, Zuo-Jun Max/JXM-7549-2024 OI Shen, Zuo-Jun Max/0000-0003-4538-8312; Salari, Nooshin/0000-0001-6948-8313; Liu, Sheng/0000-0003-2365-6013 CR Acimovic J, 2015, M&SOM-MANUF SERV OP, V17, P34, DOI 10.1287/msom.2014.0505 Ang E, 2016, M&SOM-MANUF SERV OP, V18, P141, DOI 10.1287/msom.2015.0560 Arora S, 2020, PREPRINT, DOI 10.2139/ssrn.3155428.3614760 Ban GY, 2019, OPER RES, V67, P90, DOI 10.1287/opre.2018.1757 Bernard S, 2016, PATTERN RECOGN, V52, P46, DOI 10.1016/j.patcog.2015.10.010 Bourke C, 2008, MACH LEARN, V71, P219, DOI 10.1007/s10994-008-5056-8 Bray RobertL., 2020, Manufacturing Service Operations Management Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Brier G.W., 1950, MON WEATHER REV, V78, P1, DOI DOI 10.1175/1520-0493(1950)0782.0.CO;2 Chan T, 2018, DELIVERY SERVICE CUS Cohen MC, 2017, OPER RES, V65, P446, DOI 10.1287/opre.2016.1573 Cui R, PREPRINT, DOI 10.2139/ssrn.3563404 Cui RM, 2020, MANAGE SCI, V66, P3879, DOI 10.1287/mnsc.2019.3411 Dong J, 2019, MANAGE SCI, V65, P1969, DOI 10.1287/mnsc.2018.3048 Ferreira KJ, 2016, M&SOM-MANUF SERV OP, V18, P69, DOI 10.1287/msom.2015.0561 Fisher ML, 2019, J MARKETING RES, V56, P732, DOI 10.1177/0022243719849940 Freedman, 2019, WHY LOGISTICS HAVE N Gneiting T, 2007, J AM STAT ASSOC, V102, P359, DOI 10.1198/016214506000001437 Grushka-Cockayne Y, 2017, OPER RES, V65, P712, DOI 10.1287/opre.2017.1588 Guo X, 2022, MANUFACTURING SERVIC Ha TM, 1997, IEEE T PATTERN ANAL, V19, P608, DOI 10.1109/34.601248 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Hernández-Orallo J, 2012, J MACH LEARN RES, V13, P2813 Hildebrandt FD, 2022, TRANSPORT SCI, V56, P1058, DOI 10.1287/trsc.2021.1095 Ibrahim R, 2011, OPER RES, V59, P1106, DOI 10.1287/opre.1110.0974 Ibrahim R, 2009, MANAGE SCI, V55, P1729, DOI 10.1287/mnsc.1090.1041 Ibrahim R, 2009, M&SOM-MANUF SERV OP, V11, P397, DOI 10.1287/msom.1080.0223 KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643 Kuhn M., 2013, Applied predictive modeling, V26 Lachiche N., 2003, P 20 INT C MACH LEAR, P416 Lewis DD, 2004, J MACH LEARN RES, V5, P361 MATHESON JE, 1976, MANAGE SCI, V22, P1087, DOI 10.1287/mnsc.22.10.1087 Meinshausen N, 2006, J MACH LEARN RES, V7, P983 Perakis G, 2021, PREPRINT, DOI 10.2139/ssrn.3305039 Rao S, 2011, J OPER MANAG, V29, P692, DOI 10.1016/j.jom.2011.04.001 Shang Y, 2017, OPER RES, V65, P1574, DOI 10.1287/opre.2017.1612 SHEN ZJ, 2020, MANUFACTURING SERVIC State Post Bureau of the People's Republic of China, 2020, NOT 2019 DEL SERV SA Sun Y, 2012, ANN EMERG MED, V60, P299, DOI 10.1016/j.annemergmed.2012.03.011 Tsoumakas G, 2011, IEEE T KNOWL DATA EN, V23, P1079, DOI 10.1109/TKDE.2010.164 NR 40 TC 7 Z9 8 U1 10 U2 67 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1523-4614 EI 1526-5498 J9 M&SOM-MANUF SERV OP JI M&SOM-Manuf. Serv. Oper. Manag. PD MAY-JUN PY 2022 VL 24 IS 3 BP 1421 EP 1436 DI 10.1287/msom.2022.1081 EA FEB 2022 PG 16 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA 8N3KE UT WOS:000803577400001 DA 2024-03-27 ER PT J AU Liu, X Shin, H Burns, AC AF Liu, Xia Shin, Hyunju Burns, Alvin C. TI Examining the impact of luxury brand's social media marketing on customer engagement: Using big data analytics and natural language processing SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Big data; Luxury brand; Customer engagement; Social media; Twitter ID VALUE CO-CREATION; CONSUMER ENGAGEMENT; FASHION BRANDS; MOTIVATIONS; MANAGEMENT; CONTEXT; EQUITY; PASS; AGE AB This research utilizes big data in investigating the impact of a luxury brand's social media marketing activities on customer engagement. In particular, applying the dual perspective of customer engagement, this research examines the influence of focusing on the entertainment, interaction, trendiness, and customization dimensions of a luxury brand's social media activities on customer engagement with brand-related social media content. Using big data retrieved from a 60-month period on Twitter (July 2012 to June 2017), this paper analyzes 3.78 million tweets from the top 15 luxury brands with the highest number of Twitter followers. The results indicate that focusing on the entertainment, interaction, and trendiness dimensions of a luxury brand's social media marketing efforts significantly increases customer engagement, while focusing on the customization dimension does not. The findings have important implications for the design, delivery, and management of social media marketing for luxury brands to engage customers with social media content. C1 [Liu, Xia] Rowan Univ, William G Rohrer Coll Business, Dept Mkt & Business Informat Syst, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA. [Shin, Hyunju] Georgia Southern Univ, Parker Coll Business, Dept Mkt, POB 8154, Statesboro, GA 30450 USA. [Burns, Alvin C.] Louisiana State Univ, Dept Mkt, EJ Ourso Coll Business, 501 South Quad Dr, Baton Rouge, LA 70803 USA. C3 Rowan University; University System of Georgia; Georgia Southern University; Louisiana State University System; Louisiana State University RP Liu, X (autor correspondiente), Rowan Univ, William G Rohrer Coll Business, Dept Mkt & Business Informat Syst, 201 Mullica Hill Rd, Glassboro, NJ 08028 USA. EM liul@rowan.edu; hshin@georgiasouthern.edu; alburns@lsu.edu RI hajibabaei, hossein/HFB-7762-2022; Shin, Hyunju/AAQ-7023-2021 OI Shin, Hyunju/0000-0002-6338-801X CR Algesheimer R, 2005, J MARKETING, V69, P19, DOI 10.1509/jmkg.69.3.19.66363 Allison P., 2008, FIXED EFFECTS REGRES [Anonymous], 2015, NY TIMES Araujo T, 2015, J ADVERTISING RES, V55, P284, DOI 10.2501/JAR-2015-009 Barger V, 2016, J RES INTERACT MARK, V10, P268, DOI 10.1108/JRIM-06-2016-0065 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Bird S., 2009, NATURAL LANGUAGE PRO Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 Butler TD, 2016, J STRATEGY MANAG, V9, P322, DOI 10.1108/JSMA-07-2015-0058 Cailleux H, 2009, J BRAND MANAG, V16, P406, DOI 10.1057/bm.2008.50 Cameron AC, 2010, MICROECONOMETRICS US, V2 Campesato O., 2018, REGULAR EXPRESSIONS Chen H, 2017, J BRAND MANAG, V24, P562, DOI 10.1057/s41262-017-0050-8 Choi E, 2016, J BUS RES, V69, P5827, DOI 10.1016/j.jbusres.2016.04.180 Christodoulides G, 2009, J BRAND MANAG, V16, P395, DOI 10.1057/bm.2008.49 Chu SC, 2011, INT J ADVERT, V30, P47, DOI 10.2501/IJA-30-1-047-075 Colditz JB, 2018, AM J PUBLIC HEALTH, V108, P1009, DOI 10.2105/AJPH.2018.304497 Dauriz L., 2014, Perspectives on Retail Consumer Goods, V3, P26 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Dearden K, 2013, MATERN CHILD NUTR, V9, P143, DOI 10.1111/j.1740-8709.2011.00347.x Dhaoui C, 2014, J GLOB FASH MARK, V5, P209, DOI 10.1080/20932685.2014.907605 Dobele A., 2007, BUS HORIZONS, V50, P291 Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Foux G., 2006, BRAND STRATEGY, P38 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Golan GJ, 2008, J COMPUT-MEDIAT COMM, V13, P959, DOI 10.1111/j.1083-6101.2008.00426.x Gummerus J, 2012, MANAG RES REV, V35, P857, DOI 10.1108/01409171211256578 HAUSMAN JA, 1978, ECONOMETRICA, V46, P1251, DOI 10.2307/1913827 Hayes AF, 2007, COMMUN METHODS MEAS, V1, P77, DOI 10.1080/19312450709336664 Heine K, 2014, J GLOB FASH MARK, V5, P223 Hennig-Thurau T, 2015, J ACAD MARKET SCI, V43, P375, DOI 10.1007/s11747-014-0388-3 Hennig-Thurau T, 2010, J SERV RES-US, V13, P311, DOI 10.1177/1094670510375460 Hewett K, 2016, J MARKETING, V80, P1, DOI 10.1509/jm.15.0033 Hofacker CF, 2016, J CONSUM MARK, V33, P89, DOI 10.1108/JCM-04-2015-1399 Hollebeek L, 2011, J STRATEG MARK, V19, P555, DOI 10.1080/0965254X.2011.599493 Hughes MÜ, 2016, J PROD BRAND MANAG, V25, P357, DOI 10.1108/JPBM-09-2015-0970 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Jahn B., 2012, Identitatsbasierte Luxusmarkenfuhrung, DOI [10.1007/978-3-8349-4060-5_14, DOI 10.1007/978-3-8349-4060-5_14] Janzen B, 2020, RURAL REMOTE HEALTH, V20, DOI 10.22605/RRH5530 Jin SAA, 2012, MARK INTELL PLAN, V30, P687, DOI 10.1108/02634501211273805 Kapferer JN, 2012, BUS HORIZONS, V55, P453, DOI 10.1016/j.bushor.2012.04.002 Kapferer JN, 2009, J BRAND MANAG, V16, P311, DOI 10.1057/bm.2008.51 Kefi H, 2020, J BUS RES, V117, P579, DOI 10.1016/j.jbusres.2018.08.012 Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim AJ, 2010, J GLOB FASH MARK, V1, P164, DOI 10.1080/20932685.2010.10593068 Kim J, 2019, J BUS RES, V99, P422, DOI 10.1016/j.jbusres.2017.10.001 Koivisto E, 2020, J BUS RES, V117, P570, DOI 10.1016/j.jbusres.2018.10.030 Kontu H, 2014, J GLOB FASH MARK, V5, P235 Kunz W, 2017, J SERV MARK, V31, P161, DOI 10.1108/JSM-10-2016-0352 Kwon E.S., 2011, Journal of Interactive Advertising, V12, P4 Lacey R, 2007, J SERV RES-US, V9, P241, DOI 10.1177/1094670506295850 Larivière B, 2013, J SERV MANAGE, V24, P268, DOI 10.1108/09564231311326996 Lee TY, 2011, J MARKETING RES, V48, P881, DOI 10.1509/jmkr.48.5.881 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Liu X, 2020, IND MARKET MANAG, V86, DOI 10.1016/j.indmarman.2019.02.021 Liu X, 2019, J SERV MARK, V33, P369, DOI 10.1108/JSM-02-2018-0049 Liu X, 2017, J ADVERTISING, V46, P236, DOI 10.1080/00913367.2017.1297273 Lu Y., 2009, FDN STAT NATURAL LAN, P131 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 Nardo M., 2008, OECD STAT WORKING PA, DOI DOI 10.1787/533411815016 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Ng M, 2014, J GLOB FASH MARK, V5, P251 Okonkwo U, 2009, J BRAND MANAG, V16, P302, DOI 10.1057/bm.2009.2 Pentina I, 2018, J ADVERTISING, V47, P55, DOI 10.1080/00913367.2017.1405756 Phan M, 2011, J GLOB FASH MARK, V2, P213, DOI 10.1080/20932685.2011.10593099 Phelps JE, 2004, J ADVERTISING RES, V44, P333, DOI 10.1017/S0021849904040371 PMX Agency, 2017, PMX AG TREND REP LUX Pustejovsky J., 2012, NATURAL LANGUAGE ANN Quach S, 2017, J BUS RES, V81, P163, DOI 10.1016/j.jbusres.2017.06.015 Schivinski B, 2016, J ADVERTISING RES, V56, P64, DOI 10.2501/JAR-2016-004 Schwartz B., 2012, High Performance MySQL: Optimization, Backups, and Replication Sharpe A., 1999, CANADIAN POLICY RES, P44 Shin HJ, 2018, J BUS ETHICS, V151, P1121, DOI 10.1007/s10551-016-3249-9 Shin HJ, 2013, J SERV MARK, V27, P431, DOI 10.1108/JSM-02-2012-0037 Straker K, 2016, J FASH MARK MANAG, V20, P276, DOI 10.1108/JFMM-10-2015-0077 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Verhoef PC, 2010, J SERV RES-US, V13, P247, DOI 10.1177/1094670510375461 Vivek SD, 2012, J MARKET THEORY PRAC, V20, P127, DOI 10.2753/MTP1069-6679200201 Vollmer C., 2008, Always on advertising, marketing, and media in an era of consumer control Wooldridge JM, 2010, ECONOMETRIC ANALYSIS OF CROSS SECTION AND PANEL DATA, 2ND EDITION, P1 NR 81 TC 183 Z9 196 U1 49 U2 437 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD MAR PY 2021 VL 125 BP 815 EP 826 DI 10.1016/j.jbusres.2019.04.042 EA JAN 2021 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA PY6WB UT WOS:000612182000067 HC Y HP N DA 2024-03-27 ER PT J AU Chen, CH AF Chen, Chi-hsiang TI Influence of big data analytical capability on new product performance - the effects of collaboration capability and team collaboration in high-tech firm SO CHINESE MANAGEMENT STUDIES LA English DT Article DE Artificial intelligence; High-tech company; New product performance; Sobel t-test; SEM ID INTERNAL INTEGRATION; EXTERNAL INTEGRATION; PLANNED BEHAVIOR; INNOVATION; KNOWLEDGE; STRATEGIES; SUCCESS; IMPACT; BIAS; ANTECEDENTS AB PurposeAs the application of artificial intelligence (AI) becomes more prevalent, many high-tech firms have employed AI applications to deal with emerging societal, technological and environmental challenges. Big data analytical capability (BDAC) has become increasingly important in the AI application processes. Drawing upon the resource-based view and the theory of planned behavior, this study aims to investigate how BDAC and collaboration affect new product performance (NPP). Practically, a harmonic working team is particularly important for creating management synergies, this empirical analysis demonstrates the importance of BDAC and collaboration for NPP. Design/methodology/approachThis paper focuses on the performance of firms that applied AI in their operations. This study collected data from firms in Greater China, including China and Taiwan, as Greater China is currently the leading manufacturer of semiconductor, electronic and electric products for AI applications in the manufacturing process. Confirmatory factor analysis and structural equation modeling is employed for statistical analysis. FindingsThe analytical results indicate that BDAC positively relates to collaboration capability (CC) in AI applications but not to team collaboration (TC). CC positively correlates with TC, and both CC and TC positively correlate with NPP. Further, the mediating effect was examined using the Sobel t-test, which reveals that CC is a significant mediator in the influence of BDAC on NPP. Practical implicationsThe strategic implementation of BDAC and collaboration can allow an enterprise to improve its NPP when driven by the external environment to use AI, which further enhances NPP. These processes indicate that AI and BDAC are both crucial for the success of a company's collaboration and for effective management to improve NPP in the face of global competition. Originality/valueThis study introduces the concept of BDAC to explain the relationship between CC and TC, as they pertain to NPP. This study presented a discussion of the theoretical and practical implications of the research findings and could provide a framework for managing BDAC. C1 [Chen, Chi-hsiang] Tamkang Univ, Dept Business Adm, New Taipei, Taiwan. C3 Tamkang University RP Chen, CH (autor correspondiente), Tamkang Univ, Dept Business Adm, New Taipei, Taiwan. EM cch2010@gmail.com CR Ahmadi H, 2014, J BUS RES, V67, P704, DOI 10.1016/j.jbusres.2013.11.031 AJZEN I, 1991, ORGAN BEHAV HUM DEC, V50, P179, DOI 10.1016/0749-5978(91)90020-T Akter S, 2019, INT J INFORM MANAGE, V48, P85, DOI 10.1016/j.ijinfomgt.2019.01.020 Albergaria M, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.10.008 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Bianchi M, 2020, J BUS RES, V110, P538, DOI 10.1016/j.jbusres.2018.05.003 Cai Z, 2016, INT J OPER PROD MAN, V36, P1247, DOI 10.1108/IJOPM-08-2014-0406 Ceccagnoli M, 2012, MIS QUART, V36, P263 Chang WJ, 2016, EUR MANAG J, V34, P282, DOI 10.1016/j.emj.2015.11.008 Chen CH, 2015, CHIN MANAG STUD, V9, P150, DOI 10.1108/CMS-04-2013-0057 Chen CHV, 2022, CHIN MANAG STUD, V16, P551, DOI 10.1108/CMS-02-2021-0037 Chen FQ, 2018, ECON MODEL, V68, P229, DOI 10.1016/j.econmod.2017.07.012 Choi HY, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121802 Choi TM, 2019, TRANSPORT RES E-LOG, V128, P17, DOI 10.1016/j.tre.2019.05.011 Ciampi F, 2021, J BUS RES, V123, P1, DOI 10.1016/j.jbusres.2020.09.023 Cui L, 2018, IND MARKET MANAG, V71, P27, DOI 10.1016/j.indmarman.2017.11.003 da Silva PC, 2021, J CLEAN PROD, V278, DOI 10.1016/j.jclepro.2020.123855 Davenport T. H., 2017, COMPETING ANAL NEW S De Giovanni P, 2021, EUR J OPER RES, V292, P515, DOI 10.1016/j.ejor.2020.10.049 De Luca LM, 2007, J MARKETING, V71, P95, DOI 10.1509/jmkg.71.1.095 Drees JM, 2013, J MANAGE, V39, P1666, DOI 10.1177/0149206312471391 Durmusoglu SS, 2021, IND MARKET MANAG, V93, P250, DOI 10.1016/j.indmarman.2021.01.014 Fain N, 2011, INT J TECHNOL MANAGE, V56, P92, DOI 10.1504/IJTM.2011.042458 Flynn BB, 2010, J OPER MANAG, V28, P58, DOI 10.1016/j.jom.2009.06.001 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 FORNELL C, 1992, SOCIOL METHOD RES, V20, P334, DOI 10.1177/0049124192020003003 Ganbold O, 2021, J ENTERP INF MANAG, V34, P948, DOI 10.1108/JEIM-10-2019-0332 Gardner HK, 2012, ACAD MANAGE J, V55, P998, DOI 10.5465/amj.2010.0604 Gillis TB, 2019, U CHICAGO LAW REV, V86, P459 Gimenez C, 2005, INT J OPER PROD MAN, V25, P20, DOI 10.1108/01443570510572222 Graham S, 2018, INT J PROD ECON, V197, P283, DOI 10.1016/j.ijpe.2018.01.005 Guo RP, 2019, TECHNOL ANAL STRATEG, V31, P306, DOI 10.1080/09537325.2018.1500688 HAGGETT S, 1994, IND MARKET MANAG, V23, P101, DOI 10.1016/0019-8501(94)90010-8 Helfat CE, 2011, STRATEGIC MANAGE J, V32, P1243, DOI 10.1002/smj.955 Hemmert M, 2019, ASIA PAC J MANAG, V36, P373, DOI 10.1007/s10490-017-9556-6 Horn P, 2014, INT J PROD ECON, V153, P54, DOI 10.1016/j.ijpe.2014.03.020 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Huo BF, 2014, IEEE T ENG MANAGE, V61, P38, DOI 10.1109/TEM.2013.2278543 Isobe T, 2008, ASIA PAC J MANAG, V25, P413, DOI 10.1007/s10490-008-9098-z Jha AK, 2020, DECIS SUPPORT SYST, V138, DOI 10.1016/j.dss.2020.113382 Khan SZ, 2019, CORP SOC RESP ENV MA, V26, P285, DOI 10.1002/csr.1678 Lapkin S, 2015, NURS EDUC TODAY, V35, P935, DOI 10.1016/j.nedt.2015.03.018 Lee H, 2019, TOURISM MANAGE, V70, P284, DOI 10.1016/j.tourman.2018.08.017 Li BY, 2020, CHIN MANAG STUD, V14, P1, DOI 10.1108/CMS-10-2018-0715 Li DY, 2014, J BUS RES, V67, P2793, DOI 10.1016/j.jbusres.2012.08.007 Li XQ, 2016, ASIA PAC J MANAG, V33, P165, DOI 10.1007/s10490-015-9451-y Lozada N, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e02541 Ferreras-Méndez JL, 2021, TECHNOVATION, V108, DOI 10.1016/j.technovation.2021.102325 Luthra S, 2022, TRANSPORT RES E-LOG, V157, DOI 10.1016/j.tre.2021.102582 Malhotra NK, 2006, MANAGE SCI, V52, P1865, DOI 10.1287/mnsc.1060.0597 Martin SL, 2019, J BUS RES, V101, P615, DOI 10.1016/j.jbusres.2019.02.041 McComb EJ, 2017, TOUR HOSP RES, V17, P286, DOI 10.1177/1467358415583738 Mention AL, 2011, TECHNOVATION, V31, P44, DOI 10.1016/j.technovation.2010.08.002 Mikalef P, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.004 Newell S, 2008, LONG RANGE PLANN, V41, P33, DOI 10.1016/j.lrp.2007.10.005 Nieves J, 2014, TOURISM MANAGE, V40, P224, DOI 10.1016/j.tourman.2013.06.010 NOVAK TP, 1995, J MARKETING RES, V32, P357, DOI 10.2307/3151987 Nunan D, 2017, J BUS ETHICS, V145, P481, DOI 10.1007/s10551-015-2904-x Obschonka M, 2015, J BUS PSYCHOL, V30, P773, DOI 10.1007/s10869-014-9385-2 Pika A, 2021, BIG DATA RES, V25, DOI 10.1016/j.bdr.2021.100210 Porcu L, 2020, J BUS RES, V119, P435, DOI 10.1016/j.jbusres.2019.10.049 Preacher KJ, 2008, BEHAV RES METHODS, V40, P879, DOI 10.3758/BRM.40.3.879 Rai A, 2006, MIS QUART, V30, P225 Saleem H, 2020, ASIA PAC BUS REV, V26, P537, DOI 10.1080/13602381.2020.1759300 SAS, 2019, 5 BIG DAT CHALL Schoenherr T, 2015, J BUS LOGIST, V36, P120, DOI 10.1111/jbl.12082 Schwab K., 2017, 4 IND REVOLUTION Shamim S, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120315 Siemsen E, 2010, ORGAN RES METHODS, V13, P456, DOI 10.1177/1094428109351241 Sobel M.E., 1986, SOCIOL METHODOL, P159, DOI DOI 10.2307/270922 Srinivasan R, 2018, PROD OPER MANAG, V27, P1849, DOI 10.1111/poms.12746 Stanley GM, 2018, J PROCESS CONTR, V67, P141, DOI 10.1016/j.jprocont.2017.05.009 Stewart KJ, 2006, INFORM SYST RES, V17, P126, DOI 10.1287/isre.1060.0082 Sun B, 2021, EUR J INNOV MANAG, V24, P1162, DOI 10.1108/EJIM-01-2020-0004 Sun XB, 2022, CHIN MANAG STUD, V16, P627, DOI 10.1108/CMS-04-2021-0175 Sundarakani B, 2021, OMEGA-INT J MANAGE S, V102, DOI 10.1016/j.omega.2021.102452 Swanson NR, 2018, CAN J ECON, V51, P695, DOI 10.1111/caje.12336 Tatikonda MV, 2000, IEEE T ENG MANAGE, V47, P74, DOI 10.1109/17.820727 Taufique KMR, 2015, PROC ECON FINANC, V37, P39, DOI 10.1016/S2212-5671(16)30090-9 Thakur-Wernz P, 2020, TECHNOVATION, V90-91, DOI 10.1016/j.technovation.2019.102097 Titah R, 2016, INT J PROD ECON, V181, P34, DOI 10.1016/j.ijpe.2016.01.002 TRPC, 2020, ARTIF INTELL Truffer B, 2001, ENERG POLICY, V29, P885, DOI 10.1016/S0301-4215(01)00020-9 Upadhyay P, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2020.102100 Wamba SF, 2017, J BUS RES, V70, P356, DOI 10.1016/j.jbusres.2016.08.009 Wan WH, 2021, CHIN MANAG STUD, V15, P843, DOI 10.1108/CMS-07-2020-0282 Wang CX, 2020, RES TRANSP BUS MANAG, V37, DOI 10.1016/j.rtbm.2020.100557 Wang MM, 2019, J ENTERP INF MANAG, V32, P325, DOI 10.1108/JEIM-07-2018-0167 Woo C, 2016, J CLEAN PROD, V112, P483, DOI 10.1016/j.jclepro.2015.05.119 Wu LM, 2020, J COASTAL RES, P314, DOI 10.2112/SI106-073.1 Xiao SF, 2021, J BUS RES, V124, P38, DOI 10.1016/j.jbusres.2020.11.048 Xiaohua Yang, 2007, Asia Pacific Journal of Management, V24, P497, DOI 10.1007/s10490-007-9044-5 Xu S, 2019, J COASTAL RES, P177, DOI 10.2112/SI97-025.1 Yu AY, 2021, EUR J OPER RES, V292, P199, DOI 10.1016/j.ejor.2020.10.011 Yu WT, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120417 Yu YB, 2021, J ENTERP INF MANAG, V34, P460, DOI 10.1108/JEIM-03-2020-0101 Zeng J, 2018, STRATEG ORGAN, V16, P105, DOI 10.1177/1476127017697510 NR 98 TC 1 Z9 1 U1 14 U2 30 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 1750-614X EI 1750-6158 J9 CHIN MANAG STUD JI Chin. Manag. Stud. PD JAN 2 PY 2024 VL 18 IS 1 BP 1 EP 23 DI 10.1108/CMS-02-2022-0053 EA DEC 2022 PG 23 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA DP6M0 UT WOS:000892567000001 DA 2024-03-27 ER PT J AU Mor, M Dalyot, S Ram, Y AF Mor, Matan Dalyot, Sagi Ram, Yael TI Who is a tourist? Classifying international urban tourists using machine learning SO TOURISM MANAGEMENT LA English DT Article DE Urban tourism; Data science; Machine learning; User-generated content; Flickr; Social media ID SOCIAL MEDIA; BIG DATA; DESTINATIONS; NETWORKS; LOCATION; PATTERNS; BEHAVIOR; PHOTOS AB A key issue in tourism management relates to the lack of consensus regarding a theoretical and practical definition of the term "tourist." In turn, this results in a range of methods for counting tourists and measuring tourism. This paper presents a novel non-linear model for classifying international tourists in urban settings, based on machine learning classification methods. These methods utilize innovative feature engineering derived from photos posted on the Flickr social media platform combined with the specific urban destination street structure. The data science model that we developed for identifying international tourists produced an overall accuracy of 69% for Manhattan and 94% for Vienna and Prague, offering new tourism indicators such as repeat visits, travel distances, and short stays. The outcome of this study offers a better understanding of travel patterns among international tourists, which could improve international tourism management and promote a more practical and adaptable model for measuring and analyzing international tourism using machine learning and user-generated content. C1 [Mor, Matan; Dalyot, Sagi] Technion, Dept Mapping & Geoinformat, Civil & Environm Engn Fac, Haifa, Israel. [Ram, Yael] Ashkelon Acad Coll, Dept Tourism Studies, Ashqelon, Israel. C3 Technion Israel Institute of Technology RP Ram, Y (autor correspondiente), Ashkelon Acad Coll, Dept Tourism Studies, Ashqelon, Israel. EM matan.mor@campus.technion.ac.il; dalyot@technion.ac.il; ramy@edu.aac.ac.il RI Ram, Yael/IUN-0198-2023 OI Ram, Yael/0000-0003-2704-0056 CR [Anonymous], 2019, International Tourism Highlights 2019, DOI [10.18111/9789284421152?download=true, DOI 10.18111/9789284421152?DOWNLOAD=TRUE] Barrington-Leigh C, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0180698 Barros C, 2020, CURR ISSUES TOUR, V23, P1291, DOI 10.1080/13683500.2019.1619674 Bettaieb B, 2020, GEOGR REV JPN SER B, V93, P66, DOI 10.4157/geogrevjapanb.93.66 Boeing G., 2020, REGION, V6, P39, DOI [10.18335/region.v6i3.278, DOI 10.18335/REGION.V6I3.278] Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14 García-Palomares JC, 2015, APPL GEOGR, V63, P408, DOI 10.1016/j.apgeog.2015.08.002 Chen W, 2019, ISPRS INT J GEO-INF, V8, DOI 10.3390/ijgi8120556 Chen YY, 2019, IEEE T INTELL TRANSP, V20, P3049, DOI 10.1109/TITS.2018.2871269 Coles T., 2004, Global tourism, P463 Collins-Kreiner N, 2021, ANN TOURISM RES, V89, DOI 10.1016/j.annals.2020.103076 Cooper CHV, 2015, INT J GEOGR INF SCI, V29, P1293, DOI 10.1080/13658816.2015.1018834 Dogru N, 2018, 2018 15TH LEARNING AND TECHNOLOGY CONFERENCE (L&T), P40, DOI 10.1109/LT.2018.8368509 Dunne G, 2010, INT J TOUR RES, V12, P409, DOI 10.1002/jtr.760 Egger R., 2022, Applied Data Science in Tourism, P85, DOI DOI 10.1007/978-3-030-88389-8_6 Encalada L, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9122317 Giglio S, 2019, TOURISM MANAGE, V72, P306, DOI 10.1016/j.tourman.2018.12.007 Gunter U, 2021, J HOSP TOUR RES, V45, P373, DOI 10.1177/1096348020963689 Hall CM, 2005, CONTEMP GEOGR LEIS T, P159 Hall CM., 2017, Tourism, Public Transport and Sustainable Mobility Hasnat MM, 2018, TRANSPORT RES C-EMER, V96, P38, DOI 10.1016/j.trc.2018.09.006 Salas-Olmedo MH, 2018, TOURISM MANAGE, V66, P13, DOI 10.1016/j.tourman.2017.11.001 Joo D, 2018, TOURISM MANAGE, V64, P245, DOI 10.1016/j.tourman.2017.08.012 Kadar B, 2014, TOURISM GEOGR, V16, P88, DOI 10.1080/14616688.2013.868029 Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481 Li DY, 2018, CITIES, V74, P249, DOI 10.1016/j.cities.2017.12.012 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Liu X, 2019, INT CONF CYBER DIST, P166, DOI 10.1109/CyberC.2019.00038 Ma S, 2020, TOURISM MANAGE, V77, DOI 10.1016/j.tourman.2019.104021 Mancini F, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0200565 McCabe S., 2005, Tourist Studies, V5, P85, DOI 10.1177/1468797605062716 McKercher B., 2003, Journal of Travel Research, V42, P159, DOI 10.1177/0047287503254812 Miah SJ, 2017, INFORM MANAGE-AMSTER, V54, P771, DOI 10.1016/j.im.2016.11.011 Mor M., 2020, AGILE GISCIENCE SERI, V1, P1, DOI [10.5194/agile-giss-1-16-2020, DOI 10.5194/AGILE-GISS-1-16-2020] Mor M., 2020, ISPRS ANN PHOTOGRAMM, V5 Önder I, 2017, TOUR MANAG PERSPECT, V21, P54, DOI 10.1016/j.tmp.2016.11.002 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Peng X, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6070216 Popescu A., 2010, P INT AAAI C WEB SOC, V4, P1 Preis T, 2020, ENVIRON PLANN A, V52, P471, DOI 10.1177/0308518X19872772 Ramos-Henríquez JM, 2021, TOURISM MANAGE, V84, DOI 10.1016/j.tourman.2021.104288 ROGERS E. M., 1971, COMMUNICATION INNOVA, DOI DOI 10.2307/2800105 Sánchez EC, 2020, TOUR MANAG PERSPECT, V35, DOI 10.1016/j.tmp.2020.100718 Shapoval V, 2018, J TRAVEL RES, V57, P310, DOI 10.1177/0047287517696960 Sharma MSP, 2022, ACM T KNOWL DISCOV D, V16, DOI 10.1145/3494566 Shih HY, 2006, TOURISM MANAGE, V27, P1029, DOI 10.1016/j.tourman.2005.08.002 Shoval N, 2011, ANN TOURISM RES, V38, P1594, DOI 10.1016/j.annals.2011.02.007 Su SL, 2016, APPL GEOGR, V73, P26, DOI 10.1016/j.apgeog.2016.06.001 Sun SL, 2019, TOURISM MANAGE, V70, P1, DOI 10.1016/j.tourman.2018.07.010 Taecharungroj V, 2019, TOURISM MANAGE, V75, P550, DOI 10.1016/j.tourman.2019.06.020 UNWTO, 2019, METHODOLOGICAL NOTES, DOI [10.18111/9789284420476, DOI 10.18111/9789284420476] Valls F, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13063159 Vanicek J., 2019, CZECH J TOURISM, V8, P33 VisitBritain, 2017, FORSIGHTS, P149 Vu HQ, 2018, J TRAVEL RES, V57, P399, DOI 10.1177/0047287517692446 Wang J, 2018, CHAOS SOLITON FRACT, V108, P136, DOI 10.1016/j.chaos.2018.01.028 Xiao X, 2020, ISPRS INT J GEO-INF, V9, DOI 10.3390/ijgi9120730 Yang L, 2017, ISPRS INT J GEO-INF, V6, DOI 10.3390/ijgi6110345 Yao Q, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13010094 Zhang K, 2020, ASIA PAC J TOUR RES, V25, P1199, DOI 10.1080/10941665.2020.1838586 Zhang K, 2020, J QUAL ASSUR HOSP TO, V21, P234, DOI 10.1080/1528008X.2019.1653243 Zhang K, 2019, TOURISM MANAGE, V75, P595, DOI 10.1016/j.tourman.2019.07.002 Zhou LN, 2017, NEUROCOMPUTING, V237, P350, DOI 10.1016/j.neucom.2017.01.026 NR 63 TC 5 Z9 5 U1 15 U2 62 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0261-5177 EI 1879-3193 J9 TOURISM MANAGE JI Tourism Manage. PD APR PY 2023 VL 95 AR 104689 DI 10.1016/j.tourman.2022.104689 EA NOV 2022 PG 14 WC Environmental Studies; Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Environmental Sciences & Ecology; Social Sciences - Other Topics; Business & Economics GA 8S0KI UT WOS:000928277100001 DA 2024-03-27 ER PT J AU Melumad, S Inman, JJ Pham, MT AF Melumad, Shiri Inman, J. Jeffrey Pham, Michel Tuan TI Selectively Emotional: How Smartphone Use Changes User-Generated Content SO JOURNAL OF MARKETING RESEARCH LA English DT Article DE affect; emotion; mobile marketing; natural language processing; social media; word of mouth ID WORD-OF-MOUTH; FUZZY-TRACE THEORY; FEELINGS; COMMUNICATION; RELEVANCE; GIST AB User-generated content has become ubiquitous and very influential in the marketplace. Increasingly, this content is generated on smartphones rather than personal computers (PCs). This article argues that because of its physically constrained nature, smartphone (vs. PC) use leads consumers to generate briefer content, which encourages them to focus on the overall gist of their experiences. This focus on gist, in turn, tends to manifest as reviews that emphasize the emotional aspects of an experience in lieu of more specific details. Across five studies-two field studies and three controlled experiments-the authors use natural language processing tools and human assessments to analyze the linguistic characteristics of user-generated content. The findings support the thesis that smartphone use results in the creation of content that is less specific and privileges affect-especially positive affect-relative to PC-generated content. The findings also show that differences in emotional content are driven by the tendency to generate briefer content on smartphones rather than user self-selection, differences in topical content, or timing of writing. Implications for research and practice are discussed. C1 [Melumad, Shiri] Univ Penn, Wharton Sch, Mkt, Philadelphia, PA 19104 USA. [Inman, J. Jeffrey] Univ Pittsburgh, Katz Grad Sch Business, Mkt, Pittsburgh, PA 15260 USA. [Pham, Michel Tuan] Columbia Univ, Grad Sch Business, Business, New York, NY 10027 USA. C3 University of Pennsylvania; Pennsylvania Commonwealth System of Higher Education (PCSHE); University of Pittsburgh; Columbia University RP Melumad, S (autor correspondiente), Univ Penn, Wharton Sch, Mkt, Philadelphia, PA 19104 USA. EM melumad@wharton.upenn.edu; jinman@katz.pitt.edu; tdp4@columbia.edu RI Pham, Michel Tuan/AAE-5140-2020 CR Arbuckle James L, 2014, AMOS VERSION 23 0 CO Berger J, 2014, J CONSUM PSYCHOL, V24, P586, DOI 10.1016/j.jcps.2014.05.002 Berger J, 2013, J CONSUM RES, V40, P567, DOI 10.1086/671345 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Bianchi A, 2005, CYBERPSYCHOL BEHAV, V8, P39, DOI 10.1089/cpb.2005.8.39 BRAINERD CJ, 1990, DEV REV, V10, P3, DOI 10.1016/0273-2297(90)90003-M Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chung CMY, 2006, MARKET LETT, V17, P269, DOI 10.1007/s11002-006-8426-7 Deloitte, 2016, COUCH UND CONS SHOPP Dimitriu R, 2013, PROC INT C ACC, P127 Dodds PS, 2010, J HAPPINESS STUD, V11, P441, DOI 10.1007/s10902-009-9150-9 Dubois D, 2016, J MARKETING RES, V53, P712, DOI 10.1509/jmr.13.0312 East R, 2007, INT J RES MARK, V24, P175, DOI 10.1016/j.ijresmar.2006.12.004 Ghose A, 2013, INFORM SYST RES, V24, P613, DOI 10.1287/isre.1120.0453 Ghose A, 2011, MANAGE SCI, V57, P1671, DOI 10.1287/mnsc.1110.1350 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 Godes D, 2009, MARKET SCI, V28, P721, DOI 10.1287/mksc.1080.0444 Lau-Gesk L, 2009, J CONSUM RES, V36, P585, DOI 10.1086/605297 Ludwig S, 2013, J MARKETING, V77, P87, DOI 10.1509/jm.11.0560 Luminet O, 2000, COGNITION EMOTION, V14, P661, DOI 10.1080/02699930050117666 Metcalfe J, 1999, PSYCHOL REV, V106, P3, DOI 10.1037/0033-295X.106.1.3 Oliva Aude, 2005, P251, DOI 10.1016/B978-012375731-9/50045-8 OSGOOD CE, 1962, AM PSYCHOL, V17, P10, DOI 10.1037/h0045146 PAULHUS DL, 1994, EUR J SOC PSYCHOL, V24, P89, DOI 10.1002/ejsp.2420240107 Pennebaker James W, 2015, LIWC 2015 LINGUISTIC Pham MT, 2015, ORGAN BEHAV HUM DEC, V131, P81, DOI 10.1016/j.obhdp.2015.08.003 Pham MT, 1998, J CONSUM RES, V25, P144, DOI 10.1086/209532 Pham MT, 2001, J CONSUM RES, V28, P167, DOI 10.1086/322896 Pieters R, 2012, MARKET SCI, V31, P59, DOI 10.1287/mksc.1110.0673 Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553 Raghunathan R, 1999, ORGAN BEHAV HUM DEC, V79, P56, DOI 10.1006/obhd.1999.2838 Reyna VF, 2012, JUDGM DECIS MAK, V7, P332 Rivers SE, 2008, DEV REV, V28, P107, DOI 10.1016/j.dr.2007.11.002 Schellekens GAC, 2010, J CONSUM RES, V37, P207, DOI 10.1086/651240 Shiri Melumad, 2018, WORKING PAPER Slatcher RB, 2006, PSYCHOL SCI, V17, P660, DOI 10.1111/j.1467-9280.2006.01762.x Snehasish Banerjee, 2014, P 8 INT C UB INF MAN Stephen AT, 2008, PSYCHOL SCI, V19, P1051, DOI 10.1111/j.1467-9280.2008.02198.x Sue Harding, 2007, INT WORKSH ATT COGN Sundaram DS, 1998, ADV CONSUM RES, V25, P527 ZAJONC RB, 1980, AM PSYCHOL, V35, P151, DOI 10.1037/0003-066X.35.2.151 NR 42 TC 84 Z9 98 U1 16 U2 176 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2437 EI 1547-7193 J9 J MARKETING RES JI J. Mark. Res. PD APR PY 2019 VL 56 IS 2 BP 259 EP 275 DI 10.1177/0022243718815429 PG 17 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HP6CS UT WOS:000461770900006 DA 2024-03-27 ER PT J AU Ghosh, SK Dey, S Ghosh, A AF Ghosh, Swarup Kr Dey, Sowvik Ghosh, Anupam TI Knowledge Generation Using Sentiment Classification Involving Machine Learning on E-Commerce SO INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS LA English DT Article DE Concept Link Graph; Deep Neural Network; Maximum Entropy; Naive Bayes; Sentiment Classification; Text Mining AB Sentiment analysis manages the computational treatment of conclusion, notion, and content subjectivity. In this article, three sentiment classes such as positive, negative and neutral emotions have been demonstrated by appropriate features from raw unstructured data followed by data preprocessing steps. Applying best in class social analytics methodology to examine the sentiments embedded with purchaser remarks, encourages both producer and individual customers. Machine learning methods such as Naive Bayes, maximum entropy classification, Deep Neural Networks were used upon the data, extracted from some websites such as Samsung and Apple for sentiment classification. In the online business arena, the application of sentiment classification explores a great opportunity. The subsidy of such an investigation is that associations can apply the proposed social examination framework to exploit the entire social information on the web and therefore improve their proper blueprint promoting strategies corresponding business. C1 [Ghosh, Swarup Kr] Brainware Univ, Kolkata, India. [Dey, Sowvik] Brainware Univ, Dept Comp Sci & Engn, Kolkata, India. [Ghosh, Anupam] Netaji Subhash Engn Coll, Dept Comp Sci & Engn, Kolkata, India. C3 Netaji Subhash Engineering College Kolkata RP Ghosh, SK (autor correspondiente), Brainware Univ, Kolkata, India. OI Ghosh, Dr. Swarup Kr/0000-0002-9312-4189; Ghosh, Anupam/0000-0003-2166-3957 CR Abbasi A, 2011, IEEE T KNOWL DATA EN, V23, P447, DOI 10.1109/TKDE.2010.110 Acharjya D. P., 2008, International Journal of Artificial Intelligence and Soft Computing, V1, P1, DOI 10.1504/IJAISC.2008.021260 Acharjya DP., 2009, INT J ARTIF INTELL C, V1, P29 Argamon-Engelson Shlomo., 1998, AAAI/ML Workshop on Text Categorization. Wisconsin: AAAI-98, P1 Banea C., 2011, Multilingual Natural Language Processing, V6, P1 Berger AL, 1996, COMPUT LINGUIST, V22, P39 Das T. K., 2014, International Journal of Intelligent Systems Technologies and Applications, V13, P170, DOI 10.1504/IJISTA.2014.065172 Dave K., 2003, P 12 INT C WORLD WID, DOI [DOI 10.1145/775152.775226, 10.1145/775152.775226] Deng ZH, 2014, EXPERT SYST APPL, V41, P3506, DOI 10.1016/j.eswa.2013.10.056 GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596 Ghosh SK, 2018, INT J IMAGE GRAPH, V18, DOI 10.1142/S0219467818500080 Go A., 2009, TECH REP, V150, P1, DOI DOI 10.1016/J.SEDGEO.2006.07.004 Godbole Namrata, 2007, P INT C WEBLOGS SOCI, V7/21, P219 Haddi E, 2013, PROCEDIA COMPUT SCI, V17, P26, DOI 10.1016/j.procs.2013.05.005 Liu B., 2005, P 14 INT C WORLD WID, P342, DOI DOI 10.1145/1060745.1060797 Liu WB, 2017, NEUROCOMPUTING, V234, P11, DOI 10.1016/j.neucom.2016.12.038 Ortigosa A, 2014, COMPUT HUM BEHAV, V31, P527, DOI 10.1016/j.chb.2013.05.024 Pang B, 2002, PROCEEDINGS OF THE 2002 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P79, DOI 10.3115/1118693.1118704 Rathi R, 2018, ARAB J SCI ENG, V43, P4215, DOI 10.1007/s13369-017-2838-y Rathi R., 2018, International Journal of Fuzzy Systems Applications, V7, P74, DOI 10.4018/IJFSA.2018010106 Raychaudhuri S, 2002, GENOME RES, V12, P203, DOI 10.1101/gr.199701 Raymond Y K L, 2014, DECIS SUPPORT SYST, V65, P80 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Tan LKW, 2011, LECT NOTES COMPUT SC, V7008, P77, DOI 10.1007/978-3-642-24826-9_13 Thelwall M, 2011, J AM SOC INF SCI TEC, V62, P406, DOI 10.1002/asi.21462 Tripathy B. K., 2010, INT J ADV SCI TECHN, V1, P41 Zhang L., 2017, 2016 12 INT C COMP I NR 27 TC 0 Z9 0 U1 0 U2 12 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 2334-4547 EI 2334-4555 J9 INT J BUS ANAL JI Int. J. Bus. Anal. PD APR-JUN PY 2019 VL 6 IS 2 SI SI BP 74 EP 90 DI 10.4018/IJBAN.2019040104 PG 17 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA KI4NY UT WOS:000511328300005 DA 2024-03-27 ER PT J AU Sarkar, M De Bruyn, A AF Sarkar, Mainak De Bruyn, Arnaud TI LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning SO JOURNAL OF INTERACTIVE MARKETING LA English DT Article DE Long-short term memory neural network (LSTM); Recurrent neural network (RNN); Feature engineering; Response model; Panel data; Direct marketing ID NEURAL-NETWORKS; SELECTION; BEHAVIOR; PREDICTION; DECISIONS AB In predictive modeling, firms often deal with high-dimensional data that span multiple channels, websites, demographics, purchase types, and product categories. Traditional customer response models rely heavily on feature engineering, and their performance depends on the analyst's domain knowledge and expertise to craft relevant predictors. As the complexity of data increases, however, traditional models grow exponentially complicated. In this paper, we demonstrate that long-short term memory (LSTM) neural networks, which rely exclusively on raw data as input, can predict customer behaviors with great accuracy. In our first application, a model outperforms standard benchmarks. In a second, more realistic application, an LSTM model competes against 271 hand-crafted models that use a wide variety of features and modeling approaches. It beats 269 of them, most by a wide margin. LSTM neural networks are excellent candidates for modeling customer behavior using panel data in complex environments (e.g., direct marketing, brand choices, clickstream data, churn prediction). (C) 2020 Direct Marketing Educational Foundation, Inc. dba Marketing EDGE. All rights reserved. C1 [Sarkar, Mainak; De Bruyn, Arnaud] ESSEC Business Sch, Ave Bernard Hirsch, F-95000 Cergy, France. C3 ESSEC Business School RP Sarkar, M (autor correspondiente), ESSEC Business Sch, Ave Bernard Hirsch, F-95000 Cergy, France. EM mainak.sarkar@essec.edu; debruyn@essec.edu CR Agrawal D, 1996, J RETAILING, V72, P383, DOI 10.1016/S0022-4359(96)90020-2 [Anonymous], 1997, Neural Comput., DOI 10.1162/neco.1997.9.8.1735 [Anonymous], 2013, APPL PREDICTIVE MODE [Anonymous], MACH LEARN Ascarza E, 2016, J MARKETING RES, V53, P46, DOI 10.1509/jmr.13.0483 Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, DOI 10.48550/ARXIV.1409.0473] BASU AK, 1995, J MARKETING RES, V32, P204, DOI 10.2307/3152048 BENGIO Y, 1994, IEEE T NEURAL NETWOR, V5, P157, DOI 10.1109/72.279181 Bengio Yoshua, 2012, Neural Networks: Tricks of the Trade. Second Edition: LNCS 7700, P437, DOI 10.1007/978-3-642-35289-8_26 Bitran GR, 1996, MANAGE SCI, V42, P1364, DOI 10.1287/mnsc.42.9.1364 Bjorck N., 2018, ADV NEUR IN, V31, P7705, DOI DOI 10.48550/ARXIV.1806.02375 Blattberg RC., 2008, International Series in Quantitative Marketing Bult JR, 1995, MARKET SCI, V14, P378, DOI 10.1287/mksc.14.4.378 Cho K., 2014, ARXIV14061078, P1724, DOI [DOI 10.3115/V1/D14-1179,1724-1734, DOI 10.3115/V1/D14-1179] Chung J., 2014, ARXIV Colombo R, 1999, J INTERACT MARK, V13, P2, DOI 10.1002/(SICI)1520-6653(199922)13:3<2::AID-DIR1>3.0.CO;2-H Coussement K, 2013, J BUS RES, V66, P1629, DOI 10.1016/j.jbusres.2012.12.008 De Bruyn A, 2020, J INTERACT MARK, V51, P91, DOI 10.1016/j.intmar.2020.04.007 Donkers B, 2006, J APPL ECONOMET, V21, P549, DOI 10.1002/jae.858 Elsner R, 2004, MARKET SCI, V23, P192, DOI 10.1287/mksc.1040.0063 Fader PS, 2005, J MARKETING RES, V42, P415, DOI 10.1509/jmkr.2005.42.4.415 Friedman J., 2009, R PACKAGE VERSION Gal Y, 2016, PR MACH LEARN RES, V48 George M, 2013, J RETAILING, V89, P374, DOI 10.1016/j.jretai.2013.05.001 Gers FA, 1999, IEE CONF PUBL, P850, DOI [10.1162/089976600300015015, 10.1049/cp:19991218] Gonul F, 1998, MANAGE SCI, V44, P1249, DOI 10.1287/mnsc.44.9.1249 Gonul F., 2000, J INTERACT MARK, V14, P2, DOI 10.1016/0014-4886(73)90290-2 Gönül FF, 2006, MARKET SCI, V25, P65, DOI 10.1287/mksc.1050.0136 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Graves A., 2014, ARXIV14105401, DOI DOI 10.3389/NEUR0.12.006.2007 Greff K, 2017, IEEE T NEUR NET LEAR, V28, P2222, DOI 10.1109/TNNLS.2016.2582924 Guadagni PM, 2008, MARKET SCI, V27, P29, DOI 10.1287/mksc.1070.0331 Hinton G, 2013, ADV MACHINE LEARNING Hinton G. E., 2001, PRODUCTS HIDDEN MARK Kingma D. P., 2014, ARXIV Kuhn M., 2019, Feature Engineering and Selection: a Practical Approach for Predictive Models Lemmens A, 2006, J MARKETING RES, V43, P276, DOI 10.1509/jmkr.43.2.276 Lilien GL., 2013, Principles of Marketing Engineering and Analytics, V3rd Ling C. X., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P73 Liu H., 2018, FEATURE ENG MACHINE Luong M-T., 2015, ARXIV Malthouse EC, 1999, J INTERACT MARK, V13, P10, DOI 10.1002/(SICI)1520-6653(199923)13:4<10::AID-DIR2>3.3.CO;2-V Martínez A, 2020, EUR J OPER RES, V281, P588, DOI 10.1016/j.ejor.2018.04.034 Mayumi Oshiro Thais, 2012, Machine Learning and Data Mining in Pattern Recognition. Proceedings 8th International Conference, MLDM 2012, P154, DOI 10.1007/978-3-642-31537-4_13 Michelucci U., 2018, Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks Ming Y, 2017, IEEE CONF VIS ANAL, P13, DOI 10.1109/VAST.2017.8585721 Moe WW, 2004, J INTERACT MARK, V18, P5, DOI 10.1002/dir.10074 Moe WW, 2004, MANAGE SCI, V50, P326, DOI 10.1287/mnsc.1040.0153 Neslin SA, 2006, J MARKETING RES, V43, P204, DOI 10.1509/jmkr.43.2.204 Netzer O, 2008, MARKET SCI, V27, P185, DOI 10.1287/mksc.1070.0294 Olah C., 2015, UNDERSTANDING LSTM N Park YH, 2004, MARKET SCI, V23, P280, DOI 10.1287/mksc.1040.0050 Pascanu R, 2013, P MACHINE LEARNING R, V28, P1310 Pointer I., 2019, Programming PyTorch for Deep Learning: Creating and Deploying Deep Learning Applications Roberts M.L., 1999, DIRECT MARKETING MAN, V2nd Rudin C, 2019, NAT MACH INTELL, V1, P206, DOI 10.1038/s42256-019-0048-x RUMELHART DE, 1986, NATURE, V323, P533, DOI 10.1038/323533a0 Saleh H., 2018, Machine Learning Fundamentals: Use Python and scikit-learn to get up and running with the hottest developments in machine learning Schweidel DA, 2013, MARKET SCI, V32, P471, DOI 10.1287/mksc.2013.0781 Shahriari B, 2016, P IEEE, V104, P148, DOI 10.1109/JPROC.2015.2494218 Siami-Namini S, 2019, IEEE INT CONF BIG DA, P3285, DOI 10.1109/BigData47090.2019.9005997 Simester DI, 2006, MANAGE SCI, V52, P683, DOI 10.1287/mnsc.1050.0504 Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Tieleman T., 2012, COURSERA NEURAL NETW, V4, P26 van Diepen M, 2009, J MARKETING RES, V46, P120, DOI 10.1509/jmkr.46.1.120 Vaswani A, 2017, ADV NEUR IN, V30 Zheng A., 2018, FEATURE ENG MACHINE Zou H, 2005, J R STAT SOC B, V67, P301, DOI 10.1111/j.1467-9868.2005.00503.x NR 68 TC 23 Z9 26 U1 4 U2 38 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1094-9968 EI 1520-6653 J9 J INTERACT MARK JI J. Interact. Mark. PD FEB PY 2021 VL 53 BP 80 EP 95 DI 10.1016/j.intmar.2020.07.002 EA JAN 2022 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA QC5UF UT WOS:000614900100006 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Lacárcel, FJS Huete, R Zerva, K AF Lacarcel, Francisco Javier S. Huete, Raquel Zerva, Konstantina TI Decoding digital nomad destination decisions through user-generated content SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Digital nomad; Destination choice; UGC; Natural language processing; Sentiment analysis; Knowmads ID SENTIMENT ANALYSIS; WORK; TWITTER; BEHAVIOR AB Digital nomads are engaged in a complex quest to select their next destination. In this context, user-generated content (UGC) on social media is a pivotal source to glean insights into digital nomads' destination choices. Accordingly, this study investigates the principal topics that influence digital nomad's destination choice. To this end, data-mining techniques are applied to analyze user-generated content (UGC) from the social platform X (former Twitter). Based on the results, we identify a total of 11 topics associated with digital nomads' location preferences that can be grouped into 3 clusters (positive, negative, and neutral). Specifically, we find six positive topics (employment, retirement, gastronomy, co-working, work motivation, culture), one neutral topic (customer service), and four negative topics (connectivity, work hours, visa issues, loneliness). The results suggest that job flexibility, the attraction of travel, and cultural immersion emerge as positive factors influencing destination choice. By contrast, connectivity concerns, visa management, feelings of isolation, and emotional adjustments stand out as considerable impediments for digital nomads. We spotlight the long-term pursuit of quality of life and technological connectivity as the main drivers of digital nomads in their destination choice. The paper concludes with a formulation of 33 research questions related to digital nomad destination decisions to be addressed in further research. C1 [Lacarcel, Francisco Javier S.] Univ Alicante, Univ Inst Tourism Res, Alicante, Spain. [Huete, Raquel] Univ Alicante, Dept Sociol 1, Alicante, Spain. [Zerva, Konstantina] Univ Girona, Girona, Spain. C3 Universitat d'Alacant; Universitat d'Alacant; Universitat de Girona RP Lacárcel, FJS (autor correspondiente), Univ Alicante, Univ Inst Tourism Res, Alicante, Spain. EM francisco@jlacarcel.net; r.huete@ua.es; konstantina.zerva@udg.edu RI Zerva, Konstantina/I-4774-2018 FU Ministry of Science, Innovation and Universities (Spain) [PID2020-117459RB-C21] FX This work was supported by PID2020-117459RB-C21, "The relationship between lifestyle migration and destinations' tourism dynamics". CICONIA, Ministry of Science, Innovation and Universities (Spain) . CR Andino-Frydman A., 2023, Ethnographies of Work, V35, P95, DOI [10.1108/S0277-283320230000035005, DOI 10.1108/S0277-283320230000035005] Ata S, 2022, ESIC MARK, V53, DOI 10.7200/esicm.53.280 Bhatia A, 2022, J STAT MANAG SYST, V25, P1871, DOI 10.1080/09720510.2021.1995196 Bhavsar H., 2019, Int. Res. J. Eng. Technol. (IRJET), V6, P510 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Borges-Tiago MT, 2019, J BUS RES, V101, P574, DOI 10.1016/j.jbusres.2018.11.011 Bürgel TR, 2023, TECHNOL FORECAST SOC, V186, DOI 10.1016/j.techfore.2022.122135 Burgess S., 2009, ECIS, P417 Burrows John., 2004, COMPANION DIGITAL HU, P323, DOI DOI 10.1002/9780470999875.CH23 Castilla-Polo A, 2023, CURR ISSUES TOUR, V26, P358, DOI 10.1080/13683500.2022.2084717 Chamboko-Mpotaringa M., 2021, Afr. J. Hosp. Tour. Leis., V10, P712, DOI [10.46222/ajhtl.19770720-128, DOI 10.46222/AJHTL.19770720-128] Cheregi B.F., 2018, Manag. Dyn. Knowl. Econ., V6, P385, DOI [10.25019/MDKE/6.2.06, DOI 10.25019/MDKE/6.2.06] Chevtaeva E, 2021, J DESTIN MARK MANAGE, V21, DOI 10.1016/j.jdmm.2021.100633 Cobo-Gomez J.C., 2023, Sustain. Technol. Entrep., DOI [10.1016/j.stae.2023.100061, DOI 10.1016/J.STAE.2023.100061] Cocking B., 2020, Travel J. Travel Media Identities Places Imaginings, P53, DOI [10.1057/978-1-137-59908-7, DOI 10.1057/978-1-137-59908-7] Cohen SA, 2015, MOBILITIES-UK, V10, P155, DOI 10.1080/17450101.2013.826481 Cook D, 2023, WORLD LEISURE J, V65, P256, DOI 10.1080/16078055.2023.2190608 Cook D, 2020, INF TECHNOL TOUR, V22, P355, DOI 10.1007/s40558-020-00172-4 Cox C, 2009, J HOSP MARKET MANAG, V18, P743, DOI 10.1080/19368620903235753 D'Andrea A, 2006, GLOBAL NOMADS, P1 Dake DK, 2023, EDUC INF TECHNOL, V28, P4629, DOI 10.1007/s10639-022-11349-1 de Almeida MA, 2021, INT C COMP SUPP COOP, P1209, DOI 10.1109/CSCWD49262.2021.9437685 De Ascaniis S, 2011, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2011, P125 Dhaoui C, 2017, J CONSUM MARK, V34, P480, DOI 10.1108/JCM-03-2017-2141 Dylko I, 2012, COMMUN THEOR, V22, DOI 10.1111/j.1468-2885.2012.01409.x Ehn K, 2022, SOC MEDIA SOC, V8, DOI 10.1177/20563051221084958 Fairclough N., 2003, Analysing discourse: Textual analysis for social research Felstead A, 2017, NEW TECH WORK EMPLOY, V32, P195, DOI 10.1111/ntwe.12097 Gabrielatos C., 2017, Corpus Linguistics in the South Girolami M, 2005, DATA MIN KNOWL DISC, V10, P175, DOI 10.1007/s10618-005-0362-2 Gretzel U., 2018, Advances in social media for travel, tourism and hospitality: New perspectives, practice and cases, P147, DOI DOI 10.4324/9781315565736 Gretzel U., 2019, e-Rev. Tour. Res., V16 Guizzo D., 2019, Contrib. Polit. Econ., V38, P12, DOI [10.1093/cpe/bzz014, DOI 10.1093/CPE/BZZ014] Hall G, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P437, DOI 10.1007/978-3-030-05940-8_34 Hasan A, 2018, MATH COMPUT APPL, V23, DOI 10.3390/mca23010011 Hensellek S., 2021, The flexible workplace: Coworking and other modern workplace transformations, P195, DOI [https://doi.org/10.1007/978-3-030-62167-4_11, DOI 10.1007/978-3-030-62167-4_11] Hiremath BN, 2022, J KING SAUD UNIV-COM, V34, P2840, DOI 10.1016/j.jksuci.2020.03.006 Hirschberg J, 2015, SCIENCE, V349, P261, DOI 10.1126/science.aaa8685 Hoffman M., 2010, ADV NEURAL INFORM PR, V23, P856 Holleran M., 2022, City, V26, P831, DOI [10.1080/13604813.2022.2124713, DOI 10.1080/13604813.2022.2124713] Horrigan D., 2009, Branded Content: A New Model for Driving Tourism Via Film and Branding Strategies Hung LP, 2023, J ADV COMPUT INTELL, V27, P84, DOI 10.20965/jaciii.2023.p0084 Jacobson J, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121226 Jelodar H, 2019, MULTIMED TOOLS APPL, V78, P15169, DOI 10.1007/s11042-018-6894-4 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kaur G., 2017, International Journal of Research - Granthaalayah, V5, P72, DOI DOI 10.29121/GRANTHAALAYAH.V5.I6.2017.1998 Keum H., 2019, J. Travel Res., V58, P864, DOI [10.1007/s40558-020-00173-3, DOI 10.1007/S40558-020-00173-3] Khan K, 2023, ESIC MARK, V54, DOI 10.7200/esicm.54.291 Kim H, 2018, SOC MEDIA SOC, V4, P1, DOI 10.1177/2056305118772836 Klein AZ, 2021, J MED INTERNET RES, V23, DOI 10.2196/25314 Kong D., 2019, P 27 EUR C INF SYST Kraus S, 2023, TECHNOL FORECAST SOC, V189, DOI 10.1016/j.techfore.2023.122381 Krippendorff K., 2018, Content analysis: An introduction to its methodology Kushwaha B. P., 2020, PalArch's Journal of Archaeology of Egypt/Egyptology, V17, P2029 Lehdonvirta V, 2021, POLICY INTERNET, V13, P134, DOI 10.1002/poi3.238 Leon N, 2009, COMPUT IND, V60, P539, DOI 10.1016/j.compind.2009.05.010 Li G, 2014, APPL INTELL, V40, P441, DOI 10.1007/s10489-013-0463-3 Li Nao, 2023, Tourism Tribune, V38, P122, DOI 10.19765/j.cnki.1002-5006.2022.00.026 Li X., 2018, J. Travel Tour. Mark., V35, P1031, DOI [10.26623/topicssenger.v13i3.2328, DOI 10.26623/TOPICSSENGER.V13I3.2328] Li X, 2021, TOURISM MANAGE, V83, DOI 10.1016/j.tourman.2020.104245 Linvill DL, 2012, PUBLIC RELAT REV, V38, P636, DOI 10.1016/j.pubrev.2012.05.010 Loria S., 2013, ISO 690 Loughran T, 2016, J ACCOUNT RES, V54, P1187, DOI 10.1111/1475-679X.12123 Magano J., 2020, African Journal of Hospitality, Tourism and Leisure, V9, P1 Makimoto TsugioDavid Manners., 1997, DIGITAL NOMAD Manap K.A., 2013, The 2013 WEI international academic conference proceeding, P52 Mancinelli F, 2020, INF TECHNOL TOUR, V22, P417, DOI 10.1007/s40558-020-00174-2 Manuaba Ida Bagus Kerthyayana, 2023, Procedia Computer Science, P1101, DOI 10.1016/j.procs.2023.10.621 Mariani MM, 2023, TECHNOL FORECAST SOC, V189, DOI 10.1016/j.techfore.2022.122296 Mathew V, 2021, J CONSUM BEHAV, V20, DOI 10.1002/cb.1854 Meyrowitz J, 2008, J COMMUN, V58, P641, DOI 10.1111/j.1460-2466.2008.00406.x Moravec JW, 2013, HORIZON, V21, P79, DOI 10.1108/10748121311322978 Mouratidis G., 2018, Digital Nomads: Travel, Remote Work and Alternative Lifestyles, DOI [10.1016/j.jdmm.2021.100633, DOI 10.1016/J.JDMM.2021.100633] Munková D, 2014, ADV INTELL SYST, V231, P67, DOI 10.1007/978-3-319-01466-1_6 Nash C, 2018, LECT NOTES COMPUT SC, V10766, P207, DOI 10.1007/978-3-319-78105-1_25 Nash C, 2021, HUM BEHAV EMERG TECH, V3, P271, DOI 10.1002/hbe2.234 Nayal P., 2022, J. Promot. Manag., V28, P205, DOI [10.1080/10496491.2021.1989541, DOI 10.1080/10496491.2021.1989541] Nyagadza B., 2023, Sustain. Technol. Entrep., V2, DOI [10.1016/j.stae.2023.100040, DOI 10.1016/J.STAE.2023.100040] Ogunrinde A, 2022, Esic market, V53, P3, DOI [10.7200/esicm.53.286, DOI 10.7200/ESICM.53.286] Olga H, 2020, INF TECHNOL TOUR, V22, P335, DOI 10.1007/s40558-020-00177-z Orel M, 2021, INT J CULT TOUR HOSP, V15, P3, DOI 10.1108/IJCTHR-12-2019-0229 Ozcan S, 2021, TECHNOVATION, V107, DOI 10.1016/j.technovation.2021.102322 Pacheco C, 2023, WORLD LEISURE J, V65, P192, DOI 10.1080/16078055.2022.2156593 Palguna D.S., 2015, ISO 690 Patel Aksh, 2023, Procedia Computer Science, P2459, DOI 10.1016/j.procs.2023.01.221 Pojanapunya P, 2018, CORPUS LINGUIST LING, V14, P133, DOI 10.1515/cllt-2015-0030 Raheja S, 2023, INT J SOFTW INNOV, V11, P26, DOI 10.4018/IJSI.315740 Saura JR, 2024, ANN OPER RES, V333, P849, DOI 10.1007/s10479-022-04776-3 Saura JR, 2023, TECHNOVATION, V119, DOI 10.1016/j.technovation.2021.102447 Rayson P., 2000, P WORKSHOP COMPARING, V9, P1, DOI [DOI 10.3115/1117729.1117730, 10.3115/1117729.1117730, 10.3329/akmmcj.v8i1.31665] Resnik Philip, 2015, P 2 WORKSH COMP LING, P99, DOI [10.3115/v1/W15-1212, DOI 10.3115/V1/W15-1212] Ribeiro-Navarrete S, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120681 Rukavina A, 2014, IEEE CONF VIS ANAL, P383 Sann Raksmey, 2023, Consumer Behavior in Tourism and Hospitality, V18, P17, DOI 10.1108/CBTH-04-2022-0084 Saura JR, 2022, J BUS RES, V142, P242, DOI 10.1016/j.jbusres.2021.12.052 Saura JR, 2021, J BUS RES, V129, P271, DOI 10.1016/j.jbusres.2021.03.001 Schlagwein D., 2018, Justifications in Digital Nomadism Shawkat S., 2021, 2021 7 INT C RES INN, P1, DOI [10.1109/ICRIIS53035.2021.9617008, DOI 10.1109/ICRIIS53035.2021.9617008] Short JC, 2018, ANNU REV ORGAN PSYCH, V5, P415, DOI 10.1146/annurev-orgpsych-032117-104622 Sibona C, 2020, COMMUN ASSOC INF SYS, V46, P537, DOI 10.17705/1CAIS.04622 Símová T, 2023, WORLD LEISURE J, V65, P175, DOI 10.1080/16078055.2022.2134200 Situmorang Fransisco, 2021, Jurnal Kepariwisataan: Destinasi, Hospitalitas dan Perjalanan, V5, P1, DOI [10.34013/jk.v5i2.513, DOI 10.34013/JK.V5I2.513] Stahl CC, 2023, J YOUTH STUD, V26, P925, DOI 10.1080/13676261.2022.2053671 Sutherland Will, 2017, Proceedings of the ACM on Human-Computer Interaction, V1, DOI 10.1145/3134732 Tagscherer F., 2023, Sustainable Technology and Entrepreneurship, V2, P100039, DOI [DOI 10.1016/J.STAE.2023.100039, 10.1016/100039, DOI 10.1016/100039] Tajbakhsh MS, 2019, INTELL DATA ANAL, V23, P609, DOI 10.3233/IDA-183998 Thompson Beverly Yuen., 2018, International Journal of the Sociology of Leisure, V2, P27, DOI [DOI 10.1007/S41978-018-00030-Y, 10.1007/s41978-018-00030-y] Thompson BeverlyYuen., 2018, GLOCALISM J CULTURE, V1, P1, DOI DOI 10.12893/GJCPI.2018.1.11 Tomaz E., 2022, The Covid-19 Pandemic and the Future of Working Spaces, P122 Velichety S, 2022, INT J INFORM MANAGE, V64, DOI 10.1016/j.ijinfomgt.2022.102474 Vijayarani S., 2016, ADV COMPUTATIONAL IN, V3, P37 von Zumbusch JSH, 2020, INF TECHNOL TOUR, V22, P439, DOI 10.1007/s40558-020-00182-2 Wang B, 2020, J ASSOC INF SYST, V21, P1379, DOI 10.17705/1jais.00641 Willment N, 2020, INF TECHNOL TOUR, V22, P391, DOI 10.1007/s40558-020-00173-3 Zafar L., 2017, EMSASW@ ESWC Zhang Y, 2021, J TRAVEL RES, V60, P1469, DOI 10.1177/0047287520951639 Zhao WNX, 2011, LECT NOTES COMPUT SC, V6611, P338, DOI 10.1007/978-3-642-20161-5_34 Zulfikar W.B., 2023, Sci. J. Inf., V10, P25, DOI [10.15294/sji.v10i1.39952, DOI 10.15294/SJI.V10I1.39952] NR 118 TC 0 Z9 0 U1 17 U2 17 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAR PY 2024 VL 200 AR 123098 DI 10.1016/j.techfore.2023.123098 EA DEC 2023 PG 15 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA FN6G3 UT WOS:001146546000001 OA hybrid DA 2024-03-27 ER PT J AU Mao, D Yang, HJ Zhang, SH Sun, HZ Wang, XJ AF Mao, Da Yang, Huijie Zhang, Shaohua Sun, Haozhe Wang, Xiaojuan TI Adaptive Behavioral Dynamics in Public Open Spaces During the COVID-19 Pandemic: A Technological Perspective on Urban Resilience SO JOURNAL OF THE KNOWLEDGE ECONOMY LA English DT Article; Early Access DE Behavioral dynamics; Information annotation technology; Deep learning; Computer vision; COVID-19 pandemic; Urban resilience; Age-responsive design AB The emergence of the COVID-19 pandemic has significantly disrupted urban life, leading to profound changes in the daily routines and behavioral patterns of city residents. This study focuses on a central public open space within a residential area in Xinxiang, China, as a microcosm of urban dynamics during the pandemic. Leveraging an innovative long-term information annotation technology, the research team transformed 3 months of daytime monitoring video data from the early phase of the pandemic into a meticulously annotated dataset containing 115,975 records of spatial behavior. These records were generated through a combination of visual interpretation and spatial positioning techniques. The ensuing comprehensive analysis aimed to discern shifts in residents' behavioral characteristics, particularly focusing on spatial activity indices and densities. This study not only enhances our understanding of evolving dynamics in public open spaces but also provides empirical support for optimizing and transforming such spaces in the post-pandemic era. Key findings include the utility of long-term information annotation technology for rigorous behavioral analysis, nuanced trends in spatial vitality, age-related variations, identification of predominant resident behaviors, and age-dependent preferences for activity areas. This research contributes to urban behavioral dynamics knowledge and underscores the adaptability of communities in the face of unprecedented challenges, informing urban planning and policy decisions in a rapidly evolving world. C1 [Mao, Da; Yang, Huijie; Zhang, Shaohua; Sun, Haozhe; Wang, Xiaojuan] Henan Inst Sci & Technol, Sch Hort & Landscape Architecture, Xinxiang 453003, Henan, Peoples R China. [Mao, Da] Henan Prov Engn Ctr Hort Plant Resource Utilizat &, Xinxiang 453003, Henan, Peoples R China. [Mao, Da; Yang, Huijie; Zhang, Shaohua; Sun, Haozhe; Wang, Xiaojuan] Xinxiang Urban Rural & Landscape Digital Technol E, Xinxiang 453003, Henan, Peoples R China. C3 Henan Institute of Science & Technology RP Mao, D (autor correspondiente), Henan Inst Sci & Technol, Sch Hort & Landscape Architecture, Xinxiang 453003, Henan, Peoples R China.; Mao, D (autor correspondiente), Henan Prov Engn Ctr Hort Plant Resource Utilizat &, Xinxiang 453003, Henan, Peoples R China.; Mao, D (autor correspondiente), Xinxiang Urban Rural & Landscape Digital Technol E, Xinxiang 453003, Henan, Peoples R China. EM maoda@foxmail.com FU Key Science and Technology Research and Development Program of Henan Province, China [212102310490]; Key Science and Technology Research and Development Program of Henan Province, China [222102320233]; Key Science and Technology Research and Development Program of Henan Province, China [232102320180]; High-level Talent Research Project of Henan Institute of Science and Technology [2017028]; Cultivation Plan of Young Backbone Teachers in Colleges and Universities of Henan Province, China [2021GGJS118] FX This research was funded by the following projects: Key Science and Technology Research and Development Program of Henan Province, China (212102310490); Key Science and Technology Research and Development Program of Henan Province, China (222102320233); Key Science and Technology Research and Development Program of Henan Province, China (232102320180); High-level Talent Research Project of Henan Institute of Science and Technology (2017028); and Cultivation Plan of Young Backbone Teachers in Colleges and Universities of Henan Province, China (2021GGJS118) CR Ahmed U., 2022, ACM Trans. Asian Low-Resource Lang. Inf. Process., DOI [10.1145/3551890, DOI 10.1145/3551890] Akter S., 2021, Journal of Marketing and Consumer Research, V77, P33, DOI [10.7176/jmcr/77-04, DOI 10.7176/JMCR/77-04] Alabdullah TTY., 2023, Cashflow: Current Advanced Research on Sharia Finance and Economic Worldwide, V3, P1, DOI [10.55047/cashflow.v3i1.791, DOI 10.55047/CASHFLOW.V3I1.791] Alessi J, 2020, DIABETOL METAB SYNDR, V12, DOI 10.1186/s13098-020-00584-6 Amankwah-Amoah J, 2021, J BUS RES, V136, P602, DOI 10.1016/j.jbusres.2021.08.011 Arthi V, 2021, EXPLOR ECON HIST, V79, DOI 10.1016/j.eeh.2020.101381 Axon S, 2023, ENERGY RES SOC SCI, V102, DOI 10.1016/j.erss.2023.103188 Barchielli B, 2022, INT J ENV RES PUB HE, V19, DOI 10.3390/ijerph191911929 Barquilla CAM, 2023, SUSTAIN CITIES SOC, V97, DOI 10.1016/j.scs.2023.104782 Basu S, 2021, URBAN FOR URBAN GREE, V57, DOI 10.1016/j.ufug.2020.126959 Bell DJ, 2020, AM PSYCHOL, V75, P919, DOI 10.1037/amp0000673 Cadima M., 2023, Pastoral cosmopolitanism in Edith Wharton's fiction: The world is a Welter Cai X, 2020, SCI TOTAL ENVIRON, V746, DOI 10.1016/j.scitotenv.2020.140810 Carl J, 2023, J EXERC SCI FIT, V21, P165, DOI 10.1016/j.jesf.2022.12.003 Chen T, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0260244 Chirisa I, 2022, GEOJOURNAL, V87, P815, DOI 10.1007/s10708-020-10281-6 Clemens V, 2020, EUR CHILD ADOLES PSY, V29, P739, DOI 10.1007/s00787-020-01549-w Collins C, 2022, URBAN FOR URBAN GREE, V70, DOI 10.1016/j.ufug.2022.127543 Cowie H, 2021, CHILD SOC, V35, P62, DOI 10.1111/chso.12430 Dailey SF, 2023, J COUNS DEV, V101, P114, DOI 10.1002/jcad.12450 Delina LL, 2023, CLEAN RESPONS CONSUM, V10, DOI 10.1016/j.clrc.2023.100132 Fiorenzato E, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0246204 Folke C, 2021, AMBIO, V50, P834, DOI 10.1007/s13280-021-01544-8 Gillberg N, 2023, J NURS MANAGE, V2023, DOI 10.1155/2023/6418267 Giri K., 2020, Initial assessment of the impact of COVID-19 on sustainable forest management Asia-Pacific States Groulx M, 2021, INT J SUST HIGHER ED, V22, P274, DOI 10.1108/IJSHE-03-2020-0086 Hanson LC, 2020, J PALLIAT MED, V23, P1145, DOI 10.1089/jpm.2020.0446 Hashem IAT, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15053916 Hebebrand J, 2022, NEUROSCI BIOBEHAV R, V141, DOI 10.1016/j.neubiorev.2022.104807 Hess DB, 2023, URBAN PLAN, V8, P235, DOI 10.17645/up.v8i2.6404 Himeur Y, 2023, ARTIF INTELL REV, V56, P4929, DOI 10.1007/s10462-022-10286-2 Hsu CC, 2021, ENVIRON SCI POLLUT R, V28, P57386, DOI 10.1007/s11356-021-14499-w Iliadis L., 2023, ENG APPL NEURAL NETW Jaatsi M., 2023, Finland. City Society, V35, P77, DOI [10.1111/ciso.12461, DOI 10.1111/CISO.12461] Kontoangelos K, 2020, PSYCHIAT INVEST, V17, P491, DOI 10.30773/pi.2020.0161 Leahy SM, 2019, FUTURES, V113, DOI 10.1016/j.futures.2019.04.009 Lim WS, 2020, GERIATR GERONTOL INT, V20, P547, DOI 10.1111/ggi.13939 Liu Y, 2021, TRANSPORT RES C-EMER, V131, DOI 10.1016/j.trc.2021.103361 Van Jaarsveld GM, 2020, FRONT PSYCHIATRY, V11, DOI 10.3389/fpsyt.2020.577427 McCunn L. J., 2020, Cities & health, V5, pS223, DOI DOI 10.1080/23748834.2020.1795385 Miao J, 2021, CHINESE SOCIOL REV, V53, P1, DOI 10.1080/21620555.2020.1820860 Moisander J., 2020, Marketing Management, P237, DOI [DOI 10.4324/9780203710807-19, 10.4324/9780203357262-22, DOI 10.4324/9780203357262-22] Nandy G., 2022, Telehealth security from a user's perspective: Moving beyond COVID-19 and into a new normal Nhede NT., 2023, African Journal of Governance and Development, V12, P80, DOI [10.36369/2616-9045/2023/v12i1a5, DOI 10.36369/2616-9045/2023/V12I1A5] O'Brien L, 2023, FORESTRY, DOI 10.1093/forestry/cpad037 Pedrosa AL, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.566212 Rice WL., 2020, J Urban Ecol, V6, DOI DOI 10.1093/JUE/JUAA020 Sainz-Santamaria J, 2023, CITIES, V132, DOI 10.1016/j.cities.2022.104094 Sepe M, 2021, URBAN DES INT, V26, P159, DOI 10.1057/s41289-021-00153-x Sikorska D, 2020, ENVIRON SCI POLICY, V108, P144, DOI 10.1016/j.envsci.2020.03.007 Sood S., 2020, RHIME, V7, P23 Sovold LE, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.679397 Steere-Williams J., 2020, The filth disease: Typhoid fever and the practices of epidemiology in Victorian England, V49 Tarakini G, 2021, TROP CONSERV SCI, V14, DOI 10.1177/19400829211008088 Thompson S., 2023, Encyclopedia, V3, P1067, DOI [10.3390/encyclopedia3030078, DOI 10.3390/ENCYCLOPEDIA3030078] Velez G, 2022, TRANSL ISS PSYCH SCI, V8, P269, DOI 10.1037/tps0000326 Venter ZS, 2021, LANDSCAPE URBAN PLAN, V214, DOI 10.1016/j.landurbplan.2021.104175 Wang N., 2023, Graduate thesis, DOI [10.14288/1.0432047, DOI 10.14288/1.0432047] White G, 2021, CITIES, V110, DOI 10.1016/j.cities.2020.103064 Winfield A, 2023, PLOS ONE, V18, DOI 10.1371/journal.pone.0283227 Wong M, 2017, INT J ENV RES PUB HE, V14, DOI 10.3390/ijerph14060614 Xie J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12176751 Yabe T, 2023, NAT COMMUN, V14, DOI 10.1038/s41467-023-37913-y Yang MW, 2023, FORESTS, V14, DOI 10.3390/f14081559 Zhang L, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app131810306 Zhang YJ, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17186640 Zhao JC, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126548 Zuckerman MK, 2023, AM J BIOL ANTHROPOL, V182, P557, DOI 10.1002/ajpa.24647 NR 68 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA ONE NEW YORK PLAZA, SUITE 4600, NEW YORK, NY, UNITED STATES SN 1868-7865 EI 1868-7873 J9 J KNOWL ECON JI J. Knowl. Econ. PD 2023 NOV 13 PY 2023 DI 10.1007/s13132-023-01591-4 EA NOV 2023 PG 27 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA Y2OU6 UT WOS:001103719300002 DA 2024-03-27 ER PT J AU Bigne, E Ruiz, C Cuenca, A Perez, C Garcia, A AF Bigne, Enrique Ruiz, Carla Cuenca, Antonio Perez, Carmen Garcia, Aitor TI What drives the helpfulness of online reviews? A deep learning study of sentiment analysis, pictorial content and reviewer expertise for mature destinations SO JOURNAL OF DESTINATION MARKETING & MANAGEMENT LA English DT Article DE Perceived helpfulness; Dual-processing theory; User-generated content; Sentiment analysis; Deep learning; Mature destinations ID BIG DATA; CUSTOMER EXPERIENCE; IMPACT; QUALITY; TRUST; DETERMINANTS; TRIPADVISOR; ANALYTICS; IDENTITY; CHOICE AB Tourist destinations are increasingly affected by travel-related information shared through social media. Drawing on dual-process theories on how individuals process information, this study examines the role of central and peripheral information processing routes in the formation of consumers' perceptions of the helpfulness of online reviews of mature destinations. We carried out a two-step process to address the perceived helpfulness of usergenerated content, a sentiment analysis using advanced machine-learning techniques (deep learning), and a regression analysis. The database was 2023 comments posted on TripAdvisor about two iconic Venetian cultural attractions, St. Mark's Square (an open, free attraction) and the Doge's Palace (which charges an entry fee). Using deep-learning techniques, with logistic regression, we first identified which factors influenced whether a review received a "helpful" vote. Second, we selected those reviews which received at least one helpful vote to identify, through linear regression, the significant determinants of TripAdvisor users' voting behaviour. The results showed that reviewer expertise is influential in both free and paid-for attractions, although the impact of central cues (sentiment polarity, subjectivity, pictorial content) differs for both attractions. Our study suggests that managers should look beyond individual ratings and focus on the sentiment analysis of online reviews, which are shown to be based on the nature of the attraction (free vs. paid-for). C1 [Bigne, Enrique; Ruiz, Carla; Cuenca, Antonio; Perez, Carmen] Univ Valencia, Fac Econ, Dept Mkt, Av Naranjos S-N, Valencia 46022, Spain. [Garcia, Aitor] Vicomtech, Parque Cient & Tecnol Gipuzkoa, Donostia San Sebastian 20009, Spain. C3 University of Valencia RP Bigne, E (autor correspondiente), Univ Valencia, Fac Econ, Dept Mkt, Av Naranjos S-N, Valencia 46022, Spain. EM enrique.bigne@uv.es; carla.ruiz@uv.es; antonio.cuenca@uv.es; carmen.perez-cabanero@uv.es; agarciap@vicomtech.org RI Bigné, Enrique/D-9287-2015; Pérez-Cabañero, Carmen/AEK-9613-2022 OI Bigné, Enrique/0000-0002-6529-7605; Pérez-Cabañero, Carmen/0000-0002-6198-3990 FU Spanish Ministry of Science and Innovation, Spain [PID 2019-111195RB-I00] FX The authors gratefully acknowledge the financial support of Spanish Ministry of Science and Innovation, Spain project PID 2019-111195RB-I00. CR Al-Smadi M, 2018, J COMPUT SCI-NETH, V27, P386, DOI 10.1016/j.jocs.2017.11.006 Aldayel HK, 2016, J INF SCI, V42, P782, DOI 10.1177/0165551515610513 Alnawas I, 2019, J HOSP MARKET MANAG, V28, P833, DOI 10.1080/19368623.2019.1568339 Amplayo RK, 2017, DATA KNOWL ENG, V110, P54, DOI 10.1016/j.datak.2017.03.009 [Anonymous], DISCOVERING STAT USI Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Bernini C, 2014, CURR ISSUES TOUR, V17, P1, DOI 10.1080/13683500.2012.702737 Bhandari M, 2018, INT J ADVERT, V37, P125, DOI 10.1080/02650487.2017.1349030 Bigné E, 2020, J TRAVEL RES, V59, P742, DOI 10.1177/0047287519859705 Bigne E, 2019, J BUS RES, V101, P447, DOI 10.1016/j.jbusres.2019.01.020 Brun I, 2017, SERV IND J, V37, P317, DOI 10.1080/02642069.2017.1322959 Buhalis D, 2000, TOURISM MANAGE, V21, P97, DOI 10.1016/S0261-5177(99)00095-3 BUTLER RW, 1980, CAN GEOGR-GEOGR CAN, V24, P5, DOI 10.1111/j.1541-0064.1980.tb00970.x Cambria E, 2014, IEEE COMPUT INTELL M, V9, P48, DOI 10.1109/MCI.2014.2307227 Cao Q, 2011, DECIS SUPPORT SYST, V50, P511, DOI 10.1016/j.dss.2010.11.009 CHAIKEN S, 1980, J PERS SOC PSYCHOL, V39, P752, DOI 10.1037/0022-3514.39.5.752 Chang Y., 2020, TOURISM MANAGE, V80, P104 Cheng YH, 2015, J BUS RES, V68, P883, DOI 10.1016/j.jbusres.2014.11.046 Do HH, 2019, EXPERT SYST APPL, V118, P272, DOI 10.1016/j.eswa.2018.10.003 Eagly A.H., 1993, PSYCHOL ATTITUDES Euromonitor International, 2019, TOP 100 CIT DEST Fang B, 2016, TOURISM MANAGE, V52, P498, DOI 10.1016/j.tourman.2015.07.018 Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274 Filieri R, 2016, ANN TOURISM RES, V58, P46, DOI 10.1016/j.annals.2015.12.019 Filieri R, 2015, TOURISM MANAGE, V51, P174, DOI 10.1016/j.tourman.2015.05.007 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Fuchs M, 2014, J DESTIN MARK MANAGE, V3, P198, DOI 10.1016/j.jdmm.2014.08.002 Ganzaroli A, 2017, TOURISM MANAGE, V61, P501, DOI 10.1016/j.tourman.2017.03.019 García-Pablos A, 2016, INF TECHNOL TOUR, V16, P45, DOI 10.1007/s40558-015-0047-7 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 He W, 2017, ONLINE INFORM REV, V41, P921, DOI 10.1108/OIR-07-2016-0201 Hlee S, 2021, J VACAT MARK, V27, P61, DOI 10.1177/1356766720950356 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Hong H, 2017, DECIS SUPPORT SYST, V102, P1, DOI 10.1016/j.dss.2017.06.007 HOYER WD, 1984, J CONSUM RES, V11, P822, DOI 10.1086/209017 Jiménez-Barreto J, 2018, EUR J MANAG BUS ECON, V27, P26, DOI 10.1108/EJMBE-11-2017-0048 Kim D, 2017, TOURISM MANAGE, V63, P439, DOI 10.1016/j.tourman.2017.07.014 Kozak M, 2012, TOURISM MANAGE, V33, P188, DOI 10.1016/j.tourman.2011.03.001 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Liu B, 2010, CH CRC MACH LEARN PA, P627 Liu ZW, 2015, TOURISM MANAGE, V47, P140, DOI 10.1016/j.tourman.2014.09.020 Ma E, 2018, INT J CONTEMP HOSP M, V30, P3287, DOI 10.1108/IJCHM-10-2017-0704 Manganari EE, 2017, BEHAV INFORM TECHNOL, V36, P674, DOI 10.1080/0144929X.2016.1275807 Marine-Roig E, 2015, J DESTIN MARK MANAGE, V4, P162, DOI 10.1016/j.jdmm.2015.06.004 Marrese-Taylor E, 2014, EXPERT SYST APPL, V41, P7764, DOI 10.1016/j.eswa.2014.05.045 Mikolov T., 2013, Efficient estimation of word representations in vector space Mudambi SM, 2010, MIS QUART, V34, P185 Osmani A, 2020, EXPERT SYST, V37, DOI 10.1111/exsy.12527 Park DH, 2008, ELECTRON COMMER R A, V7, P386, DOI 10.1016/j.elerap.2007.11.004 Park SW, 2015, ANN TOURISM RES, V50, P67, DOI 10.1016/j.annals.2014.10.007 Petty RE., 1996, Attitudes and Persuasion: Classic and Contemporary Approaches Phillips P, 2015, TOURISM MANAGE, V50, P130, DOI 10.1016/j.tourman.2015.01.028 Ratchford B.T., 2020, Spanish Journal of Marketing - ESIC, V24, P3, DOI DOI 10.1108/SJME-11-2019-0096 Rojas-Barahona LM, 2016, LANG LINGUIST COMPAS, V10, P701, DOI 10.1111/lnc3.12228 González-Rodríguez MR, 2016, INT J CONTEMP HOSP M, V28, P2609, DOI 10.1108/IJCHM-02-2015-0057 Rudkowsky E, 2018, COMMUN METHODS MEAS, V12, P140, DOI 10.1080/19312458.2018.1455817 Simeon MI, 2017, J HOSP TOUR TECHNOL, V8, P220, DOI 10.1108/JHTT-10-2016-0067 Smith D, 2005, J INTERACT MARK, V19, P15, DOI 10.1002/dir.20041 Sparks BA, 2013, TOURISM MANAGE, V39, P1, DOI 10.1016/j.tourman.2013.03.007 Sun SL, 2017, INFORM FUSION, V36, P10, DOI 10.1016/j.inffus.2016.10.004 Thelwall M, 2010, J AM SOC INF SCI TEC, V61, P2544, DOI 10.1002/asi.21416 Tsai CF, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104122 van der Zee E, 2020, CURR ISSUES TOUR, V23, P175, DOI 10.1080/13683500.2018.1491955 Zhang ZQ, 2016, TOURISM MANAGE, V55, P15, DOI 10.1016/j.tourman.2016.01.004 Zhao YB, 2019, INT J HOSP MANAG, V76, P111, DOI 10.1016/j.ijhm.2018.03.017 NR 65 TC 33 Z9 33 U1 13 U2 96 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2212-571X EI 2212-5752 J9 J DESTIN MARK MANAGE JI J. Destin. Mark. Manag. PD JUN PY 2021 VL 20 AR 100570 DI 10.1016/j.jdmm.2021.100570 EA MAR 2021 PG 10 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA SV0ZL UT WOS:000663555400006 OA hybrid, Green Published, Green Accepted DA 2024-03-27 ER PT J AU Wang, Y Luo, LK Liu, H AF Wang, Yue Luo, Linkai Liu, Hai TI Bridging the Semantic Gap Between Customer Needs and Design Specifications Using User-Generated Content SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article DE Semantics; Product design; Natural languages; Machine learning; Portable computers; Random access memory; User-generated content; Deep learning; design; front-end design; transfer learning; user-generated content ID PRODUCT; REQUIREMENTS AB Although product design has been considered as a collaborative activity, progress in developing methods to facilitate the design process has been hampered by difficulties in building common bases among various stakeholders. Customers may only have general needs of the product in layman's terms instead of the sufficient domain knowledge to identify the product specifications. Thus, there is a great need in design research to translate the expressed needs in natural language to design specifications and bridge this semantic gap. By leveraging the massive amount of online user-generated content, we develop a deep learning-based method to automatically identify product design parameters or product specifications. Specifically, we crawl product review data and the corresponding product metadata from e-commerce websites. A convolutional neural network based solution is provided to map product reviews to product specifications. Experimental results show that the method can be well adapted to the mapping from customer needs in the natural language to product specifications. The method facilitates product design by addressing the semantic gap between general customer needs and detailed product specifications. In addition, the automated mapping greatly improves the efficiency and reduces labor in the design process. C1 [Wang, Yue; Luo, Linkai] Hang Seng Univ Hong Kong, Dept Supply Chain & Informat Management, Hong Kong, Peoples R China. [Liu, Hai] Hang Seng Univ Hong Kong, Dept Comp, Hong Kong, Peoples R China. C3 Hang Seng University of Hong Kong; Hang Seng University of Hong Kong RP Wang, Y (autor correspondiente), Hang Seng Univ Hong Kong, Dept Supply Chain & Informat Management, Hong Kong, Peoples R China. EM yuewang@hsu.edu.hk; llk1896@gmail.com; hliu@hsu.edu.hk OI Wang, Yue/0000-0002-0185-6172 FU Hong Kong Research Grant Council under FDS project [UGC/FDS14/E06/18] FX This work was supported by Hong Kong Research Grant Council under FDS project UGC/FDS14/E06/18. CR Aizawa A, 2003, INFORM PROCESS MANAG, V39, P45, DOI 10.1016/S0306-4573(02)00021-3 [Anonymous], 2015, Deep learning, DOI 10.1038/nature14539 [Anonymous], 2001, MANAGING BUYER SUPPL [Anonymous], EVALUATION PRECISION Calantone RJ, 2010, J PROD INNOVAT MANAG, V27, P349, DOI 10.1111/j.1540-5885.2010.00721.x Chen H., 2006, P 29 ANN INT ACM SIG, P429, DOI [DOI 10.1145/1148170.1148245, 10.1145/1148170.1148245] Davulcu H, 2006, ENTERPRISE INFORMATION SYSTEMS VII, P215, DOI 10.1007/978-1-4020-5347-4_24 Dorai C, 2003, IEEE MULTIMEDIA, V10, P15, DOI 10.1109/MMUL.2003.1195157 Edunov S, 2018, 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), P489 Erhan D, 2010, J MACH LEARN RES, V11, P625 Felfernig A, 2007, IEEE T ENG MANAGE, V54, P41, DOI 10.1109/TEM.2006.889066 GREEN PE, 1990, J MARKETING, V54, P3, DOI 10.2307/1251756 GRIFFIN A, 1993, MARKET SCI, V12, P1, DOI 10.1287/mksc.12.1.1 Hu T., 2013, P INT ASS SOC DES RE, P526 Jacovi A., 2018, EMNLP WORKSHOP BLACK, P3 jmcauley.ucsd.edu, US Joulin Armand, 2016, P ACL Kim Y, 2014, IEEE ASME INT C ADV, P1747, DOI 10.1109/AIM.2014.6878336 Kmetovicz RonaldEugene., 1992, New product development: design and analysis Mou L., 2016, PROC C EMPIRICAL MET, P478 Nagamachi M., 1989, Kansei Engineering Pan SJ, 2010, IEEE T KNOWL DATA EN, V22, P1345, DOI 10.1109/TKDE.2009.191 Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162 Ramaswamy R., 1993, RES ENG DES, V5, P70 Randall T, 2007, MARKET SCI, V26, P268, DOI 10.1287/mksc.1050.0116 Rizzo G, 2017, SEMANT WEB, V8, P667, DOI 10.3233/SW-170276 Sabin D, 1998, IEEE INTELL SYST APP, V13, P42, DOI 10.1109/5254.708432 Smith P.G., 1998, DEV PRODUCTS HALF TI Suh N.P., 2001, AXIOMATIC DESIGN ADV Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tseng M. M., 2018, CIRP ENCY CLOPEDIA P Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384 Wang Y, 2018, CIRP ANN-MANUF TECHN, V67, P145, DOI 10.1016/j.cirp.2018.04.018 Wang Y, 2014, CIRP ANN-MANUF TECHN, V63, P129, DOI 10.1016/j.cirp.2014.03.091 Wang Y, 2014, IEEE T ENG MANAGE, V61, P129, DOI 10.1109/TEM.2013.2248729 Wei J, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P6382 Zhang M, 2007, IEEE T ENG MANAGE, V54, P130, DOI 10.1109/TEM.2006.889072 NR 37 TC 17 Z9 18 U1 13 U2 77 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD AUG PY 2022 VL 69 IS 4 BP 1622 EP 1634 DI 10.1109/TEM.2020.3021698 PG 13 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA 2A3ML UT WOS:000809409400063 DA 2024-03-27 ER PT J AU Matuszelanski, K Kopczewska, K AF Matuszelanski, Kamil Kopczewska, Katarzyna TI Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE churn analysis; customer relationship management; topic modelling; geodemographics ID RELATIONSHIP MANAGEMENT; BASE ANALYSIS; PREDICTION; REGRESSION; RETENTION; SELECTION; MODELS; FUTURE; URBAN AB This study is a comprehensive and modern approach to predict customer churn in the example of an e-commerce retail store operating in Brazil. Our approach consists of three stages in which we combine and use three different datasets: numerical data on orders, textual after-purchase reviews and socio-geo-demographic data from the census. At the pre-processing stage, we find topics from text reviews using Latent Dirichlet Allocation, Dirichlet Multinomial Mixture and Gibbs sampling. In the spatial analysis, we apply DBSCAN to get rural/urban locations and analyse neighbourhoods of customers located with zip codes. At the modelling stage, we apply machine learning extreme gradient boosting and logistic regression. The quality of models is verified with area-under-curve and lift metrics. Explainable artificial intelligence represented with a permutation-based variable importance and a partial dependence profile help to discover the determinants of churn. We show that customers' propensity to churn depends on: (i) payment value for the first order, number of items bought and shipping cost; (ii) categories of the products bought; (iii) demographic environment of the customer; and (iv) customer location. At the same time, customers' propensity to churn is not influenced by: (i) population density in the customer's area and division into rural and urban areas; (ii) quantitative review of the first purchase; and (iii) qualitative review summarised as a topic. C1 [Matuszelanski, Kamil; Kopczewska, Katarzyna] Univ Warsaw, Fac Econ Sci, PL-00927 Warsaw, Poland. C3 University of Warsaw RP Kopczewska, K (autor correspondiente), Univ Warsaw, Fac Econ Sci, PL-00927 Warsaw, Poland. EM kmatuszelanski@gmail.com; kkopczewska@wne.uw.edu.pl RI Kopczewska, Katarzyna/I-1339-2019 OI Kopczewska, Katarzyna/0000-0003-1065-1790 CR Achrol RS, 1999, J MARKETING, V63, P146, DOI 10.2307/1252108 de la Llave MA, 2019, SCAND ACTUAR J, P188, DOI 10.1080/03461238.2018.1531781 [Anonymous], 2013, INT C LEARNING REPRE [Anonymous], 2002, Journal of the Association for Information Systems, DOI [DOI 10.17705/1JAIS.00022, 10.17705/1jais.00022] Athanassopoulos AD, 2000, J BUS RES, V47, P191, DOI 10.1016/S0148-2963(98)00060-5 Au WH, 2003, IEEE T EVOLUT COMPUT, V7, P532, DOI 10.1109/TEVC.2003.819264 Bach MP, 2021, J RISK FINANC MANAG, V14, DOI 10.3390/jrfm14110544 Bardicchia M., 2020, Digital CRM: Strategies and emerging trends: Building customer relationship in the digital era Behrens T, 2018, EUR J SOIL SCI, V69, P757, DOI 10.1111/ejss.12687 Bhattacharya CB, 1998, J ACAD MARKET SCI, V26, P31, DOI 10.1177/0092070398261004 Biecek P., 2021, EXPLANATORY MODEL AN Biecek PL, 2018, J MACH LEARN RES, V19 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Braun T., 2004, INTERACT MARK, V6, P200, DOI [10.1057/palgrave.im.4340284, DOI 10.1057/PALGRAVE.IM.4340284] Buckinx W, 2005, EUR J OPER RES, V164, P252, DOI 10.1016/j.ejor.2003.12.010 Burez J, 2007, EXPERT SYST APPL, V32, P277, DOI 10.1016/j.eswa.2005.11.037 Caruana R, 2006, P 23 INT C MACH LEAR, P161, DOI [DOI 10.1145/1143844.1143865, 10.1145/1143844.1143865.] Chen T., 2015, R PACKAGE VERSION, V1, P1, DOI DOI 10.1145/2939672.2939785 Choi DH., 2006, International Journal of Management, V23, P925, DOI 1197221341 Corner S., 2009, JALT TESTING EVALUAT, V13, P20 Dalvi PK, 2016, 2016 SYMPOSIUM ON COLOSSAL DATA ANALYSIS AND NETWORKING (CDAN) De Caigny A, 2020, INT J FORECASTING, V36, P1563, DOI 10.1016/j.ijforecast.2019.03.029 Montiel MAD, 2020, PAP REG SCI, V99, P1643, DOI 10.1111/pirs.12552 Dick AS., 1994, Journal of the Academy of Marketing Science, V22, P99, DOI [10.1177/0092070394222001, DOI 10.1177/0092070394222001] Doshi-Velez F., 2017, ARXIV170208608 Felbermayr A, 2016, J INTERACT MARK, V36, P60, DOI 10.1016/j.intmar.2016.05.004 Fridrich M, 2020, ECON COMPUT ECON CYB, V54, P301, DOI 10.24818/18423264/54.4.20.19 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Greenwell BM, 2020, R J, V12, P343 Gregory B., 2018, ARXIV180203396 Hadden J, 2007, COMPUT OPER RES, V34, P2902, DOI 10.1016/j.cor.2005.11.007 Harris R., 2005, GEODEMOGRAPHICS GIS He RD, 2017, PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, P388, DOI 10.18653/v1/P17-1036 Long HV, 2019, COMPUT INTEL NEUROSC, V2019, DOI 10.1155/2019/9252837 Hong L., 2010, P 1 WORKSH SOC MED A, P80, DOI DOI 10.1145/1964858.1964870 Howley T, 2006, BCS CONF SERIES, P209, DOI 10.1007/1-84628-224-1_16 Jahromi AT, 2010, J STRATEG MARK, V18, P587, DOI 10.1080/0965254X.2010.529158 Jha Mithileshwar., 2003, IIMB Management Review, V15, P89 Kaya E, 2018, EPJ DATA SCI, V7, DOI 10.1140/epjds/s13688-018-0165-5 Kilgarriff A., 2000, Wordnet: An electronic lexical database Kracklauer Alexander., 2001, INT J RETAIL DISTRIB, V29, P515, DOI DOI 10.1108/EUM0000000006288 Kumar SS, 2017, 2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), P227, DOI 10.1109/COMAPP.2017.8079769 Kursa MB, 2010, J STAT SOFTW, V36, P1, DOI 10.18637/jss.v036.i11 Lee JY, 2013, MARKET SCI, V32, P960, DOI 10.1287/mksc.2013.0796 Li KW, 2019, SENSORS-BASEL, V19, DOI 10.3390/s19061476 Lucini FR, 2020, J AIR TRANSP MANAG, V83, DOI 10.1016/j.jairtraman.2019.101760 Luo L, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P5123 Miguéis VL, 2012, EXPERT SYST APPL, V39, P11250, DOI 10.1016/j.eswa.2012.03.073 Minhas AS, 2021, KNOWL-BASED SYST, V218, DOI 10.1016/j.knosys.2021.106883 Mozer MC, 2000, IEEE T NEURAL NETWOR, V11, P690, DOI 10.1109/72.846740 Murthy SK, 1998, DATA MIN KNOWL DISC, V2, P345, DOI 10.1023/A:1009744630224 Nanayakkara S, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002709 Ngai EWT, 2009, EXPERT SYST APPL, V36, P2592, DOI 10.1016/j.eswa.2008.02.021 Nie GL, 2011, EXPERT SYST APPL, V38, P15273, DOI 10.1016/j.eswa.2011.06.028 Nielsen D, 2016, Tree boosting with xgboost-why does xgboost win" every" machine learning competition? Oliveira V.L.M., 2012, THESIS U PORTO PORTO Paruelo JM, 1997, ECOL MODEL, V98, P173, DOI 10.1016/S0304-3800(96)01913-8 Rai A, 2020, J ACAD MARKET SCI, V48, P137, DOI 10.1007/s11747-019-00710-5 Sagi O, 2021, INFORM SCIENCES, V572, P522, DOI 10.1016/j.ins.2021.05.055 SCHMITTLEIN DC, 1994, MARKET SCI, V13, P41, DOI 10.1287/mksc.13.1.41 Sharma S, 2021, INT J INDIAN CULT BU, V22, P287, DOI 10.1504/IJICBM.2021.113017 Singleton AD, 2014, PROF GEOGR, V66, P558, DOI 10.1080/00330124.2013.848764 Sithole B.T., 2018, SCH J EC BUS MANAG, V5, P211 Sun T, 2004, J CONSUM MARK, V21, P245, DOI 10.1108/07363760410542156 Suryadi D., 2020, 2020 INT C DATA ANAL, DOI [10.1109/ICDABI51230.2020.9325646, DOI 10.1109/ICDABI51230.2020.9325646] Tulkens S, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P3182 Verbeke W, 2012, EUR J OPER RES, V218, P211, DOI 10.1016/j.ejor.2011.09.031 Verbeke W, 2011, EXPERT SYST APPL, V38, P2354, DOI 10.1016/j.eswa.2010.08.023 Xiao J, 2016, IEEE INTELL SYST, V31, P37, DOI 10.1109/MIS.2016.16 Yin JH, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P233, DOI 10.1145/2623330.2623715 Zhao Y, 2005, LECT NOTES ARTIF INT, V3584, P300 Zhao YB, 2019, INT J HOSP MANAG, V76, P111, DOI 10.1016/j.ijhm.2018.03.017 NR 72 TC 11 Z9 12 U1 10 U2 52 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD MAR PY 2022 VL 17 IS 1 BP 165 EP 198 DI 10.3390/jtaer17010009 PG 34 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 0B8QD UT WOS:000774891800001 OA gold DA 2024-03-27 ER PT J AU Zila, E Kukacka, J AF Zila, Eric Kukacka, Jiri TI Moment set selection for the SMM using simple machine learning SO JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION LA English DT Article DE Agent-based model; Machine learning; Simulated method of moments; Stepwise selection ID AGENT-BASED MODELS; EMPIRICAL VALIDATION; BAYESIAN-ESTIMATION; FINANCIAL-MARKETS; SIMULATED MOMENTS; GMM ESTIMATION; ASSET RETURNS; TIME-SERIES; EXPECTATIONS; DYNAMICS AB This paper addresses the moment selection issue of the simulated method of moments, an estimation technique commonly applied to intractable agent-based models. We de-velop a simple machine learning extension reducing arbitrariness and automating the mo-ment choice. Two algorithms are proposed: backward stepwise moment elimination and forward stepwise moment selection. The methodology is tested using simulations on a Markov-switching multifractal framework and two popular financial agent-based models with increasing complexity. We find that both algorithms can identify multiple moment sets that outperform all benchmark sets. Moreover, we achieve considerable in-sample es-timation precision gains of up to 66 percent for agent-based models. Finally, an out-of-sample empirical exercise with S & P 500 data strongly supports the practical applicability of our methodology as the estimated models pass the validity test of overidentifying re-strictions. & COPY; 2023 Elsevier B.V. All rights reserved. C1 [Zila, Eric; Kukacka, Jiri] Czech Acad Sci, Inst Informat Theory & Automat, Vodarenskou Vezi 4, Prague 8, Czech Republic. [Zila, Eric; Kukacka, Jiri] Charles Univ Prague, Inst Econ Studies, Fac Social Sci, Opletalova 26, Prague 1, Czech Republic. C3 Czech Academy of Sciences; Institute of Information Theory & Automation of the Czech Academy of Sciences; Charles University Prague RP Kukacka, J (autor correspondiente), Czech Acad Sci, Inst Informat Theory & Automat, Vodarenskou Vezi 4, Prague 8, Czech Republic. EM 10026254@fsv.cuni.cz; jiri.kukacka@fsv.cuni.cz RI Kukacka, Jiri/J-1974-2014 OI Kukacka, Jiri/0000-0001-8680-2896; Zila, Eric/0000-0002-0504-7479 FU Czech Science Foundation [20-14817S]; Charles University UNCE program [UNCE/HUM/035]; Cooperatio Program at Charles University, research area Economics FX Jiri Kukacka gratefully acknowledges the financial support from the Czech Science Foundation under the project Linking financial and economic agent-based models: An econometric approach' [Grant number 20-14817S] and from the Charles University UNCE program [Grant number UNCE/HUM/035] . This work was supported by the Cooperatio Program at Charles University, research area Economics. CR Alfarano S, 2007, EUR PHYS J B, V55, P183, DOI 10.1140/epjb/e2006-00385-4 Alfarano S., 2005, Computational Economics, V26, P19, DOI 10.1007/s10614-005-6415-1 Alfarano S, 2008, J ECON DYN CONTROL, V32, P101, DOI 10.1016/j.jedc.2006.12.014 Alfarano S, 2006, PHYSICA A, V370, P38, DOI 10.1016/j.physa.2006.04.018 Altonji JG, 1996, J BUS ECON STAT, V14, P353, DOI 10.2307/1392447 [Anonymous], 1983, COMPUT PERFORM Bargigli L, 2020, J ECON INTERACT COOR, V15, P413, DOI 10.1007/s11403-018-0217-8 Boivin J, 2006, REV ECON STAT, V88, P445, DOI 10.1162/rest.88.3.445 Brock WA, 1998, J ECON DYN CONTROL, V22, P1235, DOI 10.1016/S0165-1889(98)00011-6 Calvet L. E., 2004, Journal of Financial Econometrics, V2, P49, DOI [10.1093/jjfinec/nbh003, DOI 10.1093/JJFINEC/NBH003, https://doi.org/10.1093/jjfinec/nbh003] Carrasco M, 2002, J BUS ECON STAT, V20, P482, DOI 10.1198/073500102288618621 Chen SH, 2012, KNOWL ENG REV, V27, P187, DOI 10.1017/S0269888912000136 Chen SY, 2022, COMPUT ECON, V59, P687, DOI 10.1007/s10614-021-10106-9 Chen ZX, 2018, COMPUT ECON, V52, P711, DOI 10.1007/s10614-016-9638-4 Cont R., 2007, LONG MEMORY EC, DOI [10.1007/978-3-540-34625-8_10, DOI 10.1007/978-3-540-34625-8_10] Cont R, 2001, QUANT FINANC, V1, P223, DOI [10.1088/1469-7688/1/2/304, 10.1080/713665670] DAY RH, 1990, J ECON BEHAV ORGAN, V14, P299, DOI 10.1016/0167-2681(90)90061-H Dieci R, 2018, HANDB COMPUT ECON, V4, P257, DOI 10.1016/bs.hescom.2018.03.002 DUFFIE D, 1993, ECONOMETRICA, V61, P929, DOI 10.2307/2951768 Fabretti A, 2013, J ECON INTERACT COOR, V8, P277, DOI 10.1007/s11403-012-0096-3 Fagiolo Giorgio, 2019, Computer Simulation Validation: Fundamental Concepts, Methodological Frameworks, and Philosophical Perspectives, P763, DOI DOI 10.1007/978 Farmer JD, 2002, J ECON BEHAV ORGAN, V49, P149, DOI 10.1016/S0167-2681(02)00065-3 Franke R, 2018, J ECON INTERACT COOR, V13, P201, DOI 10.1007/s11403-016-0181-0 Franke R, 2016, J ECON INTERACT COOR, V11, P1, DOI 10.1007/s11403-014-0140-6 Franke R, 2015, N AM J ECON FINANC, V31, P126, DOI 10.1016/j.najef.2014.11.001 Franke R, 2012, J ECON DYN CONTROL, V36, P1193, DOI 10.1016/j.jedc.2011.10.004 Franke R, 2011, COMPUT ECON, V38, P53, DOI 10.1007/s10614-010-9238-7 Franke R, 2009, J EMPIR FINANC, V16, P804, DOI 10.1016/j.jempfin.2009.06.006 Gatti DD, 2020, J ECON BEHAV ORGAN, V178, P875, DOI 10.1016/j.jebo.2020.07.023 Ghonghadze J, 2016, J EMPIR FINANC, V37, P1, DOI 10.1016/j.jempfin.2016.02.002 Gilli M, 2003, COMPUT STAT DATA AN, V42, P299, DOI 10.1016/S0167-9473(02)00214-1 Grazzini J, 2017, J ECON DYN CONTROL, V77, P26, DOI 10.1016/j.jedc.2017.01.014 Grazzini J, 2015, J ECON DYN CONTROL, V51, P148, DOI 10.1016/j.jedc.2014.10.006 Grazzini J, 2012, JASSS-J ARTIF SOC S, V15, DOI 10.18564/jasss.1929 HAMILTON JD, 1989, ECONOMETRICA, V57, P357, DOI 10.2307/1912559 HANSEN LP, 1982, ECONOMETRICA, V50, P1029, DOI 10.2307/1912775 HANSEN LP, 1982, ECONOMETRICA, V50, P1269, DOI 10.2307/1911873 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Hong H, 1999, J FINANC, V54, P2143, DOI 10.1111/0022-1082.00184 Jalali MRH., 2015, Using the Method of Simulated Moments (MSM) for Identification of Dynamic Models Jang TS, 2021, J ECON BEHAV ORGAN, V182, P493, DOI 10.1016/j.jebo.2019.01.017 Jang TS, 2016, METROECONOMICA, V67, P76, DOI 10.1111/meca.12091 KIRMAN A, 1993, Q J ECON, V108, P137, DOI 10.2307/2118498 Kirman A., 1991, MONEY FINANCIAL MARK, P354 KOCHERLAKOTA NR, 1990, J MONETARY ECON, V26, P285, DOI 10.1016/0304-3932(90)90024-X Kukacka J, 2021, J ECON BEHAV ORGAN, V192, P324, DOI 10.1016/j.jebo.2021.10.007 Kukacka J, 2020, J ECON DYN CONTROL, V113, DOI 10.1016/j.jedc.2020.103855 Lamperti F, 2018, J ECON DYN CONTROL, V90, P366, DOI 10.1016/j.jedc.2018.03.011 LEE BS, 1991, J ECONOMETRICS, V47, P197, DOI 10.1016/0304-4076(91)90098-X Lee JS, 2015, JASSS-J ARTIF SOC S, V18, DOI 10.18564/jasss.2897 Lux T, 2008, J BUS ECON STAT, V26, P194, DOI 10.1198/073500107000000403 Lux T, 2023, STUD NONLINEAR DYN E, V27, P423, DOI 10.1515/snde-2021-0052 Lux T, 2022, ECONOMET STAT, V21, P69, DOI 10.1016/j.ecosta.2020.03.001 Lux T, 2022, COMPUT ECON, V60, P451, DOI 10.1007/s10614-021-10155-0 Lux T, 2018, HANDB COMPUT ECON, V4, P437, DOI 10.1016/bs.hescom.2018.02.003 Lux T, 2018, J ECON DYN CONTROL, V91, P391, DOI 10.1016/j.jedc.2018.01.021 Lux T, 2009, HANDB FINANC, P161, DOI 10.1016/B978-012374258-2.50007-5 MANDELBROT BB, 1974, J FLUID MECH, V62, P331, DOI 10.1017/S0022112074000711 Mandes A, 2017, J ECON INTERACT COOR, V12, P469, DOI 10.1007/s11403-016-0173-0 Manzan S, 2007, J ECON BEHAV ORGAN, V64, P111, DOI 10.1016/j.jebo.2006.08.005 Mao C.S., 1990, HYPOTHESIS TESTING F MCFADDEN D, 1989, ECONOMETRICA, V57, P995, DOI 10.2307/1913621 PAKES A, 1989, ECONOMETRICA, V57, P1027, DOI 10.2307/1913622 Platt D, 2022, COMPUT ECON, V59, P599, DOI 10.1007/s10614-021-10095-9 Platt D, 2020, J ECON DYN CONTROL, V113, DOI 10.1016/j.jedc.2020.103859 Salle I, 2014, COMPUT ECON, V44, P507, DOI 10.1007/s10614-013-9406-7 Schmitt N, 2017, QUANT FINANC, V17, P1187, DOI 10.1080/14697688.2016.1267391 Schmitt N, 2017, J EVOL ECON, V27, P1041, DOI 10.1007/s00191-017-0504-x Schwartz I., 2022, TIME IS LIMITED ROAD Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x Tubbenhauer T, 2021, J ECON DYN CONTROL, V131, DOI 10.1016/j.jedc.2021.104231 Vandin A, 2022, J ECON DYN CONTROL, V143, DOI 10.1016/j.jedc.2022.104458 Winker P., 2007, J. Econ. Interact. Coord., P125, DOI [10.1007/s11403-007-0020-4, DOI 10.1007/S11403-007-0020-4, 10.1007/s11403-007-0020-4(2,4)] Zegadlo Piotr, 2021, Computational Science - ICCS 2021. 21st International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12744), P316, DOI 10.1007/978-3-030-77967-2_27 Zhang W, 2023, IEEE T NEUR NET LEAR, V34, P2170, DOI 10.1109/TNNLS.2021.3106777 NR 75 TC 0 Z9 0 U1 4 U2 5 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-2681 EI 1879-1751 J9 J ECON BEHAV ORGAN JI J. Econ. Behav. Organ. PD AUG PY 2023 VL 212 BP 366 EP 391 DI 10.1016/j.jebo.2023.05.040 EA JUN 2023 PG 26 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA L1SZ6 UT WOS:001021137800001 DA 2024-03-27 ER PT J AU Odugbesan, JA Aghazadeh, S Al Qaralleh, RE Sogeke, OS AF Odugbesan, Jamiu Adetola Aghazadeh, Sahar Al Qaralleh, Rawan Enad Sogeke, Olukunle Samuel TI Green talent management and employees' innovative work behavior: the roles of artificial intelligence and transformational leadership SO JOURNAL OF KNOWLEDGE MANAGEMENT LA English DT Article DE Green talent management; Innovative work behavior; Sustainable competitive advantage; Transformational leadership; Artificial intelligence; PLS-SEM ID EMOTIONAL INTELLIGENCE; MEDIATING ROLE; DIGITALIZATION; SUSTAINABILITY; PERCEPTIONS; RESOURCE; IMPACT; ENGAGEMENT; FAIRNESS; ROBOTICS AB Purpose This study aims to investigate the significance of an emerging concept - green talent management (TM) and its influence on employees' innovative work behavior, together with the moderating roles of transformational leadership and artificial intelligence within the context of higher educational institutions. Design/methodology/approach Two hundred and thirty-five structured questionnaires were administered to the academic staff in five universities located in Northern Cyprus, and the data was analyzed using partial least square structural equation modeling with the aid of WarpPLS (7.0). Findings This study provides evidences that green hard and soft TM exerts significant influence on employees' innovative work behavior. Similarly, transformational leadership and artificial intelligence were confirmed to have a significant impact on employees' innovative work behavior. Moreover, the study found transformational leadership and artificial intelligence to significantly moderate the relationship between green hard TM and employees' innovative work behavior. Research limitations/implications The study provides theoretical and managerial implications of findings that will assist the leaders in higher educational institutions in harnessing the potential of green TM in driving their employees' innovative work behavior toward the achievement of sustainable competitive advantage in the market where they operate. Originality/value The attention of researchers in the recent time has been on the way to address the challenge facing organizational leaders on how to develop and retain employee that will contribute to the sustainability of their organization toward the achievement of sustainable competitive advantage in the market they operate. Meanwhile, the studies exploring these concerns are limited. In view of this, this study investigates the significance of an emerging concept - green talent management and its influence on employees' innovative work behavior, together with the moderating roles of transformational leadership and artificial intelligence within the context of higher educational institutions. C1 [Odugbesan, Jamiu Adetola; Aghazadeh, Sahar] Cyprus West Univ, Dept Business Adm, Mersin, Turkey. [Al Qaralleh, Rawan Enad] Cyprus Int Univ, Dept Business Adm, Nicosia, North Cyprus, Turkey. [Sogeke, Olukunle Samuel] Oxford Coll Canada, Oxford, NS, Canada. C3 Cyprus International University RP Odugbesan, JA (autor correspondiente), Cyprus West Univ, Dept Business Adm, Mersin, Turkey. EM odugbesanadetola@gmail.com CR Abdeldayem M.M., 2020, International Journal of Scientific and Technology Research, V9, P3867 Abdul Latif F.D., 2019, J. Adv. Res. Bus. Mark. Supply Chain Manag, V3, P10 Abraham R, 1999, GENET SOC GEN PSYCH, V125, P209 Adeosun O.T., 2020, RAJAGIRI MANAG J, V14, P107, DOI DOI 10.1108/RAMJ-05-2020-0016 Adetola OJ., 2021, PAKISTAN J COMMERCE, V15, P240 Afsar B., 2018, PERSPECTIVES INNOVAT, V18, P25, DOI [10.15208/pieb.2018.3, DOI 10.15208/PIEB.2018.3, https://doi.org/10.15208/pieb.2018.3] Afsar B, 2020, EUR J INNOV MANAG, V23, P402, DOI 10.1108/EJIM-12-2018-0257 Agbaeze K.E., 2017, JEB, V4, P135, DOI [DOI 10.31014/AIOR.1992.02.04.162, 10.31014/aior.1992.02.04.162] Alfawaire F, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13158445 Alzgool M., 2019, Management Science Letters, V9, P2073 Anlesinya A, 2019, AFR J ECON MANAG STU, V10, P440, DOI 10.1108/AJEMS-12-2018-0371 [Anonymous], J APPL PSYCHOL, V94, P1128 Antikainen M, 2018, PROC CIRP, V73, P45, DOI 10.1016/j.procir.2018.04.027 Auranzeb B., 2016, Ind. Eng. Lett., V6, P49 Bamel U, 2022, J INTELLECT CAP, V23, P375, DOI 10.1108/JIC-05-2020-0142 Barnewold L, 2020, INT J MIN SCI TECHNO, V30, P747, DOI 10.1016/j.ijmst.2020.07.003 Barney JB, 2020, BUS SOC, V59, P203, DOI 10.1177/0007650318796792 Bass B.M., 2000, MULTIFACTOR LEADERSH Bass M.B., 1994, IMPROVING ORGANISATI Bednall TC, 2018, BRIT J MANAGE, V29, P796, DOI 10.1111/1467-8551.12275 Bel R., 2010, GLOBAL BUSINESS ORG, V29, P47, DOI [10.1002/joe, DOI 10.1002/JOE] Bhardwaj Garima, 2020, 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM). Proceedings, P47, DOI 10.1109/ICCAKM46823.2020.9051544 Bin Saeed B, 2019, ECON RES-EKON ISTRAZ, V32, P254, DOI 10.1080/1331677X.2018.1556108 Bos-Nehles AC, 2019, INT J HUM RESOUR MAN, V30, P2661, DOI 10.1080/09585192.2017.1380680 Brougham D, 2018, J MANAGE ORGAN, V24, P239, DOI 10.1017/jmo.2016.55 Bui Linh Thi Thu, 2018, International Review of Public Administration, V23, P17 CLARKSON MBE, 1995, ACAD MANAGE REV, V20, P92, DOI 10.2307/258888 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Coley LS, 2012, J BUS IND MARK, V27, P611, DOI 10.1108/08858621211273565 Contreras F, 2020, COGENT BUS MANAG, V7, DOI 10.1080/23311975.2020.1812926 Contreras TorresF., 2012, Canadian Center of Science and Education, DOI [DOI 10.5539/ASS.V13N9P9, 10.5539/ass.v13n9p9] Crossan MM, 2010, J MANAGE STUD, V47, P1154, DOI [10.1111/J.1467-6486.2009.00880.X, 10.1111/j.1467-6486.2009.00880.x] de Jong J, 2010, CREAT INNOV MANAG, V19, P23, DOI 10.1111/j.1467-8691.2010.00547.x de Jong JPJ, 2007, EUR J INNOV MANAG, V10, P41, DOI 10.1108/14601060710720546 Deery M, 2015, INT J CONTEMP HOSP M, V27, P453, DOI 10.1108/IJCHM-12-2013-0538 Dess GG, 2000, ORGAN DYN, V28, P18, DOI 10.1016/S0090-2616(00)88447-8 Dodd MD, 2016, J COMMUN MANAG, V20, P289, DOI 10.1108/JCOM-12-2015-0095 Farndale E, 2021, HUM RESOUR MANAGE-US, V60, P259, DOI 10.1002/hrm.22038 Fawehinmi O, 2020, INT J MANPOWER, V41, P879, DOI 10.1108/IJM-07-2019-0347 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Freeman RE, 2020, BUS SOC, V59, P213, DOI 10.1177/0007650318773750 Gardas BB, 2019, J CLEAN PROD, V229, P850, DOI 10.1016/j.jclepro.2019.05.018 Garg V, 2018, 2018 INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTATIONAL ENGINEERING (ICACE), P113, DOI 10.1109/ICACE.2018.8686988 GEISSER S, 1974, BIOMETRIKA, V61, P101, DOI 10.2307/2334290 Gumusluoglu L, 2009, J BUS RES, V62, P461, DOI 10.1016/j.jbusres.2007.07.032 Haenlein M, 2021, J BUS RES, V124, P405, DOI 10.1016/j.jbusres.2020.10.042 Hair J.F., 2009, Multivariate data analysis Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 HATER JJ, 1988, J APPL PSYCHOL, V73, P695, DOI 10.1037/0021-9010.73.4.695 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hlsheger U.R., 2009, TEAM L Hughes C, 2019, CHANG CONT MANAG, P61 Janssen O, 2000, J OCCUP ORGAN PSYCH, V73, P287, DOI 10.1348/096317900167038 Jia Q., 2018, P INT C EL BUS, P106 Jung DI, 2003, LEADERSHIP QUART, V14, P525, DOI 10.1016/S1048-9843(03)00050-X Khaki I., 2017, Int. Lett. Soc. Humanist. Sci, V79, P16, DOI [10.18052/www.scipress.com/ILSHS.79.16, DOI 10.18052/WWW.SCIPRESS.COM/ILSHS.79.16] Khan M.J., 2012, Pakistan Journal of Social and Clinical Psychology, V9, P17 Kline R. B., 2005, PRINCIPLES PRACTICES, V2nd Knott PJ, 2015, MANAGE DECIS, V53, P1806, DOI 10.1108/MD-08-2014-0525 Kock N, 2020, DATA ANAL PERSPECT J, V1, P1 Kock N, 2014, INT J E-COLLAB, V10, P1, DOI 10.4018/ijec.2014010101 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Kock N, 2012, J ASSOC INF SYST, V13, P546, DOI 10.17705/1jais.00302 Kör B, 2016, SPRINGERPLUS, V5, DOI 10.1186/s40064-016-3556-8 Korzilius H, 2017, INT J INTERCULT REL, V56, P13, DOI 10.1016/j.ijintrel.2016.11.001 KREJCIE RV, 1970, EDUC PSYCHOL MEAS, V30, P607, DOI 10.1177/001316447003000308 LAWSHE CH, 1975, PERS PSYCHOL, V28, P563, DOI 10.1111/j.1744-6570.1975.tb01393.x Lee IC, 2017, J INTELLECT CAP, V18, P807, DOI 10.1108/JIC-11-2016-0117 Li C, 2020, PSYCHOL RES BEHAV MA, V13, P105, DOI 10.2147/PRBM.S236876 Li X, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120479 Mahlasela S, 2020, ELECTR J INF SYS DEV, V86, DOI 10.1002/isd2.12126 Mahmood M, 2019, MANAGE DECIS, V57, P741, DOI 10.1108/MD-07-2017-0707 Mahmood Z., 2020, International Journal of Scientific and Technology Research, P3653 Malik MAR, 2015, J ORGAN BEHAV, V36, P59, DOI 10.1002/job.1943 Masood M, 2017, NURS INQ, V24, DOI 10.1111/nin.12188 Masood T, 2020, COMPUT IND, V115, DOI 10.1016/j.compind.2019.07.002 Moguluwa SC, 2021, CUST AGRONEGOCIO, V17, P64 Mohajan H.K., 2017, Annals of Spiru Haret University. Economic Series, V17, P59, DOI [DOI 10.26458/1746, 10.26458/1746] Mumford MD, 2002, LEADERSHIP QUART, V13, P705, DOI 10.1016/S1048-9843(02)00158-3 Muthuveloo R., 2013, American Journal of Economics and Business Administration, V5, P15, DOI [10.3844/ajebasp.2013.15.21, DOI 10.3844/AJEBASP.2013.15.21] Ndolo F.M., 2017, INT J MANAGEMENT COM, V5, P580 Nirino N, 2022, J INTELLECT CAP, V23, P420, DOI 10.1108/JIC-02-2020-0038 Nwosu B, 2016, WORLDW HOSP TOUR THE, V8, P235, DOI 10.1108/WHATT-11-2015-0049 Ogbeibu S, 2022, J INTELLECT CAP, V23, P27, DOI 10.1108/JIC-01-2021-0016 Ogbeibu S, 2021, SUSTAIN PROD CONSUMP, V26, P275, DOI 10.1016/j.spc.2020.10.007 Ogbeibu S, 2021, J BUS RES, V124, P422, DOI 10.1016/j.jbusres.2020.10.060 Olaka L.O.M., 2018, IOSR J BUSINESS MANA, V20, P31 Oluwatayo J.A., 2012, Journal of Educational and Social Research, V2, P391, DOI DOI 10.5901/JESR.2012.V2N2.391 Opoku MA, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11226273 Parveen N.A., 2019, International Journal of Research and Analytical Reviews (IJRAR), V6, P513 Pawar BS, 1997, ACAD MANAGE REV, V22, P80, DOI 10.2307/259225 Plessis L.D., 2015, J APPL BUS RES, V31, P1767, DOI [10.19030/jabr.v31i5.9390, DOI 10.19030/JABR.V31I5.9390] Premnath E., 2020, J XIAN U ARCHITECTUR, V11, P1193 Rana A.H., 2013, SCI INT, V25, P655 Reuvers M., 2008, LEADERSHIP INNOVATIO, V17, P227, DOI [DOI 10.1111/J.1467-8691.2008.00487.X, 10.1111/j.1467-8691.2008.00487.x] Riaz S, 2018, ADM SCI, V8, DOI 10.3390/admsci8030046 Ruby MP., 2018, INT J PURE APPL MATH, V119, P1891 Salvi A, 2021, J BUS RES, V124, P437, DOI 10.1016/j.jbusres.2020.10.025 Sarc R, 2019, WASTE MANAGE, V95, P476, DOI 10.1016/j.wasman.2019.06.035 Sarra B, 2020, J INTELLECT CAP, V21, P1153, DOI 10.1108/JIC-01-2020-0012 Schutte N., 2017, J INNOV RES ED MANAG, V1, P8 Siegling AB, 2014, PERS INDIV DIFFER, V65, P65, DOI 10.1016/j.paid.2014.01.049 Son J, 2020, INT J HUM RESOUR MAN, V31, P2188, DOI 10.1080/09585192.2018.1443955 Stoldt J, 2018, PROC CIRP, V72, P179, DOI 10.1016/j.procir.2018.03.100 STONE M, 1974, J R STAT SOC B, V36, P111, DOI 10.1111/j.2517-6161.1974.tb00994.x Taherdoost H., 2016, International Journal of Academic Research in Management, DOI [DOI 10.2139/SSRN.3205040, 10.2139/ssrn.3205040] Tambe P, 2019, CALIF MANAGE REV, V61, P15, DOI 10.1177/0008125619867910 Wamba-Taguimdje SL, 2020, BUS PROCESS MANAG J, V26, P1893, DOI 10.1108/BPMJ-10-2019-0411 West M.A., 1990, INNOVATION CREATIVIT, P265 Widodo W., 2020, Manag. Sci. Lett, V10, P2175, DOI DOI 10.5267/J.MSL.2020.3.019 Wikström PA, 2010, SUSTAIN DEV, V18, P99, DOI 10.1002/sd.449 Wu J., 2016, ADV INT MANAGEMENT, V29, P279 Yawalkar M.V.V., 2019, Int J Res Anal Rev, V6, P20 Yukl G., 2006, Leadership in organizations, V6th Zhou WQ, 2018, COGENT BUS MANAG, V5, DOI 10.1080/23311975.2018.1471770 NR 116 TC 22 Z9 22 U1 74 U2 212 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1367-3270 EI 1758-7484 J9 J KNOWL MANAG JI J. Knowl. Manag. PD MAR 6 PY 2023 VL 27 IS 3 BP 696 EP 716 DI 10.1108/JKM-08-2021-0601 EA APR 2022 PG 21 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA 9N3YK UT WOS:000795998800001 DA 2024-03-27 ER PT J AU Kastius, A Schlosser, R AF Kastius, Alexander Schlosser, Rainer TI Dynamic pricing under competition using reinforcement learning SO JOURNAL OF REVENUE AND PRICING MANAGEMENT LA English DT Article DE Dynamic pricing; Competition; Reinforcement learning; E-commerce; Price collusion ID MANAGEMENT AB Dynamic pricing is considered a possibility to gain an advantage over competitors in modern online markets. The past advancements in Reinforcement Learning (RL) provided more capable algorithms that can be used to solve pricing problems. In this paper, we study the performance of Deep Q-Networks (DQN) and Soft Actor Critic (SAC) in different market models. We consider tractable duopoly settings, where optimal solutions derived by dynamic programming techniques can be used for verification, as well as oligopoly settings, which are usually intractable due to the curse of dimensionality. We find that both algorithms provide reasonable results, while SAC performs better than DQN. Moreover, we show that under certain conditions, RL algorithms can be forced into collusion by their competitors without direct communication. C1 [Kastius, Alexander; Schlosser, Rainer] Univ Potsdam, Hasso Plattner Inst, Potsdam, Germany. C3 University of Potsdam RP Kastius, A (autor correspondiente), Univ Potsdam, Hasso Plattner Inst, Potsdam, Germany. EM alexander.kastius@hpi.de; rainer.schlosser@hpi.de OI Schlosser, Rainer/0000-0002-6627-4026 FU Projekt DEAL FX Open Access funding enabled and organized by Projekt DEAL. CR [Anonymous], Source Code Bondoux N, 2020, J REVENUE PRICING MA, V19, P332, DOI 10.1057/s41272-020-00228-4 Calvano E, 2020, AM ECON REV, V110, P3267, DOI 10.1257/aer20190623 DENBOER AV, 2015, SURVEYS OPER RES MAN, V20, P1, DOI DOI 10.1016/J.SORMS.2015.03.001 Espeholt L, 2018, PR MACH LEARN RES, V80 Ghasemkhani A, 2018, IEEE INT CONF COMM Giannoccaro I, 2002, INT J PROD ECON, V78, P153, DOI 10.1016/S0925-5273(00)00156-0 Gosavi A, 2004, MACH LEARN, V55, P5, DOI 10.1023/B:MACH.0000019802.64038.6c Gosavi A, 2002, IIE TRANS, V34, P729 Haarnoja T, 2018, PR MACH LEARN RES, V80 Hessel F.N, 2018, P AAAI C ART INT, V32 Kephart JeffreyO., 2000, ICML, P463 Kim BG, 2016, IEEE T SMART GRID, V7, P2187, DOI 10.1109/TSG.2015.2495145 Kingma D. P., 2014, ARXIV Könönen V, 2006, INT J INTELL SYST, V21, P73, DOI 10.1002/int.20121 Kutschinski E, 2003, J ECON DYN CONTROL, V27, P2207, DOI 10.1016/S0165-1889(02)00122-7 Lillicrap TP., 2015, CONTINUOUS CONTROL D Maestre R, 2019, ADV INTELL SYST, V868, P120, DOI 10.1007/978-3-030-01054-6_8 Mnih V, 2016, PR MACH LEARN RES, V48 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 Rana R, 2014, OMEGA-INT J MANAGE S, V47, P116, DOI 10.1016/j.omega.2013.10.004 Schlosser R, 2019, J REVENUE PRICING MA, V18, P451, DOI 10.1057/s41272-019-00206-5 Schlosser R, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P705, DOI 10.1145/3219819.3219833 Silver D., 2016, PROC 4 TH INT C LEAR, P1 Teh YW, 2017, ADV NEUR IN, V30 van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094 Vengerov D, 2008, FUTURE GENER COMP SY, V24, P687, DOI 10.1016/j.future.2008.02.012 Wang Ziyu, 2016, 2016 33rd International Conference on International Conference on Machine Learning (ICML), DOI 10.48550/arXiv.1511.06581 WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698 Ye P, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P932, DOI 10.1145/3219819.3219830 NR 30 TC 17 Z9 17 U1 8 U2 25 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1476-6930 EI 1477-657X J9 J REVENUE PRICING MA JI J. Revenue Pricing Manag. PD FEB PY 2022 VL 21 IS 1 BP 50 EP 63 DI 10.1057/s41272-021-00285-3 EA FEB 2021 PG 14 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA ZA0VQ UT WOS:000622677300001 OA hybrid DA 2024-03-27 ER PT J AU Syrdal, HA Myers, S Sen, S Woodroof, PJ McDowell, WC AF Syrdal, Holly A. Myers, Susan Sen, Sandipan Woodroof, Parker J. McDowell, William C. TI Influencer marketing and the growth of affiliates: The effects of language features on engagement behavior SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Social media engagement; Influencer affiliate marketing; Elaboration likelihood model; Micro-influencers; Big data; Text mining; Linguistic cues; Natural language processing ID ELABORATION LIKELIHOOD MODEL; SOCIAL MEDIA ENGAGEMENT; MESSAGE APPEALS; TEXT ANALYSIS; ONLINE; POPULARITY; PERSUASION; EXPERTISE; ATTITUDE; WORDS AB Although most major brands are utilizing affiliate marketing programs, potential drivers of engagement with influencer affiliate marketing content have yet to be explored. To address this gap, the authors apply the Elaboration Likelihood Model to propose that linguistic characteristics of the text within influencers' affiliate marketing posts motivate either peripheral or central route processing, which in turn impacts behavioral in-teractions with the content. To empirically test these relationships, text mining and natural language processing are used to construct a large dataset of influencers' affiliate marketing posts from their Instagram feeds. The analysis reveals certain linguistic styles can enhance engagement, while others negatively impact these behav-iors. In addition to advancing understanding of influencer affiliate marketing and social media engagement, the findings offer important insights for both brands and influencers participating in affiliate marketing. C1 [Syrdal, Holly A.] Texas State Univ, Dept Marketing, San Marcos, TX USA. [McDowell, William C.] Texas State Univ, McCoy Coll Business, San Marcos, TX 78666 USA. [Myers, Susan] Univ Cent Arkansas, Dept Marketing & Management, Marketing, Conway, AR USA. [Sen, Sandipan] Southeast Missouri State Univ, Dept Marketing, Marketing, Girardeau, MO USA. [Woodroof, Parker J.] Univ Alabama Birmingham, Dept Marketing Ind Distribut & Econ MIDE, Marketing, Birmingham, AL USA. C3 Texas State University System; Texas State University San Marcos; Texas State University System; Texas State University San Marcos; University of Central Arkansas; University of Alabama System; University of Alabama Birmingham RP McDowell, WC (autor correspondiente), Texas State Univ, McCoy Coll Business, San Marcos, TX 78666 USA. EM holly.syrdal@txstate.edu; smyers@uca.edu; ssen@semo.edu; woodroof@uab.edu; billmcdowell@txstate.edu OI Woodroof, Parker/0000-0003-3642-6057 CR Abdelahady M. H., 2020, J TRAVEL TOUR MARK, V4 Adams R. L., 2017, TECHNOL FORECAST SOC Akpinar E, 2017, J MARKETING RES, V54, P318, DOI 10.1509/jmr.13.0350 Aleti T, 2019, J INTERACT MARK, V48, P17, DOI 10.1016/j.intmar.2019.03.003 Allison TH, 2017, J BUS VENTURING, V32, P707, DOI 10.1016/j.jbusvent.2017.09.002 Angst CM, 2009, MIS QUART, V33, P339 Antoniadis I, 2019, INT J RETAIL DISTRIB, V47, P957, DOI 10.1108/IJRDM-09-2018-0195 Association of National Advertisers, 2018, ADV LOV INFL MARK AN Belk RW, 1998, J CONSUM RES, V25, P218, DOI 10.1086/209536 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Beverland MB, 2010, J CONSUM RES, V36, P838, DOI 10.1086/615047 Bhattacherjee A, 2006, MIS QUART, V30, P805 Borges-Tiago MT, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113606 Brear David, 2008, International Journal of Electronic Finance, V2, P1, DOI 10.1504/IJEF.2008.016881 Breves P, 2021, INT J ADVERT, V40, P1209, DOI 10.1080/02650487.2021.1881237 Breves PL, 2019, J ADVERTISING RES, V59, P440, DOI 10.2501/JAR-2019-030 Chatterjee D, 2002, MIS QUART, V26, P65, DOI 10.2307/4132321 Chong M., 2020, J APPL BUSINESS EC, V22, P81, DOI [DOI 10.33423/JABE.V22I10.3714, https://doi.org/10.33423/jabe.v22i10.3714] Chung SY, 2017, PSYCHOL MARKET, V34, P481, DOI 10.1002/mar.21001 Cortez RM, 2020, IND MARKET MANAG, V89, P642, DOI 10.1016/j.indmarman.2019.03.012 COX DS, 1988, J CONSUM RES, V15, P111, DOI 10.1086/209149 Crymble L., 2019, MEET BREADCRUMBS S A Dallal A., 2022, 52 AFFILIATE MARKETI Davis SW, 2019, J BUS RES, V100, P150, DOI 10.1016/j.jbusres.2019.01.071 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Djafarova E, 2017, COMPUT HUM BEHAV, V68, P1, DOI 10.1016/j.chb.2016.11.009 Dolan R, 2019, EUR J MARKETING, V53, P2213, DOI 10.1108/EJM-03-2017-0182 Drenik G., 2022, Forbes Dyer Richard., 2004, Heavenly Bodies: Film Stars and Society Edelman B., 2013, HDB MARKET DESIGN Edelman B., 2009, 08072 HARV BUS SCH Edelman B, 2015, J MARKETING RES, V52, P1, DOI 10.1509/jmr.13.0472 Ehlers K., 2021, MICROINFLUENCERS SMA Farrell JR, 2022, J ADVERTISING RES, V62, P35, DOI 10.2501/JAR-2021-017 Feng Y, 2021, INT J ADVERT, V40, P972, DOI 10.1080/02650487.2020.1824751 Forrester, 2016, NETW HELP DRIV AFF M Fox AK, 2021, J CURR ISS RES AD, V42, P294, DOI 10.1080/10641734.2020.1763521 Fox PB, 2010, INT J E-BUS RES, V6, P1, DOI 10.4018/jebr.2010100901 Fredrickson BL, 2001, EMO SOC BEH, P123 Gallaugher JM, 2001, INFORM MANAGE, V38, P473, DOI 10.1016/S0378-7206(00)00083-5 Geyser W., 2022, WHAT IS AFFILIATE MA Geyser W., 2021, What is an influencer - Social media influencers defined Geyser W., 2021, The State of Influencer Marketing 2021: Benchmark Report Geyser W., 2022, TOP INFLUENCER AFFIL Gilliland DI, 2013, J BUS RES, V66, P2650, DOI 10.1016/j.jbusres.2012.06.005 Gregori N, 2014, J TRAVEL RES, V53, P196, DOI 10.1177/0047287513491333 Hagen L, 2016, GOV INFORM Q, V33, P783, DOI 10.1016/j.giq.2016.07.006 Hallur, 2022, 75 SHOCK AFF MARK ST Hasan M., 2020, SOC MARK ADV C NOV V Hayes M., 2022, WHAT IS AFFILIATE MA Hier K., 2022, VOLLUM Hoffman DL, 2000, HARVARD BUS REV, V78, P179 HOMER PM, 1990, J ADVERTISING, V19, P30, DOI 10.1080/00913367.1990.10673178 Hosman L.A., 2002, PERSUASION HDB DEV T, P371, DOI DOI 10.4135/9781412976046.N19 Hovland CI, 1953, Communication and Persuasion, DOI 10.1007/BF02713272 Howe A., 2021, TAPFILIATE Hughes C, 2019, J MARKETING, V83, P78, DOI 10.1177/0022242919854374 Hung P., 2022, E COMMERCE TRENDS 20 Hwong YL, 2017, COMPUT HUM BEHAV, V68, P480, DOI 10.1016/j.chb.2016.11.068 Instagram, 2022, DATA POLICY Instagram, 2021, DATA POLICY Jin SV, 2019, J BRAND MANAG, V26, P522, DOI 10.1057/s41262-019-00151-z John LK, 2017, J MARKETING RES, V54, P144, DOI 10.1509/jmr.14.0237 Jordan KN, 2019, P NATL ACAD SCI USA, V116, P3476, DOI 10.1073/pnas.1811987116 Kacewicz E, 2014, J LANG SOC PSYCHOL, V33, P125, DOI 10.1177/0261927X13502654 Kemp E, 2012, INT J ADVERT, V31, P339, DOI 10.2501/IJA-31-2-339-353 Ki CW, 2019, PSYCHOL MARKET, V36, P905, DOI 10.1002/mar.21244 Kusumasondjaja S, 2018, ASIA PAC J MARKET LO, V30, P1135, DOI 10.1108/APJML-10-2017-0267 Lafferty BA, 1999, J BUS RES, V44, P109, DOI 10.1016/S0148-2963(98)00002-2 Lee CH, 2019, IND MANAGE DATA SYST, V119, P1492, DOI 10.1108/IMDS-08-2018-0370 Lee D, 2018, MANAGE SCI, V64, P5105, DOI 10.1287/mnsc.2017.2902 Lee E, 2015, CYBERPSYCH BEH SOC N, V18, P552, DOI 10.1089/cyber.2015.0157 Lee I, 2012, BUS HORIZONS, V55, P441, DOI 10.1016/j.bushor.2012.04.001 Leung FF, 2022, J ACAD MARKET SCI, V50, P226, DOI 10.1007/s11747-021-00829-4 Li J, 2017, J APPL PSYCHOL, V102, P1075, DOI 10.1037/apl0000217 Lie S. A. M., 2022, CURR CONTENTS, V4, P362 LORD KR, 1995, J ADVERTISING, V24, P73, DOI 10.1080/00913367.1995.10673469 Lou C., 2019, Journal of Interactive Advertising, V19, P58, DOI DOI 10.1080/15252019.2018.1533501 Mangiò F, 2022, BUS HORIZONS, V65, P765, DOI 10.1016/j.bushor.2022.07.001 Mathur Arunesh, 2018, Proceedings of the ACM on Human-Computer Interaction, V2, DOI 10.1145/3274388 McShane L, 2019, J BUS-BUS MARK, V26, P1, DOI 10.1080/1051712X.2019.1565132 Mehta A, 2006, J ADVERTISING RES, V46, P49, DOI 10.2501/S0021849906060065 Mersey RD, 2010, J MEDIA RES STUD, V7, P39, DOI 10.1080/16522354.2010.11073506 Michalik M., 2019, PRACE NAUKOWE U EKON, V63 Miehling M., 2010, P 9 EUR C INF WARF S Moran G, 2020, J PROD BRAND MANAG, V29, P533, DOI 10.1108/JPBM-09-2018-2014 Moulard JG, 2016, PSYCHOL MARKET, V33, P421, DOI 10.1002/mar.20888 Myers S, 2024, J MARKET THEORY PRAC, V32, P43, DOI 10.1080/10696679.2022.2093224 Newman DS, 2016, CLIN SUPERV, V35, P287, DOI 10.1080/07325223.2016.1218811 Newman ML, 2003, PERS SOC PSYCHOL B, V29, P665, DOI 10.1177/0146167203029005010 Oberlo, 2022, TOP INFL MARK PLATF OHANIAN R, 1990, J ADVERTISING, V19, P39, DOI 10.1080/00913367.1990.10673191 Olbrich Rainer, 2019, International Journal of Internet Marketing and Advertising, V13, P47 Papatla P, 2002, J ADVERTISING, V31, P69, DOI 10.1080/00913367.2002.10673677 Parhankangas A, 2017, J BUS VENTURING, V32, P215, DOI 10.1016/j.jbusvent.2016.11.001 Pennebaker J. W., 2015, DEV PSYCHOMETRIC PRO, DOI [10.15781/T29G6Z, DOI 10.15781/T29G6Z] Pennebaker J. W., 2015, Linguistic inquiry and word count: LIWC2015 Pennebaker JW, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0115844 Pentina I, 2018, J ADVERTISING, V47, P55, DOI 10.1080/00913367.2017.1405756 Petty R.E., 1986, The Elaboration Likelihood Model of Persuasion, DOI DOI 10.1007/978-1-4612-4964-1_1 PETTY RE, 1983, J CONSUM RES, V10, P135, DOI 10.1086/208954 Rangel, 2021, BRANDS GUID INFL AFF Rastas, 2022, US AFF MARK STAT Refersion Marketing, 2021, ULT GUID AFF MARK TR Ren SN, 2023, J BUS RES, V156, DOI 10.1016/j.jbusres.2022.113476 Rietveld R, 2020, J INTERACT MARK, V49, P20, DOI 10.1016/j.intmar.2019.06.003 Ryan RM, 2000, AM PSYCHOL, V55, P68, DOI 10.1037/0003-066X.55.1.68 Sabate F, 2014, EUR MANAG J, V32, P1001, DOI 10.1016/j.emj.2014.05.001 Santora J., 2022, 12 TYPES INFLUENCERS Schultz CD, 2017, ELECTRON COMMER R A, V26, P23, DOI 10.1016/j.elerap.2017.09.005 Segev S., 2023, J PROMOT MANAG, V29, P125, DOI [10.1080/10496491.2022.2108189, DOI 10.1080/10496491.2022.2108189] Sehl K., 2022, ENGAGEMENT RATE CALC Shahbaznezhad H, 2021, J INTERACT MARK, V53, P47, DOI 10.1016/j.intmar.2020.05.001 Shasha Teng, 2015, International Journal of Internet Marketing and Advertising, V9, P233 Sheth J, 2021, J BUS RES, V125, P780, DOI 10.1016/j.jbusres.2020.04.050 Sheth J, 2021, J MARKET THEORY PRAC, V29, P3, DOI 10.1080/10696679.2020.1860679 Statista, Daily time spent on social networking by internet users worldwide from 2012 to 2022 Statista, 2022, AFF MARK SPEND US 20 Subrahmanyam K, 2008, J APPL DEV PSYCHOL, V29, P420, DOI 10.1016/j.appdev.2008.07.003 Swani K, 2020, MARKET LETT, V31, P279, DOI 10.1007/s11002-020-09518-8 Swani K, 2017, J BUS RES, V79, P123, DOI 10.1016/j.jbusres.2017.06.003 Swani K, 2017, IND MARKET MANAG, V62, P77, DOI 10.1016/j.indmarman.2016.07.006 Swaygroup, 2021, INFLUENCER MARKETING Syrdal H.A., 2016, 2016 SMA P, P74 Syrdal HA, 2018, J MARKET THEORY PRAC, V26, P4, DOI 10.1080/10696679.2017.1389243 Tafesse W, 2018, J CONSUM MARK, V35, P241, DOI 10.1108/JCM-08-2016-1905 Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 Taylor CR, 2021, J MARKET THEORY PRAC, V29, P51, DOI 10.1080/10696679.2020.1860681 Taylor CR, 2020, INT J ADVERT, V39, P889, DOI 10.1080/02650487.2020.1822104 Toma CL, 2015, J LANG SOC PSYCHOL, V34, P25, DOI 10.1177/0261927X14554484 Turley LW, 1997, J ADVERTISING, V26, P39, DOI 10.1080/00913367.1997.10673534 Tuten T.L. Soloman., 2015, Social media marketing, V2nd Vaishnav B, 2023, J BUS RES, V157, DOI 10.1016/j.jbusres.2022.113564 van Asperen M, 2018, INT J HOSP TOUR ADM, V19, P78, DOI 10.1080/15256480.2017.1305313 VanMeter R, 2018, J INTERACT MARK, V43, P83, DOI 10.1016/j.intmar.2018.03.003 Voorveld HAM, 2019, J ADVERTISING, V48, P14, DOI 10.1080/00913367.2019.1588808 Vrontis D, 2021, INT J CONSUM STUD, V45, P617, DOI 10.1111/ijcs.12647 WOOD W, 1988, PERS SOC PSYCHOL B, V14, P172, DOI 10.1177/0146167288141017 Woodroof PJ, 2020, J PROD BRAND MANAG, V29, P675, DOI 10.1108/JPBM-05-2019-2362 Xiao M, 2018, J MEDIA BUS STUD, V15, P188, DOI 10.1080/16522354.2018.1501146 Xu WA, 2018, COMPUT HUM BEHAV, V89, P199, DOI 10.1016/j.chb.2018.07.041 Zhang J, 2020, J BUS IND MARK, V35, P721, DOI 10.1108/JBIM-06-2018-0190 NR 143 TC 2 Z9 2 U1 43 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD AUG PY 2023 VL 163 AR 113875 DI 10.1016/j.jbusres.2023.113875 EA APR 2023 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA F8IM0 UT WOS:000984730100001 DA 2024-03-27 ER PT J AU Han, WJ Ozdemir, O Agarwal, S AF Han, Wenjia Ozdemir, Ozgur Agarwal, Shivam TI Linking social media marketing to restaurant performance - the moderating role of advertising expenditure SO JOURNAL OF HOSPITALITY AND TOURISM INSIGHTS LA English DT Article; Early Access DE Social media marketing; Restaurant performance; Sales revenue; Audience engagement; Consumer sentiment; Advertising expenditure; Web scraping; Natural language processing ID ONLINE REVIEWS; FINANCIAL PERFORMANCE; IMPACT; SERVICE; GRATIFICATIONS; SATISFACTION; ENGAGEMENT; BEHAVIOR; INDUSTRY; LOYALTY AB PurposeBuilt upon customer engagement marketing theory and uses and gratification theory, this study examines the link between individual social media marketing (SMM) performance indicators and restaurant sales performance at the firm level. Moreover, the study investigates the moderating effect of advertising expenditure on this proposed relationship.Design/methodology/approachRandom effect regression models were developed in Stata to examine the associations between SMM performance indicators, advertising expenditure, and restaurant firm revenue. Twelve years of SMM data from brands' Facebook pages were collected with a web scraper built in Python. Natural language processing was used to analyze the sentiment of user-generated content (UGC).FindingsThe results suggest that restaurant annual sales revenue increases as the volume of brand posts, "like"s, "share"s and positive comments on restaurants' Facebook pages increase. However, the total number of comments and the number of negative comments show non-significant associations with revenue. Firm advertising expenditure negatively moderates the relationships between sales revenue and the number of "like"s, "share"s, total comments and positive comments.Practical implicationsRestaurants benefit from making frequent posts on SNSs. Promotions that motivate online users to "like", share, and comment on brand posts should be implemented. Firms with limited advertising budgets are encouraged to actively create buzz on SNSs due to evidenced stronger effects of UGC on sales performance than large advertisers.Originality/valueThis research bridges the gap by studying the effects of individual SMM performance indicators on restaurant financial outcomes. The findings support the effectiveness of SMM; and, for the first time, demonstrate that SMM could generate a more profound impact for firms with low advertising budgets. C1 [Han, Wenjia] Purdue Univ, Doermer Sch Business, Dept Hospitality & Tourism Management, Ft Wayne, IN 46805 USA. [Ozdemir, Ozgur] Univ Nevada, Las Vegas, NV USA. [Agarwal, Shivam] Florida Int Univ, Chapman Sch Business, North Miami, FL USA. C3 Nevada System of Higher Education (NSHE); University of Nevada Las Vegas; State University System of Florida; Florida International University RP Han, WJ (autor correspondiente), Purdue Univ, Doermer Sch Business, Dept Hospitality & Tourism Management, Ft Wayne, IN 46805 USA. EM han758@pfw.edu; ozgur.ozdemir@unlv.edu; sagar009@fiu.edu OI Han, Wenjia/0000-0002-9739-9294 CR Alalwan AA, 2017, TELEMAT INFORM, V34, P1177, DOI 10.1016/j.tele.2017.05.008 Aluri A, 2016, CORNELL HOSP Q, V57, P250, DOI 10.1177/1938965515615685 Ampountolas A, 2019, J HOSP TOUR INSIGHTS, V2, P75, DOI 10.1108/JHTI-07-2018-0040 Ananda AS, 2019, ASIA PAC J MARKET LO, V31, P398, DOI 10.1108/APJML-03-2018-0115 Baber R, 2023, J HOSP TOUR INSIGHTS, V6, P2298, DOI 10.1108/JHTI-06-2022-0270 Book LA, 2016, J TRAVEL RES, V55, P993, DOI 10.1177/0047287515606810 Cawley C., 2021, TECH CO 0128 Chan NL, 2011, J TRAVEL TOUR MARK, V28, P345, DOI 10.1080/10548408.2011.571571 Choi EK, 2016, J HOSP MARKET MANAG, V25, P771, DOI 10.1080/19368623.2016.1100102 Choi S, 2018, INT J CONTEMP HOSP M, V30, P2586, DOI 10.1108/IJCHM-04-2017-0195 Chowdhury EK, 2022, BUS SOC REV, V127, P437, DOI 10.1111/basr.12219 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Denny's Corporation, 2021, DENN CORP INV REL SE Dhaoui C, 2017, J CONSUM MARK, V34, P480, DOI 10.1108/JCM-03-2017-2141 Eggert A, 2014, J SERV RES-US, V17, P23, DOI 10.1177/1094670513485823 Etlinger S., 2011, A Framework for Social Analytics Gambetti A, 2022, INT J CONTEMP HOSP M, V34, P3300, DOI 10.1108/IJCHM-09-2021-1206 Gao BJ, 2020, J TRAVEL TOUR MARK, V37, P396, DOI 10.1080/10548408.2020.1767261 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Han H, 2018, J QUAL ASSUR HOSP TO, V19, P66, DOI [10.1080/1528008x.2017.1331153, 10.1080/1528008X.2017.1331153] Han S, 2021, CORNELL HOSP Q, V62, P89, DOI 10.1177/1938965520973587 Harmeling CM, 2017, J ACAD MARKET SCI, V45, P312, DOI 10.1007/s11747-016-0509-2 Ho JL, 2022, INT J CONTEMP HOSP M, V34, P4206, DOI 10.1108/IJCHM-12-2021-1469 Hovland C., 1957, ORDER PRESENTATION P Hu N, 2008, INFORM TECHNOL MANAG, V9, P201, DOI 10.1007/s10799-008-0041-2 Hua N, 2014, INT J HOSP MANAG, V36, P137, DOI 10.1016/j.ijhm.2013.08.012 Hua N, 2013, INT J CONTEMP HOSP M, V25, P723, DOI 10.1108/IJCHM-Aug-2012-0138 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Katz E., 1959, STUDIES PUBLIC COMMU, V2, P1 Kaur W, 2019, TELEMAT INFORM, V39, P25, DOI 10.1016/j.tele.2018.12.005 Kim D, 2018, INT J HOSP MANAG, V68, P89, DOI 10.1016/j.ijhm.2017.09.015 Kim HB, 2005, TOURISM MANAGE, V26, P549, DOI 10.1016/j.tourman.2004.03.010 Kim S, 2015, INT J HOSP MANAG, V49, P40, DOI 10.1016/j.ijhm.2015.05.006 Koh Y, 2009, INT J HOSP MANAG, V28, P289, DOI 10.1016/j.ijhm.2008.10.001 Kumar A, 2016, J MARKETING, V80, P7, DOI 10.1509/jm.14.0249 Kumar V, 2013, MARKET SCI, V32, P194, DOI 10.1287/mksc.1120.0768 Kwok L, 2022, CORNELL HOSP Q, V63, P528, DOI 10.1177/19389655211028143 Li FF, 2021, J ACAD MARKET SCI, V49, P51, DOI 10.1007/s11747-020-00733-3 Li J, 2021, TOURISM ECON, V27, P3, DOI 10.1177/1354816619867807 Lipsman A, 2012, J ADVERTISING RES, V52, P40, DOI 10.2501/JAR-52-1-040-052 Lovett John., 2011, Social Media Metrics Secrets Madanoglu M, 2011, J RETAILING, V87, P406, DOI 10.1016/j.jretai.2011.02.003 McDonald's Corporation, 2016, US, P10 Meta, 2023, MET REP 4 QUART FULL Michael Luca., 2016, Harvard Business School NOM Unit Working Paper 12-016 Michopoulou E, 2019, INT J HOSP MANAG, V76, P308, DOI 10.1016/j.ijhm.2018.05.019 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 Murdough Chris., 2009, J INTERACTIVE ADVERT, V10, P94, DOI DOI 10.1080/15252019.2009.10722165 Myers D., 2015, J COMPUT SCI COLL, V31, P83 Nazlan NH, 2018, J CONSUM BEHAV, V17, P449, DOI 10.1002/cb.1731 Needles A., 2013, IN PRESS Omondi-Ochieng Peter, 2019, Journal of Economics, Finance and Administrative Science, V24, P327 Ou YC, 2017, J ACAD MARKET SCI, V45, P336, DOI 10.1007/s11747-016-0477-6 Ozdemir O, 2020, INT J CONTEMP HOSP M, V32, P2925, DOI 10.1108/IJCHM-03-2020-0167 Paniagua J, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12208660 Phillips P, 2017, J TRAVEL RES, V56, P235, DOI 10.1177/0047287516636481 Rhou Y, 2014, INT J HOSP MANAG, V39, P41, DOI 10.1016/j.ijhm.2014.02.001 Ruggiero T.E., 2000, MASS COMMUNICATION S, V3, P3, DOI [https://doi.org/10.1207/S15327825MCS0301_02, DOI 10.1207/S15327825MCS0301_02, 10.1207/S15327825MCS0301_02] Ryu K, 2012, INT J CONTEMP HOSP M, V24, P200, DOI 10.1108/09596111211206141 Simonetti A, 2022, INT J CONTEMP HOSP M, V34, P2049, DOI 10.1108/IJCHM-09-2021-1091 Srinivasan SS, 2002, J RETAILING, V78, P41, DOI 10.1016/S0022-4359(01)00065-3 U.S. Securities and Exchange Commission, 2001, CF ACC INT GUID US Census Bureau, 2018, FRANCH AM NOT JUST F van Doorn J, 2017, MARKET LETT, V28, P607, DOI 10.1007/s11002-017-9433-6 Viglia G, 2016, INT J CONTEMP HOSP M, V28, P2035, DOI 10.1108/IJCHM-05-2015-0238 Wang YQ, 2021, INT J HOSP MANAG, V95, DOI 10.1016/j.ijhm.2021.102895 Xie K, 2017, CORNELL HOSP Q, V58, P240, DOI 10.1177/1938965516686109 ZAJONC RB, 1968, J PERS SOC PSYCHOL, V9, P1, DOI 10.1037/h0025848 NR 68 TC 2 Z9 2 U1 14 U2 16 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2514-9792 EI 2514-9806 J9 J HOSP TOUR INSIGHTS JI J. Hosp. Tour. Insights PD 2023 AUG 15 PY 2023 DI 10.1108/JHTI-03-2023-0217 EA AUG 2023 PG 19 WC Hospitality, Leisure, Sport & Tourism WE Emerging Sources Citation Index (ESCI) SC Social Sciences - Other Topics GA O8HP4 UT WOS:001046166700001 DA 2024-03-27 ER PT J AU Luri, I Schau, HJ Ghosh, B AF Luri, Ignacio Schau, Hope Jensen Ghosh, Bikram TI Metaphor-Enabled Marketplace Sentiment Analysis SO JOURNAL OF MARKETING RESEARCH LA English DT Article; Early Access DE market metaphors; marketplace sentiments; automated text analysis; natural language processing; sentiment analysis ID CONCEPTUAL METAPHOR; QUALITATIVE DATA; PUBLIC DISCOURSE; TEXT ANALYSIS; PERCEPTIONS; CONSUMERS; SCIENCE; CRISIS; WORDS; NEWS AB Textual data require an analytical trade-off between breadth and depth. Automated approaches locate patterns across large swaths of data points but sacrifice qualitative insight because they are not well equipped to deal with context-determined ways to express meaning, like figurative language. To strengthen the power of automated text analysis, researchers seek hybrid methodologies that combine computer-augmented analysis with sociocultural researcher insights based on qualitative textual interpretation. This article demonstrates a new method, which the authors term metaphor-enabled marketplace sentiment analysis (MEMSA). Building on existing automated text analysis methodologies linking word lists to sentiments, MEMSA adds metaphors that associate topics with sentiments across domains. Using MEMSA, researchers can leverage the sentiment potential of these located metaphors and scale insights to the level of big textual data by employing a dictionary approach enhanced by a specific and useful linguistic property of metaphors: their predictable structure in text (something is something else). This article shows that metaphors add associative detail to sentiments, revealing the targets and sources of sentiments that underlie the associations. Understanding nuanced market sentiments enables marketers to identify sentiment-based trends embedded in market discourse, so they can better formulate, target, position, and communicate value propositions for products and services. C1 [Luri, Ignacio] DePaul Univ, Driehaus Coll Business, Mkt, Chicago, IL 60604 USA. [Schau, Hope Jensen] Univ Calif Irvine, Paul Merage Sch Business, Mkt, Irvine, CA USA. [Ghosh, Bikram] Univ Arizona, Eller Sch Management, Mkt, Tucson, AZ USA. C3 DePaul University; University of California System; University of California Irvine; University of Arizona RP Luri, I (autor correspondiente), DePaul Univ, Driehaus Coll Business, Mkt, Chicago, IL 60604 USA. EM i.luri@depaul.edu; schauh@uci.edu; bghosh@arizona.edu OI Ghosh, Bikram/0000-0002-8691-7762 CR Alaparthi S, 2021, J MARK ANAL, V9, P118, DOI 10.1057/s41270-021-00109-8 Alberto PL, 2012, SOC HIST, V37, P261, DOI 10.1080/03071022.2012.701052 Allahverdyan AE, 2013, PHYS REV E, V88, DOI 10.1103/PhysRevE.88.062804 Amernic Je., 2009, Critical Perspectives on Accounting, V20, P875, DOI DOI 10.1016/J.CPA.2009.06.004 Andelic N, 2019, BRIT J SOC PSYCHOL, V58, P630, DOI 10.1111/bjso.12303 Ang SH, 2006, J ADVERTISING, V35, P39, DOI 10.1080/00913367.2006.10639226 Angela Fahrni, 2008, S AFF LANG HUM MACH, DOI [10.5167/uzh-8810, DOI 10.5167/UZH-8810] Anthony L, 2005, 2005 IEEE INTERNATIONAL PROFESSIONAL COMMUNICATION CONFERENCE (IPCC), P729 Appel O, 2015, ACTA POLYTECH HUNG, V12, P87, DOI 10.12700/APH.12.3.2015.3.6 ARNDT J, 1985, J MARKETING, V49, P11, DOI 10.2307/1251612 Balahur A., 2009, Proceeding WOMSA, V9, P1 Basiri ME, 2020, IEEE T COMPUT SOC SY, V7, P113, DOI 10.1109/TCSS.2019.2951326 Berenson Alonit., 2013, Journalism and Mass Communication, V19, P240 Berger J, 2022, AM PSYCHOL, V77, P525, DOI 10.1037/amp0000882 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Bernthal MJ, 2005, J CONSUM RES, V32, P130, DOI 10.1086/429605 Bickes H, 2014, DISCOURSE SOC, V25, P424, DOI 10.1177/0957926514536956 BLACKBURN MJ, 1993, MATER DESIGN, V14, P19, DOI 10.1016/0261-3069(93)90041-S Boeynaems A, 2017, INT J COMMUN-US, V11, P2861 Bollen J, 2011, J COMPUT SCI-NETH, V2, P1, DOI 10.1016/j.jocs.2010.12.007 Boyd RL, 2016, CONSUMER PSYCHOLOGY IN A SOCIAL MEDIA WORLD, P222 Brown David W., 2017, Clinton-Trump Corpus Budd K, 2019, ORGANIZATION, V26, P802, DOI 10.1177/1350508418812569 Burgers C, 2016, COMMUN THEOR, V26, P410, DOI 10.1111/comt.12096 Capelli S, 2009, PSYCHOL MARKET, V26, P1079, DOI 10.1002/mar.20313 Cardillo ER, 2012, NEUROIMAGE, V59, P3212, DOI 10.1016/j.neuroimage.2011.11.079 Cariola L.A., 2019, ICAME Journal, V38, P5, DOI DOI 10.2478/ICAME-2014-0001 Chapman C, 2020, J MARKETING, V84, P26, DOI 10.1177/0022242919886882 Charteris-Black J, 2004, CORPUS APPROACHES TO CRITICAL METAPHOR ANALYSIS, P243 CORBIN J, 1990, Z SOZIOL, V19, P418, DOI 10.1007/BF00988593 Cornelissen JP, 2008, ORGAN STUD, V29, P7, DOI 10.1177/0170840607086634 Cornelissen JP, 2011, ORGAN STUD, V32, P1701, DOI 10.1177/0170840611425729 Cornelissen JP, 2003, PSYCHOL MARKET, V20, P209, DOI 10.1002/mar.10068 Coulter RA, 2001, J ADVERTISING, V30, P1 David O, 2016, CONSTR FRAMES, V8, P214, DOI 10.1075/cf.8.2.04dav Deignan A, 2008, CAMB HANDB PSYCHOL, P280 Delbaere M, 2019, MARKETING THEOR, V19, P391, DOI 10.1177/1470593118796697 Devika MD, 2016, PROCEDIA COMPUT SCI, V87, P44, DOI 10.1016/j.procs.2016.05.124 Edward Loper, 2002, arXiv, DOI DOI 10.48550/ARXIV.CS/0205028 Efrat R., 2006, Theoretical inquiries in Law, V7, P365 Erik Cambria, 2017, A Practical Guide to Sentiment Analysis Firth, 1957, STUDIES LINGUISTIC A, P10 Fournier S, 1998, J CONSUM RES, V24, P343, DOI 10.1086/209515 Gadekallu T., 2019, Sentiment Analysis and Knowledge Discovery in Contemporary Business, P77 Gentner D, 2008, CAMB HANDB PSYCHOL, P109 Gibbs RW, 2011, DISCOURSE PROCESS, V48, P529, DOI 10.1080/0163853X.2011.606103 Giesler M, 2016, J CONSUM RES, V43, P497, DOI 10.1093/jcr/ucw047 Giesler M, 2014, J CONSUM RES, V41, P840, DOI 10.1086/677842 Gopaldas A, 2014, J CONSUM RES, V41, P995, DOI 10.1086/678034 Grady J., 1997, PhD dissertation Gray JH, 1998, QUAL QUANT, V32, P419, DOI 10.1023/A:1004357719066 Gries Stefan Th., 2004, INT J CORPUS LINGUIS, V9, P97 Grimmer J, 2013, POLIT ANAL, V21, P267, DOI 10.1093/pan/mps028 Gunter B, 2014, INT J MARKET RES, V56, P231, DOI 10.2501/IJMR-2014-014 Henry PC, 2005, J CONSUM RES, V31, P766, DOI 10.1086/426610 Hirschman E.C., 2007, Marketing Theory, VI7, P227, DOI DOI 10.1177/1470593107080343 Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448 Hovy D, 2021, LANG LINGUIST COMPAS, V15, DOI 10.1111/lnc3.12432 Huang SC, 2019, J PERS SOC PSYCHOL, V117, P697, DOI 10.1037/pspa0000164 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Humphreys A, 2014, J CONSUM RES, V41, P877, DOI 10.1086/677905 Humphreys A, 2013, J CONSUM RES, V40, P773, DOI 10.1086/672358 Humphreys A, 2010, J MARKETING, V74, P1 HUNT SD, 1995, J BUS RES, V33, P81, DOI 10.1016/0148-2963(94)00057-L Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Hynes RichardM., 2008, Fla. L. Rev, V60, P1 Jackle S., 2017, POTENTIAL PEDOTPSS H, P1, DOI [DOI 10.1145/3097286.3097298, 10.1145/3097286.3097298] Jacobsen E., 2004, POLITICS FOOD, P59 James RichardE., 2002, Washburn Law Journal, V42, P143 Jeroen Wittink, 2011, P C ORG KNOWL LEARN Ji QH, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239050 Kern FG, 2018, J MIX METHOD RES, V12, P166, DOI 10.1177/1558689816651032 Koenig A., 2013, Academy of Management Proceedings, V2013, P13417 Kövecses Zoltán, 2010, DELTA, V26, P739 Kovecses Zoltan., 1997, Selected Papers on Theoretical and Applied Linguistics, V11, P33 Kurzer Paulette., 2007, Journal of Public Policy, V27, P103, DOI DOI 10.1017/S0143814X07000657 Lakoff G., 1980, Metaphors we live by Lakoff G, 2006, COGN LINGUIST RES, V34, P185, DOI 10.1515/9783110199901.185 Landau MJ, 2014, SOC PERSONAL PSYCHOL, V8, P463, DOI 10.1111/spc3.12125 Lee SWS, 2014, J EXP SOC PSYCHOL, V54, P61, DOI 10.1016/j.jesp.2014.04.007 Leech NL, 2007, SCHOOL PSYCHOL QUART, V22, P557, DOI 10.1037/1045-3830.22.4.557 Lemon LL, 2020, QUAL REP, V25, P604 Liu B, 2011, DATA CENTRIC SYST AP, P459, DOI 10.1007/978-3-642-19460-3_11 Lönneker-Rodman B, 2008, LANG RESOUR EVAL, V42, P293, DOI 10.1007/s10579-008-9073-9 Louie Andre, 2022, FinancesOnline MacDonald E, 2023, REV SOC ECON, V81, P363, DOI 10.1080/00346764.2021.1912381 Machiels CJA, 2017, J RETAIL CONSUM SERV, V37, P195, DOI 10.1016/j.jretconser.2017.02.009 MACINNIS DJ, 1987, J CONSUM RES, V13, P473, DOI 10.1086/209082 Mars MM, 2023, J ACAD MARKET SCI, V51, P418, DOI 10.1007/s11747-022-00904-4 McQuarrie EF, 1999, J CONSUM RES, V26, P37, DOI 10.1086/209549 Meire M, 2019, J MARKETING, V83, P21, DOI 10.1177/0022242919873903 Melumad S, 2019, J MARKETING RES, V56, P259, DOI 10.1177/0022243718815429 Michael Erard, 2012, research report Mikolov T, 2013, Advances in neural information processing systems, DOI DOI 10.48550/ARXIV.1310.4546 Miles C, 2014, MARKETING THEOR, V14, P3, DOI 10.1177/1470593113506433 Mimoun L, 2022, J CONSUM RES, V48, P1073, DOI 10.1093/jcr/ucab043 Mithen Steven., 1996, The Pre-History of the Mind Mohammad S., 2016, P 5 JOINT C LEXICAL, P23, DOI [10.18653/v1/S16-2003, DOI 10.18653/V1/S16-2003] Gil MM, 2019, COMPLUT J ENGL STUD, V27, P223, DOI 10.5209/cjes.63865 Natow RS, 2020, QUAL RES, V20, P160, DOI 10.1177/1468794119830077 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Nicolas G., 2019, PSYARXIV, DOI DOI 10.31234/OSF.IO/AFM8K O'Malley L, 2008, MARKETING THEOR, V8, P167, DOI 10.1177/1470593108089203 O'Mara-Shimek M, 2015, DISCOURSE COMMUN, V9, P103, DOI 10.1177/1750481314556047 Oberlechner T, 2004, BRIT J SOC PSYCHOL, V43, P133, DOI 10.1348/014466604322916024 Ordenes FV, 2017, J CONSUM RES, V43, P875, DOI 10.1093/jcr/ucw070 Paulo M, 2022, EXPERT SYST APPL, V207, DOI 10.1016/j.eswa.2022.117974 Peñaloza L, 2011, J CONSUM RES, V38, P743, DOI 10.1086/660116 Pennebaker J. W., 2015, The Development and Psychometric Properties of LIWC2015 Puschmann C, 2018, SOC MEDIA SOC, V4, DOI 10.1177/2056305118797724 Ramteke J, 2016, 2016 INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT), VOL 1, P107 Rindfleisch A., 1996, BUS HORIZONS, V39, P3 Ryshina-Pankova M, 2010, MOD LANG J, V94, P181, DOI 10.1111/j.1540-4781.2010.01016.x Salminen J, 2019, J BUS RES, V101, P203, DOI 10.1016/j.jbusres.2019.04.018 Salonova T, 2020, LAB-RUSS REV SOC RES, V12, P5, DOI 10.25285/2078-1938-2020-12-3-5-25 Sandlin JA, 2009, J CONSUM CULT, V9, P79, DOI 10.1177/1469540508099703 Santa Ana O, 1999, DISCOURSE SOC, V10, P191, DOI 10.1177/0957926599010002004 Scaraboto D, 2013, J CONSUM RES, V39, P1234, DOI 10.1086/668298 Schmitt R, 2005, QUAL REP, V10, P358 Semino E, 2008, METAPHOR IN DISCOURSE, P1 Shayegan Mohammad Javad, 2021, International Journal of Web Based Communities, V17, P149, DOI 10.1504/IJWBC.2021.116641 Shimizu Toshihiro., 2010, Osaka Keidai Ronshu (Journal of Osaka University of Economics), V61, P105 Soanes CatherineAngus Stevenson., 2004, CONCISE OXFORD ENGLI Sobande F, 2020, MARKETING THEOR, V20, P65, DOI 10.1177/1470593119847250 SPIGGLE S, 1994, J CONSUM RES, V21, P491, DOI 10.1086/209413 Statista, 2023, Big Data Steen G, 1999, AMST STUD THEORY HIS, V175, P57 Steen G, 2007, CULT LENG REPRESENT, V5, P9 Stefanowitsch A, 2006, TRENDS LINGUIST-STUD, V171, P63 Stickles E, 2016, CONSTR FRAMES, V8, P166, DOI 10.1075/cf.8.2.03sti Straehle C, 1999, DISCOURSE SOC, V10, P67, DOI 10.1177/0957926599010001004 Sundar A, 2014, J MARKETING, V78, P138, DOI 10.1509/jm.13.0253 Sweet E, 2018, INT J HEALTH SERV, V48, P495, DOI 10.1177/0020731418776580 Tausczik YR, 2010, J LANG SOC PSYCHOL, V29, P24, DOI 10.1177/0261927X09351676 Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994 Turner Mark., 1987, DEATH IS MOTHER BEAU Uma V, 2019, Sentiment Analysis and Knowledge Discovery in Contemporary Business, P15 Weber K, 2005, POETICS, V33, P227, DOI 10.1016/j.poetic.2005.09.011 Wiebe J. M., 1994, Computational Linguistics, V20, P233 Wu SX, 2019, EXPERT SYST APPL, V116, P285, DOI 10.1016/j.eswa.2018.09.024 Young L, 2012, POLIT COMMUN, V29, P205, DOI 10.1080/10584609.2012.671234 Zaltman Gerald., 2008, MARKETING METAPHORIA Zammarchi Gianpaolo., 2021, Cladag 2021 Book of Abstracts and Short Papers, P436 NR 143 TC 0 Z9 0 U1 43 U2 43 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2437 EI 1547-7193 J9 J MARKETING RES JI J. Mark. Res. PD 2023 OCT 9 PY 2023 DI 10.1177/00222437231191526 EA OCT 2023 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA T8SU1 UT WOS:001080636900001 DA 2024-03-27 ER PT J AU Nair, K Gupta, R AF Nair, Kiran Gupta, Ruchi TI Application of AI technology in modern digital marketing environment SO WORLD JOURNAL OF ENTREPRENEURSHIP MANAGEMENT AND SUSTAINABLE DEVELOPMENT LA English DT Article DE Artificial intelligence; Content curation; Propensity modeling; Machine learning; Predictive analytics; Lead scoring; Dynamic pricing AB Purpose - The purpose of this paper is to explore the various application of artificial intelligence (AI) to social media and digital advertising professionals and agencies to specialize to an advanced degree and maintain collaboration and creativity to bring a better return on investment. Design/methodology/approach - Digital marketers are still oblivious to the importance of AI application, while some others simply do not know how to implement it. AI is currently acting as a significant disruption in digital and social media marketing worldwide. Findings - Based on the literature review, the paper identifies the various AI applications in the field of digital media marketing. Originality/value - This paper can serve as a useful guide for social media marketers to implement AI applications to impact digital marketing strategies better. C1 [Nair, Kiran] Abu Dhabi Sch Management, Mkt, Abu Dhabi, U Arab Emirates. [Gupta, Ruchi] Shaheed Bhagat Singh Coll, New Delhi, India. RP Nair, K (autor correspondiente), Abu Dhabi Sch Management, Mkt, Abu Dhabi, U Arab Emirates. EM kirannairs@hotmail.com; Ruchigupta.sbsc@gmail.com RI Nair, Kiran S/J-4898-2017; nair, kiran/T-9054-2018 OI nair, kiran/0000-0001-9046-1713 CR Basu, 2020, MANAGEMENT ACCOUNTAN, V55, P1130 Blut M, 2020, J ACAD MARKET SCI, V48, P649, DOI 10.1007/s11747-019-00680-8 Bulearca M., 2010, Global Business Management Research, V2, P237 Csordas A., 2020, PAPERS EC INFORM, V12, P3, DOI [10.7160/aol.2020.120101, DOI 10.7160/AOL.2020.120101] Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Drummond C, 2020, EUR J MARKETING, V54, P1247, DOI 10.1108/EJM-02-2019-0183 Erokhina T.B., 2018, EUROPEAN RES STUDIES, V21, P861 Feng YY, 2018, REC MANAG J, V28, P62, DOI 10.1108/RMJ-09-2016-0022 Geng RB, 2020, IND MANAGE DATA SYST, V120, P464, DOI 10.1108/IMDS-05-2019-0270 Jarek K, 2019, CENT EUR BUS REV, V8, P46, DOI 10.18267/j.cebr.213 Kaczorowska-Spychalska D, 2019, MANAG-POL, V23, P251, DOI 10.2478/manment-2019-0015 Kendall L, 2020, INFORM SYST FRONT, V22, P585, DOI 10.1007/s10796-020-10015-6 Li J, 2020, INT J STRATEG PROP M, V24, P90, DOI 10.3846/ijspm.2019.11535 Curiel CP, 2020, COMMUN SOC-SPAIN, V33, P175, DOI 10.15581/003.33.2.175-192 Ballestar MT, 2019, REV MANAG SCI, V13, P589, DOI 10.1007/s11846-018-0316-x NR 15 TC 11 Z9 13 U1 34 U2 117 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 2042-5961 EI 2042-597X J9 WORLD J ENTREP MANAG JI World J. Entrep. Manag. Sustain. Dev. PD JUL 26 PY 2021 VL 17 IS 3 BP 318 EP 328 DI 10.1108/WJEMSD-08-2020-0099 EA JAN 2021 PG 11 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA TP4ED UT WOS:000613691000001 DA 2024-03-27 ER PT J AU Li, XL Ching, AT AF Li, Xinlong Ching, Andrew T. TI How Does a Firm Adapt in a Changing World? The Case of Prosper Marketplace SO MARKETING SCIENCE LA English DT Article; Early Access DE choice modeling; electronic commerce; machine learning; structural models ID DYNAMIC-MODELS; HETEROGENEITY; BRAND; DRIFT AB We propose a generalized revealed preference approach to infer how a firm adapts to a changing environment and provide a step-by-step guide to explain how to implement it in general. To illustrate this new approach, we apply it to Prosper, which is a peer-to-peer lending platform. We develop a structural model, in which Prosper uses an adaptive learning algorithm to continuously update its predictive models about borrowers' and lenders' behavior as more data become available and uses these updated models to help assign loan ratings over time. To infer which adaptive learning algorithm Prosper may adopt, we consider a set of algorithms motivated by the machine learning literature. For each algorithm, we use observed Prosper loan-rating decisions to estimate the structural parameters of Prosper's objective function. By comparing the goodness-of-fit of these algorithm-specific models, we find that Prosper most likely uses an ensemble algorithm, which selects past observations based on their economic conditions. We conduct counterfactual experiments to shed light on: (i) How does an exclusive focus on either accurately reporting loan risk or expected current revenue influence Prosper's decision making? (ii) What is the value of adaptive learning for Prosper? (iii) Is there any potential for Prosper to improve its current adaptive learning algorithm? C1 [Li, Xinlong] Nanyang Technol Univ, Nanyang Business Sch, Singapore 639798, Singapore. [Ching, Andrew T.] Johns Hopkins Univ, Carey Business Sch, Baltimore, MD 21202 USA. C3 Nanyang Technological University; Johns Hopkins University RP Ching, AT (autor correspondiente), Johns Hopkins Univ, Carey Business Sch, Baltimore, MD 21202 USA. EM xinlong.li@ntu.edu.sg; andrew.ching@jhu.edu RI Li, Xinlong/IWV-1261-2023 OI Ching, Andrew/0000-0002-0907-284X FU Nanyang Technological University FX Financial support from Nanyang Technological University [Startup Grant] is gratefully acknowledged. CR Aguirregabiria V, 2020, REV IND ORGAN, V56, P203, DOI 10.1007/s11151-019-09722-5 [Anonymous], 1993, Bounded Rationality in Macroeconomics Bajari P, 2007, ECONOMETRICA, V75, P1331, DOI 10.1111/j.1468-0262.2007.00796.x Balakrishnan S, 2008, J MACH LEARN RES, V9, P313 Chan T, 2022, Marketing Sci., V41, P795 Chauvet M, 1995, An econometric characterization of business cycle dynamics with factor structure and regime switching Chauvet M, 2008, J BUS ECON STAT, V26, P42, DOI 10.1198/073500107000000296 Ching AT, 2010, INT ECON REV, V51, P1175, DOI 10.1111/j.1468-2354.2010.00615.x Cogley T, 2005, REV ECON DYNAM, V8, P528, DOI 10.1016/j.red.2005.02.001 Crespo F, 2005, FUZZY SET SYST, V150, P267, DOI 10.1016/j.fss.2004.03.028 Cunningham S, 2014, Default rates at Lending Club & Prosper: When loans go bad Dew R, 2020, J MARKETING RES, V57, P55, DOI 10.1177/0022243719874047 Domingos P, 1997, MACH LEARN, V29, P103, DOI 10.1023/A:1007413511361 Doraszelski U, 2018, AM ECON REV, V108, P565, DOI 10.1257/aer.20160177 Erdemy T, 2003, QME-QUANT MARK ECON, V1, P5, DOI 10.1023/A:1023536326497 Evans George W., 2013, RETHINKING EXPECTATI, P68 Evans GW, 2020, Oxford Research Encyclopedia of Economics and Finance, DOI [10.1093/acrefore/9780190625979.013.508, DOI 10.1093/ACREFORE/9780190625979.013.508] Forman G., 2006, Proceedings of the Twenty-Ninth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P252, DOI 10.1145/1148170.1148216 Freedman S.M., 2011, NBER working paper (16855) Friedman N, 1997, MACH LEARN, V29, P131, DOI 10.1023/A:1007465528199 Fu RS, 2021, INFORM SYST RES, V32, P72, DOI 10.1287/isre.2020.0990 Gama J, 2004, LECT NOTES ARTIF INT, V3171, P286 Hamilton JD, 1996, J APPL ECONOM, V11, P573, DOI 10.1002/(SICI)1099-1255(199609)11:5<573::AID-JAE413>3.0.CO;2-T Hansen LP, 2007, AM ECON REV, V97, P1, DOI 10.1257/aer.97.2.1 Hitsch GJ, 2006, MARKET SCI, V25, P25, DOI 10.1287/mksc.1050.0140 Hoens TR, 2012, PROG ARTIF INTELL, V1, P89, DOI 10.1007/s13748-011-0008-0 Huang GF, 2019, MANAGE SCI, V65, P5556, DOI 10.1287/mnsc.2018.3197 Huang YF, 2022, J MARKETING RES, V59, P411, DOI 10.1177/00222437211068527 Humpherys SL, 2011, DECIS SUPPORT SYST, V50, P585, DOI 10.1016/j.dss.2010.08.009 Iyer R, 2016, MANAGE SCI, V62, P1554, DOI 10.1287/mnsc.2015.2181 Jeon J, 2022, RAND J ECON, V53, P226, DOI 10.1111/1756-2171.12406 Kawai K, 2022, J POLIT ECON, V130, P1585, DOI 10.1086/718984 Kelly MG, 1999, P 5 ACM SIGKDD INT C, P367, DOI [10.1145/312129.312285, DOI 10.1145/312129.312285] Kim CJ, 1998, REV ECON STAT, V80, P188, DOI 10.1162/003465398557447 Klinkenberg R., 2004, Intelligent Data Analysis, V8, P281 Koren Y, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P447 Kozlowski J, 2020, J POLIT ECON, V128, P2839, DOI 10.1086/707735 Liechty JC, 2005, MARKET SCI, V24, P285, DOI 10.1287/mksc.1040.0088 Lin MF, 2016, MANAGE SCI, V62, P1393, DOI 10.1287/mnsc.2015.2206 Lin MF, 2013, MANAGE SCI, V59, P17, DOI 10.1287/mnsc.1120.1560 Liu XY, 2020, REV IND ORGAN, V56, P281, DOI 10.1007/s11151-019-09733-2 NELDER JA, 1972, J R STAT SOC SER A-G, V135, P370, DOI 10.2307/2344614 Pechenizkiy M., 2010, ACM SIGKDD Explor. Newsl., V11, P109 Schlimmer J. C., 1986, Machine Learning, V1, P317, DOI 10.1023/A:1022810614389 Sornette D., 2004, Phys. Today, V57, P78 Sriram S, 2006, MARKET SCI, V25, P440, DOI 10.1287/mksc.1050.0188 Tsymbal A., 2004, PROBLEM CONCEPT DRIF Viaene S, 2002, J RISK INSUR, V69, P373, DOI 10.1111/1539-6975.00023 Wang H., 2003, P 9 ACM SIGKDD INT C, P226, DOI [DOI 10.1145/956750.956778, 10.1145/956750.956778] Wei ZY, 2017, MANAGE SCI, V63, P4236, DOI 10.1287/mnsc.2016.2531 Yao S, 2012, J MARKETING RES, V49, P822, DOI 10.1509/jmr.11.0009 Zhang JJ, 2012, MANAGE SCI, V58, P892, DOI 10.1287/mnsc.1110.1459 NR 52 TC 0 Z9 0 U1 11 U2 11 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD 2023 DEC 27 PY 2023 DI 10.1287/mksc.2022.0198 EA DEC 2023 PG 22 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA DU5B8 UT WOS:001134596200001 DA 2024-03-27 ER PT J AU Chon, MG Kim, S AF Chon, Myoung-Gi Kim, Seonwoo TI Dealing with the COVID-19 crisis: Theoretical application of social media analytics in government crisis management SO PUBLIC RELATIONS REVIEW LA English DT Article DE Government crisis management; Social media analytics; Machine learning; Attribution theory; COVID-19 ID COMMUNICATIVE ACTION; SITUATIONAL THEORY; MOTIVATION AB Little theory-grounded research addresses how to use social media strategically in government public relations through machine learning. To fill this gap, we propose a way to optimize social media analytics to manage issues and crises by using the framework of attribution theory to analyze 360,861 tweets. In particular, we examined the attribution of crisis responsibility related to the spread of COVID-19 and its relations to the negative emotions of U.S. citizens on Twitter for six months (from January 20 to June 30, 2020). The results of this study showed that social media analytics is a valid tool to monitor how the spread of COVID-19 evolved from an issue to a crisis for the Trump administration. In addition, the federal government's lack of response and inability to handle the outbreak led to citizens' engagement and amplification of negative tweets that blamed the Trump White House. Theoretical and practical implications of the results are discussed. C1 [Chon, Myoung-Gi; Kim, Seonwoo] Auburn Univ, Sch Commun & Journalism, 237 Tichenor Hall, Auburn, AL 36830 USA. [Chon, Myoung-Gi; Kim, Seonwoo] Louisiana State Univ, Manship Sch Mass Commun, Journalism Bldg, Baton Rouge, LA 70830 USA. C3 Auburn University System; Auburn University; Louisiana State University System; Louisiana State University RP Chon, MG (autor correspondiente), Auburn Univ, Sch Commun & Journalism, 237 Tichenor Hall, Auburn, AL 36830 USA. EM mzc0113@auburn.edu; kseonw1@lsu.edu RI Kim, Seonwoo/KDO-4303-2024 OI Kim, Seon-Woo/0000-0002-3023-9587 CR Agresti A., 2019, An introduction to categorical data analysis, V3rd ed. Austin L, 2012, J APPL COMMUN RES, V40, P188, DOI 10.1080/00909882.2012.654498 Avery EJ, 2017, PUBLIC RELAT REV, V43, P468, DOI 10.1016/j.pubrev.2017.02.018 Borra E, 2014, ASLIB J INFORM MANAG, V66, P262, DOI 10.1108/AJIM-09-2013-0094 Broom G.M., 2012, Cutlip and Center's effective public relations, V11th Buckwalter W, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0136589 Chang CC, 2022, HEALTH COMMUN, V37, P476, DOI 10.1080/10410236.2020.1852698 Cheng Y, 2018, SOCIAL MEDIA AND CRISIS COMMUNICATION, P9 Cheng Y, 2018, J CONTING CRISIS MAN, V26, P58, DOI 10.1111/1468-5973.12130 Choi Y, 2009, J PUBLIC RELAT RES, V21, P198, DOI 10.1080/10627260802557506 Chon MG, 2020, J MASS COMMUN Q, V97, P72, DOI 10.1177/1077699019835896 Chon MG, 2019, ASIAN J COMMUN, V29, P424, DOI 10.1080/01292986.2019.1649438 Claeys AS, 2016, J PUBLIC RELAT RES, V28, P232, DOI 10.1080/1062726X.2016.1261703 Collinson S., 2020, THE CNN Comfort LK, 2020, PUBLIC ADMIN REV, V80, P616, DOI 10.1111/puar.13252 Coombs WT, 2007, CORP REPUT REV, V10, P163, DOI 10.1057/palgrave.crr.1550049 Coombs W.T., 2014, RES J I PUBLIC RELAT, V1, P1 Coombs W. T., 2017, SOCIAL MEDIA CRISIS, DOI [10.4324/9781315749068, DOI 10.4324/9781315749068] Coombs W.T., 2019, ONGOING CRISIS COMMU, V5th Coombs WT, 2016, J PUBLIC RELAT RES, V28, P120, DOI 10.1080/1062726X.2016.1167479 Coombs WT, 2015, BUS HORIZONS, V58, P141, DOI 10.1016/j.bushor.2014.10.003 Coombs WT, 2012, PUBLIC RELAT REV, V38, P408, DOI 10.1016/j.pubrev.2012.04.004 Crowley Michael, 2020, The New York Times Diamond L., 2020, The Atlantic Elflein J., 2021, CORONAVIRUS COVID 19 Fashion Revolution, 2020, The Fashion Transparency Index 2020 Fearn-Banks K., 2016, Crisis communications: A casebook approach Fiske S.T., 1991, Social cognition, V2nd ed. Freberg K, 2012, PUBLIC RELAT REV, V38, P416, DOI 10.1016/j.pubrev.2012.01.008 Grunig J.E., 1992, EXCELLENCE PUBLIC RE, P31, DOI DOI 10.4324/9780203812303 Grunig J. E., 2009, PARADIGMS GLOBAL PUB Grunig L.A., 2002, EXCELLENT PUBLIC REL Guo L., 2016, POWER INFORM NETWORK, P3 Hadi TA, 2016, DISASTER MED PUBLIC, V10, P775, DOI 10.1017/dmp.2016.39 Heath R.L., 2005, Encyclopedia of public relations Hilbe J. M., 2011, NEGATIVE BINOMIAL RE Jeong Y, 2019, JOURNALISM, V20, P1593, DOI 10.1177/1464884917737212 Jin Y, 2014, COMMUN RES, V41, P74, DOI 10.1177/0093650211423918 Kieser A, 2015, ACAD MANAG ANN, V9, P143, DOI 10.1080/19416520.2015.1011853 Kim DKD, 2020, WORLD MED HEALTH POL, V12, P398, DOI 10.1002/wmh3.363 Kim JN, 2013, J PUBLIC RELAT RES, V25, P1, DOI 10.1080/1062726X.2012.723276 Kim JN, 2011, J COMMUN, V61, P120, DOI 10.1111/j.1460-2466.2010.01529.x LAZARUS RS, 1991, AM PSYCHOL, V46, P819, DOI 10.1037/0003-066X.46.8.819 Liu B.F., 2007, Journal of Public Relations Research, V19, P377 Macnamara J., 2018, INT J LISTENING, V32, P1, DOI [10.1080/10904018.2017, DOI 10.1080/10904018.2017, DOI 10.1080/10904018.2017.1375076] Macnamara J, 2016, J PUBLIC RELAT RES, V28, P146, DOI 10.1080/1062726X.2016.1228064 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Manning CD, 2014, PROCEEDINGS OF 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: SYSTEM DEMONSTRATIONS, P55, DOI 10.3115/v1/p14-5010 Peters C, 2020, VOX 0608 Phillips Amber., 2020, Washington Post Renfro W.L., 1993, Issues management in strategic planning Schumaker E., 2020, ABCNEWS Shaver K.G., 2016, An introduction to attribution processes, DOI DOI 10.4324/9781315536019 Shin KA, 2016, ASIAN J COMMUN, V26, P76, DOI 10.1080/01292986.2015.1083597 So J, 2019, COMMUN RES, V46, P663, DOI 10.1177/0093650216679536 Socher R., 2013, EMNLP, P935 TAE KIM, SUNG, 2006, [Korean Journal of Journalism & Communication Studies, 한국언론학보], V50, P175 Taylor M, 2007, PUBLIC RELAT REV, V33, P140, DOI 10.1016/j.pubrev.2006.11.017 Tsugawa S., 2015, Proceedings of the 2015 ACM on Conference on Online Social Networks, P151, DOI [DOI 10.1145/2817946.2817962, 10.1145/2817946.2817962] Turner MM, 2007, PUBLIC RELAT REV, V33, P114, DOI 10.1016/j.pubrev.2006.11.013 Wang Y, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106568 WEINER B, 1985, PSYCHOL REV, V92, P548, DOI 10.1037/0033-295X.92.4.548 Yang F, 2021, COMMUN Q, V69, P341, DOI 10.1080/01463373.2021.1951789 Yum JY, 2015, J BUS TECH COMMUN, V29, P159, DOI 10.1177/1050651914560570 Zhu Z, 2020, INT J DISAST RISK RE, V50, DOI 10.1016/j.ijdrr.2020.101717 NR 65 TC 13 Z9 13 U1 7 U2 58 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0363-8111 EI 1873-4537 J9 PUBLIC RELAT REV JI Public Relat. Rev. PD SEP PY 2022 VL 48 IS 3 AR 102201 DI 10.1016/j.pubrev.2022.102201 EA APR 2022 PG 10 WC Business; Communication WE Social Science Citation Index (SSCI) SC Business & Economics; Communication GA 1P6FF UT WOS:000802101800001 PM 35469268 OA Green Published DA 2024-03-27 ER PT J AU Kantanantha, N Awichanirost, J AF Kantanantha, Nantachai Awichanirost, Jiaranai TI Analyzing and forecasting online tour bookings using Google Analytics metrics SO JOURNAL OF REVENUE AND PRICING MANAGEMENT LA English DT Article DE Data analysis; Google Analytics; Machine learning; Forecasting; Tourism; Online tour bookings AB An essential part of business operation for tourism industry is revenue management, i.e., how to sell the right tour package, to the right customers, at the right time, at the right price through the most appropriate and cost-effective channels. In today's world, the internet has revolutionized many business operations in the tourism industry which plays an important role in Thailand's GDP. Most tour operators utilize websites as the main channel to build relationships with customers. Thus, website performance measurement is an important strategic factor for online marketing. The objectives of this research were to identify factors contributing from Google Analytics metrics to online bookings and to forecast online bookings using those impactful factors. Several machine learning models namely artificial neural network (ANN), support vector regression, and random forest, were proposed to forecast online bookings using the mean absolute percentage error (MAPE) as the criterion for comparison. It was found that there were three Google Analytics metrics that contributed to online bookings, which were the sessions from referral, unique returning users, and the average session duration. In addition, the ANN model provided the highest accuracy result with a MAPE of 11.39%. The framework from this research can be applied to other online companies to forecast their online bookings, which is an important part of revenue management since accurate forecasts can help companies to achieve their goals. C1 [Kantanantha, Nantachai; Awichanirost, Jiaranai] Chulalongkorn Univ, Fac Engn, Dept Ind Engn, Bangkok, Thailand. C3 Chulalongkorn University RP Kantanantha, N (autor correspondiente), Chulalongkorn Univ, Fac Engn, Dept Ind Engn, Bangkok, Thailand. EM nantachai.k@chula.ac.th CR Abraham A., 2005, HDB MEASURING SYSTEM, DOI [10.1002/0471497398.mm421, DOI 10.1002/0471497398.MM421] Basheer IA, 2000, J MICROBIOL METH, V43, P3, DOI 10.1016/S0167-7012(00)00201-3 Bekavac I, 2015, CROAT OPER RES REV, V6, P373, DOI 10.17535/crorr.2015.0029 Boehmke B, 2019, Hands-on machine learning with R, DOI DOI 10.1201/9780367816377 Burby J., 2007, Web analytics definitions Chen R, 2015, APPL SOFT COMPUT, V26, P435, DOI 10.1016/j.asoc.2014.10.022 Chen W, 2017, IEICE T INF SYST, VE100D, P190, DOI 10.1587/transinf.2016EDP7152 Claveria O, 2015, INT J TOUR RES, V17, P492, DOI 10.1002/jtr.2016 Feng YY, 2019, PROCEDIA COMPUT SCI, V162, P628, DOI 10.1016/j.procs.2019.12.032 Hu Z., 2013, SCI WORLD J Kelleher J.D., 2020, Fundamentals of machine learning for predictive data analytics: Algorithms, worked examples, and case studies Knoema,, 2021, THAIL CONTR TRAV TOU Milano R, 2011, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2011, P471 Napagoda, 2013, INT J SCI TECHNOLOGY, V2, P170 Omidvar, 2011, ARXIV PREPRINT ARXIV Phumchusri N, 2020, J REVENUE PRICING MA, V19, P8, DOI 10.1057/s41272-019-00221-6 Plaza B, 2011, TOURISM MANAGE, V32, P477, DOI 10.1016/j.tourman.2010.03.015 Statista, 2021 NUMB INT US WOR Teixeira JP, 2012, PROC TECH, V5, P445, DOI 10.1016/j.protcy.2012.09.049 NR 19 TC 1 Z9 1 U1 1 U2 15 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1476-6930 EI 1477-657X J9 J REVENUE PRICING MA JI J. Revenue Pricing Manag. PD JUN PY 2022 VL 21 IS 3 BP 354 EP 365 DI 10.1057/s41272-021-00338-7 EA JUN 2021 PG 12 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 1J8SL UT WOS:000661782700001 DA 2024-03-27 ER PT J AU Zhang, MX Luo, L AF Zhang, Mengxia Luo, Lan TI Can Consumer-Posted Photos Serve as a Leading Indicator of Restaurant Survival? Evidence from Yelp SO MANAGEMENT SCIENCE LA English DT Article DE user-generated content; photos; word of mouth; analytic modeling; computer vision; age analysis; text mining; Yelp; business survival; restaurants ID SMALL BUSINESS SURVIVAL; WORD-OF-MOUTH; FIRM SURVIVAL; PRODUCT; QUALITY; IMPACT; MODEL; ELICITATION; PERFORMANCE; PREDICTORS AB Despite the substantial economic impact of the restaurant industry, large-scale empirical research on restaurant survival has been sparse. We investigate whether consumer-posted photos can serve as a leading indicator of restaurant survival above and beyond reviews, firm characteristics, competitive landscape, and macroconditions. We employ machine learning techniques to extract features from 755,758 photos and 1,121,069 reviews posted on Yelp between 2004 and 2015 for 17,719 U.S. restaurants. We also collect data on restaurant characteristics (e.g., cuisine type, price level) and competitive landscape as well as entry and exit (if applicable) time from each restaurant's Yelp/ Facebook page, own website, or Google search engine. Using a predictive XGBoost algorithm, we find that consumer-posted photos are strong predictors of restaurant survival. Interestingly, the informativeness of photos (e.g., the proportion of food photos) relates more to restaurant survival than do photographic attributes (e.g., composition, brightness). Additionally, photos carry more predictive power for independent, young or mid-aged, and medium-priced restaurants. Assuming that restaurant owners possess no knowledge about future photos and reviews, photos can predict restaurant survival for up to three years, whereas reviews are only predictive for one year. We further employ causal forests to facilitate the interpretation of our predictive results. Among photo content variables, the proportion of food photos has the largest positive association with restaurant survival, followed by proportions of outside and interior photos. Among others, the proportion of photos with helpful votes also positively relates to restaurant survival. C1 [Zhang, Mengxia] Western Univ, Mkt, Ivey Business Sch, London, ON N6A 3K7, Canada. [Luo, Lan] Univ Southern Calif, Mkt, Los Angeles, CA 90089 USA. C3 Western University (University of Western Ontario); University of Southern California RP Zhang, MX (autor correspondiente), Western Univ, Mkt, Ivey Business Sch, London, ON N6A 3K7, Canada. EM mezhang@ivey.ca; lluo@marshall.usc.edu OI , Lan/0000-0003-1002-8237; Zhang, Mengxia/0000-0002-4901-0635 CR Alonso AD, 2013, J HOSP MARKET MANAG, V22, P547, DOI 10.1080/19368623.2012.671562 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Arnheim Rudolf., 1965, Art and visual perception: A psychology of the creative eye Ataman MB, 2010, J MARKETING RES, V47, P866, DOI 10.1509/jmkr.47.5.866 Athey S., 2019, Estimating Treatment Effects with Causal Forests: An Application, V5, P37 Athey S, 2019, ANN STAT, V47, P1148, DOI 10.1214/18-AOS1709 Athey S, 2016, P NATL ACAD SCI USA, V113, P7353, DOI 10.1073/pnas.1510489113 AUDRETSCH DB, 1995, REV ECON STAT, V77, P97, DOI 10.2307/2109995 Audretsch DB, 2000, REV IND ORGAN, V16, P1, DOI 10.1023/A:1007824501527 Barasch A, 2018, J CONSUM RES, V44, P1220, DOI 10.1093/jcr/ucx112 Barasch A, 2017, PSYCHOL SCI, V28, P1056, DOI 10.1177/0956797617694868 BATES T, 1995, SMALL BUS ECON, V7, P377, DOI 10.1007/BF01302738 Bates T, 1998, J BUS VENTURING, V13, P113, DOI 10.1016/S0883-9026(97)00066-9 BATES T, 1990, REV ECON STAT, V72, P551, DOI 10.2307/2109594 Bekkar M., 2013, J Inf Eng Appl, V3 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Boden RJ, 2000, J BUS VENTURING, V15, P347, DOI 10.1016/S0883-9026(98)00004-4 Bradley AP, 1997, PATTERN RECOGN, V30, P1145, DOI 10.1016/S0031-3203(96)00142-2 Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764 Brüggen EC, 2011, J MARKETING, V75, P71, DOI 10.1509/jmkg.75.5.71 Bujisic M, 2014, INT J CONTEMP HOSP M, V26, P1270, DOI 10.1108/IJCHM-04-2013-0162 CARROLL GR, 1983, SOC SCI RES, V12, P303, DOI 10.1016/0049-089X(83)90022-4 Chang Jonathan, 2009, ADV NEURAL INFORM PR, P288, DOI DOI 10.5555/2984093.2984126 Chen T., 2018, R Document Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chernozhukov V, 2018, ECONOMET J, V21, pC1, DOI 10.1111/ectj.12097 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007 COOPER AC, 1994, J BUS VENTURING, V9, P371, DOI 10.1016/0883-9026(94)90013-2 Diehl K, 2016, J PERS SOC PSYCHOL, V111, P119, DOI 10.1037/pspa0000055 Dzyabura D, 2019, NES WORKING PAPER SE, DOI [10.2139/ssrn.3209307, DOI 10.2139/SSRN.3209307] Dzyabura D, 2021, J MARKETING, V85, P44, DOI 10.1177/0022242921996661 Dzyabura D, 2011, MARKET SCI, V30, P801, DOI 10.1287/mksc.1110.0660 Fawcett T., 2004, MACH LEARN, V31, P1 Fawcett T, 2006, PATTERN RECOGN LETT, V27, P861, DOI 10.1016/j.patrec.2005.10.010 Fellbaum C., 1998, WORDNET Fong C, 2018, ANN APPL STAT, V12, P156, DOI 10.1214/17-AOAS1101 Freedman M. J., 2007, IPTPS, V5, P1 Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451 Fritsch M, 2006, REV IND ORGAN, V28, P285, DOI 10.1007/s11151-006-0018-4 Getz D, 2006, TOURISM MANAGE, V27, P146, DOI 10.1016/j.tourman.2004.08.002 Ghose A, 2012, MARKET SCI, V31, P493, DOI 10.1287/mksc.1110.0700 Greene W., 2004, The Econometrics Journal, V7, P98, DOI [DOI 10.1111/J.1368-423X.2004.00123.X, 10.1111/j.1368-423X.2004.00123.x] Guo T, 2021, J MARKETING RES, V58, P115, DOI 10.1177/0022243720972106 Haapanen M, 2009, APPL ECON, V41, P2449, DOI 10.1080/00036840802360278 HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747 Hartmann J, 2021, J MARKETING RES, V58, P1159, DOI 10.1177/00222437211037258 Hauser JR, 2014, J PROD INNOVAT MANAG, V31, P17, DOI 10.1111/jpim.12077 Hirano K., 2005, APPL BAYESIAN MODELI, P73 Hollenbeck B, 2018, J MARKETING RES, V55, P636, DOI 10.1177/0022243718802844 Huang DL, 2016, MARKET SCI, V35, P445, DOI 10.1287/mksc.2015.0946 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Hyun SS, 2010, CORNELL HOSP Q, V51, P251, DOI 10.1177/1938965510363264 Isola Phillip, 2011, ADV NEURAL INFORM PR, P2429, DOI DOI 10.1167/12.9.1082 KALLEBERG AL, 1991, ACAD MANAGE J, V34, P136, DOI 10.5465/256305 Kalnins A, 2004, MANAGE SCI, V50, P1716, DOI 10.1287/mnsc.1040.0220 Kalnins A, 2013, AM ECON J-MICROECON, V5, P157, DOI 10.1257/mic.5.3.157 Kamshad KM, 1994, J ECON MANAGE STRAT, V3, P521, DOI 10.1111/j.1430-9134.1994.00521.x Ko EE, 2020, PROC 49 EUR MARKETIN Kotsiantis S., 2006, GESTS International Transactions on Computer Science and Engineering, V30, P25 Krages B., 2005, Photography: the art of composition Kreitler H., 1972, Psychology of the arts KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694 Lafontaine F, 2019, J ECON MANAGE STRAT, V28, P175, DOI 10.1111/jems.12289 Larsen V, 2004, J CONSUM RES, V31, P102, DOI 10.1086/383427 Lee D, 2019, FOCUSED CONCEPT MINE Li X, 2019, INT J RES MARK, V36, P216, DOI 10.1016/j.ijresmar.2019.02.004 Li YY, 2020, J MARKETING RES, V57, P1, DOI 10.1177/0022243719881113 Liu L, 2020, MARKET SCI, V39, P669, DOI 10.1287/mksc.2020.1226 Liu X, 2019, J MARKETING RES, V56, P918, DOI 10.1177/0022243719866690 Liu Y, 2017, J MARKETING, V81, P30, DOI 10.1509/jm.15.0535 Liu Y, 2006, J MARKETING, V70, P74, DOI 10.1509/jmkg.70.3.74 Lundberg SM, 2017, ADV NEUR IN, V30 Lundberg SM, 2020, NAT MACH INTELL, V2, P56, DOI 10.1038/s42256-019-0138-9 Malik N, 2020, DYNAMIC ANAL BEAUTY McGrath T, 2017, SOCIAL LISTENING MEE Mela CF, 1997, J MARKETING RES, V34, P248, DOI 10.2307/3151862 MILLER GA, 1995, COMMUN ACM, V38, P39, DOI 10.1145/219717.219748 Molnar C, 2021, Interpretable machine learning e a guide for making black box models explainable Montabone S, 2010, IMAGE VISION COMPUT, V28, P391, DOI 10.1016/j.imavis.2009.06.006 Montoya R, 2010, MARKET SCI, V29, P909, DOI 10.1287/mksc.1100.0570 Morgan SL, 2015, ANAL METHOD SOC RES, P1 Mudambi SM, 2010, MIS QUART, V34, P185 Narang U., 2019, Working Paper Netzer O, 2019, J MARKETING RES, V56, P960, DOI 10.1177/0022243719852959 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Newman D., 2010, HUMAN LANGUAGE TECHN, P100 Nishiyama M, 2011, PROC CVPR IEEE, P33, DOI 10.1109/CVPR.2011.5995539 Parsa H. G., 2005, Cornell Hotel and Restaurant Administration Quarterly, V46, P304, DOI 10.1177/0010880405275598 Parsa HG, 2015, CORNELL HOSP Q, V56, P80, DOI 10.1177/1938965514551959 Parsa H. G., 2011, Journal of Foodservice Business Research, V14, P360, DOI 10.1080/15378020.2011.625824 Parsa HG, 2010, EMERGING ASPECTS RED, V1, P16 Pauwels K, 2002, J MARKETING RES, V39, P421, DOI 10.1509/jmkr.39.4.421.19114 Pearl J, 2014, J CAUSAL INFERENCE, V2, P109, DOI 10.1515/jci-2014-0017 Puranam D, 2017, MARKET SCI, V36, P726, DOI 10.1287/mksc.2017.1048 Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Rajaram P, 2021, PREPRINT, DOI [10.2139/ssrn.3496039, DOI 10.2139/SSRN.3496039] Röder M, 2015, WSDM'15: PROCEEDINGS OF THE EIGHTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P399, DOI 10.1145/2684822.2685324 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 RUBIN DB, 1973, BIOMETRICS, V29, P159, DOI 10.2307/2529684 Ryu K, 2012, INT J CONTEMP HOSP M, V24, P200, DOI 10.1108/09596111211206141 Seiffert C, 2008, PROC INT C TOOLS ART, P445, DOI 10.1109/ICTAI.2008.59 Sulek J. M., 2004, Cornell Hotel and Restaurant Administration Quarterly, V45, P235, DOI 10.1177/0010880404265345 Takahashi K, 2016, 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), P444, DOI 10.1109/BigMM.2016.41 Timoshenko A, 2019, MARKET SCI, V38, P1, DOI 10.1287/mksc.2018.1123 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 Toubia O, 2017, MARKET SCI, V36, P1, DOI 10.1287/mksc.2016.0994 Troncoso I., 2020, The Role of Profile Pictures in Online Labor Markets (October 12, 2020) Tveterås R, 2000, SMALL BUS ECON, V14, P65, DOI 10.1023/A:1008189411442 Vogel D., 1986, Persuasion and the Role of Visual Presentation Support: The UM/3 M Study Wadhera D, 2014, EAT BEHAV, V15, P132, DOI 10.1016/j.eatbeh.2013.11.003 WAGNER J, 1994, J IND ECON, V42, P141, DOI 10.2307/2950486 Wooldridge J.M., 2012, INTRO ECONOMETRICS M, DOI DOI 10.1198/JASA.2006.S154 Xiao L, 2014, MARKET SCI, V33, P338, DOI 10.1287/mksc.2013.0837 Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 Zhang Shunyuan., 2018, How Much is an Image Worth? The Impact of Professional versus Amateur Airbnb Property Images on Property Demand Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 118 TC 11 Z9 12 U1 53 U2 146 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD JAN PY 2023 VL 69 IS 1 BP 25 EP 50 DI 10.1287/mnsc.2022.4359 EA APR 2022 PG 26 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA P9RQ1 UT WOS:000827162300001 DA 2024-03-27 ER PT J AU Nanne, AJ Antheunis, ML van der Lee, CG Postma, EO Wubben, S van Noort, G AF Nanne, Annemarie J. Antheunis, Marjolijn L. van der Lee, Chris G. Postma, Eric O. Wubben, Sander van Noort, Guda TI The Use of Computer Vision to Analyze Brand-Related User Generated Image Content SO JOURNAL OF INTERACTIVE MARKETING LA English DT Article DE Visual brand-related UGC; Computer vision; Pre-trained computer vision; Image mining; Automated content analysis ID SOCIAL MEDIA; CONSUMERS; EWOM AB With the increasing popularity of visual-oriented social media platforms, the prevalence of visual brand-related User Generated Content (UGC) have increased. Monitoring such content is important as this visual brand-related UGC can have a large influence on a brand's image and hence provides useful opportunities to observe brand performance (e.g., monitoring trends and consumer segments). The current research discusses the application of computer vision for marketing practitioners and researchers and examines the usability of three different pre-trained ready-to-use computer vision models (i.e., YOLOV2, Google Cloud Vision, and Clarifai) to analyze visual brand-related UGC automatically. A 3-step approach was adopted in which 1) a database of 21,738 Instagram pictures related to 24 different brands was constructed, 2) the images were processed by the three different computer vision models, and 3) a label evaluation procedure was conducted with a sample of the labels (object names) outputted by the models. The results of the label evaluation procedure are quantitatively assessed and complemented with four concrete examples of how the output of computer vision can be used to analyze visual brand-related UGC. Results show that computer vision can yield various marketing insights. Moreover, we found that the three tested computer vision models differ in applicability. Google Cloud Vision is more accurate in object detection, whereas Clarifai provides more useful labels to interpret the portrayal of a brand. YOLOV2 did not prove to be useful to analyze visual brand-related UGC. Results and implications of the findings for marketers and marketing scholars will be discussed. (C) 2019 Direct Marketing Educational Foundation, Inc. dba Marketing EDGE. All rights reserved. C1 [Nanne, Annemarie J.; Antheunis, Marjolijn L.; van der Lee, Chris G.; Wubben, Sander] Tilburg Univ, Tilburg Ctr Cognit & Commun, Tilburg Sch Humanities & Digital Sci, Dept Commun & Cognit, Tilburg, Netherlands. [Postma, Eric O.] Tilburg Univ, Tilburg Sch Humanities & Digital Sci, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands. [van Noort, Guda] Univ Amsterdam, Fac Social & Behav Sci, Amsterdam Sch Commun Res, Amsterdam, Netherlands. C3 Tilburg University; Tilburg University; University of Amsterdam RP Nanne, AJ (autor correspondiente), Warandelaan 2, NL-5037 AB Tilburg, Netherlands. EM a.j.nanne@uvt.nl RI Nanne, Annemarie/KEH-0543-2024 OI van Noort, Guda/0000-0002-6314-1455; Nanne, Annemarie/0000-0001-7094-6502 CR [Anonymous], 2011, TEXTS COMPUT SCI [Anonymous], MM 16 AMST NETH [Anonymous], ICMLA CANC MEX [Anonymous], REC ADS SOC MED [Anonymous], 2018, J MED INTERNET RES [Anonymous], IEEA VVS LECC IT [Anonymous], 1982, VISION COMPUTATIONAL [Anonymous], HUMANIZE TOK JAP Bakhshi S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0117148 Bianco S, 2017, NEUROCOMPUTING, V245, P23, DOI 10.1016/j.neucom.2017.03.051 Chari S, 2016, PSYCHOL MARKET, V33, P1071, DOI 10.1002/mar.20941 Chau PYK, 2000, J ORG COMP ELECT COM, V10, P1 Chen T, 2016, P 22 ACM SIGKDD INT Cheng G, 2017, P IEEE, V105, P1865, DOI 10.1109/JPROC.2017.2675998 Chu SC, 2011, INT J ADVERT, V30, P47, DOI 10.2501/IJA-30-1-047-075 de Vries L, 2012, J INTERACT MARK, V26, P83, DOI 10.1016/j.intmar.2012.01.003 Droulers O., 2015, Journal of Applied Business Research, V31, P1403, DOI [10.19030/jabr.v31i4.9326, DOI 10.19030/JABR.V31I4.9326] Erkan I, 2016, COMPUT HUM BEHAV, V61, P47, DOI 10.1016/j.chb.2016.03.003 Fan WG, 2014, COMMUN ACM, V57, P74, DOI 10.1145/2602574 Gensler S, 2013, J INTERACT MARK, V27, P242, DOI 10.1016/j.intmar.2013.09.004 Guo YD, 2016, LECT NOTES COMPUT SC, V9907, P87, DOI 10.1007/978-3-319-46487-9_6 Hennig-Thurau T, 2013, J INTERACT MARK, V27, P237, DOI 10.1016/j.intmar.2013.09.005 Hernández-Méndez J, 2015, COMPUT HUM BEHAV, V50, P618, DOI 10.1016/j.chb.2015.03.017 Hollenbeck CR, 2012, INT J RES MARK, V29, P395, DOI 10.1016/j.ijresmar.2012.06.002 Ismagilova E, 2016, LECT NOTES COMPUT SC, V9844, P354, DOI 10.1007/978-3-319-45234-0_32 Joseph RK, 2016, CRIT POL ECON S ASIA, P1 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lin TY, 2014, LECT NOTES COMPUT SC, V8693, P740, DOI 10.1007/978-3-319-10602-1_48 Lin XL, 2016, COMPUT HUM BEHAV, V63, P264, DOI 10.1016/j.chb.2016.05.002 McDonald M., 2012, MARKET SEGMENTATION, V4th Pew Research Center, 2018, Teens, social media technology 2018 Pew Research Center, 2018, Social media fact sheet Redmon J, 2016, PROC CVPR IEEE, P779, DOI 10.1109/CVPR.2016.91 Serrano Shanna., 2018, J PROMOTIONAL COMMUN, V6, P72 Steffan-Dewenter I., 2002, Ecology, V83, P1421, DOI 10.1890/0012-9658(2002)083[1421:SDEOLC]2.0.CO;2 Thompson Laure, 2018, COLING Tous R, 2018, MULTIMED TOOLS APPL, V77, P27123, DOI 10.1007/s11042-018-5910-z Tran K, 2016, IEEE COMPUT SOC CONF, P434, DOI 10.1109/CVPRW.2016.61 van der Maaten L, 2008, J MACH LEARN RES, V9, P2579 van Noord N, 2015, IEEE SIGNAL PROC MAG, V32, P46, DOI 10.1109/MSP.2015.2406955 Vilnai-Yavetz I, 2015, J INTERACT MARK, V32, P53, DOI 10.1016/j.intmar.2015.05.002 Wilson E.O., 1975, P1 Zeiler MD, 2014, LECT NOTES COMPUT SC, V8689, P818, DOI 10.1007/978-3-319-10590-1_53 NR 44 TC 28 Z9 31 U1 14 U2 69 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1094-9968 EI 1520-6653 J9 J INTERACT MARK JI J. Interact. Mark. PD MAY PY 2020 VL 50 BP 156 EP 167 DI 10.1016/j.intmar.2019.09.003 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA LR8HL UT WOS:000535937100010 OA Green Published DA 2024-03-27 ER PT J AU Berger, J Moe, WW Schweidel, DA AF Berger, Jonah Moe, Wendy W. Schweidel, David A. TI What Holds Attention? Linguistic Drivers of Engagement SO JOURNAL OF MARKETING LA English DT Article DE digital marketing; natural language processing; online content; automated textual analysis; content consumption; digital engagement; emotion ID WORD-OF-MOUTH; SOCIAL MEDIA; POSITIVE EMOTIONS; INFORMATION; AROUSAL; CONCRETENESS; UNCERTAINTY; INCREASES; DIRECTIONS; CERTAINTY AB From advertisers and marketers to salespeople and leaders, everyone wants to hold attention. They want to make ads, pitches, presentations, and content that captivates audiences and keeps them engaged. But not all content has that effect. What makes some content more engaging? A multimethod investigation combines controlled experiments with natural language processing of 600,000 reading sessions from over 35,000 pieces of content to examine what types of language hold attention and why. Results demonstrate that linguistic features associated with processing ease (e.g., concrete or familiar words) and emotion both play an important role. Rather than simply being driven by valence, though, the effects of emotional language are driven by the degree to which different discrete emotions evoke arousal and uncertainty. Consistent with this idea, anxious, exciting, and hopeful language holds attention while sad language discourages it. Experimental evidence underscores emotional language's causal impact and demonstrates the mediating role of uncertainty and arousal. The findings shed light on what holds attention; illustrate how content creators can generate more impactful content; and, as shown in a stylized simulation, have important societal implications for content recommendation algorithms. C1 [Berger, Jonah] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA. [Moe, Wendy W.] Univ Maryland, Smith Sch Business, College Pk, MD 20742 USA. [Schweidel, David A.] Emory Univ, Goizueta Business Sch, Atlanta, GA 30322 USA. C3 University of Pennsylvania; University System of Maryland; University of Maryland College Park; Emory University RP Berger, J (autor correspondiente), Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA. EM jberger@wharton.upenn.edu; wmoe@umd.edu; dschweidel@emory.edu OI Moe, Wendy/0009-0004-5999-6591 CR Alter AL, 2009, PERS SOC PSYCHOL REV, V13, P219, DOI 10.1177/1088868309341564 [Anonymous], 2021, WALL STR J Ansari A, 2000, J MARKETING RES, V37, P363, DOI 10.1509/jmkr.37.3.363.18779 Berger J, 2020, J MARKETING, V84, P1, DOI 10.1177/0022242919873106 Berger J, 2018, PSYCHOL SCI, V29, P1178, DOI 10.1177/0956797618759465 Berger J, 2014, J CONSUM PSYCHOL, V24, P586, DOI 10.1016/j.jcps.2014.05.002 Berger J, 2012, J MARKETING RES, V49, P192, DOI 10.1509/jmr.10.0353 Berger J, 2011, J MARKETING RES, V48, P869, DOI 10.1509/jmkr.48.5.869 Berger J, 2011, PSYCHOL SCI, V22, P891, DOI 10.1177/0956797611413294 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Brysbaert M, 2014, BEHAV RES METHODS, V46, P904, DOI 10.3758/s13428-013-0403-5 Cavanaugh LA, 2015, J MARKETING RES, V52, P657, DOI 10.1509/jmr.10.0219 Chen Z, 2017, J CONSUM RES, V44, P613, DOI 10.1093/jcr/ucx055 Chou WYS, 2020, AM J PUBLIC HEALTH, V110, pS273, DOI 10.2105/AJPH.2020.305905 Cole Jeffrey I., 2017, RES REPORT COLTHEART M, 1981, Q J EXP PSYCHOL-A, V33, P497, DOI 10.1080/14640748108400805 Connell L, 2012, COGNITION, V125, P452, DOI 10.1016/j.cognition.2012.07.010 Cramer H, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P2231, DOI 10.1145/2702123.2702360 Dos Santos HL, 2022, J EXP PSYCHOL GEN, V151, P1833, DOI 10.1037/xge0001171 Du RY, 2021, J MARKETING, V85, P163, DOI 10.1177/0022242920969198 Dubois D, 2016, J MARKETING RES, V53, P712, DOI 10.1509/jmr.13.0312 EASTERBROOK JA, 1959, PSYCHOL REV, V66, P183, DOI 10.1037/h0047707 ELLSWORTH PC, 1988, MOTIV EMOTION, V12, P271, DOI 10.1007/BF00993115 Faraji-Rad A, 2017, J CONSUM RES, V44, P1, DOI 10.1093/jcr/ucw073 FERREIRA F, 1991, J MEM LANG, V30, P210, DOI 10.1016/0749-596X(91)90004-4 Firth J, 2019, WORLD PSYCHIATRY, V18, P119, DOI 10.1002/wps.20617 Fossen BL, 2019, MARKET SCI, V38, P274, DOI 10.1287/mksc.2018.1139 Gabielkov M, 2016, SIGMETRICS/PERFORMANCE 2016: PROCEEDINGS OF THE SIGMETRICS/PERFORMANCE JOINT INTERNATIONAL CONFERENCE ON MEASUREMENT AND MODELING OF COMPUTER SCIENCE, P179, DOI [10.1145/2896377.2901462, 10.1145/2964791.2901462] GILHOOLY KJ, 1980, BEHAV RES METH INSTR, V12, P395, DOI 10.3758/BF03201693 GRAESSER AC, 1994, PSYCHOL REV, V101, P371, DOI 10.1037/0033-295X.101.3.371 Grant Packard, 2024, Journal of Consumer Research, V51, DOI [10.1093/jcr/ucad013, DOI 10.1093/JCR/UCAD013] Griskevicius V, 2010, EMOTION, V10, P190, DOI 10.1037/a0018421 Hayes Andrew F., 2017, INTRO MEDIATION MODE Heilman KM, 1997, J NEUROPSYCH CLIN N, V9, P439, DOI 10.1176/jnp.9.3.439 HIDI S, 1990, REV EDUC RES, V60, P549, DOI 10.3102/00346543060004549 John Koetsier, 2020, Forbes Julia McCoy, 2019, WHY CONTENT MARKETIN JUST MA, 1980, PSYCHOL REV, V87, P329, DOI 10.1037/0033-295X.87.4.329 Kanuri VK, 2018, J MARKETING, V82, P89, DOI 10.1177/0022242918805411 Keltner D., 2010, The Handbook of Social Psycholgoy, V5th, P312, DOI DOI 10.1002/9780470561119.SOCPSY001009 Kim H, 2010, J CONSUM RES, V36, P983, DOI 10.1086/644763 Kim HS, 2016, MEDIA PSYCHOL, V19, P614, DOI 10.1080/15213269.2015.1090907 Kincaid JP, 1975, Technical report, DOI DOI 10.21236/ADA006655 KINTSCH W, 1980, POETICS, V9, P87, DOI 10.1016/0304-422X(80)90013-3 Kool W, 2010, J EXP PSYCHOL GEN, V139, P665, DOI 10.1037/a0020198 Lai LD, 2014, SOC INFLUENCE, V9, P289, DOI 10.1080/15534510.2013.847859 Lerner JS, 2000, COGNITION EMOTION, V14, P473, DOI 10.1080/026999300402763 Lerner JS, 2001, J PERS SOC PSYCHOL, V81, P146, DOI 10.1037//0022-3514.81.1.146 Lohtia R, 2003, J ADVERTISING RES, V43, P410, DOI 10.1017/S0021849903030459 Lorenz-Spreen P, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09311-w Luangrath AW, 2017, J CONSUM PSYCHOL, V27, P98, DOI 10.1016/j.jcps.2016.05.002 MacInnis DJ, 2005, J MARKETING, V69, P1, DOI 10.1509/jmkg.69.1.1.55513 Mather M, 2007, PERSPECT PSYCHOL SCI, V2, P33, DOI 10.1111/j.1745-6916.2007.00028.x Moe WW, 2012, MARKET SCI, V31, P372, DOI 10.1287/mksc.1110.0662 Moe WW, 2006, J INTERACT MARK, V20, P34, DOI 10.1002/dir.20054 Mohammad S. M., 2017, P 6 JOINT C LEXICAL, P65, DOI DOI 10.18653/V1/S17-1007 Moore SG, 2015, J CONSUM RES, V42, P30, DOI 10.1093/jcr/ucv003 Newberry C., 2022, FACEBOOK ALGORITHM W Öhman A, 2001, PSYCHOL REV, V108, P483, DOI 10.1037//0033-295X.108.3.483 Packard G, 2023, J CONSUM RES, V50, P645, DOI 10.1093/jcr/ucad006 Packard G, 2021, J CONSUM RES, V47, P787, DOI 10.1093/jcr/ucaa038 Packard G, 2017, J MARKETING RES, V54, P572, DOI 10.1509/jmr.15.0248 Paetzold G.H., 2016, Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL:HLT), P435, DOI DOI 10.18653/V1/N16-1050 Pennebaker J. W., 2015, The Development and Psychometric Properties of LIWC2015 Pennebaker J. W., 2015, Linguistic inquiry and word count: LIWC2015 Peters K, 2013, J INTERACT MARK, V27, P281, DOI 10.1016/j.intmar.2013.09.007 Pezzuti T, 2021, J INTERACT MARK, V53, P32, DOI 10.1016/j.intmar.2020.06.005 Pham MT, 2004, J CONSUM PSYCHOL, V14, P360 Pitler E, 2008, P 2008 C EMP METH NA, P186 Pogacar Ruth., 2017, J PERS SOC PSYCHOL, P263 Raghunathan R, 1999, ORGAN BEHAV HUM DEC, V79, P56, DOI 10.1006/obhd.1999.2838 Ransbotham S, 2019, MARKET SCI, V38, P773, DOI 10.1287/mksc.2018.1115 Schraw G, 2001, EDUC PSYCHOL REV, V13, P23, DOI 10.1023/A:1009004801455 SCHRAW G, 1995, J READING BEHAV, V27, P1, DOI 10.1080/10862969509547866 Schwarm S. E., 2005, P 43 ANN M ASS COMPU, P523, DOI DOI 10.3115/1219840.1219905 Schweidel DA, 2016, J MARKETING, V80, P1, DOI 10.1509/jm.15.0258 Sismeiro C, 2004, J MARKETING RES, V41, P306, DOI 10.1509/jmkr.41.3.306.35985 SMITH CA, 1985, J PERS SOC PSYCHOL, V48, P813, DOI 10.1037/0022-3514.48.4.813 SPREEN O, 1966, J VERB LEARN VERB BE, V5, P459, DOI 10.1016/S0022-5371(66)80061-0 Stieglitz S, 2013, J MANAGE INFORM SYST, V29, P217, DOI 10.2753/MIS0742-1222290408 Teeny J, 2020, J CONSUM PSYCHOL, V30, P429, DOI 10.1002/jcpy.1151 Tiedens LZ, 2001, J PERS SOC PSYCHOL, V81, P973, DOI 10.1037//0022-3514.81.6.973 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Toubia O, 2021, P NATL ACAD SCI USA, V118, DOI 10.1073/pnas.2011695118 VILCASSIM NJ, 1991, J MARKETING RES, V28, P29, DOI 10.2307/3172724 Vuilleumier P, 2005, TRENDS COGN SCI, V9, P585, DOI 10.1016/j.tics.2005.10.011 Ward Adrian F., 2022, J CONSUM PSYCHOL, DOI [10.1002/jcpy.1321, DOI 10.1002/JCPY.1321] Warriner AB, 2013, BEHAV RES METHODS, V45, P1191, DOI 10.3758/s13428-012-0314-x Weary G, 1997, J PERS SOC PSYCHOL, V73, P839, DOI 10.1037/0022-3514.73.4.839 Winkielman P, 2001, J PERS SOC PSYCHOL, V81, P989, DOI 10.1037//0022-3514.81.6.989 Yan SY, 2022, J MARKETING RES, V59, P1002, DOI 10.1177/00222437221076160 Yi X, 2014, PROCEEDINGS OF THE 8TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'14), P113, DOI 10.1145/2645710.2645724 Yin DZ, 2017, J MARKETING RES, V54, P447, DOI 10.1509/jmr.13.0379 Zipf GK, 1950, J CLIN PSYCHOL, V6, P306 NR 94 TC 9 Z9 9 U1 108 U2 172 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2429 EI 1547-7185 J9 J MARKETING JI J. Mark. PD SEP PY 2023 VL 87 IS 5 BP 793 EP 809 DI 10.1177/00222429231152880 EA MAY 2023 PG 17 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA N8ID5 UT WOS:000982800800001 OA hybrid DA 2024-03-27 ER PT J AU Rawashdeh, A AF Rawashdeh, Awni TI A deep learning-based SEM-ANN analysis of the impact of AI-based audit services on client trust SO JOURNAL OF APPLIED ACCOUNTING RESEARCH LA English DT Article; Early Access DE Artificial inelegance; Client trust; Audit firms; Satisfaction; Auditing ID NEURAL-NETWORK ANALYSIS; CUSTOMER SATISFACTION; PERCEIVED VALUE; QUALITY; LOYALTY; PERCEPTIONS; TECHNOLOGY; INTENTIONS; MODEL; IMAGE AB PurposeThe advent of technology has propelled audit firms to incorporate AI-based audit services, bringing the relationship between audit clients and firms into sharper focus. Nonetheless, the understanding of how AI-based audit services affect this relationship remains sparse. This study strives to probe how an audit client's satisfaction with AI-based audit services influences their trust in audit firms. Identifying the variables affecting this trust, the research aspires to gain a deeper comprehension of the implications of AI-based audit services on the auditor-client relationship, ultimately aiming to boost client satisfaction and cultivate trust.Design/methodology/approachA conceptual framework has been devised, grounded in the client-company relationship model, to delineate the relationship between perceived quality, perceived value, attitude and satisfaction with AI-based audit services and their subsequent impact on trust in audit firms. The research entailed an empirical investigation employing Facebook ads, gathering 288 valid responses for evaluation. The structural equation method, utilized in conjunction with SPSS and Amos statistical applications, verified the reliability and overarching structure of the scales employed to measure these elements. A hybrid multi-analytical technique of structural equation modeling and artificial neural networks (SEM-ANN) was deployed to empirically validate the collated data.FindingsThe research unveiled a significant and positive relationship between perceived value and client satisfaction, trust and attitude towards AI-based audit services, along with the link between perceived quality and client satisfaction. The findings suggest that a favorable attitude and perceived quality of AI-based audit services could enhance satisfaction, subsequently augmenting perceived value and client trust. By focusing on the delivery of superior-quality services that fulfill clients' value expectations, firms may amplify client satisfaction and trust.Research limitations/implicationsFurther inquiries are required to appraise the influence of advanced technology adoption within audit firms on client trust-building mechanisms. Moreover, an understanding of why the impact of perceived quality on perceived value proves ineffectual in the context of audit client trust-building warrants further exploration. In interpreting the findings of this study, one should consider the inherent limitations of the empirical analysis, inclusive of the utilization of Facebook ads as a data-gathering tool.Practical implicationsThe research yielded insightful theoretical and practical implications that can bolster audit clients' trust in audit firms amid technological advancements within the audit landscape. The results imply that audit firms should contemplate implementing trust-building mechanisms by creating value and influencing clients' stance towards AI-based audit services to establish trust, particularly when vying with competing firms. As technological evolutions impinge on trustworthiness, audit firms must prioritize clients' perceived value and satisfaction.Originality/valueTo the researcher's best knowledge, no previous study has scrutinized the impact of satisfaction with AI-based audit services on cultivating audit client trust in audit firms, in contrast to past research that has focused on the auditors' trust in the audit client. To bridge these gaps, this study employs a comprehensive and integrative theoretical model. C1 [Rawashdeh, Awni] Appl Sci Private Univ, Dept Accounting, Amman, Jordan. RP Rawashdeh, A (autor correspondiente), Appl Sci Private Univ, Dept Accounting, Amman, Jordan. EM drxbrl@yahoo.com FU Applied Science Private University FX The author would like to express their gratitude to Applied Science Private University for their valuable contributions and support throughout the research process. CR Abbasi GA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0247582 Afsar B., 2014, Journal of Economics and Business Research, V20, P7 Ahmad H., 2022, Uncertain Supply Chain Management, V10, P1037 Al Abdulrazak RM, 2017, SOC BUS REV, V12, P320, DOI 10.1108/SBR-03-2017-0014 Al-Sayyed S.M., 2021, Accounting, V7, P281, DOI [10.5267/j.ac.2020.12.003, DOI 10.5267/J.AC.2020.12.003] Ali F, 2015, TOURISM, V63, P37 Ali Z.M., 2019, International Journal of Accounting, V4, P53 Alles MG, 2020, J INF SYST, V34, P109, DOI 10.2308/isys-52633 Amerongen NV, 2022, MANAG AUDIT J, V37, P358, DOI 10.1108/MAJ-02-2021-3039 ANDERSON EW, 1994, J MARKETING, V58, P53, DOI 10.2307/1252310 [Anonymous], 2022, Facebook Aschauer E, 2016, BEHAV RES ACCOUNT, V29, P19, DOI 10.2308/bria-51654 Ashaari MA, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121119 Babayeva A., 2020, The effects of digitalization on auditing: a study investigating the benefits and challenges of digitalization on the audit profession Bakarich KM, 2021, J EMERG TECHNOL ACCO, V18, P27, DOI 10.2308/JETA-19-11-20-47 Balliet D, 2013, PSYCHOL BULL, V139, P1090, DOI 10.1037/a0030939 Barcelos E.M. B., 2015, AUST J BASIC APPL SC, V9, P429 Barr-Pulliam D, 2022, J INT FIN MANAG ACC, V33, P337, DOI 10.1111/jifm.12148 Basso A., 2001, P 3 ACM C EL COMM Behn B.K., 1997, ACCOUNT HORIZ, V11, P7 Berraies S, 2017, INT J BANK MARK, V35, P1018, DOI 10.1108/IJBM-09-2016-0137 Billari F., 2016, 1 INT C ADV RES METH Blunch N., 2012, INTRO STRUCTURAL EQU, VSecond, DOI DOI 10.4135/9781446249345 Brazel JF, 2014, BEHAV RES ACCOUNT, V26, P131, DOI 10.2308/bria-50630 Chen DQ, 2018, J BUS ETHICS, V153, P1083, DOI 10.1007/s10551-016-3366-5 Cheung KY, 2022, COGENT BUS MANAG, V9, DOI 10.1080/23311975.2022.2085366 Choi E.J., 2013, INT J SMART HOME, V7, P239, DOI [10.14257/ijsh.2013.7.1.22, DOI 10.14257/IJSH.2013.7.1.22] CIALDINI RB, 1981, ANNU REV PSYCHOL, V32, P357, DOI 10.1146/annurev.ps.32.020181.002041 Collier J.E., 2020, APPL STRUCTURAL EQUA, V1st, DOI [10.4324/9781003018414, DOI 10.4324/9781003018414] Cooper LA, 2019, ACCOUNT HORIZ, V33, P15, DOI 10.2308/acch-52466 D'Agostino R. B., 1986, GOODNESS OF FIT TECH, V68 Delgado-Ballester E, 2003, INT J MARKET RES, V45, P35 Didyasarin H., 2017, AU-GSB e-Journal, V10, P167 Dodgson MK, 2020, ACCOUNT REV, V95, P89, DOI 10.2308/accr-52556 DONALDSON T, 1995, ACAD MANAGE REV, V20, P65, DOI 10.5465/AMR.1995.9503271992 Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Du WY, 2018, J STRATEGIC INF SYST, V27, P296, DOI 10.1016/j.jsis.2018.07.001 Eagly A. H., 1993, PSYCHOL ATTITUDES Eastlick MA, 2006, J BUS RES, V59, P877, DOI 10.1016/j.jbusres.2006.02.006 El-Adly MI, 2019, J RETAIL CONSUM SERV, V50, P322, DOI 10.1016/j.jretconser.2018.07.007 Ennew CT, 1999, J BUS RES, V46, P121, DOI 10.1016/S0148-2963(98)00016-2 Faul F, 2007, BEHAV RES METHODS, V39, P175, DOI 10.3758/BF03193146 Flores F., 1998, Business Ethics Quarterly, V8, P205, DOI [10.2307/3857326, DOI 10.2307/3857326, https://doi.org/10.2307/3857326] Garbarino E, 1999, J MARKETING, V63, P70, DOI 10.2307/1251946 García-Fernández J, 2018, SPORT MANAG REV, V21, P250, DOI 10.1016/j.smr.2017.07.003 Getty J. M., 1994, Journal of Hospitality & Leisure Marketing, V2, P3, DOI 10.1300/J150v02n03_02 Harber M, 2020, J INT FIN MANAG ACC, V31, P215, DOI 10.1111/jifm.12115 Hasmayni B., 2018, IOSR Journal of Humanities and Social Science (IOSR-JHSS), V23, P65 Hayek A.F., 2022, Sustainable Development through Data Analytics and Innovation, P45 Haykin S. S., 2001, KALMAN FILTERING NEU Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Holbrook M.B., 1999, Consumer value: A framework for analysis and research, P1, DOI DOI 10.4324/9780203010679 Hong-Youl H., 2012, African Journal of Business Management, V6, P6745 Iglesias O, 2020, J BUS ETHICS, V163, P151, DOI 10.1007/s10551-018-4015-y Ismail I, 2006, MANAG AUDIT J, V21, P738, DOI 10.1108/02686900610680521 Javed MK, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.594132 Kerler W.A., 2005, The Effects of Auditors' Trust in Client Management on Auditors Kerler WA, 2009, J BUS ETHICS, V85, P109, DOI 10.1007/s10551-008-9752-x Keshavarz Y, 2018, INT J TOUR CITIES, V4, P220, DOI 10.1108/IJTC-09-2017-0044 Kim C, 2008, J ELECTRON COMMER OR, V6, P1, DOI 10.4018/jeco.2008070101 Kokina J, 2017, J EMERG TECHNOL ACCO, V14, P115, DOI 10.2308/jeta-51730 Kondasani RKR, 2015, INT J HEALTH CARE Q, V28, P452, DOI 10.1108/IJHCQA-01-2015-0008 Konuk FA, 2018, J RETAIL CONSUM SERV, V43, P304, DOI 10.1016/j.jretconser.2018.04.011 Kopp L., 2003, Presentation, Scholl of Accountancy Seminar Series Kumar R., 2015, Auditing Principles and Practice, V3 LAMBIN J.-J., 2012, Market-driven management: strategic and operational marketing Lapierre J, 1999, J BUS RES, V45, P235, DOI 10.1016/S0148-2963(97)00223-3 Lee CY, 2015, J ENTERP INF MANAG, V28, P680, DOI 10.1108/JEIM-07-2014-0077 Leong LY, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2020.103416 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Lewin JE, 1997, J BUS RES, V39, P23, DOI 10.1016/S0148-2963(96)00152-X Lien CH, 2015, ASIA PAC MANAG REV, V20, P210, DOI 10.1016/j.apmrv.2015.03.005 Louwers T.J., 2018, Auditing assurance services, V7 Manita R, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119751 Mansouri H., 2022, Spanish Journal of Marketing - ESIC, V26, P267, DOI [DOI 10.1108/SJME-09-2021-0176, 10.1108/sjme-09-2021-0176] McDougall GordonH. G., 2000, Journal of Services Marketing, V14, P392, DOI [10.1108/08876040010340937, DOI 10.1108/08876040010340937] McMurrian R.C., 2016, Journal of Business Economics Research, V14, P83, DOI 10.19030/jber.v4i11.2710 Merle A, 2008, RECH APPL MARKET-ENG, V23, P27, DOI 10.1177/205157070802300303 Mitnick B.M., 2015, Agency Theory, P1 Munoko I, 2020, J BUS ETHICS, V167, P209, DOI 10.1007/s10551-019-04407-1 Mustikarini A, 2022, MEDITARI ACCOUNT RES, V30, P267, DOI 10.1108/MEDAR-11-2020-1062 Myers D.G., 1994, Exploring Social Psychology Nicholson CY, 2001, J ACAD MARKET SCI, V29, P3, DOI 10.1177/0092070301291001 Noordin NA, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15080339 Öhman P, 2012, MANAG AUDIT J, V27, P477, DOI 10.1108/02686901211227995 Oliver R., 2014, SATISFACTION BEHAV P Oliver RL, 1997, J RETAILING, V73, P311, DOI 10.1016/S0022-4359(97)90021-X Özkan P, 2020, INT J BANK MARK, V38, P384, DOI 10.1108/IJBM-03-2019-0096 Patterson P, 2016, J SERV MARK, V30, P485, DOI 10.1108/JSM-05-2016-0190 QUICK Reiner., 2008, Auditing, Trust and Governance - Developing Regulation in Europe Rahman S., 2020, IOP C SERIES EARTH E Rama, 2022, Vision-The Journal of Business Perspective, DOI [10.1177/09722629221107229, DOI 10.1177/09722629221107229] Ranaweera C., 2003, J TARGETING MEASUREM, V12, P82, DOI [DOI 10.1057/PALGRAVE.JT.5740100, DOI 10.1057/5740100, 10.1057/5740100] Rawashdeh A., 2022, Journal of Positive School Psychology, V57, P9832 Rawashdeh A., 2023, Int. J. Data Netw. Sci, V7, P25, DOI [10.5267/j.ijdns.2022.12.010, DOI 10.5267/J.IJDNS.2022.12.010] Rawashdeh A, 2023, DECISION SCI LETT, V12, P255, DOI 10.5267/dsl.2023.1.009 Rempel K., 1985, Psychiatry the State of the Art, P305 Resnik L., 2018, IEEE Journal of Translational Engineering in Health and Medicine, V7, P1 Robinson, 2000, SAE Technical Paper Saleem A., 2015, Global Journal of Management and Business Research, V15, P21 Salijeni G, 2019, ACCOUNT BUS RES, V49, P95, DOI 10.1080/00014788.2018.1459458 Samukri S., 2022, IRE Journals, V5, P13 Sanchez-Cartas JM, 2022, IEEE ACCESS, V10, P10575, DOI 10.1109/ACCESS.2022.3144390 Schirmer N, 2018, J STRATEG MARK, V26, P298, DOI 10.1080/0965254X.2016.1240214 Schmitz J, 2019, AUST ACCOUNT REV, V29, P331, DOI 10.1111/auar.12286 Schneider D, 2022, SOCIOL METHOD RES, V51, P108, DOI 10.1177/0049124119882477 Seethamraju R, 2023, AUST J MANAGE, V48, P780, DOI 10.1177/03128962221108440 Shan SJ, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182010624 Singh J, 2000, J ACAD MARKET SCI, V28, P150, DOI 10.1177/0092070300281014 Smith JB, 1997, J MARKETING, V61, P3, DOI 10.2307/1252186 Stern MJ, 2014, FIELD METHOD, V26, P284, DOI 10.1177/1525822X13519561 Susanti V., 2020, International Review of Management and Marketing, V10, P19, DOI [10.32479/irmm.9017, DOI 10.32479/IRMM.9017] Taber KS, 2018, RES SCI EDUC, V48, P1273, DOI 10.1007/s11165-016-9602-2 Tung F., 2013, African Journal of Business Management, V7, P1730, DOI [https://doi.org/10.5897/AJBM10.383, DOI 10.5897/AJBM10.383] Tyrinopoulos Y, 2008, TRANSPORT POLICY, V15, P260, DOI 10.1016/j.tranpol.2008.06.002 Vanhamme J., 2004, Revue francaise du marketing, V197, P41 Williams B., 2010, Journal of Emergency Primary Health Care (JEPHC), V8, P1, DOI [10.33151/ajp.8.3.93, DOI 10.33151/AJP.8.3.93] Wu YL, 2018, INTERNET RES, V28, P74, DOI 10.1108/IntR-08-2016-0250 Zaheer A, 1998, ORGAN SCI, V9, P141, DOI 10.1287/orsc.9.2.141 ZEITHAML VA, 1988, J MARKETING, V52, P2, DOI 10.2307/1251446 Zia A., 2022, PSU Research Review, V6, P90, DOI [10.1108/PRR-07-2020-0023, DOI 10.1108/PRR-07-2020-0023] NR 121 TC 1 Z9 1 U1 4 U2 4 PU EMERALD GROUP PUBLISHING LTD PI Leeds PA Floor 5, Northspring 21-23 Wellington Street, Leeds, W YORKSHIRE, ENGLAND SN 0967-5426 EI 1758-8855 J9 J APPL ACCOUNT RES JI J. Appl. Account. Res. PD 2023 SEP 1 PY 2023 DI 10.1108/JAAR-10-2022-0273 EA SEP 2023 PG 29 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA DP9H8 UT WOS:001133374000001 DA 2024-03-27 ER PT J AU Sadiq, MW Akhtar, MW Huo, CH Zulfiqar, S AF Sadiq, Muhammad Waqas Akhtar, Muhammad Waheed Huo, Chunhui Zulfiqar, Salman TI ChatGPT-powered chatbot as a green evangelist: an innovative path toward sustainable consumerism in E-commerce SO SERVICE INDUSTRIES JOURNAL LA English DT Article DE CGGE; consumer equilibrium; green purchase intentions; brand credibility ID ARTIFICIAL-INTELLIGENCE; BRAND CREDIBILITY; IMPACT; EQUILIBRIUM; INFORMATION; TECHNOLOGY; ACCEPTANCE; PRODUCTS; SERVICES; BEHAVIOR AB The purpose of the current article is to propose the construction of ChatGPT as a green evangelist (CGGE) and to develop and validate the CGGE scale using two independent studies. Study 1 mainly adopted exploratory factor analysis to test whether the twenty items of the CGGE construct and the eight items of consumer equilibrium can represent these constructs statistically via exploratory factor analysis. Furthermore, through Study 2, this study primarily tested the convergent and discriminant validity of CGGE and consumer equilibrium. Finally, further analysis explains the relationship between CGGE and consumer equilibrium through green purchase intentions at different levels of brand credibility, including high and low levels, using structural equational modeling. Study 1 showed that the initial twenty items of CGGE are appropriately loaded on four factors and the eight items of consumer equilibrium are appropriately loaded on single factors. Study 2 demonstrated that CGGE could significantly predict consumer equilibrium through green purchase intentions at different brand credibility levels. This article contributes to the advancement of the unified theory of acceptance and use of technology (UTAUT) and research and provides a valuable tool for future empirical research on ChatGPT. C1 [Sadiq, Muhammad Waqas; Huo, Chunhui] Liaoning Univ, Fac Econ, Business Sch, Shenyang, Peoples R China. [Sadiq, Muhammad Waqas] COMSATS Univ Islamabad, Dept Management Sci, Sahiwal Campus, Islamabad, Pakistan. [Akhtar, Muhammad Waheed] Liaoning Univ, Fac Econ, Sunwah Int Business Sch, Shenyang, Peoples R China. [Akhtar, Muhammad Waheed] Int Univ Rabat, Rabat Business Sch, Rabat, Morocco. [Huo, Chunhui; Zulfiqar, Salman] Liaoning Univ Shenyang, Asia Australia Business Coll, Fac Econ, Shenyang, Peoples R China. C3 Liaoning University; COMSATS University Islamabad (CUI); Liaoning University; Universite Internationale de Rabat RP Huo, CH (autor correspondiente), Liaoning Univ, Fac Econ, Business Sch, Shenyang, Peoples R China.; Huo, CH (autor correspondiente), Liaoning Univ Shenyang, Asia Australia Business Coll, Fac Econ, Shenyang, Peoples R China. EM huoch@lnu.edu.cn RI Sadiq, Muhammad Waqas/AAT-1563-2021; Akhtar, Muhammad Waheed/AAQ-1051-2021; Zulfiqar, Salman/HKO-6125-2023 OI Sadiq, Muhammad Waqas/0000-0003-3331-0702; Akhtar, Muhammad Waheed/0000-0002-7579-5720; FU National Planning Office of Philosophy and Social Sciences of China [21BGL047]; National Social Science Foundation of China FX The authors acknowledge the support provided by the National Social Science Foundation of China (No. 21BGL047) for this study. CR Abbasi M, 2016, WASTE MANAGE, V56, P13, DOI 10.1016/j.wasman.2016.05.018 Abu ZayyadH M., 2021, J MARK COMMUN, V27, P510, DOI DOI 10.1080/13527266.2020.1728565 Abu-Taieh EM., 2022, Journal of Open Innovation: Technology, Market, and Complexity, V8, P120, DOI [DOI 10.3390/JOITMC8030120, https://doi.org/10.3390/joitmc8030120] AbuShanab E., 2007, J SYSTEMS INFORM TEC, V9, P78, DOI DOI 10.1108/13287260710817700 Ahmad W, 2020, J CLEAN PROD, V267, DOI 10.1016/j.jclepro.2020.122053 Aksah H., 2023, International Journal of Global Optimization and Its Application, V2, P12, DOI [10.56225/ijgoia.v2i1.161, DOI 10.56225/IJGOIA.V2I1.161] Alamanda D. T., 2021, INT J APPL BUSINESS, V6, P35 Aleedy M, 2019, INT J ADV COMPUT SC, V10, P60 Ameen N, 2023, SERV IND J, V43, P125, DOI 10.1080/02642069.2023.2185934 Anabel T. W. V., 2022, J LANGUAGES LANGUAGE, V10, P118, DOI [https://doi.org/10.33394/jollt.v10i2.4994, DOI 10.33394/JOLLT.V10I2.4994] ANDERSON JC, 1988, PSYCHOL BULL, V103, P411, DOI 10.1037/0033-2909.103.3.411 Appolloni A, 2022, ECOL ECON, V193, DOI 10.1016/j.ecolecon.2021.107311 Armitage CJ, 2000, PERS SOC PSYCHOL B, V26, P1421, DOI 10.1177/0146167200263009 Avató JL, 2022, ENERGIES, V15, DOI 10.3390/en15155423 Bae JH, 2021, ENERGY, V230, DOI 10.1016/j.energy.2021.120726 Baidoo-Anu D., 2023, Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning, DOI [10.2139/ssrn.4337484, DOI 10.2139/SSRN.4337484] Bangsa AB, 2020, J CLEAN PROD, V245, DOI 10.1016/j.jclepro.2019.118902 Beerbaum Dr D. O., 2023, GENERATIVE ARTIFICIA Bendary N., 2018, Exploring the extension of unified theory of acceptance and use of technology, UTAUT2, factors effect on perceived usefulness and ease of use on mobile commerce in Egypt Berger J, 2019, J CONSUM BEHAV, V18, P233, DOI 10.1002/cb.1760 Bertoldi P, 2022, ENERG BUILDINGS, V264, DOI 10.1016/j.enbuild.2022.112075 Biswas A., 2016, J ADV MANAGEMENT SCI, V4, P211, DOI [DOI 10.12720/JOAMS.4.3.211-215, 10.12720/joams.4.3.211-215] Biswas S., 2023, FUNCTION CHAT GPT SO Biswas S., 2023, IMPORTANCE CHAT GPT Biswas SS, 2023, ANN BIOMED ENG, V51, P1126, DOI 10.1007/s10439-023-03171-8 Bumett J, 2007, LANDSCAPE URBAN PLAN, V83, P29, DOI 10.1016/j.landurbplan.2007.09.003 Campbell J, 2014, INT J HOSP MANAG, V42, P39, DOI 10.1016/j.ijhm.2014.05.014 Cardoso A. G., 2023, IMPORTANCE TECHNOLOG Chen CC, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030854 Chen H, 2021, CHEMSUSCHEM, V14, P4123, DOI 10.1002/cssc.202100652 Chen J, 2017, INT J INNOV COMPUT I, V13, P85 Chen YS, 2012, MANAGE DECIS, V50, P502, DOI 10.1108/00251741211216250 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Cheung GW, 2023, ASIA PAC J MANAG, DOI 10.1007/s10490-023-09880-x Chiemeke S., 2011, EDUC RES-UK, V2, P1719 Chin IsaS M., 2020, Journal of Marketing Communications, V26, P896, DOI [10.1080/13527266.2019.1604561, DOI 10.1080/13527266.2019.1604561] Chopdar PK, 2018, COMPUT HUM BEHAV, V86, P109, DOI 10.1016/j.chb.2018.04.017 Connell J, 2018, QUAL LIFE RES, V27, P1893, DOI 10.1007/s11136-018-1847-y Dajani D., 2016, Journal of Comparative International Management, V19, P121 Das KP, 2023, ENERGY NEXUS, V9, DOI 10.1016/j.nexus.2022.100167 Dawson JF, 2014, J BUS PSYCHOL, V29, P1, DOI 10.1007/s10869-013-9308-7 Denton FT, 2011, ATLANTIC ECON J, V39, P261, DOI 10.1007/s11293-011-9276-0 Diao J., 2023, CELL REP, V42, P1 Dwivedi YK, 2023, INT J INFORM MANAGE, V71, DOI 10.1016/j.ijinfomgt.2023.102642 Elahi K., 2022, 10 EUR S EC THEOR VI Erdem T, 2004, J CONSUM RES, V31, P191, DOI 10.1086/383434 Escursell S, 2021, J CLEAN PROD, V280, DOI 10.1016/j.jclepro.2020.124314 Falcao D, 2022, INT J CONSUM STUD, V46, P1718, DOI 10.1111/ijcs.12803 Flavian C, 2021, SERV IND J, V41, P853, DOI 10.1080/02642069.2021.1989177 Forgas-Coll S, 2023, SERV IND J, V43, P154, DOI 10.1080/02642069.2022.2163995 George A. S., 2023, PARTNERS U INT INNOV, V1, P91, DOI [https://doi.org/10.5281/ZENODO.7855594, DOI 10.5281/ZENODO.7855594, 10.5281/zenodo.7855594] Ghosal I., 2022, FUTURE WORK BUSINESS, P89 Gómez-Llanos E, 2020, SCI TOTAL ENVIRON, V721, DOI 10.1016/j.scitotenv.2020.137743 Gray-Hawkins M., 2020, Journal of Self-Governance and Management Economics, V8, P19, DOI DOI 10.22381/JSME8420202 Guo WS, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103353 Gürlek M, 2021, SERV IND J, V41, P734, DOI 10.1080/02642069.2021.1929930 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hair JF, 2017, J ACAD MARKET SCI, V45, P616, DOI 10.1007/s11747-017-0517-x HAO S, 2023, SERV IND J, P1 Henseler J, 2017, INT SER QUAN MARKET, P361, DOI 10.1007/978-3-319-53469-5_12 Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Howitt P, 2014, J ECON DYN CONTROL, V39, P37, DOI 10.1016/j.jedc.2013.11.003 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Huang YC, 2014, MARK INTELL PLAN, V32, P250, DOI 10.1108/MIP-10-2012-0105 Huang YS, 2021, SERV IND J, V41, P964, DOI 10.1080/02642069.2021.1957845 Ihemezie EJ., 2018, International Journal of Academic Research in Business Social Sciences, DOI [10.6007/IJARBSS/v8-i9/4647, DOI 10.6007/IJARBSS/V8-I9/4647, https://doi.org/10.6007/IJARBSS/v8-i9/4647] Ikumoro A., 2019, INT J ACAD RES BUSIN, V9, P205, DOI [DOI 10.6007/IJARBSS/V9-I11/6544, 10.6007/ijarbss/v9i11/6544, DOI 10.6007/IJARBSS/V9I11/6544] Indriani I a D., 2019, INT J MULTICULTURAL, V6, P627, DOI [10.18415/ijmmu.v6i2.706, DOI 10.18415/IJMMU.V6I2.706] Jeng SP, 2016, J AIR TRANSP MANAG, V55, P1, DOI 10.1016/j.jairtraman.2016.04.005 Jiang H., 2023, ADV MULTIMED, P2023 Joshi Y, 2019, ECOL ECON, V159, P235, DOI 10.1016/j.ecolecon.2019.01.025 Joshi Y, 2017, SUSTAIN PROD CONSUMP, V10, P110, DOI 10.1016/j.spc.2017.02.002 Kachamas Pornpimon, 2019, International Journal of Machine Learning and Computing, V9, P91, DOI 10.18178/ijmlc.2019.9.1.770 Kalla D., 2023, Int. J. Innov. Sci. Res. Technol, V8, P827 Kan MQ, 2022, RESOUR CONSERV RECY, V180, DOI 10.1016/j.resconrec.2022.106156 Khan S., 2020, P 2020 4 INT S COMP, P1 Khatimah H., 2014, American-Eurasian Journal of Sustainable Agriculture, V8, P34 Khrais LT, 2020, FUTURE INTERNET, V12, DOI 10.3390/fi12120226 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015040101 Kumar P, 2021, EUR J MARKETING, V55, P2037, DOI 10.1108/EJM-10-2019-0808 Kyriazos T.A., 2018, PSYCHOLOGY, V09, P2207, DOI [DOI 10.4236/PSYCH.2018.98126, https://doi.org/10.4236/psych.2018.98126, 10.4236/psych.2018.98126] Lasuin C. A., 2014, Malaysian Journal of Business and Economics, V1, P1 Lee CT, 2022, INTERNET RES, V32, P1329, DOI 10.1108/INTR-01-2021-0030 Lee S, 2020, J GLOB FASH MARK, V11, P232, DOI 10.1080/20932685.2020.1752766 Liao MC, 2022, J IND ECOL, V26, P164, DOI 10.1111/jiec.13214 Lim PK, 2021, INTERNET RES, V31, P497, DOI 10.1108/INTR-03-2020-0165 Lin CJ, 2016, SOC ENTERP J, V12, P281, DOI 10.1108/SEJ-02-2016-0004 Lin JB, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.11.001 Lubis A. R., 2016, EXPERT J MARKETING, V4, P20 Mariani MM, 2023, J BUS RES, V161, DOI 10.1016/j.jbusres.2023.113838 Mashaabi M., 2022, ARXIV McGee R. W., 2023, IS CHATGPT BIASED CO Migliore M, 2019, ENVIRON ENG MANAG J, V18, P2297 Ming L, 2022, M&SOM-MANUF SERV OP, V24, P1437, DOI 10.1287/msom.2022.1083 Mogyoros A, 2023, J INTELLET PROP LAW, V18, P367, DOI 10.1093/jiplp/jpad029 Mook A., 2023, WORLD SOC CONVERGENC Moran D, 2020, CLIM POLICY, V20, pS28, DOI 10.1080/14693062.2018.1551186 Musa H.M., 2013, Natural Environment, V1, P17, DOI [https://doi.org/10.12966/ne.06.02.2013, DOI 10.12966/NE.06.02.2013, 10.12966/ne.06.02.2013] Ngai EWT, 2021, ELECTRON COMMER R A, V50, DOI 10.1016/j.elerap.2021.101098 Northey G, 2022, INT J BANK MARK, V40, P1182, DOI 10.1108/IJBM-09-2021-0439 Nyumba TO, 2018, METHODS ECOL EVOL, V9, P20, DOI 10.1111/2041-210X.12860 Olan F, 2021, IEEE T ENG MANAGE, DOI 10.1109/TEM.2021.3083536 Park HJ, 2020, J BUS RES, V117, P623, DOI 10.1016/j.jbusres.2018.08.025 Peres R, 2023, INT J RES MARK, V40, P269, DOI 10.1016/j.ijresmar.2023.03.001 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Popescu G.H., 2015, Economics, Management and Financial Markets; Woodside, V10, P80 Porumb VA, 2020, J CLEAN PROD, V272, DOI 10.1016/j.jclepro.2020.122080 Prakash AV, 2023, SERV IND J, V43, P642, DOI 10.1080/02642069.2023.2166493 Praneetvatakul S, 2022, FRONT SUSTAIN FOOD S, V5, DOI 10.3389/fsufs.2021.704233 Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Rabby F., 2021, ACAD MARKETING STUDI, V25, P1 Rahi S., 2018, MANAGEMENT SCI LETT, V8, P173, DOI [DOI 10.5267/J.MSL.2018.1.001, 10.5267/j.msl.2018.1.001] Ramaswamy S, 2018, PROCEDIA COMPUT SCI, V140, P170, DOI 10.1016/j.procs.2018.10.326 Raubenheimer J.E., 2004, South African Journal of Industrial Psychology, V30, P59, DOI 10.4102/sajip.v30i4.168 Razmus W, 2022, PSYCHOL MARKET, V39, P2096, DOI 10.1002/mar.21714 Richter NF, 2016, EUR MANAG J, V34, P589, DOI 10.1016/j.emj.2016.08.001 Sadiq MW, 2022, FRONT PUBLIC HEALTH, V10, DOI 10.3389/fpubh.2022.984848 Sadiq W, 2020, MARK MANAG INNOV, P149, DOI 10.21272/mmi.2020.1-12 Shafeeg A, 2023, Indonesian Journal of Computer Science, DOI 10.33022/ijcs.v12i1.3146 Sheeraz M., 2012, INT J ACAD RES BUSIN, V2, P1 Singh L, 2023, INT J METH PSYCH RES, V32, DOI 10.1002/mpr.1936 Sreen N, 2018, J RETAIL CONSUM SERV, V41, P177, DOI 10.1016/j.jretconser.2017.12.002 Stichnothe H, 2022, INT J LIFE CYCLE ASS, V27, P1270, DOI 10.1007/s11367-022-02106-0 STIGLITZ JE, 1979, AM ECON REV, V69, P339 Suki NM, 2015, PROC ECON FINANC, V37, P262, DOI 10.1016/S2212-5671(16)30123-X Sun HL, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.856663 Surameery N.M.S., 2023, Int. J. Inform. Technol. Comput. Eng., V3, P17, DOI DOI 10.55529/IJITC.31.17.22 Teo C. B.-C., 2016, J INT BUSINESS EC EN, V1, P915 Testa F, 2015, BUS STRATEG ENVIRON, V24, P252, DOI 10.1002/bse.1821 Thowfeek M. H., 2020, SOLID STATE TECHNOL, V63, P6400 Trujillo-Ortiz A., 2006, KMO KAISER MEYER OLK Tukker A, 2006, J IND ECOL, V10, P159, DOI 10.1162/jiec.2006.10.3.159 Vashisht Vipul, 2020, Micro-Electronics and Telecommunication Engineering. Proceedings of 3rd ICMETE 2019. Lecture Notes in Networks and Systems (LNNS 106), P683, DOI 10.1007/978-981-15-2329-8_69 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Vitezic V, 2021, SERV IND J, V41, P926, DOI 10.1080/02642069.2021.1974406 Wang H, 2022, SUSTAIN PROD CONSUMP, V32, P198, DOI 10.1016/j.spc.2022.04.015 Wang S.-M., 2023, REV INTEGRATIVE BUSI, V12, P71 Wang S, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132111975 Wang YY, 2020, INT J PROD RES, V58, P7471, DOI 10.1080/00207543.2020.1765040 West A., 2018, The Business Management Review, V9, P321, DOI DOI 10.15341/JBE(2155-7950)/10.09.2018/005 Wilson M, 2016, J PROD BRAND MANAG, V25, P394, DOI 10.1108/JPBM-09-2015-0972 Worthington RL, 2006, COUNS PSYCHOL, V34, P806, DOI 10.1177/0011000006288127 Xie H, 2023, ECON RES-EKON ISTRAZ, V36, P230, DOI 10.1080/1331677X.2022.2117718 XIONG Y, 2022, DISCRETE DYN NAT SOC, P1 Yabe M., 2013, MULTIFUNCTIONAL AGR, P21 Yaqub R, 2016, INT T ELECTR ENERGY, V26, P1570, DOI 10.1002/etep.2167 Zhang LM, 2022, ENERG BUILDINGS, V256, DOI 10.1016/j.enbuild.2021.111677 Zhang XY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102888 Zhang Z, 2013, ACM TRANS MANAG INF, V3, DOI 10.1145/2407740.2407744 Zhou S, 2023, DIGIT HEALTH, V9, DOI 10.1177/20552076231155679 Zhuang WC, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.644020 NR 152 TC 0 Z9 0 U1 24 U2 24 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0264-2069 EI 1743-9507 J9 SERV IND J JI Serv. Ind. J. PD MAR 11 PY 2024 VL 44 IS 3-4 BP 173 EP 217 DI 10.1080/02642069.2023.2278463 EA NOV 2023 PG 45 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA HI0F2 UT WOS:001115573500001 DA 2024-03-27 ER PT J AU Tudoran, AA AF Tudoran, Ana Alina TI A machine learning approach to identifying decision-making styles for managing customer relationships SO ELECTRONIC MARKETS LA English DT Article DE Satisficers; Maximizers; Decision-making; Clickstreams; Machine learning; E-commerce ID INFORMATION SEARCH; WEB SITE; MAXIMIZERS; EXPERIENCE; MODEL; CLICKSTREAM; SATISFICERS; DIFFICULTY; ENVIRONMENTS; TENDENCY AB Decision-making styles have been studied in non-situational settings using the classical survey instrument. This study proposes a novel methodology for identifying decision-making styles in a real-world purchasing situation using only behavioral data and machine learning. We base our analysis on a two-week sample of 1,347,854 clickstream sessions from an e-commerce company and extract a series of parameters to infer the search goal, strategy, and decision difficulty. We implement a range of unsupervised algorithms, and we identify and validate three internally stable classes of decision-makers. One category corresponds to the classical style of satisficers; the other two subcategorize the maximisers' classical style. The customer's entry channel preferences and movement patterns provide compelling support for the style's predictive validity. This study contributes to research and practice by proposing a new methodology to recognize the customer decision style in the e-commerce setting. C1 [Tudoran, Ana Alina] Aarhus Univ, Sch Business & Social Sci, Fuglesangs Alle, DK-8210 Aarhus, Denmark. C3 Aarhus University RP Tudoran, AA (autor correspondiente), Aarhus Univ, Sch Business & Social Sci, Fuglesangs Alle, DK-8210 Aarhus, Denmark. EM anat@econ.au.dk RI Tudoran, Ana/HMU-9691-2023 OI Tudoran, Ana/0000-0002-1380-4775 CR Anderl E, 2016, J RETAILING, V92, P185, DOI 10.1016/j.jretai.2015.10.001 Anderson CJ, 2003, PSYCHOL BULL, V129, P139, DOI 10.1037//0033-2909.129.1.139 Ariely D, 2000, J CONSUM RES, V27, P233, DOI 10.1086/314322 Arunachalam D, 2018, EXPERT SYST APPL, V111, P11, DOI 10.1016/j.eswa.2018.03.007 Basu S, 2018, ELECTRON COMMER R A, V30, P25, DOI 10.1016/j.elerap.2018.05.004 BLASHFIELD RK, 1991, J CLASSIF, V8, P277 Blattberg R.C., 2008, INT SERIES QUANTITAT, V18 Brannon DC, 2017, MARKET LETT, V28, P651, DOI 10.1007/s11002-017-9440-7 Brock G, 2008, J STAT SOFTW, V25, P1, DOI 10.18637/jss.v025.i04 Broniarczyk SM, 2014, J CONSUM PSYCHOL, V24, P608, DOI 10.1016/j.jcps.2014.05.003 Buchta C., 2020, CRAN REPOSITORY Bucklin RE, 2009, J INTERACT MARK, V23, P35, DOI 10.1016/j.intmar.2008.10.004 Card Stuart K., 1983, The Psychology of Human-Computer Interaction Carrillat FA, 2011, MARKET LETT, V22, P283, DOI 10.1007/s11002-010-9125-y Chabris ChristopherF., 2008, Measuring Intertemporal Preferences Using Response Times Cheek NN, 2016, JUDGM DECIS MAK, V11, P126 Cheng JQ, 2018, ACTA PSYCHOL, V190, P199, DOI 10.1016/j.actpsy.2018.08.002 Chowdhury TG, 2009, MARKET LETT, V20, P155, DOI 10.1007/s11002-008-9063-0 Cottrell M, 2006, NEURAL NETWORKS, V19, P762, DOI 10.1016/j.neunet.2006.05.018 Dalal DK, 2015, J BEHAV DECIS MAKING, V28, P437, DOI 10.1002/bdm.1859 de Haan E, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.17.0113 DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1, DOI 10.1111/j.2517-6161.1977.tb01600.x Diab DL, 2008, JUDGM DECIS MAK, V3, P364 Ding AWX, 2015, INFORM SYST RES, V26, P339, DOI 10.1287/isre.2015.0568 Dolnicar S., 2018, Market Segmentation Analysis: Understanding It, Doing It, and Making It Useful, DOI [DOI 10.1007/978-981-10-8818-6_2, 10.1007/978-981-10-8818-6_2] Dolnicar S, 2010, MARKET LETT, V21, P83, DOI 10.1007/s11002-009-9083-4 Fu WT, 2007, HUM-COMPUT INTERACT, V22, P355 Furner CP, 2017, ELECTRON MARK, V27, P211, DOI 10.1007/s12525-016-0233-2 Genewein T, 2015, FRONT ROBOT AI, DOI 10.3389/frobt.2015.00027 Ghose A, 2013, INFORM SYST RES, V24, P613, DOI 10.1287/isre.1120.0453 GOWER JC, 1971, BIOMETRICS, V27, P857, DOI 10.2307/2528823 Hair J.F., 2009, Multivariate data analysis Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Hennig C, 2007, COMPUT STAT DATA AN, V52, P258, DOI 10.1016/j.csda.2006.11.025 HUBERT L, 1985, J CLASSIF, V2, P193, DOI 10.1007/BF01908075 Iwanaga J, 2019, ELECTRON COMMER R A, V37, DOI 10.1016/j.elerap.2019.100877 Iyengar SS, 2006, PSYCHOL SCI, V17, P143, DOI 10.1111/j.1467-9280.2006.01677.x Jaccard P., 1912, New Phytologist, V11, P37, DOI [10.1111/j.1469-8137.1912.tb05611.x, DOI 10.1111/J.1469-8137.1912.TB05611.X] Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Karimi S, 2018, J BUS RES, V91, P71, DOI 10.1016/j.jbusres.2018.05.038 Karimi S, 2015, DECIS SUPPORT SYST, V77, P137, DOI 10.1016/j.dss.2015.06.004 Kendall MG, 1938, BIOMETRIKA, V30, P81, DOI 10.1093/biomet/30.1-2.81 Klein LR, 1998, J BUS RES, V41, P195, DOI 10.1016/S0148-2963(97)00062-3 Kohonen T., 1998, Neurocomputing, V21, P1, DOI 10.1016/S0925-2312(98)00030-7 KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441 Kullback S., 1959, Information theory and statistics LABAND DN, 1991, ECON INQ, V29, P497, DOI 10.1111/j.1465-7295.1991.tb00842.x Lai L, 2010, JUDGM DECIS MAK, V5, P164 Leisch F., 2018, CRAN REPOSITORY Li HS, 2014, J MARKETING RES, V51, P40, DOI 10.1509/jmr.13.0050 Lingras P, 2005, INFORM SCIENCES, V172, P215, DOI 10.1016/j.ins.2004.12.007 Ma JJ, 2014, J CONSUM RES, V41, P71, DOI 10.1086/674977 Mandel N, 2002, J CONSUM RES, V29, P235, DOI 10.1086/341573 Mao W, 2016, J CONSUM PSYCHOL, V26, P66, DOI 10.1016/j.jcps.2015.04.007 MARTINETZ TM, 1993, IEEE T NEURAL NETWOR, V4, P558, DOI 10.1109/72.238311 McClure SM, 2004, SCIENCE, V306, P503, DOI 10.1126/science.1100907 Misuraca R, 2015, PERS INDIV DIFFER, V85, P111, DOI 10.1016/j.paid.2015.04.043 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Montgomery AL, 2004, MARKET SCI, V23, P579, DOI 10.1287/mksc.1040.0073 Moyano-Díaz E, 2020, REV CES PSICOL, V13, P18, DOI 10.21615/cesp.13.1.2 Nakayama M, 2010, ELECTRON MARK, V20, P251, DOI 10.1007/s12525-010-0041-z NELSON P, 1974, J POLIT ECON, V82, P729, DOI 10.1086/260231 Nenkov GY, 2008, JUDGM DECIS MAK, V3, P371 Nottorf F, 2014, ELECTRON COMMER R A, V13, P45, DOI 10.1016/j.elerap.2013.07.004 Olander F., 1975, UTILITY PROBABILITY, P297, DOI [10.1007/978-94-010-1834-0_18, DOI 10.1007/978-94-010-1834-0_18] Parker AM, 2007, JUDGM DECIS MAK, V2, P342 Payne John W., 1993, ADAPTIVE DECISION MA PAYNE JW, 1988, J EXP PSYCHOL LEARN, V14, P534, DOI 10.1037/0278-7393.14.3.534 Peña JM, 1999, PATTERN RECOGN LETT, V20, P1027, DOI 10.1016/S0167-8655(99)00069-0 Pirolli P, 1999, PSYCHOL REV, V106, P643, DOI 10.1037/0033-295X.106.4.643 Polman E, 2010, J BEHAV DECIS MAKING, V23, P179, DOI 10.1002/bdm.647 RAND WM, 1971, J AM STAT ASSOC, V66, P846, DOI 10.2307/2284239 Schellong D., 2016, 24 EUROPEAN C INFORM Schwartz B, 2002, J PERS SOC PSYCHOL, V83, P1178, DOI 10.1037//0022-3514.83.5.1178 Schwartz B., 2004, The paradox of choice: Why more is less SCHWARZ G, 1978, ANN STAT, V6, P461, DOI 10.1214/aos/1176344136 SHEHU E, 2020, J MARKETING RES PRES Shocker AD., 1991, MARKET LETT, V2, P181, DOI [10.1007/BF02404071, DOI 10.1007/BF02404071, DOI 10.1007/BF00554125] Simon HA, 1955, Q J ECON, V69, P99, DOI 10.2307/1884852 Sismeiro C, 2004, J MARKETING RES, V41, P306, DOI 10.1509/jmkr.41.3.306.35985 Sokal, 1973, NUMERICAL TAXONOMY P SOKAL ROBERT R., 1962, TAXON, V11, P33, DOI 10.2307/1217208 SPROLES GB, 1986, J CONSUM AFF, V20, P267, DOI 10.1111/j.1745-6606.1986.tb00382.x van Erven T, 2014, IEEE T INFORM THEORY, V60, P3797, DOI 10.1109/TIT.2014.2320500 Vesanto J, 2000, IEEE T NEURAL NETWOR, V11, P586, DOI 10.1109/72.846731 Vogrincic-Haselbacher C, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.642641 Weathers D, 2006, J INTERACT MARK, V20, P41, DOI 10.1002/dir.20060 Weaver K, 2015, J CONSUM PSYCHOL, V25, P372, DOI 10.1016/j.jcps.2014.10.003 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Wilcoxon F., 1992, Biometrics Bulletin, P196, DOI [10.1007/978-1-4612-4380-9_16, DOI 10.2307/3001968, 10.2307/3001968] Yadav MS, 2014, J MARKETING, V78, P20, DOI 10.1509/jm.12.0020 Yang L, 2015, J MARKETING RES, V52, P166, DOI 10.1509/jmr.13.0288 Zhang J, 2006, J MANAGE INFORM SYST, V23, P71, DOI 10.2753/MIS0742-1222230304 NR 93 TC 3 Z9 4 U1 2 U2 30 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD MAR PY 2022 VL 32 IS 1 BP 351 EP 374 DI 10.1007/s12525-021-00515-x EA JAN 2022 PG 24 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 1F1AS UT WOS:000741582400001 DA 2024-03-27 ER PT J AU Ramadan, ZB AF Ramadan, Zahy B. TI "Alexafying" shoppers: The examination of Amazon's captive relationship strategy SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Amazon; Alexa; Retailing; E-commerce; AI; Customer journey ID BRAND ADDICTION; LOCK-IN; CUSTOMER SATISFACTION; ENGAGEMENT PLATFORMS; CONSUMER EXPERIENCE; SELF; SERVICE; ONLINE; TECHNOLOGIES; LOVE AB The virtual assistants' market is drastically growing and is expected to reach $2.1 billion by 2020. Nonetheless, the quick expansion and high penetration of e-retailers' AI ecosystem into the shopper's journey is still under researched in the extant literature. Amazon's Alexa in particular has been fast proliferating into the customer's journey, favoring the development of captive audiences given this new ambient environment. Through a mixed methodology using both qualitative and quantitative approaches, this study examines Amazon's captive relationship strategy on shoppers, brands and competing retailers. The research findings show that Amazon's AI relationship strategy with its customers is based on forming a multi-faceted identity for the AI that would later on facilitate a captive situation that would lead to an addictive relationship. This study is amongst the first to examine the rapid development of e-retailers' AI ecosystem into the shopper's journey. Taking the pioneering case of Amazon's Alexa powered devices, this research presents a working framework upon which scholars and practitioners alike could base their future studies and strategies on in the fast-growing field of interactive voice assistants and AI led conversations. C1 [Ramadan, Zahy B.] Lebanese Amer Univ, POB 13-5053, Beirut 11022801, Lebanon. C3 Lebanese American University RP Ramadan, ZB (autor correspondiente), Lebanese Amer Univ, POB 13-5053, Beirut 11022801, Lebanon. EM zahy.ramadan@lau.edu.lb RI Ramadan, Zahy/O-2521-2016 OI Ramadan, Zahy/0000-0001-8368-3617 CR Aaker JL, 1997, J MARKETING RES, V34, P347, DOI 10.2307/3151897 Abdul-Ghani E, 2011, J BUS RES, V64, P1060, DOI 10.1016/j.jbusres.2010.10.009 Ahuvia A.C., 2009, HDB BRAND RELATIONSH, P342, DOI DOI 10.4324/9781315703886 Ahuvia AC, 2005, J CONSUM RES, V32, P171, DOI 10.1086/429607 Albert N, 2008, J BUS RES, V61, P1062, DOI 10.1016/j.jbusres.2007.09.014 Amazon, 2019, ALL THINGS ALEXA ALE Andersen PH, 2006, IND MARKET MANAG, V35, P522, DOI 10.1016/j.indmarman.2004.10.010 [Anonymous], 2020, CAPTIVE [Anonymous], 2010, SATISFACTION BEHAV P, DOI DOI 10.4324/9781315700892 [Anonymous], 2014, HDB RES RETAILER CON [Anonymous], 2009, J BUS IND MARKET ANTONUCCI TC, 2017, INNOV AGING, V1 ARON A, 1995, J PERS SOC PSYCHOL, V69, P1102, DOI 10.1037/0022-3514.69.6.1102 ARTHUR WB, 1989, ECON J, V99, P116, DOI 10.2307/2234208 BAGOZZI RP, 1991, J PERS SOC PSYCHOL, V61, P98, DOI 10.1037/0022-3514.61.1.98 Barnes DC, 2015, J BUS RES, V68, P433, DOI 10.1016/j.jbusres.2014.06.005 Batra R, 2012, J MARKETING, V76, P1, DOI 10.1509/jm.09.0339 Bauer H., 2009, Proceedings of the American Marketing Association summer educators conference, V15, P252 Belk RW, 2003, J CONSUM RES, V30, P326, DOI 10.1086/378613 BELK RW, 1988, J CONSUM RES, V15, P139, DOI 10.1086/209154 Benady D., 2014, How Technology is Changing Marketing Binns R, 2019, THEY IT AMAZONS CRM Bitner MJ, 2002, ACAD MANAGE EXEC, V16, P96, DOI 10.5465/AME.2002.8951333 Boyatzis R.E., 1998, Transforming qualitative information: Thematic analysis and code development Braun V., 2006, Qualitative Research in Psychology, V3, P77, DOI [10.1191/1478088706qp063oa, DOI 10.1191/1478088706QP063OA] Breidbach CF, 2017, J SERV THEOR PRACT, V27, P761, DOI 10.1108/JSTP-04-2016-0071 Breidbach CF, 2014, MANAG SERV QUAL, V24, P592, DOI 10.1108/MSQ-08-2013-0158 Brill TM, 2019, J MARKET MANAG-UK, V35, P1401, DOI 10.1080/0267257X.2019.1687571 Brodie RJ, 2019, J SERV RES-US, V22, P173, DOI 10.1177/1094670519827385 Brown T. A., 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005 Bryman A., 2006, Qualitative Research, V6, P97, DOI [10.1177/1468794106058877, DOI 10.1177/1468794106058877, https://doi.org/10.1177/1468794106058877] Bryman A., 2015, Business research methods, V4th Caddy B, 2019, ALEXA WHAT WILL YOU Canbek G.N., 2016, INT J HUMAN SCI, V13, P592, DOI DOI 10.14687/IJHS.V13I1.3549 Carpenter JM, 2008, J RETAIL CONSUM SERV, V15, P358, DOI 10.1016/j.jretconser.2007.08.003 Carroll BA, 2006, MARKET LETT, V17, P79, DOI 10.1007/s11002-006-4219-2 Chung H, 2017, DIGIT INVEST, V22, pS15, DOI 10.1016/j.diin.2017.06.010 Columbus L., 2019, FORBES Cui CC, 2018, J BUS RES, V87, P118, DOI 10.1016/j.jbusres.2018.02.028 Dabbous A, 2019, TECHNOL FORECAST SOC, V149, DOI 10.1016/j.techfore.2019.119775 Daye D., 2016, Igniting brand growth via emotional connections De Wulf K, 2001, J MARKETING, V65, P33, DOI 10.1509/jmkg.65.4.33.18386 Diallo MF, 2017, INT MARKET REV, V34, P536, DOI 10.1108/IMR-07-2014-0224 Edelman DC, 2015, HARVARD BUS REV, V93, P90 Escalas JE, 2005, J CONSUM RES, V32, P378, DOI 10.1086/497549 Escalas JE, 2003, J CONSUM PSYCHOL, V13, P339, DOI 10.1207/S15327663JCP1303_14 Farah M.F., 2020, INT J WEB BASED COMM Farah MF, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101973 Farah MF, 2019, J RETAIL CONSUM SERV, V48, P136, DOI 10.1016/j.jretconser.2019.02.016 Farah MF, 2017, INT J BANK MARK, V35, P254, DOI 10.1108/IJBM-05-2016-0067 FEHR B, 1991, J PERS SOC PSYCHOL, V60, P425, DOI 10.1037/0022-3514.60.3.425 Fetscherin M., 2020, BRAND RELATIONSHIP P Ford RC, 2001, CALIF MANAGE REV, V44, P39, DOI 10.2307/41166110 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fournier S, 1998, J CONSUM RES, V24, P343, DOI 10.1086/209515 Fournier S, 2013, J CONSUM PSYCHOL, V23, P253, DOI 10.1016/j.jcps.2013.01.004 Gordon S., 2018, EVERYTHING WORKS AMA Grewal D, 2017, J RETAILING, V93, P1, DOI 10.1016/j.jretai.2016.12.008 Harmeling CM, 2017, J ACAD MARKET SCI, V45, P312, DOI 10.1007/s11747-016-0509-2 Harrison MP, 2012, J MARKET THEORY PRAC, V20, P391, DOI 10.2753/MTP1069-6679200403 Harvey S, 2018, CULTIVATING CAPTIVE Hollebeek LD, 2019, J ACAD MARKET SCI, V47, P161, DOI 10.1007/s11747-016-0494-5 Holt DB, 1997, J CONSUM RES, V23, P326, DOI 10.1086/209487 Isen AM, 2005, MOTIV EMOTION, V29, P297, DOI 10.1007/s11031-006-9019-8 Itani OS, 2019, INT J HOSP MANAG, V80, P78, DOI 10.1016/j.ijhm.2019.01.014 Jiang L, 2013, J SERV MANAGE, V24, P191, DOI 10.1108/09564231311323962 Joreskog K., 1993, LISREL 8 Kallweit K, 2014, J RETAIL CONSUM SERV, V21, P268, DOI 10.1016/j.jretconser.2014.02.002 KARAPANOS E, 2013, USER EXPERIENCE TIME Klaus P, 2020, J SERV MARK, V34, P389, DOI 10.1108/JSM-01-2019-0043 Kleine SS, 1995, J CONSUM RES, V22, P327, DOI 10.1086/209454 KOEHLER J, 2016, EUROPEAN BUSINESS MA, V4, P55 Kumar V, 2016, J ACAD MARKET SCI, V44, P24, DOI 10.1007/s11747-015-0426-9 Lee HJ, 2016, COMPUT HUM BEHAV, V60, P322, DOI 10.1016/j.chb.2016.02.051 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 LIEBOWITZ SJ, 1995, J LAW ECON ORGAN, V11, P205 Lischer B, 2015, PSYCHOL BRAND PERSON Lopatovska I, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P265, DOI 10.1145/3176349.3176868 Loureiro S., 2013, Customer-Centric Marketing Strategies, P414, DOI [DOI 10.4018/978-1-4666-2524-2.CH020, 10.4018/978-1-4666-2524-2.ch020] Lusch RF, 2014, SERVICE-DOMINANT LOGIC: PREMISES, PERSPECTIVES, POSSIBILITIES, P1 McAlexander JH, 2002, J MARKETING, V66, P38, DOI 10.1509/jmkg.66.1.38.18451 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Mitchell A.A., 1979, Advances in Consumer Research, V6, P191 Mival Oli, 2004, Personification technologies: Developing artificial companions for older people Mohammed S, 2019, DID AMAZON BUILD ITS Mollen A, 2010, J BUS RES, V63, P919, DOI 10.1016/j.jbusres.2009.05.014 Monin B, 2003, J PERS SOC PSYCHOL, V85, P1035, DOI 10.1037/0022-3514.85.6.1035 Morgan-Thomas A, 2020, J BUS RES, V121, P713, DOI 10.1016/j.jbusres.2020.03.042 Mrad M, 2020, J RETAIL CONSUM SERV, V55, DOI 10.1016/j.jretconser.2020.102089 Mrad M, 2020, J BUS RES, V113, P399, DOI 10.1016/j.jbusres.2019.09.023 Mrad M, 2018, QUAL MARK RES, V21, P18, DOI 10.1108/QMR-06-2016-0050 Mrad M, 2017, EUR J MARKETING, V51, P1938, DOI 10.1108/EJM-10-2016-0571 Msaed C, 2017, J PROD BRAND MANAG, V26, P102, DOI 10.1108/JPBM-06-2015-0915 Murray KB, 2007, J CONSUM RES, V34, P77, DOI 10.1086/513048 Neuman W., 2006, SOCIAL RES METHODS Q Nieroda ME, 2018, J BUS RES, V89, P159, DOI 10.1016/j.jbusres.2018.04.024 Nunnally J., 1978, PSYCHOMETRIC METHODS Obst P, 2010, J COMMUNITY APPL SOC, V20, P525, DOI 10.1002/casp.1067 Orel FD, 2014, J RETAIL CONSUM SERV, V21, P118, DOI 10.1016/j.jretconser.2013.07.002 Orlikowski WJ, 2015, MIS QUART, V39, P201 Park CW, 2010, J MARKETING, V74, P1, DOI 10.1509/jmkg.74.6.1 Phillips S, 2018, FUTURE MARKET RES FU Porte N., 2018, INTELLIGENT SELF SER Purington A., 2017, P 2017 CHI C HUM FAC, DOI 10.1145/3027063.3053246 Rafiq M, 2013, J MARKET MANAG-UK, V29, P494, DOI 10.1080/0267257X.2012.737356 Ramadan Z., 2021, PSYCHOL MARKET, P1 Ramadan Zahy B., 2019, International Journal of Web Based Communities, V15, P327 Ramadan Zahy B., 2017, International Journal of Web Based Communities, V13, P364 Ramadan Z, 2019, MARK INTELL PLAN, V37, P660, DOI 10.1108/MIP-11-2018-0490 Ramadan Z, 2018, MARK INTELL PLAN, V36, P93, DOI 10.1108/MIP-06-2017-0100 Ramadan ZB, 2019, J BRAND MANAG, V26, P705, DOI 10.1057/s41262-019-00163-9 Rappaport SD, 2007, J ADVERTISING RES, V47, P135, DOI 10.2501/S0021849907070158 Ray M.L., 1973, NEW MODELS MASS COMM, P146 Reimann M, 2012, J CONSUM PSYCHOL, V22, P128, DOI 10.1016/j.jcps.2011.11.003 Scott SV, 2014, MIS QUART, V38, P873, DOI 10.25300/MISQ/2014/38.3.11 Smith A, 2017, WHAT AMAZON KEY TEAC Statt N, 2018, AMAZONS RETAIL REVOL Thomson M, 2005, J CONSUM PSYCHOL, V15, P77, DOI 10.1207/s15327663jcp1501_10 Turk V, 2016, NEW SCI, V232, P16, DOI 10.1016/S0262-4079(16)32318-1 Vargo SL, 2016, J ACAD MARKET SCI, V44, P5, DOI 10.1007/s11747-015-0456-3 Veloutsou C, 2020, ELECTRON COMMER R A, V39, DOI 10.1016/j.elerap.2019.100901 Verleye K, 2014, J SERV RES-US, V17, P68, DOI 10.1177/1094670513494015 Vivek SD, 2012, J MARKET THEORY PRAC, V20, P127, DOI 10.2753/MTP1069-6679200201 Wajid A, 2019, MARK INTELL PLAN, V37, P271, DOI 10.1108/MIP-07-2018-0241 Wallace E, 2014, J PROD BRAND MANAG, V23, P33, DOI 10.1108/JPBM-06-2013-0326 Wiggers Kyle, 2020, venture beat Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Woodard B, 2006, J ADVERTISING RES, V46, P353, DOI 10.2501/S0021849906060442 Yang CF, 2015, PROCEDIA MANUF, V3, P3391, DOI 10.1016/j.promfg.2015.07.529 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 130 TC 25 Z9 25 U1 17 U2 80 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD SEP PY 2021 VL 62 AR 102610 DI 10.1016/j.jretconser.2021.102610 EA MAY 2021 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA TZ7AK UT WOS:000684621800008 DA 2024-03-27 ER PT J AU Chatterjee, S Goyal, D Prakash, A Sharma, J AF Chatterjee, Swagato Goyal, Divesh Prakash, Atul Sharma, Jiwan TI Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Health-product ecommerce; Text mining; Sentiment; Emotion; Customer satisfaction; Online reviews ID WORD-OF-MOUTH; CUSTOMER SATISFACTION; ACCESSIBILITY-DIAGNOSTICITY; CONSEQUENCES; EXPERIENCE; EMOTIONS; BEHAVIOR; IMPACT; SALES AB In the digital era, online channels have become an inevitable part of healthcare services making healthcare/ health-product e-commerce an important area of study. However, the reflections of customer-satisfaction and their difference in various subgroups of this industry is still unexplored. Additionally, extant literature has majorly focused on consumer surveys for customer-satisfaction research ignoring the huge data available online. The current study fills these gaps. With 186,057 reviews on 619 e-commerce firms from 29 subcategories of healthcare/health-product industry posted in a review-website between 2008 and 2018, we used text-mining, machine-learning and econometric techniques to find which core and augmented service aspects and which emotions are more important in which service contexts in terms of reflecting and predicting customer satisfaction. Our study contributes towards the healthcare/health-product marketing and services literature in suggesting an automated and machine-learning-based methodology for insight generation. It also helps healthcare/ health-product e-commerce managers in better e-commerce service design and delivery. C1 [Chatterjee, Swagato] Indian Inst Technol, Vinod Gupta Sch Management, Kharagpur 721302, W Bengal, India. [Goyal, Divesh; Prakash, Atul; Sharma, Jiwan] Indian Inst Technol, Kharagpur 721302, W Bengal, India. C3 Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Kharagpur RP Chatterjee, S (autor correspondiente), Indian Inst Technol, Vinod Gupta Sch Management, Kharagpur 721302, W Bengal, India. EM swagato@vgsom.iitkgp.ac.in RI Chatterjee, Swagato/JYP-6161-2024; Chatterjee, Swagato/JYP-6158-2024 OI Chatterjee, Swagato/0000-0002-3907-3528 CR Ahani A, 2019, J RETAIL CONSUM SERV, V51, P331, DOI 10.1016/j.jretconser.2019.06.014 Ahmad SR, 2019, INTELL DATA ANAL, V23, P159, DOI 10.3233/IDA-173763 Ajorlou A, 2018, MANAGE SCI, V64, P971, DOI 10.1287/mnsc.2016.2657 ANDERSON EW, 1993, MARKET SCI, V12, P125, DOI 10.1287/mksc.12.2.125 ANDERSON EW, 1994, J MARKETING, V58, P53, DOI 10.2307/1252310 [Anonymous], 2019, J SERV THEOR PRACT, DOI DOI 10.1108/JSTP-10-2018-0229 Brill E, 1995, COMPUT LINGUIST, V21, P543 Byrd ET, 2016, TOURISM MANAGE, V52, P19, DOI 10.1016/j.tourman.2015.06.009 Cavanaugh LA, 2016, COGNITION EMOTION, V30, P1430, DOI 10.1080/02699931.2015.1070119 Chang KC, 2015, IND MANAGE DATA SYST, V115, P332, DOI 10.1108/IMDS-09-2014-0265 Chatterjee S, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104108 Chatterjee S, 2019, DECIS SUPPORT SYST, V119, P14, DOI 10.1016/j.dss.2019.02.008 Cheung CMK, 2012, DECIS SUPPORT SYST, V53, P218, DOI 10.1016/j.dss.2012.01.015 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Cohen JB, 2006, J CONSUM RES, V33, P1, DOI 10.1086/504121 Dang Y, 2010, IEEE INTELL SYST, V25, P46, DOI 10.1109/MIS.2009.105 Nguyen DQ, 2016, AI COMMUN, V29, P409, DOI 10.3233/AIC-150698 Davis JI, 2011, EMOTION, V11, P438, DOI 10.1037/a0021783 del Bosque IR, 2008, ANN TOURISM RES, V35, P551, DOI 10.1016/j.annals.2008.02.006 Dholakia RR, 2010, INT J RETAIL DISTRIB, V38, P482, DOI 10.1108/09590551011052098 Duan W, 2008, J RETAILING, V84, P233, DOI 10.1016/j.jretai.2008.04.005 Ekinci Y., 2003, J RETAIL CONSUM SERV, V10, P201, DOI DOI 10.1016/S0969-6989(02)00008-5 Fabricant S.M., 1993, PSYCHOL MARKET, V10, P531, DOI DOI 10.1002/MAR.4220100606 Feldman R, 2007, TEXT MINING HDB ADV Feldman R, 2013, COMMUN ACM, V56, P82, DOI 10.1145/2436256.2436274 Filieri R, 2016, ANN TOURISM RES, V58, P46, DOI 10.1016/j.annals.2015.12.019 Garbarino E, 1999, J MARKETING, V63, P70, DOI 10.2307/1251946 Grewal R, 2010, J MARKETING RES, V47, P612, DOI 10.1509/jmkr.47.4.612 Hasford J, 2016, J BUS RES, V69, P1234, DOI 10.1016/j.jbusres.2015.09.009 Hennig-Thurau T, 2004, J INTERACT MARK, V18, P38, DOI 10.1002/dir.10073 Ho-Dac NN, 2013, J MARKETING, V77, P37, DOI 10.1509/jm.11.0011 Hotho Andreas., 2005, J. Lang. Technol. Comput. Linguist, V20, P19, DOI [DOI 10.21248/JLCL.20.2005.68, 10.21248/jlcl.20.2005.68, DOI 10.1111/j.1365-2621.1978.tb09773.x] Ladhari R, 2007, PSYCHOL MARKET, V24, P1085, DOI 10.1002/mar.20195 Laros FJM, 2005, J BUS RES, V58, P1437, DOI 10.1016/j.jbusres.2003.09.013 Lazar MM, 2011, NEW FEMININITIES: POSTFEMINISM, NEOLIBERALISM AND SUBJECTIVITY, P37 Lynch JG, 2006, J CONSUM RES, V33, P25, DOI 10.1086/504129 Manner C., 2017, J CONSUMER SATISFACT, V30, P23 Martensen A, 2000, TOTAL QUAL MANAGE, V11, pS544 Matzler K, 2008, J TRAVEL RES, V46, P403, DOI 10.1177/0047287507312401 Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x Mostafa MM, 2013, EXPERT SYST APPL, V40, P4241, DOI 10.1016/j.eswa.2013.01.019 Mouwen A, 2015, TRANSPORT RES A-POL, V78, P1, DOI 10.1016/j.tra.2015.05.005 Mowen JC, 2007, J BUS RES, V60, P590, DOI 10.1016/j.jbusres.2006.06.007 Ng JHY, 2019, PATIENT EDUC COUNS, V102, P790, DOI 10.1016/j.pec.2018.11.013 Oh HaeMoon Oh HaeMoon, 1999, International Journal of Hospitality Management, V18, P67, DOI 10.1016/S0278-4319(98)00047-4 Pappas IO, 2014, INT J RETAIL DISTRIB, V42, P187, DOI 10.1108/IJRDM-03-2012-0034 Park JH, 2014, COMPUT HUM BEHAV, V31, P1, DOI 10.1016/j.chb.2013.10.002 Popescu A.-M, 2007, NATURAL LANGUAGE PRO, P9, DOI DOI 10.1007/978-1-84628-754-1_2 Posselt T, 2005, J INTERACT MARK, V19, P35, DOI 10.1002/dir.20048 Ravald A., 1996, EUR J MARKETING, V30, P19, DOI 10.1108/03090569610106626 Salehan M, 2016, DECIS SUPPORT SYST, V81, P30, DOI 10.1016/j.dss.2015.10.006 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Sandars J, 2009, MED TEACH, V31, P362, DOI 10.1080/01421590802204403 Sharp John, 2011, Front Health Serv Manage, V28, P29 Siering M, 2018, DECIS SUPPORT SYST, V107, P52, DOI 10.1016/j.dss.2018.01.002 Soderlund M, 1998, INT J SERV IND MANAG, V9, P169, DOI 10.1108/09564239810210532 Szymanski DM, 2000, J RETAILING, V76, P309, DOI 10.1016/S0022-4359(00)00035-X Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 TAYLOR SA, 1994, J RETAILING, V70, P163, DOI 10.1016/0022-4359(94)90013-2 Vaidyanathan R, 2000, J BUS PSYCHOL, V14, P605, DOI 10.1023/A:1022942330911 Vijayarani S., 2015, INT J COMPUT SCI COM, V5, P7, DOI DOI 10.1016/J.PR0CS.2013.05.286 Wang WM, 2019, J ENG DESIGN, V30, P445, DOI 10.1080/09544828.2019.1642460 WESTBROOK RA, 1991, J CONSUM RES, V18, P84, DOI 10.1086/209243 Xu JJ, 2013, MIS QUART, V37, P777, DOI 10.25300/MISQ/2013/37.3.05 Xu X, 2020, J BUS RES, V106, P196, DOI 10.1016/j.jbusres.2018.07.022 Ye Q, 2009, EXPERT SYST APPL, V36, P6527, DOI 10.1016/j.eswa.2008.07.035 You YF, 2016, J INTERNET COMMER, V15, P274, DOI 10.1080/15332861.2016.1212314 Zeithaml VA, 2002, J ACAD MARKET SCI, V30, P362, DOI 10.1177/009207002236911 NR 68 TC 54 Z9 54 U1 16 U2 108 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD JUL PY 2021 VL 131 BP 815 EP 825 DI 10.1016/j.jbusres.2020.10.043 EA MAY 2021 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA SE4AK UT WOS:000652015200015 DA 2024-03-27 ER PT J AU Jansa, T Wattanacharoensil, W Kolar, T AF Jansa, Tadeja Wattanacharoensil, Walanchalee Kolar, Tomaz TI Computer supported analysis of Thailand's imagery on Pinterest SO CURRENT ISSUES IN TOURISM LA English DT Article DE Visual UGC; destination image; Pinterest; Thailand; computer vision; visual content analysis ID ONLINE DESTINATION IMAGE; SEMIOTIC ANALYSIS; TOURISM AB This paper reports findings and introduces an innovative methodological approach deployed to explore how complex visual imagery on Pinterest represents Thailand and how commercial and private users differ in this respect. For this purpose, visual content analysis of 300 images was performed in which computer vision labelling and a subsequent manual thematic analysis were deployed during a two-step procedure. The obtained findings reveal that significant differences exist among both types of users regarding some frequently depicted themes (architecture, animals) and regarding textual, graphic and substantive content. These differences in turn inform the theoretical and practical implications for improved communication on social media. The limitations of the study are also discussed. C1 [Jansa, Tadeja] Jozef Stefan Inst, Ljubljana, Slovenia. [Wattanacharoensil, Walanchalee] Mahidol Univ Int Coll, Salaya, Nakhon Pathom, Thailand. [Kolar, Tomaz] Univ Ljubljana, Fac Econ, Ljubljana, Slovenia. C3 Slovenian Academy of Sciences & Arts (SASA); Jozef Stefan Institute; Mahidol University; University of Ljubljana RP Kolar, T (autor correspondiente), Univ Ljubljana, Fac Econ, Ljubljana, Slovenia. EM tomaz.kolar@ef.uni-lj.si RI Wattanacharoensil, Walanchalee/GOE-6250-2022; Wattanacharoensil, Walanchalee/Y-5505-2019 OI Wattanacharoensil, Walanchalee/0000-0003-2242-7622 CR [Anonymous], 2017, 2017 26th international conference on computer communication and networks (ICCCN), DOI 10.1109/ICCCN.2017.8038465 Bauer M.W., 2000, QUALITATIVE RES TEXT, P19, DOI DOI 10.4135/9781849209731 Bell P., 2001, Handbook of Visual Analysis, P10, DOI [DOI 10.4135/9780857020062, 10.4135/9780857020062.n2] Camprubí R, 2013, CURR ISSUES TOUR, V16, P203, DOI 10.1080/13683500.2012.733358 Chen SH, 2017, LECT NOTES ARTIF INT, V10191, P651, DOI 10.1007/978-3-319-54472-4_61 Deng N, 2018, TOURISM MANAGE, V65, P267, DOI 10.1016/j.tourman.2017.09.010 Gartner W. C., 1993, Journal of Travel & Tourism Marketing, V2, P191 Ghazali RM, 2013, TOUR SOC SCI SER, V18, P73, DOI 10.1108/S1571-5043(2013)0000018007 Gleeson K., 2012, Visual methods in psychology: Using and interpreting images in qualitative research, P314, DOI DOI 10.4324/F9781351032063-3631 Govers R., 2004, Information Technology and Tourism, V7, P73, DOI 10.3727/1098305054517327 Gunn C.A., 1972, Vacationscape: Designing tourist regions Haenssle H A, 2019, Ann Oncol, V30, p130e, DOI 10.1093/annonc/mdy520 Henkel R., 2006, Asia Pacific Journal of Tourism Research, V11, P269, DOI 10.1080/10941660600753299 Herring SC, 2010, INTERNATIONAL HANDBOOK OF INTERNET RESEARCH, P233, DOI 10.1007/978-1-4020-9789-8_14 Hunter WC, 2016, TOURISM MANAGE, V54, P221, DOI 10.1016/j.tourman.2015.11.012 Krishnamurthy S., 2008, Journal of Interactive Advertising, V8, P1, DOI DOI 10.1080/15252019.2008.10722137 KWAK H, 2016, P 10 INT AAAI C WEB Lomborg S, 2014, INFORM SOC, V30, P256, DOI 10.1080/01972243.2014.915276 Lu WL, 2015, J HOSP MARKET MANAG, V24, P119, DOI 10.1080/19368623.2014.907758 Mak AHN, 2017, TOURISM MANAGE, V60, P280, DOI 10.1016/j.tourman.2016.12.012 Michaelidou N, 2013, J TRAVEL RES, V52, P789, DOI 10.1177/0047287513481272 Michelson K, 2016, DISCOURSE COMMUN, V10, P235, DOI 10.1177/1750481315623893 Minazzi R., 2015, Social Media Marketing in Tourism and Hospitality Munar A.M., 2010, CIBEM WORKING PAPER Munar AM, 2014, TOURISM MANAGE, V43, P46, DOI 10.1016/j.tourman.2014.01.012 Munar AM, 2011, INT J CULT TOUR HOSP, V5, P291, DOI 10.1108/17506181111156989 PAN B, 2006, ANN C TRAV TOUR RES, P16 Phillips BJ, 2014, INT J ADVERT, V33, P633, DOI 10.2501/IJA-33-4-633-655 Picazo P, 2019, J VACAT MARK, V25, P3, DOI 10.1177/1356766717736350 Rittichainuwat B. N., 2001, Cornell Hotel and Restaurant Administration Quarterly, V42, P82, DOI 10.1177/0010880401422008 ROBINSON S, 2017, EXPLORING CLOUD VISI Rose Gillian., 2001, VISUAL METHODOLOGIES ROWETT P, 2015, PINTEREST CAN DRIVE Silverman D., 2013, Doing qualitative research: A practical, DOI DOI 10.3917/DS.293.0349 Song SG, 2016, J TRAVEL TOUR MARK, V33, P687, DOI 10.1080/10548408.2016.1167384 Stepchenkova S, 2013, TOURISM MANAGE, V36, P590, DOI 10.1016/j.tourman.2012.08.006 Tamajón LG, 2017, CURR ISSUES TOUR, V20, P33, DOI 10.1080/13683500.2015.1073229 Tapachai N., 2000, Journal of Travel Research, V39, P37, DOI 10.1177/004728750003900105 TSANG SH, 2018, REV INCEPTION V3 1ST 2018, PINTEREST AUDIENCE D NR 40 TC 4 Z9 6 U1 2 U2 25 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1368-3500 EI 1747-7603 J9 CURR ISSUES TOUR JI Curr. Issues Tour. PD AUG 2 PY 2020 VL 23 IS 15 SI SI BP 1833 EP 1839 DI 10.1080/13683500.2019.1631761 EA JUN 2019 PG 7 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA MN0JP UT WOS:000473231000001 DA 2024-03-27 ER PT J AU Xie, JH Liu, X Zeng, DDJ Fang, X AF Xie, Jiaheng Liu, Xiao Zeng, Daniel Dajun Fang, Xiao TI UNDERSTANDING MEDICATION NONADHERENCE FROM SOCIAL MEDIA: A SENTIMENT-ENRICHED DEEP LEARNING APPROACH SO MIS QUARTERLY LA English DT Article DE Sentiment-enriched deep learning; reason mining; social media analytics; health risk analytics; medication nonadherence ID BIG DATA; DESIGN SCIENCE; ADHERENCE; ANALYTICS; WORD; PERSPECTIVE; EXTRACTION; FRAMEWORK; FEATURES; SUPPORT AB Medication nonadherence (MNA) can lead to serious health ramifications and costs U.S. healthcare systems $290 billion annually. Understanding the reasons underlying patients' MNA is thus an urgent goal for researchers, practitioners, and the pharmaceuticalindustry in order to mitigate negative health and economic consequences. In recent years, patient engagement on social media sites has soared, making it a cost-efficient and rich information source that can complement prior survey studies and deepen the understanding of MNA. Yet these data remain untapped in existing MNA studies because of technical challenges such as long texts, decision-making based on negative sentiment, varied patient vocabulary, and the scarcity of relevant information. For this study, we developed a sentiment-enriched deep learning method (SEDEL) to address these challenges and extract reasons for MNA. We evaluated SEDEL using 53,180 reviews concerning180 drugs and achieved a precision of 89.25%, a recall of 88.48%, and an F1 score of 88.86%. SEDEL significantly outperformed state-of-the-art baseline models. We identified nine categories of MNA reasons, which were verified by domain experts. This study contributes to IS research by devising a novel deep-learning-based approach for reason mining and by providing direct implications for the health industry and for practitioners regarding the design of interventions C1 [Xie, Jiaheng; Fang, Xiao] Univ Delaware, Dept Accounting & Management Informat Syst, Lerner Coll Business & Econ, Newark, DE 19716 USA. [Liu, Xiao] Arizona State Univ, Dept Informat Syst, WP Carey Sch Business, Tempe, AZ 85287 USA. [Zeng, Daniel Dajun] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China. [Zeng, Daniel Dajun] Univ Chinese Acad Sci, Beijing, Peoples R China. C3 University of Delaware; Arizona State University; Arizona State University-Tempe; Chinese Academy of Sciences; Institute of Automation, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS RP Xie, JH (autor correspondiente), Univ Delaware, Dept Accounting & Management Informat Syst, Lerner Coll Business & Econ, Newark, DE 19716 USA. EM jxie@udel.edu; Xiao.Liu.10@asu.edu; dajun.zeng@ia.ac.cn; xfang@udel.edu RI Xie, Jiaheng/AAU-2194-2021 OI Xie, Jiaheng/0000-0002-4992-498X; Zeng, Daniel Dajun/0000-0002-9046-222X; Fang, Xiao/0000-0002-9429-5748 FU National Key Research and Development Program of China [2020AAA0103405]; National Natural Science Foundation of China [71621002, 62071467]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA27030100] FX This work was supported in part by the National Key Research and Development Program of China under Grant 2020AAA0103405, the National Natural Science Foundation of China under Grants 71621002 and 62071467, as well as the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant XDA27030100. CR Abbasi A, 2018, MIS QUART, V42, P427, DOI 10.25300/MISQ/2018/13239 Abbasi A, 2012, MIS QUART, V36, P1293 Abbasi A, 2010, MIS QUART, V34, P435 Abbasi A, 2008, MIS QUART, V32, P811 Aczon Melissa., 2017, DYNAMIC MORTALITY RI [Anonymous], 2013, INFORM SYST RES, DOI DOI 10.1287/isre.1120.0461 [Anonymous], 2010, International Journal of Computer, Electrical, Automation, Control and Information Engineering Arazy O, 2016, INFORM SYST RES, V27, P792, DOI 10.1287/isre.2016.0647 Baesens B., 2014, MIS QUART, V38, P629, DOI DOI 10.5121/IJGCA.2012.3203 Bardhan I., 2017, MIS QUART, P333 Baroni M, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P238 Basili R, 2003, COMPUT LINGUIST, V29, P655, DOI 10.1162/089120103322753374 Bengio Y, 2013, IEEE T PATTERN ANAL, V35, P1798, DOI 10.1109/TPAMI.2013.50 Bj_orne J., 2013, P 2 JOINT C LEXICAL, P651 Blackman NJM, 2000, STAT MED, V19, P723, DOI 10.1002/(SICI)1097-0258(20000315)19:5<723::AID-SIM379>3.0.CO;2-A Bosworth HB, 2011, AM HEART J, V162, P412, DOI 10.1016/j.ahj.2011.06.007 Brisson L, 2015, INT CONF RES CHAL, P187, DOI 10.1109/RCIS.2015.7128879 Chan W., 2015, DEEP RECURRENT NEURA Chen HC, 2012, MIS QUART, V36, P1165 Chen T, 2017, EXPERT SYST APPL, V72, P221, DOI 10.1016/j.eswa.2016.10.065 Chen ZY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P347 Cheng JJ, 2016, APPL INTELL, V45, P429, DOI 10.1007/s10489-016-0768-0 Chiu J., 2015, T ASS COMPUTATIONAL, V4, P357 Chiu J.P., 2016, Named entity recognition with bidirectional lstm-cnns, V4, P357 Chollet F., 2018, KERAS PYTHON DEEP LE Chorowski J, 2019, IEEE-ACM T AUDIO SPE, V27, P2041, DOI 10.1109/TASLP.2019.2938863 Chowdhury MFM., 2013, P 7 INT WORKSH SEM E, V2, P351 CRAIN S, 1987, LANGUAGE, V63, P522, DOI 10.2307/415004 Deng S., 2018, LSE Business Review Devlin J., 2018, ARXIV Dredze M., 2012, P 25 INT C NEUR INF Dunbar SB, 2008, J CARDIOVASC NURS, V23, P258, DOI 10.1097/01.JCN.0000305093.20012.b8 Eickholt J, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-43 Fang Q, 2015, IEEE T MULTIMEDIA, V17, P2281, DOI 10.1109/TMM.2015.2491019 Fu TJ, 2012, ACM T INFORM SYST, V30, DOI 10.1145/2382438.2382443 Garten J., 2015, Proceedings of NAACL-HLT, P95 Gellad W.F., 2009, REV BARRIERS MEDICAT Gellad WF, 2011, AM J GERIATR PHARMAC, V9, P11, DOI 10.1016/j.amjopharm.2011.02.004 Goh JM, 2016, MIS QUART, V40, P247, DOI 10.25300/MISQ/2016/40.1.11 Goldberg Y., 2014, arXiv preprint arXiv:1402.3722 Goldman DP, 2007, JAMA-J AM MED ASSOC, V298, P61, DOI 10.1001/jama.298.1.61 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01 Hai Z, 2014, IEEE T KNOWL DATA EN, V26, P623, DOI 10.1109/TKDE.2013.26 Hamilton Z., 2017, Proc. of the 31st Int. Conf. on Neural Information Processing Systems (NIPS), P1024, DOI DOI 10.48550/ARXIV.1706.02216 Harding E., 2015, Healthcare Hart KL, 2020, J AFFECT DISORDERS, V260, P366, DOI 10.1016/j.jad.2019.09.043 Hasan Kazi Saidul, 2014, P 2014 C EMPIRICAL M, P751, DOI [10.3115/v1/D14-1083, DOI 10.3115/V1/D14-1083] Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Horne B, 2017, P INT AAAI C WEB SOC, V11 Hugtenburg JG, 2013, PATIENT PREFER ADHER, V7, P675, DOI 10.2147/PPA.S29549 Hutto C. J., 2014, P INT AAAI C WEB SOC, P216, DOI DOI 10.1609/ICWSM.V8I1.14550 Jeyapriya A, 2015, 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), P548, DOI 10.1109/ECS.2015.7124967 Ju Z., 2011, 2011 5 INT C BIOINF Kalchbrenner N, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P655, DOI 10.3115/v1/p14-1062 Karahanna E, 2018, MIS QUART, V42, P737, DOI 10.25300/MISQ/2018/11492 Khoury MJ, 2014, SCIENCE, V346, P1054, DOI 10.1126/science.aaa2709 Kim JD, 2003, BIOINFORMATICS, V19, pi180, DOI 10.1093/bioinformatics/btg1023 Kim S.M., 2006, P COLINGACL MAIN C P, P483, DOI DOI 10.3115/1273073.1273136 Kim T, 2019, PROC CVPR IEEE, P12448, DOI 10.1109/CVPR.2019.01274 Kitchens B, 2018, J MANAGE INFORM SYST, V35, P540, DOI 10.1080/07421222.2018.1451957 Krousel-Wood M, 2009, AM J MANAG CARE, V15, P59 Lample G, 2016, P NAACL HLT, V2016, P260, DOI 10.18653/v1/n16-1030 Lau RYK, 2012, MIS QUART, V36, P1239 Lazer D, 2014, SCIENCE, V343, P1203, DOI 10.1126/science.1248506 Lee KJ, 2004, J BIOMED INFORM, V37, P436, DOI 10.1016/j.jbi.2004.08.012 Levy O, 2014, ADV NEUR IN, V27 Li HY, 2015, IEEE DATA MINING, P241, DOI 10.1109/ICDM.2015.28 Liang D., 2016, AC-BLSTM: Asymmetric Convolutional Bidirectional LSTM Networks for Text Classification Liu Pengfei, 2015, P 2015 C EMP METH NA, P1433 Liu Q, 2016, AAAI CONF ARTIF INTE, P2986 Luo XM, 2017, MIS QUART, V41, P371, DOI 10.25300/MISQ/2017/41.2.03 Ma XZ, 2016, PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1064 Mai F, 2018, J MANAGE INFORM SYST, V35, P19, DOI 10.1080/07421222.2018.1440774 Marcum ZA, 2013, JAMA-J AM MED ASSOC, V309, P2105, DOI 10.1001/jama.2013.4638 Marrese-Taylor E, 2014, EXPERT SYST APPL, V41, P7764, DOI 10.1016/j.eswa.2014.05.045 Maulik U, 2002, IEEE T PATTERN ANAL, V24, P1650, DOI 10.1109/TPAMI.2002.1114856 McHorney CA, 2007, CURR MED RES OPIN, V23, P3137, DOI 10.1185/030079907X242890 Mikolov T., 2013, ARXIV, DOI DOI 10.48550/ARXIV.1301.3781 Mikolov T., 2013, P ADV NEUR INF PROC, V26, P3111, DOI DOI 10.5555/2999792.2999959 Okazaki N., 2007, Crfsuite: a fast implementation of conditional random fields (crfs) Onishi T, 2018, P 2018 EMNLP WORKSH, P32, DOI DOI 10.18653/V1/W18-5908 Ordóñez FJ, 2016, SENSORS-BASEL, V16, DOI 10.3390/s16010115 Patra B G., 2014, Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), P370 Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162 Pew Internet Research, 2013, 61 AM AD LOOK ONL HL Popov A, 2016, LECT NOTES ARTIF INT, V9883, P68, DOI 10.1007/978-3-319-44748-3_7 Poria S, 2016, KNOWL-BASED SYST, V108, P42, DOI 10.1016/j.knosys.2016.06.009 Rai A, 2017, MIS QUART, V41, pIII Rao K, 2015, INT CONF ACOUST SPEE, P4225, DOI 10.1109/ICASSP.2015.7178767 Ruths D, 2014, SCIENCE, V346, P1063, DOI 10.1126/science.346.6213.1063 Saboo AR, 2016, MIS QUART, V40, P911, DOI 10.25300/MISQ/2016/40.4.06 Sorensen K, 2012, BMC PUBLIC HEALTH, V12, DOI 10.1186/1471-2458-12-80 Stieglitz S, 2013, J MANAGE INFORM SYST, V29, P217, DOI 10.2753/MIS0742-1222290408 Sun BJ, 2011, ACM T INFORM SYST, V29, DOI 10.1145/1961209.1961215 Tai KS, 2015, PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, P1556 Tamblyn R, 2014, ANN INTERN MED, V160, P441, DOI 10.7326/M13-1705 Tang D, 2015, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, P1422 Tang DY, 2014, PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, P1555 Traverso G, 2015, NATURE, V519, pS19, DOI 10.1038/519S19a Turian J, 2010, ACL 2010: 48TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, P384 Wallace BC, 2014, J AM MED INFORM ASSN, V21, P1098, DOI 10.1136/amiajnl-2014-002711 Wang S, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P167, DOI 10.1145/2872427.2883086 Wang W., 2016, INT J MACH LEARN CYB, P1053 Wang X., 2016, PROC 26 INT C COMPUT, P2428 Weidenbacher HJ, 2015, PATIENT PREFER ADHER, V9, P327, DOI 10.2147/PPA.S74531 Williams Joni L Strom, 2014, Diabetes Manag (Lond), V4, P29 Xie JH, 2017, THER ADV DRUG SAF, V8, P375, DOI 10.1177/2042098617729318 Xiong SF, 2016, INFORM SCIENCES, V367, P689, DOI 10.1016/j.ins.2016.07.002 Yang D., 2016, P 2016 C N AM CHAPTE, P1480, DOI DOI 10.18653/V1/N16-1174 Zhang DS, 2016, J MANAGE INFORM SYST, V33, P456, DOI 10.1080/07421222.2016.1205907 Zhang L, 2014, STUD BIG DATA, V1, P1, DOI 10.1007/978-3-642-40837-3_1 Zheng S, 2015, IEEE I CONF COMP VIS, P1529, DOI 10.1109/ICCV.2015.179 Zhou C, 2007, ACM T INFORM SYST, V25, DOI 10.1145/1247715.1247718 Zhou Peng, 2016, P 26 INT C COMP LING NR 115 TC 9 Z9 9 U1 22 U2 118 PU SOC INFORM MANAGE-MIS RES CENT PI MINNEAPOLIS PA UNIV MINNESOTA-SCH MANAGEMENT 271 19TH AVE SOUTH, MINNEAPOLIS, MN 55455 USA SN 0276-7783 J9 MIS QUART JI MIS Q. PD MAR PY 2022 VL 46 IS 1 BP 341 EP 372 DI 10.25300/MISQ/2022/15336 PG 32 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA 0R8YJ UT WOS:000785872600009 DA 2024-03-27 ER PT J AU Lin, MS Liang, Y Xue, JX Pan, B Schroeder, A AF Lin, Michael S. Liang, Yun Xue, Joanne X. Pan, Bing Schroeder, Ashley TI Destination image through social media analytics and survey method SO INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT LA English DT Article DE Tourism destination image (TDI); Survey; Social media analytics; Textual analysis; Image analysis; Machine learning ID BIG DATA; BEHAVIORAL INTENTIONS; TOURISM DESTINATION; LEARNING-MODEL; HOSPITALITY; DEMAND; EXPERIENCE; REVIEWS; PHOTOS AB Purpose - Recent tourism research has adopted social media analytics (SMA) to examine tourism destination image (TDI) and gain timely insights for marketing purposes. Comparing the methodologies of SMA and intercept surveys would provide a more in-depth understanding of both methodologies and a more holistic understanding of TDI than each method on their own. This study aims to investigate the unique merits and biases of SMA and a traditional visitor intercept survey. Design/methodology/approach - This study collected and compared data for the same tourism destination from two sources: responses from a visitor intercept survey (n = 1,336) and Flickr social media photos and metadata (n = 11,775). Content analysis, machine learning and text analysis techniques were used to analyze and compare the destination image represented from both methods. Findings - The results indicated that the survey data and social media data shared major similarities in the identified key image phrases. Social media data revealed more diverse and more specific aspects of the destination, whereas survey data provided more insights in specific local landmarks. Survey data also included additional subjective judgment and attachment towards the destination. Together, the data suggested that social media data should serve as an additional and complementary source of information to traditional survey data. Originality/value - This study fills a research gap by comparing two methodologies in obtaining TDI: SMA and a traditional visitor intercept survey. Furthermore, within SMA, photo and metadata are compared to offer additional awareness of social media data's underlying complexity. The results showed the limitations of text-based image questions in surveys. The findings provide meaningful insights for tourism marketers by having a more holistic understanding of TDI through multiple data sources. C1 [Lin, Michael S.] Hong Kong Polytech Univ, Sch Hotel & Tourism Management, Kowloon, Hong Kong, Peoples R China. [Liang, Yun; Pan, Bing; Schroeder, Ashley] Penn State Univ, Dept Recreat Pk & Tourism Management, University Pk, PA 16802 USA. [Xue, Joanne X.] Penn State Univ, Sch Hospitality Management, University Pk, PA USA. C3 Hong Kong Polytechnic University; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park; Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park RP Pan, B (autor correspondiente), Penn State Univ, Dept Recreat Pk & Tourism Management, University Pk, PA 16802 USA. EM bup83@psu.edu RI Pan, Bing/F-4871-2012 OI Pan, Bing/0000-0002-4094-2495; Xue, Xunyue/0000-0003-2635-6518; Liang, Yun/0000-0003-1451-0872; /0000-0001-5335-322X FU Happy Valley Adventure Bureau [208653] FX The authors would like to thank Happy Valley Adventure Bureau for supporting the visitor intercept survey project with OSP No. 208653. CR Afshardoost M, 2020, TOURISM MANAGE, V81, DOI 10.1016/j.tourman.2020.104154 Aiden E., 2014, Uncharted: Big data as a lens on human culture ALBERS PC, 1988, ANN TOURISM RES, V15, P134, DOI 10.1016/0160-7383(88)90076-X Baloglu S, 1999, ANN TOURISM RES, V26, P868, DOI 10.1016/S0160-7383(99)00030-4 Biemer PP, 2010, PUBLIC OPIN QUART, V74, P817, DOI 10.1093/poq/nfq058 Bigné JE, 2001, TOURISM MANAGE, V22, P607, DOI 10.1016/S0261-5177(01)00035-8 Blei DM, 2003, J MACH LEARN RES, V3, P993, DOI 10.1162/jmlr.2003.3.4-5.993 Callegaro M., 2018, PALGRAVE HDB SURVEY, P175, DOI [10.1007/978-3-319-54395-6_23, DOI 10.1007/978-3-319-54395-6_23] Chang S, 2018, TOURISM MANAGE, V64, P55, DOI 10.1016/j.tourman.2017.08.004 Chen CF, 2007, TOURISM MANAGE, V28, P1115, DOI 10.1016/j.tourman.2006.07.007 Choi S, 2007, TOURISM MANAGE, V28, P118, DOI 10.1016/j.tourman.2006.03.002 Crompton J. L., 1979, Annals of Tourism Research, V6, P408, DOI 10.1016/0160-7383(92)90128-C Day J., 2002, Journal of Vacation Marketing, V8, P177, DOI 10.1177/135676670200800207 Deng N, 2018, TOURISM MANAGE, V65, P267, DOI 10.1016/j.tourman.2017.09.010 Du X., 2018, ANN INT S INFORM MAN, P54 Echtner C. M., 1993, Journal of Travel Research, V31, P3, DOI 10.1177/004728759303100402 ehrek R., 2010, P LREC 2010 WORKSH N, P45, DOI DOI 10.13140/2.1.2393.1847 Fakeye P. C., 1991, Journal of Travel Research, V30, P10, DOI 10.1177/004728759103000202 Gallarza MG, 2002, ANN TOURISM RES, V29, P56, DOI 10.1016/S0160-7383(01)00031-7 GARTNER WB, 1993, J BUS VENTURING, V8, P231, DOI 10.1016/0883-9026(93)90029-5 Gitelson R. J., 1994, Journal of Travel & Tourism Marketing, V3, P59, DOI 10.1300/J073v03n03_04 Google Cloud Vision, 2017, REL NOT Gurung D.J., 2017, INT J HOSPITALITY TO, V10 HANYU K, 1993, J ENVIRON PSYCHOL, V13, P161, DOI 10.1016/S0272-4944(05)80148-3 Hu Y. Z., 1993, Journal of Travel Research, V32, P25, DOI 10.1177/004728759303200204 Jiang QY, 2022, CRIT REV FOOD SCI, V62, P4669, DOI 10.1080/10408398.2021.1878099 Kim H, 2015, TOURISM MANAGE, V49, P29, DOI 10.1016/j.tourman.2015.02.004 Kirilenko AP, 2021, TOURISM MANAGE, V83, DOI 10.1016/j.tourman.2020.104241 Krippendorff K, 2004, HUM COMMUN RES, V30, P411, DOI 10.1093/hcr/30.3.411 Lai K, 2016, J TRAVEL RES, V55, P1065, DOI 10.1177/0047287515619693 Lee CK, 2005, ANN TOURISM RES, V32, P839, DOI 10.1016/j.annals.2004.11.006 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Li X, 2017, TOURISM MANAGE, V59, P57, DOI 10.1016/j.tourman.2016.07.005 Liu MTC, 2021, ASIA PAC J MARKET LO, V33, P373, DOI 10.1108/APJML-08-2019-0477 Ma SH, 2020, J TRAVEL RES, V59, P352, DOI 10.1177/0047287519839157 MacKay KJ, 1997, ANN TOURISM RES, V24, P537, DOI 10.1016/S0160-7383(97)00011-X Mariani M, 2018, INT J CONTEMP HOSP M, V30, P3514, DOI 10.1108/IJCHM-07-2017-0461 Marine-Roig E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123392 Marine-Roig E, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9081425 Marriott, 2015, MEET PEOPL HEART MAR Milman A., 1995, Journal of Travel Research, V33, P21, DOI 10.1177/004728759503300304 Neuendorf K. A., 2002, CONTENT ANAL GUIDEBO Pan B, 2012, J HOSP TOUR TECHNOL, V3, P196, DOI 10.1108/17579881211264486 Pan B, 2011, ANN TOURISM RES, V38, P132, DOI 10.1016/j.annals.2010.06.004 Park SB, 2020, TOURISM MANAGE, V80, DOI 10.1016/j.tourman.2020.104127 Phelps A., 1986, Tourism Management, V7, P168, DOI 10.1016/0261-5177(86)90003-8 Richards DR, 2018, ECOSYST SERV, V31, P318, DOI 10.1016/j.ecoser.2017.09.004 Ruths D, 2014, SCIENCE, V346, P1063, DOI 10.1126/science.346.6213.1063 Sahin S, 2011, ANATOLIA, V22, P69, DOI 10.1080/13032917.2011.556222 Scarles C, 2010, ANN TOURISM RES, V37, P905, DOI 10.1016/j.annals.2010.02.001 Stepchenkova S, 2008, TOURISM MANAGE, V29, P548, DOI 10.1016/j.tourman.2007.06.003 Stepchenkova S, 2014, ANN TOURISM RES, V45, P46, DOI 10.1016/j.annals.2013.12.004 Stepchenkova S, 2013, TOURISM MANAGE, V36, P590, DOI 10.1016/j.tourman.2012.08.006 Stylidis D, 2020, INT J TOUR RES, V22, P604, DOI 10.1002/jtr.2359 Stylidis D, 2017, TOURISM MANAGE, V58, P184, DOI 10.1016/j.tourman.2016.10.014 Taecharungroj V, 2021, INT J TOUR RES, V23, P417, DOI 10.1002/jtr.2415 Tasci A.D. A., 2007, Journal of Vacation Marketing, V13, P359, DOI DOI 10.1177/1356766707081012 Tussyadiah IP, 2009, ANN TOURISM RES, V36, P24, DOI 10.1016/j.annals.2008.10.001 US Census Bureau, 2019, Quick facts Waldherr A, 2017, SOC SCI COMPUT REV, V35, P427, DOI 10.1177/0894439316643050 Wang CY, 2010, J TRAVEL TOUR MARK, V27, P829, DOI 10.1080/10548408.2010.527249 Wang RW, 2020, J DESTIN MARK MANAGE, V18, DOI 10.1016/j.jdmm.2020.100512 Wenger A., 2008, Journal of Vacation Marketing, V14, P169, DOI [https://doi.org/10.1177/1356766707087525, DOI 10.1177/1356766707087525] Whitaker S., 2014, 1440 FRB Woosnam KM, 2020, J SUSTAIN TOUR, V28, P917, DOI 10.1080/09669582.2019.1708920 Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Yeh SS, 2012, ADV HOSP LEISURE, V8, P167, DOI 10.1108/S1745-3542(2012)0000008013 Zhang K, 2019, TOURISM MANAGE, V75, P595, DOI 10.1016/j.tourman.2019.07.002 Zhang XW, 2020, ANN TOURISM RES, V84, DOI 10.1016/j.annals.2020.102999 NR 70 TC 33 Z9 35 U1 11 U2 89 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-6119 EI 1757-1049 J9 INT J CONTEMP HOSP M JI Int. J. Contemp. Hosp. Manag. PY 2021 VL 33 IS 6 SI SI BP 2219 EP 2238 DI 10.1108/IJCHM-08-2020-0861 EA JUN 2021 PG 20 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA ZB7CY UT WOS:000660419600001 OA Green Submitted DA 2024-03-27 ER PT J AU Aggarwal, S Gour, A AF Aggarwal, Shikha Gour, Alekh TI Peeking inside the minds of tourists using a novel web analytics approach SO JOURNAL OF HOSPITALITY AND TOURISM MANAGEMENT LA English DT Article DE Web analytics; Online reviews; Tourism analytics; Machine learning; Sentiment analysis ID SOCIAL MEDIA; BIG DATA; ECOTOURISM EXPERIENCES; SENTIMENT ANALYSIS; ONLINE REVIEWS; HOSPITALITY; SATISFACTION; CLASSIFICATION; TWITTER; TRAVEL AB In the era of social media and travel websites, tourists increasingly post reviews about their travel experiences. These posts influence the travel plans and decisions of new tourists and hence; their content is important for businesses and governments. The purpose of this study is to propose a model to investigate tourists' perceptions and underlying reasons for posting respective content on travel websites. A web analytics-based approach is proposed to conduct in-depth analyses of the data extracted from such websites and generate meaningful in-sights. A combination of sentiment analysis and topic modeling through the Latent Dirichlet Allocation and machine learning algorithm is used for analyzing the data. The application of the proposed model is illustrated in the case of Goa, India. Findings reveal that the lack of cleanliness, safety, parking, price, facilities, and services are pertinent topics leading to negative sentiments. These topics also corroborate the social and economic events that took place during the period of study. Further clustering of tourist destinations across Goa reveals the presence of similar dissatisfiers. The above findings can be used for deciding the strategy for remedial action by relevant stakeholders. Moreover, the model can automatically classify and analyze future reviews in real-time. C1 [Aggarwal, Shikha] Goa Inst Management, Operat Management, Sattari 403505, Goa, India. [Gour, Alekh] Goa Inst Management, Dept Healthcare Management & Big Data Analyt, Sattari 403505, Goa, India. C3 Goa Institute of Management; Goa Institute of Management RP Aggarwal, S (autor correspondiente), Goa Inst Management, Operat Management, Sattari 403505, Goa, India.; Gour, A (autor correspondiente), Goa Inst Management, Dept Healthcare Management & Big Data Analyt, Sattari 403505, Goa, India. EM sa.shikhaaggarwal@gmail.com; alekh_g@yahoo.co.in CR [Anonymous], 2018, The Guardian [Anonymous], 2016, The Hindu [Anonymous], 2012, N.Y. TIMES [Anonymous], 2017, TIMES IND Arasli H, 2014, PROCD SOC BEHV, V109, P1416, DOI 10.1016/j.sbspro.2013.12.645 Bondzi-Simpson A, 2019, INT J CONTEMP HOSP M, V31, P998, DOI [10.1108/ijchm-12-2017-0820, 10.1108/IJCHM-12-2017-0820] Calheiros AC, 2017, J HOSP MARKET MANAG, V26, P675, DOI 10.1080/19368623.2017.1310075 Catal C, 2017, APPL SOFT COMPUT, V50, P135, DOI 10.1016/j.asoc.2016.11.022 Cheng MM, 2019, INT J HOSP MANAG, V76, P58, DOI 10.1016/j.ijhm.2018.04.004 Chhetri A, 2017, TOURISM GEOGR, V19, P398, DOI 10.1080/14616688.2016.1253765 Chuang J., 2012, P INT WORK OKK Coghlan A, 2012, TOUR RECREAT RES, V37, P123, DOI 10.1080/02508281.2012.11081697 Devesa M, 2010, TOURISM MANAGE, V31, P547, DOI 10.1016/j.tourman.2009.06.006 Dhaoui C, 2017, J CONSUM MARK, V34, P480, DOI 10.1108/JCM-03-2017-2141 Filieri R, 2015, TOURISM MANAGE, V51, P174, DOI 10.1016/j.tourman.2015.05.007 Fränti P, 2018, APPL INTELL, V48, P4743, DOI 10.1007/s10489-018-1238-7 Fuchs M, 2014, J DESTIN MARK MANAGE, V3, P198, DOI 10.1016/j.jdmm.2014.08.002 Gan QW, 2017, J QUAL ASSUR HOSP TO, V18, P465, DOI [10.1080/1528008x.2016.1250243, 10.1080/1528008X.2016.1250243] Ganzaroli A, 2017, TOURISM MANAGE, V61, P501, DOI 10.1016/j.tourman.2017.03.019 Geetha M, 2017, TOURISM MANAGE, V61, P43, DOI 10.1016/j.tourman.2016.12.022 Goa Tourism, 2019, TOURS TAT REL DEP T Guerreiro J, 2020, J HOSP TOUR MANAG, V43, P269, DOI 10.1016/j.jhtm.2019.07.001 Gunn C.A., 2002, TOURISM PLANNING BAS He W, 2017, ONLINE INFORM REV, V41, P921, DOI 10.1108/OIR-07-2016-0201 Heide M, 2009, EUR J MARKETING, V43, P305, DOI 10.1108/03090560910935442 Vu HQ, 2019, TOURISM MANAGE, V75, P435, DOI 10.1016/j.tourman.2019.06.011 IBEF, 2020, INDIATOURIM HOSPI A Ivanov S, 2019, J HOSP TOUR TECHNOL, V10, P489, DOI 10.1108/JHTT-08-2018-0087 James TL, 2017, EXPERT SYST APPL, V71, P479, DOI 10.1016/j.eswa.2016.11.004 Kim J, 2015, J TRAVEL RES, V54, P419, DOI 10.1177/0047287514550100 Kim K, 2017, TECHNOL FORECAST SOC, V123, P362, DOI 10.1016/j.techfore.2017.01.001 Kirilenko AP, 2019, TOURISM MANAGE, V72, P400, DOI 10.1016/j.tourman.2019.01.001 Krawczyk M, 2016, INF TECHNOL TOUR, V16, P23, DOI 10.1007/s40558-015-0033-0 Kunz W, 2017, J SERV MARK, V31, P161, DOI 10.1108/JSM-10-2016-0352 Laing C, 2017, J DESTIN MARK MANAGE, V6, P184, DOI 10.1016/j.jdmm.2016.03.006 Leung D, 2013, J TRAVEL TOUR MARK, V30, P3, DOI 10.1080/10548408.2013.750919 Levy SE, 2013, CORNELL HOSP Q, V54, P49, DOI 10.1177/1938965512464513 Li HY, 2013, ASIA PAC J TOUR RES, V18, P784, DOI 10.1080/10941665.2012.708351 Li JJ, 2018, TOURISM MANAGE, V68, P301, DOI 10.1016/j.tourman.2018.03.009 Lu WL, 2012, TOURISM MANAGE, V33, P702, DOI 10.1016/j.tourman.2011.08.003 Maier D, 2018, COMMUN METHODS MEAS, V12, P93, DOI 10.1080/19312458.2018.1430754 Marine-Roig E, 2015, J DESTIN MARK MANAGE, V4, P162, DOI 10.1016/j.jdmm.2015.06.004 Mauri AG, 2013, INT J HOSP MANAG, V34, P99, DOI 10.1016/j.ijhm.2013.02.012 Menner T., 2016, Information and Communication Technologies in Tourism 2016, P411 Misirlis N, 2018, INT J INFORM MANAGE, V38, P270, DOI 10.1016/j.ijinfomgt.2017.10.005 Mohammad S.M., 2013, NRC TECHNICAL REPORT Moro S, 2018, INT J CONTEMP HOSP M, V30, P343, DOI 10.1108/IJCHM-07-2016-0340 Neal JD, 2008, J TRAVEL RES, V47, P53, DOI 10.1177/0047287507312434 Neidhardt J, 2017, INF TECHNOL TOUR, V17, P101, DOI 10.1007/s40558-017-0079-2 Nilashi M, 2017, COMPUT IND ENG, V109, P357, DOI 10.1016/j.cie.2017.05.016 nltk, 2019, NATURAL LANGUAGE TOO Pan HF, 2020, J HOSP TOUR MANAG, V43, P179, DOI 10.1016/j.jhtm.2020.04.005 Pantano E, 2013, J HOSP TOUR TECHNOL, V4, P211, DOI 10.1108/JHTT-02-2013-0005 Pearce PL, 2017, J HOSP TOUR MANAG, V30, P55, DOI 10.1016/j.jhtm.2017.01.004 Perles-Ribes JF, 2020, TOURISM ECON, V26, P764, DOI 10.1177/1354816619838413 Philander K, 2016, INT J HOSP MANAG, V55, P16, DOI 10.1016/j.ijhm.2016.02.001 Pokryshevskaya EB, 2017, INT J HOSP MANAG, V67, P1, DOI 10.1016/j.ijhm.2017.07.009 Rossetti M, 2016, INF TECHNOL TOUR, V16, P5, DOI 10.1007/s40558-015-0035-y Ruhanen L, 2019, J HOSP TOUR MANAG, V39, P110, DOI 10.1016/j.jhtm.2019.03.006 Seeler S, 2019, J HOSP TOUR MANAG, V41, P80, DOI 10.1016/j.jhtm.2019.09.009 Shahrivar RB., 2012, Journal of Travel and Tourism Research (Online), V12, P61, DOI DOI 10.18510/IJTHR.2017.415 Shoval N, 2018, J TRAVEL RES, V57, P3, DOI 10.1177/0047287517691155 Sievert C., 2014, P WORKSH INT LANG LE, P63, DOI [DOI 10.3115/V1/W14-3110, 10.3115/v1/W14-3110] Sigala M., 2019, Big data and innovation in tourism, travel, and hospitality Sigala M, 2018, TOUR MANAG PERSPECT, V25, P151, DOI 10.1016/j.tmp.2017.12.003 Sigala M, 2016, HANDBOOK OF MANAGING AND MARKETING TOURISM EXPERIENCES, P85 Sigala Marianna, 2015, Asia Pacific Journal of Information Systems, V25, P179, DOI 10.14329/apjis.2015.25.1.179 Singh T, 2016, PROCEDIA COMPUT SCI, V89, P549, DOI 10.1016/j.procs.2016.06.095 Song H, 2008, TOURISM MANAGE, V29, P203, DOI 10.1016/j.tourman.2007.07.016 Song HY, 2012, ANN TOURISM RES, V39, P1653, DOI 10.1016/j.annals.2012.05.023 Sotiriadis MD, 2013, ELECTRON COMMER RES, V13, P103, DOI 10.1007/s10660-013-9108-1 Sparks BA, 2011, TOURISM MANAGE, V32, P1310, DOI 10.1016/j.tourman.2010.12.011 Srihadi TF, 2016, TOUR MANAG PERSPECT, V19, P32, DOI 10.1016/j.tmp.2016.03.005 Strannegård L, 2012, ANN TOURISM RES, V39, P1995, DOI 10.1016/j.annals.2012.06.006 Sun LJ, 2017, TRANSPORT RES C-EMER, V77, P49, DOI 10.1016/j.trc.2017.01.013 Tosun C., 2007, International Journal of Tourism Research, V9, P87, DOI 10.1002/jtr.595 Trauer B, 2005, TOURISM MANAGE, V26, P481, DOI 10.1016/j.tourman.2004.02.014 Travel & Associate T., 2019, TRAVEL TOURISM ASS G Trip Advisor, 2019, EXPLORE GOA Tussyadiah IP, 2014, J TRAVEL RES, V53, P543, DOI 10.1177/0047287513513172 Vermeulen IE, 2009, TOURISM MANAGE, V30, P123, DOI 10.1016/j.tourman.2008.04.008 Walls AR, 2011, INT J HOSP MANAG, V30, P10, DOI 10.1016/j.ijhm.2010.03.008 Williamson D, 2009, J HOSP TOUR MANAG, V16, P55, DOI 10.1375/jhtm.16.1.55 Wu CHJ, 2009, INT J HOSP MANAG, V28, P586, DOI 10.1016/j.ijhm.2009.03.008 Xiang Z., 2016, Information and Communication Technologies in Tourism 2016, P383, DOI DOI 10.1007/978-3-319-28231-2_28 Xiang Z, 2017, TOURISM MANAGE, V58, P51, DOI 10.1016/j.tourman.2016.10.001 Xiang Z, 2015, INT J HOSP MANAG, V44, P120, DOI 10.1016/j.ijhm.2014.10.013 Yang Y, 2015, INT J HOSP MANAG, V47, P14, DOI 10.1016/j.ijhm.2015.02.008 Yoo K.-H., 2016, EXPLORING TRIPADVISO Yüksel A, 2017, TOURISM MANAGE, V59, P376, DOI 10.1016/j.tourman.2016.08.003 Zhao YB, 2019, INT J HOSP MANAG, V76, P111, DOI 10.1016/j.ijhm.2018.03.017 NR 91 TC 18 Z9 18 U1 7 U2 43 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1447-6770 EI 1839-5260 J9 J HOSP TOUR MANAG JI J. Hosp. Tour. Manag. PD DEC PY 2020 VL 45 BP 580 EP 591 DI 10.1016/j.jhtm.2020.10.009 PG 12 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA PB1EW UT WOS:000596073300021 DA 2024-03-27 ER PT J AU Wang, TC AF Wang, Tzu-Chien TI Deep Learning-Based Prediction and Revenue Optimization for Online Platform User Journeys SO QUANTITATIVE FINANCE AND ECONOMICS LA English DT Article DE customer journeys managements; e-commerce platform; deep learning; optimization methods AB In today's digital landscape, businesses must allocate online resources efficiently. Data-driven AI methods are increasingly adopted for customer journey management. This study enhances existing frameworks with three key propositions, integrating deep learning and optimization to create a three-step revenue optimization model using online customer data. First, we apply K-means clustering to analyze online user data, constructing a behavior model. Then, convolutional neural networks (CNN) and long short-term memory (LSTM) networks predict user behavior and conversion values from sequential data. Finally, the heuristic algorithm optimizes revenue within budget constraints based on conversions. From an academic perspective, our study provides an empirical, theory-grounded model for service and marketing management. Technologically, we identify three key findings: stacking LSTM with CNN effectively processes sequential online user data, outperforming traditional machine learning methods; optimization methods and decision trees improve model interpretability and address marketing attribution challenges by understanding user behavior and channel impacts; and traditional integer programming models fall short in solving high-dimensional online channel planning problems, necessitating heuristic algorithms. Our model aids companies in setting online channel standards and budgets, offering valuable insights and practical guidance to decision-makers. C1 [Wang, Tzu-Chien] Natl Taiwan Univ, Dept Business Adm, Taipei, Taiwan. C3 National Taiwan University RP Wang, TC (autor correspondiente), Natl Taiwan Univ, Dept Business Adm, Taipei, Taiwan. EM d08741009@ntu.edu.tw CR Birant D., 2011, KNOWLEDGE ORIENTED A, P91, DOI [10.5772/13683, DOI 10.5772/13683] Chang CJ, 2002, Rev Bus Inf Syst, V6, P27, DOI [10.19030/rbis.v6i1.4575, DOI 10.19030/RBIS.V6I1.4575] de Haan E, 2016, INT J RES MARK, V33, P491, DOI 10.1016/j.ijresmar.2015.12.001 DODIN B, 1991, EUR J OPER RES, V52, P267, DOI 10.1016/0377-2217(91)90162-O Edvardsson B, 2005, INT J SERV IND MANAG, V16, P107, DOI 10.1108/09564230510587177 Grewal D, 2020, J RETAILING, V96, P3, DOI 10.1016/j.jretai.2020.02.002 Han DL, 2010, EUR J OPER RES, V200, P800, DOI 10.1016/j.ejor.2009.02.001 He BL, 2014, PROCEDIA COMPUT SCI, V31, P423, DOI 10.1016/j.procs.2014.05.286 Huang CY, 2007, J AM SOC INF SCI TEC, V58, P1988, DOI 10.1002/asi.20669 Klein R, 2020, EUR J OPER RES, V284, P397, DOI 10.1016/j.ejor.2019.06.034 Kraus M, 2020, EUR J OPER RES, V281, P628, DOI 10.1016/j.ejor.2019.09.018 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Sarkar M, 2021, J INTERACT MARK, V53, P80, DOI 10.1016/j.intmar.2020.07.002 Strauss AK, 2018, EUR J OPER RES, V271, P375, DOI 10.1016/j.ejor.2018.01.011 Sun CS, 2022, INFORM SYST RES, V33, P429, DOI 10.1287/isre.2021.1071 NR 15 TC 0 Z9 0 U1 1 U2 1 PU AMER INST MATHEMATICAL SCIENCES-AIMS PI SPRINGFIELD PA PO BOX 2604, SPRINGFIELD, MO 65801-2604, UNITED STATES SN 2573-0134 J9 QUANT FINANC ECON JI Quant. Financ. Econ. PY 2024 VL 8 IS 1 BP 1 EP 28 DI 10.3934/QFE.2024001 PG 28 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA FV7J7 UT WOS:001148691800001 OA gold DA 2024-03-27 ER PT J AU Bharadwaj, N Ballings, M Naik, PA Moore, M Arat, MM AF Bharadwaj, Neeraj Ballings, Michel Naik, Prasad A. Moore, Miller Arat, Mustafa Murat TI A New Livestream Retail Analytics Framework to Assess the Sales Impact of Emotional Displays SO JOURNAL OF MARKETING LA English DT Article DE deep learning; emotions; face detection; livestream e-commerce; salesperson effectiveness ID EXPRESSIONS; SERVICE; CUSTOMER; CONTAGION; EMPLOYEES AB At the intersection of technology and marketing, this study develops a framework to unobtrusively detect salespeople's faces and simultaneously extract six emotions: happiness, sadness, surprise, anger, fear, and disgust. The authors analyze 99,451 sales pitches on a livestream retailing platform and match them with actual sales transactions. Results reveal that each emotional display, including happiness, uniformly exhibits a negative U-shaped effect on sales over time. The maximum sales resistance appears in the middle rather than at the beginning or end of sales pitches. Taken together, the results show that in one-to-many screen-mediated communications, salespeople should sell with a straight face. In addition, the authors derive closed-form formulae for the optimal allocation of the presence of a face and emotional displays over the presentation span. In contrast to the U-shaped effects, the optimal face presence wanes at the start, gradually builds to a crescendo, and eventually ebbs. Finally, the study shows how to objectively rank salespeople and circumvent biases in performance appraisals, thereby making novel contributions to people analytics. This research integrates new types of data and methods, key theoretical insights, and important managerial implications to inform the expanding opportunity that livestream e-commerce presents to marketers to create, communicate, deliver, and capture value. C1 [Bharadwaj, Neeraj] Univ Tennessee, Haslam Coll Business, Mkt, Knoxville, TN 37996 USA. [Ballings, Michel] Univ Tennessee, Haslam Coll Business, Business Analyt, Knoxville, TN USA. [Naik, Prasad A.] Univ Calif Davis, Grad Sch Management, Mkt, Davis, CA 95616 USA. [Moore, Miller; Arat, Mustafa Murat] Univ Tennessee, Haslam Coll Business, Business Analyt & Stat, Knoxville, TN USA. C3 University of Tennessee System; University of Tennessee Knoxville; University of Tennessee System; University of Tennessee Knoxville; University of California System; University of California Davis; University of Tennessee System; University of Tennessee Knoxville RP Bharadwaj, N (autor correspondiente), Univ Tennessee, Haslam Coll Business, Mkt, Knoxville, TN 37996 USA. EM nbharadwaj@utk.edu; michel.ballings@utk.edu; panaik@ucdavis.edu; miller.moore@utk.edu; marat@vols.utk.edu RI Ballings, Michel/C-1016-2013 OI Naik, Prasad/0000-0002-0606-6479 FU Haslam College of Business; UC Davis research grant; Class of 1989 Endowment FX The author(s) received the following financial support for the research, authorship, and/or publication of this article: The first two authors received research support from the Haslam College of Business, and the third author acknowledges funding received from UC Davis research grants and the Class of 1989 Endowment. CR [Anonymous], 1988, CURRENT ISSUES RES A Arriaga O., 2017, IMAGE CAPTIONING CLA Ataman MB, 2008, MARKET SCI, V27, P1036, DOI 10.1287/mksc.1080.0358 Bagozzi RP, 1999, J ACAD MARKET SCI, V27, P184, DOI 10.1177/0092070399272005 Balducci B, 2018, J ACAD MARKET SCI, V46, P557, DOI 10.1007/s11747-018-0581-x BERLYNE DE, 1970, PERCEPT PSYCHOPHYS, V8, P279, DOI 10.3758/BF03212593 Bharadwaj N, 2020, IND MARKET MANAG, V90, P106, DOI 10.1016/j.indmarman.2020.07.002 Bharadwaj N, 2020, J INTERACT MARK, V50, P17, DOI 10.1016/j.intmar.2019.09.002 BROWN CS, 1994, J ORGAN BEHAV MANAGE, V14, P55 CALDER BJ, 1980, J MARKETING RES, V17, P173, DOI 10.2307/3150928 Cheshin A, 2018, ORGAN BEHAV HUM DEC, V144, P97, DOI 10.1016/j.obhdp.2017.10.002 Crivelli C, 2018, TRENDS COGN SCI, V22, P388, DOI 10.1016/j.tics.2018.02.006 Eicoff Alvin., 1995, Direct Marketing Through Broadcast Media: TV, Radio, Cable, Informercials, Home Shopping, and More Eng Ilene, 2019, BANK BRANCH UNVEILS Fridlund A.J., 1994, HUMAN FACIAL EXPRESS Friesen E., 1978, Manual for the facial action coding system, V3 GATIGNON H, 1987, J MARKETING RES, V24, P247, DOI 10.2307/3151635 Gountas S, 2007, J BUS RES, V60, P81, DOI 10.1016/j.jbusres.2006.09.022 Grandey AA, 2011, J SERV RES-US, V14, P397, DOI 10.1177/1094670511410304 Greenwald M., 2020, FORBES Grewal D, 2020, J ACAD MARKET SCI, V48, P1, DOI 10.1007/s11747-019-00711-4 Hamilton R, 2021, J MARKETING, V85, P68, DOI 10.1177/0022242920908227 Hardy Melissa A., 1993, REGRESSION DUMMY VAR, P64 Hareli S, 2009, EMOTION, V9, P378, DOI 10.1037/a0015958 Heerdink MW, 2019, COGNITION EMOTION, V33, P563, DOI 10.1080/02699931.2018.1476324 Hennig-Thurau T, 2006, J MARKETING, V70, P58, DOI 10.1509/jmkg.70.3.58 Hu Ye, 2021, CUSTOMER NEEDS SOLUT, V8, P27 Kadic-Maglajlic S, 2017, J BUS RES, V80, P53, DOI 10.1016/j.jbusres.2017.06.023 Kidwell B, 2021, J MARKETING, V85, P141, DOI 10.1177/0022242921999603 Lam SK, 2017, J SERV RES-US, V20, P12, DOI 10.1177/1094670516679271 Lee YH, 2010, J MARKETING RES, V47, P1151, DOI 10.1509/jmkr.47.6.1151 Li X, 2019, INT J RES MARK, V36, P216, DOI 10.1016/j.ijresmar.2019.02.004 Liu X, 2018, J MARKETING, V82, P86, DOI 10.1509/jm.16.0048 Luo XM, 2021, J MARKETING, V85, P14, DOI 10.1177/0022242920956676 Marinova D, 2018, J MARKETING RES, V55, P178, DOI 10.1509/jmr.15.0243 McDuff D, 2020, J ADVERTISING RES, V60, P370, DOI 10.2501/JAR-2020-027 McKee R., 1997, STORY SUBSTANCE STRU Miao F, 2022, J MARKETING, V86, P67, DOI 10.1177/0022242921996646 Naik PA, 2005, MARKET SCI, V24, P25, DOI 10.1287/mksc.1040.0083 Naik PA, 1998, MARKET SCI, V17, P214, DOI 10.1287/mksc.17.3.214 Oblander ES, 2020, MARKET LETT, V31, P125, DOI 10.1007/s11002-020-09525-9 Pugh SD, 2001, ACAD MANAGE J, V44, P1018, DOI 10.5465/3069445 Rockwater, 2020, CAN US REPL CHIN 63B Scarantino A, 2018, PHILOS SCI, V85, P1038 Scarantino A, 2017, PSYCHOL INQ, V28, P165, DOI 10.1080/1047840X.2017.1328951 Scarantino A, 2017, PSYCHOL INQ, V28, P217, DOI 10.1080/1047840X.2017.1345227 Sethuraman R, 2011, J MARKETING RES, V48, P457, DOI 10.1509/jmkr.48.3.457 Siders MA, 2001, ACAD MANAGE J, V44, P570, DOI 10.5465/3069371 Stephens DL, 1996, J BUS RES, V37, P193, DOI 10.1016/S0148-2963(96)00069-0 Teixeira T, 2012, J MARKETING RES, V49, P144, DOI 10.1509/jmr.10.0207 Van Kleef G.A., 2016, INTERPERSONAL DYNAMI Van Kleef GA, 2015, J APPL PSYCHOL, V100, P1124, DOI 10.1037/apl0000003 Van Kleef GA, 2010, ADV EXP SOC PSYCHOL, V42, P45, DOI 10.1016/S0065-2601(10)42002-X Van Kleef GA, 2009, ACAD MANAGE J, V52, P562, DOI 10.5465/AMJ.2009.41331253 Van Kleef GA, 2009, CURR DIR PSYCHOL SCI, V18, P184, DOI 10.1111/j.1467-8721.2009.01633.x Viola P, 2001, PROC CVPR IEEE, P511, DOI 10.1109/cvpr.2001.990517 Wang L, 2018, ACAD MANAGE J, V61, P1050, DOI 10.5465/amj.2015.0460 Wang Z, 2017, J CONSUM RES, V43, P787, DOI 10.1093/jcr/ucw062 Wedel M, 2016, J MARKETING, V80, P97, DOI 10.1509/jm.15.0413 Zetlin Minda, 2017, DO YOU SMILE TOO MUC Zoltners AA, 2008, J PERS SELL SALES M, V28, P115, DOI 10.2753/PSS0885-3134280201 NR 61 TC 37 Z9 39 U1 55 U2 310 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2429 EI 1547-7185 J9 J MARKETING JI J. Mark. PD JAN PY 2022 VL 86 IS 1 SI SI BP 27 EP 47 AR 00222429211013042 DI 10.1177/00222429211013042 EA SEP 2021 PG 21 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA XM3TG UT WOS:000704310700001 DA 2024-03-27 ER PT J AU Hudima, T Trehub, O Kamyshanskyi, V AF Hudima, Tetiana Trehub, Oleksandr Kamyshanskyi, Vladyslav TI INTERNATIONAL DIGITAL TRADE & DIGITAL ECONOMY AGREEMENTS: CHALLENGES AND PROSPECTS FOR UKRAINE SO FINANCIAL AND CREDIT ACTIVITY-PROBLEMS OF THEORY AND PRACTICE LA English DT Article DE digital agreement; digital trade; foreign economic policy; foreign economic; relations; artificial intelligence; cross-border data flows; personal data protection; e-commerce; electronic document management; technology AB The article examines the prospects for the digital transformation of Ukraine's foreign economic policy in the context of international digital trade/economy agreements, especially the Digital Trade Agreement between the United Kingdom of Great Britain and Northern Ireland and Ukraine. The economic and legal effectiveness of these agreements in the process of digital transformation of foreign economic policy (foreign trade) in Ukraine and at the international level is proven. To increase their effectiveness and accelerate implementation, the political and legal framework is of great importance. Under other circumstances, the realisation of such agreements will be complicated by the need to bring domestic legislation in line with their provisions, as the case of Ukraine shows. It is substantiated that the implementation of the Digital Trade Agreement between the United Kingdom of Great Britain and Northern Ireland and Ukraine is complicated by the lack of national legislation regarding electronic document management in cross-border trade; the slow pace of implementation of international legislation, for example, on personal data protection; the existence of differences in the legislative approaches of the European Union and the United Kingdom of Great Britain and Northern Ireland regarding certain issues of trade in goods and services etc. It is emphasized that certain norms of the agreement are declarative and that it does not address some important issues that can be of great value for cross-border trade in the future. The expediency of Ukraine's constant participation in international cooperation in order to modernize foreign economic and national economic policy, taking into account the requirements of international documents and current challenges, is reasoned. In this context, constant monitoring, study of foreign experience and analysis of the consequences of resolving such important issues as cross-border transfer of information by electronic means, localization of data and entities that provide their transfer, non-discrimination, etc. are vital. C1 [Hudima, Tetiana; Trehub, Oleksandr; Kamyshanskyi, Vladyslav] Natl Acad Sci Ukraine, State Org V Mamutov Inst Econ & Legal Res, Kiev, Ukraine. C3 National Academy of Sciences Ukraine RP Hudima, T (autor correspondiente), Natl Acad Sci Ukraine, State Org V Mamutov Inst Econ & Legal Res, Kiev, Ukraine. EM tsgudima@gmail.com RI Trehub, Oleksandr/IWE-0080-2023; Hudima, Tetiana/AAV-6450-2021; Kamyshanskyi, Vladyslav/JDV-9858-2023 OI Trehub, Oleksandr/0000-0003-0660-5783; Hudima, Tetiana/0000-0003-1509-5180; Kamyshanskyi, Vladyslav/0000-0003-4220-8339 CR AA EU&Ukr, Association Agreement between the European Union and its Member States, of the one part, and Ukraine, of the other part Aaronson SA, 2023, OXFORD REV ECON POL, V39, P98, DOI 10.1093/oxrep/grac046 Chaisse J, 2023, WORLD TRADE REV, V22, P73, DOI 10.1017/S1474745622000337 Cheung P, 2023, The ASEAN Digital Economy: Towards an Integrated Regional Framework, P210, DOI [10.4324/9781003308751, DOI 10.4324/9781003308751] Ciuriak D., 2022, SSRN Electronic Journal, DOI [10.2139/ssrn.4217903, DOI 10.2139/SSRN.4217903] Ciuriak D, 2018, SSRN Electronic Journal, DOI [10.2139/ssrn.3110785, DOI 10.2139/SSRN.3110785] DEPA, Digital Economy Partnership Agreement Elsig M., 2021, Big Data and Global Trade Law, P42, DOI [10.1017/9781108919234.004, DOI 10.1017/9781108919234.004] EM, 2022, Explanatory Memorandum on the Digita l Trade Agreement between the United Kingdom o f Great Britain and Northern Ireland and Ukraine Fay R, 2021, SSRN Electronic Journal, DOI [10.2139/ssrn.3875736, DOI 10.2139/SSRN.3875736] Gao H, 2018, LEG ISS ECON INTEGR, V45, P47 Government of Canada, 2023, CanadaUkraine FTA modernization: Summary of negotiated outcomes Greenberg E, 2023, Papayaglobal H DTA, 2023, Historic Digital Trade Agreement between Ukraine and United Kingdom enhances economic support Honey S., 2021, Addressing Impediments to Digital Trade, P217 Hudima T, 2023, FINANC CREDIT ACT, V3, P398, DOI 10.55643/fcaptp.3.50.2023.4039 Kono K., 2023, NATO Cooperative Cyber Defence Centre o f Excellence, V37 Lim J. Z., 2022, Impact of Digital Economy Agreements on ASEAN Development: Estimates from a CGE Model, P30 Lopez Gonzalez J, 2018, OECD Trade Policy Papers, V217, DOI [10.1787/1BD89C9A-EN, DOI 10.1787/1BD89C9A-EN] Mitchell F., 2020, ARTNeT Working Paper Series, P191 NZ export, 2021, New Zealand's export performance over the past decade ODL PDP, 2022, Council of Europe Project "Supporting Implementation of the European Human Rights Standards in Ukraine Rakesh V., 2022, PRIV S 2022 DAT PROT, P105 RKD, 2023, Recommendation for a Council decision authorising the opening of negotiations for digita l trade disciplines with the Republic of Korea and with Singapore S vs NZ, Singapore vs New Zealand SADEA, Singapore-Australia Digital Economy Agreement Schrems, 2020, Data Protection Commissioner v Facebook Ireland Limited and Maximillian Schrems Sheng L., 2022, Big Tech Firms and International Relations: The Role of the Nation-State in New Forms of Power, P93, DOI [10.1007/978-981-19-3682-1_4, DOI 10.1007/978-981-19-3682-1_4] Soprana M., 2021, Trade L. & Dev., V13, P143 Suslenko V, 2022, FINANC CREDIT ACT, V1, P62 U&C FTA, Ukraine and Canada will update the Free Trade Agreement UK-Ukraine DTA, 2023, CS Ukraine 2/2023 UK-Ukraine DTA AE, 2023, UK-Ukraine DTA: agreement explainer. Promotional material Vlassis A., 2022, Analytical report NR 34 TC 0 Z9 0 U1 0 U2 0 PU FINTECHALIANCE PI Kyiv PA Highway Kharkivska, bldg 180/21, Kyiv, UKRAINE SN 2306-4994 EI 2310-8770 J9 FINANC CREDIT ACT JI Financ. Credit Act. PY 2023 VL 5 IS 52 BP 449 EP 460 DI 10.55643/fcaptp.5.52.2023.4139 PG 12 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA AH8W7 UT WOS:001117676000022 DA 2024-03-27 ER PT J AU Luo, XM Lu, XH Li, J AF Luo, Xueming Lu, Xianghua Li, Jing TI When and How to Leverage E-commerce Cart Targeting: The Relative and Moderated Effects of Scarcity and Price Incentives with a Two-Stage Field Experiment and Causal Forest Optimization SO INFORMATION SYSTEMS RESEARCH LA English DT Article DE e-commerce; digital; scarcity; incentives; machine learning; causal random forest ID EMPIRICAL-ANALYSIS; RESOURCE SCARCITY; SHOPPING GOALS; CONSUMER PRICE; PROMOTION; IMPACT; PRODUCT; MODEL; SALES; UNCERTAINTY AB The rise of online shopping cart-tracking technologies enables new opportunities for e-commerce cart targeting (ECT). However, practitioners might target shoppers who have short-listed products in their digital carts without fully considering how ECT designs interact with consumer mindsets in online shopping stages. This paper develops a conceptual model of ECT that addresses the question of when (with versus without carts) and how to target (scarcity versus price promotion). Our ECT model is grounded in the consumer goal stage theory of deliberative or implemental mindsets and supported by a two-stage field experiment involving more than 22,000 mobile users. The results indicate that ECT has a substantial impact on consumer purchases, inducing a 29.9% higher purchase rate than e-commerce targeting without carts. Moreover, this incremental impact is moderated: the ECT design with a price incentive amplifies the impact, but the same price incentive leads to ineffective e-commerce targeting without carts. By contrast, a scarcity message attenuates the impact but significantly boosts purchase responses to targeting without carts. Interestingly, the costless scarcity nudge is approximately 2.3 times more effective than the costly price incentive in the early shopping stage without carts, whereas a price incentive is 11.4 times more effective than the scarcity message in the late stage with carts. We also leverage a causal forest algorithm that can learn purchase response heterogeneity to develop a practical scheme of optimizing ECT. Our model and findings empower managers to prudently target consumer shopping interests embedded in digital carts to capitalize on new opportunities in e-commerce. C1 [Luo, Xueming] Temple Univ, Fox Sch Business, Philadelphia, PA 19122 USA. [Lu, Xianghua] Fudan Univ, Sch Management, Shanghai 200433, Peoples R China. [Li, Jing] Nanjing Univ, Sch Business, Nanjing 210093, Jiangsu, Peoples R China. C3 Pennsylvania Commonwealth System of Higher Education (PCSHE); Temple University; Fudan University; Nanjing University RP Luo, XM (autor correspondiente), Temple Univ, Fox Sch Business, Philadelphia, PA 19122 USA. EM xueming.luo@temple.edu; lxhua@fudan.edu.cn; aaronleejane@gmail.com OI Li, Jing/0000-0002-2242-1987 FU National Natural Science Foundation of China [71422006, 71531006, 71872050] FX X. Lu thanks the National Natural Science Foundation of China [Grants 71422006, 71531006, and 71872050] for financial support. CR Alba JW, 1999, J CONSUM RES, V26, P99, DOI 10.1086/209553 Andrews M, 2016, MARKET SCI, V35, P218, DOI 10.1287/mksc.2015.0905 Ansari A, 2003, J MARKETING RES, V40, P131, DOI 10.1509/jmkr.40.2.131.19224 Aydinli A, 2014, J MARKETING, V78, P80, DOI 10.1509/jm.12.0338 Balachander S, 2009, MANAGE SCI, V55, P1623, DOI 10.1287/mnsc.1090.1056 BLATTBERG RC, 1995, MARKET SCI, V14, pG122, DOI 10.1287/mksc.14.3.G122 Blattberg RobertC., 1990, Sales Promotion: Concepts, Methods, and Strategies Brehm J.W., 1972, RESPONSES LOSS FREED Bridges E, 2008, J BUS RES, V61, P309, DOI 10.1016/j.jbusres.2007.06.017 Büttner OB, 2015, EUR J MARKETING, V49, P170, DOI 10.1108/EJM-01-2012-0044 Cao ZK, 2018, INFORM SYST RES, V29, P567, DOI 10.1287/isre.2017.0772 Chan JCF, 2010, IEEE T ENG MANAGE, V57, P365, DOI 10.1109/TEM.2009.2034255 Chandon P, 2000, J MARKETING, V64, P65, DOI 10.1509/jmkg.64.4.65.18071 Chatterjee P, 2003, MARKET SCI, V22, P520, DOI 10.1287/mksc.22.4.520.24906 Close AG, 2010, J BUS RES, V63, P986, DOI 10.1016/j.jbusres.2009.01.022 Devaraj S, 2002, INFORM SYST RES, V13, P316, DOI 10.1287/isre.13.3.316.77 Dimoka A, 2012, MIS QUART, V36, P395 Ding AWX, 2015, INFORM SYST RES, V26, P339, DOI 10.1287/isre.2015.0568 Drèze X, 2003, J INTERACT MARK, V17, P8, DOI 10.1002/dir.10063 Du XM, 2017, INFORM SYST RES, V28, P711, DOI 10.1287/isre.2017.0724 Dubé JP, 2017, MARKET SCI, V36, P944, DOI 10.1287/mksc.2017.1042 Egeln L.S., 2012, ATLANTIC MARKETING J, V1, P1 Fang Z, 2015, INFORM SYST RES, V26, P552, DOI 10.1287/isre.2015.0586 Farahat Ayman., 2012, WWW 2012, P111, DOI DOI 10.1145/2187836.2187852 FOLKES VS, 1993, J CONSUM RES, V20, P467, DOI 10.1086/209362 Fong NM, 2015, J MARKETING RES, V52, P726, DOI 10.1509/jmr.14.0229 Garcia K, 2018, BRANDS KNOW THEYRE B Ghose A, 2009, MIS QUART, V33, P263 Gondar Town, 2018, RECORDED DATA NUMBER Haans H, 2011, J RETAIL CONSUM SERV, V18, P389, DOI 10.1016/j.jretconser.2011.05.001 Ho SY, 2011, INFORM SYST RES, V22, P660, DOI 10.1287/isre.1090.0262 Jedidi K, 1999, MARKET SCI, V18, P1, DOI 10.1287/mksc.18.1.1 Jung Y, 2009, COMPUT HUM BEHAV, V25, P123, DOI 10.1016/j.chb.2008.07.011 KALWANI MU, 1992, J MARKETING RES, V29, P90, DOI 10.2307/3172495 Kopalle PK, 1999, MARKET SCI, V18, P317, DOI 10.1287/mksc.18.3.317 Koufaris M, 2002, INFORM SYST RES, V13, P205, DOI 10.1287/isre.13.2.205.83 Kristofferson K, 2017, J CONSUM RES, V43, P683, DOI 10.1093/jcr/ucw056 Lal R, 1997, MARKET SCI, V16, P60, DOI 10.1287/mksc.16.1.60 Lambrecht A, 2013, J MARKETING RES, V50, P561, DOI 10.1509/jmr.11.0503 Lee L, 2006, J CONSUM RES, V33, P60, DOI 10.1086/504136 Leong C, 2016, MIS QUART, V40, P475, DOI 10.25300/MISQ/2016/40.2.11 Li CX, 2017, MARKET SCI, V36, P762, DOI 10.1287/mksc.2017.1044 Luo XM, 2014, MANAGE SCI, V60, P1738, DOI 10.1287/mnsc.2013.1836 Manchanda P, 2006, J MARKETING RES, V43, P98, DOI 10.1509/jmkr.43.1.98 Mandel N, 2002, J CONSUM RES, V29, P235, DOI 10.1086/341573 McCall M, 2009, J PROD BRAND MANAG, V18, P461, DOI 10.1108/10610420910989785 Mehta R, 2016, J CONSUM RES, V42, P767, DOI 10.1093/jcr/ucv051 Mela CF, 1998, J MARKETING RES, V35, P250, DOI 10.2307/3151852 Miyazaki AD, 2009, J PUBLIC POLICY MARK, V28, P71, DOI 10.1509/jppm.28.1.71 Mochon D, 2017, J MARKETING RES, V54, P306, DOI 10.1509/jmr.15.0409 Moe WW, 2004, MANAGE SCI, V50, P326, DOI 10.1287/mnsc.1040.0153 Novak T.P., 1997, Interval Research Corporation, V31, P1 Parboteeah DV, 2009, INFORM SYST RES, V20, P60, DOI 10.1287/isre.1070.0157 Pavlou PA, 2007, MIS QUART, V31, P105 Reczek RW, 2014, J CONSUM RES, V41, P1065, DOI 10.1086/678052 RICHINS ML, 1992, J CONSUM RES, V19, P303, DOI 10.1086/209304 Rossi PE, 1996, MARKET SCI, V15, P321, DOI 10.1287/mksc.15.4.321 Roux C, 2015, J CONSUM RES, V42, P615, DOI 10.1093/jcr/ucv048 Rutz OJ, 2011, MARKET SCI, V30, P789, DOI 10.1287/mksc.1110.0647 Sahni NS, 2015, QME-QUANT MARK ECON, V13, P203, DOI 10.1007/s11129-015-9159-9 Shah AK, 2012, SCIENCE, V338, P682, DOI 10.1126/science.1222426 Sherman L., 2001, Journal of Interactive Marketing, V15, P60, DOI [DOI 10.1002/DIR.1011, 10.1002/dir.1011] Song J, 2005, MANAGE SCI, V51, P1219, DOI 10.1287/mnsc.1050.0427 Song TT, 2017, INFORM MANAGE-AMSTER, V54, P1072, DOI 10.1016/j.im.2017.03.003 Stock A, 2005, MANAGE SCI, V51, P1181, DOI 10.1287/mnsc.1050.0381 Subramani M, 2001, INFORM SYST RES, V12, P135, DOI 10.1287/isre.12.2.135.9698 Swait J., 2000, J RETAIL CONSUM SERV, V7, P77, DOI [10.1016/S0969-6989(99)00012-0, DOI 10.1016/S0969-6989(99)00012-0] Tam KY, 2005, INFORM SYST RES, V16, P271, DOI 10.1287/isre.1050.0058 Trope Y, 2003, PSYCHOL REV, V110, P403, DOI 10.1037/0033-295X.110.3.403 VanderMeer D, 2012, MIS QUART, V36, P479 Venkatesh V, 2017, MIS QUART, V41, P83, DOI 10.25300/MISQ/2017/41.1.05 Wager S, 2018, J AM STAT ASSOC, V113, P1228, DOI 10.1080/01621459.2017.1319839 Wang WQ, 2009, MIS QUART, V33, P293 Xu KQ, 2017, MANAGE SCI, V63, P1469, DOI 10.1287/mnsc.2015.2406 Xu LZ, 2012, INFORM SYST RES, V23, P1284, DOI 10.1287/isre.1120.0425 Yao S, 2011, MARKET SCI, V30, P447, DOI 10.1287/mksc.1100.0626 Zhu M, 2015, J MARKETING RES, V52, P13, DOI 10.1509/jmr.13.0451 NR 77 TC 29 Z9 32 U1 17 U2 155 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1047-7047 EI 1526-5536 J9 INFORM SYST RES JI Inf. Syst. Res. PD DEC PY 2019 VL 30 IS 4 BP 1203 EP 1227 DI 10.1287/isre.2019.0859 PG 25 WC Information Science & Library Science; Management WE Social Science Citation Index (SSCI) SC Information Science & Library Science; Business & Economics GA JX6HZ UT WOS:000503834900006 DA 2024-03-27 ER PT J AU Li, JJ Wu, LR Qi, JY Zhang, YX Wu, ZY Hu, SB AF Li, Jinjie Wu, Lianren Qi, Jiayin Zhang, Yuxin Wu, Zhiyan Hu, Shuaibo TI Determinants Affecting Consumer Trust in Communication With AI Chatbots: The Moderating Effect of Privacy Concerns SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Consumer Trust; AI Chatbots; E-Commerce; Privacy Concerns; Service Communication ID ARTIFICIAL-INTELLIGENCE; PERCEIVED RISKS; BUILDING TRUST; TECHNOLOGY; AGENT AB This paper summarized the factors that influence consumers' trust in AI chatbots and divided it into chatbot-related factors (expertise, anthropomorphism, responsiveness, and ease of use), companyrelated factors (perceived risk, brand trust, human support), and consumer-related factors (privacy concerns). This research attempts to explore the mechanism of human-AI chatbots trust formation and answer the question of how to promote consumers' trust in AI chatbots. The results found that the chatbot-related factors (expertise, responsiveness, and anthropomorphism) positively affect consumers' trust in chatbots. The company-related factor (brand trust) positively affects consumers' trust in chatbots, and perceived risk negatively affect consumers' trust in chatbots. Privacy concerns have a moderating effect on company-related factors. This study helps deepen the understanding of human-AI chatbots communication trust, constructs a basic model of human-AI chatbots trust, and provides insights for e-commerce enterprises to improve chatbots and enhance consumer trust. C1 [Li, Jinjie] Guangzhou Univ, Sch Journalism & Commun, Guangzhou, Peoples R China. [Wu, Lianren; Qi, Jiayin] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou, Peoples R China. [Zhang, Yuxin; Hu, Shuaibo] Shanghai Univ Int Business & Econ, Inst Artificial Intelligence & Change Management, Shanghai, Peoples R China. [Wu, Zhiyan] Shanghai Univ Int Business & Econ, Sch Business, Shanghai, Peoples R China. C3 Guangzhou University; Guangzhou University; Shanghai University of International Business & Economics; Shanghai University of International Business & Economics RP Wu, LR; Qi, JY (autor correspondiente), Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou, Peoples R China. EM lianrenwu@suibe.edu.cn; qijiayin@139.com RI Wu, Lianren/IAN-7864-2023 OI Wu, Lianren/0000-0001-7886-6494 FU National Natural Science Foundation of China [72274119] FX This work was supported by National Natural Science Foundation of China [grant number: 72274119] . CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Ahn J, 2022, J BUS RES, V141, P50, DOI 10.1016/j.jbusres.2021.12.007 Ameen N, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106976 Aoki N, 2020, GOV INFORM Q, V37, DOI 10.1016/j.giq.2020.101490 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Arm Treasure Data, 2019, Ai vs. Human customer service: Survey data shows when consumers prefer a bot Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Ba SL, 2010, INFORM SYST RES, V21, P423, DOI 10.1287/isre.1100.0282 Baker AL, 2018, ACM T INTERACT INTEL, V8, DOI 10.1145/3181671 Balakrishnan J, 2024, ANN OPER RES, V333, P653, DOI 10.1007/s10479-021-04049-5 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Bansal G, 2015, EUR J INFORM SYST, V24, P624, DOI 10.1057/ejis.2014.41 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Brachten F, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102375 Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chao CY, 2016, COMPUT HUM BEHAV, V64, P117, DOI 10.1016/j.chb.2016.06.031 Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chen Q, 2022, J BUS RES, V145, P552, DOI 10.1016/j.jbusres.2022.02.088 Chen QQ, 2021, IND MANAGE DATA SYST, V121, P2722, DOI 10.1108/IMDS-12-2020-0761 Chen Y, 2023, INFORM SYST FRONT, V25, P161, DOI 10.1007/s10796-022-10291-4 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Chi OH, 2021, COMPUT HUM BEHAV, V118, DOI 10.1016/j.chb.2021.106700 Chintalapati S, 2022, INT J MARKET RES, V64, P38, DOI 10.1177/14707853211018428 Choi TR, 2021, TELEMAT INFORM, V62, DOI 10.1016/j.tele.2021.101628 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Corritore CL, 2003, INT J HUM-COMPUT ST, V58, P737, DOI 10.1016/S1071-5819(03)00041-7 Crolic C, 2022, J MARKETING, V86, P132, DOI 10.1177/00222429211045687 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 Delgado-Ballester E., 2004, EUR J MARKETING, V38, P573, DOI [10.1108/03090560410529222, DOI 10.1108/03090560410529222] Diederich S, 2020, BUS INFORM SYST ENG+, V62, P193, DOI 10.1007/s12599-020-00639-y Fan H, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2022.102937 Folstad A., 2020, Quality and User Experience, V5, P1, DOI [10.1007/s41233-020-00033-2, DOI 10.1007/S41233-020-00033-2] Glikson E, 2020, ACAD MANAG ANN, V14, P627, DOI 10.5465/annals.2018.0057 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Graef R, 2021, ELECTRON MARK, V31, P319, DOI 10.1007/s12525-020-00420-9 Haesevoets T, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106730 Hansen JM, 2018, COMPUT HUM BEHAV, V80, P197, DOI 10.1016/j.chb.2017.11.010 Hasan R, 2021, J BUS RES, V131, P591, DOI 10.1016/j.jbusres.2020.12.012 Ho CC, 2010, COMPUT HUM BEHAV, V26, P1508, DOI 10.1016/j.chb.2010.05.015 Ho TH, 2020, INT J HOSP MANAG, V87, DOI 10.1016/j.ijhm.2020.102501 Holtgraves TM, 2007, COMPUT HUM BEHAV, V23, P2163, DOI 10.1016/j.chb.2006.02.017 Huang R, 2022, TELEMAT INFORM, V70, DOI 10.1016/j.tele.2022.101811 Huang SYB, 2022, COMPUT HUM BEHAV, V129, DOI 10.1016/j.chb.2021.107027 Jain S, 2022, J BUS RES, V139, P701, DOI 10.1016/j.jbusres.2021.10.007 Jang M, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106747 Jin SV, 2021, TELEMAT INFORM, V62, DOI 10.1016/j.tele.2021.101644 Kang JY, 2014, J BUS ETHICS, V125, P253, DOI 10.1007/s10551-013-1916-7 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kim W, 2023, J ADVERTISING, V52, P504, DOI 10.1080/00913367.2022.2043795 Koschate-Fischer N., 2015, Schmalenbach Business Review, V67, P171, DOI [10.1007/BF03396873, DOI 10.1007/BF03396873] Kushwaha AK, 2021, IND MARKET MANAG, V98, P207, DOI 10.1016/j.indmarman.2021.08.011 Lankton NK, 2015, J ASSOC INF SYST, V16, P880, DOI 10.17705/1jais.00411 Lee M, 2022, J CONSUM BEHAV, V21, P842, DOI 10.1002/cb.2043 Li JJ, 2021, INT J ENV RES PUB HE, V18, DOI 10.3390/ijerph182212254 Liew TW, 2021, TELEMAT INFORM, V65, DOI 10.1016/j.tele.2021.101721 Liu KF, 2022, COMPUT HUM BEHAV, V127, DOI 10.1016/j.chb.2021.107026 Lou C, 2022, INT J ADVERT, V41, P655, DOI 10.1080/02650487.2021.1951510 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Martínez-López FJ, 2021, J ORGAN END USER COM, V33, P70, DOI 10.4018/JOEUC.20210701.oa4 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McDonnell M, 2019, INTERACT COMPUT, V31, P116, DOI 10.1093/iwc/iwz007 Mikalef P, 2022, EUR J INFORM SYST, V31, P257, DOI 10.1080/0960085X.2022.2026621 Mogaji E, 2021, TELEMAT INFORM, V65, DOI 10.1016/j.tele.2021.101711 Moriuchi E, 2021, J STRATEG MARK, V29, P375, DOI 10.1080/0965254X.2020.1740766 Mostafa RB, 2022, EUR J MARKETING, V56, P1748, DOI 10.1108/EJM-02-2020-0084 Mozafari N, 2022, J SERV MANAGE, V33, P221, DOI 10.1108/JOSM-10-2020-0380 Mu JF, 2015, IND MARKET MANAG, V49, P151, DOI 10.1016/j.indmarman.2015.05.003 Mudofi L. N. H., 2022, Interdisciplinary Social Studies, V2, P532, DOI [10.55324/iss.v1i5.122, DOI 10.55324/ISS.V1I5.122] Nordheim CB, 2019, INTERACT COMPUT, V31, P317, DOI 10.1093/iwc/iwz022 Pagani M, 2017, J INTERACT MARK, V37, P133, DOI 10.1016/j.intmar.2016.10.001 Park N, 2021, COMPUT HUM BEHAV, V121, DOI 10.1016/j.chb.2021.106795 Pitardi V, 2021, PSYCHOL MARKET, V38, P626, DOI 10.1002/mar.21457 Pizzi G, 2021, J BUS RES, V129, P878, DOI 10.1016/j.jbusres.2020.11.006 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Rajaobelina L, 2021, PSYCHOL MARKET, V38, P2339, DOI 10.1002/mar.21548 Rapp A, 2021, INT J HUM-COMPUT ST, V151, DOI 10.1016/j.ijhcs.2021.102630 Rese A, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102176 Rousseau DM, 1998, ACAD MANAGE REV, V23, P393, DOI 10.5465/AMR.1998.926617 Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Sarkar S, 2020, INT J INFORM MANAGE, V50, P286, DOI 10.1016/j.ijinfomgt.2019.08.008 Schaefer K. E., 2012, P HUM FACT ERG SOC A, V56, P1548, DOI [10.1177/1071181312561308, DOI 10.1177/1071181312561308] Schanke S, 2021, INFORM SYST RES, V32, P736, DOI 10.1287/isre.2021.1015 Seeger AM., 2017, Proceedings of the Sixteenth Annual Pre-ICIS Workshop on HCI Research in MIS Vol, V10 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shim HR, 2020, J ORGAN END USER COM, V32, P62, DOI 10.4018/JOEUC.2020010104 Shumanov M, 2021, COMPUT HUM BEHAV, V117, DOI 10.1016/j.chb.2020.106627 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Stoeckli E, 2020, ELECTRON MARK, V30, P369, DOI 10.1007/s12525-019-00359-6 Thiebes S, 2021, ELECTRON MARK, V31, P447, DOI 10.1007/s12525-020-00441-4 Toader DC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010256 Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Van den Broeck E, 2019, COMPUT HUM BEHAV, V98, P150, DOI 10.1016/j.chb.2019.04.009 Wang CL, 2021, INT J INFORM MANAGE, V61, DOI 10.1016/j.ijinfomgt.2021.102401 Wang XQ, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102535 Wei YH, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2021.102838 Wu L., 2022, J ORGAN END USER COM, V34, P1, DOI [10.4018/JOEUC.308819, DOI 10.4018/JOEUC.308819] Wu LR, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su131911128 Yadav J, 2022, BEHAV INFORM TECHNOL, V41, P1286, DOI 10.1080/0144929X.2021.1872705 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Youn S, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106721 Zarouali B, 2017, COMPUT HUM BEHAV, V69, P157, DOI 10.1016/j.chb.2016.11.050 NR 105 TC 2 Z9 2 U1 96 U2 96 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2023 VL 35 IS 1 AR 328089 DI 10.4018/JOEUC.328089 PG 24 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA W5HI7 UT WOS:001091931200001 OA gold DA 2024-03-27 ER PT J AU Díaz-Pacheco, A Guerrero-Rodríguez, R Alvarez-Carmona, MA Rodríguez-González, AY Aranda, R AF Diaz-Pacheco, Angel Guerrero-Rodriguez, Rafael Alvarez-Carmona, Miguel A. Rodriguez-Gonzalez, Ansel Y. Aranda, Ramon TI Quantifying differences between UGC and DMO's image content on Instagram using deep learning SO INFORMATION TECHNOLOGY & TOURISM LA English DT Article; Early Access DE Deep learning; Destination image; Destination marketing organizations; Social networks; Mexico ID DESTINATION IMAGE; PICTORIAL ANALYSIS; VISIT; MODEL AB In the tourism industry, the implementation of effective strategies to promote destinations is considered of utmost importance. Taking advantage of social media, Destination Management Organizations (DMOs) have embraced these platforms as direct channels of communication with potential visitors. However, it remains unclear to what extent these efforts work to effectively construct the desired image and influence visitors' behavior. In order to explore this phenomenon, this study proposes a comparison of destination images within Instagram, used by both DMOs and visitors (user generated content). Thus, a deep-learning method is presented to automatically compute differences between destination images. Four destinations were selected from Mexico (two urban destinations and two beach destinations). The findings suggest that the images of urban destinations share more significant similarities, particularly in dimensions related to culture, tourist infrastructure, and natural resources when compared to beach destinations. Conversely, the images of beach destinations tend to converge on dimensions such as sun and sand, gastronomy, and entertainment, while differing in aspects related to tourist infrastructure and eco-tourism offerings. It is worth noting that these results underscore the importance of tailoring marketing strategies to the unique characteristics of each destination, taking into account the divergences and similarities in the perceptions of potential visitors. C1 [Diaz-Pacheco, Angel] Univ Guanajuato, Dept Ingn Elect, Campus Irapuato Salamanca,Carretera Salamanca Vall, Guanajuato 36787, Mexico. [Guerrero-Rodriguez, Rafael] Univ Guanajuato, Div Ciencias Econ Adm, Guanajuato 36000, Mexico. [Alvarez-Carmona, Miguel A.] Ctr Invest Matemat, Unidad Monterrey, Parque Invest & Innovac Tecnol PIIT, Km 10 Autopista Aeropuerto,Parque Invest & Innovac, Apodaca 66628, Mexico. [Rodriguez-Gonzalez, Ansel Y.] Ctr Invest Cient & Educ Super Ensenada, Andador 10,110 Ciudad Conocimiento, Tepic 63173, Mexico. [Aranda, Ramon] Ctr Invest Matemat, Unidad Merida, Parque Cient & Tecnol Yucatan PCTY,Carretera Sierr, Merida 97302, Mexico. [Alvarez-Carmona, Miguel A.; Rodriguez-Gonzalez, Ansel Y.; Aranda, Ramon] Consejo Nacl Humanidades Ciencias & Tecnol CONAHCY, Ave Insurgentes Sur 1582, Mexico City 03940, Mexico. C3 Universidad de Guanajuato; Universidad de Guanajuato; CICESE - Centro de Investigacion Cientifica y de Educacion Superior de Ensenada RP Aranda, R (autor correspondiente), Ctr Invest Matemat, Unidad Merida, Parque Cient & Tecnol Yucatan PCTY,Carretera Sierr, Merida 97302, Mexico.; Aranda, R (autor correspondiente), Consejo Nacl Humanidades Ciencias & Tecnol CONAHCY, Ave Insurgentes Sur 1582, Mexico City 03940, Mexico. EM angel.diaz@ugto.mx; r.guerrero-rodriguez@ugto.mx; miguel.alvarez@cimat.mx; ansel@cicese.edu.mx; arac@cimat.mx RI Rodríguez González, Ansel Y./D-9778-2018; Pacheco, Admilson/HJI-9294-2023; Aranda, Ramon/KBA-3487-2024; Guerrero, Rafael/AES-8683-2022 OI Rodríguez González, Ansel Y./0000-0001-9971-0237; Pacheco, Admilson/0000-0002-3635-827X; Guerrero, Rafael/0000-0001-8576-1172; Carlos, Hugo/0000-0002-1610-6921; Alvarez Carmona, Miguel Angel/0000-0003-4421-5575; Diaz-Pacheco, Angel/0000-0002-5978-0377 CR Alvarez-Carmona MA, 2023, PROCES LENG NAT, P425, DOI 10.26342/2023-71-34 Alvarez-Carmona MA, 2022, J KING SAUD UNIV-COM, V34, P10125, DOI 10.1016/j.jksuci.2022.10.010 [Anonymous], 2018, UNWTO World Tourism Barometer, DOI [DOI 10.18111/WTOBAROMETERENG.2020.18.1.1, DOI 10.18111/WTOBAROMETERENG] Arefieva V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104318 Baloglu S, 1999, ANN TOURISM RES, V26, P868, DOI 10.1016/S0160-7383(99)00030-4 Baumann F, 2018, Destination image through digital photography. Instagram as a data collector for UGC analysis Beerli A, 2004, ANN TOURISM RES, V31, P657, DOI 10.1016/j.annals.2004.01.010 Bernkopf D, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P145, DOI 10.1007/978-3-030-05940-8_12 Blanco-Moreno S, 2023, Spanish J Mark-ESIC, DOI [10.1108/SJME-06-2022-0134, DOI 10.1108/SJME-06-2022-0134] Bramwell B, 1996, ANN TOURISM RES, V23, P201, DOI 10.1016/0160-7383(95)00061-5 Khoa BT, 2021, 2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), P677, DOI 10.1109/IEMTRONICS52119.2021.9422610 Carvache-Franco M, 2023, J QUAL ASSUR HOSP TO, V24, P146, DOI 10.1080/1528008X.2021.2024780 Chan CS, 2018, ASIAN GEOGR, V35, P143, DOI 10.1080/10225706.2018.1527235 Choi S, 2007, TOURISM MANAGE, V28, P118, DOI 10.1016/j.tourman.2006.03.002 Couret C, 2016, Curso internacional de la omt en argentina excelencia en la gestion turistica: El turista digital Cuomo MT, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120345 Gálvez-Rodríguez MD, 2020, TOUR MANAG PERSPECT, V34, DOI 10.1016/j.tmp.2020.100636 Deng N, 2019, TOUR MANAG PERSPECT, V30, P182, DOI 10.1016/j.tmp.2019.02.016 Diaz-Pacheco A, 2022, Como ves, V289, P28 Diaz-Pacheco A, 2023, INT J INTERACT MULTI, DOI 10.9781/ijimai.2023.10.003 Díaz-Pacheco A, 2023, J KING SAUD UNIV-COM, V35, DOI 10.1016/j.jksuci.2023.101746 Diaz-Pacheco A, 2022, J EXP THEOR ARTIF IN, DOI 10.1080/0952813X.2022.2153276 Egger R., 2022, INFORM COMMUNICATION, P343, DOI DOI 10.1007/978-3-030-94751-4_31 Egger R, 2022, TOUR REV, V77, P1234, DOI 10.1108/TR-05-2021-0244 Ensafi F., 2023, Res J Manag Rev, V8, P1 Feizollah A, 2021, J BIG DATA-GER, V8, DOI 10.1186/s40537-021-00463-5 Fellbaum C., 1998, WORDNET Frías DM, 2008, TOURISM MANAGE, V29, P163, DOI 10.1016/j.tourman.2007.02.020 Gallarza MG, 2002, ANN TOURISM RES, V29, P56, DOI 10.1016/S0160-7383(01)00031-7 Gartner W. C., 1993, Journal of Travel & Tourism Marketing, V2, P191 Gonzalez-Uribe EG., 2021, Red Int Investig Compet, V15, P1508 Gorji AS, 2023, ANATOLIA, V34, P144, DOI 10.1080/13032917.2021.2001665 Govers R., 2003, Information Technology and Tourism, V6, P13, DOI 10.3727/109830503108751199 Grosspietsch M, 2006, TOURISM MANAGE, V27, P225, DOI 10.1016/j.tourman.2004.08.005 Gunn ClareA., 1997, VACATIONSCAPE Hauser D, 2022, J DESTIN MARK MANAGE, V24, DOI 10.1016/j.jdmm.2022.100702 Huang GI, 2023, TOURISM MANAGE, V95, DOI 10.1016/j.tourman.2022.104686 Huang XY, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14020953 Iglesias-Sánchez PP, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12072793 Inversini A, 2012, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2012, P483 Jiménez-Barreto J, 2020, TOURISM MANAGE, V79, DOI 10.1016/j.tourman.2020.104101 Kolodziej M, 2020, IEEE SENS J, V20, P15213, DOI 10.1109/JSEN.2020.3012404 Kotler P., 2016, Marketing for Hospitality and Tourism Kuhzady S, 2019, TOUR ANAL, V24, P43, DOI [10.3727/108354219X15458295631954, 10.3727/108354219x15458295631954] Lalicic L, 2020, J DESTIN MARK MANAGE, V16, DOI 10.1016/j.jdmm.2019.03.004 Langner R, 2010, ACTA PSYCHOL, V133, P64, DOI 10.1016/j.actpsy.2009.10.001 Lee E, 2023, TOUR MANAG PERSPECT, V47, DOI 10.1016/j.tmp.2023.101114 Li J., 2015, e-Review of Tourism Research, V12, P191 Liu MTC, 2021, ASIA PAC J MARKET LO, V33, P373, DOI 10.1108/APJML-08-2019-0477 Lojo A, 2020, J TRAVEL TOUR MARK, V37, P495, DOI 10.1080/10548408.2020.1785370 Mak AHN, 2017, TOURISM MANAGE, V60, P280, DOI 10.1016/j.tourman.2016.12.012 Marine-Roig E, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11123392 Marine-Roig E, 2018, TOURISM MANAGE, V68, P236, DOI 10.1016/j.tourman.2018.03.020 Matos N., 2012, Dos Algarves. A Multidisciplinary E-journal, P101 Nixon L., 2022, Information and Communication Technologies in Tourism 2022, P174, DOI [10.1007/978-3-030-94751-4_16, DOI 10.1007/978-3-030-94751-4_16] Nixon L, 2017, ENTER2017 ETOURISM C Nixon LJ, 2019, e-Rev Tour Res, V17 Nixon L, 2023, SPR PROC BUS ECON, P204, DOI 10.1007/978-3-031-25752-0_23 Olmos FG, 2021, Los mexicanos usan mas de 10 redes sociales al dia Padilla R, 2020, INT CONF SYST SIGNAL, P237, DOI [10.1109/iwssip48289.2020.9145130, 10.1109/IWSSIP48289.2020.9145130] Palau-Saumell R, 2016, J TRAVEL TOUR MARK, V33, P949, DOI 10.1080/10548408.2015.1075456 Park H, 2021, The China Tourism Forum 2019 Pedersen T, 2004, PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, P1024 González-Rodríguez MR, 2016, INT J CONTEMP HOSP M, V28, P2609, DOI 10.1108/IJCHM-02-2015-0057 Sanchez S. A., 2020, IOP Conference Series: Materials Science and Engineering, V844, DOI 10.1088/1757-899X/844/1/012024 SECTUR, 2021, Compendio estadistico del turismo en mexico 2020 Sewak M., 2018, Practical Convolutional Neural Networks: Implement advanced deep learning models using Python Shankar Vaishaal, 2021, P IEEECVF INT C COMP, P9661 Song HQ, 2013, J TRAVEL TOUR MARK, V30, P253, DOI 10.1080/10548408.2013.774919 Song SG, 2016, J TRAVEL TOUR MARK, V33, P687, DOI 10.1080/10548408.2016.1167384 Song SB, 2021, IND MANAGE DATA SYST, V121, P1375, DOI 10.1108/IMDS-12-2019-0667 Stepchenkova S, 2013, TOURISM MANAGE, V36, P590, DOI 10.1016/j.tourman.2012.08.006 Sun GX, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12040606 Tang Y, 2013, PROC VLDB ENDOW, V7, P313, DOI 10.14778/2732240.2732249 Toumeh B., 2022, Exploitation of digital transformation technologies in smart tourism destinations: facts and challenges, P124 Tugores-Ques J, 2023, J VACAT MARK, V29, P54, DOI 10.1177/13567667221078246 Tussyadiah IP, 2010, TOURISM AND VISUAL CULTURE, VOL 2: METHODS AND CASES, P156, DOI 10.1079/9781845936112.0156 Wang RW, 2020, J DESTIN MARK MANAGE, V18, DOI 10.1016/j.jdmm.2020.100512 Wu Z, 1994, arXiv, DOI [10.48550/arXiv.cmp-lg/9406033, DOI 10.48550/ARXIV.CMP-LG/9406033] Xiao X, 2022, TOURISM MANAGE, V93, DOI 10.1016/j.tourman.2022.104585 Yang S, 2021, J HOSP TOUR RES, V45, P1417, DOI 10.1177/10963480211015361 Yu JN, 2021, ANN TOURISM RES, V89, DOI 10.1016/j.annals.2021.103204 Yuan Y, 2015, IEEE T NEUR NET LEAR, V26, P2222, DOI 10.1109/TNNLS.2014.2359471 Zhang K, 2020, ASIA PAC J TOUR RES, V25, P1199, DOI 10.1080/10941665.2020.1838586 Zhou BL, 2018, IEEE T PATTERN ANAL, V40, P1452, DOI 10.1109/TPAMI.2017.2723009 NR 85 TC 0 Z9 0 U1 17 U2 17 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1098-3058 EI 1943-4294 J9 INF TECHNOL TOUR JI Inf. Technol. Tour. PD 2024 JAN 4 PY 2024 DI 10.1007/s40558-023-00282-9 EA JAN 2024 PG 37 WC Hospitality, Leisure, Sport & Tourism WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics GA EA2M4 UT WOS:001136115200001 DA 2024-03-27 ER PT J AU Xie, JH Zhang, Z Liu, X Zeng, D AF Xie, Jiaheng Zhang, Zhu Liu, Xiao Zeng, Daniel TI Unveiling the Hidden Truth of Drug Addiction: A Social Media Approach Using Similarity Network-Based Deep Learning SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS LA English DT Article DE Computational design science; deep learning; social media analytics; health IT; HealthTech; opioid addiction; addiction treatment AB Opioid use disorder (OUD) is an epidemic that costs the U.S. healthcare systems $504 billion annually and poses grave mortality risks. Existing studies investigated OUD treatment barriers via surveys as a means to mitigate this opioid crisis. However, the response rate of these surveys is low due to social stigma around opioids. We explore user-generated content in social media as a new data source to study OUD. We design a novel IT system, SImilarity Network-based DEep Learning (SINDEL), to discover OUD treatment barriers from patient narratives and address the challenge of morphs. SINDEL significantly outperforms state-of-the-art NLP models, reaching an F1 score of 76.79 percent. Thirteen types of treatment barriers were identified and verified by domain experts. This work contributes to information systems with a novel deep-learning-based approach for text analytics and generalized design principles for social media analytics methods. We also unveil the hurdles patients endure during the opioid epidemic. C1 [Xie, Jiaheng] Univ Delaware, Lerner Coll Business & Econ, Dept Accounting & MIS, Newark, DE USA. [Zhang, Zhu; Zeng, Daniel] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China. [Zeng, Daniel] Univ Chinese Acad Sci, Beijing, Peoples R China. [Zhang, Zhu; Zeng, Daniel] Shenzhen Artificial Intelligence & Data Sci Res I, Shenzhen, Guangdong, Peoples R China. [Liu, Xiao] Arizona State Univ, Dept Informat Syst, Tempe, AZ USA. C3 University of Delaware; Chinese Academy of Sciences; Institute of Automation, CAS; Chinese Academy of Sciences; University of Chinese Academy of Sciences, CAS; Arizona State University; Arizona State University-Tempe RP Xie, JH (autor correspondiente), Alfred Lerner Coll Business & Econ, 303 Alfred Lerner Hall, Newark, DE 19716 USA. EM jxie@udel.edu; zhu.zhang@ia.ac.cn; xiao.hu.10@asu.edu; dajun.zeng@ia.ac.cn RI Xie, Jiaheng/AAU-2194-2021 OI Xie, Jiaheng/0000-0002-4992-498X FU Ministry of Science and Technology of China [2020AAA0108401, 2017YFC0820105, 2019QY(Y)0101, 2020AAA0103405]; Ministry of Health of China [2017ZX10303401-002]; National Natural Science Foundation of China [71621002, 72074209, 71974187, 71472175]; National Science Foundation [1228509] FX This work was supported in part by the following grants: Grant Nos. 2020AAA0108401, 2017YFC0820105, 2019QY(Y)0101, and 2020AAA0103405 from the Ministry of Science and Technology of China, Grant No. 2017ZX10303401-002 from the Ministry of Health of China, and Grant Nos. 71621002, 72074209, 71974187, and 71472175 from the National Natural Science Foundation of China. Part of the experiments were run on the El Gato supercomputer that was supported by the National Science Foundation under Grant No. 1228509. CR Abbasi A, 2018, MIS QUART, V42, P427, DOI 10.25300/MISQ/2018/13239 Abbasi A, 2012, MIS QUART, V36, P1293 Abbasi A, 2010, MIS QUART, V34, P435 Abbasi A, 2008, MIS QUART, V32, P811 Agarwal R, 2014, INFORM SYST RES, V25, P443, DOI 10.1287/isre.2014.0546 Andrilla CHA, 2017, ANN FAM MED, V15, P359, DOI 10.1370/afm.2099 [Anonymous], 2015, P WORKSHOP NOISY USE [Anonymous], 2017, UND COST OP CRIS [Anonymous], 2013, INFORM SYST RES, DOI DOI 10.1287/isre.1120.0461 [Anonymous], 2011, Results from the 2010 National Survey on Drug Use and Health: Summary of National Findings [Anonymous], 2017, INT WORLD WIDE WEB C Aral S, 2011, MANAGE SCI, V57, P1623, DOI 10.1287/mnsc.1110.1421 Baesens B, 2016, MIS QUART, V40, P807, DOI 10.25300/MISQ/2016/40:4.03 Bojanowski P., 2016, CORR Bojko MJ, 2016, J SUBST ABUSE TREAT, V66, P37, DOI 10.1016/j.jsat.2016.03.003 Bughin J., 2010, McKinsey Quarterly, V4, P1 Capurro D, 2014, J MED INTERNET RES, V16, P213, DOI 10.2196/jmir.2679 Chen H, 2017, MIS QUART, V41, P1 Chen HC, 2012, MIS QUART, V36, P1165 dos Santos CN, 2014, PR MACH LEARN RES, V32, P1818 Espinosa-Anke L, 2018, 7 AUGMENTING WORD EM, P2653 Flynn PM, 2003, J SUBST ABUSE TREAT, V25, P177, DOI 10.1016/S0740-5472(03)00125-9 Goh JM, 2016, MIS QUART, V40, P247, DOI 10.25300/MISQ/2016/40.1.11 Gregor S, 2013, MIS QUART, V37, P337, DOI 10.25300/MISQ/2013/37.2.01 Hassamal S, 2017, J PSYCHIATR PRACT, V23, P221, DOI 10.1097/PRA.0000000000000231 He YY, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P1429, DOI 10.1145/2872427.2874816 Hemmatian F, 2019, ARTIF INTELL REV, V52, P1495, DOI 10.1007/s10462-017-9599-6 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Hutchinson E, 2014, ANN FAM MED, V12, P128, DOI 10.1370/afm.1595 Jeyapriya A, 2015, 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), P548, DOI 10.1109/ECS.2015.7124967 Kallinikos J, 2014, INFORM SYST RES, V25, P817, DOI 10.1287/isre.2014.0544 Karahanna E, 2018, MIS QUART, V42, P737, DOI 10.25300/MISQ/2018/11492 Kitchens B, 2018, J MANAGE INFORM SYST, V35, P540, DOI 10.1080/07421222.2018.1451957 Knudsen HK, 2011, EVAL PROGRAM PLANN, V34, P375, DOI 10.1016/j.evalprogplan.2011.02.004 Krieger Pharm D.C, 2018, WHAT ARE OPIOIDS WHY Lau RYK, 2012, MIS QUART, V36, P1239 Li S, 2015, INFORM PROCESS MANAG, V51, P58, DOI 10.1016/j.ipm.2014.08.005 Liu B., 2012, SYNTHESIS LECT HUMAN, V5, P1, DOI [DOI 10.2200/S00416ED1V01Y201204HLT016, DOI 10.1007/978-3-031-02145-9] Livingston JD, 2018, SUBST USE MISUSE, V53, P344, DOI 10.1080/10826084.2017.1325376 Luo WJ, 2014, IEEE DATA MINING, P380, DOI 10.1109/ICDM.2014.14 Ma BJ, 2016, INFORM PROCESS MANAG, V52, P430, DOI 10.1016/j.ipm.2015.10.004 Mai F, 2018, J MANAGE INFORM SYST, V35, P19, DOI 10.1080/07421222.2018.1440774 McKenna RM, 2017, DRUG ALCOHOL DEPEN, V179, P87, DOI 10.1016/j.drugalcdep.2017.06.028 Nguyen K.A, 2016, ARXIV PREPRINT ARXIV NIDA, 2018, OV NAT I DRUG AB NID Pew Research, 2009, 61 AM AD LOOK ONL HL Qiu GA, 2011, COMPUT LINGUIST, V37, P9, DOI 10.1162/coli_a_00034 Qu M, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P997, DOI 10.1145/3097983.3098185 Rai A, 2017, MIS QUART, V41, pIII Rogers AH, 2020, PAIN MED, V21, P670, DOI 10.1093/pm/pnz062 RUBENSTEIN H, 1965, COMMUN ACM, V8, P627, DOI 10.1145/365628.365657 Saboo AR, 2016, MIS QUART, V40, P911, DOI 10.25300/MISQ/2016/40.4.06 Sha Y, 2017, PROCEDIA COMPUT SCI, V108, P48, DOI 10.1016/j.procs.2017.05.106 Sharma A, 2017, CURR PSYCHIAT REP, V19, DOI 10.1007/s11920-017-0783-9 Simpson SS, 2018, JMIR PUBLIC HLTH SUR, V4, P200, DOI 10.2196/publichealth.7726 Smith C.A, AMIA S AM MED INF AS, P682 Stieglitz S, 2013, J MANAGE INFORM SYST, V29, P217, DOI 10.2753/MIS0742-1222290408 Stumbo SP, 2017, J SUBST ABUSE TREAT, V73, P47, DOI 10.1016/j.jsat.2016.11.003 Tang Q, 2012, J MANAGE INFORM SYST, V29, P41, DOI 10.2753/MIS0742-1222290203 Trusov M, 2010, J MARKETING RES, V47, P643, DOI 10.1509/jmkr.47.4.643 Xie K, 2015, J MANAGE INFORM SYST, V32, P204, DOI 10.1080/07421222.2015.1063297 Yao ZJ, 2018, WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, P673, DOI 10.1145/3159652.3159703 Zhang DS, 2016, J MANAGE INFORM SYST, V33, P456, DOI 10.1080/07421222.2016.1205907 Zhang L, 2014, STUD BIG DATA, V1, P1, DOI 10.1007/978-3-642-40837-3_1 Zhang W, MIS QUART Zhang YT, 2016, IEEE T KNOWL DATA EN, V28, P2793, DOI 10.1109/TKDE.2016.2591008 NR 66 TC 11 Z9 11 U1 11 U2 87 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0742-1222 EI 1557-928X J9 J MANAGE INFORM SYST JI J. Manage. Inform. Syst. PD JAN 2 PY 2021 VL 38 IS 1 BP 166 EP 195 DI 10.1080/07421222.2021.1870388 PG 30 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA RH2KN UT WOS:000636054300008 DA 2024-03-27 ER PT J AU Jiang, PJ AF Jiang, Pingjun TI Automated bidding vs manual bidding strategies in search engine marketing: a keyword efficiency perspective SO JOURNAL OF MARKETING ANALYTICS LA English DT Article DE Keyword research; Keyword efficiency; Manual bidding; Automated bidding; AI in marketing; Search engine marketing; Data envelopment analysis ID SPONSORED SEARCH; PORTFOLIO THEORY; PERFORMANCE; SELECTION AB We utilize data envelopment analysis to evaluate and compare the pricing efficiency of keywords in the Google-sponsored search markets, specifically in relation to manual bidding strategies and automated bidding strategies. Two totally different sets of efficiency scores are obtained from Google Ads by using extensive data from a company in the online apparel retailing industry. Contrary to the big buzz in the industry, the automated bidding strategy does not improve the average efficiency of keywords. Manual bidding rewards efficiency for keywords more productive of transactions, revenue, and clicks. Automated bidding rewards efficiency for keywords more on cost per click, bounce rate, and E-commerce conversion rate. Automated bidding increases efficiency scores with apparel keywords consisting of words of "color" and "quality attributes." Manual bidding has high-efficiency scores with keywords including words "promotion related," "gender," and "style attributes." Manual bidding works better for modified match types. C1 [Jiang, Pingjun] La Salle Univ, Sch Business, Dept Mkt, Philadelphia, PA 19141 USA. C3 La Salle University RP Jiang, PJ (autor correspondiente), La Salle Univ, Sch Business, Dept Mkt, Philadelphia, PA 19141 USA. EM jiang@lasalle.edu CR Abrams Z, 2007, EC'07: PROCEEDINGS OF THE EIGHTH ANNUAL CONFERENCE ON ELECTRONIC COMMERCE, P272 Adler N, 2001, EUR J OPER RES, V132, P260, DOI 10.1016/S0377-2217(00)00150-8 Agarwal A., 2008, SSRN eLibrary Aggarwal G, 2019, LECT NOTES COMPUT SC, V11920, P17, DOI 10.1007/978-3-030-35389-6_2 Anil R., 2022, ARXIV Ayanso A., 2022, INT J E-BUS RES, V18, P1 Ayanso A, 2015, DECIS SUPPORT SYST, V70, P42, DOI 10.1016/j.dss.2014.11.009 Ayanso A, 2013, DECISION SCI, V44, P877, DOI 10.1111/deci.12038 Balseiro S, 2017, PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'17), P15, DOI 10.1145/3038912.3052682 BANKER RD, 1984, MANAGE SCI, V30, P1078, DOI 10.1287/mnsc.30.9.1078 Borgs C., 2007, P 16 INT C WORLD WID, P531, DOI DOI 10.1145/1242572.1242644 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 CARDOZO RN, 1985, J MARKETING, V49, P113, DOI 10.2307/1251438 Chaffey D., 2022, DIGITAL MARKETING EX, DOI [10.4324/9781003009498, DOI 10.4324/9781003009498] CHARNES A, 1978, EUR J OPER RES, V2, P429, DOI 10.1016/0377-2217(78)90138-8 DEKLUYVER CA, 1984, EUR J OPER RES, V16, P152, DOI 10.1016/0377-2217(84)90069-9 Deng Y, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P3965, DOI 10.1145/3442381.3450052 Deng Y, 2020, WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), P1796, DOI 10.1145/3366423.3380249 Desai PS, 2014, MARKET SCI, V33, P485, DOI 10.1287/mksc.2013.0834 DEVINNEY TM, 1985, J MARKETING, V49, P107, DOI 10.2307/1251437 Dhar V, 2010, INFORM SYST RES, V21, P760, DOI 10.1287/isre.1100.0315 Duffy DL, 2004, J CONSUM MARK, V21, P356, DOI 10.1108/07363760410549177 Gattoufi S., 2004, SOCIO-ECON PLAN SCI, V38, P141, DOI [10.1016/S0038-0121(03)00022-3, DOI 10.1016/S0038-0121(03)00022-3] Geng T., 2021, AUTOMATED BIDDING BU Ghose A., 2008, PROCEEDING INT C WEB, P241 Ghose A., 2008, Proc. of WWW'08, P219 Ghose A., ADKDD 08 P 2 INT WOR, P18 Ghose A., 2008, SSRN eLibrary Gönsch J, 2017, EUR J OPER RES, V263, P337, DOI 10.1016/j.ejor.2017.05.033 Gupta S, 2016, J BUS RES, V69, P5671, DOI 10.1016/j.jbusres.2016.02.042 HOLTHAUSEN DM, 1982, MANAGE SCI, V28, P487, DOI 10.1287/mnsc.28.5.487 Jagpal HS., 1982, Mark. Sci, V1, P79 Jagpal S., 2008, FUSION PROFIT MARKET, DOI [10.1093/acprof:oso/9780195371055.001.0001, DOI 10.1093/ACPROF:OSO/9780195371055.001.0001] Jang S, 2022, J BUS RES, V140, P459, DOI 10.1016/j.jbusres.2021.11.015 Jansen Bernard J., 2009, International Journal of Internet Marketing and Advertising, V5, P74, DOI 10.1504/IJIMA.2009.021951 Jansen Bernard J., 2008, International Journal of Electronic Business, V6, P114, DOI 10.1504/IJEB.2008.018068 Jansen BJ, 2017, J RES INTERACT MARK, V11, P142, DOI 10.1108/JRIM-07-2016-0073 Jansen BJ, 2012, ELECTRON COMMER RES, V12, P429, DOI 10.1007/s10660-012-9101-0 Jansen BJ, 2011, J ELECTRON COMMER RE, V12, P1 Järvinen J, 2015, IND MARKET MANAG, V50, P117, DOI 10.1016/j.indmarman.2015.04.009 Jenkins L, 2003, EUR J OPER RES, V147, P51, DOI 10.1016/S0377-2217(02)00243-6 Jiang P., 2018, INT J ELECT BUSINESS, V14, P273, DOI [10.1504/IJEB.2018.095980, DOI 10.1504/IJEB.2018.095980] KAMAKURA WA, 1988, J CONSUM RES, V15, P289, DOI 10.1086/209167 Kim AJ, 2021, J BUS RES, V130, P539, DOI 10.1016/j.jbusres.2019.09.049 Kim J, 2023, J BUS RES, V160, DOI 10.1016/j.jbusres.2023.113819 Kitts B., 2004, Electronic Markets, V14, P186, DOI 10.1080/1019678042000245119 Klapdor S, 2014, J INTERACT MARK, V28, P285, DOI 10.1016/j.intmar.2014.07.001 Kleine A, 2004, OMEGA-INT J MANAGE S, V32, P17, DOI 10.1016/j.omega.2003.09.002 Li Haitao, 2023, arXiv Lu XH, 2014, J MANAGE INFORM SYST, V30, P299, DOI 10.2753/MIS0742-1222300411 Ma LY, 2020, INT J RES MARK, V37, P481, DOI 10.1016/j.ijresmar.2020.04.005 Mantrala Murali., 2002, Handbook of Marketing Markowitz H, 1952, J FINANC, V7, P77, DOI 10.1111/j.1540-6261.1952.tb01525.x Mokaya Brian O., 2010, SEARCH ENGINE ADVERT Mukherjee P, 2014, ELECTRON COMMER R A, V13, P139, DOI 10.1016/j.elerap.2014.01.001 Özlük Ö, 2007, J REVENUE PRICING MA, V6, P347, DOI 10.1057/palgrave.rpm.5160110 Park S, 2012, INT J CULT TOUR HOSP, V6, P340, DOI 10.1108/17506181211265077 Regelson M., 2006, Proceedings of the Second Workshop on Sponsored Search Auctions, V9623 Ren K, 2018, IEEE T KNOWL DATA EN, V30, P645, DOI 10.1109/TKDE.2017.2775228 Richardson M., 2007, P 16 INT C WORLD WID, P521, DOI DOI 10.1145/1242572.1242643 Rutz O.J., 2007, SSRN eLibrary Rutz OJ, 2011, MARKET SCI, V30, P646, DOI 10.1287/mksc.1110.0635 Ryals L, 2007, J MARKET MANAG-UK, V23, P991, DOI 10.1362/026725707X250430 Schultz CD, 2020, INFORM RETRIEVAL J, V23, P117, DOI 10.1007/s10791-019-09368-7 Symitsi E, 2022, EUR J OPER RES, V303, P767, DOI 10.1016/j.ejor.2022.03.006 Truong V, 2019, AUSTRALAS J INF SYST, V23 Vragov R, 2020, ELECTRON COMMER R A, V41, DOI 10.1016/j.elerap.2020.100959 Vragov R, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.10.001 Yang C, 2012, 2012 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICE COMPUTING (CSC), P104, DOI [10.1109/CSC.2012.23, 10.1109/CECNet.2012.6201627] Yang S, 2014, MARKET SCI, V33, P134, DOI 10.1287/mksc.2013.0812 Yang YW, 2022, DECIS SUPPORT SYST, V163, DOI 10.1016/j.dss.2022.113843 Yun JT, 2020, J ADVERTISING, V49, P446, DOI 10.1080/00913367.2020.1795757 Zhang D, 2009, LECT NOTES COMPUT SC, V5766, P380, DOI 10.1007/978-3-642-04417-5_44 Zhang XQ, 2011, MANAGE SCI, V57, P1703, DOI 10.1287/mnsc.1110.1408 NR 74 TC 0 Z9 0 U1 0 U2 0 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 2050-3318 EI 2050-3326 J9 J MARK ANAL JI J. Market. Anal. PD MAR PY 2024 VL 12 IS 1 SI SI BP 25 EP 41 DI 10.1057/s41270-023-00260-4 EA OCT 2023 PG 17 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA IX8O1 UT WOS:001169118700002 DA 2024-03-27 ER PT J AU Fildes, R Kolassa, S Ma, SH AF Fildes, Robert Kolassa, Stephan Ma, Shaohui TI Post-script-Retail forecasting: Research and practice SO INTERNATIONAL JOURNAL OF FORECASTING LA English DT Article DE COVID-19; Disruption; Structural change; Instability; Omni-retailing; Online retail; Machine learning ID M5 AB This note updates the 2019 review article "Retail forecasting: Research and practice"in the context of the COVID-19 pandemic and the substantial new research on machinelearning algorithms, when applied to retail. It offers new conclusions and challenges for both research and practice in retail demand forecasting.(c) 2021 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved. C1 [Fildes, Robert] Univ Management Sch, Lancaster Ctr Mkt Analyt & Forecasting, Lancaster, England. [Kolassa, Stephan] SAP Switzerland, Zurich, Switzerland. [Ma, Shaohui] Nanjing Audit Univ, Sch Business, Nanjing 211815, Peoples R China. C3 Nanjing Audit University RP Fildes, R (autor correspondiente), Univ Management Sch, Lancaster Ctr Mkt Analyt & Forecasting, Lancaster, England. EM r.fildes@lancaster.ac.uk OI Fildes, Robert/0000-0002-5918-7098; Kolassa, Stephan/0000-0001-9393-0765; Ma, Shaohui/0000-0002-5264-6343 FU National Natural Science Foundation of China; [72072092] FX Acknowledgments The third author acknowledges the support of the National Natural Science Foundation of China under grant no. 72072092. CR Alexandrov A., 2021, FORESIGHT INT J APPL, V62, P8 Ali ÖG, 2020, INT J FORECASTING, V36, P1389, DOI 10.1016/j.ijforecast.2020.02.003 Alicke K., 2019, SUPPLY CHAIN MANAGEM, V23, P40 Alicke K, 2020, SUPPLY CHAIN MANAGEM, V24, P40 Antipov EA, 2020, J REVENUE PRICING MA, V19, P355, DOI 10.1057/s41272-020-00236-4 Beckers J, 2022, GEOGR ANAL, V54, P274, DOI 10.1111/gean.12285 Boone T, 2021, FORESIGHT INT J APPL, V61, P20 Caro F, 2020, M&SOM-MANUF SERV OP, V22, P47, DOI 10.1287/msom.2019.0824 Fildes R, 2022, INT J FORECASTING, V38, P1283, DOI 10.1016/j.ijforecast.2019.06.004 Fildes R, 2021, INT J FORECASTING, V37, P1047, DOI 10.1016/j.ijforecast.2021.04.007 Frasquet M, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102374 Huang T, 2019, EUR J OPER RES, V279, P459, DOI 10.1016/j.ejor.2019.06.011 Huber J, 2020, INT J FORECASTING, V36, P1420, DOI 10.1016/j.ijforecast.2020.02.005 Januschowski T., 2018, Foresight: The International Journal of Applied Forecasting, V51, P42 Kharfan M, 2021, ANN OPER RES, V303, P159, DOI 10.1007/s10479-020-03666-w Kolassa S, 2016, FORESIGHT INT J APPL, V42, P44 Kolassa S, 2022, INT J FORECASTING, V38, P1562, DOI 10.1016/j.ijforecast.2021.08.006 Ma SH, 2021, EUR J OPER RES, V288, P111, DOI 10.1016/j.ejor.2020.05.038 Ma SH, 2017, EUR J OPER RES, V260, P680, DOI 10.1016/j.ejor.2016.12.032 Martínez-de-Albéniz V, 2020, PROD OPER MANAG, V29, P2508, DOI 10.1111/poms.13238 Montero-Manso P, 2021, INT J FORECASTING, V37, P1632, DOI 10.1016/j.ijforecast.2021.03.004 Nikolopoulos K, 2021, EUR J OPER RES, V290, P99, DOI 10.1016/j.ejor.2020.08.001 Pereira MM, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102165 Punia S, 2020, COMPUT IND ENG, V149, DOI 10.1016/j.cie.2020.106796 Ren SY, 2020, ANN OPER RES, V291, P761, DOI 10.1007/s10479-019-03148-8 Schaer O, 2019, INT J FORECASTING, V35, P197, DOI 10.1016/j.ijforecast.2018.03.005 Seaman B, 2022, INT J FORECASTING, V38, P1468, DOI 10.1016/j.ijforecast.2021.06.002 Spiliotis E., 2022, INT J FORECASTING, V38, P1346 Steinker S, 2017, PROD OPER MANAG, V26, P1854, DOI 10.1111/poms.12721 Stephens D., 2021, RESURRECTING RETAIL Ulrich M, 2021, EUR J OPER RES, V294, P831, DOI 10.1016/j.ejor.2019.11.029 van Steenbergen RM, 2020, DECIS SUPPORT SYST, V139, DOI 10.1016/j.dss.2020.113401 Wolpert D. H., 1997, IEEE Transactions on Evolutionary Computation, V1, P67, DOI 10.1109/4235.585893 Wolters J, 2021, J RETAILING, V97, P726, DOI 10.1016/j.jretai.2021.01.003 NR 34 TC 3 Z9 3 U1 13 U2 41 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0169-2070 EI 1872-8200 J9 INT J FORECASTING JI Int. J. Forecast. PD OCT-DEC PY 2022 VL 38 IS 4 SI SI BP 1319 EP 1324 DI 10.1016/j.ijforecast.2021.09.012 EA OCT 2022 PG 6 WC Economics; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 5U0AG UT WOS:000876216700003 PM 36217499 OA Green Published, Green Accepted DA 2024-03-27 ER PT J AU Qi, M Shi, YY Qi, YZ Ma, CX Yuan, R Wu, D Shen, ZJ AF Qi, Meng Shi, Yuanyuan Qi, Yongzhi Ma, Chenxin Yuan, Rong Wu, Di Shen, Zuo-Jun (Max) TI A Practical End-to-End Inventory Management Model with Deep Learning SO MANAGEMENT SCIENCE LA English DT Article DE end-to-end decision-making; inventory management; deep learning; e-commerce ID PROPENSITY SCORE; POLICY AB We investigate a data-driven multiperiod inventory replenishment problem with uncertain demand and vendor lead time (VLT) with accessibility to a large quantity of historical data. Different from the traditional two-step predict-then-optimize (PTO) solution framework, we propose a one-step end-to-end (E2E) framework that uses deep learning models to output the suggested replenishment amount directly from input features without any intermediate step. The E2E model is trained to capture the behavior of the optimal dynamic programming solution under historical observations without any prior assumptions on the distributions of the demand and the VLT. By conducting a series of thorough numerical experiments using real data from one of the leading e-commerce companies, we demonstrate the advantages of the proposed E2E model over conventional PTO frameworks. We also conduct a field experiment with JD.com, and the results show that our new algorithm reduces holding cost, stockout cost, total inventory cost, and turnover rate substantially compared with JD's current practice. For the supply chain management industry, our E2E model shortens the decision process and provides an automatic inventory management solution with the possibility to generalize and scale. The concept of E2E, which uses the input information directly for the ultimate goal, can also be useful in practice for other supply chain management circumstances. C1 [Qi, Meng] Cornell Univ, SC Johnson Coll Business, Ithaca, NY 14853 USA. [Shi, Yuanyuan] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92161 USA. [Qi, Yongzhi] JD Com Smart Supply Chain Y, Mountain View, CA 94043 USA. [Ma, Chenxin; Yuan, Rong; Wu, Di] JD Com Silicon Valley Res Ctr, Mountain View, CA 94043 USA. [Shen, Zuo-Jun (Max)] Univ Calif Berkeley, Coll Engn, Berkeley, CA 94720 USA. [Shen, Zuo-Jun (Max)] Univ Hong Kong, Fac Engn, Pokfulam, Hong Kong, Peoples R China. [Shen, Zuo-Jun (Max)] Univ Hong Kong, Fac Business & Econ, Pokfulam, Hong Kong, Peoples R China. C3 Cornell University; University of California System; University of California San Diego; University of California System; University of California Berkeley; University of Hong Kong; University of Hong Kong RP Shen, ZJ (autor correspondiente), Univ Calif Berkeley, Coll Engn, Berkeley, CA 94720 USA.; Shen, ZJ (autor correspondiente), Univ Hong Kong, Fac Engn, Pokfulam, Hong Kong, Peoples R China.; Shen, ZJ (autor correspondiente), Univ Hong Kong, Fac Business & Econ, Pokfulam, Hong Kong, Peoples R China. EM mq56@cornell.edu; yyshi@eng.ucsd.edu; qiyongzhi1@jd.com; chenxin.ma@jd.com; rongyuan.exe@gmail.com; di.wu@jd.com; shen@ieor.berkeley.edu RI Shen, Zuo-Jun Max/JXM-7549-2024 OI Shen, Zuo-Jun Max/0000-0003-4538-8312 CR Ambrogioni L, 2017, PREPRINT Ban GY, 2019, OPER RES, V67, P90, DOI 10.1287/opre.2018.1757 Bengio Y, 1997, INT J NEURAL SYST, V8, P433, DOI 10.1142/S0129065797000422 Bertsimas D, 2020, MANAGE SCI, V66, P1025, DOI 10.1287/mnsc.2018.3253 Böse JH, 2017, PROC VLDB ENDOW, V10, P1694 Choromanska A, 2015, JMLR WORKSH CONF PRO, V38, P192 Chu LY, 2008, OPER RES LETT, V36, P110, DOI 10.1016/j.orl.2007.04.010 Donti P, 2017, ADV NEUR IN, V31, P5484 EHRHARDT R, 1984, OPER RES, V32, P121, DOI 10.1287/opre.32.1.121 Elmachtoub AN, 2022, MANAGE SCI, V68, P9, DOI 10.1287/mnsc.2020.3922 Fan CY, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2527, DOI 10.1145/3292500.3330662 Friedman J., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7 Gallego G, 2001, MANAGE SCI, V47, P1344, DOI 10.1287/mnsc.47.10.1344.10261 IGNALL E, 1969, MANAGE SCI, V15, P284, DOI 10.1287/mnsc.15.5.284 Iida T, 2006, M&SOM-MANUF SERV OP, V8, P407, DOI 10.1287/msom.1060.0116 James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] KAPLAN RS, 1970, MANAGE SCI, V16, P491, DOI 10.1287/mnsc.16.7.491 Kawaguchi K., 2016, ADV NEURAL INFORM PR, P586 Ke GL, 2017, ADV NEUR IN, V30 Koenker R, 2005, QUANTILE REGRESSION, DOI DOI 10.1017/CBO9780511754098 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Levi R, 2007, MATH OPER RES, V32, P284, DOI 10.1287/moor.1060.0205 Levine S, 2016, J MACH LEARN RES, V17 Liyanage LH, 2005, OPER RES LETT, V33, P341, DOI 10.1016/j.orl.2004.08.003 Muharremoglu A, 2008, OPER RES, V56, P1089, DOI 10.1287/opre.1080.0620 Oroojlooyjadid A, 2020, IISE TRANS, V52, P444, DOI 10.1080/24725854.2019.1632502 Paszke Adam, 2017, NEURIPS WORKSH ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Rubin DB, 2006, STAT SCI, V21, P206, DOI 10.1214/088342306000000259 SHEATHER SJ, 1991, J ROY STAT SOC B, V53, P683 Snyder L, 2011, FUNDAMENTALS SUPPLY Srivastava N, 2014, J MACH LEARN RES, V15, P1929 Toktay LB, 2001, MANAGE SCI, V47, P1268, DOI 10.1287/mnsc.47.9.1268.9787 VEINOTT AF, 1965, MANAGE SCI, V12, P206, DOI 10.1287/mnsc.12.3.206 Wang K, 2011, IEEE I CONF COMP VIS, P1457, DOI 10.1109/ICCV.2011.6126402 Wang T, 2012, M&SOM-MANUF SERV OP, V14, P472, DOI 10.1287/msom.1120.0387 Wen R, 2017, PREPRINT Zhu KJ, 2004, NAV RES LOG, V51, P633, DOI 10.1002/nav.10124 Zipkin PH, 2000, FDN INVENTORY MANAGE NR 39 TC 7 Z9 7 U1 16 U2 16 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD FEB PY 2023 VL 69 IS 2 BP 759 EP 773 DI 10.1287/mnsc.2022.4564 PG 15 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA DL6C5 UT WOS:001132227500003 DA 2024-03-27 ER PT J AU Rodrigues, VF Policarpo, LM da Silveira, DE Righi, RD da Costa, CA Barbosa, JLV Antunes, RS Scorsatto, R Arcot, T AF Rodrigues, Vinicius Facco Policarpo, Lucas Micol da Silveira, Diorgenes Eugenio Righi, Rodrigo da Rosa da Costa, Cristiano Andre Barbosa, Jorge Luis Victoria Antunes, Rodolfo Stoffel Scorsatto, Rodrigo Arcot, Tanuj TI Fraud detection and prevention in e-commerce: A systematic literature review SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE E-commerce; Fraud detection; Fraud prevention; Machine learning; Systematic literature review ID TRANSACTIONS AB The high volume of money involved in e-commerce transactions draws the attention of fraudsters, which makes fraud prevention and detection techniques of high importance. Current surveys and reviews on fraud systems focuses mainly on financial-specific domains or general areas, leaving e-commerce aside. In this context, this article presents a systematic literature review on fraud detection and prevention for e-commerce systems. Our methodology involved searching for articles published in the last six years into four different literature databases. The search of articles employs a search string composed of the following keywords: purchase, buy, transactions, fraud prevention, fraud detection, e-commerce, web commerce, online store, real-time, and stream. We apply six filtering criteria to remove irrelevant articles. The methodology resulted in 64 articles, which we carefully analyzed to answer five research questions. Our contribution appears in the updated perception of fraud types, computational methods for fraud detection and prevention, as well as the employed domains. To the best of our knowledge, this is the first survey on combining prevention and detection of e-commerce frauds, linking also architectural insights, artificial intelligence methods, and open challenges and gaps in the research area. The study main findings demonstrate that from 64 articles, only five focus on the fraud prevention problem, and credit card fraud is the most explored fraud type. In addition, current literature lacks studies that propose strategies for detecting fraudsters and automated bots in real-time. C1 [Rodrigues, Vinicius Facco; Policarpo, Lucas Micol; da Silveira, Diorgenes Eugenio; Righi, Rodrigo da Rosa; da Costa, Cristiano Andre; Barbosa, Jorge Luis Victoria; Antunes, Rodolfo Stoffel] Univ Vale Rio dos Sinos, Appl Comp Program, Sao Leopoldo, RS, Brazil. [Scorsatto, Rodrigo; Arcot, Tanuj] DELL Eldorado Do Sul, Eldorado Do Sul, RS, Brazil. C3 Universidade do Vale do Rio dos Sinos (Unisinos) RP Rodrigues, VF (autor correspondiente), Univ Vale Rio dos Sinos, Appl Comp Program, Sao Leopoldo, RS, Brazil. EM vfrodrigues@unisinos.br; lmpolicarpo@unisinos.br; diorgeneses@unisinos.br; rrrighi@unisinos.br; cac@unisinos.br; jbarbosa@unisinos.br; rsantunes@unisinos.br; rodrigo.scorsatto@dell.com; tanuj.arcot@dell.com RI Barbosa, Jorge/L-9389-2013; Rodrigues, Vinicius Facco/V-4035-2017 OI Barbosa, Jorge/0000-0002-0358-2056; Rodrigues, Vinicius Facco/0000-0001-6129-0548; da Rosa Righi, Rodrigo/0000-0001-5080-7660; Micol Policarpo, Lucas/0000-0003-0270-4661 FU Dell Inc. via the 7th Amendment to the Technical and Scientific Cooperation; [01/2017] FX This work was support by Dell Inc. via the 7th Amendment to the Technical and Scientific Cooperation Agreement No. 01/2017 - Information Technology Innovation Support Law - Brazilian Government. The authors would like to thank Dell Inc. for financing this research project. CR Abakarim Y, 2018, INT CONF INTELL SYS, DOI 10.1145/3289402.3289530 Abdallah A, 2016, J NETW COMPUT APPL, V68, P90, DOI 10.1016/j.jnca.2016.04.007 Abdullah K, 2020, CONSUM COMM NETWORK Adewumi AO, 2017, INT J SYST ASSUR ENG, V8, P937, DOI 10.1007/s13198-016-0551-y Ahmed M, 2016, FUTURE GENER COMP SY, V55, P278, DOI 10.1016/j.future.2015.01.001 Ali I., 2020, 2020 IEEE 23 INT MUL, P1, DOI 10.1109/INMIC50486.2020.9318202 Anowar F, 2020, IEEE SYS MAN CYBERN, P3551, DOI [10.1109/SMC42975.2020.9283136, 10.1109/smc42975.2020.9283136] Armel A., 2019, 2019 5 INT C OPTIMIZ, P1, DOI [10.1109/icoa.2019.8727610, DOI 10.1109/ICOA.2019.8727610] Artikis A., 2017, P 11 ACM INT C DISTR, P249, DOI [10.1145/3093742.3093912, DOI 10.1145/3093742.3093912] Aziz A., 2021, INT J SCI PROG RES, V79, P31 Baesens B, 2021, DECIS SUPPORT SYST, V150, DOI 10.1016/j.dss.2021.113492 Banerjee R, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174196 Behera TK, 2015, 2015 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATION ENGINEERING ICACCE 2015, P494, DOI 10.1109/ICACCE.2015.33 Biolchini J., 2005, Systematic review in software engineering(05) Branco B, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3101, DOI 10.1145/3394486.3403361 Cao SS, 2019, PROC VLDB ENDOW, V12, P2082, DOI 10.14778/3352063.3352126 Carcillo F, 2018, INFORM FUSION, V41, P182, DOI 10.1016/j.inffus.2017.09.005 Carminati M, 2018, ACM T PRIV SECUR, V21, DOI 10.1145/3178370 Carneiroa N, 2017, DECIS SUPPORT SYST, V95, P91, DOI 10.1016/j.dss.2017.01.002 Carta S, 2019, J INF SECUR APPL, V46, P13, DOI 10.1016/j.jisa.2019.02.007 Chakravorti S., 2003, Review of Network Economics, V2 Chilaka U.L., 2019, CONIC RES ENG J, V3, P456 Correia I., 2015, Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems, P181, DOI [DOI 10.1145/2675743, 10.1145/2675743] Dai Y, 2016, IEEE TRUST BIG, P1644, DOI [10.1109/TrustCom.2016.251, 10.1109/TrustCom.2016.0253] Dal Pozzolo A, 2018, IEEE T NEUR NET LEAR, V29, P3784, DOI 10.1109/TNNLS.2017.2736643 de Sá AGC, 2018, ENG APPL ARTIF INTEL, V72, P21, DOI 10.1016/j.engappai.2018.03.011 Dornadula VN, 2019, PROCEDIA COMPUT SCI, V165, P631, DOI 10.1016/j.procs.2020.01.057 El Orche A, 2019, PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), DOI 10.1145/3320326.3320369 El Orche A, 2018, 2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), P143, DOI 10.1109/CIST.2018.8596486 Forough J, 2021, APPL SOFT COMPUT, V99, DOI 10.1016/j.asoc.2020.106883 Gourisaria M. K, 2020, P IEEE 17 IND COUNC, P1, DOI [10.1109/INDICON49873.2020.9342462, DOI 10.1109/INDICON49873.2020.9342462] Guo QY, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P616, DOI 10.1145/3308558.3313533 Guthrie C, 2020, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102570 Jhangiani R, 2019, 2019 IEEE 10TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), P135, DOI 10.1109/UEMCON47517.2019.8992993 Jing C, 2019, LECT NOTES COMPUT SC, V11598, P588, DOI 10.1007/978-3-030-32101-7_34 Kamaruddin S, 2016, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), DOI 10.1145/2980258.2980319 Kitchenham B., 2007, GUIDELINES PERFORMIN Kumar V., 2012, INT J COMPUTERS TECH, V3, P447 Laurens R., 2019, ICC 2019 2019 IEEE I, P1, DOI DOI 10.1109/ICC.2019.8761144 Laurens R., 2017, GLOBECOM 2017 2017 I, P1 Laurens R, 2016, IEEE GLOB COMM CONF Li Z, 2019, PROC INT CONF DATA, P1898, DOI 10.1109/ICDE.2019.00205 Ling C, 2018, 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (IEEE CSCLOUD 2018) / 2018 4TH IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND SCALABLE CLOUD (IEEE EDGECOM 2018), P75, DOI 10.1109/CSCloud/EdgeCom.2018.00022 Liu C, 2020, KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P3035, DOI 10.1145/3394486.3403354 Liu Y, 2021, 2021 2ND INTERNATIONAL CONFERENCE ON E-COMMERCE AND INTERNET TECHNOLOGY (ECIT 2021), P213, DOI 10.1109/ECIT52743.2021.00054 Lucas Y, 2020, FUTURE GENER COMP SY, V102, P393, DOI 10.1016/j.future.2019.08.029 Mack C, 2012, J MICRO-NANOLITH MEM, V11, DOI 10.1117/1.JMM.11.2.020101 Misra S, 2020, PROCEDIA COMPUT SCI, V167, P254, DOI 10.1016/j.procs.2020.03.219 Mittal S, 2019, 2019 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2019), P320, DOI [10.1109/CONFLUENCE.2019.8776925, 10.1109/confluence.2019.8776925] Molloy I, 2017, LECT NOTES COMPUT SC, V9603, P22, DOI 10.1007/978-3-662-54970-4_2 dos Santos MVM, 2016, ADV INTELL SYST COMP, V448, P461, DOI 10.1007/978-3-319-32467-8_41 Mrozek P, 2020, INT CONF UTIL CLOUD, P426, DOI 10.1109/UCC48980.2020.00067 Najadat H, 2020, INT CONF INFORM COMM, P204, DOI 10.1109/ICICS49469.2020.239524 Patil Suraj, 2018, Procedia Computer Science, V132, P385, DOI 10.1016/j.procs.2018.05.199 Pourhabibi T, 2020, DECIS SUPPORT SYST, V133, DOI 10.1016/j.dss.2020.113303 Puh M, 2019, 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P1250, DOI [10.23919/MIPRO.2019.8757212, 10.23919/mipro.2019.8757212] Raghavan P, 2019, PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), P335, DOI [10.1109/ICCIKE47802.2019.9004231, 10.1109/iccike47802.2019.9004231] Rai A.K., 2020, MACHINE LEARNING IMA, P369 Rajeshwari U, 2016, PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT), P439, DOI 10.1109/ICATCCT.2016.7912039 Randhawa K, 2018, IEEE ACCESS, V6, P14277, DOI 10.1109/ACCESS.2018.2806420 Sadgali I, 2019, PROCEDIA COMPUT SCI, V148, P45, DOI 10.1016/j.procs.2019.01.007 Sadgali I, 2019, 4TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS (SCA' 19), DOI 10.1145/3368756.3369082 Sadineni Praveen Kumar, 2020, 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), P659, DOI 10.1109/I-SMAC49090.2020.9243545 Saia R, 2019, FUTURE GENER COMP SY, V93, P18, DOI 10.1016/j.future.2018.10.016 Saia R, 2017, LECT NOTES COMPUT SC, V10394, P464, DOI 10.1007/978-3-319-64701-2_34 Saia R, 2015, 2015 7TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT (IC3K), P496 Shiyang Xuan, 2018, Computational Data and Social Networks. 7th International Conference, CSoNet 2018. Proceedings: Lecture Notes in Computer Science (LNCS 11280), P343, DOI 10.1007/978-3-030-04648-4_29 Smiles J. Anita, 2020, Proceedings of the 3rd International Conference on Intelligent Sustainable Systems (ICISS 2020), P376, DOI 10.1109/ICISS49785.2020.9316080 Song Y, 2022, REV MANAG SCI, V16, P65, DOI 10.1007/s11846-020-00438-5 Sudha C., 2021, P 2021 2 INT C COMPU, DOI [10.1109/ICCAKM50778.2021.9357709, DOI 10.1109/ICCAKM50778.2021.9357709] Taha AA, 2020, IEEE ACCESS, V8, P25579, DOI 10.1109/ACCESS.2020.2971354 Tran LTT, 2021, J RETAIL CONSUM SERV, V58, DOI 10.1016/j.jretconser.2020.102287 Van Vlasselaer V, 2015, DECIS SUPPORT SYST, V75, P38, DOI 10.1016/j.dss.2015.04.013 Wang SH, 2017, LECT NOTES ARTIF INT, V10536, P241, DOI 10.1007/978-3-319-71273-4_20 Webb GI, 2016, DATA MIN KNOWL DISC, V30, P964, DOI 10.1007/s10618-015-0448-4 Xuan SY, 2018, IEEE INT C NETW SENS Yang QH, 2015, L N INST COMP SCI SO, V142, P98, DOI 10.1007/978-3-319-16050-4_9 Yin SJ, 2020, INT CONF DAT MIN WOR, P875, DOI 10.1109/ICDMW51313.2020.00125 Zamini M, 2018, 2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), P486, DOI 10.1109/ISTEL.2018.8661129 Zhang XW, 2008, PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON ELECTRONIC COMMERCE AND SECURITY, P743, DOI 10.1109/ISECS.2008.37 Zhao J, 2016, DECIS SUPPORT SYST, V86, P109, DOI 10.1016/j.dss.2016.04.003 Zhao PH, 2019, IEEE ACCESS, V7, P108703, DOI 10.1109/ACCESS.2019.2933247 Zojaji Z, 2016, Arxiv, DOI [arXiv:1611.06439, DOI 10.48550/ARXIV.1611.06439] NR 83 TC 5 Z9 5 U1 24 U2 51 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2022 VL 56 AR 101207 DI 10.1016/j.elerap.2022.101207 EA OCT 2022 PG 19 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 5X6VK UT WOS:000878737000002 DA 2024-03-27 ER PT J AU Li, WF Chen, HC Nunamaker, JF AF Li, Weifeng Chen, Hsinchun Nunamaker, Jay F., Jr. TI Identifying and Profiling Key Sellers in Cyber Carding Community: AZSecure Text Mining System SO JOURNAL OF MANAGEMENT INFORMATION SYSTEMS LA English DT Article DE carding community; cybersecurity; deep learning; fraud detection; online deception; social media analytics; topic modeling; underground economy ID SECURITY; WEB; NETWORKS; REVIEWS AB The past few years have witnessed millions of credit/debit cards flowing through the underground economy and ultimately causing significant financial loss. Examining key underground economy sellers has both practical and academic significance for cybercrime forensics and criminology research. Drawing on social media analytics, we have developed the AZSecure text mining system for identifying and profiling key sellers. The system identifies sellers using sentiment analysis of customer reviews and profiles sellers using topic modeling of advertisements. We evaluated the AZSecure system on eight international underground economy forums. The system significantly outperformed all benchmark machine-learning methods on identifying advertisement threads, classifying customer review sentiments, and profiling seller characteristics, with an average F-measure of about 80 percent to 90 percent. In our case study, we identified the famous carder, Rescator, who was affiliated with the Target breach, and captured important seller characteristics in terms of product type, payment options, and contact channels. Our research leverages social media analytics to probe into the underground economy in order to help law enforcement target key sellers and prevent future fraud. It also contributes to our understanding of the use of information technology in detecting deception in online systems. C1 [Li, Weifeng] Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA. [Li, Weifeng] Univ Arizona, Artificial Intelligence Lab, Tucson, AZ 85721 USA. [Chen, Hsinchun] Eller Coll Management, Dept Management Informat Syst, Tucson, AZ USA. [Chen, Hsinchun] Eller Coll Management, Dept Management Informat Syst, Management & Technol, Tucson, AZ USA. [Nunamaker, Jay F., Jr.] Univ Arizona, MIS Comp Sci & Commun, Tucson, AZ 85721 USA. [Nunamaker, Jay F., Jr.] Univ Arizona, Ctr Management Informat, Tucson, AZ 85721 USA. [Nunamaker, Jay F., Jr.] Univ Arizona, Natl Ctr Border Secur & Immigrat, Tucson, AZ 85721 USA. C3 University of Arizona; University of Arizona; University of Arizona; University of Arizona; University of Arizona RP Li, WF (autor correspondiente), Univ Arizona, Dept Management Informat Syst, Tucson, AZ 85721 USA.; Li, WF (autor correspondiente), Univ Arizona, Artificial Intelligence Lab, Tucson, AZ 85721 USA. EM weifengli@email.arizona.edu; hchen@eller.arizona.edu; jnunamaker@cmi.arizona.edu OI Li, Weifeng/0000-0002-2105-3596 FU National Science Foundation [SES-1314631, DUE-1303362] FX This work was supported in part by the National Science Foundation under Grant no. SES-1314631 and DUE-1303362. CR Abbasi A, 2014, 2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), P56, DOI 10.1109/JISIC.2014.18 Abbasi A, 2008, J MANAGE INFORM SYST, V25, P49, DOI 10.2753/MIS0742-1222250103 Abhishek V., Examining the Impact of Contextual Ambiguity on Search Advertising Keyword Performance: A Topic Model Approach Aggarwal R, 2013, MIS QUART, V37, P1093, DOI 10.25300/MISQ/2013/37.4.05 [Anonymous], 2003, P C N AM CHAPT ASS C [Anonymous], 2011, J COMPUT SCI-NETH, DOI DOI 10.1016/j.jocs.2010.12.007 Aral S., 2011, Content and context: Identifying the impact of qualitative information on consumer choice Aral S, 2011, MANAGE SCI, V57, P1623, DOI 10.1287/mnsc.1110.1421 Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Bao Y, 2014, MANAGE SCI, V60, P1371, DOI 10.1287/mnsc.2014.1930 Benjamin V, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENCE AND SECURITY INFORMATICS (ISI), P85, DOI 10.1109/ISI.2015.7165944 Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Chen D., 2013, LEARNING NEW FACTS K Chu B., 2010, EXAMINING CREATION D Chung W, 2005, J MANAGE INFORM SYST, V21, P57, DOI 10.1080/07421222.2005.11045821 De Graaf D., 2012, DIGITAL FORENSICS CY, V114, P302 Derrick DC, 2013, ACM TRANS MANAG INF, V4, DOI 10.1145/2499962.2499967 Fallmann H, 2010, LECT NOTES COMPUT SC, V6201, P101, DOI 10.1007/978-3-642-14215-4_6 Fossi M., 2009, The Journal of Financial Services Technology, V3, P77 Fuller CM, 2013, GROUP DECIS NEGOT, V22, P117, DOI 10.1007/s10726-012-9300-z Herley C, 2010, ECONOMICS OF INFORMATION SECURITY AND PRIVACY, P33, DOI 10.1007/978-1-4419-6967-5_3 Holt TJ, 2010, CRIM JUSTICE STUD, V23, P33, DOI 10.1080/14786011003634415 Holt TJ, 2013, GLOB CRIME, V14, P155, DOI 10.1080/17440572.2013.787925 Holt TJ, 2012, INT J CYBER CRIMINOL, V6, P891 Holt TJ, 2013, SOC SCI COMPUT REV, V31, P165, DOI 10.1177/0894439312452998 Jensen ML, 2013, J MANAGE INFORM SYST, V30, P293, DOI 10.2753/MIS0742-1222300109 Kaspersky Lab, 2015, SEC Krebs B., 2014, KrebsonSecurity Lau RYK, 2014, IEEE COMPUT INTELL M, V9, P31, DOI 10.1109/MCI.2013.2291689 Lau RYK, 2012, MIS QUART, V36, P1239 Li X. D., 2009, 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS 2009), P1, DOI 10.1109/PEITS.2009.5407060 Lu Y, 2010, J COMPUT INFORM SYST, V51, P31 Ma X, 2013, J MANAGE INFORM SYST, V30, P279, DOI 10.2753/MIS0742-1222300310 Mahmood MA, 2010, MIS QUART, V34, P431 McCallum A. K., 2002, MALLET MACHINE LEARN Motoyama M., P 2011 ACM SIGCOMM C, P71, DOI DOI 10.1145/2068816.2068824 Nunamaker J. F. Jr., 1990, Journal of Management Information Systems, V7, P89 Nunamaker JE, 2011, J MANAGE INFORM SYST, V28, P17, DOI 10.2753/MIS0742-1222280102 Odabas M., 2015, EC SOCIOLOGY ONLINE Peretti K.K., 2008, SANTA CLARA COMPUT H, V25, P375 Png IPL, 2009, J MANAGE INFORM SYST, V26, P97, DOI 10.2753/MIS0742-1222260205 Radianti Jaziar, 2010, Proceedings of the 2010 Fourth International Conference on Emerging Security Information, Systems and Technologies (SECURWARE), P189, DOI 10.1109/SECURWARE.2010.38 Romano NC, 2003, J MANAGE INFORM SYST, V19, P213 Sack W, 2000, J MANAGE INFORM SYST, V17, P73 Singh PV, 2014, INFORM SYST RES, V25, P35, DOI 10.1287/isre.2013.0509 Socher R., 2013, EMNLP, P935 Taboada M, 2011, COMPUT LINGUIST, V37, P267, DOI 10.1162/COLI_a_00049 United States Department of Homeland Security, 2014, US SECR SERV ARR ON United States Department of Justice, 2013, 5 IND NEW JERS LARG Verizon, 2014, VERIZON BUS J, V2014, P1 Wang QH, 2012, LECT NOTES BUS INF P, V108, P143 Wu L, 2013, INFORM SYST RES, V24, P30, DOI 10.1287/isre.1120.0465 Yip M., 2013, Proceedings of the 5th Annual ACM Web Science Conference, P453 Zhang X., 2013, 2013 SIGBPS Workshop on Business Processes and Service, P106 Zhang X, 2015, INFORM SYST FRONT, V17, P1239, DOI 10.1007/s10796-015-9567-0 Ziming Zhao, 2012, Computer Security - ESORICS 2012. Proceedings 17th European Symposium on Research in Computer Security, P877, DOI 10.1007/978-3-642-33167-1_50 NR 56 TC 52 Z9 57 U1 8 U2 146 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0742-1222 EI 1557-928X J9 J MANAGE INFORM SYST JI J. Manage. Inform. Syst. PY 2016 VL 33 IS 4 BP 1059 EP 1086 DI 10.1080/07421222.2016.1267528 PG 28 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA EM2RA UT WOS:000395162100007 DA 2024-03-27 ER PT J AU Wang, KL Chen, ZH Cheng, L Zhu, PY Shi, J Bian, ZY AF Wang, Kailai Chen, Zhenhua Cheng, Long Zhu, Pengyu Shi, Jian Bian, Zheyong TI Integrating spatial statistics and machine learning to identify relationships between e-commerce and distribution facilities in Texas, US SO TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE LA English DT Article DE E-Commerce; Warehouses and Distribution Centers (W&DCs); Spatial analysis; Logistics sprawl; Gradient Boosting Decision Trees (GBDT) ID BLOCKCHAIN; SECURE AB This paper proposes a novel analytical framework that integrates spatial statistics and machine learning techniques to identify relationships between e-commerce and distribution facilities. The framework includes centrographic analysis, global and local spatial association measurements, and a recently popularized interpretable machine learning approach - gradient boosting decision trees (GBDT) - to analyze warehousing location choices. We apply this framework to ZIP Codes Business Patterns data from 2003 to 2016 in three large metropolitan areas in Texas, US (i.e., Dallas-Fort Worth, Austin, and Houston). The thematic maps reveal the spatial clustering of areas with higher e-commerce activity but lower logistics facility coverage. It is worth noting that we do not observe logistics sprawl in the study region. The GBDT results show that industrial activities and transportation network accessibility are key factors influencing warehousing location choices. We also find that the relationship between warehouses and e-commerce establishments is weaker in Houston, a major maritime gateway for goods entering and leaving, as compared to Dallas-Fort Worth and Austin. Implications for local freight transportation planners and decisionmakers are discussed. C1 [Wang, Kailai; Bian, Zheyong] Univ Houston, Dept Construct Management, Houston, TX USA. [Chen, Zhenhua] Ohio State Univ, Knowlton Sch Architecture, City & Reg Planning, Columbus, OH USA. [Cheng, Long] Southeast Univ, Jiangsu Key Lab Urban ITS, Nanjing, Peoples R China. [Cheng, Long] Univ Ghent, Dept Geog, Ghent, Belgium. [Zhu, Pengyu] Hong Kong Univ Sci & Technol, Div Publ Policy, Hong Kong, Peoples R China. [Shi, Jian] Univ Houston, Dept Engn Technol, Houston, TX USA. C3 University of Houston System; University of Houston; University System of Ohio; Ohio State University; Southeast University - China; Ghent University; Hong Kong University of Science & Technology; University of Houston System; University of Houston RP Cheng, L (autor correspondiente), Southeast Univ, Jiangsu Key Lab Urban ITS, Nanjing, Peoples R China. EM kwang43@central.uh.edu; chen.7172@osu.edu; long.cheng@ugent.be; pengyuzhu@ust.hk; jshi23@central.uh.edu; zbian2@central.uh.edu RI Wang, Kailai/HKF-3153-2023 OI Wang, Kailai/0000-0002-5597-6823; Cheng, Long/0000-0003-3720-4093 FU University of Houston-National Research University Fund (NRUF); [R0507403] FX This study was partially supported by the University of Houston-National Research University Fund (NRUF) (Project Number: R0507403) . CR Akter S., 2022, INTERNET THINGS CYBE Anderson C, 2023, INFORM ORGAN-UK, V33, DOI 10.1016/j.infoandorg.2023.100455 Ayvaz S, 2021, EXPERT SYST APPL, V173, DOI 10.1016/j.eswa.2021.114598 Nguyen BL, 2020, CMC-COMPUT MATER CON, V65, P87, DOI 10.32604/cmc.2020.011599 Deepa N, 2021, J AMB INTEL HUM COMP, V12, P4877, DOI 10.1007/s12652-020-01911-5 Dua D., 2019, UCI MACHINE LEARNING Erlingsson U, 2014, CCS'14: PROCEEDINGS OF THE 21ST ACM CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, P1054, DOI 10.1145/2660267.2660348 Ghayvat H, 2022, IEEE J BIOMED HEALTH, V26, P1937, DOI 10.1109/JBHI.2021.3097237 Gorkhali A, 2020, J MANAG ANAL, V7, P321, DOI 10.1080/23270012.2020.1801529 Hasan H.R., 2020, IEEE ACCESS, V8 He DB, 2015, MULTIMEDIA SYST, V21, P49, DOI 10.1007/s00530-013-0346-9 Issa W, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3560816 Janosi Andras, 1988, UCI Machine Learning Repository Jayabalan J, 2022, J PARALLEL DISTR COM, V164, P152, DOI 10.1016/j.jpdc.2022.03.009 Jia N, 2020, SECUR COMMUN NETW, V2020, DOI 10.1155/2020/8872853 Kahn Michael, 1993, UCI Machine Learning Repository Khan MA, 2020, IEEE ACCESS, V8, P52018, DOI 10.1109/ACCESS.2020.2980739 Laghari AA, 2022, ARCH COMPUT METHOD E, V29, P1395, DOI 10.1007/s11831-021-09622-6 Liu L, 2020, SYMMETRY-BASEL, V12, DOI 10.3390/sym12010103 Merabet F, 2020, PEER PEER NETW APPL, V13, P439, DOI 10.1007/s12083-019-00782-8 Miyachi K, 2021, INFORM PROCESS MANAG, V58, DOI 10.1016/j.ipm.2021.102535 Moradi A., 2021, 2021 55 ASILOMAR C S, P790 Nakamoto S, 2008, BITCOIN PEER TO PEER Pasdar A, 2023, ACM COMPUT SURV, V55, DOI 10.1145/3567582 Paul M, 2023, ICT EXPRESS, V9, P571, DOI 10.1016/j.icte.2023.02.007 Rahman MA, 2021, IEEE INTERNET THINGS, V8, P15847, DOI 10.1109/JIOT.2021.3051080 Roy Chanday, 2022, 2022 7th International Conference on Computer Science and Engineering (UBMK), P462, DOI 10.1109/UBMK55850.2022.9919573 Shen M, 2019, IEEE INTERNET THINGS, V6, P7702, DOI 10.1109/JIOT.2019.2901840 Tang XY, 2022, IEEE WIREL COMMUN, V29, P14, DOI 10.1109/MWC.003.2100598 Wu F, 2019, IEEE SYST J, V13, P2830, DOI 10.1109/JSYST.2018.2876226 Wu F, 2017, MULTIMEDIA SYST, V23, P195, DOI 10.1007/s00530-015-0476-3 Yu RY, 2022, J NETW COMPUT APPL, V207, DOI 10.1016/j.jnca.2022.103483 Zhang P., 2022, IEEE T DEPENDABLE SE Zhao J., 2023, IEEE Trans. Cloud Comput., P1 Zhu LH, 2021, IEEE INTERNET THINGS, V8, P12106, DOI 10.1109/JIOT.2021.3060764 NR 35 TC 0 Z9 0 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0965-8564 EI 1879-2375 J9 TRANSPORT RES A-POL JI Transp. Res. Pt. A-Policy Pract. PD JUL PY 2023 VL 173 AR 103696 DI 10.1016/j.tra.2023.103696 EA MAY 2023 PG 17 WC Economics; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Transportation GA Q1DX0 UT WOS:001055001900001 DA 2024-03-27 ER PT J AU Agnihotri, R AF Agnihotri, Raj TI Social media, customer engagement, and sales organizations: A research agenda SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Social media; customer engagement; business markets; sales performance; AI; social media analytics; social media pitfalls ID TECHNOLOGY USE; SERVICE BEHAVIORS; PERFORMANCE; IMPACT; USAGE; ONLINE; CHAIN; CAPABILITIES; ANTECEDENTS; SALESPEOPLE AB Organizations continue to make investments in social media with the hope that it will help their sales force in improving engagement with customers. The academic literature on social media use in business markets has supported the growth and utilization of such technology; however, much more work is needed. This article, building upon the recent scholarly advances and considering a managerial perspective, offers suggestions to guide future academic research examining the links between social media use and customer engagement within the B2B sales domain. Several research questions are presented under the four broad topics, namely utility of social media technologies, context matters, social media pitfalls, and futuristic social media applications. C1 [Agnihotri, Raj] Iowa State Univ, Ivy Coll Business, Ames, IA 50011 USA. C3 Iowa State University RP Agnihotri, R (autor correspondiente), Iowa State Univ, Ivy Coll Business, Ames, IA 50011 USA. EM Raj2@iastate.edu RI Agnihotri, Raj/AAN-9991-2021 OI Agnihotri, Raj/0000-0002-2008-5908 CR Agnihotri R., 2020, HDB RES SALES Agnihotri R, 2017, J BUS RES, V81, P144, DOI 10.1016/j.jbusres.2017.08.021 Agnihotri R, 2016, IND MARKET MANAG, V53, P172, DOI 10.1016/j.indmarman.2015.09.003 Agnihotri R, 2012, J PERS SELL SALES M, V32, P333, DOI 10.2753/PSS0885-3134320304 Aharony N, 2015, ONLINE INFORM REV, V39, P26, DOI 10.1108/OIR-08-2014-0177 Ahearne M, 2008, MANAGE SCI, V54, P671, DOI 10.1287/mnsc.1070.0783 Ahearne M, 2007, J ACAD MARKET SCI, V35, P603, DOI 10.1007/s11747-006-0013-1 Ahearne M, 2010, J PERS SELL SALES M, V30, P111, DOI 10.2753/PSS0885-3134300202 Alavi Shirin, 2016, International Journal of Management Practice, V9, P56 Alwagait E, 2015, COMPUT HUM BEHAV, V51, P1092, DOI 10.1016/j.chb.2014.09.028 Ancillai C, 2019, IND MARKET MANAG, V82, P293, DOI 10.1016/j.indmarman.2019.01.002 Andriole SJ, 2010, COMMUN ACM, V53, P67, DOI 10.1145/1859204.1858225 [Anonymous], 2010, HARV BUS REV Antheunis ML, 2015, SOCIETIES, V5, P399, DOI 10.3390/soc5020399 Atsmon Y., 2012, MCKIN Q, V4, P50 Autry CW, 2008, J BUS LOGIST, V29, P157, DOI 10.1002/j.2158-1592.2008.tb00073.x Ayyagari R, 2011, MIS QUART, V35, P831 Bachrach DG, 2017, IND MARKET MANAG, V62, P88, DOI 10.1016/j.indmarman.2016.08.001 Baehr C, 2010, IEEE T PROF COMMUN, V53, P358, DOI 10.1109/TPC.2010.2077491 Bolander W, 2015, J MARKETING, V79, P1, DOI 10.1509/jm.14.0444 Bowden JLH, 2009, J MARKET THEORY PRAC, V17, P63, DOI 10.2753/MTP1069-6679170105 Brodie RJ, 2013, J BUS RES, V66, P105, DOI 10.1016/j.jbusres.2011.07.029 Pinho JC, 2013, J RES INTERACT MARK, V7, P216, DOI 10.1108/JRIM-May-2012-0020 Chu SC, 2011, INT J ADVERT, V30, P47, DOI 10.2501/IJA-30-1-047-075 Chuang SH, 2020, IND MARKET MANAG, V84, P202, DOI 10.1016/j.indmarman.2019.06.012 Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055 Collins R.H., 1984, The Journal of Personal Selling and Sales Management, V4, P58, DOI DOI 10.1080/08853134.1984.10754372 Cousins PD, 2006, J OPER MANAG, V24, P851, DOI 10.1016/j.jom.2005.08.007 Culnan MJ, 2010, MIS Q EXEC, V9, P243 de Vries L, 2017, J MARKETING, V81, P1, DOI 10.1509/jm.15.0178 Dinner IM, 2014, J MARKETING RES, V51, P527, DOI 10.1509/jmr.11.0466 Ellison N, 2006, J COMPUT-MEDIAT COMM, V11 Ellison NB, 2007, J COMPUT-MEDIAT COMM, V12, P1143, DOI 10.1111/j.1083-6101.2007.00367.x Fan WG, 2014, COMMUN ACM, V57, P74, DOI 10.1145/2602574 Fang E, 2015, J MARKETING RES, V52, P407, DOI 10.1509/jmr.13.0165 Foltean FS, 2019, J BUS RES, V104, P563, DOI 10.1016/j.jbusres.2018.10.047 Gilfoil D.M., 2012, INT J MANAGEMENT INF, V16, P69 Grant RM, 1996, ORGAN SCI, V7, P375, DOI 10.1287/orsc.7.4.375 Gray PH, 2011, MIS QUART, V35, P629 Grewal Rajdeep., 2015, Customer Needs and Solutions, V2, P193, DOI [10.1007/s40547-015-0040-5, DOI 10.1007/S40547-015-0040-5] Guesalaga R, 2016, IND MARKET MANAG, V54, P71, DOI 10.1016/j.indmarman.2015.12.002 Hakansson H., 1995, DEV RELATIONSHIPS BU Hanna R, 2011, BUS HORIZONS, V54, P265, DOI 10.1016/j.bushor.2011.01.007 Hartmann NN, 2018, J MARKETING, V82, P1, DOI 10.1509/jm.16.0268 Hennig-Thurau T, 2010, J SERV RES-US, V13, P311, DOI 10.1177/1094670510375460 Holliman G, 2014, J RES INTERACT MARK, V8, P269, DOI 10.1108/JRIM-02-2014-0013 Hunter GK, 2007, J MARKETING, V71, P16, DOI 10.1509/jmkg.71.1.16 Iankova S, 2019, IND MARKET MANAG, V81, P169, DOI 10.1016/j.indmarman.2018.01.001 Itani OS, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101980 Itani OS, 2017, IND MARKET MANAG, V66, P64, DOI 10.1016/j.indmarman.2017.06.012 Järvinen J, 2016, IND MARKET MANAG, V54, P164, DOI 10.1016/j.indmarman.2015.07.002 Kalra A, 2017, J PERS SELL SALES M, V37, P332, DOI 10.1080/08853134.2017.1391100 Kaplan AM, 2010, BUS HORIZONS, V53, P59, DOI 10.1016/j.bushor.2009.09.003 Kaput M., 2019, WHAT IS ARTIFICIAL I Kelley H.H., 1987, ATTRIBUTION SOCIAL I Kovac M, 2016, SOCIAL MEDIA WORKS B Krause DR, 2007, J OPER MANAG, V25, P528, DOI 10.1016/j.jom.2006.05.007 Kumar B, 2020, IND MARKET MANAG, V85, P126, DOI 10.1016/j.indmarman.2019.10.002 Kumar V, 2016, J MARKETING RES, V53, P497, DOI 10.1509/jmr.15.0044 Kumar V, 2013, MARKET SCI, V32, P194, DOI 10.1287/mksc.1120.0768 Kumar V, 2010, J SERV RES-US, V13, P297, DOI 10.1177/1094670510375602 Lacoste S, 2016, IND MARKET MANAG, V54, P33, DOI 10.1016/j.indmarman.2015.12.010 Lawson B, 2008, J OPER MANAG, V26, P446, DOI 10.1016/j.jom.2007.10.001 Li F, 2021, J OPER RES SOC, V72, P1432, DOI 10.1080/01605682.2020.1718561 Lilien GL, 2016, INT J RES MARK, V33, P543, DOI 10.1016/j.ijresmar.2016.01.003 Liu D, 2016, REV GEN PSYCHOL, V20, P369, DOI 10.1037/gpr0000091 Lu CY, 2020, J ADVERTISING RES, V60, P394, DOI 10.2501/JAR-2020-004 Maier C, 2015, EUR J INFORM SYST, V24, P447, DOI 10.1057/ejis.2014.3 Malita L, 2011, PROCEDIA COMPUT SCI, V3, DOI 10.1016/j.procs.2010.12.123 Martechadvisor.com, 2018, IMP ART INT SOC MED Michaelidou N, 2011, IND MARKET MANAG, V40, P1153, DOI 10.1016/j.indmarman.2011.09.009 Min S, 2008, J BUS LOGIST, V29, P283, DOI 10.1002/j.2158-1592.2008.tb00079.x Minsky L., 2016, HARVARD BUSINESS REV, V8 Moore JN, 2015, J MARKET THEORY PRAC, V23, P1, DOI 10.1080/10696679.2015.980163 Nonaka I., 2003, Knowledge Management Research & Practice, V1, P2, DOI 10.1057/palgrave.kmrp.8500001 Ogilvie J, 2018, IND MARKET MANAG, V75, P55, DOI 10.1016/j.indmarman.2018.03.007 Palmatier RW, 2006, J MARKETING, V70, P136, DOI 10.1509/jmkg.70.4.136 Pansari A, 2017, J ACAD MARKET SCI, V45, P294, DOI 10.1007/s11747-016-0485-6 Rapp A, 2013, J ACAD MARKET SCI, V41, P547, DOI 10.1007/s11747-013-0326-9 Rapp A, 2008, J PERS SELL SALES M, V28, P335, DOI 10.2753/PSS0885-3134280401 Rutz OJ, 2017, J MARKETING RES, V54, P885, DOI 10.1509/jmr.14.0186 Salo J, 2017, IND MARKET MANAG, V66, P115, DOI 10.1016/j.indmarman.2017.07.013 Sashi CM, 2012, MANAGE DECIS, V50, P253, DOI 10.1108/00251741211203551 Schuldt B. A., 2015, ACAD MARKETING STUDI, V19, P230 Sheth JN, 2011, J MARKETING, V75, P166, DOI 10.1509/jmkg.75.4.166 Singh J, 2019, J PERS SELL SALES M, V39, P2, DOI 10.1080/08853134.2018.1557525 Statista, 2019, LEAS COUNTR BAS NUMB Stephen AT, 2012, J MARKETING RES, V49, P624, DOI 10.1509/jmr.09.0401 Sundaram S, 2007, J ACAD MARKET SCI, V35, P101, DOI 10.1007/s11747-006-0010-4 Tarafdar M, 2015, INFORM SYST J, V25, P103, DOI 10.1111/isj.12042 TATA SP, 1994, J COUNS PSYCHOL, V41, P280 Trainor KJ, 2014, J BUS RES, V67, P1201, DOI 10.1016/j.jbusres.2013.05.002 Vieira VA, 2019, J ACAD MARKET SCI, V47, P1085, DOI 10.1007/s11747-019-00687-1 Villena VH, 2011, J OPER MANAG, V29, P561, DOI 10.1016/j.jom.2010.09.001 Vivek SD, 2012, J MARKET THEORY PRAC, V20, P127, DOI 10.2753/MTP1069-6679200201 Wang WYC, 2016, IND MARKET MANAG, V54, P4, DOI 10.1016/j.indmarman.2015.12.004 Wang Z, 2017, J INTERACT MARK, V39, P15, DOI [10.13393/j.cnki.issn.1672-948X.2017.03.004, 10.1016/j.intmar.2017.02.004] Xie RD, 2020, LASER OPTOELECTRON P, V57, DOI 10.3788/LOP57.050003 Zeng D, 2010, IEEE INTELL SYST, V25, P13, DOI 10.1109/MIS.2010.151 NR 99 TC 70 Z9 75 U1 13 U2 79 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD OCT PY 2020 VL 90 BP 291 EP 299 DI 10.1016/j.indmarman.2020.07.017 PG 9 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA OD5GF UT WOS:000579880200024 DA 2024-03-27 ER PT J AU Mandal, S Maiti, A AF Mandal, Supriyo Maiti, Abyayananda TI Network promoter score (NePS): An indicator of product sales in E-commerce retailing sector SO ELECTRONIC MARKETS LA English DT Article DE E-commerce; Product sales; Review network; Network promoter score; Deep learning technique ID WORD-OF-MOUTH; ONLINE CONSUMER REVIEWS; HELPFULNESS AB E-commerce companies want to predict their future product sales from the current customers' feedback to frame a better business strategy. However, the conventional way of analyzing rating activities or quality and sentiment of reviews, volume of sales, or product prices is not enough for establishing a strong regression between these parameters and future product sales. Most of the existing works ignore the heterogeneous positional and influential effects of individual customer reviews and ratings. For the realization of these effects, we use review network i.e., a bipartite network between customers and products based on the customers' review activities. In this paper, we present a concept named Network Promoter Score (NePS) based on the reliability, positional influence of each customer in the network. In-depth experiments on online review datasets show that NePS emerges as a strong indicator of product sales and can be remarkably futuristic compared to the existing parameters. Furthermore, we propose a predictive modeling technique to estimate the product sales of a company based on NePS. C1 [Mandal, Supriyo; Maiti, Abyayananda] Indian Inst Technol Patna, Dept Comp Sci & Engn, Bihta 801106, Bihar, India. C3 Indian Institute of Technology (IIT) - Patna RP Mandal, S (autor correspondiente), Indian Inst Technol Patna, Dept Comp Sci & Engn, Bihta 801106, Bihar, India. EM supriyo.pcs17@iitp.ac.in; abyaym@iitp.ac.in OI Mandal, Supriyo/0000-0002-1310-7291 CR Abbasimehr H, 2020, COMPUT IND ENG, V143, DOI 10.1016/j.cie.2020.106435 Allison PD., 1998, MULTIPLE REGRESSION Archak N, 2011, MANAGE SCI, V57, P1485, DOI 10.1287/mnsc.1110.1370 Baek H, 2017, ELECTRON COMMER R A, V22, P13, DOI 10.1016/j.elerap.2017.02.001 Baek H, 2012, INT J ELECTRON COMM, V17, P99, DOI 10.2753/JEC1086-4415170204 Bickart B., 2001, J INTERACT MARK, V15, P31, DOI [10.1002/dir.1014, DOI 10.1002/DIR.1014] Brynjolfsson E, 2003, MANAGE SCI, V49, P1580, DOI 10.1287/mnsc.49.11.1580.20580 Chevalier J, 2003, QME-QUANT MARK ECON, V1, P203, DOI 10.1023/A:1024634613982 Chevalier JA, 2006, J MARKETING RES, V43, P345, DOI 10.1509/jmkr.43.3.345 Chintagunta PK, 2010, MARKET SCI, V29, P944, DOI 10.1287/mksc.1100.0572 Chua AYK, 2015, J ASSOC INF SCI TECH, V66, P354, DOI 10.1002/asi.23180 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Colladon AF, 2019, DECIS SUPPORT SYST, V123, DOI 10.1016/j.dss.2019.113075 Das SR, 2007, MANAGE SCI, V53, P1375, DOI 10.1287/mnsc.1070.0704 Dellarocas C, 2007, J INTERACT MARK, V21, P23, DOI 10.1002/dir.20087 Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 DuBay WH., 2004, PRINCIPLES READABILI Elkahky A, 2015, PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), P278, DOI 10.1145/2736277.2741667 Eslami SP, 2018, J RETAIL CONSUM SERV, V45, P74, DOI 10.1016/j.jretconser.2018.08.003 Eslami SP, 2018, DECIS SUPPORT SYST, V113, P32, DOI 10.1016/j.dss.2018.06.012 Fang B, 2016, TOURISM MANAGE, V52, P498, DOI 10.1016/j.tourman.2015.07.018 Filieri R, 2021, COMPUT HUM BEHAV, V114, DOI 10.1016/j.chb.2020.106527 Filieri R, 2018, INFORM MANAGE-AMSTER, V55, P956, DOI 10.1016/j.im.2018.04.010 Fisher NI, 2019, APPL STOCH MODEL BUS, V35, P138, DOI 10.1002/asmb.2417 Forman C, 2008, INFORM SYST RES, V19, P291, DOI 10.1287/isre.1080.0193 Fowdur L., 2009, JOHNSON SCH RES PAPE, V2209, DOI 10.2139/ssrn.1407520 Fu DP, 2018, ELECTRON COMMER RES, V18, P457, DOI 10.1007/s10660-017-9266-7 Gang R, 2019, INFORM PROCESS MANAG, V56, P1425, DOI 10.1016/j.ipm.2018.04.003 Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Godes D, 2005, MARKET LETT, V16, P415, DOI 10.1007/s11002-005-5902-4 Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 Goodfellow I, 2016, ADAPT COMPUT MACH LE, P1 Hansen DL, 2020, Analyzing Social Media Networks with NodeXL He RN, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16), P507, DOI 10.1145/2872427.2883037 Hong H, 2017, DECIS SUPPORT SYST, V102, P1, DOI 10.1016/j.dss.2017.06.007 Hu N, 2014, DECIS SUPPORT SYST, V57, P42, DOI 10.1016/j.dss.2013.07.009 Kang Y, 2019, ACM TRANS MANAG INF, V10, DOI 10.1145/3365538 Karimi S, 2017, DECIS SUPPORT SYST, V96, P39, DOI 10.1016/j.dss.2017.02.001 Korfiatis N, 2012, ELECTRON COMMER R A, V11, P205, DOI 10.1016/j.elerap.2011.10.003 Korneta P, 2018, INT J MANAG ECON, V54, P136, DOI 10.2478/ijme-2018-0013 Li L, 2020, NEURAL COMPUT APPL, V32, P4387, DOI 10.1007/s00521-018-3865-7 Li XL, 2019, INFORM MANAGE-AMSTER, V56, P172, DOI 10.1016/j.im.2018.04.007 Lin CY, 2017, ELECTRON MARK, V27, P225, DOI 10.1007/s12525-017-0262-5 Liu B, 2010, CH CRC MACH LEARN PA, P627 Liu QH, 2019, ELECTRON COMMER RES, V19, P521, DOI 10.1007/s10660-018-9312-0 Malik MSI, 2020, SOFT COMPUT, V24, P13913, DOI 10.1007/s00500-020-04767-1 Mandal S, 2019, STUD COMPUT INTELL, V813, P169, DOI 10.1007/978-3-030-05414-4_14 Mandal S, 2020, APPL INTELL, V50, P1955, DOI 10.1007/s10489-020-01643-1 Maslowska E, 2017, DECIS SUPPORT SYST, V98, P1, DOI 10.1016/j.dss.2017.03.010 McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Netzer O, 2012, MARKET SCI, V31, P521, DOI 10.1287/mksc.1120.0713 Newman MEJ., 2010, NETWORKS INTRO, DOI DOI 10.1093/ACPROF:OSO/9780199206650.001.0001 Ni JM, 2019, 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019), P188 Owen R., 2019, MARKETING WISDOM, P17 Qiu JT, 2015, ELECTRON COMMER RES, V15, P427, DOI 10.1007/s10660-015-9191-6 Reichheld FF, 2003, HARVARD BUS REV, V81, P46 Rossi PE, 2001, J AM STAT ASSOC, V96, P20, DOI 10.1198/016214501750332668 Salehan M, 2016, DECIS SUPPORT SYST, V81, P30, DOI 10.1016/j.dss.2015.10.006 Siering M, 2018, DECIS SUPPORT SYST, V108, P1, DOI 10.1016/j.dss.2018.01.004 Stouthuysen K, 2018, ELECTRON COMMER R A, V27, P23, DOI 10.1016/j.elerap.2017.11.002 Sun XY, 2019, DECIS SUPPORT SYST, V124, DOI 10.1016/j.dss.2019.113099 WERBOS PJ, 1990, P IEEE, V78, P1550, DOI 10.1109/5.58337 Wu Y, 2016, PROCEEDINGS OF THE NINTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'16), P153, DOI 10.1145/2835776.2835837 Xue JL, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2020.103324 Zhang LH, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2141, DOI 10.1145/3097983.3098117 Zhang Zhu., 2006, CIKM '06, P51, DOI [10.1145/1183614.1183626, DOI 10.1145/1183614.1183626] NR 66 TC 5 Z9 5 U1 0 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1019-6781 EI 1422-8890 J9 ELECTRON MARK JI Electron. Mark. PD SEP PY 2022 VL 32 IS 3 SI SI BP 1327 EP 1349 DI 10.1007/s12525-021-00503-1 EA FEB 2022 PG 23 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA 6G4VT UT WOS:000749980200001 DA 2024-03-27 ER PT J AU Butt, A Ahmad, H Muzaffar, A Ali, F Shafique, N AF Butt, Asad Ahmad, Hassan Muzaffar, Asif Ali, Fayaz Shafique, Nouman TI WOW, the make-up AR app is impressive: a comparative study between China and South Korea SO JOURNAL OF SERVICES MARKETING LA English DT Article DE AR content quality; AR environment embedding; AR satisfaction; AR interactivity; AR enjoyment; AR customization; ISS; TAM; E-commerce; Digitalization; Customer experience; Artificial intelligence; Technology and service; Behavioral insight ID AUGMENTED REALITY; VIRTUAL-REALITY; SERVICE QUALITY; CUSTOMER SATISFACTION; PERCEIVED ENJOYMENT; PURCHASE INTENTION; SOCIAL-INTERACTION; MOBILE INTERNET; SYSTEMS SUCCESS; TECHNOLOGY AB Purpose Consumers today actively participate in online purchasing experiences. As a result, it is critical to comprehend the behavioral aspects of novel technology usage, such as augmented reality (AR). AR apps enable beauty companies to create and design more immersive experience services. This study aims to highlight consumers' perspectives on their continued desire to use AR app services. Design/methodology/approach A comparative study between China and South Korea was conducted with sample sizes of 458 and 315, respectively. Smart PLS was used for analysis. Findings The findings suggest that AR apps influence innovative consumers in China and South Korea to be satisfied with and continue to use such services. Previous research on technology acceptance model, information system success, AR and artificial intelligence (AI)-context-specific variables supported the findings. Practical implications This study contributes to the development of AR apps for beauty brands, as such technology revolutionizes how beauty brands work and grow. As a result, AR apps can pave the way for brands to provide an immersive experience to their customers. Originality/value The current study contributes to AR and AI drivers in the context of beauty brands by using novel technologies such as AR. AR integration with AI-context-specific variables indicates that consumers in China and South Korea are innovative and accept such technologies when purchasing beauty products online. C1 [Butt, Asad] Univ Cent Punjab, Fac Management Studies, Lahore, Pakistan. [Ahmad, Hassan] Univ Okara, Okara, Pakistan. [Muzaffar, Asif] Birmingham City Univ, Birmingham City Business Sch, Birmingham, W Midlands, England. [Ali, Fayaz] Shenzhen Univ, Coll Management, Res Inst Business Analyt & Supply Chain Managemen, Shenzhen, Peoples R China. [Shafique, Nouman] Gomal Univ, Dera Ismail Khan, Pakistan. C3 University of Central Punjab; Birmingham City University; Shenzhen University; Gomal University RP Ahmad, H (autor correspondiente), Univ Okara, Okara, Pakistan. EM hassaan1214@hotmail.com RI Butt, Asad Hassan/ABB-5692-2020 OI Butt, Asad Hassan/0000-0003-4718-4508; Ahmad, Hassan/0000-0003-3925-3956 CR Abdullah F, 2016, COMPUT HUM BEHAV, V63, P75, DOI 10.1016/j.chb.2016.05.014 Ahmad H, 2020, SMART-J BUS MANAG ST, V16, P49, DOI 10.5958/2321-2012.2020.00016.0 Al-dweeri RM, 2019, IND MANAGE DATA SYST, V119, P902, DOI 10.1108/IMDS-12-2017-0598 Al-Fraihat D, 2020, COMPUT HUM BEHAV, V102, P67, DOI 10.1016/j.chb.2019.08.004 Alalwan AA, 2018, TECHNOL SOC, V55, P100, DOI 10.1016/j.techsoc.2018.06.007 Alha K, 2019, COMPUT HUM BEHAV, V93, P114, DOI 10.1016/j.chb.2018.12.008 [Anonymous], 2019, RNZ 1001 [Anonymous], 2020, Forbes Asgari Omid, 2015, [Journal of Distribution Science, 유통과학연구], V13, P45 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Bartik AW., 2020, W26989 NBER, DOI [DOI 10.3386/W26989, 10.3386/w26989] Benoit S, 2017, J SERV MARK, V31, P527, DOI 10.1108/JSM-10-2016-0353 Bhutani A., 2018, GLOBAL AI RETAIL MAR Black W., 2019, The Great Facilitator: Reflections on the Contributions of Joseph F. Hair, P121 Bonetti F., 2019, International Journal of Technology Marketing, V13, P260 Butt AH, 2021, PSYCHOL MARKET, V38, P1014, DOI 10.1002/mar.21487 Cabero-Almenara J, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01597 Camilleri A. C., 2019, 13 ANN INT TECHN ED Carlson J, 2018, J SERV MARK, V32, P83, DOI 10.1108/JSM-02-2017-0059 Chin W. W., 2010, HDB PARTIAL LEAST SQ, P655, DOI DOI 10.1007/978-3-540-32827-8_29 Chung N, 2018, J TRAVEL RES, V57, P627, DOI 10.1177/0047287517708255 Chung N, 2015, COMPUT HUM BEHAV, V50, P588, DOI 10.1016/j.chb.2015.02.068 Chung N, 2009, BEHAV INFORM TECHNOL, V28, P549, DOI 10.1080/01449290802506562 Daily C., 2020, Nile's Journey: from Treasure to Trash DeLone W. H., 2016, Found Trends Inf Syst, V1, P1, DOI [10.1561/9781680831436, DOI 10.1561/2900000005, 10.1561/2900000005] DeLone WH, 2003, J MANAGE INFORM SYST, V19, P9, DOI 10.1080/07421222.2003.11045748 Dieck MCT, 2018, CURR ISSUES TOUR, V21, P154, DOI 10.1080/13683500.2015.1070801 export.gov, 2019, KOR E COMM Fagan Mary, 2012, Campus-Wide Information Systems, V29, P117, DOI 10.1108/10650741211212368 Fang JM, 2019, TELEMAT INFORM, V39, P75, DOI 10.1016/j.tele.2019.01.006 Fang YH, 2017, J SERV MARK, V31, P574, DOI 10.1108/JSM-07-2016-0256 Freeze RD., 2019, J Inform Syst Educ, V21, P4 Genç R, 2018, PROGR IS, P109, DOI 10.1007/978-3-319-64027-3_8 Ghazali E, 2019, INFORM TECHNOL PEOPL, V32, P646, DOI 10.1108/ITP-07-2017-0216 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Heller J, 2021, J SERV RES-US, V24, P84, DOI 10.1177/1094670520933692 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Henseler J, 2009, ADV INT MARKETING, V20, P277, DOI 10.1108/S1474-7979(2009)0000020014 Hilken T, 2020, J ACAD MARKET SCI, V48, P143, DOI 10.1007/s11747-019-00688-0 Hilken T, 2017, J ACAD MARKET SCI, V45, P884, DOI 10.1007/s11747-017-0541-x Holdack E., 2020, J RETAIL CONSUM SERV, DOI 10.1016/j.jretconser.2020.102259 Hollebeek LD, 2021, J SERV RES-US, V24, P3, DOI 10.1177/1094670520975110 Hsu J.W., 2017, OREAL GLAMS NEW RETA Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Huang TL, 2015, ELECTRON COMMER RES, V15, P269, DOI 10.1007/s10660-014-9163-2 Hwangbo H, 2017, MOB INF SYST, V2017, DOI 10.1155/2017/4738340 Ismagilova E, 2019, INT J INFORM MANAGE, V47, P88, DOI 10.1016/j.ijinfomgt.2019.01.004 Jang Y, 2019, TELEMAT INFORM, V42, DOI 10.1016/j.tele.2019.101239 Javornik A, 2016, DIS 2016: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON DESIGNING INTERACTIVE SYSTEMS, P871, DOI 10.1145/2901790.2901881 Jiang Y, 2021, INF RESOUR MANAG J, V34, P41, DOI 10.4018/IRMJ.2021070103 Jung T, 2015, TOURISM MANAGE, V49, P75, DOI 10.1016/j.tourman.2015.02.013 Kang JYM, 2014, INT J CLOTH SCI TECH, V26, P486, DOI 10.1108/IJCST-05-2013-0055 Kaushik AK, 2015, J SERV MARK, V29, P406, DOI 10.1108/JSM-08-2014-0276 Keiningham T, 2017, J SERV MARK, V31, P148, DOI 10.1108/JSM-09-2016-0337 Kim DJ, 2012, INFORM SYST FRONT, V14, P409, DOI 10.1007/s10796-010-9267-8 Kim K, 2015, COMPUT HUM BEHAV, V48, P695, DOI 10.1016/j.chb.2015.02.011 Lee CH, 2018, TELEMAT INFORM, V35, P1958, DOI 10.1016/j.tele.2018.06.008 Lee J, 2021, INT J HUM-COMPUT INT, V37, P534, DOI 10.1080/10447318.2020.1834730 Lee J, 2019, TELEMAT INFORM, V39, P37, DOI 10.1016/j.tele.2018.12.006 Lee S, 2015, COMPUT HUM BEHAV, V51, P336, DOI 10.1016/j.chb.2015.04.049 Legner C, 2017, BUS INFORM SYST ENG+, V59, P301, DOI 10.1007/s12599-017-0484-2 Leong LY, 2017, INTERNET RES, V27, P786, DOI 10.1108/IntR-04-2016-0107 Li T, 2019, J DESTIN MARK MANAGE, V12, P15, DOI 10.1016/j.jdmm.2019.02.003 Li Y, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103197 Liberatore MJ, 2021, VIRTUAL REAL-LONDON, V25, P773, DOI 10.1007/s10055-020-00492-0 Lim A., 2018, AS WATSON OREAL PART Lim KC, 2019, APPL SCI-BASEL, V9, DOI 10.3390/app9132718 Liu D, 2017, MIS QUART, V41, P1011 Lou L, 2017, SUSTAINABILITY-BASEL, V9, DOI 10.3390/su9071186 Manis KT, 2019, J BUS RES, V100, P503, DOI 10.1016/j.jbusres.2018.10.021 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 McLean G, 2019, COMPUT HUM BEHAV, V101, P210, DOI 10.1016/j.chb.2019.07.002 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 Min S, 2019, J TRAVEL TOUR MARK, V36, P770, DOI 10.1080/10548408.2018.1507866 Moorhouse N, 2018, PROGR IS, P133, DOI 10.1007/978-3-319-64027-3_10 Mudzana Taurayi, 2017, Electronic Journal of Information Systems Evaluation, V20, P24 Murali S, 2016, J RETAIL CONSUM SERV, V30, P67, DOI 10.1016/j.jretconser.2016.01.001 Nanji A., 2019, 7 WAYS BRANDS ARE US Naranjo-Zolotov M, 2019, GOV INFORM Q, V36, P536, DOI 10.1016/j.giq.2019.05.009 Nunnally J.C., 1967, PSYCHOMETRIC THEORY, V3rd, P248 Orel FD, 2014, J RETAIL CONSUM SERV, V21, P118, DOI 10.1016/j.jretconser.2013.07.002 Ostrom AL, 2021, J SERV RES-US, V24, P329, DOI 10.1177/10946705211021915 Otto AS, 2020, J ACAD MARKET SCI, V48, P543, DOI 10.1007/s11747-019-00657-7 Pai FY, 2011, TECHNOL FORECAST SOC, V78, P650, DOI 10.1016/j.techfore.2010.11.007 Pantano E, 2017, J RETAIL CONSUM SERV, V38, P81, DOI 10.1016/j.jretconser.2017.05.011 Parasuraman A., 1998, J BUS IND MARK, V13, P309, DOI DOI 10.1108/08858629810226636 Parekh P, 2020, VIS COMPUT IND BIOME, V3, DOI 10.1186/s42492-020-00057-7 Pillai R, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102207 Poushneh A, 2018, J RETAIL CONSUM SERV, V41, P169, DOI 10.1016/j.jretconser.2017.12.010 Poushneh A, 2017, J RETAIL CONSUM SERV, V34, P229, DOI 10.1016/j.jretconser.2016.10.005 Prentice C, 2020, J HOSP MARKET MANAG, V29, P739, DOI 10.1080/19368623.2020.1722304 Rafaeli A, 2017, J SERV RES-US, V20, P91, DOI 10.1177/1094670516679275 Rauschnabel PA, 2019, J RETAIL CONSUM SERV, V49, P43, DOI 10.1016/j.jretconser.2019.03.004 Rauschnabel PA, 2018, PSYCHOL MARKET, V35, P557, DOI 10.1002/mar.21106 Rese A, 2017, TECHNOL FORECAST SOC, V124, P306, DOI 10.1016/j.techfore.2016.10.010 Rigdon EE, 2012, LONG RANGE PLANN, V45, P341, DOI 10.1016/j.lrp.2012.09.010 Robertson N, 2016, J SERV MARK, V30, P88, DOI 10.1108/JSM-07-2014-0263 Rouibah K, 2016, ELECTRON COMMER R A, V19, P33, DOI 10.1016/j.elerap.2016.07.001 Roy SK, 2016, SERV IND J, V36, P239, DOI 10.1080/02642069.2016.1186657 Sakhdari K, 2016, TECHNOL INNOV MANAG, V6, P5 Schaarschmidt M, 2017, J SERV MARK, V31, P704, DOI 10.1108/JSM-04-2016-0145 Scholl-Grissemann U, 2022, SERV IND J, V42, P823, DOI 10.1080/02642069.2020.1819252 Scholz J, 2016, BUS HORIZONS, V59, P149, DOI 10.1016/j.bushor.2015.10.003 Shalimov AP, 2019, PHYTOKEYS, P1, DOI 10.3897/phytokeys.133.37773 Sharma SK, 2019, INT J INFORM MANAGE, V44, P65, DOI 10.1016/j.ijinfomgt.2018.09.013 Sheng XJ, 2014, J SERV MARK, V28, P460, DOI 10.1108/JSM-04-2013-0098 Silva RR, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.02200 Spielmann N, 2018, J BUS RES, V88, P255, DOI 10.1016/j.jbusres.2018.03.037 Statista, 2020, E COMM REP 2020 Steenkamp JBEM, 2019, J INT MARKETING, V27, P1, DOI 10.1177/1069031X18811289 STEUER J, 1992, J COMMUN, V42, P73, DOI 10.1111/j.1460-2466.1992.tb00812.x Talukder MS, 2019, IND MANAGE DATA SYST, V119, P170, DOI 10.1108/IMDS-01-2018-0009 Tenenhaus M, 2005, COMPUT STAT DATA AN, V48, P159, DOI 10.1016/j.csda.2004.03.005 Thamizhvanan A, 2013, J INDIAN BUS RES, V5, P17, DOI 10.1108/17554191311303367 Thomas A., 2020, AUGMENTED REALITY AR Tsai JM, 2019, INT J INFORM MANAGE, V49, P34, DOI 10.1016/j.ijinfomgt.2019.03.003 van Esch P, 2019, J RETAIL CONSUM SERV, V49, P35, DOI 10.1016/j.jretconser.2019.03.002 van Pinxteren MME, 2019, J SERV MARK, V33, P507, DOI 10.1108/JSM-01-2018-0045 Veeramootoo N, 2018, GOV INFORM Q, V35, P161, DOI 10.1016/j.giq.2018.03.004 Vinzi V.E., 2010, Handbook of partial least squares, P47, DOI [10.1007/978-3-540-32827, DOI 10.1007/978-3-540-32827-8_3, 10.1007/978-3-540-32827-8_3] Wang XL, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94273-7 Wang XH, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12051998 Wang YC, 2017, J BUS RES, V70, P287, DOI 10.1016/j.jbusres.2016.08.002 WBR Insights, 2018, HER OR IS US AUGM VI Whitler K., 2016, How artificial intelligence is changing the retail experience for consumers Wu HC, 2017, J HOSP TOUR RES, V41, P904, DOI 10.1177/1096348014525638 Yeo VCS, 2017, J RETAIL CONSUM SERV, V35, P150, DOI 10.1016/j.jretconser.2016.12.013 Yeoh W, 2010, J COMPUT INFORM SYST, V50, P23 Yusuf AS, 2018, J SERV MARK, V32, P493, DOI 10.1108/JSM-01-2017-0031 Zaki M, 2019, J SERV MARK, V33, P429, DOI 10.1108/JSM-01-2019-0034 Zeithaml V.A., 2000, CONCEPTUAL FRAMEWORK Zhang WH, 2017, MANAGE DECIS, V55, P1749, DOI 10.1108/MD-04-2016-0236 Zhao L, 2012, DECIS SUPPORT SYST, V52, P645, DOI 10.1016/j.dss.2011.10.022 Zheng XB, 2019, INT J INFORM MANAGE, V48, P151, DOI 10.1016/j.ijinfomgt.2019.02.010 Zhou V., 2019, 3 TRENDS COSMETICS A Ziaullah M, 2017, BEHAV INFORM TECHNOL, V36, P85, DOI 10.1080/0144929X.2016.1196503 NR 138 TC 19 Z9 19 U1 24 U2 111 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0887-6045 J9 J SERV MARK JI J. Serv. Mark. PD JAN 13 PY 2022 VL 36 IS 1 SI SI BP 73 EP 88 DI 10.1108/JSM-12-2020-0508 EA NOV 2021 PG 16 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA YM3NX UT WOS:000723029400001 OA Green Accepted DA 2024-03-27 ER PT J AU Killoran, JB AF Killoran, John B. TI Writing for Robots: Search Engine Optimization of Technical Communication Business Web Sites SO TECHNICAL COMMUNICATION LA English DT Article DE technical communication businesses; Web sites; search engine optimization; hyperlinks; titles AB Purpose: This article explores how businesses offering technical communication services used search engine optimization techniques to attract prospective clients to their business Web sites. Method: The study draws on a survey of 240 principals of these businesses, brief interviews with half of them, analyses of their sites, and tallies of inbound links to their sites. Results: The interviews and analyses reveal how businesses oriented their sites not only to a human audience of prospective clients but also to an audience of search engines. Businesses that reported search engines to be more helpful in directing traffic to their sites had sites that, in comparison with those of their less successful peers, featured longer home page titles and received more inbound links. Conclusion: Though search engine optimization techniques can increase Web site traffic, technical communication businesses varied widely in how extensively and expertly they used such techniques. C1 Long Isl Univ, Dept English, Greenvale, NY 11548 USA. C3 Long Island University Post RP Killoran, JB (autor correspondiente), Long Isl Univ, Dept English, Brooklyn Campus, Greenvale, NY 11548 USA. EM john.killoran@liu.edu CR [Anonymous], TOP 20 SIT ENG Bhargava R., 2006, 5 rules of social media optimization (SMO) Brin S, 1998, COMPUT NETWORKS ISDN, V30, P107, DOI 10.1016/S0169-7552(98)00110-X Burns E., 2007, TOP 10 SEARCH PROVID Burns E., 2007, US SEARCH ENGINE RAN Dawson A, 2006, J DOC, V62, P307, DOI 10.1108/00220410610666484 Eaton A, 2008, TECH COMMUN-STC, V55, P111 Evans MP, 2007, INTERNET RES, V17, P21, DOI 10.1108/10662240710730470 Flanagin AJ, 2000, HUM COMMUN RES, V26, P618, DOI 10.1111/j.1468-2958.2000.tb00771.x FORTUNATO S, 2006, 14 INT WORLD WID C E *GOOGL, 2009, WEBM GUID *GOOGL, 2009, GOOGL BAS *GOOGL, 2009, CHANG YOUR SIT TITL *GOOGL, 2009, CORP INF TECHN OV *GOOGL, 2009, KEYW STUFF HANSELL S, 2007, NY TIMES 0603 Jansen BJ, 2006, INFORM PROCESS MANAG, V42, P1075, DOI 10.1016/j.ipm.2005.09.003 Killoran JB, 2010, TECH COMMUN-STC, V57, P137 Killoran JB, 2009, IEEE T PROF COMMUN, V52, P254, DOI 10.1109/TPC.2009.2025309 Ledford J.L., 2008, SEO: Search Engine Optimization Bible LOHR S, 2006, NY TIMES 0409 Madden M., 2007, Digital footprints: Online identity management and search in the age of transparency Malaga RA, 2007, J ELECTRON COMMER OR, V5, P68, DOI 10.4018/jeco.2007070105 Moran M., 2006, Search engine marketing *OFF GOOGL BLOG, 2008, WE KNEW WEB WAS BIG *OFF GOOGL WEBM CE, 2007, IMPR SNIPP MET DESCR *OFF GOOGL WEBM CE, 2007, DISC YOUR LINKS Pflughoeft KA, 2003, DECISION SCI, V34, P467, DOI 10.1111/j.1540-5414.2003.02539.x *SEMPO, 2007, RES SUMM SEMPOS IN H SEMPO, 2008, STAT SEARCH ENG MARK SHERMAN C, 2006, GETTING NY TIMES MOR *STC, 2007, STCS SAL DAT *STC, 2009, ONL BUYERS GUID CONS STC Consulting and Independent Contracting SIG, 2005, STC CONS IND CONTR S STCa, 2004, INTERCOM, V51, P14 SULLIVAN D, 2005, SEARCHS LONG TAIL SULLIVAN D, 2002, DEATH META TAG SULLIVAN D, 2002, META TAGS REVISITED SULLIVAN D, 2004, OVERTURE SHIFTING DE Sweeney S., 2008, 101 Ways to Promote Your Tourism Business WebSite: Filled with Proven Internet Marketing Tips, Tools, and Techniques to Get Visitors to Your Site and Your Destination, V2nd Vaughan Liwen, 2007, J COMPUTER MEDIATED, V12 *WEBVISIBLE NIELS, 2006, MEAS WEB SIT AB DRIV *WEBVISIBLE NIELS, 2009, GREAT DIV Zhang J, 2005, INFORM PROCESS MANAG, V41, P665, DOI 10.1016/j.ipm.2003.12.001 ZHANG J, 2005, INFORM PROCESSING MA, V41, P697 [No title captured] NR 46 TC 12 Z9 13 U1 9 U2 39 PU SOC TECHNICAL COMMUNICATION PI FAIRFAX PA 9401 LEE HIGHWAY, STE 300, FAIRFAX, VA 22031 USA SN 0049-3155 J9 TECH COMMUN-STC JI Tech. Commun. PD MAY PY 2010 VL 57 IS 2 BP 161 EP 181 PG 21 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA 602WA UT WOS:000278168500003 DA 2024-03-27 ER PT J AU Lukyanenko, R Parsons, J Wiersma, YF Maddah, M AF Lukyanenko, Roman Parsons, Jeffrey Wiersma, Yolanda F. Maddah, Mahed TI EXPECTING THE UNEXPECTED: EFFECTS OF DATA COLLECTION DESIGN CHOICES ON THE QUALITY OF CROWDSOURCED USER-GENERATED CONTENT SO MIS QUARTERLY LA English DT Article DE Crowdsourcing; user-generated content; citizen science; information systems design; information quality; information completeness; information accuracy; information precision; discovery; supervised machine learning ID CITIZEN SCIENCE; SOCIAL MEDIA; INFORMATION; SYSTEMS; KNOWLEDGE; TECHNOLOGIES; PERCEPTIONS; FOUNDATION; CHALLENGES; INSTANCES AB As crowdsourced user-generated content becomes an important source of data for organizations, a pressing question is how to ensure that data contributed by ordinary people outside of traditional organizational boundaries is of suitable quality to be useful for both known and unanticipated purposes. This research examines the impact of different information quality management strategies, and corresponding data collection design choices, on key dimensions of information quality in crowdsourced user-generated content. We conceptualize a contributor-centric information quality management approach focusing on instance-based data collection. We contrast it with the traditional consumer-centric fitness-for-use conceptualization of information quality that emphasizes class-based data collection. We present laboratory and field experiments conducted in a citizen science domain that demonstrate trade-offs between the quality dimensions of accuracy, completeness (including discoveries), and precision between the two information management approaches and their corresponding data collection designs. Specifically, we show that instance-based data collection results in higher accuracy, dataset completeness, and number of discoveries, but this comes at the expense of lower precision. We further validate the practical value of the instance-based approach by conducting an applicability check with potential data consumers (scientists, in our context of citizen science). In a follow-up study, we show, using human experts and supervised machine learning techniques, that substantial precision gains on instance-based data can be achieved with post-processing. We conclude by discussing the benefits and limitations of different information quality and data collection design choices for information quality in crowdsourced user-generated content. C1 [Lukyanenko, Roman] HEC Montreal, Dept Informat Technol, Montreal, PQ H3T 2A7, Canada. [Parsons, Jeffrey] Mem Univ Newfoundland, Fac Business Adm, St John, NF A1B 3X5, Canada. [Wiersma, Yolanda F.] Mem Univ Newfoundland, Dept Biol, St John, NF A1B 3X5, Canada. [Maddah, Mahed] Suffolk Univ, Sawyer Business Sch, Boston, MA 02108 USA. C3 Universite de Montreal; HEC Montreal; Memorial University Newfoundland; Memorial University Newfoundland; Suffolk University RP Lukyanenko, R (autor correspondiente), HEC Montreal, Dept Informat Technol, Montreal, PQ H3T 2A7, Canada. EM roman.lukyanenko@hec.ca; jeffreyp@mun.ca; ywiersma@mun.ca; mmaddah@suffolk.edu RI Parsons, Jeffrey/AAF-3380-2020; Andrea Simões Braga, Francisco/GRS-0157-2022 OI Parsons, Jeffrey/0000-0002-4819-2801 FU Natural Sciences and Engineering Research Council of Canada; Social Sciences and Humanities Research Council of Canada; GEOIDE Network of Centres of Excellence Canada; Institute for Data Valorisation (IVADO); Memorial University's Harris Centre FX We wish to thank Daria Lukyanenko for her assistance in conducting the field and laboratory experiments. We also wish to thank the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, GEOIDE Network of Centres of Excellence Canada, The Institute for Data Valorisation (IVADO), and Memorial University's Harris Centre for providing funding in support of this project. Finally, we wish to thank the anonymous contributors of sightings to the NL Nature project. CR Abbasi A, 2018, MIS QUART, V42, P427, DOI 10.25300/MISQ/2018/13239 Allen G, 2010, INFORM SYST RES, V21, P56, DOI 10.1287/isre.1080.0189 Andriole SJ, 2010, COMMUN ACM, V53, P67, DOI 10.1145/1859204.1858225 [Anonymous], 1977, Treatise on Basic Philosophy: Ontology I: The Furniture of the World Batini C, 2009, ACM COMPUT SURV, V41, DOI 10.1145/1541880.1541883 BELL BF, 1981, J BIOL EDUC, V15, P213, DOI 10.1080/00219266.1981.9654381 BERLIN B, 1966, SCIENCE, V154, P273, DOI 10.1126/science.154.3746.273 Bishop C. M., 2007, J. Electron. Imaging, V16, P049901, DOI [10.1117/1.2819119, DOI 10.1117/1.2819119] Boakes EH, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000385 Bonney R, 2009, BIOSCIENCE, V59, P977, DOI 10.1525/bio.2009.59.11.9 Brabham DC, 2013, MIT PRESS ESSENT, P1 Browne GJ, 2002, INFORM MANAGE-AMSTER, V39, P625, DOI 10.1016/S0378-7206(02)00014-9 Brynjolfsson E, 2016, MIS QUART, V40, P941, DOI 10.25300/MISQ/2016/40.4.07 Burgess HK, 2017, BIOL CONSERV, V208, P113, DOI 10.1016/j.biocon.2016.05.014 Burton-Jones A, 2017, INFORM SYST RES, V28, P468, DOI 10.1287/isre.2017.0702 Cardone G, 2013, IEEE COMMUN MAG, V51, P112, DOI 10.1109/MCOM.2013.6525603 Chittilappilly AI, 2016, IEEE T KNOWL DATA EN, V28, P2246, DOI 10.1109/TKDE.2016.2555805 Clarke R, 2016, INFORM SYST RES, V27, P365, DOI 10.1287/isre.2016.0631 Clarkson BD, 2016, ECOL MANAG RESTOR, V17, P180, DOI 10.1111/emr.12229 Clery D, 2011, SCIENCE, V333, P173, DOI 10.1126/science.333.6039.173 Clow D., 2011, P 1 INT C LEARNING A, P34, DOI DOI 10.1145/2090116.2090121 Cooper A. K., 2011, P 25 INT CART C PAR Culnan MJ, 2010, MIS Q EXEC, V9, P243 Daniel F, 2018, ACM COMPUT SURV, V51, DOI 10.1145/3148148 Deng XF, 2016, MIS QUART, V40, P279, DOI 10.25300/MISQ/2016/40.2.01 Devillers R, 2010, T GIS, V14, P387, DOI 10.1111/j.1467-9671.2010.01212.x Dewan S, 2012, INFORM SYST RES, V23, P1056, DOI 10.1287/isre.1110.0405 Doan A, 2011, COMMUN ACM, V54, P86, DOI 10.1145/1924421.1924442 Engel Sarah R., 2002, American Entomologist, V48, P164 Erickson L., 2012, P 19 AM C INF SYST S Fielden MA, 2015, CAN ENTOMOL, V147, P737, DOI 10.4039/tce.2015.5 Freund Y, 1997, J COMPUT SYST SCI, V55, P119, DOI 10.1006/jcss.1997.1504 Galloway AWE, 2006, WILDLIFE SOC B, V34, P1425, DOI 10.2193/0091-7648(2006)34[1425:TROCSA]2.0.CO;2 Gao GD, 2015, MIS QUART, V39, P565, DOI 10.25300/MISQ/2015/39.3.03 Garcia-Molina H, 2016, IEEE T KNOWL DATA EN, V28, P901, DOI 10.1109/TKDE.2016.2518669 Gath-Morad M, 2017, LECT NOTES ARTIF INT, V10051, P189, DOI 10.1007/978-3-319-51957-9_11 Gebauer J, 2006, J ASSOC INF SYST, V7, P122, DOI 10.17705/1jais.00084 Geurts P, 2006, MACH LEARN, V63, P3, DOI 10.1007/s10994-006-6226-1 Gigerenzer G., 1999, SIMPLE HEURISTICS MA Gilovich T., 2002, HEURISTICS BIASES PS Goes PB, 2014, MIS QUART, V38, pIII GOOD PI, 2001, RESAMPLING METHODS P Goodchild MF, 2007, GEOJOURNAL, V69, P211, DOI 10.1007/s10708-007-9111-y Goodchild MF, 2010, INT J DIGIT EARTH, V3, P231, DOI 10.1080/17538941003759255 Goodman JK, 2017, J CONSUM RES, V44, P196, DOI 10.1093/jcr/ucx047 Gray ML, 2016, ACM CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW 2016), P134, DOI 10.1145/2818048.2819942 Hackshaw A, 2008, EUR RESPIR J, V32, P1141, DOI 10.1183/09031936.00136408 Harnad S., 2005, Handbook of categorization in cognitive science, P20, DOI [10.1016/b978008044612-7/50056-1, DOI 10.1016/B978008044612-7/50056-1] Hartig T, 2016, SCIENCE, V352, P938, DOI 10.1126/science.aaf3759 Hemsley J., 2012, 2012 45th Hawaii International Conference on System Sciences (HICSS), P3928, DOI 10.1109/HICSS.2012.580 Hivon J., 2017, TRANSFORM GOV-PEOPLE, V11, P99, DOI [DOI 10.1108/TG-12-2015-0053, 10.1108/TG-12-2015-0053] Ipeirotis Panagiotis G., 2010, In: Proceedings of the ACM SIGKDD Workshop on Human Computation. ACM: Washington DC, USA, P64, DOI [DOI 10.1145/1837885.1837906, 10.1145/1837885.1837906] Johnson SL, 2014, MIS QUART, V38, P795, DOI 10.25300/MISQ/2014/38.3.08 Kallinikos J, 2014, INFORM SYST RES, V25, P817, DOI 10.1287/isre.2014.0544 Khatib F, 2011, NAT STRUCT MOL BIOL, V18, P1175, DOI 10.1038/nsmb.2119 Kilian D., 2008, ECT NEWS NETWORK Kosmala M, 2016, FRONT ECOL ENVIRON, V14, P551, DOI 10.1002/fee.1436 Krogh B., 1996, Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, P242, DOI 10.1109/HICSS.1996.495405 LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310 Larsen KR, 2016, MIS QUART, V40, P529, DOI 10.25300/MISQ/2016/40.3.01 Lassaline M. E., 1992, PERCEPTS CONCEPTS CA, V93, P328 Lee Y., 2006, JOURNEY DATA QUALITY Lee YW, 2003, J MANAGE INFORM SYST, V20, P93, DOI 10.1080/07421222.2003.11045770 Leo L, 2002, COMMUN ACM, V45, P211, DOI [10.1145/505248.506010, DOI 10.1145/505248.506010] Leonardi PM, 2011, MIS QUART, V35, P147 Levy M, 2017, COMMUN ASSOC INF SYS, V40 Lewandowski E, 2015, CONSERV BIOL, V29, P713, DOI 10.1111/cobi.12481 Li GL, 2016, IEEE T KNOWL DATA EN, V28, P2296, DOI 10.1109/TKDE.2016.2535242 Louv R., 2012, CITIZEN SCI PUBLIC P Love J, 2017, EUR J INFORM SYST, V26, P315, DOI 10.1057/s41303-017-0036-3 Lukyanenko Roman, 2016, Scandinavian Journal of Information Systems, V28, P37 Lukyanenko R, 2019, EUR J INFORM SYST, V28, P68, DOI 10.1080/0960085X.2018.1488567 Lukyanenko R, 2017, J ASSOC INF SYST, V18, P297, DOI 10.17705/1jais.00456 Lukyanenko R, 2016, CONSERV BIOL, V30, P447, DOI 10.1111/cobi.12706 Lukyanenko R, 2014, INFORM SYST RES, V25, P669, DOI 10.1287/isre.2014.0537 Madnick S.E., 2009, ACM J DATA INF QUAL, V1, P1 Majchrzak A, 2011, COMMUN ACM, V54, P125, DOI 10.1145/1924421.1924449 Markus ML, 2008, J ASSOC INF SYST, V9, P609 Martinez W.L., 2004, Exploratory Data Analysis with MATLAB: Computer Science and Data Analysis Series Mayden RL, 2002, FISH FISH, V3, P171, DOI 10.1046/j.1467-2979.2002.00086.x McKinley DC, 2017, BIOL CONSERV, V208, P15, DOI 10.1016/j.biocon.2016.05.015 Meijer Albert, 2009, Electronic Journal of e-Government, V7, P99 MERVIS CB, 1981, ANNU REV PSYCHOL, V32, P89, DOI 10.1146/annurev.ps.32.020181.000513 Newman G, 2012, FRONT ECOL ENVIRON, V10, P298, DOI 10.1890/110294 Norman DA., 1983, MENTAL MODELS, P7 Nov O, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090375 Olivé A, 2007, CONCEPTUAL MODELLING IN INFORMATION SYSTEMS ENGINEERING, P319, DOI 10.1007/978-3-540-72677-7_20 Ordenes FV, 2014, J SERV RES-US, V17, P278, DOI 10.1177/1094670514524625 Ou GB, 2007, PATTERN RECOGN, V40, P4, DOI 10.1016/j.patcog.2006.04.041 Parreiras FS, 2010, DATA KNOWL ENG, V69, P1194, DOI 10.1016/j.datak.2010.07.009 Parsons J, 2000, ACM T DATABASE SYST, V25, P228, DOI 10.1145/357775.357778 Parsons J, 2011, NATURE, V471, P37, DOI 10.1038/471037a Petter S, 2013, J MANAGE INFORM SYST, V29, P7, DOI 10.2753/MIS0742-1222290401 Pin-Shan Chen P., 1976, ACM Transactions on Database Systems, V1, P9, DOI 10.1145/320434.320440 Prestopnik NR, 2015, COMPUT HUM BEHAV, V52, P492, DOI 10.1016/j.chb.2015.05.051 Provost F., 2013, Data science for business: What you need to know about data mining and data-analytic thinking Prpic J, 2015, BUS HORIZONS, V58, P77, DOI 10.1016/j.bushor.2014.09.005 Pultar E, 2009, T GIS, V13, P85, DOI 10.1111/j.1467-9671.2009.01157.x Rai A., 2016, MIS quarterly, V40, piii Ramaswami A, 2016, SCIENCE, V352, P940, DOI 10.1126/science.aaf7160 REDMAN T.C., 1996, DATA QUALITY INFORM ROSCH E, 1976, COGNITIVE PSYCHOL, V8, P382, DOI 10.1016/0010-0285(76)90013-X Rosemann M, 2008, MIS QUART, V32, P1 Saghafi A., 2016, THESIS Samuel BM, 2018, MIS QUART, V42, P1187, DOI 10.25300/MISQ/2018/13255 Sekhavat Yoones A., 2012, Conceptual Modeling. Proceedings 31st International Conference, ER 2012, P102, DOI 10.1007/978-3-642-34002-4_8 Shalaginov A, 2016, ADV INTELL SYST COMP, V420, P199, DOI 10.1007/978-3-319-27221-4_17 Shankaranarayanan G., 2017, J DATA INFORM QUALIT Shanks G, 2008, MIS QUART, V32, P553 Sheng V. S., 2008, P 14 ACM SIGKDD INT, P614, DOI DOI 10.1145/1401890.1401965 Silvertown J, 2009, TRENDS ECOL EVOL, V24, P467, DOI 10.1016/j.tree.2009.03.017 Solomon SR, 2009, J MOD APPL STAT METH, V8, P448, DOI 10.22237/jmasm/1257034080 Sommer R, 2010, P IEEE S SECUR PRIV, P305, DOI 10.1109/SP.2010.25 Stelzer A, 2016, TRANSPORT RES E-LOG, V89, P259, DOI 10.1016/j.tre.2015.05.010 Strong DM, 1997, COMMUN ACM, V40, P103, DOI 10.1145/253769.253804 Sui D., 2012, CROWDSOURCING GEOGRA, P65 Sullivan BL, 2009, BIOL CONSERV, V142, P2282, DOI 10.1016/j.biocon.2009.05.006 Surowiecki J., 2005, WISDOM CROWDS Svensson G, 2015, PROCEEDINGS OF THE 2009 ACADEMY OF MARKETING SCIENCE (AMS) ANNUAL CONFERENCE, P1 Swanson A, 2015, SCI DATA, V2, DOI 10.1038/sdata.2015.26 TANAKA JW, 1991, COGNITIVE PSYCHOL, V23, P457, DOI 10.1016/0010-0285(91)90016-H Tax SS, 1998, SLOAN MANAGE REV, V40, P75 Tilly R, 2017, BUS INFORM SYST ENG+, V59, P3, DOI 10.1007/s12599-016-0459-8 TREVINO LK, 1992, ACAD MANAGE J, V35, P38, DOI 10.5465/256472 Tucker AL, 2003, CALIF MANAGE REV, V45, P55, DOI 10.2307/41166165 TVERSKY A, 1974, SCIENCE, V185, P1124, DOI 10.1126/science.185.4157.1124 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Vincent M, 2014, COMPUT STAT DATA AN, V71, P771, DOI 10.1016/j.csda.2013.06.004 Voss C.A., 2004, J SERV RES-US, V6, P212, DOI 10.1177/1094670503260120 Wallis G, 1999, TRENDS COGN SCI, V3, P22, DOI 10.1016/S1364-6613(98)01261-3 Wand Y, 1996, COMMUN ACM, V39, P86, DOI 10.1145/240455.240479 Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 WANG RY, 1995, DECIS SUPPORT SYST, V13, P349, DOI 10.1016/0167-9236(93)E0050-N Webb GI, 2001, USER MODEL USER-ADAP, V11, P19, DOI 10.1023/A:1011117102175 Wells JD, 2011, MIS QUART, V35, P373 Wiggins A, 2011, 44 HAWAII INT C SYST WIGGINS A., 2013, Data management guide for public participation in scientific research Wiggins M, 2011, TLS-TIMES LIT SUPPL, P14 Wuest T, 2016, PROD MANUF RES, V4, P23, DOI 10.1080/21693277.2016.1192517 NR 139 TC 41 Z9 52 U1 7 U2 145 PU SOC INFORM MANAGE-MIS RES CENT PI MINNEAPOLIS PA UNIV MINNESOTA-SCH MANAGEMENT 271 19TH AVE SOUTH, MINNEAPOLIS, MN 55455 USA SN 0276-7783 J9 MIS QUART JI MIS Q. PD JUN PY 2019 VL 43 IS 2 BP 623 EP + DI 10.25300/MISQ/2019/14439 PG 37 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA IJ4RQ UT WOS:000475891800012 DA 2024-03-27 ER PT J AU Li, J McCrary, R AF Li, Jia McCrary, Rachel TI Consumer communications and current events: a cross-cultural study of the change in consumer response to company social media posts due to the COVID-19 pandemic SO JOURNAL OF MARKETING ANALYTICS LA English DT Article DE COVID-19; Consumer communications; Social media marketing; Cross-cultural study; Machine learning; Sentiment analysis; Regression discontinuity analysis ID REACTANCE AB The COVID-19 pandemic has changed the lives of consumers in virtually every nation. Based upon the theory of psychological reactance and psychoevolutionary theory of emotion, we hypothesize how such lifestyle changes affect consumers perceiving and responding to companies' communications messages. The theories also suggest that consumers in different cultures may respond to COVID-19 differently. To test our hypotheses, we implemented a Python scraper to collect companies' Instagram posts pre- and during the COVID-19 lockdown. A machine learning algorithm was applied on the collected post photos to automatically identify certain photo characteristics, such as indoor versus outdoor, and with a single person versus many people; a text mining and sentiment analysis was implemented on the collected post captions to identify the salient emotion each caption exhibited, such as joy and anticipation. After that, we conducted a regression discontinuity analysis of photo characteristics or caption emotion on number of likes or comments to identify consumers' response change due to the COVID-19 pandemic. The estimation results supported our hypotheses and suggested tactics that could improve consumer communications effectiveness in this changed time. Viewing COVID-19 as an example of a current event in the ever-changing world, this paper suggests that such events could impact consumer response and behavior, and that companies' marketing and advertising strategies should be responsive to such events. C1 [Li, Jia] Wake Forest Univ, Sch Business, 1834 Wake Forest Rd, Winston Salem, NC 27106 USA. [McCrary, Rachel] Capco Consulting, 128 S Tryon St, Charlotte, NC 28202 USA. C3 Wake Forest University RP Li, J (autor correspondiente), Wake Forest Univ, Sch Business, 1834 Wake Forest Rd, Winston Salem, NC 27106 USA. EM lijia@wfu.edu; rachellynn.mccrary@gmail.com CR Aaker JL, 1997, J CONSUM RES, V24, P315, DOI 10.1086/209513 Ahmadi I, 2022, J INT MARKETING, V30, P28, DOI 10.1177/1069031X211037590 ALBERT S, 1970, J PERS SOC PSYCHOL, V15, P265, DOI 10.1037/h0029430 [Anonymous], 1962, The emotions: facts, theories, and a new model Belk RW, 1997, ADV CONSUM RES, V24, P24 Bor J, 2014, EPIDEMIOLOGY, V25, P729, DOI 10.1097/EDE.0000000000000138 Brehm J. W., 1966, THEORY PSYCHOL REACT Busse MR, 2010, MARKET SCI, V29, P268, DOI 10.1287/mksc.1090.0516 Chon, 1990, RULES HOPE, DOI [10.1007/978-1-4613-9674-1, DOI 10.1007/978-1-4613-9674-1] Chun H. E, 2007, I HOPE THEREFORE I C CLEE MA, 1980, J CONSUM RES, V6, P389, DOI 10.1086/208782 de Mello G., 2005, Inside consumption: Consumer motives, goals, and desires, P44 DiNardo J, 2004, Q J ECON, V119, P1383, DOI 10.1162/0033553042476189 Emmerling R.J., 2003, ISSUES EMOTIONAL INT, V1, P1 Figlio K, 2009, PSYCHOANAL CULT SOC, V14, P24, DOI 10.1057/pcs.2008.44 Fitzsimons GJ, 2004, MARKET SCI, V23, P82, DOI 10.1287/mksc.1030.0033 Hall E. T., 1966, HIDDEN DIMENSION, V609 Hofstede G., 1980, CULTURES CONSEQUENCE, DOI DOI 10.1016/S0005-7967(02)00184-5 Hofstede G., 1991, Cultures and organizations, DOI [10.31826/9781463236984-toc, DOI 10.1016/S0005-7967(02)00184-5] Hsu Tiffany., 2020, The NY Times Izard CE., 1980, CROSS CULTURAL PERSP, P23 Kivetz R, 2005, J CONSUM RES, V31, P725, DOI 10.1086/426606 Kwon M., 2021, J ASS CONSUMER RES LAZARUS RS, 1991, AM PSYCHOL, V46, P819, DOI 10.1037/0003-066X.46.8.819 Levav J, 2009, J CONSUM RES, V36, P600, DOI 10.1086/599556 McCracken Grant., 1990, Culture and Consumption: New Approaches to the Symbolic Character of Consumer Goods and Activities Mendelson L, 2020, STAY TOP STAY HOME A Meyers-Levy J, 2007, J CONSUM RES, V34, P174, DOI 10.1086/519146 Miceli MariaCristiano Castelfranchi Andrew Ortony., 2015, Expectancy and emotion Miyamoto Y, 2018, J PERS SOC PSYCHOL, V115, P427, DOI 10.1037/pspi0000133 Mohammad SM, 2013, COMPUT INTELL-US, V29, P436, DOI 10.1111/j.1467-8640.2012.00460.x Moon YS, 2000, J ADVERTISING, V29, P51, DOI 10.1080/00913367.2000.10673603 National Center for Immunization and Respiratory Diseases & Centers for Disease Control and Prevention, 2020, SOC DIST Petrescu M, 2021, J MARK ANAL, V9, P155, DOI 10.1057/s41270-021-00129-4 Plutchik R., 1988, Emotions and Psychopathology, P1, DOI [DOI 10.1007/978-1-4757-1987-1_1, 10.1007/978-1-4757-1987-1_1] Sheth J, 2021, J MARKET THEORY PRAC, V29, P3, DOI 10.1080/10696679.2020.1860679 Statista.com, 2020, COUNTR MOST INST US THISTLETHWAITE DL, 1960, J EDUC PSYCHOL, V51, P309, DOI 10.1037/h0044319 Tucker C, 2014, 2420920 ROM SCH MAN WICKLUND RA, 1970, J PERS SOC PSYCHOL, V14, P8, DOI 10.1037/h0028619 NR 40 TC 6 Z9 6 U1 3 U2 25 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 2050-3318 EI 2050-3326 J9 J MARK ANAL JI J. Market. Anal. PD JUN PY 2022 VL 10 IS 2 SI SI BP 173 EP 183 DI 10.1057/s41270-021-00138-3 EA NOV 2021 PG 11 WC Business WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 1L4FV UT WOS:000716233500001 OA Bronze DA 2024-03-27 ER PT J AU Liberali, G Ferecatu, A AF Liberali, Gui Ferecatu, Alina TI Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models SO MARKETING SCIENCE LA English DT Article DE machine learning; electronic commerce; website morphing; multiarmed bandits; hidden Markov models; HMMs; retailing ID CUSTOMER; SEARCH; CHOICE; USAGE; PATH AB Websites are created to help visitors take an action, such as making a purchase or a donation. As visitors browse various web pages, they may take rapid steps toward the action or may bounce away. Websites that can adapt to match such consumer dynamics perform better. However, assessing visitors??? changing distance to the action, at each click, and adapting to it in real time is challenging because of the sheer number of design elements that are found in websites, that combine exponentially. We solve this problem by matching latent states to web page designs, combining recent advances in multiarmed bandit (MAB), website morphing, and hidden Markov models (HMM) literature. We develop a novel dynamic program to explicitly model the trade-off firms face between nudging a visitor to later states along the funnel, and maximizing immediate reward given current estimates of purchase probabilities. We use an HMM to assess visitors??? states in real time, and couple it with an MAB model to learn the effectiveness of each design ?? state combination. We provide a proof of concept in two applications. First, we conduct a field study on the Master of Business Administration website of a major university. Second, we implement our algorithm on a cloud server and test it on an experimental online store. C1 [Liberali, Gui; Ferecatu, Alina] Erasmus Univ, Rotterdam Sch Management, NL-3062 PA Rotterdam, Netherlands. C3 Erasmus University Rotterdam; Erasmus University Rotterdam - Excl Erasmus MC RP Liberali, G (autor correspondiente), Erasmus Univ, Rotterdam Sch Management, NL-3062 PA Rotterdam, Netherlands. EM liberali@rsm.nl; ferecatu@rsm.nl RI Ferecatu, Alina/AAE-3170-2022; Liberali, Gui/B-6969-2017 OI Ferecatu, Alina/0000-0003-0161-0487; Liberali, Gui/0000-0003-3354-9270 FU Erasmus Research Institute of Management; Erasmus Corporate Marketing and Communication; Erasmus Centre for Optimization of Online Experiments; HyperMorphing Technologies; Sentia.com FX This work was supported by the Erasmus Research Institute of Management, the Erasmus Corporate Marketing and Communication, the Erasmus Centre for Optimization of Online Experiments (http://www.erim.eur.nl/ecode), HyperMorphing Technologies, and Sentia.com. CR Abhishek V, 2012, PREPRINT, DOI 10.2139/ssrn.2158421 Alter AL, 2009, PERS SOC PSYCHOL REV, V13, P219, DOI 10.1177/1088868309341564 Ascarza E, 2017, J MARKETING RES, V54, P347, DOI 10.1509/jmr.15.0442 Ascarza E, 2013, MARKET SCI, V32, P570, DOI 10.1287/mksc.2013.0786 Baardman L, 2019, PREPRINT, DOI 10.2139/ssrn.3346642 Berman R., 2018, p-Hacking and False Discovery in A/B Testing, DOI DOI 10.2139/SSRN.3204791 Blake T, 2015, ECONOMETRICA, V83, P155, DOI 10.3982/ECTA12423 Brysbaert M, 2014, BEHAV RES METHODS, V46, P904, DOI 10.3758/s13428-013-0403-5 Chakravarti A, 2003, J CONSUM RES, V30, P244, DOI 10.1086/376803 Chakravarti A, 2006, J MARKETING RES, V43, P642, DOI 10.1509/jmkr.43.4.642 Cubitt R. P., 1998, Experimental Economics, V1, P115, DOI 10.1007/BF01669298 Ephraim Y, 2002, IEEE T INFORM THEORY, V48, P1518, DOI 10.1109/TIT.2002.1003838 Gelman A., 2013, Bayesian Data Analysis, Vthird Gittins J, 2011, Multi-Armed Bandit Allocation Indices Hallak A, 2015, PREPRINT Hauser JR, 2014, MANAGE SCI, V60, P1594, DOI 10.1287/mnsc.2014.1961 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Ho TH, 2006, MARKET SCI, V25, P260, DOI 10.1287/mksc.1050.0158 Jansen BJ, 2008, INFORM PROCESS MANAG, V44, P1251, DOI 10.1016/j.ipm.2007.07.015 Kour G, 2019, BIORXIV, Patent No. 621300 Krishnamurthy V, 2001, IEEE T SIGNAL PROCES, V49, P2893, DOI 10.1109/78.969499 Krishnamurthy V, 1999, INT CONF ACOUST SPEE, P2865, DOI 10.1109/ICASSP.1999.761360 Krishnamurthy V, 2009, MATH OPER RES, V34, P287, DOI 10.1287/moor.1080.0371 Lambrecht A, 2013, J MARKETING RES, V50, P561, DOI 10.1509/jmr.11.0503 Li HS, 2020, J MARKETING RES, V57, P1019, DOI 10.1177/0022243720954376 Li HS, 2014, J MARKETING RES, V51, P40, DOI 10.1509/jmr.13.0050 Li SB, 2011, J MARKETING RES, V48, P683, DOI 10.1509/jmkr.48.4.683 Lin S, 2015, MARKET SCI, V34, P1, DOI 10.1287/mksc.2014.0868 Ma LY, 2015, MARKET SCI, V34, P627, DOI 10.1287/mksc.2015.0912 Matzkin RL, 2007, HBK ECON, V2, P5307, DOI 10.1016/S1573-4412(07)06073-4 Montgomery AL, 2004, MARKET SCI, V23, P579, DOI 10.1287/mksc.1040.0073 Montoya R, 2010, MARKET SCI, V29, P909, DOI 10.1287/mksc.1100.0570 Netzer O, 2019, HETEROGENEITY HMMS A Netzer O, 2008, MARKET SCI, V27, P185, DOI 10.1287/mksc.1070.0294 Padilla N, 2021, J MARKETING RES, V58, P981, DOI 10.1177/00222437211032938 Romero J, 2013, J INTERACT MARK, V27, P185, DOI 10.1016/j.intmar.2013.04.003 Rosch E., 1978, Cognition and categorization, P27 Ryzhov IO, 2009, ADPRL: 2009 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING, P137 Schellekens GAC, 2010, J CONSUM RES, V37, P207, DOI 10.1086/651240 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 Schwartz EM, 2014, MARKET SCI, V33, P188, DOI 10.1287/mksc.2013.0825 Scott SL, 2010, APPL STOCH MODEL BUS, V26, P639, DOI 10.1002/asmb.874 Shi SW, 2014, MARKET SCI, V33, P871, DOI 10.1287/mksc.2014.0872 Stüttgen P, 2012, MARKET SCI, V31, P878, DOI 10.1287/mksc.1120.0732 Thompson WR, 1933, BIOMETRIKA, V25, P285, DOI 10.1093/biomet/25.3-4.285 Toubia O, 2013, MANAGE SCI, V59, P613, DOI 10.1287/mnsc.1120.1570 Trope Y, 2010, PSYCHOL REV, V117, P440, DOI 10.1037/a0018963 Urban GL, 2014, MARKET SCI, V33, P27, DOI 10.1287/mksc.2013.0803 Vakratsas D, 1999, J MARKETING, V63, P26, DOI 10.2307/1251999 van der Lans R, 2008, MARKET SCI, V27, P922, DOI 10.1287/mksc.1070.0327 Vernade C, 2017, PREPRINT Yang L, 2018, J MARKETING RES, V55, P783, DOI 10.1177/0022243718817004 Yang L, 2015, J MARKETING RES, V52, P166, DOI 10.1509/jmr.13.0288 NR 53 TC 2 Z9 2 U1 15 U2 71 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD JUL-AUG PY 2022 VL 41 IS 4 BP 341 EP 366 DI 10.1287/mksc.2021.1346 EA FEB 2022 PG 27 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 3L5RD UT WOS:000804419400001 OA Green Published DA 2024-03-27 ER PT J AU Qin, ZW Tang, XC Jiao, Y Zhang, F Xu, Z Zhu, HT Ye, JP AF Qin, Zhiwei (Tony) Tang, Xiaocheng Jiao, Yan Zhang, Fan Xu, Zhe Zhu, Hongtu Ye, Jieping TI Ride-Hailing Order Dispatching at DiDi via Reinforcement Learning SO INFORMS JOURNAL ON APPLIED ANALYTICS LA English DT Article DE ride-hailing marketplace; order dispatching; reinforcement learning; data-driven decision making AB Order dispatching is instrumental to the marketplace engine of a large-scale ride-hailing platform, such as the DiDi platform, which continuously matches passenger trip requests to drivers at a scale of tens of millions per day. Because of the dynamic and stochastic nature of supply and demand in this context, the ride-hailing order-dispatching problem is challenging to solve for an optimal solution. Added to the complexity are considerations of system response time, reliability, and multiple objectives. In this paper, we describe how our approach to this optimization problem has evolved from a combinatorial optimization approach to one that encompasses a semi-Markov decision-process model and deep reinforcement learning. We discuss the various practical considerations of our solution development and real-world impact to the business. C1 [Qin, Zhiwei (Tony); Tang, Xiaocheng; Jiao, Yan] DiDi Labs, Mountain View, CA 94043 USA. [Zhang, Fan; Xu, Zhe; Zhu, Hongtu; Ye, Jieping] Didi Chuxing, Beijing 100193, Peoples R China. RP Qin, ZW (autor correspondiente), DiDi Labs, Mountain View, CA 94043 USA. EM qinzhiwei@didiglobal.com; xiaochengtang@didiglobal.com; yanjiao@didiglobal.com; feymanzhangfan@didiglobal.com; xuzhejesse@didiglobal.com; zhuhongtu@didiglobal.com; yejieping@didiglobal.com RI Tang, Xiaocheng/AAE-4870-2019; Qin, Zhiwei (Tony)/F-3201-2014 OI Qin, Zhiwei (Tony)/0000-0001-5383-4816 CR ALBUS J S, 1971, Mathematical Biosciences, V10, P25, DOI 10.1016/0025-5564(71)90051-4 Alonso-Mora J, 2017, P NATL ACAD SCI USA, V114, P462, DOI 10.1073/pnas.1611675114 [Anonymous], 2018, ADV NEURAL INFORM PR Bailey W. A. Jr., 1987, 1987 Winter Simulation Conference Proceedings, P838, DOI 10.1145/318371.318705 Baird III L. C., 1993, TECHNICAL REPORT Bello I., 2017, P 5 INT C LEARN REPR Boutilier C, 2018, PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P4674 Brodsky I., 2018, H3: Uber's Hexagonal Hierarchical Spatial Index Hales TC, 2001, DISCRETE COMPUT GEOM, V25, P1, DOI 10.1007/s004540010071 Holler J, 2019, IEEE DATA MINING, P1090, DOI 10.1109/ICDM.2019.00129 Jindal I, 2018, IEEE INT CONF BIG DA, P1417, DOI 10.1109/BigData.2018.8622481 Kuhn HW., 1955, NAV RES LOG, V2, P83, DOI [DOI 10.1002/NAV.3800020109, DOI 10.1002/NAV.20053, 10.1002/nav.3800020109] Kümmel M, 2016, PROCEDIA COMPUT SCI, V83, P163, DOI 10.1016/j.procs.2016.04.112 Li MN, 2019, WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), P983, DOI 10.1145/3308558.3313433 Lopes PAC, 2019, J PARALLEL DISTR COM, V130, P50, DOI 10.1016/j.jpdc.2019.03.014 Miao F, 2016, IEEE T AUTOM SCI ENG, V13, P463, DOI 10.1109/TASE.2016.2529580 Mnih V, 2015, NATURE, V518, P529, DOI 10.1038/nature14236 National Bureau of Statistics of China, 2019, NAT EC PERF MAINT AP Oda T, 2018, IEEE INFOCOM SER, P2708, DOI 10.1109/INFOCOM.2018.8485988 Sahr K., 2011, Arch. Fotogram. Kartogr. i Teledetekcji, V22, P363 Schulman John, 2017, ARXIV E PRINTS Shou ZY, 2020, TRANSPORT RES C-EMER, V111, P91, DOI 10.1016/j.trc.2019.12.005 Silver D, 2016, NATURE, V529, P484, DOI 10.1038/nature16961 Sutton R. S., 1988, Machine Learning, V3, P9, DOI 10.1023/A:1022633531479 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Sutton RS, 1999, ARTIF INTELL, V112, P181, DOI 10.1016/S0004-3702(99)00052-1 Tang XC, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P1780, DOI 10.1145/3292500.3330724 Tsitsiklis JN, 1996, MACH LEARN, V22, P59, DOI 10.1007/BF00114724 Uher V, 2019, SYMMETRY-BASEL, V11, DOI 10.3390/sym11060731 University of Michigan Center for Sustainable Studies, 2019, US CIT FACTSH van Hasselt H, 2016, AAAI CONF ARTIF INTE, P2094 Verma T, 2017, P I C AUTOMAT PLAN S, P409 Vinyals O., 2015, ADV NEURAL INFORM PR, P2692, DOI [DOI 10.1016/J.NEUNET.2014.09.003, DOI 10.48550/ARXIV.1506.03134] Wang ZD, 2018, IEEE DATA MINING, P617, DOI 10.1109/ICDM.2018.00077 Ward, 2020, STOCHASTIC SYSTEMS, V10, P29, DOI DOI 10.1287/STSY.2019.0037 Xu Z, 2018, KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, P905, DOI 10.1145/3219819.3219824 Yan CW, 2020, NAV RES LOG, V67, P705, DOI 10.1002/nav.21872 Zhang LY, 2017, KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2151, DOI 10.1145/3097983.3098138 NR 38 TC 53 Z9 60 U1 17 U2 92 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 2644-0865 EI 2644-0873 J9 INFORMS J APPL ANAL JI INFORMS J. Appl. Anal. PD SEP-OCT PY 2020 VL 50 IS 5 BP 272 EP 286 DI 10.1287/inte.2020.1047 PG 15 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA NV9XN UT WOS:000574664700002 DA 2024-03-27 ER PT J AU Pal, S Biswas, B Gupta, R Kumar, A Gupta, S AF Pal, Shounak Biswas, Baidyanath Gupta, Rohit Kumar, Ajay Gupta, Shivam TI Exploring the factors that affect user experience in mobile-health applications: A text-mining and machine-learning approach SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Mobile health; Service-dominant logic; Machine learning; Text analytics; Proportional-odds logit ID SERVICE-DOMINANT LOGIC; MHEALTH SERVICES; ADOPTION; QUALITY; CARE; VALIDATION; MANAGEMENT; FRAMEWORK; COUNTRY; APPS AB Recent years have witnessed an increased demand for mobile health (mHealth) platforms owing to the COVID-19 pandemic and preference for doorstep delivery. However, factors impacting user experiences and satisfaction levels across these platforms, using customer reviews, are still largely unexplored in academic research. The empirical framework we proposed in this paper addressed this research gap by analysing unmonitored user comments for some popular mHealth platforms. Using topic-modelling techniques, we identified the impacting factors (predictors) and categorised them into two major dimensions based on strategic adoption and motivational association. Findings from our study suggest that time and money, convenience, responsiveness, and availability emerge as significant predictors for delivering a positive user experience on m-health platforms. Next, we identified substantial moderating effects of review polarity on the predictors related to brand association and hedonic motivation, such as online booking and video consultation. Further, we also identified the top predictors for successful user experience across these platforms. Recommendations from our study will benefit business managers by offering an improved service design leading to higher user satisfaction across these m-health platforms. C1 [Pal, Shounak] PricewaterhouseCoopers Pvt Ltd, Bengaluru, India. [Biswas, Baidyanath] Dublin City Univ, DCU Business Sch, Enterprise & Innovat Grp, Dublin, Ireland. [Gupta, Rohit] Indian Inst Management, Operat Management Area, Ranchi, India. [Kumar, Ajay] EMLYON Business Sch, AIM Res Ctr Artificial Intelligence Value Creat, Ecully, France. [Gupta, Shivam] NEOMA Business Sch, Dept Informat Syst, Supply Chain Management & Decis Support, Reims, France. C3 Dublin City University; Indian Institute of Management (IIM System); Indian Institute of Management Ranchi; emlyon business school RP Kumar, A (autor correspondiente), EMLYON Business Sch, AIM Res Ctr Artificial Intelligence Value Creat, Ecully, France. EM shounak.iiml@gmail.com; baidyanath.biswas@dcu.ie; rohit.gupta@iimranchi.ac.in; akumar@em-lyon.com; shivam.gupta@neoma-bs.fr RI Gupta, Shivam/JNE-3789-2023; Gupta, Shivam/R-2996-2016; Biswas, Baidyanath/GRR-8008-2022 OI Gupta, Shivam/0000-0002-2714-4958; Biswas, Baidyanath/0000-0002-0609-3530 CR Ågerfalk PJ, 2020, EUR J INFORM SYST, V29, P203, DOI 10.1080/0960085X.2020.1771968 Agresti A., 2002, CATEGORICAL DATA ANA, DOI [DOI 10.1002/0471249688, 10.1002/0471249688] Akter S, 2013, ELECTRON MARK, V23, P29, DOI 10.1007/s12525-012-0091-5 Akter S, 2013, INFORM MANAGE-AMSTER, V50, P181, DOI 10.1016/j.im.2013.03.001 Alam MZ, 2020, TECHNOL SOC, V61, DOI 10.1016/j.techsoc.2020.101255 Alam MZ, 2020, INT J INFORM MANAGE, V50, P128, DOI 10.1016/j.ijinfomgt.2019.04.016 Ashraf AR, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2021.102318 Azad-Khaneghah P, 2021, DISABIL REHABIL-ASSI, V16, P712, DOI 10.1080/17483107.2019.1701103 Balta M, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120785 Barrett M, 2015, MIS QUART, V39, P135 Biduski D, 2020, COMPUT HUM BEHAV, V104, DOI 10.1016/j.chb.2019.106169 Birkmeyer S, 2021, INT J INFORM MANAGE, V59, DOI 10.1016/j.ijinfomgt.2021.102351 Biswas B, 2020, DECIS SUPPORT SYST, V135, DOI 10.1016/j.dss.2020.113324 Biswas M, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258050 Chang IC, 2016, TELEMAT INFORM, V33, P401, DOI 10.1016/j.tele.2015.09.007 Chatterjee S, 2023, J ENTERP INF MANAG, V36, P22, DOI 10.1108/JEIM-06-2021-0252 Chatterjee S, 2021, J BUS RES, V131, P815, DOI 10.1016/j.jbusres.2020.10.043 Chiu WS, 2021, INFORM TECHNOL PEOPL, V34, P978, DOI 10.1108/ITP-09-2019-0463 Cho H, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101429 Cho J, 2016, INT J MED INFORM, V87, P75, DOI 10.1016/j.ijmedinf.2015.12.016 Veríssimo JMC, 2018, J BUS RES, V89, P442, DOI 10.1016/j.jbusres.2017.12.026 Dahl AJ, 2021, J BUS RES, V125, P840, DOI 10.1016/j.jbusres.2019.02.025 Dwivedi YK, 2016, GOV INFORM Q, V33, P174, DOI 10.1016/j.giq.2015.06.003 Frey A, 2019, MIS Q EXEC, V18, P143, DOI 10.17705/2msqe.00013 Gao Y., 2015, IND MANAGE DATA SYST Ghose A., 2021, MIS QUART Gimpel H, 2021, ELECTRON MARK, V31, P765, DOI 10.1007/s12525-020-00455-y Grover P, 2021, J ENTERP INF MANAG, V34, P1893, DOI 10.1108/JEIM-07-2020-0304 Hashemi H, 2022, J BUS RES, V149, P795, DOI 10.1016/j.jbusres.2022.05.082 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Jannati N, 2021, INT J MED INFORM, V151, DOI 10.1016/j.ijmedinf.2021.104474 Kim DJ, 2012, INFORM SYST FRONT, V14, P409, DOI 10.1007/s10796-010-9267-8 Kim KH, 2019, INT J INFORM MANAGE, V46, P187, DOI 10.1016/j.ijinfomgt.2018.12.008 Kim M, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102494 Kraus S, 2021, J BUS RES, V123, P557, DOI 10.1016/j.jbusres.2020.10.030 Lamprinos I, 2016, INT J MED INFORM, V91, P31, DOI 10.1016/j.ijmedinf.2016.04.006 Li JY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102054 Lim S, 2011, INT J MED INFORM, V80, pE189, DOI 10.1016/j.ijmedinf.2011.08.007 Lim WM, 2022, ELECTRON MARK, V32, P1463, DOI 10.1007/s12525-021-00486-z Lorca-Cabrera J, 2021, INT J MED INFORM, V145, DOI 10.1016/j.ijmedinf.2020.104310 Maglio PP, 2008, J ACAD MARKET SCI, V36, P18, DOI 10.1007/s11747-007-0058-9 Malik N, 2022, INT J MANPOWER, V43, P334, DOI 10.1108/IJM-03-2021-0173 McKinley CJ, 2014, COMPUT HUM BEHAV, V37, P107, DOI 10.1016/j.chb.2014.04.023 Miró J, 2021, JMIR MHEALTH UHEALTH, V9, DOI 10.2196/26471 Müller O, 2016, EUR J INFORM SYST, V25, P289, DOI 10.1057/ejis.2016.2 Nouri R, 2018, J AM MED INFORM ASSN, V25, P1089, DOI 10.1093/jamia/ocy050 Nusairat N., 2021, INT J DATA NETWORK S, V5, P547 Osei-Frimpong K, 2018, TECHNOL FORECAST SOC, V126, P14, DOI 10.1016/j.techfore.2016.04.009 Pal S, 2018, SIGMIS-CPR'18: PROCEEDINGS OF THE 2018 ACM SIGMIS CONFERENCE ON COMPUTERS AND PEOPLE RESEARCH, P18, DOI 10.1145/3209626.3209704 Paramita N, 2021, INT J MANAGEMENT FIN, V2, P1 Peltier JW, 2020, J BUS RES, V121, P724, DOI 10.1016/j.jbusres.2020.03.020 Pennebaker J. W., 2015, The Development and Psychometric Properties of LIWC2015 Pop OM, 2018, J SERV MANAGE, V29, P593, DOI 10.1108/JOSM-02-2017-0041 Prakash AV, 2021, HEALTH POLICY TECHN, V10, DOI 10.1016/j.hlpt.2021.100573 Rahimi R, 2021, INT J MED INFORM, V155, DOI 10.1016/j.ijmedinf.2021.104571 Rodríguez-Priego N, 2022, J BUS RES, V140, P546, DOI 10.1016/j.jbusres.2021.11.022 Russo G, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11051315 Sadegh SS, 2018, INT J MED INFORM, V112, P123, DOI 10.1016/j.ijmedinf.2018.01.003 Salehan M, 2016, DECIS SUPPORT SYST, V81, P30, DOI 10.1016/j.dss.2015.10.006 SALTON G, 1988, INFORM PROCESS MANAG, V24, P513, DOI 10.1016/0306-4573(88)90021-0 Schutze H., 2008, Introduction to information retrieval, V39, P234 Sengupta P, 2021, J BUS RES, V137, P538, DOI 10.1016/j.jbusres.2021.08.035 Shah A. M., 2021, Quality and Quantity, V55, P173, DOI DOI 10.1007/S11135-020-00999-3 Sheth JN, 2020, IND MARKET MANAG, V87, P312, DOI 10.1016/j.indmarman.2019.10.012 Shirazi F, 2021, TECHNOL FORECAST SOC, V167, DOI 10.1016/j.techfore.2021.120665 Stieglitz S, 2013, J MANAGE INFORM SYST, V29, P217, DOI 10.2753/MIS0742-1222290408 Stocchi L, 2022, J ACAD MARKET SCI, V50, P195, DOI 10.1007/s11747-021-00815-w Suroso J. S, 2021, J THEORETICAL APPL I, V99, P3923 Tan A.-H., 1999, Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases, P65 Tan HY, 2020, INFORM TECHNOL PEOPL, V33, P1403, DOI 10.1108/ITP-01-2019-0039 Tartaglione A M., 2018, The TQM Journal Tran TP, 2021, J BUS RES, V125, P239, DOI 10.1016/j.jbusres.2020.12.029 Tripathi S, 2022, INFORM SYST FRONT, V24, P1971, DOI 10.1007/s10796-021-10217-6 Tsiotsou RH, 2022, J BUS RES, V145, P49, DOI 10.1016/j.jbusres.2022.02.050 Vargo S. L., 2009, Service Science, V1, P32, DOI 10.1287/serv.1.1.32 Vargo SL, 2004, J MARKETING, V68, P1, DOI 10.1509/jmkg.68.1.1.24036 Vargo SL, 2008, IND MARKET MANAG, V37, P254, DOI 10.1016/j.indmarman.2007.07.004 Vargo SL, 2008, J ACAD MARKET SCI, V36, P1, DOI 10.1007/s11747-007-0069-6 Verma S, 2020, J BUS RES, V118, P253, DOI 10.1016/j.jbusres.2020.06.057 Wakefield D, 2018, PALLIATIVE MED, V32, P1288, DOI 10.1177/0269216318783919 Wang C, 2021, HEALTHCARE-BASEL, V9, DOI 10.3390/healthcare9030357 Webster P, 2020, LANCET, V395, P1180, DOI 10.1016/S0140-6736(20)30818-7 Wu IL, 2011, DECIS SUPPORT SYST, V51, P587, DOI 10.1016/j.dss.2011.03.003 Wu P, 2022, BMC HEALTH SERV RES, V22, DOI 10.1186/s12913-021-07339-7 Yakubu H, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120983 Yang HZ, 2022, COMPUT HUM BEHAV, V136, DOI 10.1016/j.chb.2022.107346 Yang XS, 2021, J TELEMED TELECARE, V27, P3, DOI 10.1177/1357633X19856746 Zhang MD, 2022, TECHNOL FORECAST SOC, V174, DOI 10.1016/j.techfore.2021.121303 Zhao Y, 2018, INT J INFORM MANAGE, V43, P342, DOI 10.1016/j.ijinfomgt.2017.08.006 NR 89 TC 8 Z9 8 U1 16 U2 75 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD FEB PY 2023 VL 156 AR 113484 DI 10.1016/j.jbusres.2022.113484 EA DEC 2022 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 7A9MB UT WOS:000898769800017 PM 36475057 OA hybrid, Green Published DA 2024-03-27 ER PT J AU Aweisi, A Arora, D Emby, R Rehman, M Tanev, G Tanev, S AF Aweisi, Abdulla Arora, Daman Emby, Renee Rehman, Madiha Tanev, George Tanev, Stoyan TI Using Web Text Analytics to Categorize the Business Focus of Innovative Digital Health Companies SO TECHNOLOGY INNOVATION MANAGEMENT REVIEW LA English DT Article DE Digital health sector; topic modeling algorithm; market offer; value proposition; machine learning; web analytics AB Categorizing the market focus of larger samples of companies can be a tedious and time-consuming process for both researchers and business analysts interested in developing insights about emerging business sectors. The objective of this article is to suggest a text analytics approach to categorizing the application areas of companies operating in the digital health sector based on the information provided on their websites. More specifically, we apply topic modeling on a collection of text documents, including information collected from the websites of a sample of 100 innovative digital health companies. The topic model helps in grouping the companies offering similar types of market offers. It enables identifying the companies that are most highly associated with each of the topics. In addition, it allows identifying some of the emerging themes that are discussed online by the companies, as well as their specific market offers. The results will be of interest to aspiring technology entrepreneurs, organizations supporting new ventures, and business accelerators interested to enhance their services to new venture clients. The development, operationalization, and automation of the company categorization process based on publicly available information is a methodological contribution that opens the opportunity for future applications in research and business practice. C1 [Aweisi, Abdulla] TechBrew Robot, Salmon Arm, BC, Canada. [Arora, Daman] Carleton Univ, TIM Program, Appl Business Analyt Degree, Ottawa, ON, Canada. [Emby, Renee] Shared Serv Canada, Ottawa, ON, Canada. [Tanev, George] Export Dev Canada, Ottawa, ON, Canada. [Tanev, Stoyan] Carleton Univ, Sprott Sch Business, Technol Innovat Management TIM Program, Ottawa, ON, Canada. [Tanev, Stoyan] Univ Southern Denmark SDU, Fac Engn, Innovat & Design Engn Sect, Odense, Denmark. C3 Carleton University; Carleton University; University of Southern Denmark RP Aweisi, A (autor correspondiente), TechBrew Robot, Salmon Arm, BC, Canada. OI Tanev, Stoyan/0000-0002-9895-5416 CR Blei DM, 2012, COMMUN ACM, V55, P77, DOI 10.1145/2133806.2133826 Hannigan TR, 2019, ACAD MANAG ANN, V13, P586, DOI 10.5465/annals.2017.0099 Hecking T., 2018, TOPIC MODELLING EMPI Johnson MW, 2008, HARVARD BUS REV, V86, P50 Mamosian H., 2018, P ISPIM CONN FUK C Taney S, 2015, EXPERT SYST APPL, V42, P7582, DOI 10.1016/j.eswa.2015.06.006 Tang JT, 2012, J BUS VENTURING, V27, P77, DOI 10.1016/j.jbusvent.2010.07.001 Wulfovich S., 2020, DIGITAL HLTH ENTREPR NR 8 TC 2 Z9 2 U1 0 U2 5 PU CARLETON UNIV GRAPHIC SERVICES PI OTTAWA PA DUNTON TOWER RM 2122, 1125 COLONEL BY DR, OTTAWA, ON K1A 5B6, CANADA SN 1927-0321 J9 TECHNOL INNOV MANAG JI Technol. Innov. Manag. Rev. PY 2021 VL 11 IS 7-8 BP 65 EP 78 DI 10.22215/timreview/1457 PG 14 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA WQ8ZW UT WOS:000714099900006 OA gold DA 2024-03-27 ER PT J AU Miller, T Niu, J AF Miller, T. Niu, J. TI An assessment of strategies for choosing between competitive marketplaces SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Double auction; Mechanism design; CAT game; Reinforcement learning; Marketplace selection; Learning; JCAT AB Traders that operate in markets with multiple competing marketplaces must often choose with which marketplace they will trade. These choices encourage marketplaces to seek competitive advantages against each other by adjusting various parameters, such as the price they charge, or how they match buyers and sellers. Traders can take advantage of this competition to improve utility. However, appropriate strategies must be used to decide with which marketplace a trader should shout. In this paper, we assess several different solutions to the problem of marketplace selection by running simulations of double auctions using the JCAT platform. The parameter spaces of these strategies are explored to find the best performing strategies. Results indicate that the softmax strategy is the most successful at maximising trader profit and global allocative efficiency in both adaptive and non-adaptive markets. The epsilon-decreasing strategy performs well in adaptive markets, while also showing greater stability in its parameter space than softmax. All marketplace selection strategies outperform the random marketplace selection strategy. (C) 2011 Elsevier B.V. All rights reserved. C1 [Miller, T.] Univ Melbourne, Dept Comp Sci & Software Engn, Parkville, Vic 3010, Australia. [Niu, J.] CUNY City Coll, CAISS, New York, NY 10031 USA. C3 University of Melbourne; City University of New York (CUNY) System; City College of New York (CUNY) RP Miller, T (autor correspondiente), Univ Melbourne, Dept Comp Sci & Software Engn, Parkville, Vic 3010, Australia. EM tmiller@unimelb.edu.au; jniu@gc.cuny.edu RI Niu, Jinzhong/AAE-4375-2020 OI Niu, Jinzhong/0000-0003-0313-1543; Miller, Tim/0000-0003-4908-6063 CR Brafman RI, 2003, J MACH LEARN RES, V3, P213, DOI 10.1162/153244303765208377 Cai K., 2008, P 10 WORKSH AG MED E FRIEDMAN D, 1993, SANTE FE I STUDIES S, P3 Ganchev K, 2010, COMMUN ACM, V53, P99, DOI 10.1145/1735223.1735247 GODE DK, 1993, J POLIT ECON, V101, P119, DOI 10.1086/261868 Greenwald A.R., 1999, Agent Mediated Electronic Commerce (IJCAI Workshop), P1 Ladley D., 2005, P IJCAI 05 WORKSH TR Niu J., 2007, P AAAI 07 WORKSH TRA Niu J., 2008, Proceedings of the 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2008), P1649 Niu JZ, 2010, AUTON AGENT MULTI-AG, V21, P172, DOI 10.1007/s10458-009-9110-0 Rochet JC, 2003, J EUR ECON ASSOC, V1, DOI 10.1162/154247603322493212 Shi B., 2010, Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1, V1, P857 Sohn J., 2009, P 1 C AUCT MARK MECH, P40 Sutton R. S., 1998, INTRO REINFORCEMENT, V2 WHITTLE, 1988, J APPL PROBABILITY A, V25, P287 Widrow B., 1960, IRE WESCON Conv. Rec, DOI DOI 10.21236/AD0241531 NR 16 TC 13 Z9 14 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD JAN-FEB PY 2012 VL 11 IS 1 SI SI BP 14 EP 23 DI 10.1016/j.elerap.2011.07.009 PG 10 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA 895VI UT WOS:000300524400003 OA Green Submitted DA 2024-03-27 ER PT J AU Pranata, I Susilo, W AF Pranata, Ilung Susilo, Willy TI Are the most popular users always trustworthy? The case of Yelp SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Electronic commerce; Ratings; Reputation system; Trust; Trust circle; Data mining; Machine learning; Clustering; Yelp ID ONLINE CONSUMER REVIEWS; MODERATING ROLE; REPUTATION; TRUST; SYSTEMS; PRODUCT AB Consumer ratings play a pivotal role in making purchase decision and are now part of daily decision making. Yet, there always be a concern on the credibility of these ratings. Numerous incidents have occurred in the past where businesses gave incentives to the raters to provide fraud and non-credible reviews. We, as average users, tend to believe recommendations given by people with whom we have close relationship, such as family or friends. In the absence of people that we can inherently trust, we tend to consider ratings that come from popular raters more seriously. This is particularly true in the online environments where many raters are unknown to us. However, we can never be sure how trustworthy these popular raters are when providing their ratings and reviews. This paper investigates the credibility of the most popular users in giving trustworthy ratings on a popular consumer reviews platform Yelp. We begin by identifying and grouping the most popular users. We then collect all ratings of the businesses that this group of users has rated. Endogenous statistical techniques are employed to determine the trustworthiness of each popular user's rating and to discount the unfair ratings. By analyzing and comparing the rating given by each popular user with the computed business' trust rating, we collect statistics that found the most popular users are not always trustworthy in providing their ratings and their percentage of rating trustworthiness. (C) 2016 Elsevier B.V. All rights reserved. C1 [Pranata, Ilung] Univ Newcastle, Callaghan, NSW, Australia. [Susilo, Willy] Univ Wollongong, Wollongong, NSW, Australia. C3 University of Newcastle; University of Wollongong RP Pranata, I (autor correspondiente), Univ Newcastle, Callaghan, NSW, Australia. EM Ilung.Pranata@newcastle.edu.au; wsusilo@uow.edu.au RI Susilo, Willy/A-3724-2008; Pranata, Ilung/H-2364-2014 OI Susilo, Willy/0000-0002-1562-5105; Pranata, Ilung/0000-0003-2555-3472 FU University of Newcastle, Australia through QA research grant; University of Newcastle, Australia through NSG research grant FX The authors would like to acknowledge the support given by the University of Newcastle, Australia in this research through 2015 QA and NSG research grants. CR Abdul-Rahman A., 2000, 33 IEEE ANN HAW INT [Anonymous], P 3 INT C PEER TO PE [Anonymous], INT C COMP SCI ENG 2 [Anonymous], What is R? Avery C, 1999, AM ECON REV, V89, P564, DOI 10.1257/aer.89.3.564 Chung CY, 2013, DECIS SUPPORT SYST, V55, P314, DOI 10.1016/j.dss.2013.01.020 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Duan WJ, 2008, DECIS SUPPORT SYST, V45, P1007, DOI 10.1016/j.dss.2008.04.001 Entrust, 2000, CONC TRUST NETW SEC Gambetta D., 2000, Can We Trust Trust? Trust: Making and Breaking Cooperative Relations Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 HAMBY DM, 1995, HEALTH PHYS, V68, P195, DOI 10.1097/00004032-199502000-00005 HAMPEL FR, 1974, J AM STAT ASSOC, V69, P383, DOI 10.2307/2285666 Hankin L., 2007, THESIS Hoffman FO, 1983, RADIOLOGICAL ASSESSM Josang A, 2001, INT J UNCERTAIN FUZZ, V9, P279, DOI 10.1016/S0218-4885(01)00083-1 Josang A, 2006, C P 29 AUSTR COMP SC Josang A, 2002, 15 BLED EL COMM C Josang A, 2007, DECIS SUPPORT SYST, V43, P618, DOI 10.1016/j.dss.2005.05.019 Kamvar S., 2003, 12 ACM INT C WORLD W Kamvar SD, 2003, 12 INT C WORLD WID W KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572 Korfiatis N, 2012, ELECTRON COMMER R A, V11, P205, DOI 10.1016/j.elerap.2011.10.003 Leys C, 2013, J EXP SOC PSYCHOL, V49, P764, DOI 10.1016/j.jesp.2013.03.013 Li XX, 2008, INFORM SYST RES, V19, P456, DOI 10.1287/isre.1070.0154 Liu SY, 2014, COMPUT INTELL-US, V30, P316, DOI 10.1111/j.1467-8640.2012.00464.x Luca M., 2011, WORKING PAPER Luca M., 2015, WORKING PAPER MacQueen J., 1967, PROC 5 BERKELEY S MA, P281 MILLER J, 1991, Q J EXP PSYCHOL-A, V43, P907, DOI 10.1080/14640749108400962 Mohan A, 2008, 6 ANN C PRIV SEC TRU Moses A., 2012, FAKE ONLINE REV MEAN MUI L, 2002, 35 HAW INT C SYST SC Noorian Z., 2011, 10 INT C AUT AG MULT Park DH, 2007, INT J ELECTRON COMM, V11, P125, DOI 10.2753/JEC1086-4415110405 PELLEG D, 2000, 17 INT C MACH LEARN Pinyol I, 2013, ARTIF INTELL REV, V40, P1, DOI 10.1007/s10462-011-9277-z Piskorski M.J., 2011, HARV BUS REV Pranata I., 2013, 2013 IEEE ACIS 12 IN Pranata I., 2013, INT C MOB WIR MIDDL Pranata I., 2011, ACM INT C MAN EM DIG Pranata I., 2012, International Journal of Computer and Information Technology, V1, P44 Pranata I, 2013, ACM T INTERNET TECHN, V12, DOI 10.1145/2461321.2461323 Qian X., 2014, IEEE T KNOWL DATA EN, V26 Resnick P, 2006, EXP ECON, V9, P79, DOI 10.1007/s10683-006-4309-2 Rosaci D., 2011, WOA ANN M HON HAW Sabater J., 2001, 4 INT WORKSH DEC FRA Schlosser AE, 2011, J CONSUM PSYCHOL, V21, P226, DOI 10.1016/j.jcps.2011.04.002 Teacy WTL, 2006, AUTON AGENT MULTI-AG, V12, P183, DOI 10.1007/s10458-006-5952-x Tucker T., 2011, The Elon Journal of Undergraduate Research in Communications, V2, P37 Wang ZM, 2010, BE J ECON ANAL POLI, V10, DOI 10.2202/1935-1682.2523 Wu P.F., 2011, 32 INT C INF SYST IC Xiong L, 2004, IEEE T KNOWL DATA EN, V16, P843, DOI 10.1109/TKDE.2004.1318566 Yang X., 2012, 18 ACM SIGKDD INT C Yelp, 2015, YELP DAT CHALL Zhang J, 2008, ELECTRON COMMER R A, V7, P330, DOI 10.1016/j.elerap.2008.03.001 Zhu F, 2010, J MARKETING, V74, P133, DOI 10.1509/jmkg.74.2.133 NR 57 TC 14 Z9 18 U1 4 U2 51 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD NOV-DEC PY 2016 VL 20 BP 30 EP 41 DI 10.1016/j.elerap.2016.09.005 PG 12 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA EI9JS UT WOS:000392824700003 DA 2024-03-27 ER PT J AU Safara, F AF Safara, Fatemeh TI A Computational Model to Predict Consumer Behaviour During COVID-19 Pandemic SO COMPUTATIONAL ECONOMICS LA English DT Article DE Coronavirus disease (COVID-19); Machine learning; E-commerce; Consumer behavior; Prediction model; Bagging; Boosting AB The knowledge-based economy has drawn increasing attention recently, particularly in online shopping applications where all the transactions and consumer opinions are logged. Machine learning methods could be used to extract implicit knowledge from the logs. Industries and businesses use the knowledge to better understand the consumer behavior, and opportunities and threats correspondingly. The outbreak of coronavirus (COVID-19) pandemic has a great impact on the different aspects of our daily life, in particular, on our shopping behaviour. To predict electronic consumer behaviour could be of valuable help for managers in government, supply chain and retail industry. Although, before coronavirus pandemic we have experienced online shopping, during the disease the number of online shopping increased dramatically. Due to high speed transmission of COVID-19, we have to observe personal and social health issues such as social distancing and staying at home. These issues have direct effect on consumer behaviour in online shopping. In this paper, a prediction model is proposed to anticipate the consumers behaviour using machine learning methods. Five individual classifiers, and their ensembles with Bagging and Boosting are examined on the dataset collected from an online shopping site. The results indicate the model constructed using decision tree ensembles with Bagging achieved the best prediction of consumer behavior with the accuracy of 95.3%. In addition, correlation analysis is performed to determine the most important features influencing the volume of online purchase during coronavirus pandemic. C1 [Safara, Fatemeh] Islamic Azad Univ, Dept Comp Engn, Islamshahr Branch, Islamshahr, Iran. C3 Islamic Azad University RP Safara, F (autor correspondiente), Islamic Azad Univ, Dept Comp Engn, Islamshahr Branch, Islamshahr, Iran. EM fsafara@iiau.ac.ir RI safara, fatemeh/B-1308-2012 OI safara, fatemeh/0000-0003-3513-3789 CR Agrawal S., 2018, 2018 INT C SMART COM, P1 Ahmadipour M, 2020, CIRC SYST SIGNAL PR, V39, P4067, DOI 10.1007/s00034-020-01355-4 Barua S., 2020, Understanding Coronanomics: The economic implications of the coronavirus (COVID-19) pandemic, DOI DOI 10.2139/SSRN.3566477 Change P. M, 2020, COVID 19 PANDEMIC MA, P3, DOI 10.1016/j.jretai.2020.04.002 Chinchilla LDC, 2016, PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, P623, DOI 10.1109/ASONAM.2016.7752301 Ebru D.Arslan, 2019, P INT S PROD RES 201, P29 Ivanov D, 2020, INT J PROD RES, V58, P3252, DOI 10.1080/00207543.2019.1634850 Khodabandehlou S., 2017, J SYSTEMS INFORM TEC Kucharski AJ, 2020, LANCET INFECT DIS, V20, P553, DOI 10.1016/S1473-3099(20)30144-4 McDonald N, 2019, TRAFFIC INJ PREV, V20, P764, DOI 10.1080/15389588.2019.1651930 Nicola M, 2020, INT J SURG, V78, P185, DOI 10.1016/j.ijsu.2020.04.018 Pantano E, 2020, J BUS RES, V116, P209, DOI 10.1016/j.jbusres.2020.05.036 Patil Megharani, 2019, Smart Intelligent Computing and Applications. Proceedings of the Second International Conference on SCI 2018. Smart Innovation, Systems and Technologies (SIST 105), P197, DOI 10.1007/978-981-13-1927-3_20 Qiu JT, 2015, ELECTRON COMMER RES, V15, P427, DOI 10.1007/s10660-015-9191-6 Souri Alireza, 2017, Journal of Service Science Research, V9, P219, DOI 10.1007/s12927-017-0011-5 Souri A, 2020, SOFT COMPUT, V24, P17111, DOI 10.1007/s00500-020-05003-6 Souri A, 2019, INFORM TECHNOL PEOPL, V32, P1591, DOI 10.1108/ITP-02-2018-0109 Souri A, 2019, KYBERNETES, V48, P407, DOI 10.1108/K-02-2018-0092 Ballestar MT, 2019, REV MANAG SCI, V13, P589, DOI 10.1007/s11846-018-0316-x Vanneschi L, 2018, EXPERT SYST APPL, V104, P1, DOI 10.1016/j.eswa.2018.03.025 Wang EP, 2020, FOOD SECUR, V12, P739, DOI 10.1007/s12571-020-01092-1 Wu XQ, 2021, ELECTRON COMMER RES, V21, P689, DOI 10.1007/s10660-019-09339-6 Yoon J, 2021, COMPUT ECON, V57, P247, DOI 10.1007/s10614-020-10054-w Zeng M, 2019, ELECTRON MARK, V29, P263, DOI 10.1007/s12525-018-0311-8 Zhang J, 2021, COMPUT ECON, V57, P1237, DOI 10.1007/s10614-020-10013-5 NR 25 TC 30 Z9 31 U1 10 U2 90 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0927-7099 EI 1572-9974 J9 COMPUT ECON JI Comput. Econ. PD APR PY 2022 VL 59 IS 4 SI SI BP 1525 EP 1538 DI 10.1007/s10614-020-10069-3 EA NOV 2020 PG 14 WC Economics; Management; Mathematics, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Mathematics GA 1B7WC UT WOS:000586344300001 PM 33169049 OA Bronze, Green Published DA 2024-03-27 ER PT J AU Han, LT Fang, JM Zheng, QQ George, BT Liao, MY Hossin, MA AF Han, Lintong Fang, Jiaming Zheng, Qiqi George, Benjamin T. Liao, Miyan Hossin, Md. Altab TI Unveiling the effects of livestream studio environment design on sales performance: A machine learning exploration SO INDUSTRIAL MARKETING MANAGEMENT LA English DT Article DE Livestreaming eCommerce; Studio environment; Video analysis; Visual complexity; Visual coherence; Machine learning ID PROCESSING FLUENCY; PURCHASE INTENTION; R PACKAGE; AESTHETICS; COMPLEXITY; PREFERENCE; INVOLVEMENT AB Livestreaming eCommerce companies invest a significant amount of time and resources in setting up their livestream studios. However, these companies struggle to determine how the studio environment impacts sales, leading to uncertainty regarding the return on investment in their livestream studios. To address this critical yet under-studied issue, we examine how the dual features of the B2B livestream studio environment, namely visual complexity and coherence, impact sales performance. We leveraged machine learning and deep learning algorithms to evaluate the visual complexity and coherence of the B2B livestream studio setting. We then developed the econometric model to determine how these factors affect sales during livestreaming events. Our analysis drew on a dataset of 954 B2B livestreaming events across 8 industry categories. Our study highlights the adverse effects of visual complexity and coherence on sales performance. Notably, high-involvement products are found to be more affected by visual complexity and coherence compared to low-involvement products. C1 [Han, Lintong; Fang, Jiaming; Zheng, Qiqi; Liao, Miyan] Univ Elect Sci & Technol China, Sch Management & Econ, 2006 Xiyuan Ave, Chengdu 611731, Sichuan, Peoples R China. [George, Benjamin T.] Univ Toledo, John & Lillian Neff Coll Business & Innovat, 2801 W Bancroft, Toledo, OH 43606 USA. [Hossin, Md. Altab] Chengdu Univ, Sch Innovat & Entrepreneurship, 2025 Chengluo Ave, Chengdu 610106, Sichuan, Peoples R China. [Fang, Jiaming] 2006 Xiyuan Ave, Chengdu 611731, Sichuan, Peoples R China. C3 University of Electronic Science & Technology of China; University System of Ohio; University of Toledo; Chengdu University RP Fang, JM (autor correspondiente), 2006 Xiyuan Ave, Chengdu 611731, Sichuan, Peoples R China. EM jmfang@uestc.edu.cn OI Fang, Jiaming/0000-0002-1806-8017 FU Humanities and Social Science Fund of the Ministry of Education of China [23YJA630023] FX The authors express their appreciation for the research sponsorship received from the Humanities and Social Science Fund of the Ministry of Education of China (23YJA630023) . CR Baack DW, 2016, IND MARKET MANAG, V55, P169, DOI 10.1016/j.indmarman.2015.10.001 Barnes SJ, 2022, TOURISM MANAGE, V90, DOI 10.1016/j.tourman.2021.104487 BERLYNE DE, 1970, PERCEPT PSYCHOPHYS, V8, P279, DOI 10.3758/BF03212593 Bettman JR, 1998, J CONSUM RES, V25, P187, DOI 10.1086/209535 Chang X, 2022, J BUS IND MARK, V37, P78, DOI 10.1108/JBIM-07-2020-0346 Charrad M, 2014, J STAT SOFTW, V61, P1 Chen CC, 2018, TELEMAT INFORM, V35, P293, DOI 10.1016/j.tele.2017.12.003 Chen H, 2022, ELECTRON COMMER R A, V53, DOI 10.1016/j.elerap.2022.101150 Chen L., 2021, China Finance and Economic Review, V10, P102 Chen ZH, 2022, J BUS RES, V148, P252, DOI 10.1016/j.jbusres.2022.04.043 Cheng FF, 2019, COMPUT HUM BEHAV, V101, P394, DOI 10.1016/j.chb.2018.08.015 Chuang SH, 2020, IND MARKET MANAG, V84, P202, DOI 10.1016/j.indmarman.2019.06.012 Corsaro D, 2011, IND MARKET MANAG, V40, P919, DOI 10.1016/j.indmarman.2011.06.028 de Jong A, 2021, IND MARKET MANAG, V93, P1, DOI 10.1016/j.indmarman.2020.12.004 Eroglu SA, 2003, PSYCHOL MARKET, V20, P139, DOI 10.1002/mar.10064 Fang JM, 2019, INT J ELECTRON COMM, V23, P557, DOI 10.1080/10864415.2019.1655206 FORNELL C, 1987, J MARKETING RES, V24, P337, DOI 10.2307/3151381 Gao XY, 2021, ELECTRON COMMER R A, V49, DOI 10.1016/j.elerap.2021.101087 Geng RS, 2021, FRONT PSYCHOL, V12, DOI 10.3389/fpsyg.2021.697382 Gul FA, 2020, J BUS RES, V111, P52, DOI 10.1016/j.jbusres.2020.01.035 Guo LY, 2021, INTERNET RES, V31, P1718, DOI 10.1108/INTR-02-2020-0078 Hu X, 2022, J RETAIL CONSUM SERV, V67, DOI 10.1016/j.jretconser.2022.102975 Im H, 2010, J RES INTERACT MARK, V4, P280, DOI 10.1108/17505931011092808 IMedia, 2023, The number of overseas viewers increased by 186%, and "station live broadcast" emerged on Ali International Station Ismail K, 2019, Why B2B marketers should be live streaming more Joo E, 2023, J RES INTERACT MARK, V17, P754, DOI 10.1108/JRIM-02-2022-0037 KAPLAN R, 1989, ENVIRON BEHAV, V21, P509, DOI 10.1177/0013916589215001 KAPLAN S, 1987, ENVIRON BEHAV, V19, P3, DOI 10.1177/0013916587191001 Kearns S, 2022, What is B2B marketing: definition, strategy, and trends Koh B, 2022, DECIS SUPPORT SYST, V160, DOI 10.1016/j.dss.2022.113820 Kotler P., 2010, PRINCIPLES MARKETING Kumar DS, 2017, J SERV MARK, V31, P556, DOI 10.1108/JSM-01-2016-0021 Kwon J, 2022, IND MARKET MANAG, V104, P212, DOI 10.1016/j.indmarman.2022.03.011 Liao M., 2023, Journal of Business Research, V167, P1 Lin IY, 2016, J SERV MARK, V30, P692, DOI 10.1108/JSM-08-2015-0258 Liu L, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2022.103259 Luo MR, 2001, COLOR RES APPL, V26, P340, DOI 10.1002/col.1049 Mayer S, 2018, PSYCHOL AESTHET CREA, V12, P399, DOI 10.1037/aca0000187 McDonald R, 1995, J SOC DYERS COLOUR, V111, P376 Meire M, 2022, IND MARKET MANAG, V106, P292, DOI 10.1016/j.indmarman.2022.09.006 Mosteller J, 2014, J BUS RES, V67, P2486, DOI 10.1016/j.jbusres.2014.03.009 Mou J, 2020, IND MANAGE DATA SYST, V120, P567, DOI 10.1108/IMDS-05-2019-0280 Nagle F, 2020, ROY SOC OPEN SCI, V7, DOI 10.1098/rsos.191487 NASAR JL, 1987, J AM PLANN ASSOC, V53, P499, DOI 10.1080/01944368708977139 Orth UR, 2014, J RETAILING, V90, P524, DOI 10.1016/j.jretai.2014.05.004 Orth UR, 2014, J SERV RES-US, V17, P296, DOI 10.1177/1094670514529606 Özkul E, 2020, COLOR RES APPL, V45, P1217, DOI 10.1002/col.22560 Paakki M, 2019, FOOD QUAL PREFER, V76, P81, DOI 10.1016/j.foodqual.2019.04.004 Park HJ, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101934 Park S, 2012, MARKET SCI, V31, P567, DOI 10.1287/mksc.1120.0718 Peng LF, 2019, INFORM MANAGE-AMSTER, V56, P317, DOI 10.1016/j.im.2018.11.007 Pieters R, 2010, J MARKETING, V74, P48, DOI 10.1509/jmkg.74.5.48 Radder L, 2008, J FASH MARK MANAG, V12, P232, DOI 10.1108/13612020810874908 Nia MR, 2020, J RES INTERACT MARK, V14, P357, DOI 10.1108/JRIM-11-2018-0147 Rosen DE, 2004, J BUS RES, V57, P787, DOI 10.1016/S0148-2963(02)00353-3 Sample KL, 2020, J ACAD MARKET SCI, V48, P405, DOI 10.1007/s11747-019-00684-4 Santos S, 2021, TECHNOL FORECAST SOC, V162, DOI 10.1016/j.techfore.2020.120379 Saraee E, 2020, COMPUT VIS IMAGE UND, V195, DOI 10.1016/j.cviu.2020.102949 Scarpi D, 2021, IND MARKET MANAG, V93, P578, DOI 10.1016/j.indmarman.2020.09.006 Shi CM, 2021, EURASIP J WIREL COMM, V2021, DOI 10.1186/s13638-021-01910-w Shukla M, 2021, INT J E-BUS RES, V17, P73, DOI 10.4018/IJEBR.2021100105 Storme M, 2015, J CONSUM MARK, V32, P432, DOI 10.1108/JCM-10-2014-1187 Tayson H, 2023, How to market your business with video livestreaming Tofighi D, 2011, BEHAV RES METHODS, V43, P692, DOI 10.3758/s13428-011-0076-x Toth Z, 2022, IND MARKET MANAG, V104, P226, DOI 10.1016/j.indmarman.2022.04.019 Wang ST, 2023, ELECTRON COMMER R A, V57, DOI 10.1016/j.elerap.2022.101231 Wongkitrungrueng A, 2020, J BUS RES, V117, P543, DOI 10.1016/j.jbusres.2018.08.032 Xie CW, 2022, TOURISM MANAGE, V91, DOI 10.1016/j.tourman.2022.104513 Yeh YS, 2014, INFORM MANAGE-AMSTER, V51, P995, DOI 10.1016/j.im.2014.06.005 Yu CP, 2020, IND MARKET MANAG, V90, P481, DOI 10.1016/j.indmarman.2019.05.001 Yuan CL, 2021, IND MARKET MANAG, V92, P101, DOI 10.1016/j.indmarman.2020.11.008 ZAICHKOWSKY JL, 1985, J CONSUM RES, V12, P341, DOI 10.1086/208520 Zhang ML, 2022, COMPUT HUM BEHAV, V127, DOI 10.1016/j.chb.2021.107052 Zhang Y, 2020, J BUS RES, V112, P170, DOI 10.1016/j.jbusres.2020.02.034 NR 74 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0019-8501 EI 1873-2062 J9 IND MARKET MANAG JI Ind. Mark. Manage. PD FEB PY 2024 VL 117 BP 161 EP 172 DI 10.1016/j.indmarman.2023.12.021 EA JAN 2024 PG 12 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA GQ4Q1 UT WOS:001154125900001 DA 2024-03-27 ER PT J AU Nikseresht, A Shokouhyar, S Tirkolaee, EB Nikookar, E Shokoohyar, S AF Nikseresht, Ali Shokouhyar, Sajjad Tirkolaee, Erfan Babaee Nikookar, Ethan Shokoohyar, Sina TI An intelligent decision support system for warranty claims forecasting: Merits of social media and quality function deployment SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Warranty claims prediction; Social media analytics; Quality function deployment; Time-frequency analysis; Deep learning; Deep ensemble random vector functional link ID MONEY-BACK GUARANTEE; ENGINEERING CHARACTERISTICS; REGRESSION-MODEL; OPTIMIZATION; DESIGN; QFD AB This work develops a novel approach based on Machine Learning (ML)-assisted Quality Function Deployment (QFD) to sift the gold from the stone. It includes Time-Varying Filter-based Empirical Mode Decomposition (TVFEMD), Deep Ensemble Random Vector Functional Link (DE-RVFL), and a Bayesian optimization algorithm for optimizing the shaped DE-RVFLTVF-EMD hyperparameters. This approach makes it possible for the proposed methods to be dynamic enough to deal with the data's volatility, complexity, uncertainty, and ambiguity. It is demonstrated that incorporating TVF-EMD to provide time-frequency analysis along DE-RVFL, and goal-oriented social media analytics boosts the performance of out-of-sample predictions statistically and compensates for the "warranty data maturation" effect. The proposed algorithm's Root Mean Square Error (RMSE) decreases by 23.37%-88.76% relative to other benchmark cutting-edge models. This study contributes significantly to the services management community. Using the proposed methodology, managers could create plans for warranty claims strategies that reduce inventory levels and waste while optimizing customer satisfaction, advocacy, and revenues. These merits provide incentives and support for policymakers to adopt advanced technologies, such as the ones developed and implemented in the current study, in warranty claims forecasting to improve accuracy and efficiency. C1 [Nikseresht, Ali] Georgia Inst Technol, Sch Comp Sci, Atlanta, GA 30332 USA. [Shokouhyar, Sajjad] Australian Inst Business, Dept Supply Chain & Operat Management, 1 King William St, Adelaide, SA 5000, Australia. [Tirkolaee, Erfan Babaee] Istinye Univ, Dept Ind Engn, Istanbul, Turkiye. [Tirkolaee, Erfan Babaee] Yuan Ze Univ, Dept Ind Engn & Management, Taoyuan, Taiwan. [Tirkolaee, Erfan Babaee] Lebanese Amer Univ, Dept Ind & Mech Engn, Byblos, Lebanon. [Nikookar, Ethan] Univ Wollongong, Ctr Supply ChainResearch, Sch Business, Wollongong, NS, Australia. [Shokoohyar, Sina] Seton Hall Univ, Stillman Sch Business, Dept Comp & Decis Sci, S Orange, NJ USA. C3 University System of Georgia; Georgia Institute of Technology; Australian Institute of Business; Istinye University; Yuan Ze University; Lebanese American University; University of Wollongong; Seton Hall University RP Shokouhyar, S (autor correspondiente), Australian Inst Business, Dept Supply Chain & Operat Management, 1 King William St, Adelaide, SA 5000, Australia.; Tirkolaee, EB (autor correspondiente), Istinye Univ, Dept Ind Engn, Istanbul, Turkiye. EM Ali.Nikseresht@gatech.edu; sajjad.shokouhyar@aib.edu.au; erfan.babaee@istinye.edu.tr; Ethan_nikookar@uow.edu.au; sina.shokoohyar@shu.edu OI Nikookar, Ethan/0000-0002-4626-367X CR Aaronson D, 2022, INT J FORECASTING, V38, P567, DOI 10.1016/j.ijforecast.2021.04.001 Abedin MZ, 2023, RES INT BUS FINANC, V65, DOI 10.1016/j.ribaf.2023.101913 Abedin MZ, 2021, ANN OPER RES, DOI 10.1007/s10479-021-04420-6 Abrahams AS, 2012, DECIS SUPPORT SYST, V54, P87, DOI 10.1016/j.dss.2012.04.005 Adeh IM, 2017, FACTA UNIV-SER MATH, V32, P447, DOI 10.22190/FUMI1704447M Akbarov A, 2012, QUAL RELIAB ENG INT, V28, P663, DOI 10.1002/qre.1399 Alkahtani M, 2019, COMPUT IND ENG, V128, P1027, DOI 10.1016/j.cie.2018.04.033 Alp ZZ, 2018, KNOWL-BASED SYST, V141, P211, DOI 10.1016/j.knosys.2017.11.021 Alparslan-Gök SZ, 2009, MATH METHOD OPER RES, V69, P99, DOI 10.1007/s00186-008-0211-3 Alqahtani Ammar Y., 2018, Journal of Industrial Engineering International, V14, P767, DOI 10.1007/s40092-018-0259-5 Ambilkar P, 2022, INT J PROD RES, V60, P3920, DOI 10.1080/00207543.2021.1933645 Apostolopoulos ID, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13063412 Attardi L, 2005, RELIAB ENG SYST SAFE, V87, P265, DOI 10.1016/j.ress.2004.05.003 Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, 10.48550/arXiv.1803.01271, DOI 10.48550/ARXIV.1803.01271] Banerjee A, 2013, SCIENCE, V341, P363, DOI 10.1126/science.1236498 Bereketli I, 2013, J CLEAN PROD, V54, P188, DOI 10.1016/j.jclepro.2013.03.053 Bhattacharya A, 2005, INT J PROD RES, V43, P3671, DOI 10.1080/00207540500137217 Bokde ND, 2021, APPL ENERG, V281, DOI 10.1016/j.apenergy.2020.116061 Boone T, 2019, INT J FORECASTING, V35, P170, DOI 10.1016/j.ijforecast.2018.09.003 Boratynska A, 2022, INSUR MATH ECON, V105, P194, DOI 10.1016/j.insmatheco.2022.04.001 Borup D, 2023, INT J FORECASTING, V39, P1122, DOI 10.1016/j.ijforecast.2022.05.005 Bouteska A, 2023, RES INT BUS FINANC, V64, DOI 10.1016/j.ribaf.2022.101863 Chang WL, 2012, COMPUT MATH APPL, V63, P144, DOI 10.1016/j.camwa.2011.11.001 Chehade A, 2022, RELIAB ENG SYST SAFE, V218, DOI 10.1016/j.ress.2021.108180 Chen LH, 2010, EUR J OPER RES, V201, P619, DOI 10.1016/j.ejor.2009.03.010 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Chowdhury MMH, 2016, INT J PROD ECON, V171, P165, DOI 10.1016/j.ijpe.2015.09.023 Crevecoeur J, 2019, EUR J OPER RES, V277, P930, DOI 10.1016/j.ejor.2019.02.044 Cui RM, 2018, PROD OPER MANAG, V27, P1749, DOI 10.1111/poms.12707 Dai AS, 2019, J SYST SCI SYST ENG, V28, P715, DOI 10.1007/s11518-019-5434-8 Debnath K, 2023, EXPERT SYST APPL, V216, DOI 10.1016/j.eswa.2022.119470 Dey R, 2017, MIDWEST SYMP CIRCUIT, P1597, DOI 10.1109/MWSCAS.2017.8053243 Duong QH, 2022, INT J PROD ECON, V243, DOI 10.1016/j.ijpe.2021.108340 Efat MIA, 2022, ANN OPER RES, DOI 10.1007/s10479-022-04838-6 Fan B, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2019.102131 Fang WL, 2020, ADV ENG INFORM, V44, DOI 10.1016/j.aei.2020.101060 Fantoni G, 2021, COMPUT IND, V124, DOI 10.1016/j.compind.2020.103357 Farhadloo M, 2016, DECIS SUPPORT SYST, V90, P1, DOI 10.1016/j.dss.2016.06.010 Featherman M, 2021, TECHNOL FORECAST SOC, V169, DOI 10.1016/j.techfore.2021.120847 Filz MA, 2021, COMPUT IND, V129, DOI 10.1016/j.compind.2021.103451 Goldberg DM, 2018, DECIS SUPPORT SYST, V105, P52, DOI 10.1016/j.dss.2017.10.012 Grobelny J, 2021, NEURAL COMPUT APPL, V33, P5843, DOI 10.1007/s00521-020-05363-y Grover P, 2022, ANN OPER RES, V308, P177, DOI 10.1007/s10479-020-03683-9 Guo YJ, 2020, INT J OPER PROD MAN, V40, P575, DOI 10.1108/IJOPM-04-2019-0315 Gupta SK, 2022, RELIAB ENG SYST SAFE, V222, DOI 10.1016/j.ress.2022.108385 Hajek P, 2023, INFORM SYST FRONT, V25, P1985, DOI 10.1007/s10796-022-10346-6 He LN, 2021, INT J PROD RES, V59, P1714, DOI 10.1080/00207543.2020.1724343 He W, 2019, J ENTERP INF MANAG, V32, P152, DOI 10.1108/JEIM-02-2018-0031 Heiman A, 2001, J BUS RES, V54, P71, DOI 10.1016/S0148-2963(00)00181-8 Heydari J, 2017, SERV SCI, V9, P91, DOI 10.1287/serv.2016.0153 Hodkiewicz M, 2021, COMPUT IND, V131, DOI 10.1016/j.compind.2021.103496 Huang ZS, 2020, J RETAIL CONSUM SERV, V52, DOI 10.1016/j.jretconser.2019.101897 Huster S, 2022, J CLEAN PROD, V363, DOI 10.1016/j.jclepro.2022.132225 Jabeen F, 2023, TECHNOL FORECAST SOC, V186, DOI 10.1016/j.techfore.2022.122104 Jin J, 2015, ENG APPL ARTIF INTEL, V41, P115, DOI 10.1016/j.engappai.2015.02.006 Jindal A, 2015, BENCHMARKING, V22, P393, DOI 10.1108/BIJ-05-2013-0062 KALBFLEISCH JD, 1991, TECHNOMETRICS, V33, P273, DOI 10.2307/1268780 Kara G, 2019, CENT EUR J OPER RES, V27, P241, DOI 10.1007/s10100-017-0508-5 Karim MR, 2005, INT J QUAL RELIAB MA, V22, P667, DOI 10.1108/02656710510610820 Kharfan M, 2021, ANN OPER RES, V303, P159, DOI 10.1007/s10479-020-03666-w Kiani F, 2023, MATHEMATICS-BASEL, V11, DOI 10.3390/math11102340 Kleyner A, 2022, QUAL RELIAB ENG INT, V38, P2388, DOI 10.1002/qre.3082 Krivtsov V., 2017, Int. J. Performability Eng., V13, DOI [10.23940/ijpe.17.02.p3.129134, DOI 10.23940/IJPE.17.02.P3.129134] Krivtsov V.V., 2011, IEEE Cat. No CFP11RAM-CDR Kropat E, 2019, OPTIM METHOD SOFTW, V34, P586, DOI 10.1080/10556788.2018.1425859 Kumaraswamy N, 2022, EXPERT SYST APPL, V210, DOI 10.1016/j.eswa.2022.118433 Lancioni RA, 2000, IND MARKET MANAG, V29, P45, DOI 10.1016/S0019-8501(99)00111-X Li H, 2017, SIGNAL PROCESS, V138, P146, DOI 10.1016/j.sigpro.2017.03.019 Li SH, 2006, OMEGA-INT J MANAGE S, V34, P107, DOI 10.1016/j.omega.2004.08.002 Li SP, 2019, COMPUT IND ENG, V135, P348, DOI 10.1016/j.cie.2019.06.008 Li T, 2022, RELIAB ENG SYST SAFE, V218, DOI 10.1016/j.ress.2021.108142 Li XP, 2019, INT J PROD RES, V57, P5414, DOI 10.1080/00207543.2018.1526419 Li XY, 2022, RELIAB ENG SYST SAFE, V217, DOI 10.1016/j.ress.2021.108033 Liagkouras K, 2022, ANN OPER RES, V316, P1493, DOI 10.1007/s10479-020-03554-3 Lin KS, 2021, RELIAB ENG SYST SAFE, V207, DOI 10.1016/j.ress.2020.107327 Lin YH, 2024, J RETAIL CONSUM SERV, V76, DOI 10.1016/j.jretconser.2023.103558 Liu P, 2021, COMPUT IND ENG, V153, DOI 10.1016/j.cie.2020.107040 Liu PH, 2020, KNOWL-BASED SYST, V203, DOI 10.1016/j.knosys.2020.106081 Liu Y, 2021, INT J FORECASTING, V37, P812, DOI 10.1016/j.ijforecast.2020.09.009 Liu ZM, 2022, APPL SOFT COMPUT, V129, DOI 10.1016/j.asoc.2022.109580 Liu ZY, 2023, TECHNOL FORECAST SOC, V187, DOI 10.1016/j.techfore.2022.122253 Luo N, 2023, TECHNOL FORECAST SOC, V192, DOI 10.1016/j.techfore.2023.122547 Mack T., 1993, ASTIN Bull., V23, DOI [DOI 10.2143/AST.23.2.2005092, 10.2143/AST.23.2.2005092] Maiano L, 2023, EXPERT SYST APPL, V231, DOI 10.1016/j.eswa.2023.120644 Majeske KD, 2007, RELIAB ENG SYST SAFE, V92, P243, DOI 10.1016/j.ress.2005.12.004 Mansour W, 2023, INFORM PROCESS MANAG, V60, DOI 10.1016/j.ipm.2023.103414 Martín-Rojas R, 2023, TECHNOL FORECAST SOC, V190, DOI 10.1016/j.techfore.2023.122421 Michael NE, 2022, APPL ENERG, V324, DOI 10.1016/j.apenergy.2022.119727 Mishra S., 2021, SN Comput. Sci., V2, P1, DOI [10.1007/s42979-021-00455-5, DOI 10.1007/S42979-021-00455-5] Misic VV, 2020, M&SOM-MANUF SERV OP, V22, P158, DOI 10.1287/msom.2019.0805 Mohammadi HA, 2023, APPL SOFT COMPUT, V135, DOI 10.1016/j.asoc.2023.109990 Mondal A, 2023, APPL ENERG, V343, DOI 10.1016/j.apenergy.2023.121225 Mondal A, 2023, EXPERT SYST APPL, V211, DOI 10.1016/j.eswa.2022.118688 Moorthy S, 1995, MARKET SCI, V14, P442, DOI 10.1287/mksc.14.4.442 Murthy DNP, 2002, INT J PROD ECON, V79, P231, DOI 10.1016/S0925-5273(02)00153-6 Nematzadeh S, 2022, COMPUT BIOL CHEM, V97, DOI 10.1016/j.compbiolchem.2021.107619 Nikseresht A., 2021, Decision Making for Celebrity Branding: An Opinion Mining Approach Based on Polarity and Sentiment Analysis Using Twitter Consumer-Generated Content (CGC) Nikseresht A, 2023, INT J LOGIST MANAG, DOI 10.1108/IJLM-03-2023-0085 Nikseresht A, 2022, ENVIRON SCI POLLUT R, V29, P42509, DOI 10.1007/s11356-022-19863-y Ouyang LH, 2022, COMPUT IND, V141, DOI 10.1016/j.compind.2022.103712 PAO YH, 1994, NEUROCOMPUTING, V6, P163, DOI 10.1016/0925-2312(94)90053-1 Paschen J, 2020, J PROD BRAND MANAG, V29, P223, DOI 10.1108/JPBM-12-2018-2179 Qiao BH, 2022, APPL SOFT COMPUT, V129, DOI 10.1016/j.asoc.2022.109586 Rajpathak D, 2020, COMPUT IND, V123, DOI 10.1016/j.compind.2020.103338 Renaud O, 2005, IEEE T SYST MAN CY B, V35, P1241, DOI 10.1109/TSMCB.2005.850182 Saito T, 2022, ANN OPER RES, DOI 10.1007/s10479-022-05136-x Sarmast Z, 2023, IND MANAGE DATA SYST, V123, P1281, DOI 10.1108/IMDS-07-2022-0427 Shang GZ, 2020, J OPER MANAG, V66, P326, DOI 10.1002/joom.1071 Shang LJ, 2023, RELIAB ENG SYST SAFE, V234, DOI 10.1016/j.ress.2023.109187 Sharifi Z, 2021, RESOUR CONSERV RECY, V167, DOI 10.1016/j.resconrec.2021.105398 Shi QS, 2021, PATTERN RECOGN, V117, DOI 10.1016/j.patcog.2021.107978 Shokouhyar S, 2021, RELIAB ENG SYST SAFE, V216, DOI 10.1016/j.ress.2021.108010 Strijov V, 2010, COMPUT MATH APPL, V60, P981, DOI 10.1016/j.camwa.2010.03.021 Tandon A, 2021, TECHNOL FORECAST SOC, V171, DOI 10.1016/j.techfore.2021.120931 Temoçin BZ, 2014, J COMPUT APPL MATH, V259, P443, DOI 10.1016/j.cam.2013.10.021 Tong P, 2020, P I MECH ENG O-J RIS, V234, P550, DOI 10.1177/1748006X19886162 Van den Oord A, 2016, arXiv, DOI DOI 10.48550/ARXIV.1609.03499FOCUSTOLEARNMORE.ARXIV:1609 Wang H, 2020, COMPUT IND ENG, V140, DOI 10.1016/j.cie.2019.106212 Wang L, 2021, FASH TEXT, V8, DOI 10.1186/s40691-020-00239-0 Wang LY, 2020, QUAL TECHNOL QUANT M, V17, P216, DOI 10.1080/16843703.2019.1584956 Wang XL, 2021, INT J PROD ECON, V233, DOI 10.1016/j.ijpe.2020.107974 Wang XL, 2018, P I MECH ENG O-J RIS, V232, P284, DOI 10.1177/1748006X17742776 Wang X, 2017, RELIAB ENG SYST SAFE, V168, P355, DOI 10.1016/j.ress.2017.04.009 Wang YK, 2019, RELIAB ENG SYST SAFE, V189, P315, DOI 10.1016/j.ress.2019.05.006 Wasserman GS, 1996, IIE TRANS, V28, P967 Wieneke A, 2016, ELECTRON MARK, V26, P245, DOI 10.1007/s12525-016-0226-1 Wu K, 2020, IEEE T FUZZY SYST, V28, P3110, DOI 10.1109/TFUZZ.2019.2956904 Wu SM, 2013, RELIAB ENG SYST SAFE, V114, P1, DOI 10.1016/j.ress.2012.12.021 Wu SM, 2011, EUR J OPER RES, V213, P196, DOI 10.1016/j.ejor.2011.03.009 Xie W, 2017, IISE TRANS, V49, P553, DOI 10.1080/24725854.2016.1263769 Yang SC, 2018, IEEE T FUZZY SYST, V26, P3391, DOI 10.1109/TFUZZ.2018.2831640 Yao XX, 2022, SOFT COMPUT, V26, P189, DOI 10.1007/s00500-021-06455-0 Ye ZS, 2016, RELIAB ENG SYST SAFE, V155, P21, DOI 10.1016/j.ress.2016.05.013 Zafar MR, 2021, MACH LEARN KNOW EXTR, V3, P525, DOI 10.3390/make3030027 Zavala A, 2019, INT J PROD ECON, V208, P544, DOI 10.1016/j.ijpe.2018.12.020 Zhan YZ, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120504 Zhang ZM, 2019, COMPUT IND ENG, V130, P575, DOI 10.1016/j.cie.2019.03.014 Zhao XJ, 2018, RELIAB ENG SYST SAFE, V177, P108, DOI 10.1016/j.ress.2018.05.002 Zheng G., 1999, Journal of Computational Intelligence in Finance, V7, P18 Zheng L, 2023, COMPUT IND ENG, V177, DOI 10.1016/j.cie.2023.109031 Zheng L, 2021, EXPERT SYST APPL, V178, DOI 10.1016/j.eswa.2021.115030 Zheng L, 2020, DECIS SUPPORT SYST, V137, DOI 10.1016/j.dss.2020.113369 Zouein Pierrette, 2010, International Journal of Simulation & Process Modelling, V6, P19, DOI 10.1504/IJSPM.2010.032662 Zouein PP, 2022, J OPER RES SOC, V73, P1517, DOI 10.1080/01605682.2021.1920345 NR 144 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD APR PY 2024 VL 201 AR 123268 DI 10.1016/j.techfore.2024.123268 EA FEB 2024 PG 26 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA LR5K4 UT WOS:001188539900001 DA 2024-03-27 ER PT J AU Cheng, Y Jiang, H AF Cheng, Yang Jiang, Hua TI How Do AI-driven Chatbots Impact User Experience? Examining Gratifications, Perceived Privacy Risk, Satisfaction, Loyalty, and Continued Use SO JOURNAL OF BROADCASTING & ELECTRONIC MEDIA LA English DT Article AB This study examined how artificial intelligence (AI)-driven chatbots impact user experience. It collected survey data from 1,064 consumers who used any chatbot service from the top 30 brands in the U.S. Results indicated that utilitarian (information), hedonic (entertainment), technology (media appeal), and social (social presence) gratifications obtained from chatbot use positively predicted users' satisfaction with chatbot services of their selected brand. In contrast, perceived privacy risk associated with chatbot use reduced user satisfaction. Data also demonstrated that user satisfaction positively affected both the continued use intention of chatbot services and customer loyalty. Implications of this study are discussed. C1 [Cheng, Yang] North Carolina State Univ, Dept Commun, Raleigh, NC 27695 USA. [Jiang, Hua] Syracuse Univ, SI Newhouse Sch Publ Commun, Syracuse, NY USA. C3 North Carolina State University; Syracuse University RP Cheng, Y (autor correspondiente), North Carolina State Univ, Dept Commun, Raleigh, NC 27695 USA. EM ycheng20@ncsu.edu OI Cheng, Dr. Yang (Alice)/0000-0002-0321-7956 CR Ancu Monica., 2009, J BROADCASTING ELECT, V53 [Anonymous], 2018, J BUS RES [Anonymous], 2020, BUSINESS INSIDER [Anonymous], 2017, Forbes Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 BAE MY, 2018, COMPUT HUM BEHAV, V79 Balakrishnan J, 2017, J BEHAV ADDICT, V6, P364, DOI 10.1556/2006.6.2017.058 Bhattacherjee A, 2001, DECIS SUPPORT SYST, V32, P201, DOI 10.1016/S0167-9236(01)00111-7 Chang YP, 2012, COMPUT HUM BEHAV, V28, P995, DOI 10.1016/j.chb.2012.01.001 Cheng Y., 2019, International Journal of Strategic Communication, V13, P76, DOI [10.1080/1553118X.2018.1524382, DOI 10.1080/1553118X.2018.1524382] CHENG Y, 2020, J CONTINGENCIES CRIS Cheng Y, 2019, INT J COMMUN-US, V13, P319 Cheng Y, 2015, NEW MEDIA SOC, V17, P1096, DOI 10.1177/1461444814521362 Dehghani M, 2018, BEHAV INFORM TECHNOL, V37, P145, DOI 10.1080/0144929X.2018.1424246 Diddi A., 2006, Journal of Broadcasting Electronic Media, V50 Eeuwen M. V., 2017, Mobile conversational commerce: messenger chatbots as the next interface between businesses and consumers Farah MF, 2018, INT J BANK MARK, V36, P1386, DOI 10.1108/IJBM-10-2017-0215 FERRIS LA, 2018, J BROADCASTING ELECT, V62 Folstad, 2017, P 4 INT C INT SCI Fornell C., 2007, The satisfied customer: Winners and losers in the battle for buyer preference GAN C, 2018, COMPUT HUM BEHAV, V78 GAO L, 2017, INFORM SYST FRONT, V19 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Godlewski LR, 2010, COMMUN Q, V58, P148, DOI 10.1080/01463371003773358 Gogan ICW, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10093162 Hagberg J, 2016, INT J RETAIL DISTRIB, V44, P694, DOI 10.1108/IJRDM-09-2015-0140 Han M., 2018, J OPEN INNOVATION TE, V4, DOI 10.3390/joitmc4040046 Heeter C., 1992, Presence: Teleoperators & Virtual Environments, V1, P262, DOI [10.1162/pres.1992.1.2.262, DOI 10.1162/PRES.1992.1.2.262] Hess T, 2009, J ASSOC INF SYST, V10, P889 Ho S.Y., 2006, ELECTRON MARK, V16, DOI 10.1080/10196780500491162 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Huang M.H., 2018, Journal of Service Research JAMES ML, 1995, J BROADCASTING ELECT, V39 Jovic D., 2020, Smallbizgenius Jung JH, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11247063 Kahneman D., 2011, Thinking, Fast and Slow KEES J, 2017, J ADVERTISING, V46 Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim AJ, 2010, J GLOB FASH MARK, V1, P164, DOI 10.1080/20932685.2010.10593068 LaRose R, 2015, HBK COMMUN MEDIA, P365 LaRose R, 2010, COMMUN THEOR, V20, P194, DOI 10.1111/j.1468-2885.2010.01360.x Lin CA, 2006, J BROADCAST ELECTRON, V50, P140, DOI 10.1207/s15506878jobem5001_8 Liu ILB, 2016, J ASSOC INF SCI TECH, V67, P56, DOI 10.1002/asi.23371 LU B, 2016, COMPUT HUM BEHAV, V56 Oliver R.L., 1997, SATISFACTION OLIVER RL, 1980, J MARKETING RES, V17, P460, DOI 10.2307/3150499 PAPACHARISSI Z, 2010, J BROADCASTING ELECT, V44 Papacharissi Z, 2011, COMMUN SOC-SER, P212 PERKS GL, 2019, J BROADCASTING ELECT, V63 Ran W, 2006, NEW MEDIA SOC, V8, P53, DOI 10.1177/1461444806059870 RUBIN AM, 1983, J BROADCASTING, V27, P37, DOI 10.1080/08838158309386471 Russell S., 2010, Artificial intelligence a modern approach, V3rd RYAN RM, 2006, MOTIV EMOTION, V30 Sangar K, 2012, Gucci-Social media marketing strategies using internet and social networking sites Shankar V, 2003, INT J RES MARK, V20, P153, DOI 10.1016/S0167-8116(03)00016-8 Shawar B.A., 2007, Ldv Forum, V22, P29 STAFFORD TF, 2004, DECISION SCI, V35 Sundar S. S., 2008, Digital media, youth, and credibility, P73, DOI DOI 10.1162/DMAL.9780262562324.073 Sundar SS, 2010, HUM COMMUN RES, V36, DOI 10.1111/j.1468-2958.2010.01377.x SUNDAR SS, 2019, P 2019 CHI C HUM FAC, V538 SUNDAR SS, 2013, J BROADCASTING ELECT, V57 Wang EST, 2017, BEHAV INFORM TECHNOL, V36, P2, DOI 10.1080/0144929X.2016.1143033 XU C, 2012, INFORM MANAGEMENT, V49 Yao M., 2017, 100 BEST BOTS BRANDS Zhao L, 2012, DECIS SUPPORT SYST, V53, P825, DOI 10.1016/j.dss.2012.05.019 NR 65 TC 78 Z9 81 U1 55 U2 270 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0883-8151 EI 1550-6878 J9 J BROADCAST ELECTRON JI J. Broadcast. Electron. Media PD OCT 1 PY 2020 VL 64 IS 4 SI SI BP 592 EP 614 DI 10.1080/08838151.2020.1834296 EA DEC 2020 PG 23 WC Communication; Film, Radio, Television WE Social Science Citation Index (SSCI) SC Communication; Film, Radio & Television GA PZ0LB UT WOS:000596989800001 DA 2024-03-27 ER PT J AU Unal, M Park, YH AF Unal, Murat Park, Young-Hoon TI Fewer Clicks, More Purchases SO MANAGEMENT SCIENCE LA English DT Article DE customer experience; one-click buying; retailing; e-commerce; causal inference; machine learning; generalized random forests ID ONLINE; MANAGEMENT; ADOPTION; POLICIES; USAGE AB E-commerce retailers are increasingly faced with challenges of finding ways to provide a seamless shopping experience to customers. The checkout process and its related touch points are especially critical in shaping the customer experience. We study the impact of adopting one-click buying, a feature that reduces the number of steps required to place a purchase order to a single click, on subsequent customer behavior. Using quasi-experimental data over a period of 35 months from an online retailer before and after the launch of one click buying, we find adopting one-click buying is effective in lifting customer purchases and does so by making treated customers purchase more often and more items. The impact of adopting one-click buying on customer purchases after adoption is economically significant, persistent over time, and heterogeneous across customers. Analyzing clickstream data of customer activity online and purchases across product categories, we provide evidence that the increase in purchases is driven by richer engagement through both more visits to the website and more page views on visit and the expansion of purchases across categories. We discuss the implications of our findings for customer experience and targeting. C1 [Unal, Murat] Amazon Com Serv LLC, Seattle, WA 98109 USA. [Park, Young-Hoon] Cornell Univ, Samuel Curtis Johnson Grad Sch Management, Ithaca, NY 14853 USA. C3 Cornell University RP Unal, M (autor correspondiente), Amazon Com Serv LLC, Seattle, WA 98109 USA.; Park, YH (autor correspondiente), Cornell Univ, Samuel Curtis Johnson Grad Sch Management, Ithaca, NY 14853 USA. EM mu96@cornell.edu; yp34@cornell.edu OI Unal, Murat/0000-0002-6638-5500; Park, Young-Hoon/0000-0003-1760-3476 CR Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 Ascarza E, 2018, J MARKETING RES, V55, P80, DOI 10.1509/jmr.16.0163 Athey S., 2019, Estimating Treatment Effects with Causal Forests: An Application, V5, P37 Athey S, 2019, ANN STAT, V47, P1148, DOI 10.1214/18-AOS1709 Austin PC, 2009, STAT MED, V28, P3083, DOI 10.1002/sim.3697 Baumgartner H, 2002, J CONSUM RES, V29, P286, DOI 10.1086/341578 Bell DR, 2020, MANAGE SCI, V66, P4096, DOI 10.1287/mnsc.2019.3453 Bertrand M, 2004, Q J ECON, V119, P249, DOI 10.1162/003355304772839588 Bolton RN, 2004, J ACAD MARKET SCI, V32, P271, DOI 10.1177/0092070304263341 Boone C, 2009, MANAGE SCI, V55, P165, DOI 10.1287/mnsc.1080.0899 Bower AB, 2012, J MARKETING, V76, P110, DOI 10.1509/jm.10.0419 Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324 Brynjolfsson E, 2011, MANAGE SCI, V57, P1373, DOI 10.1287/mnsc.1110.1371 Clarke RT, 2007, HYDROL EARTH SYST SC, V11, P408, DOI 10.5194/hess-11-408-2007 Datta H, 2018, MARKET SCI, V37, P5, DOI 10.1287/mksc.2017.1051 De P, 2010, MANAGE SCI, V56, P1930, DOI 10.1287/mnsc.1100.1233 Digiday, 2017, END ER AM 1 CLICK BU Dutta R., 2003, Proceedings of the 24th International Conference in Information Systems, P15 Fong N, 2019, J MARKETING RES, V56, P310, DOI 10.1177/0022243718817513 Forman C, 2009, MANAGE SCI, V55, P47, DOI 10.1287/mnsc.1080.0932 Gallino S, 2018, M&SOM-MANUF SERV OP, V20, P767, DOI 10.1287/msom.2017.0686 Häubl G, 2000, MARKET SCI, V19, P4, DOI 10.1287/mksc.19.1.4.15178 Hui SK, 2013, J MARKETING, V77, P1, DOI 10.1509/jm.11.0436 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Iyengar R, 2022, J MARKETING RES, V59, P1101, DOI 10.1177/00222437221080163 Keele L, 2015, POLIT ANAL, V23, P313, DOI 10.1093/pan/mpv007 Kumar V, 2004, J RETAILING, V80, P317, DOI 10.1016/j.jretai.2004.10.007 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Magento, 2017, NEW INST PURCH CHECK Manchanda P, 2015, MARKET SCI, V34, P367, DOI 10.1287/mksc.2014.0890 Narang U, 2019, MARKET SCI, V38, P756, DOI 10.1287/mksc.2019.1169 Palmer JW, 2002, INFORM SYST RES, V13, P151, DOI 10.1287/isre.13.2.151.88 Parboteeah DV, 2009, INFORM SYST RES, V20, P60, DOI 10.1287/isre.1070.0157 PIRON F, 1991, ADV CONSUM RES, V18, P509 Prins R, 2007, J MARKETING, V71, P169, DOI 10.1509/jmkg.71.2.169 Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Rejoiner, 2017, VAL IS AM 1 CLICK PA Ridgway NM, 2008, J CONSUM RES, V35, P622, DOI 10.1086/591108 ROBINS JM, 1994, J AM STAT ASSOC, V89, P846, DOI 10.2307/2290910 ROBINSON PM, 1988, ECONOMETRICA, V56, P931, DOI 10.2307/1912705 Rossi PE, 1996, MARKET SCI, V15, P321, DOI 10.1287/mksc.15.4.321 Shankar V, 2018, J RETAILING, V94, pVI, DOI 10.1016/S0022-4359(18)30076-9 Shannon C. E., 1948, BELL SYST TECH J, V27, P623, DOI [DOI 10.1002/J.1538-7305.1948.TB00917.X, DOI 10.1002/J.1538-7305.1948.TB01338.X] Shehu E, 2020, J MARKETING RES, V57, P640, DOI 10.1177/0022243720921812 Shi SW, 2014, MARKET SCI, V33, P871, DOI 10.1287/mksc.2014.0872 Simester D, 2020, MANAGE SCI, V66, P3412, DOI 10.1287/mnsc.2019.3379 STERN H, 1962, J MARKETING, V26, P59, DOI 10.2307/1248439 Stuart EA, 2010, STAT SCI, V25, P1, DOI 10.1214/09-STS313 Thaler RH, 2008, MARKET SCI, V27, P15, DOI 10.1287/mksc.1070.0330 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Wagner RP, 2017, WHY AMAZONS 1 CLICKO Wang K, 2017, J MARKETING RES, V54, P706, DOI 10.1509/jmr.14.0518 Wang RJH, 2015, J RETAILING, V91, P217, DOI 10.1016/j.jretai.2015.01.002 Witman A, 2019, HEALTH SERV RES, V54, P492, DOI 10.1111/1475-6773.13086 Xu KQ, 2017, MANAGE SCI, V63, P1469, DOI 10.1287/mnsc.2015.2406 NR 55 TC 0 Z9 0 U1 34 U2 79 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD DEC PY 2023 VL 69 IS 12 BP 7317 EP 7334 DI 10.1287/mnsc.2023.4716 EA FEB 2023 PG 19 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA CU7X1 UT WOS:000936808200001 DA 2024-03-27 ER PT J AU Lu, FC Sinha, J AF Lu, Fang-Chi Sinha, Jayati TI Understanding retail exclusion and promoting an inclusive customer experience at transforming service encounters SO JOURNAL OF CONSUMER AFFAIRS LA English DT Article DE AI; customer experience; inclusive marketplace; retail exclusion; service encounter framework ID CONSUMER RESPONSES; EMOTIONAL CONTAGION; PROCEDURAL JUSTICE; SOCIAL EXCLUSION; STATUS DEMOTION; PRICE FAIRNESS; REJECTION; LOYALTY; EMPLOYEES; SMILE AB The authors review the marketing practices likely to make customers feel excluded (ignored or rejected) and analyze the potency of retail exclusion in the transforming service encounters due to the infusion of artificial intelligence (AI), robots, and other new technologies. Synthesizing the findings of prior studies, the authors propose an integrative theoretical framework for understanding different perspectives, psychological mechanisms, and outcomes of retail exclusion, and highlight research opportunities for retail exclusion in two contexts of service encounters: interpersonal and technology-powered. The review aims to provide implications on proactive strategies to minimize the adverse effects of retail exclusions and promote inclusive customer experiences. C1 [Lu, Fang-Chi] Univ Melbourne, Fac Business & Econ, Dept Management & Mkt, Melbourne, Vic, Australia. [Sinha, Jayati] Florida Int Univ, Coll Business, Miami, FL USA. [Lu, Fang-Chi] Univ Melbourne, Fac Business & Econ, Dept Management & Mkt, 198 Berkeley St, Melbourne, Vic 3010, Australia. C3 University of Melbourne; Melbourne Bioinformatics; State University System of Florida; Florida International University; University of Melbourne RP Lu, FC (autor correspondiente), Univ Melbourne, Fac Business & Econ, Dept Management & Mkt, 198 Berkeley St, Melbourne, Vic 3010, Australia. EM fangchi.lu@unimelb.edu.au RI Rau, Lea/IXW-9119-2023 CR Alba G, 2020, J RETAIL CONSUM SERV, V54, DOI 10.1016/j.jretconser.2020.102054 Alva M., 2021, AI ADOPTION INCREASE Anaya GJ, 2016, J SERV MARK, V30, P359, DOI 10.1108/JSM-03-2015-0121 Ascarza E, 2018, J MARKETING RES, V55, P80, DOI 10.1509/jmr.16.0163 BAGOZZI RP, 1975, J MARKETING, V39, P32, DOI 10.2307/1250593 Baker StaceyMenzel., 2005, Journal of Macromarketing, V25, P128, DOI DOI 10.1177/0276146705280622 Baker TL, 2011, PSYCHOL MARKET, V28, P188, DOI 10.1002/mar.20386 Banik S, 2020, SERV IND J, V40, P315, DOI 10.1080/02642069.2018.1477938 Banik S, 2019, J BUS RES, V96, P125, DOI 10.1016/j.jbusres.2018.11.010 Barger PB, 2006, ACAD MANAGE J, V49, P1229, DOI 10.2307/20159829 Barnes DC, 2019, J MARKET THEORY PRAC, V27, P174, DOI 10.1080/10696679.2019.1577686 Barone MJ, 2010, J MARKETING, V74, P121, DOI 10.1509/jmkg.74.2.121 Barone MJ, 2010, J CONSUM PSYCHOL, V20, P78, DOI 10.1016/j.jcps.2009.10.002 Bartneck C, 2007, AI SOC, V21, P217, DOI 10.1007/s00146-006-0052-7 BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497 Baumeister RF., 1990, J SOC CLIN PSYCHOL, V9, P165, DOI [10.1521/jscp.1990.9.2.165, DOI 10.1521/JSCP.1990.9.2.165] Beatty SE, 2016, J SERV RES-US, V19, P158, DOI 10.1177/1094670515624978 Belk R., 2020, INT J BUSINESS ANTHR, V10, P49 Berman B., 2001, RETAIL MANAGEMENT, V8th BITNER MJ, 1990, J MARKETING, V54, P71, DOI 10.2307/1252174 Bonifield C, 2007, MARKET LETT, V18, P85, DOI 10.1007/s11002-006-9006-6 Bove L.L., 2018, FRONT SERV C AUST TE Brave S, 2005, INT J HUM-COMPUT ST, V62, P161, DOI 10.1016/j.ijhcs.2004.11.002 Broadbent E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072589 BUGENTAL DB, 1986, PERS SOC PSYCHOL B, V12, P7, DOI 10.1177/0146167286121001 Burgess G, 2017, QUAL MARK RES, V20, P486, DOI 10.1108/QMR-09-2016-0085 Burgoon J. K., 1993, Journal of Language and Social Psychology, V12, P30, DOI [DOI 10.1177/0261927X93121003, 10.1177/0261927x93121003] Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chan KW, 2019, J SERV RES-US, V22, P371, DOI 10.1177/1094670519847294 Chang W, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102214 Cho J, 2006, J RETAILING, V82, P25, DOI 10.1016/j.jretai.2005.11.002 Choi S, 2020, SERV SCI, V12, P1, DOI 10.1287/serv.2019.0252 Choi S, 2019, INT J HOSP MANAG, V82, P32, DOI 10.1016/j.ijhm.2019.03.026 CIALDINI RB, 1980, J PERS SOC PSYCHOL, V39, P406, DOI 10.1037/0022-3514.39.3.406 Clarke D., 2020, EXPERIENCE IS EVERYT Coeckelbergh M, 2012, ETHICS INF TECHNOL, V14, P53, DOI 10.1007/s10676-011-9279-1 Dang JN, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2020.106612 Darke PR, 2003, J CONSUM PSYCHOL, V13, P328, DOI 10.1207/S15327663JCP1303_13 Davenport T, 2020, J ACAD MARKET SCI, V48, P24, DOI 10.1007/s11747-019-00696-0 Edelson S., 2020, FORBES Edwards D., 2021, RETAIL ROBOTS MARKET Fahnestock Jeanne., 2011, Rhetorical Style: The Uses of Language in Persuasion Feather N T, 1999, Pers Soc Psychol Rev, V3, P86, DOI 10.1207/s15327957pspr0302_1 Feinberg FM, 2002, J MARKETING RES, V39, P277, DOI 10.1509/jmkr.39.3.277.19108 Festinger L, 1954, HUM RELAT, V7, P117, DOI 10.1177/001872675400700202 FOLKES VS, 1988, J CONSUM RES, V14, P548, DOI 10.1086/209135 Frey CB, 2017, TECHNOL FORECAST SOC, V114, P254, DOI 10.1016/j.techfore.2016.08.019 Garvey AM, 2023, J MARKETING, V87, P10, DOI 10.1177/00222429211066972 Gong XS, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103005 Grandey AA, 2005, ORGAN BEHAV HUM DEC, V96, P38, DOI 10.1016/j.obhdp.2004.08.002 Gremler DD, 2008, J RETAILING, V84, P308, DOI 10.1016/j.jretai.2008.07.001 Grewal D, 2004, J INTERACT MARK, V18, P87, DOI 10.1002/dir.20024 Grewal D, 2007, J RETAILING, V83, P447, DOI 10.1016/j.jretai.2007.09.003 Grewal D, 2020, J ACAD MARKET SCI, V48, P96, DOI 10.1007/s11747-019-00697-z Griffiths MA, 2011, J CONSUM AFF, V45, P445, DOI 10.1111/j.1745-6606.2011.01212.x Guo Y., 2021, CASH MAY NOT KING CH Gusenbauer M, 2020, RES SYNTH METHODS, V11, P181, DOI 10.1002/jrsm.1378 Gwinner KP, 1998, J ACAD MARKET SCI, V26, P101, DOI 10.1177/0092070398262002 Hadi R, 2020, J CONSUM RES, V47, P256, DOI 10.1093/jcr/ucz039 Haenel CM, 2019, J SERV RES-US, V22, P301, DOI 10.1177/1094670519835312 Haenlein M., 2010, Journal of Relationship Marketing, V9, P200, DOI DOI 10.1080/15332667.2010.522474 Haenlein M, 2006, J MARKETING, V70, P5, DOI 10.1509/jmkg.70.3.5 Haenlein M, 2012, J SERV MARK, V26, P458, DOI 10.1108/08876041211257936 Harris AMG, 2005, J PUBLIC POLICY MARK, V24, P163, DOI 10.1509/jppm.24.1.163.63893 Harris EG, 2020, J MARKET THEORY PRAC, V28, P318, DOI 10.1080/10696679.2020.1763810 Harris K., 2018, HARVARD BUSINES 0313 Hawkes S., 2013, TELEGRAPG Hawkins A., 2017, The Guardian Heerdink MW, 2015, J EXP SOC PSYCHOL, V56, P60, DOI 10.1016/j.jesp.2014.09.004 Herhausen D, 2019, J MARKETING, V83, P1, DOI 10.1177/0022242918822300 Hess NJ, 2020, J RETAILING, V96, P344, DOI 10.1016/j.jretai.2019.11.005 Holmqvist J, 2019, J RETAILING, V95, P115, DOI 10.1016/j.jretai.2019.03.004 Holmqvist J, 2012, J SERV RES-US, V15, P430, DOI 10.1177/1094670512441997 Horton WS, 2013, METAPHOR SYMBOL, V28, P148, DOI 10.1080/10926488.2013.797735 Hu M, 2018, J BUS RES, V90, P164, DOI 10.1016/j.jbusres.2018.05.006 Huang MH, 2022, J RETAILING, V98, P209, DOI 10.1016/j.jretai.2021.03.001 Huang MH, 2021, J ACAD MARKET SCI, V49, P30, DOI 10.1007/s11747-020-00749-9 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Hui MK, 2004, J INT BUS STUD, V35, P46, DOI 10.1057/palgrave.jibs.8400067 Hutton M, 2019, CONSUMP MARK CULT, V22, P528, DOI 10.1080/10253866.2018.1561636 Hyken S., 2018, CUSTOMER EXPERIENCE Jin LY, 2014, J CONSUM RES, V40, P818, DOI 10.1086/673193 KAHNEMAN D, 1986, AM ECON REV, V76, P728 Kearney S, 2019, CONSUMP MARK CULT, V22, P545, DOI 10.1080/10253866.2018.1562701 Kim JJ, 2021, J ACAD MARKET SCI, V49, P71, DOI 10.1007/s11747-020-00719-1 Kim TW, 2020, PSYCHOL SCI, V31, P363, DOI 10.1177/0956797620904985 Koskelainen T, 2023, J CONSUM AFF, V57, P507, DOI 10.1111/joca.12510 KOTLER P, 1971, HARVARD BUS REV, V49, P74 Krumhuber E, 2007, EMOTION, V7, P730, DOI 10.1037/1528-3542.7.4.730 Kumar A, 2020, J BUS RES, V113, P384, DOI 10.1016/j.jbusres.2019.09.030 Lacey R, 2007, J SERV RES-US, V9, P241, DOI 10.1177/1094670506295850 Lamberton C, 2016, J MARKETING, V80, P146, DOI 10.1509/jm.15.0415 Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lee J, 2012, J CONSUM RES, V39, P530, DOI 10.1086/664039 Lee MK, 2018, BIG DATA SOC, V5, DOI 10.1177/2053951718756684 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Lepthien A, 2017, INT J RES MARK, V34, P829, DOI 10.1016/j.ijresmar.2017.02.001 Liu X, 2021, J CONSUM BEHAV, V20, DOI 10.1002/cb.1860 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Lu Z, 2021, ANN TOURISM RES, V87, DOI 10.1016/j.annals.2020.103135 Luo XM, 2021, J MARKETING, V85, P14, DOI 10.1177/0022242920956676 MacLellan L., 2019, Quartz Maslach C, 2001, ANNU REV PSYCHOL, V52, P397, DOI 10.1146/annurev.psych.52.1.397 McIntyre F.S., 1999, J MARKETING THEORY P, V7, P43, DOI [10.1080/10696679.1999.11501828, DOI 10.1080/10696679.1999.11501828] Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Mick DG, 2012, TRANSFORMATIVE CONSUMER RESEARCH FOR PERSONAL AND COLLECTIVE WELL-BEING, P1 Molden DC, 2009, J PERS SOC PSYCHOL, V96, P415, DOI 10.1037/a0012958 MUESER KT, 1984, J PERS SOC PSYCHOL, V46, P469, DOI 10.1037/0022-3514.46.2.469 Newman CL, 2019, J ACAD MARKET SCI, V47, P76, DOI 10.1007/s11747-018-0601-x Newman DT, 2020, ORGAN BEHAV HUM DEC, V160, P149, DOI 10.1016/j.obhdp.2020.03.008 Ng SC, 2022, J SERV MARK, V36, P991, DOI 10.1108/JSM-10-2021-0368 Nguyen B, 2013, J CONSUM MARK, V30, P17, DOI 10.1108/07363761311290812 Packard G, 2018, J MARKETING RES, V55, P541, DOI 10.1509/jmr.16.0118 Pantano E, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103074 Patagonia, GATH DIV EQ INCL TER Peterson RA, 2002, J RETAILING, V78, P9, DOI 10.1016/S0022-4359(01)00062-8 Pitardi V, 2022, J SERV MANAGE, V33, P389, DOI 10.1108/JOSM-12-2020-0435 Promberger M, 2006, J BEHAV DECIS MAKING, V19, P455, DOI 10.1002/bdm.542 Pugh SD, 2001, ACAD MANAGE J, V44, P1018, DOI 10.5465/3069445 Puntoni S, 2021, J MARKETING, V85, P131, DOI 10.1177/0022242920953847 Puntoni S, 2009, J CONSUM RES, V35, P1013, DOI 10.1086/595022 Radovanovic D, 2020, SOC INCL, V8, P151, DOI 10.17645/si.v8i2.2587 Ramaseshan B, 2017, J SERV MARK, V31, P650, DOI 10.1108/JSM-11-2016-0377 Reardon M., 2007, CNET Reynolds KL, 2006, J MARKET THEORY PRAC, V14, P95, DOI 10.2753/MTP1069-6679140201 Richman LS, 2009, PSYCHOL REV, V116, P365, DOI 10.1037/a0015250 Riva P., 2016, SOCIAL EXCLUSION PSY Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Rosado-Serrano A, 2018, J BUS RES, V85, P238, DOI 10.1016/j.jbusres.2017.12.049 Rosenbaum MS, 2021, J SERV MARK, V35, P261, DOI 10.1108/JSM-03-2021-0096 Saxe R., 1982, J MARKETING RES, V19, P343, DOI 10.1177/002224378201900307 Schaufeli WB, 2008, APPL PSYCHOL-INT REV, V57, P173, DOI 10.1111/j.1464-0597.2007.00285.x Shacklett M., 2022, CURR CONTENTS Shavitt S, 2020, J RETAILING, V96, P40, DOI 10.1016/j.jretai.2019.11.009 Silchenko K, 2020, J CONSUM AFF, V54, P541, DOI 10.1111/joca.12289 Simester D, 2020, MANAGE SCI, V66, P2495, DOI 10.1287/mnsc.2019.3308 SINGELIS TM, 1994, PERS SOC PSYCHOL B, V20, P580, DOI 10.1177/0146167294205014 Singh J, 2000, J MARKETING, V64, P15, DOI 10.1509/jmkg.64.2.15.17998 Sinha J, 2019, J CONSUM RES, V46, P791, DOI 10.1093/jcr/ucz021 Sirdeshmukh D, 2002, J MARKETING, V66, P15, DOI 10.1509/jmkg.66.1.15.18449 Söderlund M, 2021, EUR J MARKETING, V55, P94, DOI 10.1108/EJM-09-2019-0748 Soderlund M, 2021, J RETAIL CONSUM SERV, V59, DOI 10.1016/j.jretconser.2020.102401 Söderlund M, 2017, J RETAIL CONSUM SERV, V37, P168, DOI 10.1016/j.jretconser.2016.10.014 Spangler S., 2017, ISSUETRAK Srinivasan R, 2021, J MARKETING, V85, P74, DOI 10.1177/0022242921997082 Steinhoff L, 2016, J ACAD MARKET SCI, V44, P88, DOI 10.1007/s11747-014-0405-6 Stewart DW, 2022, J CONSUM AFF, V56, P1423, DOI 10.1111/joca.12495 Sun YX, 2023, J MARKETING RES, V60, P646, DOI 10.1177/00222437221130721 SUTTON RI, 1988, ACAD MANAGE J, V31, P461, DOI 10.5465/256456 Swinhoe D., 2021, RETAILERS EMBRACING Torraco R. J., 2005, Human Resource Development Review, V4, P356, DOI [10.1177/1534484305278283, DOI 10.1177/1534484305278283, https://doi.org/10.1177/1534484305278283] Trope Y, 2010, PSYCHOL REV, V117, P440, DOI 10.1037/a0018963 United Nations Department of Economic and Social Affairs Population Division, 2020, STESASERA444 POLL DI Vaidyanathan R, 2003, J BUS RES, V56, P453, DOI 10.1016/S0148-2963(01)00231-4 van Berlo G, 2014, SERV IND J, V34, P922, DOI 10.1080/02642069.2014.915950 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Van Kleef GA, 2022, ANNU REV PSYCHOL, V73, P629, DOI 10.1146/annurev-psych-020821-010855 van Prooijen JW, 2002, J PERS SOC PSYCHOL, V83, P1353, DOI 10.1037//0022-3514.83.6.1353 Wagner T, 2009, J MARKETING, V73, P69, DOI 10.1509/jmkg.73.3.69 Wang LL, 2017, EUR J MARKETING, V51, P1029, DOI 10.1108/EJM-12-2015-0876 Wang SJ, 2012, J MARKETING, V76, P69, DOI 10.1509/jm.10.0529 Wang Y, 2012, J CONSUM PSYCHOL, V22, P433, DOI 10.1016/j.jcps.2011.11.004 Ward MK, 2014, J CONSUM RES, V41, P590, DOI 10.1086/676980 Wei JH, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.842207 Weiss HM, 1996, RES ORGAN BEHAV, V18, P1 Wilson E., 2009, NEW YORK TIMES Wu CC, 2012, J BUS RES, V65, P106, DOI 10.1016/j.jbusres.2011.02.005 Xia L, 2017, J PROD BRAND MANAG, V26, P327, DOI 10.1108/JPBM-05-2016-1196 Xia L, 2014, J BUS RES, V67, P2368, DOI 10.1016/j.jbusres.2014.02.002 Xia L, 2010, J RETAILING, V86, P1, DOI 10.1016/j.jretai.2009.10.003 Yalcin G, 2022, J MARKETING RES, V59, P696, DOI 10.1177/00222437211070016 Zeithaml VA, 1996, J MARKETING, V60, P31, DOI 10.2307/1251929 NR 172 TC 1 Z9 1 U1 30 U2 49 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-0078 EI 1745-6606 J9 J CONSUM AFF JI J. Consum. Aff. PD JUL PY 2023 VL 57 IS 3 BP 1482 EP 1522 DI 10.1111/joca.12529 EA MAY 2023 PG 41 WC Business; Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA W4MC4 UT WOS:000981370800001 OA hybrid DA 2024-03-27 ER PT J AU Iyengar, R Park, YH Yu, Q AF Iyengar, Raghuram Park, Young-Hoon Yu, Qi TI The Impact of Subscription Programs on Customer Purchases SO JOURNAL OF MARKETING RESEARCH LA English DT Article DE subscription program; retailing; e-commerce; causal inference; machine learning; generalized random forest; sunk cost fallacy ID LOYALTY PROGRAMS; FREQUENCY REWARD; ONLINE; RETENTION; DEMAND; PSYCHOLOGY; ADOPTION; SERVICE; FEES AB Subscription programs have become increasingly popular among a wide variety of retailers and marketplace platforms. Subscription programs give members access to a set of exclusive benefits for a fixed fee up front. In this article, the authors examine the causal effect of a subscription program on customer behavior. To account for self-selection and identify the individual-level treatment effects, they combine a difference-in-differences approach with a generalized random forests procedure that matches each member of the subscription program with comparable nonmembers. The authors find that subscription leads to a large increase in customer purchases. The effect of subscription is economically significant, persistent over time, and heterogeneous across customers. Interestingly, only one-third of the effect on customer purchases is due to the economic benefits of the subscription program, and the remaining two-thirds is attributed to the noneconomic effect. Evidence supports that members experience a sunk cost fallacy due to the up-front payment that subscription programs entail. Finally, the authors illustrate how firms can calculate the profitability of a subscription program and discuss the implications for customer retention and subscription programs. C1 [Iyengar, Raghuram] Univ Penn, Wharton Sch, Dept Mkt, Mkt, Philadelphia, PA 19104 USA. [Park, Young-Hoon] Cornell Univ, Samuel Curtis Johnson Grad Sch Management, Management, Ithaca, NY 14853 USA. [Park, Young-Hoon] Cornell Univ, Samuel Curtis Johnson Grad Sch Management, Mkt, Ithaca, NY 14853 USA. [Yu, Qi] Singapore Management Univ, Lee Kong Chian Sch Business, Mkt, Singapore, Singapore. C3 University of Pennsylvania; Cornell University; Cornell University; Singapore Management University RP Iyengar, R (autor correspondiente), Univ Penn, Wharton Sch, Dept Mkt, Mkt, Philadelphia, PA 19104 USA. EM riyengar@wharton.upenn.edu; yp34@cornell.edu; qiyu@smu.edu.sg OI Yu, Qi/0000-0001-7889-0806 CR Abadie A, 2010, J AM STAT ASSOC, V105, P493, DOI 10.1198/jasa.2009.ap08746 Angrist JD, 2009, MOSTLY HARMLESS ECONOMETRICS: AN EMPIRICISTS COMPANION, P1 ARKES HR, 1985, ORGAN BEHAV HUM DEC, V35, P124, DOI 10.1016/0749-5978(85)90049-4 Athey S, 2019, ANN STAT, V47, P1148, DOI 10.1214/18-AOS1709 Baumgartner H, 2002, J CONSUM RES, V29, P286, DOI 10.1086/341578 Bertini M, 2008, MARKET SCI, V27, P236, DOI 10.1287/mksc.1070.0295 Bertrand M, 2004, Q J ECON, V119, P249, DOI 10.1162/003355304772839588 Bijmolt THA, 2005, J MARKETING RES, V42, P141, DOI 10.1509/jmkr.42.2.141.62296 Bolton RN, 2004, J ACAD MARKET SCI, V32, P271, DOI 10.1177/0092070304263341 Bolton RN, 2000, J ACAD MARKET SCI, V28, P95, DOI 10.1177/0092070300281009 Chernozhukov V, 2018, ECONOMET J, V21, pC1, DOI 10.1111/ectj.12097 Datta H, 2018, MARKET SCI, V37, P5, DOI 10.1287/mksc.2017.1051 Don, 2017, FORTUNE Drèze X, 2009, J CONSUM RES, V35, P890, DOI 10.1086/593946 Dubé JP, 2018, MARKET SCI, V37, P22, DOI 10.1287/mksc.2017.1047 Forman C, 2009, MANAGE SCI, V55, P47, DOI 10.1287/mnsc.1080.0932 Galak J, 2018, ANNU REV PSYCHOL, V69, P1, DOI 10.1146/annurev-psych-122216-011542 Goldfarb A, 2011, MANAGE SCI, V57, P57, DOI 10.1287/mnsc.1100.1246 Goli A, 2022, J MARKETING RES, V59, P11, DOI 10.1177/00222437211016360 Gopalakrishnan A, 2021, MARKET SCI, V40, P508, DOI 10.1287/mksc.2020.1268 Gourville J, 2002, HARVARD BUS REV, V80, P90 Grier SA, 2001, J MARKETING RES, V38, P216, DOI 10.1509/jmkr.38.2.216.18843 Hamilton, 2020, TIME SERIES ANAL PRI HANUSHEK EA, 1974, AM STAT, V28, P66, DOI 10.2307/2683605 Hartmann WR, 2008, QME-QUANT MARK ECON, V6, P109, DOI 10.1007/s11129-007-9035-3 Hastie T., 2005, ELEMENTS STAT LEARNI, V27, P83, DOI DOI 10.1007/978-0-387-84858-7 Hirano K, 2003, ECONOMETRICA, V71, P1161, DOI 10.1111/1468-0262.00442 Ho TH, 2018, MANAGE SCI, V64, P1761, DOI 10.1287/mnsc.2016.2651 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Iyengar R, 2011, MARKET SCI, V30, P820, DOI 10.1287/mksc.1110.0655 Kopalle PK, 2012, MARKET SCI, V31, P216, DOI 10.1287/mksc.1110.0687 Lal R, 2003, QME-QUANT MARK ECON, V1, P179 Leenheer J, 2007, INT J RES MARK, V24, P31, DOI 10.1016/j.ijresmar.2006.10.005 Lewis M, 2006, MARKET SCI, V25, P51, DOI 10.1287/mksc.1050.0150 Lewis M, 2006, J RETAILING, V82, P13, DOI 10.1016/j.jretai.2005.11.005 Lewis M, 2004, J MARKETING RES, V41, P281, DOI 10.1509/jmkr.41.3.281.35986 LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267 Liu YP, 2007, J MARKETING, V71, P19, DOI 10.1509/jmkg.71.4.19 Manchanda P, 2015, MARKET SCI, V34, P367, DOI 10.1287/mksc.2014.0890 McCarthy DM, 2017, J MARKETING, V81, P17, DOI 10.1509/jm.15.0519 Narang U, 2019, MARKET SCI, V38, P756, DOI 10.1287/mksc.2019.1169 Prins R, 2007, J MARKETING, V71, P169, DOI 10.1509/jmkg.71.2.169 Rogers, 2003, DIFFUSION INNOVATION ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 SATO K, 1972, J POLIT ECON, V80, P102, DOI 10.1086/259864 TELLIS GJ, 1988, J MARKETING RES, V25, P331, DOI 10.2307/3172944 THALER R, 1980, J ECON BEHAV ORGAN, V1, P39, DOI 10.1016/0167-2681(80)90051-7 Venkatesan R, 2012, J MARKETING, V76, P76, DOI 10.1509/jm.10.0162 Wang K, 2017, J MARKETING RES, V54, P706, DOI 10.1509/jmr.14.0518 Wood W, 2009, J CONSUM PSYCHOL, V19, P579, DOI 10.1016/j.jcps.2009.08.003 NR 50 TC 11 Z9 14 U1 51 U2 184 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-2437 EI 1547-7193 J9 J MARKETING RES JI J. Mark. Res. PD DEC PY 2022 VL 59 IS 6 BP 1101 EP 1119 AR 00222437221080163 DI 10.1177/00222437221080163 EA APR 2022 PG 19 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 5W0OI UT WOS:000789426100001 OA Green Submitted DA 2024-03-27 ER PT J AU Vermeer, SAM Araujo, T Bernritter, SF van Noort, G AF Vermeer, Susan A. M. Araujo, Theo Bernritter, Stefan F. van Noort, Guda TI Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media SO INTERNATIONAL JOURNAL OF RESEARCH IN MARKETING LA English DT Article DE eWOM; Webcare; Social media; Digital marketing strategies; Automated content analysis; Sentiment analysis; Machine learning ID USER-GENERATED CONTENT; TEXT ANALYSIS; ONLINE; WEBCARE; CUSTOMERS; SENTIMENT; CONSUMERS; PRODUCT; SERVICE; CHATTER AB The increasing volume of firm-related conversations on social media has made it considerably more difficult for marketers to track and analyse electronic word-of-mouth (eWOM) about brands, products or services. Firms often use sentiment analysis to identify relevant eWOM that requires a response to consequently engage in webcare. In this paper, we show that sentiment analysis of any kind might not be ideal for this purpose, because it relies on the questionable assumption that only negative eWOM is response-worthy and it is not able to infer meaning from text. We propose and test an approach based on supervised machine learning that first decides whether eWOM is relevant for the brand to respond, and then-based on a categorization of seven different types of eWOM (e.g., question, complaint)-classifies three customer satisfaction dimensions. Using a dataset of approximately 60,000 Facebook comments and 11,000 tweets about 16 different brands in eight different industries, we test and compare the efficacy of various sentiment analysis, dictionary-based and machine learning techniques to detect relevant eWOM. In doing so, this study identifies response-worthy eWOM based on the content instead of its expressed sentiment. The results indicate that these machine learning techniques achieve considerably higher accuracy in detecting relevant eWOM on social media compared to any kind of sentiment analysis. Moreover, it is shown that industry-specific classifiers can further improve this process and that algorithms are applicable across different social networks. (C) 2019 Elsevier B.V. All rights reserved. C1 [Vermeer, Susan A. M.; Araujo, Theo; van Noort, Guda] Univ Amsterdam, Amsterdam Sch Commun Res ASCoR, POB 15793, NL-1001 NG Amsterdam, Netherlands. [Bernritter, Stefan F.] Goldsmiths Univ London, Inst Management Studies, London SE14 6NW, England. C3 University of Amsterdam; University of London; Goldsmiths University London RP Vermeer, SAM (autor correspondiente), Univ Amsterdam, Amsterdam Sch Commun Res ASCoR, POB 15793, NL-1001 NG Amsterdam, Netherlands. EM SA.M.Vermeer@uva.nl; T.B.Araujo@uva.nl; S.Bernritter@gold.ac.uk; G.vanNoort@uva.nl RI Bernritter, Stefan/M-4750-2019 OI Bernritter, Stefan/0000-0002-4291-7824; van Noort, Guda/0000-0002-6314-1455; Araujo, Theo/0000-0002-4633-9339; Vermeer, Susan/0000-0002-9829-8057 CR [Anonymous], 2017, MARKETING SCI I WORK Berger J, 2010, MARKET SCI, V29, P815, DOI 10.1287/mksc.1090.0557 Bhandari M, 2018, INT J ADVERT, V37, P125, DOI 10.1080/02650487.2017.1349030 Bo Pang, 2008, Foundations and Trends in Information Retrieval, V2, P1, DOI 10.1561/1500000001 Boumans JW, 2016, DIGIT JOURNAL, V4, P8, DOI 10.1080/21670811.2015.1096598 Brown Penelope., 1978, Politeness: Some Universals in Language Usage Büschken J, 2016, MARKET SCI, V35, P953, DOI 10.1287/mksc.2016.0993 Colicev A, 2018, J MARKETING, V82, P37, DOI 10.1509/jm.16.0055 Colliander J, 2015, INT J ADVERT, V34, P181, DOI 10.1080/02650487.2014.996197 Coombs W.T., 2002, Journal of Public Affairs, V2, P215, DOI DOI 10.1002/PA.115 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 Cui H., 2006, Proceedings of the AAAI conference on artificial intelligence, V6, P1265, DOI DOI 10.5555/1597348.1597389 Demmers J, 2018, INT J ELECTRON COMM, V22, P8, DOI 10.1080/10864415.2018.1396110 Dhillon I. S., 2003, Journal of Machine Learning Research, V3, P1265, DOI 10.1162/153244303322753661 Esuli A, 2010, INT J MARKET RES, V52, P775, DOI 10.2501/S147078531020165X Ghose A, 2011, IEEE T KNOWL DATA EN, V23, P1498, DOI 10.1109/TKDE.2010.188 Godes D, 2004, MARKET SCI, V23, P545, DOI 10.1287/mksc.1040.0071 Gopinath S, 2014, MARKET SCI, V33, P241, DOI 10.1287/mksc.2013.0820 Grégoire Y, 2015, BUS HORIZONS, V58, P173, DOI 10.1016/j.bushor.2014.11.001 Guo L, 2016, J MASS COMMUN Q, V93, P332, DOI 10.1177/1077699016639231 Hansen N, 2018, INT J RES MARK, V35, P557, DOI 10.1016/j.ijresmar.2018.08.001 Hartmann J., 2018, INT J RES MARK, P1 Homburg C, 2015, J MARKETING RES, V52, P629, DOI 10.1509/jmr.11.0448 Huibers J, 2014, TIJDSCHR COMMUNWET, V42, P165 Humphreys A, 2018, J CONSUM RES, V44, P1274, DOI 10.1093/jcr/ucx104 Kaiser C, 2012, INTERNET RES, V22, P275, DOI 10.1108/10662241211235653 Kent A., 1955, AM DOC, V6, P93, DOI [10.1002/, 10.1002/asi.5090060209, DOI 10.1002/ASI.5090060209] Kietzmann J, 2013, J PUBLIC AFF, V13, P146, DOI 10.1002/pa.1470 Kübler RV, 2017, INT SER QUAN MARKET, P631, DOI 10.1007/978-3-319-53469-5_19 Kunneman F, 2015, INFORM PROCESS MANAG, V51, P500, DOI 10.1016/j.ipm.2014.07.006 Kupor D, 2018, J CONSUM RES, V45, P490, DOI 10.1093/jcr/ucy021 Li N, 2010, DECIS SUPPORT SYST, V48, P354, DOI 10.1016/j.dss.2009.09.003 Loper E., 2002, ASS COMPUTATIONAL LI, P63, DOI [10.3115/1225403.1225421, DOI 10.3115/1225403.1225421] Marchand A, 2017, INT J RES MARK, V34, P336, DOI 10.1016/j.ijresmar.2016.09.003 Martínez-Cámara E, 2014, NAT LANG ENG, V20, P1, DOI 10.1017/S1351324912000332 Maslowska E, 2017, INT J ADVERT, V36, P142, DOI 10.1080/02650487.2016.1195622 Moon S, 2017, INT J RES MARK, V34, P265, DOI 10.1016/j.ijresmar.2016.05.007 Munoz-Garcia O., 2012, WORKSH NLP CAN U TAG, P1 Nakhaeizadeh G., 1997, CLASSIFICATION KNOWL, P123 Okazaki S, 2014, INT J MARKET RES, V56, P467, DOI 10.2501/IJMR-2014-008 Ordenes F. V., 2018, J CONSUM RES, P1 Owsley S., 2006, AAAI Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW), P181 Packard G, 2017, J MARKETING RES, V54, P572, DOI 10.1509/jmr.15.0248 Pai MY, 2013, EXPERT SYST APPL, V40, P1993, DOI 10.1016/j.eswa.2012.10.024 Pauwels K, 2016, INT J RES MARK, V33, P639, DOI 10.1016/j.ijresmar.2016.01.005 Pennebaker JW., 2015, LIWC 2015 OPERATORS Phillips R.L., 2016, J. Bus. Financ. Librariansh, V21, P1, DOI [10.1080/08963568.2015.1110229, DOI 10.1080/08963568.2015.1110229] Rosario AB, 2016, J MARKETING RES, V53, P297, DOI 10.1509/jmr.14.0380 Schamari J, 2015, J INTERACT MARK, V30, P20, DOI 10.1016/j.intmar.2014.12.001 Schweidel DA, 2014, J MARKETING RES, V51, P387, DOI 10.1509/jmr.12.0424 Tang TY, 2014, J MARKETING, V78, P41, DOI 10.1509/jm.13.0301 Tirunillai S, 2014, J MARKETING RES, V51, P463, DOI 10.1509/jmr.12.0106 Tirunillai S, 2012, MARKET SCI, V31, P198, DOI 10.1287/mksc.1110.0682 van Laer T, 2010, INT J RES MARK, V27, P164, DOI 10.1016/j.ijresmar.2009.12.010 Van Noort G., 2014, Integrated Communications in the Post-Modern Erea, V1, P77 van Noort G, 2012, J INTERACT MARK, V26, P131, DOI 10.1016/j.intmar.2011.07.001 Weitzl W, 2018, COMPUT HUM BEHAV, V89, P316, DOI 10.1016/j.chb.2018.07.012 Willemsen L., 2013, Advances in Advertising Research, VIV, P55 Willemsen LM, 2011, J COMPUT-MEDIAT COMM, V17, P19, DOI 10.1111/j.1083-6101.2011.01551.x Wilson AE, 2017, J ACAD MARKET SCI, V45, P534, DOI 10.1007/s11747-017-0515-z Zhang W, 2011, EXPERT SYST APPL, V38, P2758, DOI 10.1016/j.eswa.2010.08.066 Zhang Z, 2012, ACM TRANS MANAG INF, V3, DOI 10.1145/2151163.2151168 NR 62 TC 72 Z9 77 U1 9 U2 76 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-8116 EI 1873-8001 J9 INT J RES MARK JI Int. J. Res. Mark. PD SEP PY 2019 VL 36 IS 3 SI SI BP 492 EP 508 DI 10.1016/j.ijresmar.2019.01.010 PG 17 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA JU4BR UT WOS:000501622900010 OA hybrid, Green Accepted, Green Published DA 2024-03-27 ER PT J AU Kaczorowska-Spychalska, D AF Kaczorowska-Spychalska, Dominika TI How chatbots influence marketing SO MANAGEMENT-POLAND LA English DT Article DE digital technologies; chatbots; consumer behavior; marketing AB The role of digital technologies, especially the Internet of Things (IoT) and Artificial Intelligence (AI), increasingly become a key element of diverse interactions between brands and consumers. Homo Cyber Oeconomicus, one of the potential stages of ongoing consumer's evolution, lives between processes of dehumanization of the surrounding world and humanization of digital technologies. While remaining in a constant contact with smart devices, systems and algorithms, they are looking for new values and meanings, which are a metaphor of their desires, fears and behaviors. As a result, the digital ecosystem, as an attempt to combine the humanism idea with technologization processes, poses new challenges to companies/brands, both concerning the quality of interactions with an increasingly digital consumer and tools used in that process. Chatbots can prove to be an interesting solution here, as their spectrum of potential areas of implementation in business systematically increases. The paper attempts to identify the influence of chatbots on marketing taking into account their role in Human-to-Machine interaction process. A part of these considerations is of the character of philosophical discourse on the role of that technology in human life, which is a starting point for the presentation of preliminary assumptions for a model of consumer-chatbot interaction (digital technology) in marketing activity of companies/brands. C1 [Kaczorowska-Spychalska, Dominika] Univ Lodz, Fac Management, Dept Mkt, Lodz, Poland. C3 University of Lodz RP Kaczorowska-Spychalska, D (autor correspondiente), Univ Lodz, Fac Management, Dept Mkt, Lodz, Poland. OI Kaczorowska-Spychalska, DOMINIKA/0000-0002-2566-0297 CR Aigrain P, 2012, SHARING: CULTURE AND THE ECONOMY IN THE INTERNET AGE, P1 [Anonymous], 2018, MARKETING 4 0 MOVING [Anonymous], 2015, OUR FINAL INVENTION [Anonymous], 2014, 2 MACHINE AGE AKILLI Borek A., 2016, MARKETING SMART MACH Daugherty P. R., 2018, Human + machine: Reimagining work in the age of AI DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 Gregor B, 2018, MARKETING ERZE TECHN Harari YN., 2016, HOMO DEUS BRIEF HIST, DOI DOI 10.17104/9783406704024 KELLY K, 2017, NIEUNIKNIONE JAK INT Kurzweil R., 2015, SINGULARITY IS NEAR Kurzweil Ray., 2013, How to Create a Mind: The Secret of Human Thought Revealed Lubian F., 2017, VALUE DIGITAL WORLD Przegalinska A, 2016, ISTOTY WIRTUALNE JAK, P239 Sathi A., 2016, COGNITIVE INTERNET T Sinclair Bruce., 2017, IoT Inc.: How Your Company Can Use the Internet of Things to Win in the Outcome Economy: How Your Company Can Use the Internet of Things to Win in the Outcome Economy, V1st SKINNER C, 2018, CYFROWI LUDZIE Tegmark M., 2017, Life 3.0 Walsh T., 2017, It's alive! Artificial Intelligence from the logic piano to killer robots Weinman J., 2015, DIGITAL DISCIPLINES Wuebben J., 2017, FUTURE MARKETING WIN [No title captured] [No title captured] [No title captured] NR 24 TC 26 Z9 27 U1 11 U2 101 PU SCIENDO PI WARSAW PA DE GRUYTER POLAND SP Z O O, BOGUMILA ZUGA 32A STR, 01-811 WARSAW, POLAND SN 1429-9321 EI 2299-193X J9 MANAG-POL JI Manag.-Pol. PD JUN PY 2019 VL 23 IS 1 BP 251 EP 270 DI 10.2478/manment-2019-0015 PG 20 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA IE0GZ UT WOS:000472066400015 OA gold, Green Submitted DA 2024-03-27 ER PT J AU Li, WW Cai, Y Hanafiah, MH Liao, ZW AF Li, Wanwan Cai, Ying Hanafiah, Mohd Hizam Liao, Zhenwei TI An Empirical Study on Personalized Product Recommendation Based on Cross-Border E-Commerce Customer Data Analysis SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Cross-Border E-Commerce; Recommendation Systems Automatically; Personalized Recommendation; Deep Learning Technology; Data Sparsity; Commodity Information AB Thanks to the rapid growth of cross-border e-commerce platforms, numerous cross-border items are now available to customers. Several serious issues with cross-border e-commerce platforms related to item promotion and consumer product screening have arisen. Particular importance should be placed on studying and implementing personalized recommendation systems based on international e-commerce. In light of the quick expansion of commodities, when making individualized suggestions, traditional recommendation algorithms have had to deal with issues such as scant data, a chilly start to the market, and trouble identifying user preferences. To automatically mine the implicit and latent relationships between users and objects in recommendation systems, this study employs deep learning with nonlinear learning capabilities, which resolves the challenges of user interest mining. The weaknesses of the existing global recommendation research are emphasized, the study of conventional recommendation algorithms mixed with deep learning technology is deep factorization machine (DeepFM) and neural matrix factorization (NeuMF) models. Both models excel in recommending implicit feedback data. The DeepFM model yields the lowest loss function values, while the NeuMF model outperforms the competing models in terms of HR@20 (a commonly used indicator to measure the recall rate) and loss functions. In summary, this research addresses critical issues in cross-border e-commerce by developing personalized recommendation systems and integrating deep learning with traditional recommendation algorithms to enhance global recommendations. C1 [Li, Wanwan; Hanafiah, Mohd Hizam; Liao, Zhenwei] Univ Kebangsaan Malaysia, Bangi, Malaysia. [Li, Wanwan; Cai, Ying] Taizhou Vocat & Tech Coll, Taizhou, Peoples R China. C3 Universiti Kebangsaan Malaysia RP Hanafiah, MH (autor correspondiente), Univ Kebangsaan Malaysia, Bangi, Malaysia. FU Scientific Research Fund of Zhejiang Provincial Education Department [Y202352165] FX Funding This research was supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y202352165) . CR Adomavicius G, 2005, IEEE T KNOWL DATA EN, V17, P734, DOI 10.1109/TKDE.2005.99 Ankora Carlos, 2022, International Journal of Information Technologies and Systems Approach, P1, DOI 10.4018/IJITSA.304809 Balabanovic M, 1997, COMMUN ACM, V40, P66, DOI 10.1145/245108.245124 Choi J. W., 2020, Applied Computing and Information Technology, P17 Choi SM, 2012, EXPERT SYST APPL, V39, P8079, DOI 10.1016/j.eswa.2012.01.132 Donahue J, 2014, PR MACH LEARN RES, V32 Fan R. X., 2019, Unpublished master's thesis Gao O. U., 2019, Transducer and Microsystem Technologies Hinton GE, 2006, NEURAL COMPUT, V18, P1527, DOI 10.1162/neco.2006.18.7.1527 Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2] Huang GJ, 2020, ALGORITHMS, V13, DOI 10.3390/a13120342 Jianfeng Tang, 2021, 10th International Conference on Computer Engineering and Networks. Advances in Intelligent Systems and Computing (AISC 1274), P233, DOI 10.1007/978-981-15-8462-6_27 Kautz H, 1997, COMMUN ACM, V40, P63, DOI 10.1145/245108.245123 Koren Y, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P447 Koren Y, 2009, COMPUTER, V42, P30, DOI 10.1109/MC.2009.263 Li CY, 2020, NEURAL COMPUT APPL, V32, P11245, DOI 10.1007/s00521-020-05042-y Li MY, 2022, J ORGAN END USER COM, V34, DOI 10.4018/JOEUC.302893 Li W. X., 2019, Computer Technology and Development, V29, P18 Liu NN, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2414425.2414440 Liu Y., 2020, Computer & Digital Engineering, V366, P44 Liu Y. J., 2014, Network Security Technology & Application, V12, P28 McAuley J, 2015, SIGIR 2015: PROCEEDINGS OF THE 38TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, P43, DOI 10.1145/2766462.2767755 Sukte Chudaman Devidasrao, 2022, International Journal of Information Technologies and Systems Approach, P1, DOI 10.4018/IJITSA.304810 Tang Y, 2022, J ORGAN END USER COM, V34, DOI 10.4018/JOEUC.298702 Terveen L, 1997, COMMUN ACM, V40, P59, DOI 10.1145/245108.245122 [王媛媛 Wang Yuanyuan], 2017, [计算机科学, Computer Science], V44, P63 Wang Z, 2020, J PHYS CONF SER, V1575, DOI 10.1088/1742-6596/1575/1/012035 Wenjing Yan, 2020, IOP Conference Series: Materials Science and Engineering, V768, DOI 10.1088/1757-899X/768/7/072010 Wu C. Y., 2017, P INT C LEARNING REP Xiaofei L., 2020, Computer Science, V47, P56 Yu Bao, 2019, COMPUTER APPL SOFTWA, V36, P307 Yue J, 2015, REMOTE SENS LETT, V6, P468, DOI 10.1080/2150704X.2015.1047045 [岳希 Yue Xi], 2020, [工程科学与技术, Advanced Engineering Sciences], V52, P198 Zhang SA, 2019, ACM COMPUT SURV, V52, DOI 10.1145/3285029 NR 34 TC 0 Z9 0 U1 2 U2 2 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2024 VL 36 IS 1 AR 335498 DI 10.4018/JOEUC.335498 PG 16 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA II1V4 UT WOS:001165615200003 OA gold DA 2024-03-27 ER PT J AU Korbel, JJ Siddiq, UH Zarnekow, R AF Korbel, Jakob J. Siddiq, Umar H. Zarnekow, Ruediger TI Towards Virtual 3D Asset Price Prediction Based on Machine Learning SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE 3D model; virtual asset; virtual product; virtual good; pricing; machine learning; feature scoring; e-commerce; metaverse ID MEAN ABSOLUTE ERROR; CORRELATION-COEFFICIENTS; MODERATING ROLE; DESIGN SCIENCE; INFORMATION; PSYCHOLOGY; INTENTION; SELECTION; PRODUCTS; SPARSE AB Although 3D models are today indispensable in various industries, the adequate pricing of 3D models traded on online platforms, i.e., virtual 3D assets, remains vague. This study identifies relevant price determinants of virtual 3D assets through the analysis of a dataset containing the characteristics of 135.384 3D models. Machine learning algorithms were applied to derive a virtual 3D asset price prediction tool based on the analysis results. The evaluation revealed that the random forest regression model is the most promising model to predict virtual 3D asset prices. Furthermore, the findings imply that the geometry and number of material files, as well as the quality of textures, are the most relevant price determinants, whereas animations and file formats play a minor role. However, the analysis also showed that the pricing behavior is still substantially influenced by the subjective assessment of virtual 3D asset creators. C1 [Korbel, Jakob J.; Siddiq, Umar H.; Zarnekow, Ruediger] Tech Univ Berlin, Dept Econ & Management, Informat & Commun Management, D-10623 Berlin, Germany. C3 Technical University of Berlin RP Korbel, JJ (autor correspondiente), Tech Univ Berlin, Dept Econ & Management, Informat & Commun Management, D-10623 Berlin, Germany. EM jakob.j.korbel@tu-berlin.de; uhsiddiq@googlemail.com; ruediger.zarnekow@tu-berlin.de OI Korbel, Jakob J./0000-0003-3135-5229 CR 3D Systems, 3D SYST WHAT IS STL Afrianto M. A., 2020, Journal of Information Systems Engineering and Business Intelligence, V2, DOI [10.20473/jisebi.6.2.123-132, DOI 10.20473/JISEBI.6.2.123-132] Alasadi S., 2017, J ENG APPL SCI, V12, P4102, DOI [10.3923/jeasci.2017.4102.4107, 10.36478/jeasci.2017.4102.4107, DOI 10.36478/JEASCI.2017.4102.4107] Algharabat R, 2017, J RETAIL CONSUM SERV, V36, P203, DOI 10.1016/j.jretconser.2017.02.007 Ali J., 2012, INT J COMPUT SCI ISS, V9, P272 Animesh A, 2011, MIS QUART, V35, P789 [Anonymous], 2007, J THEOR APPL ELECT C, DOI DOI 10.3390/JTAER2010002 [Anonymous], TURBOSQUID PRODUCT P [Anonymous], CGTRADER ANAL [Anonymous], UNITY MANUAL MAT [Anonymous], Unity Asset Store [Anonymous], Makerbot thingiverse [Anonymous], SKETCHFAB LEADING PL [Anonymous], AUTODESK FBX [Anonymous], ADROIT MARKET RES GL [Anonymous], SKETCHFAB SELLER GUI [Anonymous], FLASK WEB DEV ONE DR Arshad M.R., 2019, INT J RECENT TECHNOL, V8, P4138 Bar-Lev SK, 1999, COMMUN STAT-THEOR M, V28, P1813, DOI 10.1080/03610929908832390 Batista GEAPA, 2003, APPL ARTIF INTELL, V17, P519, DOI 10.1080/08839510390219309 Bauer J, 2018, DECIS SUPPORT SYST, V106, P53, DOI 10.1016/j.dss.2017.12.002 Bergstra J, 2012, J MACH LEARN RES, V13, P281 Botchkarev A., 2018, ARXIV, DOI [10.28945/4184, DOI 10.28945/4184] Brassington G., 2017, P EGU GEN ASS C VIEN Cao LJ, 2003, NEUROCOMPUTING, V55, P321, DOI 10.1016/S0925-2312(03)00433-8 CGTrader, CGTRADER WHAT PRIC S CGTrader Marketplace, CGTRADER MARK WORLDS Chai T, 2014, GEOSCI MODEL DEV, V7, P1247, DOI 10.5194/gmd-7-1247-2014 Chandrashekar G, 2014, COMPUT ELECTR ENG, V40, P16, DOI 10.1016/j.compeleceng.2013.11.024 Chang CW, 2021, J THEOR APPL EL COMM, V16, P584, DOI 10.3390/jtaer16040035 Chen TQ, 2016, KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P785, DOI 10.1145/2939672.2939785 Chen ZS, 2020, J COMPUT APPL MATH, V365, DOI 10.1016/j.cam.2019.112395 Cheung CMK, 2015, ELECTRON COMMER R A, V14, P241, DOI 10.1016/j.elerap.2015.03.001 Chu X, 2016, SIGMOD'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, P2201, DOI 10.1145/2882903.2912574 Chung H.M., 1999, J F MANAGEMENT INFOR, V16, P11 Cleghorn J, 2015, DIGIT EDUC REV, P91 CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411 de Winter JCF, 2016, PSYCHOL METHODS, V21, P273, DOI 10.1037/met0000079 Dolonius D, 2020, COMPUT GRAPH FORUM, V39, P121, DOI 10.1111/cgf.13917 Drobetz W, 2021, J ASSET MANAG, V22, P507, DOI 10.1057/s41260-021-00237-x Fairfield JAT, 2005, BOSTON U LAW REV, V85, P1047 Ge ZQ, 2017, IEEE ACCESS, V5, P20590, DOI 10.1109/ACCESS.2017.2756872 Greenstein-Messica A, 2020, ELECTRON COMMER R A, V40, DOI 10.1016/j.elerap.2019.100914 Gu SH, 2020, REV FINANC STUD, V33, P2223, DOI 10.1093/rfs/hhaa009 Hamari J, 2017, COMPUT HUM BEHAV, V71, P59, DOI 10.1016/j.chb.2017.01.042 Harris CR, 2020, NATURE, V585, P357, DOI 10.1038/s41586-020-2649-2 Hevner AR, 2004, MIS QUART, V28, P75, DOI 10.2307/25148625 Huang LS, 2008, ANN STAT, V36, P2085, DOI 10.1214/07-AOS531 Hunter JD, 2007, COMPUT SCI ENG, V9, P90, DOI 10.1109/MCSE.2007.55 Islam Md Didarul, 2022, Machine Learning with Applications, V7 Israel JH, 2009, COMPUT GRAPH-UK, V33, P462, DOI 10.1016/j.cag.2009.05.005 Jiang ZH, 2004, J MANAGE INFORM SYST, V21, P111, DOI 10.1080/07421222.2004.11045817 Jovic A, 2015, 2015 8TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), P1200, DOI 10.1109/MIPRO.2015.7160458 Ke D, 2012, DECISION SCI, V43, P1039, DOI 10.1111/j.1540-5915.2012.00384.x Korbel JJ, 2021, L N INF SYST ORGAN, V46, P492, DOI 10.1007/978-3-030-86790-4_33 Kropp L.A., 2019, P 27 EUROPEAN C INFO Kuhn M, 2019, Feature engineering and selection: A practical approach for predictive models, DOI DOI 10.1201/9781315108230 Lehdonvirta V, 2009, INFORM COMMUN SOC, V12, P1059, DOI 10.1080/13691180802587813 Lewis R.L., 2000, 2000 ANN M SOC ACAD Ma Y, 2018, INT J COMPUT COMMUN, V13, P235 Ma Y, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P1, DOI 10.1007/978-1-4419-9326-7 Mäntymäki M, 2015, INT J INFORM MANAGE, V35, P124, DOI 10.1016/j.ijinfomgt.2014.10.004 Menard S, 2000, AM STAT, V54, P17, DOI 10.2307/2685605 Mohd T., 2019, INT J RECENT TECHNOL, V8, DOI DOI 10.35940/IJRTE.B1084.0982S1119 Mughal MJH, 2018, INT J ADV COMPUT SC, V9, P208 Mystakidis S. M., 2022, ENCYCLOPEDIA, V2022, P486, DOI [10.3390/encyclopedia2010031, DOI 10.3390/ENCYCLOPEDIA2010031] Natekin A, 2013, FRONT NEUROROBOTICS, V7, DOI 10.3389/fnbot.2013.00021 Nguyen G, 2019, ARTIF INTELL REV, V52, P77, DOI 10.1007/s10462-018-09679-z Oviedo-Gomez A., 2021, INT J ENERGY EC POLI, V11, P66, DOI [10.32479/ijeep.11346, DOI 10.32479/IJEEP.11346] Pai HY, 2019, PROCEEDINGS OF THE 2019 IEEE EURASIA CONFERENCE ON IOT, COMMUNICATION AND ENGINEERING (ECICE), P195, DOI 10.1109/ecice47484.2019.8942651 Pan JJ, 2009, COMPUT ANIMAT VIRT W, V20, P121, DOI 10.1002/cav.284 Pandas, about us Pandey AC, 2020, J AMB INTEL HUM COMP, V11, P719, DOI 10.1007/s12652-019-01330-1 Park H, 2013, COMPUT IND, V64, P854, DOI 10.1016/j.compind.2013.05.006 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Peffers K., 2006, DESIGN SCI RES PROCE Peffers K, 2007, J MANAGE INFORM SYST, V24, P45, DOI 10.2753/MIS0742-1222240302 Peng Y., 2019, APPL MATH FINANCE, V26, P69, DOI DOI 10.1080/1350486X.2019.1593866 Pfouga A, 2015, ADV TRANSDISCIPL ENG, V2, P575, DOI 10.3233/978-1-61499-544-9-575 Puth MT, 2015, ANIM BEHAV, V102, P77, DOI 10.1016/j.anbehav.2015.01.010 Pyle D., 1999, Data Preparation for Data Mining Razavi R, 2019, INT J CONTEMP HOSP M, V31, P2149, DOI 10.1108/IJCHM-09-2018-0707 Refaeilzadeh, 2009, ENCY DATABASE SYST, DOI [DOI 10.1007/978-1-4899-7993-3_565-2, 10.1007/978-0-387-39940-9_565] Riar M, 2023, INTERNET RES, V33, P242, DOI 10.1108/INTR-08-2021-0611 Schmidhuber J, 2015, NEURAL NETWORKS, V61, P85, DOI 10.1016/j.neunet.2014.09.003 Scrapy, SCRAP OP SOURC COLL Sebastiao H, 2021, FINANC INNOV, V7, DOI 10.1186/s40854-020-00217-x Shen BQ, 2021, APPL SCI-BASEL, V11, DOI 10.3390/app112311087 Smink AR, 2019, ELECTRON COMMER R A, V35, DOI 10.1016/j.elerap.2019.100854 Spedicato G.A., 2018, Variance, Casualty Actuarial Society, V12, P69 Srivastava A.K., 1995, Econometric Reviews, V14, P229, DOI DOI 10.1080/07474939508800317 Thaseen IS, 2014, 2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), P879, DOI 10.1109/IC3I.2014.7019692 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x TurboSquid, TURBOSQUID 3D MOD PR Wang QY, 2021, INT J DATA SCI ANAL, V12, P175, DOI 10.1007/s41060-021-00252-6 Waskom M., 2021, J OPEN SOURCESOFTW, V6, P3021 Zheng A, 2018, Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists Zhu DH, 2015, J ELECTRON COMMER RE, V16, P22 Zhu JL, 2018, ANNU REV CONTROL, V46, P107, DOI 10.1016/j.arcontrol.2018.09.003 NR 99 TC 3 Z9 3 U1 9 U2 37 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD SEP PY 2022 VL 17 IS 3 BP 924 EP 948 DI 10.3390/jtaer17030048 PG 25 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 4R9JV UT WOS:000857071700001 OA gold DA 2024-03-27 ER PT J AU Fridrich, M Dostál, P AF Fridrich, Martin Dostal, Petr TI User Churn Model in E-Commerce Retail SO SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE-SERIES D-FACULTY OF ECONOMICS AND ADMINISTRATION LA English DT Article DE User Model; Churn Prediction; Customer Relationship Management; Electronic Commerce; Retail; Machine Learning; Feature Importance; Feature Set Importance ID PARTIAL DEFECTION; CUSTOMER CHURN; RETENTION; PREDICTION AB In e-commerce retail, maintaining a healthy customer base through retention management is necessary. Churn prediction efforts support the goal of retention and rely upon dependent and independent characteristics. Unfortunately, there does not appear to be a consensus regarding a user churn model. Thus, our goal is to propose a model based on a traditional and new set of attributes and explore its properties using auxiliary evaluation. Individual variable importance is assessed using the best performing modeling pipelines and a permutation procedure. In addition, we estimate the effects on the performance and quality of a feature set using an original technique based on importance ranking and information retrieval. The performance benchmark reveals satisfying pipelines utilizing LR, SVM-RBF, and GBM learners. The solutions rely profoundly on traditional recency and frequency aspects of user behavior. Interestingly, SVM-RBF and GBM exploit the potential of more subtle elements describing user preferences or date-time behavioural patterns. The collected evidence may also aid business decision-making associated with churn prediction efforts, e.g., retention campaign design. C1 [Fridrich, Martin; Dostal, Petr] Brno Univ Technol, Inst Informat, Fac Business & Management, Brno, Czech Republic. C3 Brno University of Technology RP Fridrich, M (autor correspondiente), BUT, Fac Business & Management, Kolejni 2906-4, Brno 61200, Czech Republic. EM fridrichmartin@yahoo.com RI Fridrich, Martin/GWD-1250-2022; Dostál, Petr/H-1584-2014; Dostál, Petr/JTV-6004-2023 OI Fridrich, Martin/0000-0003-3060-0704; Dostal, Petr/0000-0002-7871-4789 CR Abbasi A, 2015, IEEE INTELL SYST, V30, P35, DOI 10.1109/MIS.2015.19 Aggarwal CC, 2014, CH CRC DATA MIN KNOW, P457 Almuqren L, 2021, FUTURE INTERNET, V13, DOI 10.3390/fi13070175 [Anonymous], 2018, CUSTOMER NEEDS SOLUT [Anonymous], 2017, Kaggle Berger P, 2019, IEEE INTELL SYST, V34, P44, DOI 10.1109/MIS.2019.2895788 Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324 Brusilovsky P, 1996, USER MODEL USER-ADAP, V6, P87, DOI 10.1007/BF00143964 Buckinx W, 2005, EUR J OPER RES, V164, P252, DOI 10.1016/j.ejor.2003.12.010 Chou YC, 2018, SERV BUS, V12, P685, DOI 10.1007/s11628-018-0371-z Clemente-Císcar M, 2014, EUR J OPER RES, V239, P276, DOI 10.1016/j.ejor.2014.04.029 Montiel MAD, 2020, PAP REG SCI, V99, P1643, DOI 10.1111/pirs.12552 Fader PS, 2005, MARKET SCI, V24, P275, DOI 10.1287/mksc.1040.0098 Glady N, 2009, EUR J OPER RES, V197, P402, DOI 10.1016/j.ejor.2008.06.027 Gordini N, 2017, IND MARKET MANAG, V62, P100, DOI 10.1016/j.indmarman.2016.08.003 Gronwald K.D., 2017, INTEGRATED BUSINESS Hand DJ, 2009, MACH LEARN, V77, P103, DOI 10.1007/s10994-009-5119-5 Hughes A., 2012, Strategic Database Marketing 4e: The Masterplan for Starting and Managing a Profitable, Customer-Based Marketing Program Jahromi AT, 2014, IND MARKET MANAG, V43, P1258, DOI 10.1016/j.indmarman.2014.06.016 Kim K, 2012, EXPERT SYST APPL, V39, P13328, DOI 10.1016/j.eswa.2012.05.069 MacKenzie I., 2018, RETAILERS CAN KEEP C Mezghani Manel, 2012, P 21 INT C COMP WORL, P969, DOI DOI 10.1145/2187980.2188230 Morgan B., 2018, Forbes Mozer MC, 2000, IEEE T NEURAL NETWOR, V11, P690, DOI 10.1109/72.846740 Netzer O, 2008, MARKET SCI, V27, P185, DOI 10.1287/mksc.1070.0294 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Perisic A, 2022, IEEE T GAMES, V14, P126, DOI 10.1109/TG.2021.3067114 Rachid AD, 2018, Int J Electr Comput Eng, V8, P2367 Rothmeier K, 2021, IEEE T GAMES, V13, P78, DOI 10.1109/TG.2020.2992282 Schiffman L.G., 2012, CONSUMER BEHAV EUROP, V2nd Terdiman D., 2018, Fast Company Williams CKI, 2001, ADV NEUR IN, V13, P682 Xueling Li, 2019, Ingenierie des systemes d'information, V24, P525, DOI 10.18280/isi.240510 Yu XB, 2011, EXPERT SYST APPL, V38, P1425, DOI 10.1016/j.eswa.2010.07.049 NR 34 TC 0 Z9 0 U1 1 U2 6 PU Univ Pardubice, Fac Economics Adm PI Pardubice PA Studentska 95, Pardubice, CZECH REPUBLIC SN 1211-555X EI 1804-8048 J9 SCI PAP U PARD-SER D JI Sci. Papers U. Pardubice-Ser. D- Faculty of Econ. Admin. PY 2022 VL 30 IS 1 AR 1478 DI 10.46585/sp30011478 PG 12 WC Business; Economics; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA O2ER0 UT WOS:001042007200008 OA gold, Green Published DA 2024-03-27 ER PT J AU Distante, C Fineo, L Mainetti, L Manco, L Taccardi, B Vergallo, R AF Distante, Cosimo Fineo, Laura Mainetti, Luca Manco, Luigi Taccardi, Benito Vergallo, Roberto TI HF-SCA: Hands-Free Strong Customer Authentication Based on a Memory-Guided Attention Mechanisms SO JOURNAL OF RISK AND FINANCIAL MANAGEMENT LA English DT Article DE strong customer authentication; transaction risk analysis; risk-based assessment; PSD2; machine learning; user experience; vocal interaction ID CLASSIFICATION; AUTOENCODER; NETWORKS; MODEL AB Strong customer authentication (SCA) is a requirement of the European Union Revised Directive on Payment Services (PSD2) which ensures that electronic payments are performed with multifactor authentication. While increasing the security of electronic payments, the SCA impacted seriously on the shopping carts abandonment: an Italian bank computed that 22% of online purchases in the first semester of 2021 did not complete because of problems with the SCA. Luckily, the PSD2 allows the use of transaction risk analysis tool to exempt the SCA process. In this paper, we propose an unsupervised novel combination of existing machine learning techniques able to determine if a purchase is typical or not for a specific customer, so that in the case of a typical purchase the SCA could be exempted. We modified a well-known architecture (U-net) by replacing convolutional blocks with squeeze-and-excitation blocks. After that, a memory network was added in a latent space and an attention mechanism was introduced in the decoding side of the network. The proposed solution was able to detect nontypical purchases by creating temporal correlations between transactions. The network achieved 97.7% of AUC score over a well-known dataset retrieved online. By using this approach, we found that 98% of purchases could be executed by securely exempting the SCA, while shortening the customer's journey and providing an elevated user experience. As an additional validation, we developed an Alexa skill for Amazon smart glasses which allows a user to shop and pay online by merely using vocal interaction, leaving the hands free to perform other activities, for example driving a car. C1 [Distante, Cosimo] Natl Res Council Italy, Inst Appl Sci & Intelligent Syst ISASI, I-73100 Lecce, Italy. [Fineo, Laura] Banca Sella SpA, Dept Mkt, I-13900 Biella, Italy. [Mainetti, Luca; Vergallo, Roberto] Univ Salento, Dept Innovat Engn, I-73100 Lecce, Italy. [Manco, Luigi] Vidyasoft srl, I-73047 Monteroni Di Lecce, Italy. [Taccardi, Benito] Univ Salento, Fac Engn, I-73100 Lecce, Italy. C3 Consiglio Nazionale delle Ricerche (CNR); Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" (ISASI-CNR); University of Salento; University of Salento RP Vergallo, R (autor correspondiente), Univ Salento, Dept Innovat Engn, I-73100 Lecce, Italy. EM cosimo.distante@cnr.it; laura.fineo@sella.it; luca.mainetti@unisalento.it; luigi.manco@vidyasoft.it; benito.taccardi@studenti.unisalento.it; roberto.vergallo@unisalento.it RI Mainetti, Luca/N-4360-2015; Distante, Cosimo/M-7996-2013 OI Taccardi, Benito/0000-0001-5353-7248; Distante, Cosimo/0000-0002-1073-2390; Vergallo, Roberto/0000-0003-3560-806X CR Ahmed M, 2017, COMPUTER, V50, P76, DOI 10.1109/MC.2017.3571051 Al-Qatf M, 2018, IEEE ACCESS, V6, P52843, DOI 10.1109/ACCESS.2018.2869577 Ali Haseeb., 2019, International Journal of Engineering & Technology, V8, P390, DOI [10.14419/ijet.v8i3.29508, DOI 10.14419/IJET.V8I3.29508] Alrawashdeh K, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P195, DOI [10.1109/ICMLA.2016.167, 10.1109/ICMLA.2016.0040] Althubiti S, 2018, IEEE SOUTHEASTCON [Anonymous], 2016, DIR EU 2015 2366 EUR [Anonymous], 3 KAGGL SOL [Anonymous], 2 KAGGL SOL [Anonymous], SELL DAT CHALL [Anonymous], 1 KAGGL SOL [Anonymous], 2018, Financial Stability and Payment Systems Report [Anonymous], CRED CARD FRAUD DET [Anonymous], 5 KAGGL SOL [Anonymous], 2017, MANAGING WEB THINGS [Anonymous], 4 KAGGL SOL Arun GK, 2020, IIOAB J, V11, P85 Asha R.B., 2021, GLOBAL TRANSITIONS P, V2, P35, DOI [10.1016/j.gltp.2021.01.006, DOI 10.1016/J.GLTP.2021.01.006] Aygun R. Can, 2017, 2017 IEEE 4th International Conference on Cyber-Security and Cloud Computing (CSCloud), P193, DOI 10.1109/CSCloud.2017.39 Bahdanau Dzmitry., 2016, arXiv Bank of Italy, BANK IT REG SANDB Cao V, 2016, LECT NOTES COMPUT SC, V9921, P717, DOI 10.1007/978-3-319-45823-6_67 Chalapathy R., 2019, ARXIV Chen ZY, 2021, IEEE ACCESS, V9, P83762, DOI 10.1109/ACCESS.2021.3086359 Cheng DW, 2022, IEEE T KNOWL DATA EN, V34, P3800, DOI 10.1109/TKDE.2020.3025588 Cheng DW, 2020, AAAI CONF ARTIF INTE, V34, P362 Cordero Carlos Garcia, 2016, 2016 14th Annual Conference on Privacy, Security and Trust (PST), P317, DOI 10.1109/PST.2016.7906980 Ebong J, 2021, J RISK FINANC MANAG, V14, DOI 10.3390/jrfm14090393 Fu K, 2016, LECT NOTES COMPUT SC, V9949, P483, DOI 10.1007/978-3-319-46675-0_53 Garcia Gonzalez Gaston, 2021, ACM SIGMETRICS Performance Evaluation Review, V48, P49, DOI 10.1145/3466826.3466843 Higa Kyota., 2019, IEEE CONF IMAGING SY Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372] Huang G, 2016, LECT NOTES COMPUT SC, V9908, P646, DOI 10.1007/978-3-319-46493-0_39 Imam T, 2022, J RISK FINANC MANAG, V15, DOI 10.3390/jrfm15020077 Intrator Y, 2018, Arxiv, DOI arXiv:1810.05221 Jurgovsky J, 2018, EXPERT SYST APPL, V100, P234, DOI 10.1016/j.eswa.2018.01.037 Kadlubek M, 2022, ENERGIES, V15, DOI 10.3390/en15134668 Latah M, 2018, Arxiv, DOI arXiv:1807.04739 Lin Zilong., 2021, PACIFIC ASIA C KNOWL Lopez-Martin M, 2017, SENSORS-BASEL, V17, DOI 10.3390/s17091967 Luong M-T., 2015, ARXIV Malaiya RK, 2018, INT CONF COMPUT NETW, P893, DOI 10.1109/ICCNC.2018.8390278 Matsubara T, 2018, IEEE IJCNN Mirsky Y, 2018, 25TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2018), DOI 10.14722/ndss.2018.23204 Naseer S, 2018, IEEE ACCESS, V6, P48231, DOI 10.1109/ACCESS.2018.2863036 Oktay O., 2018, ATTENTION U NET LEAR Park Hyunjong., 2020, IEEECVF C COMPUTER V Paul PongkuKumar., 2020, THESIS U TURKU TURKU Porwal U, 2019, IEEE TRUST, P280, DOI 10.1109/TrustCom/BigDataSE.2019.00045 Randhawa K, 2018, IEEE ACCESS, V6, P14277, DOI 10.1109/ACCESS.2018.2806420 Rawat W, 2017, NEURAL COMPUT, V29, P2352, DOI [10.1162/neco_a_00990, 10.1162/NECO_a_00990] Reshetnikova L, 2021, J RISK FINANC MANAG, V14, DOI 10.3390/jrfm14090401 Rigaki M., 2017, ST 152 WORKSH INT AU Ring M, 2019, COMPUT SECUR, V82, P156, DOI 10.1016/j.cose.2018.12.012 Rongfang Gao, 2019, Journal of Physics: Conference Series, V1237, DOI 10.1088/1742-6596/1237/5/052023 Ronneberger O, 2015, LECT NOTES COMPUT SC, V9351, P234, DOI 10.1007/978-3-319-24574-4_28 Saarnilehto Ilkka., 2018, PROCIEDINGS SEMINAR, P71 Tang TA, 2016, 2016 INTERNATIONAL CONFERENCE ON WIRELESS NETWORKS AND MOBILE COMMUNICATIONS (WINCOM), pP258, DOI 10.1109/WINCOM.2016.7777224 Varma D. Suneel, 2019, 2019 International Conference on Communication and Signal Processing (ICCSP), P0001, DOI 10.1109/ICCSP.2019.8697932 Yin CL, 2018, 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BIG DATA (ICAIBD), P228, DOI 10.1109/ICAIBD.2018.8396200 Yu Y, 2017, SECUR COMMUN NETW, DOI 10.1155/2017/4184196 Zolotukhin M, 2016, 2016 23RD INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), DOI 10.1109/ICT.2016.7500408 Zoppi T, 2020, I C DEPEND SYS NETWO, P81, DOI 10.1109/DSN-S50200.2020.00044 NR 62 TC 3 Z9 3 U1 1 U2 4 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1911-8066 EI 1911-8074 J9 J RISK FINANC MANAG JI J. Risk Financ. Manag. PD AUG PY 2022 VL 15 IS 8 AR 342 DI 10.3390/jrfm15080342 PG 24 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 4B4QY UT WOS:000845765300001 OA Green Published, gold DA 2024-03-27 ER PT J AU Brengman, M De Gauquier, L Willems, K Vanderborght, B AF Brengman, Malaika De Gauquier, Laurens Willems, Kim Vanderborght, Bram TI From stopping to shopping: An observational study comparing a humanoid service robot with a tablet service kiosk to attract and convert shoppers SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Humanoid Service Robot; Tablet Service Kiosk; Observation study; POS Conversion Funnel ID TECHNOLOGIES; BEHAVIOR; IMPACT; SALES; MEDIA AB This study investigates the effectiveness of a humanoid service robot (HSR) versus a tablet service kiosk (TSK) along the stages of the point-of-sale (POS) conversion funnel. The observational data gathered by means of a field experiment show that the HSR elicited 26 times more interactions (i.e., passersby touching the screen) than the TSK and that these interactions lasted almost +50% as long. Moreover, more people looked at the store and consequently entered it when the HSR was deployed. Furthermore, more unique transactions were registered, and a higher amount was spent during the days when the HSR was present in front of the store. This study proves that implementing an HSR in the store environment is more effective than a TSK in attracting passersby and converting them into buyers. C1 [Brengman, Malaika; De Gauquier, Laurens; Willems, Kim] Vrije Univ Brussel, Fac Social Sci, Pl Laan 2, B-1050 Brussels, Belgium. [Brengman, Malaika; De Gauquier, Laurens; Willems, Kim] Vrije Univ Brussel, Solvay Business Sch, Dept Business Mkt & Consumer Behav, Pl Laan 2, B-1050 Brussels, Belgium. [Vanderborght, Bram] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium. [Vanderborght, Bram] IMEC, Brubot, Pl Laan 2, B-1050 Brussels, Belgium. C3 Vrije Universiteit Brussel; Vrije Universiteit Brussel; Vrije Universiteit Brussel; IMEC RP Brengman, M (autor correspondiente), Vrije Univ Brussel, Fac Social Sci, Pl Laan 2, B-1050 Brussels, Belgium.; Brengman, M (autor correspondiente), Vrije Univ Brussel, Solvay Business Sch, Dept Business Mkt & Consumer Behav, Pl Laan 2, B-1050 Brussels, Belgium. EM malaika.brengman@vub.be; Laurens.De.Gauquier@vub.be; kim.willems@vub.be; Bram.Vanderborght@vub.be RI Vanderborght, Bram/A-1599-2008 OI Brengman, Malaika/0000-0001-9860-7107; De Gauquier, Laurens/0000-0002-4343-1412; Willems, Kim/0000-0002-0941-8599 FU VLAIO (Vlaams Agentschap Innoveren & Ondernemen - Flanders Innovation & Entrepreneurship Agency) under Baekeland Grant [150726]; Digitopia N.V. (Wijnegem, Belgium); EU [611391] FX Acknowledgements This work was supported by VLAIO (Vlaams Agentschap Innoveren & Ondernemen - Flanders Innovation & Entrepreneurship Agency) under Baekeland Grant Number 150726 ('In search of a sustainable competitive advantage: Digitally instrumenting bricks-and-mortar retailing in Flanders) , which is co-funded by Digitopia N.V. (Wijnegem, Belgium) as well as by the EU FP7 project DREAM grant no. 611391. CR Aaltonen I, 2017, ACMIEEE INT CONF HUM, P53, DOI 10.1145/3029798.3038362 Abdelkader O.A., 2019, Journal of Theoretical and Applied Information Technology, V97, P1693 Baird N., 2017, ROBOTS WILL BE RETAI Barry T.E., 1990, INT J ADVERT, V9, P121, DOI [10.1080/02650487.1990.11107138, DOI 10.1080/02650487.1990.11107138] Bergmann Kirsten, 2012, Intelligent Virtual Agents. Proceedings 12th International Conference, IVA 2012, P126, DOI 10.1007/978-3-642-33197-8_13 Bertacchini F, 2017, COMPUT HUM BEHAV, V77, P382, DOI 10.1016/j.chb.2017.02.064 Bhattacharya P, 2018, HUMANOID ROBOT MARKE Block L.G., 1997, Journal of Consumer Psychology, V6, P31, DOI DOI 10.1207/S15327663JCP0601_02 Brengman M., 2019, Homo Roboticus, P167 Brignull H., 2003, Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction (Zurich, Switzerland, September 1-5, V3, P17 Burke RR, 2009, J ADVERTISING RES, V49, P180, DOI 10.2501/S0021849909090254 Choi S, 2019, INT J HOSP MANAG, V82, P32, DOI 10.1016/j.ijhm.2019.03.026 Cooper MJ, 2007, IND MARKET MANAG, V36, P173, DOI 10.1016/j.indmarman.2006.03.005 DAFT RL, 1986, MANAGE SCI, V32, P554, DOI 10.1287/mnsc.32.5.554 Dalton NS, 2015, CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, P3889, DOI 10.1145/2702123.2702150 De Gauquier L., 2020, RETAIL FUTURES, P15 De Panafieu O., 2016, ROBOTS RETAIL WHAT D De Pelsmacker P., 2018, MARKETING COMMUNICAT, VSixth Evangelista F, 2020, ASIA PAC J MARKET LO, V32, P149, DOI 10.1108/APJML-02-2018-0076 Gartner, 2018, 5 TRENDS EM GARTN HY 5 TRENDS EM GARTN HY Gefen D., 2003, E-Service Journal, V2, P7, DOI [DOI 10.2979/ESJ.2003.2.2.7, https://doi.org/10.2979/esj.2003.2.2.7] Geuens M, 2004, TOURISM MANAGE, V25, P615, DOI 10.1016/j.tourman.2003.07.003 Ghirvu A.I., 2013, The USV Annals of Economics and Public Administration, V13, P90 Grewal D, 2020, J ACAD MARKET SCI, V48, P96, DOI 10.1007/s11747-019-00697-z Gross HM, 2009, 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, P2005, DOI 10.1109/IROS.2009.5354497 Guido G, 2019, J ADVERTISING RES, V59, P219, DOI 10.2501/JAR-2018-030 Hassan S, 2015, PROCD SOC BEHV, V172, P262, DOI 10.1016/j.sbspro.2015.01.363 Heikkilä P, 2019, LECT NOTES ARTIF INT, V11876, P548, DOI 10.1007/978-3-030-35888-4_51 Herse S, 2018, IEEE ROMAN, P7, DOI 10.1109/ROMAN.2018.8525581 Huang EM, 2008, LECT NOTES COMPUT SC, V5013, P228, DOI 10.1007/978-3-540-79576-6_14 Hui SK, 2013, J MARKETING RES, V50, P445, DOI 10.1509/jmr.12.0065 Iwamura Y, 2011, ACMIEEE INT CONF HUM, P449, DOI 10.1145/1957656.1957816 Iwasaki M, 2018, IEEE ROMAN, P300, DOI 10.1109/ROMAN.2018.8525772 Johnson R.D., 1999, Journal of Informatics Education, V4, P15 Kallweit K, 2014, J RETAIL CONSUM SERV, V21, P268, DOI 10.1016/j.jretconser.2014.02.002 Kamei K., 2010, RECOMMENDATION ROBOT, P19 Kanda T, 2010, IEEE T ROBOT, V26, P897, DOI 10.1109/TRO.2010.2062550 Ko BC, 2018, SENSORS-BASEL, V18, DOI 10.3390/s18020401 Lengel R. H., 1988, ACADEMY MANAGEMENT E, V2, P225, DOI DOI 10.5465/AME.1988.4277259 Lewis E., 1908, Financial Advertising Lin YH, 2013, TOURISM MANAGE, V36, P426, DOI 10.1016/j.tourman.2012.09.017 Luo J. T., 2020, EXPLORING ROLE MEDIA, P1 Memarovic N., 2015, UNDERSTANDING DISPLA, P7 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Meuter ML, 2000, J MARKETING, V64, P50, DOI 10.1509/jmkg.64.3.50.18024 Michelis D, 2011, INT J HUM-COMPUT INT, V27, P562, DOI 10.1080/10447318.2011.555299 Montazeribarforoushi S, 2017, COGENT PSYCHOL, V4, DOI 10.1080/23311908.2017.1363343 Müller J, 2009, LECT NOTES COMPUT SC, V5538, P1, DOI 10.1007/978-3-642-01516-8_1 Muller J., 2012, P SIGCHI C HUM FACT P SIGCHI C HUM FACT, P297 Nakagawa K, 2013, INT J SOC ROBOT, V5, P5, DOI 10.1007/s12369-012-0141-3 Neves A, 2017, VEHITS: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, P373, DOI 10.5220/0006385903730380 Newman A., 2006, INT J DIGITAL CONTEN, V4, P50 Niemelä M, 2017, ACMIEEE INT CONF HUM, P227, DOI 10.1145/3029798.3038301 Nisbett R.E., 1980, HUMAN INTERFACE STRA Ogawa Kohei, 2009, RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication, P516, DOI 10.1109/ROMAN.2009.5326352 Ogino A., 2010, MODELING HUMAN INTER Parker C., 2018, P ACM INTERACTIVE MO, V2, P1 Ravnik R, 2013, INTERACT COMPUT, V25, P218, DOI 10.1093/iwc/iws023 Ro T, 2007, VIS COGN, V15, P322, DOI 10.1080/13506280600590434 Roggeveen AL, 2016, J RETAILING, V92, P122, DOI 10.1016/j.jretai.2015.08.001 Sabelli AM, 2016, INT J SOC ROBOT, V8, P211, DOI 10.1007/s12369-015-0332-9 Saldien J, 2009, THESIS THESIS Scherer A, 2015, MIS QUART, V39, P177 Sciutti A, 2018, IEEE TECHNOL SOC MAG, V37, P22, DOI 10.1109/MTS.2018.2795095 Seiler S, 2017, QME-QUANT MARK ECON, V15, P241, DOI 10.1007/s11129-017-9184-y Seiler S, 2017, MARKET SCI, V36, P565, DOI 10.1287/mksc.2017.1026 Shi C, 2016, ACMIEEE INT CONF HUM, P519, DOI 10.1109/HRI.2016.7451835 Shiomi M, 2013, INT J SOC ROBOT, V5, P251, DOI 10.1007/s12369-013-0180-4 Softbank Robotics, 2019, BETT BUS JUST ADD PE BETT BUS JUST ADD PE Sorensen H, 2017, J RETAIL CONSUM SERV, V37, P182, DOI 10.1016/j.jretconser.2017.02.003 Su KW, 2016, J AMB INTEL HUM COMP, V7, P817, DOI 10.1007/s12652-016-0343-x Ullal M.S., 2018, Problems and Prospective in Management, V16, P285, DOI [DOI 10.2139/SSRN.3513259, 10.2139/ssrn.3513259] Underwood C, 2019, ROBOTS RETAIL EXAMPL van de Sanden S, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102177 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Weinberg N, 2019, SOFTBANK ROBOTICS BU WELLS WD, 1966, J MARKETING RES, V3, P227, DOI 10.2307/3149897 Wijaya B.S., 2012, INT RES J BUS STUD, V5, P73, DOI DOI 10.21632/IRJBS.5.1.73-85 Willems K, 2017, INT J RETAIL DISTRIB, V45, P910, DOI 10.1108/IJRDM-10-2016-0177 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Zhang XL, 2014, J MARKETING, V78, P24, DOI 10.1509/jm.12.0106 Zibafar A, 2021, INT J SOC ROBOT, V13, P509, DOI 10.1007/s12369-019-00566-3 NR 82 TC 38 Z9 39 U1 7 U2 52 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD SEP PY 2021 VL 134 BP 263 EP 274 DI 10.1016/j.jbusres.2021.05.025 EA MAY 2021 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA TX1VR UT WOS:000682879500022 DA 2024-03-27 ER PT J AU De Gauquier, L Brengman, M Willems, K Cao, HL Vanderborght, B AF De Gauquier, Laurens Brengman, Malaika Willems, Kim Cao, Hoang-Long Vanderborght, Bram TI In or out? A field observational study on the placement of entertaining robots in retailing SO INTERNATIONAL JOURNAL OF RETAIL & DISTRIBUTION MANAGEMENT LA English DT Article DE Humanoid service robots; Observation; Field study; POS conversion funnel; Retail ID IN-STORE; SERVICE ROBOTS; SALES; ATMOSPHERE; BENEFITS; BEHAVIOR AB Purpose The purpose of this paper is to empirically investigate the role of the placement (i.e. location) of humanoid service robots (HSRs) for entertainment applications in retailing by inspecting a multitude of performance metrics along the point-of-sale conversion funnel. Design/methodology/approach The study was conducted using unobtrusive observations at a Belgian chocolate store. In total, 42 h of video observation material was collected and analyzed, with an even spread over three conditions: (1) an HSR placed outside, (2) an HSR inside the store and (3) a control condition (no robot stimuli). All passersby and their interactions with the robot and the store were systematically coded and compared. Findings The study found that the better placement of HSRs (inside or outside the store) is contingent on the goals the retailer prioritizes. When the goal is to create awareness and interest toward the store, the HSR should be placed outside, as it has double the stopping power. To induce consumers to enter the store, placement of the HSR inside the store is the better option. Ultimately, however, in terms of the number of transactions and total amount spent, outside placement of the HSR outperforms inside placement. Research limitations/implications This study was not able to verify the internal emotional/cognitive state of the passersby, as the method relied on unobtrusive camera observations. A longitudinal research design would be desirable to exclude potential bias due to the novelty effect. Originality/value While research on robots in retail services is emerging, this study is the first to provide insights on how retailers can decide on the placement of robots inside or outside the store, depending on the particular goals they are aiming to reach at the point of purchase. C1 [De Gauquier, Laurens] Vrije Univ Brussel, Appl Econ, Brussels, Belgium. [Brengman, Malaika] Vrije Univ Brussel, Fac Social Sci, Brussels, Belgium. [Brengman, Malaika] Vrije Univ Brussel, Solvay Business Sch, Brussels, Belgium. [Willems, Kim] Vrije Univ Brussel, Brussels, Belgium. [Cao, Hoang-Long] Vrije Univ Brussel, Electromech Engn, Brussels, Belgium. [Vanderborght, Bram] Vrije Univ Brussel, Robot & Multibody Mech Res Grp, Brussels, Belgium. [Willems, Kim] Hasselt Univ, Diepenbeek, Belgium. [Cao, Hoang-Long] Flanders Make, Brussels, Belgium. [Vanderborght, Bram] IMEC, Brussels, Belgium. C3 Vrije Universiteit Brussel; Vrije Universiteit Brussel; Vrije Universiteit Brussel; Vrije Universiteit Brussel; Vrije Universiteit Brussel; Vrije Universiteit Brussel; Hasselt University; IMEC RP Brengman, M (autor correspondiente), Vrije Univ Brussel, Fac Social Sci, Brussels, Belgium. EM laurens.de.gauquier@vub.be; malaika.brengman@vub.be; kim.willems@vub.be; Hoang.Long.Cao@vub.be; bram.vanderborght@vub.be RI Vanderborght, Bram/A-1599-2008 OI Willems, Kim/0000-0002-0941-8599; Brengman, Malaika/0000-0001-9860-7107; Cao, Hoang-Long/0000-0003-2851-5527; De Gauquier, Laurens/0000-0002-4343-1412 CR Aaltonen I, 2017, ACMIEEE INT CONF HUM, P53, DOI 10.1145/3029798.3038362 [Anonymous], 2017, CREATING CONSUMER BU Bagdasarov Z, 2020, ORGAN DYN, V49, DOI 10.1016/j.orgdyn.2018.09.002 Ben Mimoun MS, 2012, J RETAIL CONSUM SERV, V19, P605, DOI 10.1016/j.jretconser.2012.07.006 Brengman M., 2019, Homo Roboticus, P167 Brignull H., 2003, Proceedings of the IFIP TC13 International Conference on Human-Computer Interaction (Zurich, Switzerland, September 1-5, V3, P17 Burke RR, 2009, J ADVERTISING RES, V49, P180, DOI 10.2501/S0021849909090254 Choi S, 2019, INT J HOSP MANAG, V82, P32, DOI 10.1016/j.ijhm.2019.03.026 Cooper MJ, 2007, IND MARKET MANAG, V36, P173, DOI 10.1016/j.indmarman.2006.03.005 Cornelius B, 2010, J RETAIL CONSUM SERV, V17, P143, DOI 10.1016/j.jretconser.2009.11.004 Dahl DW, 2005, J CONSUM PSYCHOL, V15, P307, DOI 10.1207/s15327663jcp1504_5 De Gauquier L., 2019, REC ADV RET SERV SCI, P22 De Gauquier L., 2020, RETAIL FUTURES, P15 De Gauquier L, 2018, ACMIEEE INT CONF HUM, P373, DOI 10.1145/3173386.3177535 Doering N, 2015, INT J SOC ROBOT, V7, P203, DOI 10.1007/s12369-014-0257-8 DONOVAN RJ, 1994, J RETAILING, V70, P283, DOI 10.1016/0022-4359(94)90037-X DONOVAN RJ, 1982, J RETAILING, V58, P34 Esteban P.G., 2017, Paladyn, Journal of Behavioral Robotics, V8, P18, DOI [DOI 10.1515/PJBR-2017-0002, DOI 10.1515/pjbr-2017-0002] Fam KS, 2011, ASIA PAC J MARKET LO, V23, P165, DOI 10.1108/13555851111120470 Garrido-Morgado A, 2016, FRONT PSYCHOL, V7, DOI 10.3389/fpsyg.2016.00336 Gartner, 2020, GARTN TOP STRAT TECH Gee FC, 2005, 2005 IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), P151 Glas DF, 2012, J HUM-ROBOT INTERACT, V1, P5, DOI 10.5898/JHRI.1.2.Glas Grewal D, 2020, J ACAD MARKET SCI, V48, P96, DOI 10.1007/s11747-019-00697-z Gross HM, 2009, 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, P2005, DOI 10.1109/IROS.2009.5354497 Heikkilä P, 2019, LECT NOTES ARTIF INT, V11876, P548, DOI 10.1007/978-3-030-35888-4_51 Herzog TR, 1997, J ENVIRON PSYCHOL, V17, P165, DOI 10.1006/jevp.1997.0051 Huang Y., 2011, EFFECT IN STORE TRAV Hui SK, 2013, J MARKETING RES, V50, P445, DOI 10.1509/jmr.12.0065 Inman JJ, 2009, J MARKETING, V73, P19, DOI 10.1509/jmkg.73.5.19 Iwamura Y, 2011, ACMIEEE INT CONF HUM, P449, DOI 10.1145/1957656.1957816 Iwasaki M, 2018, IEEE ROMAN, P300, DOI 10.1109/ROMAN.2018.8525772 Joye Y, 2011, EVOLUTIONARY PSYCHOLOGY IN THE BUSINESS SCIENCES, P289, DOI 10.1007/978-3-540-92784-6_11 Kamei K., 2010, INT C MULT INT WORKS, P19, DOI DOI 10.1145/1891903.1891929 Kanda T, 2010, IEEE T ROBOT, V26, P897, DOI 10.1109/TRO.2010.2062550 Ketron S, 2016, J RETAIL CONSUM SERV, V33, P23, DOI 10.1016/j.jretconser.2016.07.017 Kim S, 2021, INT J HOSP MANAG, V93, DOI 10.1016/j.ijhm.2020.102795 Kim S, 2016, J BUS RES, V69, P5809, DOI 10.1016/j.jbusres.2016.04.178 Kuo I.H., 2008, P 7 C HLTH INF ROT N Lange F, 2016, J BUS RES, V69, P1014, DOI 10.1016/j.jbusres.2015.08.013 Lee L, 2006, J CONSUM RES, V33, P60, DOI 10.1086/504136 Lewandowski B, 2020, IEEE ROMAN, P363, DOI 10.1109/RO-MAN47096.2020.9223568 Lewis E., 1908, Financial Advertising Li DJ, 2010, INT J SOC ROBOT, V2, P175, DOI 10.1007/s12369-010-0056-9 Manzocco N., 2018, ROBOT SUSHI RESTAURA Marin-Hernandez A., 2012, 2012 11th Mexican International Conference on Artificial Intelligence and Applications (MICAI 2012), P26, DOI 10.1109/MICAI.2012.21 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Michelis D, 2011, INT J HUM-COMPUT INT, V27, P562, DOI 10.1080/10447318.2011.555299 Mori M, 1970, ENERGY, V7, P33, DOI DOI 10.1109/MRA.2012.2192811 Nakagawa K, 2013, INT J SOC ROBOT, V5, P5, DOI 10.1007/s12369-012-0141-3 Neves A, 2017, VEHITS: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, P373, DOI 10.5220/0006385903730380 Niemelä M, 2017, ACMIEEE INT CONF HUM, P227, DOI 10.1145/3029798.3038301 Pandey AK, 2018, IEEE ROBOT AUTOM MAG, V25, P40, DOI 10.1109/MRA.2018.2833157 Ryan T., 2020, CAN ROBOTS ASSIST RE Sabelli AM, 2016, INT J SOC ROBOT, V8, P211, DOI 10.1007/s12369-015-0332-9 Sameti A, 2017, INTANG CAP, V13, P523, DOI 10.3926/ic.986 Seiler S, 2017, MARKET SCI, V36, P565, DOI 10.1287/mksc.2017.1026 Shankar V, 2011, J RETAILING, V87, pS29, DOI 10.1016/j.jretai.2011.04.007 Shi C, 2016, ACMIEEE INT CONF HUM, P519, DOI 10.1109/HRI.2016.7451835 Shiomi M, 2013, INT J SOC ROBOT, V5, P251, DOI 10.1007/s12369-013-0180-4 Turley LW, 2000, J BUS RES, V49, P193, DOI 10.1016/S0148-2963(99)00010-7 Van de Sanden S., 2020, RETAIL FUTURES van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Lu VN, 2020, J SERV THEOR PRACT, V30, P361, DOI 10.1108/JSTP-04-2019-0088 Willems K., 2021, The Future of Service Post-COVID-19 Pandemic, Volume, V2, P103 Willems K, 2017, TECHNOL FORECAST SOC, V124, P228, DOI 10.1016/j.techfore.2016.10.066 Willems K, 2017, INT J RETAIL DISTRIB, V45, P910, DOI 10.1108/IJRDM-10-2016-0177 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309 Zhou L., 2003, J INT CONSUM MARK, V16, P37, DOI DOI 10.1300/J046V16N02_03 Zibafar A, 2021, INT J SOC ROBOT, V13, P509, DOI 10.1007/s12369-019-00566-3 NR 71 TC 14 Z9 14 U1 2 U2 19 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-0552 EI 1758-6690 J9 INT J RETAIL DISTRIB JI Int. J. Retail Distrib. Manag. PD JUL 8 PY 2021 VL 49 IS 7 SI SI BP 846 EP 874 DI 10.1108/IJRDM-10-2020-0413 EA MAY 2021 PG 29 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA TH6ED UT WOS:000657046100001 DA 2024-03-27 ER PT J AU Zhang, YX Wang, XY Zhao, X AF Zhang, Yuexian Wang, XueYing Zhao, Xin TI Supervising or assisting? The influence of virtual anchor driven by AI-human collaboration on customer engagement in live streaming e-commerce SO ELECTRONIC COMMERCE RESEARCH LA English DT Article; Early Access DE Virtual anchor driven by AI-human collaboration; Perceived playfulness; Customer engagement; Humorous response ID BRAND ENGAGEMENT; CHATBOTS AB Digital technologies such as artificial intelligence (AI) are driving the growth of live-streaming e-commerce. As a result, a rising number of virtual anchors who are appearing in live-streaming e-commerce, generating customer engagement. However, whether the virtual anchor driven by different types of AI-human collaboration has different impacts on consumer engagement needs to be further investigated. By adopting the use and gratifications theory, this paper investigated the mechanism of the virtual anchor driven by AI-human collaboration on consumer engagement and the moderating effect of the humorous response. The results of two studies demonstrated that the virtual anchor driven by assisted AI-human collaboration contributed to higher levels of perceived playfulness than those driven by supervised AI-human collaboration, leading to increased customer engagement. Meanwhile, it was found that the differences between the supervised and assisted virtual anchor driven by AI-human collaboration on perceived playfulness decrease when the humorous response is present. This paper fills in the gap in virtual anchor research by providing insights into how to enhance the positive effect of customer engagement and giving suggestions for future research on virtual anchors. C1 [Zhang, Yuexian; Wang, XueYing; Zhao, Xin] Northeastern Univ, Shenyang, Peoples R China. C3 Northeastern University - China RP Wang, XY (autor correspondiente), Northeastern Univ, Shenyang, Peoples R China. EM 15049068802@163.com OI Zhao, Xin/0000-0002-9622-5196 FU Social Science Foundation of China FX No Statement Available CR Alhassan M.D., 2020, Journal of Systems and Information Technology, V22, P351, DOI [10.1108/jsit-01-2020-0010, DOI 10.1108/JSIT-01-2020-0010] Aw ECX, 2022, TECHNOL FORECAST SOC, V180, DOI 10.1016/j.techfore.2022.121711 Bansal P, 2018, TRANSPORTATION, V45, P641, DOI 10.1007/s11116-016-9745-z Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bytedance, 2022, Report on Big Data analysis and trend research of China's live streaming e-commerce industry in 2022-2023 Chen T, 2023, COMPUT HUM BEHAV, V144, DOI 10.1016/j.chb.2023.107753 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 de Cicco Roberta, 2021, Journal of Foodservice Business Research, V24, P140, DOI 10.1080/15378020.2020.1826268 Dhar R, 2000, J MARKETING RES, V37, P60, DOI 10.1509/jmkr.37.1.60.18718 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Economist, 2021, OR Commons Gao W, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103356 Gervasi R, 2020, INT J ADV MANUF TECH, V108, P841, DOI 10.1007/s00170-020-05363-1 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Gu Y, 2023, INFORM MANAGE-AMSTER, V60, DOI 10.1016/j.im.2023.103810 Guo LY, 2021, INTERNET RES, V31, P1718, DOI 10.1108/INTR-02-2020-0078 Guo YY, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102786 Hayes AF, 2015, MULTIVAR BEHAV RES, V50, P1, DOI 10.1080/00273171.2014.962683 He Y, 2022, ELECTRON COMMER R A, V56, DOI 10.1016/j.elerap.2022.101223 Hossain MA, 2019, SUSTAINABILITY-BASEL, V11, DOI 10.3390/su11041166 Hou FF, 2020, INTERNET RES, V30, P141, DOI 10.1108/INTR-04-2018-0177 Jessup S., 2020, HAW INT C SYST SCI, P1 Jiang QL, 2023, KYBERNETES, V52, P4551, DOI 10.1108/K-12-2021-1346 Kaur P, 2020, TELEMAT INFORM, V53, DOI 10.1016/j.tele.2020.101376 Kim M, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2022.102951 Kim S, 2022, J RES INTERACT MARK, V16, P82, DOI 10.1108/JRIM-01-2021-0020 Koschmann A, 2018, INT J RES MARK, V35, P575, DOI 10.1016/j.ijresmar.2018.07.003 Kujur F, 2020, J THEOR APPL EL COMM, V15, P30, DOI 10.4067/S0718-18762020000100104 Kull AJ, 2021, J BUS RES, V135, P840, DOI 10.1016/j.jbusres.2021.03.005 Li XL, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-30696-8 Liao JY, 2023, J RES INTERACT MARK, V17, P140, DOI 10.1108/JRIM-04-2021-0114 Liu CL, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075754 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Longoni C, 2019, J CONSUM RES, V46, P629, DOI 10.1093/jcr/ucz013 Luo HY, 2021, MATHEMATICS-BASEL, V9, DOI 10.3390/math9131576 Luo XM, 2021, J MARKETING, V85, P14, DOI 10.1177/0022242920956676 Lv J, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14148907 Lv XY, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106993 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 McShane L, 2021, J INTERACT MARK, V53, P96, DOI 10.1016/j.intmar.2020.06.002 Murphy J, 2019, J TRAVEL TOUR MARK, V36, P784, DOI 10.1080/10548408.2019.1571983 Nagel DM, 2021, J BUS RES, V128, P174, DOI 10.1016/j.jbusres.2021.01.026 Niu BZ, 2023, TRANSPORT RES E-LOG, V174, DOI 10.1016/j.tre.2023.103130 Oliveira R, 2021, INT J SOC ROBOT, V13, P1369, DOI 10.1007/s12369-020-00727-9 Pan R, 2022, PROD OPER MANAG, V31, P3387, DOI 10.1111/poms.13784 Payne EHM, 2021, J RES INTERACT MARK, V15, P200, DOI 10.1108/JRIM-12-2020-0252 Peng CM, 2022, INT J INFORM MANAGE, V66, DOI 10.1016/j.ijinfomgt.2022.102533 Rese A, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102176 Roux T, 2020, ADV HUM-COMPUT INTER, V2020, DOI 10.1155/2020/7636150 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shin H, 2020, EUR J MARKETING, V54, P2013, DOI 10.1108/EJM-08-2018-0522 Siemon D, 2022, GROUP DECIS NEGOT, V31, P871, DOI 10.1007/s10726-022-09792-z Tan SM, 2020, INT J HUM-COMPUT INT, V36, P1136, DOI 10.1080/10447318.2020.1722399 Tan TM, 2022, TECHNOL FORECAST SOC, V176, DOI 10.1016/j.techfore.2021.121432 Tsai CY, 2022, LEADERSHIP QUART, V33, DOI 10.1016/j.leaqua.2021.101594 Vitezic V, 2021, SERV IND J, V41, P926, DOI 10.1080/02642069.2021.1974406 Vossing M., 2022, Information Systems Frontiers, V24, P1 Wang B, 2022, J RETAIL CONSUM SERV, V69, DOI 10.1016/j.jretconser.2022.103109 Wu Y, 2021, INFORMATION, V12, DOI 10.3390/info12100426 Xiao L, 2021, J SERV RES-US, V24, P9, DOI 10.1177/1094670519878881 Xiao L, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103170 Xu XA, 2022, ANN TOURISM RES, V95, DOI 10.1016/j.annals.2022.103439 Ye CZ, 2022, ASIA PAC J TOUR RES, V27, P506, DOI 10.1080/10941665.2022.2091940 Yun JW, 2023, J RETAIL CONSUM SERV, V74, DOI 10.1016/j.jretconser.2023.103394 Zhang MY, 2021, INT J CONTEMP HOSP M, V33, P3883, DOI 10.1108/IJCHM-11-2020-1256 Zhang M, 2021, J SERV MARK, V35, P312, DOI 10.1108/JSM-01-2020-0009 Zhou Y, 2023, ECON ANAL POLICY, V78, P332, DOI 10.1016/j.eap.2023.02.005 NR 67 TC 0 Z9 0 U1 104 U2 104 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD 2023 NOV 24 PY 2023 DI 10.1007/s10660-023-09783-5 EA NOV 2023 PG 24 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA AM4Z4 UT WOS:001118882500002 DA 2024-03-27 ER PT J AU Ma, BJ Kuo, YH Jiang, YS Huang, GQ AF Ma, Benedict Jun Kuo, Yong-Hong Jiang, Yishuo Huang, George Q. TI RubikCell: Toward Robotic Cellular Warehousing Systems for E-Commerce Logistics SO IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT LA English DT Article; Early Access DE Cellular warehousing (CW); e-commerce logistics (EcL); e-commerce warehousing; order picking; warehouse automation ID FULFILLMENT; STRATEGIES; ORDER AB As e-commerce has become more prevalent, the required logistics operations are challenged by the greater demand for and higher complexity of order picking in warehouses. While goods-to-person (G2P) picking systems, such as robotic mobile fulfillment systems, are becoming popular, there are still challenges in G2P systems, including the unstable performance of human picking due to fatigue and human errors, and the constrained mobility of robots. To tackle these challenges, this article presents a new robotic storage and order picking system, which we call RubikCell. It leverages the strengths of existing warehouse systems and incorporates automatic dispensing, robot-to-goods picking, and pick-while-sort operations. In RubikCell, robots are equipped with trays to store and transport items for an order, instead of moving with heavy pods to workstations as in G2P systems. In addition, the concept of cellular warehousing (CW)-inspired by cellular manufacturing-aims to operate a large warehouse with smaller warehousing cells. This approach reduces the substantial traveling distances of robots, as they move within their dedicated warehousing cells rather than the entire warehouse. A mathematical programming model is developed to address the cell formation problem in CW. Lastly, the implementation of CW principles in RubikCell, forming Robotic CW Systems, renders e-commerce warehousing more flexible, scalable, and reconfigurable. Numerical experiments conducted on this innovative system have confirmed the effectiveness of the cell formation method. C1 [Ma, Benedict Jun; Kuo, Yong-Hong; Jiang, Yishuo] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong, Peoples R China. [Ma, Benedict Jun] PSL Univ, Ctr Management Sci, Mines Paris, F-75006 Paris, France. [Kuo, Yong-Hong] Univ Hong Kong, HKU Musketeers Fdn Inst Data Sci, Hong Kong, Peoples R China. [Huang, George Q.] Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China. C3 University of Hong Kong; Universite PSL; MINES ParisTech; University of Hong Kong; Hong Kong Polytechnic University RP Huang, GQ (autor correspondiente), Hong Kong Polytech Univ, Dept Ind & Syst Engn, Hong Kong, Peoples R China. EM bjma@connect.hku.hk; yhkuo@hku.hk; jyishuo@connect.hku.hk; gqhuang@hku.hk RI Kuo, Yong-Hong/ABF-8035-2021; Ma, Benedict Jun/AAX-9144-2020 OI Kuo, Yong-Hong/0000-0002-6170-324X; FU Hong Kong RGC TRS project [T32-707/22-N]; 2019 Guangdong Special Support Talent Program - Innovation and Entrepreneurship Leading Team (China) [2019BT02S593] FX This work was supported in part by the Hong Kong RGC TRS project under Grant T32-707/22-N, and in part by the 2019 Guangdong Special Support Talent Program - Innovation and Entrepreneurship Leading Team (China) under Grant 2019BT02S593. CR Azadeh K, 2019, TRANSPORT SCI, V53, P917, DOI 10.1287/trsc.2018.0873 B. Solutions, 2023, Faster retail order fulfillment and room to grow with advanced warehouse automation and AutoStore Bansal V, 2021, NAV RES LOG, V68, P810, DOI 10.1002/nav.21978 Beckschäfer M, 2017, LECT NOTES COMPUT SC, V10572, P468, DOI 10.1007/978-3-319-68496-3_31 Bergmann R., 1998, Tech. Rep. WS-98-02 Boysen N, 2019, EUR J OPER RES, V277, P396, DOI 10.1016/j.ejor.2018.08.023 Boywitz D, 2019, IISE TRANS, V51, P368, DOI 10.1080/24725854.2018.1513672 Burbidge JL., 1991, J OPERATIONS MANAGEM, V10, P5, DOI [DOI 10.1016/0272-6963(91)90033-T, 10.1016/0272-6963(91)90033-T] Cammarano A, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3240213 Chen W, 2022, COMPUT IND ENG, V163, DOI 10.1016/j.cie.2021.107823 Choi TM, 2022, PROD OPER MANAG, V31, P9, DOI 10.1111/poms.13622 Correll N, 2018, IEEE T AUTOM SCI ENG, V15, P172, DOI 10.1109/TASE.2016.2600527 Dauod H, 2022, INT J PROD RES, V60, P5468, DOI 10.1080/00207543.2021.1961037 Feldt J., 2022, Handbook on Digital Business Ecosystems, P714 Gharehgozli A, 2020, TRANSPORT RES E-LOG, V142, DOI 10.1016/j.tre.2020.102087 Green T.J., 1984, Journal of Operations Management, V4, P85 HERAGU SS, 1994, IEEE T SYST MAN CYB, V24, P203, DOI 10.1109/21.281420 Huang G.Q., 2015, HKIE Trans, V22, P68, DOI DOI 10.1080/1023697X.2015.1043960 Humphries M., 2019, Amazon: Full warehouse automation is 10 years away Jiang M, 2022, TRANSPORT RES E-LOG, V158, DOI 10.1016/j.tre.2022.102619 Jiao GS, 2023, COMPUT IND ENG, V175, DOI 10.1016/j.cie.2022.108856 Justkowiak JE, 2023, OMEGA-INT J MANAGE S, V120, DOI 10.1016/j.omega.2023.102897 Justkowiak JE, 2023, EUR J OPER RES, V305, P1063, DOI 10.1016/j.ejor.2022.06.051 Keung KL, 2022, ADV ENG INFORM, V52, DOI 10.1016/j.aei.2022.101530 Kong XTR, 2020, COMPUT IND, V118, DOI 10.1016/j.compind.2020.103220 Kong XTR, 2020, COMPUT IND ENG, V139, DOI 10.1016/j.cie.2019.106170 Kong XTR, 2019, PROC CIRP, V83, P339, DOI 10.1016/j.procir.2019.03.095 Kumar S, 2023, TRANSPORT RES E-LOG, V173, DOI 10.1016/j.tre.2023.103088 Lamballais T, 2022, EUR J OPER RES, V300, P937, DOI 10.1016/j.ejor.2021.09.001 Lamballais T, 2017, EUR J OPER RES, V256, P976, DOI 10.1016/j.ejor.2016.06.063 Li N, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3270376 Li XW, 2020, TRANSPORT RES E-LOG, V144, DOI 10.1016/j.tre.2020.102158 Li ZH, 2024, IEEE T ENG MANAGE, V71, P2729, DOI 10.1109/TEM.2022.3189690 Lian YD, 2022, ADV ENG INFORM, V52, DOI 10.1016/j.aei.2022.101572 Liu MY, 2023, COMPUT IND ENG, V181, DOI 10.1016/j.cie.2023.109236 Liu P, 2008, 2008 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, P2126, DOI 10.1109/ICAL.2008.4636515 Liu S, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3144482 Loffler M., 2023, Transp. Sci., V57, P839 Ma BJ, 2022, COMPUT IND ENG, V173, DOI 10.1016/j.cie.2022.108665 Meller R.D., 2008, P 2008 IND ENG RES C, P770 Mo YJ, 2023, IEEE T IND INFORM, V19, P1823, DOI 10.1109/TII.2022.3189177 Newbury R, 2023, IEEE T ROBOT, V39, P3994, DOI 10.1109/TRO.2023.3280597 Nie QW, 2023, ROBOT CIM-INT MANUF, V82, DOI 10.1016/j.rcim.2023.102543 Pazour JA, 2011, IIE TRANS, V43, P739, DOI 10.1080/0740817X.2010.549099 Reaidy PJ, 2015, INT J PROD ECON, V159, P29, DOI 10.1016/j.ijpe.2014.02.017 Reisman A, 1997, OPER RES, V45, P508, DOI 10.1287/opre.45.4.508 Roy D, 2019, TRANSPORT RES E-LOG, V122, P119, DOI 10.1016/j.tre.2018.11.005 Schiffer M, 2022, MANAGE SCI, V68, P7497, DOI 10.1287/mnsc.2021.4275 Shafer S. M., 1993, Int. J. Purchasing Mater. Manage., V29, P38 Shenoy A, 2022, IEEE INT C INT ROBOT, P2741, DOI 10.1109/IROS47612.2022.9981799 Sheu JB, 2023, PROD OPER MANAG, V32, P794, DOI 10.1111/poms.13899 Vakharia A. J., 1986, J. Oper. Manage., V6, P257 Wang K, 2022, COMPUT IND ENG, V169, DOI 10.1016/j.cie.2022.108229 Wang X., 2018, P 5 INT PHYS INT C, P18 Wang Z, 2022, PROD OPER MANAG, V31, P98, DOI 10.1111/poms.13406 Wemmerlov U., 1986, J OPERATIONS RES, V6, P125, DOI DOI 10.1016/0272-6963(86)90021-5 Yadav S, 2023, IEEE T ENG MANAGE, V70, P1215, DOI 10.1109/TEM.2022.3177188 YounesSinaki R, 2023, INT J PROD RES, V61, P5585, DOI 10.1080/00207543.2022.2105763 Yuan Z, 2017, IEEE T ENG MANAGE, V64, P83, DOI 10.1109/TEM.2016.2634540 Zhang J, 2023, COMPUT IND ENG, V176, DOI 10.1016/j.cie.2022.108918 Zhao Chao, 2022, 2022 International Conference on Robotics and Automation (ICRA), P749, DOI 10.1109/ICRA46639.2022.9811736 Zhuang YL, 2022, TRANSPORT RES E-LOG, V167, DOI 10.1016/j.tre.2022.102920 Zou BP, 2018, TRANSPORT SCI, V52, P788, DOI 10.1287/trsc.2017.0786 Zou BP, 2018, EUR J OPER RES, V267, P733, DOI 10.1016/j.ejor.2017.12.008 NR 64 TC 0 Z9 0 U1 14 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9391 EI 1558-0040 J9 IEEE T ENG MANAGE JI IEEE Trans. Eng. Manage. PD 2023 NOV 1 PY 2023 DI 10.1109/TEM.2023.3327069 EA NOV 2023 PG 16 WC Business; Engineering, Industrial; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering GA Y2WY9 UT WOS:001103933900001 DA 2024-03-27 ER PT J AU Shi, Y Wang, T Alwan, LC AF Shi, Ye Wang, Ting Alwan, Layth C. TI Analytics for Cross-Border E-Commerce: Inventory Risk Management of an Online Fashion Retailer SO DECISION SCIENCES LA English DT Article DE Analytics; Cross-border e-commerce; Inventory; Machine learning techniques; Maximum entropy; Predictive analytics; Prescriptive analytics; Tax risk ID DEMAND UNCERTAINTY; NEWSVENDOR PROBLEM; ENTROPY; MODEL; WAREHOUSES; AMBIGUITY; DRIVERS; VMI AB Problem statement: We present a data-driven analytics study of a Chinese fashion retailer. The retailer fulfills cross-border orders using online platforms, but faces inventory problems in its overseas warehouses, owing to operational complexities, such as extensive product offerings, high demand risks, and tax risks in cross-border trade. Traditional approaches (e.g., model-driven approaches) often fail to provide effective solutions. Therefore, this study proposes a new data-driven approach to manage inventory in overseas warehouses. Methodology: A two-stage predictive analytics approach is implemented, as follows: (i) all items are classified into one of two classes, where A-items are profitable to store in overseas warehouses, but B-items are not; (ii) the demand levels of SKUs of A-items are predicted. In the subsequent prescriptive analytics, models are proposed for optimizing inventory decisions related to A-items. These include a deterministic model that uses the predicted demand as the true demand, and a stochastic model that treats the true demand as a random variable. Results: (i) Using a variety of machine learning techniques in the predictive analytics phase, we find the random forest outperforms other methods. (ii) The deterministic model can be solved as a linear program, and the stochastic model with maximum entropy distributions can be solved using Karush-Kuhn-Tucker conditions. (iii) An application of our results shows that the predictive classification reduces costs (an average cost reduction of up to 20%) by avoid shipping unprofitable items to overseas warehouses. Furthermore, the stochastic model provides near-optimal solutions (the smallest performance loss is just 0.00%). C1 [Shi, Ye; Wang, Ting] Univ Sci & Technol China, Sch Management, Hefei, Peoples R China. [Alwan, Layth C.] Univ Wisconsin, Sheldon B Lubar Sch Business, Milwaukee, WI 53201 USA. C3 Chinese Academy of Sciences; University of Science & Technology of China, CAS; University of Wisconsin System; University of Wisconsin Milwaukee RP Wang, T (autor correspondiente), Univ Sci & Technol China, Sch Management, Hefei, Peoples R China. EM hecules@ustc.edu.cn; sa172040@mail.ustc.edu.cn; alwan@uwm.edu RI N'Dri, Amoin Bernadine/IWD-7811-2023 OI Wang, Ting/0000-0003-3847-2049 FU National Key R&D Program of China [2018YFB1601401]; National Natural Science Foundation of China [71801207, 71520107002, 71771201] FX The authors thank the department editor, associate editor, and two anonymous reviewers for their comments and suggestions that significantly improve this paper. Every author has made an equal contribution to this paper. This work was supported by the National Key R&D Program of China (No. 2018YFB1601401) and the National Natural Science Foundation of China (No. 71801207, No. 71520107002, and No. 71771201). CR Andersson J, 2013, EUR J OPER RES, V228, P190, DOI 10.1016/j.ejor.2013.01.031 BAN GY, 2018, OPERATIONS RES Ben-Tal A., 2005, Manufacturing & Service Operations Management, V7, P248, DOI 10.1287/msom.1050.0081 Bertsimas D, 2006, OPER RES, V54, P150, DOI 10.1287/opre.1050.0238 Bertsimas D, 2016, PROD OPER MANAG, V25, P2006, DOI 10.1111/poms.2_12637 Bertsimas D, 2011, SIAM REV, V53, P464, DOI 10.1137/080734510 Choudhary D, 2015, INT J PROD RES, V53, P1472, DOI 10.1080/00207543.2014.951093 Disney SM, 2003, OMEGA-INT J MANAGE S, V31, P157, DOI 10.1016/S0305-0483(03)00028-8 Fleischhacker AJ, 2015, DECISION SCI, V46, P1165, DOI 10.1111/deci.12170 Fleischhacker AJ, 2015, EUR J OPER RES, V245, P623, DOI 10.1016/j.ejor.2015.03.014 Gessner GH, 2015, RES TRANSP BUS MANAG, V16, P84, DOI 10.1016/j.rtbm.2015.07.005 Giuffrida M, 2017, INT J PHYS DISTR LOG, V47, P772, DOI 10.1108/IJPDLM-08-2016-0241 Gomez-Herrera E, 2014, INF ECON POLICY, V28, P83, DOI 10.1016/j.infoecopol.2014.05.002 HARTELY VR, 1976, OPERATIONS RES MANAG, P7 Hou S., 2019, NEW SILK ROAD LEADS, P203, DOI [10.1108/978-1-78756-679-820191013/full/html, DOI 10.1108/978-1-78756-679-820191013/FULL/HTML] James G, 2013, SPRINGER TEXTS STAT, V103, P1, DOI [10.1007/978-1-4614-7138-7, 10.1007/978-1-4614-7138-7_1] JONSSON H, 1987, INT J PROD RES, V25, P191, DOI 10.1080/00207548708919833 Levi R, 2015, OPER RES, V63, P1294, DOI 10.1287/opre.2015.1422 Liu X., 2015, International Journal of Intelligent Information Systems. Special Issue: Content-based Image Retrieval and Machine Learning, V4, P15, DOI DOI 10.11648/J.IJIIS.S.2015040202.14 Maglaras C, 2015, PROD OPER MANAG, V24, P438, DOI 10.1111/poms.12243 Natarajan K, 2018, MANAGE SCI, V64, P3146, DOI 10.1287/mnsc.2017.2773 PAKKALA TPM, 1992, EUR J OPER RES, V57, P71, DOI 10.1016/0377-2217(92)90306-T RABAH MY, 2002, SWUTC021672271 U TEX Rockafellar R.T., 2000, J RISK, P21, DOI DOI 10.21314/JOR.2000.038 Saghafian S, 2016, OPER RES, V64, P167, DOI 10.1287/opre.2015.1454 SARMA KVS, 1987, EUR J OPER RES, V29, P70, DOI 10.1016/0377-2217(87)90194-9 SHUYAN C, 2013, ASS INF SYST AIS EL Valarezo A, 2018, TELECOMMUN POLICY, V42, P464, DOI 10.1016/j.telpol.2018.03.006 van Heel B., 2014, Cross-border e-commerce makes the world flatter WU G, 2016, 2016 2 INT C SOC SCI XUE W, 2016, INT J ENTERPRISE INF, V14, P56 Zhan XL, 2018, INT J ENTERP INF SYS, V14, P56, DOI 10.4018/IJEIS.2018040104 Zhou YW, 2003, COMPUT OPER RES, V30, P1753, DOI 10.1016/S0305-0548(02)00104-1 NR 33 TC 28 Z9 28 U1 15 U2 146 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0011-7315 EI 1540-5915 J9 DECISION SCI JI Decis. Sci. PD DEC PY 2020 VL 51 IS 6 BP 1347 EP 1376 DI 10.1111/deci.12429 EA JAN 2020 PG 30 WC Management WE Social Science Citation Index (SSCI) SC Business & Economics GA PF0QA UT WOS:000507109200001 DA 2024-03-27 ER PT J AU Yoganarasimhan, H Barzegary, E Pani, A AF Yoganarasimhan, Hema Barzegary, Ebrahim Pani, Abhishek TI Design and Evaluation of Optimal Free Trials SO MANAGEMENT SCIENCE LA English DT Article DE free trials; targeting; personalization; policy evaluation; field experiment; machine learning; digital marketing; Software as a Service ID PROMOTIONS; MODELS; IMPACT AB Free trial promotions are a commonly used customer acquisition strategy in the Software as a Service industry. We use data from a large-scale field experiment to study the effect of trial length on customer-level outcomes. We find that, on average, shorter trial lengths (surprisingly) maximize customer acquisition, retention, and profitability. Next, we examine the mechanism through which trial length affects conversions and rule out the demand cannibalization theory, find support for the consumer learning hypothesis, and show that long stretches of inactivity at the end of the trial are associated with lower conversions. We then develop a personalized targeting policy that allocates the optimal treatment to each user based on individual-level predictions of the outcome of interest (e.g., subscriptions) using a lasso model. We evaluate this policy using the inverse propensity score reward estimator and show that it leads to 6.8% improvement in subscription compared with a uniform 30-days for-all policy. It also performs well on long-term customer retention and revenues in our setting. Further analysis of this policy suggests that skilled and experienced users are more likely to benefit from longer trials, whereas beginners are more responsive to shorter trials. Finally, we show that personalized policies do not always outperform uniform policies, and we should be careful when designing and evaluating personalized policies. In our setting, personalized policies based on other methods (e.g., causal forests, random forests) perform worse than a simple uniform policy that assigns a short trial length to all users. C1 [Yoganarasimhan, Hema; Barzegary, Ebrahim] Univ Washington, Foster Sch Business, Seattle, WA 98195 USA. [Pani, Abhishek] Bright Machines, San Francisco, CA 94107 USA. C3 University of Washington; University of Washington Seattle RP Yoganarasimhan, H (autor correspondiente), Univ Washington, Foster Sch Business, Seattle, WA 98195 USA. EM hemay@uw.edu; ebar@uw.edu; abhishek.pani@gmail.com CR Anderson ET, 2004, MARKET SCI, V23, P4, DOI 10.1287/mksc.1030.0040 [Anonymous], 2019, Forecast: Public cloud services, worldwide, 2016-2022, 4q18 update Athey S, 2020, Arxiv, DOI arXiv:1702.02896 Bruhn M, 2009, AM ECON J-APPL ECON, V1, P200, DOI 10.1257/app.1.4.200 Cheng HK, 2012, INFORM SYST RES, V23, P488, DOI 10.1287/isre.1110.0348 Dey D, 2013, J MANAGE INFORM SYST, V30, P239, DOI 10.2753/MIS0742-1222300209 Dudik M., 2011, ARXIV11034601 Fader PS, 2009, J INTERACT MARK, V23, P61, DOI 10.1016/j.intmar.2008.11.003 Fong N, 2019, J MARKETING RES, V56, P310, DOI 10.1177/0022243718817513 Foubert B, 2016, MARKET SCI, V35, P810, DOI 10.1287/mksc.2015.0973 Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01 Guo T, 2021, J MARKETING RES, V58, P115, DOI 10.1177/0022243720972106 Gupta S, 2006, J SERV RES-US, V9, P139, DOI 10.1177/1094670506293810 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hitsch GJ, 2023, PREPRINT, DOI [10.2139/ssrn.3111957, DOI 10.2139/SSRN.3111957] HORVITZ DG, 1952, J AM STAT ASSOC, V47, P663, DOI 10.2307/2280784 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Kitagawa T, 2018, ECONOMETRICA, V86, P591, DOI 10.3982/ECTA13288 Lewis RA, 2015, Q J ECON, V130, P1941, DOI 10.1093/qje/qjv023 Manski CF, 2004, ECONOMETRICA, V72, P1221, DOI 10.1111/j.1468-0262.2004.00530.x McCarthy DM, 2017, J MARKETING, V81, P17, DOI 10.1509/jm.15.0519 McKenzie D., 2017, Should we require balance t-tests of baseline observables in randomized experiments? Mela CF, 1997, J MARKETING RES, V34, P248, DOI 10.2307/3151862 Mutz DC, 2019, AM STAT, V73, P32, DOI 10.1080/00031305.2017.1322143 Pauwels K, 2002, J MARKETING RES, V39, P421, DOI 10.1509/jmkr.39.4.421.19114 PRENTICE RL, 1989, STAT MED, V8, P431, DOI 10.1002/sim.4780080407 Rafieian O., 2019, Optimizing user engagement through adaptive ad sequencing Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 SCOTT CA, 1976, J MARKETING RES, V13, P263, DOI 10.2307/3150736 Simester D, 2020, MANAGE SCI, V66, P3412, DOI 10.1287/mnsc.2019.3379 Simester D, 2020, MANAGE SCI, V66, P2495, DOI 10.1287/mnsc.2019.3308 Sunada T., 2018, Customer learning and revenue-maximizing trial design Swaminathan A., 2017, Advances in Neural Information Processing Systems, P3632 Swaminathan A, 2015, PR MACH LEARN RES, V37, P814 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x VanderWeele TJ, 2013, BIOMETRICS, V69, P561, DOI 10.1111/biom.12071 Wang SQ, 2018, OPER RES, V66, P301, DOI 10.1287/opre.2017.1675 Yang J., 2020, arXiv Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 Zhu M, 2018, J CONSUM RES, V45, P673, DOI 10.1093/jcr/ucy008 NR 41 TC 6 Z9 6 U1 2 U2 2 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD JUN PY 2023 VL 69 IS 6 BP 3220 EP 3240 PG 21 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA DL8O2 UT WOS:001132292000001 DA 2024-03-27 ER PT J AU Yoganarasimhan, H Barzegary, E Pani, A AF Yoganarasimhan, Hema Barzegary, Ebrahim Pani, Abhishek TI Design and Evaluation of Optimal Free Trials SO MANAGEMENT SCIENCE LA English DT Article; Early Access DE free trials; targeting; personalization; policy evaluation; field experiment; machine learning; digital marketing; Software as a Service ID PROMOTIONS; MODELS; IMPACT AB Free trial promotions are a commonly used customer acquisition strategy in the Software as a Service industry. We use data from a large-scale field experiment to study the effect of trial length on customer-level outcomes. We find that, on average, shorter trial lengths (surprisingly) maximize customer acquisition, retention, and profitability. Next, we examine the mechanism through which trial length affects conversions and rule out the demand cannibalization theory, find support for the consumer learning hypothesis, and show that long stretches of inactivity at the end of the trial are associated with lower conversions. We then develop a personalized targeting policy that allocates the optimal treatment to each user based on individual-level predictions of the outcome of interest (e.g., subscriptions) using a lasso model. We evaluate this policy using the inverse propensity score reward estimator and show that it leads to 6.8% improvement in subscription compared with a uniform 30-days for-all policy. It also performs well on long-term customer retention and revenues in our setting. Further analysis of this policy suggests that skilled and experienced users are more likely to benefit from longer trials, whereas beginners are more responsive to shorter trials. Finally, we show that personalized policies do not always outperform uniform policies, and we should be careful when designing and evaluating personalized policies. In our setting, personalized policies based on other methods (e.g., causal forests, random forests) perform worse than a simple uniform policy that assigns a short trial length to all users. C1 [Yoganarasimhan, Hema; Barzegary, Ebrahim] Univ Washington, Foster Sch Business, Seattle, WA 98195 USA. [Pani, Abhishek] Bright Machines, San Francisco, CA 94107 USA. C3 University of Washington; University of Washington Seattle RP Yoganarasimhan, H (autor correspondiente), Univ Washington, Foster Sch Business, Seattle, WA 98195 USA. EM hemay@uw.edu; ebar@uw.edu; abhishek.pani@gmail.com OI Barzegary, Ebrahim/0000-0002-7268-8778 CR Anderson ET, 2004, MARKET SCI, V23, P4, DOI 10.1287/mksc.1030.0040 Athey S, 2020, Arxiv, DOI arXiv:1702.02896 Bruhn M, 2009, AM ECON J-APPL ECON, V1, P200, DOI 10.1257/app.1.4.200 Cheng HK, 2012, INFORM SYST RES, V23, P488, DOI 10.1287/isre.1110.0348 Dey D, 2013, J MANAGE INFORM SYST, V30, P239, DOI 10.2753/MIS0742-1222300209 Dudik M., 2011, ARXIV11034601 Fader PS, 2009, J INTERACT MARK, V23, P61, DOI 10.1016/j.intmar.2008.11.003 Fong N, 2019, J MARKETING RES, V56, P310, DOI 10.1177/0022243718817513 Foubert B, 2016, MARKET SCI, V35, P810, DOI 10.1287/mksc.2015.0973 Friedman J, 2010, J STAT SOFTW, V33, P1, DOI 10.18637/jss.v033.i01 Gartner, 2019, FOR PUBL CLOUD SERV Guo T, 2021, J MARKETING RES, V58, P115, DOI 10.1177/0022243720972106 Gupta S, 2006, J SERV RES-US, V9, P139, DOI 10.1177/1094670506293810 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hitsch GJ, 2023, PREPRINT, DOI [10.2139/ssrn.3111957, DOI 10.2139/SSRN.3111957] HORVITZ DG, 1952, J AM STAT ASSOC, V47, P663, DOI 10.2307/2280784 Imbens GW, 2015, CAUSAL INFERENCE FOR STATISTICS, SOCIAL, AND BIOMEDICAL SCIENCES: AN INTRODUCTION, P1, DOI 10.1017/CBO9781139025751 Kitagawa T, 2018, ECONOMETRICA, V86, P591, DOI 10.3982/ECTA13288 Lewis RA, 2015, Q J ECON, V130, P1941, DOI 10.1093/qje/qjv023 Manski CF, 2004, ECONOMETRICA, V72, P1221, DOI 10.1111/j.1468-0262.2004.00530.x McCarthy DM, 2017, J MARKETING, V81, P17, DOI 10.1509/jm.15.0519 McKenzie D., 2017, Should we require balance t-tests of baseline observables in randomized experiments? Mela CF, 1997, J MARKETING RES, V34, P248, DOI 10.2307/3151862 Mutz DC, 2019, AM STAT, V73, P32, DOI 10.1080/00031305.2017.1322143 Pauwels K, 2002, J MARKETING RES, V39, P421, DOI 10.1509/jmkr.39.4.421.19114 PRENTICE RL, 1989, STAT MED, V8, P431, DOI 10.1002/sim.4780080407 Rafieian O., REV OPTIMAL DYNAMIC Rafieian O., 2019, Optimizing user engagement through adaptive ad sequencing Rafieian O, 2021, MARKET SCI, V40, P193, DOI 10.1287/mksc.2020.1235 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 SCOTT CA, 1976, J MARKETING RES, V13, P263, DOI 10.2307/3150736 Simester D, MANAGEMENT SCI, V66, P3412 Simester D, 2020, MANAGE SCI, V66, P2495, DOI 10.1287/mnsc.2019.3308 Sunada T., 2018, Customer learning and revenue-maximizing trial design Swaminathan A., 2017, ADV NEUR IN, P3632 Swaminathan A, 2015, PR MACH LEARN RES, V37, P814 VanderWeele TJ, 2013, BIOMETRICS, V69, P561, DOI 10.1111/biom.12071 Wang SQ, 2018, OPER RES, V66, P301, DOI 10.1287/opre.2017.1675 Yang J., 2020, arXiv Yoganarasimhan H, 2020, MANAGE SCI, V66, P1045, DOI 10.1287/mnsc.2018.3255 Zhu M, 2018, J CONSUM RES, V45, P673, DOI 10.1093/jcr/ucy008 NR 41 TC 8 Z9 8 U1 12 U2 58 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0025-1909 EI 1526-5501 J9 MANAGE SCI JI Manage. Sci. PD 2022 AUG 10 PY 2022 BP 1 EP 21 DI 10.1287/mnsc.2022.4507 EA AUG 2022 PG 22 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA 3U2LX UT WOS:000840807200001 DA 2024-03-27 ER PT J AU Lo, PS Dwivedi, YK Tan, GWH Ooi, KB Aw, ECX Metri, B AF Lo, Pei-San Dwivedi, Yogesh K. Tan, Garry Wei-Han Ooi, Keng-Boon Aw, Eugene Cheng-Xi Metri, Bhimaraya TI Why do consumers buy impulsively during live streaming? A deep learning-based dual-stage SEM-ANN analysis SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Livestreaming commerce; Impulsive buying; Parasocial interaction; Vicarious experience ID SOCIAL MEDIA; PARASOCIAL INTERACTION; BEHAVIOR; IMPACT; COMMERCE; MODEL; SUSCEPTIBILITY; ATTRIBUTES; ENGAGEMENT; CUSTOMERS AB The power of livestreaming commerce to rake in billions of revenues within hours has thrust this nascent commercial model into the global spotlight; that said, despite the prevalence of impulsive buying in livestreaming commerce, the existing knowledge regarding the phenomenon remains relatively scarce. This research seeks to unravel the critical determinants that influence consumers' impulsive buying in livestreaming. Grounded in the Stimulus-Organism-Response paradigm, a framework is proposed to elucidate the underlying mechanism on how parasocial interaction, social contagion, vicarious experience, scarcity persuasion, and price perception translate into impulsive buying urge and behaviour in livestreaming commerce via the cognitiveaffective processing system. A self-administered online questionnaire survey was conducted with 295 respondents. The data collected was validated empirically through a multi-analytical hybrid structural equation modelling-artificial neural network (SEM-ANN) technique. The results reveal that parasocial interaction, vicarious experience, scarcity persuasion, and price perception can drive cognitive and affective reactions, which in turn, induce impulsive buying urge, subject to the boundary condition of impulsive buying tendency. In sum, the findings have drawn some insightful theoretical and practical implications that can facilitate the advancement of livestreaming commerce in the modern business arena. C1 [Lo, Pei-San; Tan, Garry Wei-Han; Ooi, Keng-Boon; Aw, Eugene Cheng-Xi] UCSI Univ, UCSI Grad Business Sch, 1 Jalan Menara Gading,UCSI Hts, Cheras 56000, Kuala Lumpur, Malaysia. [Dwivedi, Yogesh K.] Swansea Univ, Emerging Markets Res Ctr EMaRC, Sch Management, Room 323,Bay Campus, Swansea SA1 8EN, Wales. [Dwivedi, Yogesh K.] Pune & Symbiosis Int, Symbiosis Inst Business Management, Pune, India. [Tan, Garry Wei-Han; Ooi, Keng-Boon] Nanchang Inst Technol, Sch Finance & Econ, Nan Chang City, Jiang Xi, Peoples R China. [Ooi, Keng-Boon] Chang Jung Christian Univ, Coll Management, Tainan, Taiwan. [Metri, Bhimaraya] Indian Inst Management Nagpur, Nagpur, India. C3 UCSI University; Swansea University; Symbiosis International University; Symbiosis Institute of Business Management (SIBM) Pune; Nanchang Institute Technology; Chang Jung Christian University; Indian Institute of Management (IIM System); Indian Institute of Management Nagpur RP Dwivedi, YK (autor correspondiente), Swansea Univ, Emerging Markets Res Ctr EMaRC, Sch Management, Room 323,Bay Campus, Swansea SA1 8EN, Wales.; Dwivedi, YK (autor correspondiente), Pune & Symbiosis Int, Symbiosis Inst Business Management, Pune, India. EM oeiansan@gmail.com; y.k.dwivedi@swansea.ac.uk; garrytanweihan@gmail.com; ooikengboon@gmail.com; director@iimnagpur.ac.in RI Aw, Eugene Cheng-Xi/K-8475-2019; Tan Wei Han, Garry/C-6565-2011; Lo, Pei San/ADV-5389-2022; OOI, Keng-Boon/I-4143-2019; Dwivedi, Yogesh Kumar/A-5362-2008 OI Aw, Eugene Cheng-Xi/0000-0001-6712-1171; Tan Wei Han, Garry/0000-0003-2974-2270; OOI, Keng-Boon/0000-0002-3384-1207; Dwivedi, Yogesh Kumar/0000-0002-5547-9990; Lo, Pei San/0000-0002-7061-2307 CR Abdelsalam S, 2020, IEEE ACCESS, V8, P89041, DOI 10.1109/ACCESS.2020.2993671 Al-Saedi K., 2019, MOBILE PAYMENT ADOPT, P1 Al-Sharafi MA, 2022, INT J BANK MARK, V40, P1071, DOI 10.1108/IJBM-07-2021-0291 Ang T, 2018, EUR J MARKETING, V52, P2075, DOI 10.1108/EJM-09-2017-0576 Aw ECX, 2021, J BUS RES, V132, P146, DOI 10.1016/j.jbusres.2021.04.025 Aw ECX, 2020, J CONSUM MARK, V37, P895, DOI 10.1108/JCM-10-2019-3474 Baumeister RF, 2002, J CONSUM RES, V28, P670, DOI 10.1086/338209 BEARDEN WO, 1989, J CONSUM RES, V15, P473, DOI 10.1086/209186 Beatty SE, 1998, J RETAILING, V74, P169, DOI 10.1016/S0022-4359(99)80092-X Block L.G., 1999, J CONSUM PSYCHOL, V8, P343, DOI [10.1207/s15327663jcp0804_01, DOI 10.1207/S15327663JCP0804_01] Cai J, 2018, TVX 2018: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE EXPERIENCES FOR TV AND ONLINE VIDEO, P81, DOI 10.1145/3210825.3210837 Chen CC, 2018, TELEMAT INFORM, V35, P293, DOI 10.1016/j.tele.2017.12.003 Chen YH, 2019, INFORM MANAGE-AMSTER, V56, P236, DOI 10.1016/j.im.2018.09.002 Chopdar PK, 2022, J BUS RES, V140, P657, DOI 10.1016/j.jbusres.2021.11.031 Chung N, 2017, INT J CONTEMP HOSP M, V29, P709, DOI [10.1108/ijchm-10-2015-0608, 10.1108/IJCHM-10-2015-0608] COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Dibble JL, 2016, HUM COMMUN RES, V42, P21, DOI 10.1111/hcre.12063 Doherty RW, 1997, J NONVERBAL BEHAV, V21, P131, DOI 10.1023/A:1024956003661 Dolan R, 2019, EUR J MARKETING, V53, P2213, DOI 10.1108/EJM-03-2017-0182 Donthu N, 1996, J ADVERTISING RES, V36, P69 Eisend M, 2008, J ADVERTISING, V37, P33, DOI 10.2753/JOA0091-3367370303 Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Forrester, 2021, SHOPP IS LAND EUR Gan CM, 2017, INTERNET RES, V27, P772, DOI 10.1108/IntR-06-2016-0164 Gartner W. C., 1993, Journal of Travel & Tourism Marketing, V2, P191 Goel P, 2022, J BUS RES, V142, P1, DOI 10.1016/j.jbusres.2021.12.041 Gong WQ, 2017, PSYCHOL MARKET, V34, P720, DOI 10.1002/mar.21018 Hair J.F., 2016, A premier on partial least squares structural equation modeling (PLS-SEM), V2nd Hallanan L., 2020, FORBES Hancock JT, 2008, DISCOURSE PROCESS, V45, P1, DOI 10.1080/01638530701739181 Hatfield Elaine., 1992, EMOTION SOCIAL BEHAV, DOI 10.1017/CBO9781139174138 Haykin S., 2001, NEURAL NETWORKS COMP Hennig-Thurau T, 2010, J SERV RES-US, V13, P311, DOI 10.1177/1094670510375460 Hew JJ, 2017, TELEMAT INFORM, V34, P914, DOI 10.1016/j.tele.2017.04.001 Högberg J, 2019, J RETAIL CONSUM SERV, V50, P122, DOI 10.1016/j.jretconser.2019.05.006 HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Hsiao CC, 2020, ONLINE INFORM REV, V44, P1289, DOI 10.1108/OIR-11-2019-0350 Hsu CL, 2013, INTERNET RES, V23, P69, DOI 10.1108/10662241311295782 Hu MY, 2020, INTERNET RES, V30, P1019, DOI 10.1108/INTR-03-2019-0082 Hu M, 2017, COMPUT HUM BEHAV, V75, P594, DOI 10.1016/j.chb.2017.06.006 International Trade Administration, 2021, MAL COUNTR COMM GUID Jones MA, 2003, J BUS RES, V56, P505, DOI 10.1016/S0148-2963(01)00250-8 Kang HJ, 2020, J INTERACT MARK, V49, P70, DOI 10.1016/j.intmar.2019.07.002 Kang K, 2021, INT J INFORM MANAGE, V56, DOI 10.1016/j.ijinfomgt.2020.102251 Kaufman BE, 1999, J ECON BEHAV ORGAN, V38, P135, DOI 10.1016/S0167-2681(99)00002-5 Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Lau A.J., 2021, Machine Learning with Applications, V4, P100034, DOI [https://doi.org/10.1016/j.mlwa.2021.100034, DOI 10.1016/J.MLWA.2021.100034] Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Leong LY, 2013, EXPERT SYST APPL, V40, P5604, DOI 10.1016/j.eswa.2013.04.018 Lew SS, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101430 Liang HG, 2007, MIS QUART, V31, P59 Lim JS, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2020.106327 Lim S, 2012, COMPUT HUM BEHAV, V28, P1365, DOI 10.1016/j.chb.2012.02.022 Liu Y, 2013, DECIS SUPPORT SYST, V55, P829, DOI 10.1016/j.dss.2013.04.001 Loewenstein G, 2003, SER AFFECTIVE SCI, P619 Lucas M, 2017, PERS INDIV DIFFER, V105, P330, DOI 10.1016/j.paid.2016.10.004 Luo XM, 2005, J CONSUM PSYCHOL, V15, P288, DOI 10.1207/s15327663jcp1504_3 MACINNIS DJ, 1987, J CONSUM RES, V13, P473, DOI 10.1086/209082 Malaysian Communications and Multimedia Commission, 2020, INT US SURV 2020, P160 Malhotra D, 2010, ORGAN BEHAV HUM DEC, V111, P139, DOI 10.1016/j.obhdp.2009.11.005 Manz C.C., 1981, ACAD MANAGE REV, V6, P105, DOI [DOI 10.2307/257144, 10.5465/amr.1981.4288021, DOI 10.5465/AMR.1981.4288021] Marshall GW, 2012, J PERS SELL SALES M, V32, P349, DOI 10.2753/PSS0885-3134320305 MCCRACKEN G, 1989, J CONSUM RES, V16, P310, DOI 10.1086/209217 Ming JL, 2021, INT J WEB INF SYST, V17, P300, DOI 10.1108/IJWIS-02-2021-0012 Mosteller J, 2014, J BUS RES, V67, P2486, DOI 10.1016/j.jbusres.2014.03.009 Ooi KB, 2021, IND MANAGE DATA SYST, V121, P312, DOI 10.1108/IMDS-04-2020-0239 Ooi KB, 2016, EXPERT SYST APPL, V59, P33, DOI 10.1016/j.eswa.2016.04.015 Oppotus, 2021, LIV SHOPP FUT E COMM Oyibo K, 2019, COMPUT HUM BEHAV, V98, P174, DOI 10.1016/j.chb.2019.01.032 Parboteeah DV, 2009, INFORM SYST RES, V20, P60, DOI 10.1287/isre.1070.0157 Park EJ, 2012, J BUS RES, V65, P1583, DOI 10.1016/j.jbusres.2011.02.043 Roberts Debbie, 2010, Nurse Educ Pract, V10, P13, DOI 10.1016/j.nepr.2009.01.017 ROOK DW, 1987, J CONSUM RES, V14, P189, DOI 10.1086/209105 RUBIN AM, 1985, HUM COMMUN RES, V12, P155, DOI 10.1111/j.1468-2958.1985.tb00071.x Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Sokolova K, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.01.011 Sowinska A, 2019, J PRAGMATICS, V152, P76, DOI 10.1016/j.pragma.2018.01.007 STERN H, 1962, J MARKETING, V26, P59, DOI 10.2307/1248439 Sweeneya JC, 2001, PROBLEMS PERSPECTIVE, V5, P252 Tan GWH, 2018, TELEMAT INFORM, V35, P1617, DOI 10.1016/j.tele.2018.04.009 Thaler RH, 2008, MARKET SCI, V27, P15, DOI 10.1287/mksc.1070.0330 Thorson K.S., 2006, Journal of Interactive Advertising, V6, P34, DOI [DOI 10.1080/15252019.2006.10722117, 10.1080/15252019.2006.10722117] Thürmer JL, 2020, EUR J MARKETING, V54, P2079, DOI 10.1108/EJM-05-2018-0341 Vazquez D, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102135 Verplanken B, 2001, EUR J PERSONALITY, V15, pS71, DOI 10.1002/per.423 [王艳芝 Wang Yanzhi], 2018, [心理科学进展, Advances in Psychological Science], V26, P1915 WEINBERG P, 1982, J BUS RES, V10, P43, DOI 10.1016/0148-2963(82)90016-9 WHEELER L, 1966, PSYCHOL REV, V73, P179, DOI 10.1037/h0023023 Wong CH, 2015, ONLINE INFORM REV, V39, P762, DOI 10.1108/OIR-05-2015-0152 Wong CH, 2014, IND MANAGE DATA SYST, V114, P1050, DOI 10.1108/IMDS-05-2014-0146 Wong LW, 2022, J MARK HIGH EDUC, V32, P113, DOI 10.1080/08841241.2020.1834486 Wong LW, 2020, INT J PROD RES, V58, P2100, DOI 10.1080/00207543.2020.1730463 Wongkitrungrueng A, 2020, J BUS RES, V117, P543, DOI 10.1016/j.jbusres.2018.08.032 Wu Y, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2020.103283 Xiang L, 2016, INT J INFORM MANAGE, V36, P333, DOI 10.1016/j.ijinfomgt.2015.11.002 Xue JL, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2020.103324 Zafar AU, 2021, ASIA PAC J MARKET LO, V33, P945, DOI 10.1108/APJML-08-2019-0495 Zafar AU, 2021, COMPUT HUM BEHAV, V115, DOI 10.1016/j.chb.2019.106178 Zhang YC, 2017, INT J RES MARK, V34, P100, DOI 10.1016/j.ijresmar.2016.07.003 Zheng XB, 2019, INT J INFORM MANAGE, V48, P151, DOI 10.1016/j.ijinfomgt.2019.02.010 Zhong YY, 2022, YOUNG CONSUM, V23, P449, DOI 10.1108/YC-08-2021-1367 Zuo Renshu, 2021, Proceedings of the Fifteenth International Conference on Management Science and Engineering Management. Lecture Notes on Data Engineering and Communications Technologies (78), P610, DOI 10.1007/978-3-030-79203-9_47 NR 102 TC 80 Z9 80 U1 128 U2 366 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD AUG PY 2022 VL 147 BP 325 EP 337 DI 10.1016/j.jbusres.2022.04.013 EA APR 2022 PG 13 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 1L4GA UT WOS:000799247400005 OA hybrid HC Y HP N DA 2024-03-27 ER PT J AU Arshi, TA Islam, S Gunupudi, N AF Arshi, Tahseen Anwer Islam, Sardar Gunupudi, Nirmal TI Predicting the effect of entrepreneurial stressors and resultant strain on entrepreneurial behaviour: an SEM-based machine-learning approach SO INTERNATIONAL JOURNAL OF ENTREPRENEURIAL BEHAVIOR & RESEARCH LA English DT Article DE Hindrance stressors; Entrepreneurial strain; Entrepreneurial behaviour; Psychological capital; Cross-lagged panel study; Structural equation modelling; Machine learning ID PSYCHOLOGICAL STRAIN; JOB CHARACTERISTICS; SELF-EMPLOYMENT; WORK STRESS; PERSONALITY; RESOURCE; PERFORMANCE; FAMILY; CHALLENGE; CONFLICT AB Purpose Considerable evidence suggests that although they overlap, entrepreneurial and employee stressors have different causal antecedents and outcomes. However, limited empirical data explain how entrepreneurial traits, work and life drive entrepreneurial stressors and create entrepreneurial strain (commonly called entrepreneurial stress). Drawing on the challenge-hindrance framework (CHF), this paper hypothesises the causal effect of hindrance stressors on entrepreneurial strain. Furthermore, the study posits that entrepreneurial stressors and the resultant strain affect entrepreneurial behaviour. Design/methodology/approach The study adopts an SEM-based machine-learning approach. Cross-lagged path models using SEM are used to analyse the data and train the machine-learning algorithm for cross-validation and generalisation. The sample consists of 415 entrepreneurs from three countries: India, Oman and United Arab Emirates. The entrepreneurs completed two self-report surveys over 12 months. Findings The results show that hindrances to personal and professional goal achievement, demand-capability gap and contradictions between aspiration and reality, primarily due to unique resource constraints, characterise entrepreneurial stressors leading to entrepreneurial strain. The study further asserts that entrepreneurial strain is a significant predictor of entrepreneurial behaviour, significantly affecting innovativeness behaviour. Finally, the finding suggests that psychological capital moderates the adverse impact of stressors on entrepreneurial strain over time. Originality/value This study contributes to the CHF by demonstrating the value of hindrance stressors in studying entrepreneurial strain and providing new insights into entrepreneurial coping. It argues that entrepreneurs cope effectively against hindrance stressors by utilising psychological capital. Furthermore, the study provides more evidence about the causal, reversed and reciprocal relationships between stressors and entrepreneurial strain through a cross-lagged analysis. This study is one of the first to evaluate the impact of entrepreneurial strain on entrepreneurial behaviour. Using a machine-learning approach is a new possibility for using machine learning for SEM and entrepreneurial strain. C1 [Arshi, Tahseen Anwer] Univ Ras Al Khaimah, Sch Business, Ras Al Khaymah, U Arab Emirates. [Islam, Sardar] Victoria Univ, Melbourne, Vic, Australia. [Gunupudi, Nirmal] Majan Univ Coll, Fac Business, Ruwi, Oman. C3 Victoria University RP Arshi, TA (autor correspondiente), Univ Ras Al Khaimah, Sch Business, Ras Al Khaymah, U Arab Emirates. EM tahseen.arshi@aurak.ac.ae; sardar.Islam@vu.edu.au; nirmalgunupudi@gmail.com RI ISLAM, MOHAMMAD NOOR/AHE-4032-2022 OI ISLAM, MOHAMMAD NOOR/0000-0001-9975-4889; arshi, tahseen/0000-0002-5244-7862; Gunupudi, Nirmal Dayanand Raju/0000-0001-6330-0324; Islam, Sardar M. N./0000-0001-9451-7390 CR Abbas M, 2019, J BUS PSYCHOL, V34, P189, DOI 10.1007/s10869-018-9535-z Adamoniene R, 2015, PROCD SOC BEHV, V213, P890, DOI 10.1016/j.sbspro.2015.11.501 Adisa TA, 2019, PERS REV, V48, P1634, DOI 10.1108/PR-06-2018-0197 Aldrich H., 1999, Organizations evolving Amarakoon U, 2019, PERS REV, V48, P1809, DOI 10.1108/PR-03-2018-0087 [Anonymous], 2003, HDB ENTREPRENEURSHIP, DOI DOI 10.1007/0-387-24519-7_9 Antoncic B, 2015, J SMALL BUS MANAGE, V53, P819, DOI 10.1111/jsbm.12089 Aragon-Sanchez A, 2017, INT J ENTREP BEHAV R, V23, P752, DOI 10.1108/IJEBR-06-2016-0172 Arshi T, 2018, J ENTREP, V27, P151, DOI 10.1177/0971355718781245 Avey JB, 2009, HUM RESOUR MANAGE-US, V48, P677, DOI 10.1002/hrm.20294 Ayala JC, 2014, J ECON PSYCHOL, V42, P126, DOI 10.1016/j.joep.2014.02.004 Baker T, 2005, ADMIN SCI QUART, V50, P329, DOI 10.2189/asqu.2005.50.3.329 Bandura A, 2007, J SOC CLIN PSYCHOL, V26, P641, DOI 10.1521/jscp.2007.26.6.641 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Baron RA, 2016, J MANAGE, V42, P742, DOI 10.1177/0149206313495411 Delgado-García JB, 2012, J SMALL BUS MANAGE, V50, P408, DOI 10.1111/j.1540-627X.2012.00359.x Benda BB, 2002, J SOC SERV RES, V29, P55, DOI 10.1300/J079v29n02_03 Berge LIO, 2015, MANAGE SCI, V61, P707, DOI 10.1287/mnsc.2014.1933 Bernerth JB, 2016, PERS PSYCHOL, V69, P229, DOI 10.1111/peps.12103 Bird B, 2012, ENTREP THEORY PRACT, V36, P889, DOI 10.1111/j.1540-6520.2012.00535.x Bishop C. M, 2007, Pattern Recognition and Machine Learning, DOI DOI 10.1007/978-0-387-45528-0 Boyce CJ, 2013, SOC INDIC RES, V111, P287, DOI 10.1007/s11205-012-0006-z Bradley S.W., 2015, Wiley Encyclopedia of Management, P1, DOI 10.1002/9781118785317.weom030031 Breakwell G.M., 2014, The psychology of risk, V2nd, DOI DOI 10.1017/CBO9780511819315 Burhanuddin N.A. N., 2019, International Journal of Academic Research in Progressive Education and Development, V8, p133?150, DOI [DOI 10.6007/IJARPED/V8-I3/6302, 10.6007/ijarped/v8-i3/6304] Cantner U., 2011, P DIME DRUID AC WINT Cardon MS, 2013, J BUS VENTURING, V28, P373, DOI 10.1016/j.jbusvent.2012.03.003 Carver CS, 2010, ANNU REV PSYCHOL, V61, P679, DOI 10.1146/annurev.psych.093008.100352 Cavanaugh MA, 2000, J APPL PSYCHOL, V85, P65, DOI 10.1037/0021-9010.85.1.65 Cavus M., 2014, INT REV MANAGEMENT M, V4, P42 Charmaine G.C., 2017, MCGILL INT ENTR MIE Chernyshenko OS, 2007, PSYCHOL ASSESSMENT, V19, P88, DOI 10.1037/1040-3590.19.1.88 Cirillo A, 2021, SMALL BUS ECON, V56, P1571, DOI 10.1007/s11187-019-00279-x Clough DR, 2019, ACAD MANAG ANN, V13, P240, DOI 10.5465/annals.2016.0132 Coelho F, 2011, J RETAILING, V87, P31, DOI 10.1016/j.jretai.2010.11.004 Cohen S, 2007, INFORM SCIENCES, V177, P3592, DOI 10.1016/j.ins.2007.01.016 Connor-Smith JK, 2007, J PERS SOC PSYCHOL, V93, P1080, DOI 10.1037/0022-3514.93.6.1080 Contreras-Barraza N., 2021, FRONT PSYCHOL, V12, P848 Coulter M., 2003, ENTREPRENEURSHIP ACT, V2nd Ding G., 2016, Human Resource Development of China, V22, P19, DOI DOI 10.3969/J.ISSN.1004-4124.2016.22.004 Down S, 2008, INT J ENTREP BEHAV R, V14, P4, DOI 10.1108/13552550810852802 Ebbers JJ, 2017, HUM RELAT, V70, P1342, DOI 10.1177/0018726717692852 Fatoki O., 2019, INT J ENTREPRENEURSH, V23, P1 Fernet C, 2013, EUR J WORK ORGAN PSY, V22, P123, DOI 10.1080/1359432X.2011.632161 Fodor OC, 2017, FRONT PSYCHOL, V8, DOI 10.3389/fpsyg.2017.00310 Foo MD, 2009, J APPL PSYCHOL, V94, P1086, DOI 10.1037/a0015599 Forman G., 2010, ACM SIGKDD Explor Newsl, V12, P49, DOI DOI 10.1145/1882471.1882479 Ganster DC, 2013, J MANAGE, V39, P1085, DOI 10.1177/0149206313475815 Gardoni P, 2014, RISK ANAL, V34, P1208, DOI 10.1111/risa.12150 Gareth J, 2013, INTRO STAT LEARNING Gartner WB, 2010, INT HANDB SER ENTREP, P99, DOI 10.1007/978-1-4419-1191-9_5 Gilboa S, 2008, PERS PSYCHOL, V61, P227, DOI 10.1111/j.1744-6570.2008.00113.x Gorgievski MJ, 2016, APPL PSYCHOL-INT REV, V65, P437, DOI 10.1111/apps.12073 Grant Sharon, 2012, International Journal of Entrepreneurial Venturing, V4, P351 Grant S, 2007, J OCCUP HEALTH PSYCH, V12, P20, DOI 10.1037/1076-8998.12.1.20 Grawitch MJ, 2010, APPL PSYCHOL-HLTH WE, V2, P127, DOI 10.1111/j.1758-0854.2009.01023.x Green JA, 2016, ASSESSMENT, V23, P374, DOI 10.1177/1073191115580639 Hachana R, 2018, J INNOV ECON MANAG, P169, DOI 10.3917/jie.027.0169 Hair J.F., 2009, Multivariate data analysis Halbesleben JRB, 2014, J MANAGE, V40, P1334, DOI 10.1177/0149206314527130 Hamsici OC, 2007, J MACH LEARN RES, V8, P1583 Hart P.M., 2001, Handbook of industrial, work and organizational psychology, V2, P93 Hedia F., 2014, ENTREP RES J, V4, P351 HEDNER T., 2011, Annals of Innovation Entrepreneurship, V2, P7986, DOI DOI 10.3402/AIE.V2I1.6002 Heilbrunn S., 2019, INT J ENTREP BEHAV R, V10, P39 Hessels J, 2017, J BUS VENTURING, V32, P178, DOI 10.1016/j.jhusvent.2016.10.007 Nguyen H, 2016, ENTREP RES J, V6, P207, DOI 10.1515/erj-2014-0041 Hobfoll S.E., 2011, CONSERVATION RESOURC, DOI DOI 10.1093/OXFORDHB/9780195375343.013.0007 Hobfoll SE, 2018, ANNU REV ORGAN PSYCH, V5, P103, DOI 10.1146/annurev-orgpsych-032117-104640 Horan KA, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.560346 Hsu DK, 2016, J BUS VENTURING, V31, P613, DOI 10.1016/j.jbusvent.2016.08.001 Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118 Inglehart R., 2018, CITIZEN POLITICS POS Jensen S.M., 2012, J INQUIRIES PERSPECT, V4, P79 Jex S.M., 2002, Organizational psychology: A scientist-practitioner approach, P179 Jex S.M., 1998, STRESS JOB PERFORMAN Joensuu-Salo S, 2020, EDUC TRAIN, V62, P325, DOI 10.1108/ET-03-2019-0053 Kariv D., 2008, Journal of Small Business and Entrepreneurship, V21, P449, DOI DOI 10.1080/08276331.2008.10593435 Kellermanns F, 2016, J SMALL BUS MANAGE, V54, P26, DOI 10.1111/jsbm.12126 Kenny DA, 2015, SOCIOL METHOD RES, V44, P486, DOI 10.1177/0049124114543236 Kerr SP, 2018, FOUND TRENDS ENTREP, V14, P279, DOI 10.1561/0300000080 Khairuddin S.M.H.S., 2017, ASIAN J SCI RES, V9, P171 Koeske G.F., 1993, J SOC SERV RES, V17, P107, DOI DOI 10.1300/J079V17N03_06 Kotha R, 2012, J BUS VENTURING, V27, P525, DOI 10.1016/j.jbusvent.2012.02.001 Krasikova DV, 2015, J LEADERSH ORG STUD, V22, P280, DOI 10.1177/1548051815585853 Lanivich SE, 2015, ENTREP THEORY PRACT, V39, P863, DOI 10.1111/etap.12082 Lau TLM, 2012, INT J ENTREP BEHAV R, V18, P673, DOI 10.1108/13552551211268120 Lazarus R. S., 1984, Stress, appraisal, and coping Lazarus R. S., 1966, PSYCHOL STRESS COPIN Lechat Thomas, 2017, International Journal of Entrepreneurship and Small Business, V32, P537 Lepine JA, 2005, ACAD MANAGE J, V48, P764, DOI 10.2307/20159696 Lerman M.P., 2020, RES OCCUPATIONAL STR Lerman MP, 2021, STRATEG ENTREP J, V15, P377, DOI 10.1002/sej.1370 Leyden DP, 2014, RES POLICY, V43, P1157, DOI 10.1016/j.respol.2014.04.010 Liang C., 2011, ACAD ENTREPRENEURSHI, V17, P97 Lin WP, 2015, J ORGAN BEHAV, V36, P94, DOI 10.1002/job.1949 Lobo JM, 2008, GLOBAL ECOL BIOGEOGR, V17, P145, DOI 10.1111/j.1466-8238.2007.00358.x Lopes M, 2009, ENCY POSITIVE PSYCHO Loscalzo Y, 2019, SAGE OPEN, V9, DOI 10.1177/2158244019861495 Luca M., 2017, Transilvania University of Brasov.Series VII: Social Sciences and Law, V10, P19 Luca MR, 2011, PROCD SOC BEHV, V30, DOI 10.1016/j.sbspro.2011.10.242 Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639 Luthans F., 2014, PSYCHOL CAPITAL QUES Luthans F, 2007, PERS PSYCHOL, V60, P541, DOI 10.1111/j.1744-6570.2007.00083.x Maritz A., 2015, ACERE C AD 2 5 FEBR MASLACH C, 1981, J OCCUP BEHAV, V2, P99, DOI 10.1002/job.4030020205 Maslach C, 2008, J APPL PSYCHOL, V93, P498, DOI 10.1037/0021-9010.93.3.498 Mazzola JJ, 2019, J ORGAN BEHAV, V40, P949, DOI 10.1002/job.2412 Michel JS, 2009, PERS INDIV DIFFER, V47, P163, DOI 10.1016/j.paid.2009.02.015 O'Brien KE, 2019, J ORGAN BEHAV, V40, P962, DOI 10.1002/job.2405 Omrane A., 2018, FIIB BUS REV, V7, P28 Patel PC, 2019, J BUS VENTURING, V34, P731, DOI 10.1016/j.jbusvent.2018.05.004 Pearsall MJ, 2009, ORGAN BEHAV HUM DEC, V109, P18, DOI 10.1016/j.obhdp.2009.02.002 Penley JA, 2002, PERS INDIV DIFFER, V32, P1215, DOI 10.1016/S0191-8869(01)00087-3 Peterson SJ, 2011, PERS PSYCHOL, V64, P427, DOI 10.1111/j.1744-6570.2011.01215.x Podsakoff NP, 2007, J APPL PSYCHOL, V92, P438, DOI 10.1037/0021-9010.92.2.438 Poon JML, 2006, INT SMALL BUS J, V24, P61, DOI 10.1177/0266242606059779 Preacher KJ, 2006, J EDUC BEHAV STAT, V31, P437, DOI 10.3102/10769986031004437 Rabenu E, 2017, CURR PSYCHOL, V36, P875, DOI 10.1007/s12144-016-9477-4 Rauch A, 2018, ACAD MANAGE PERSPECT, V32, P340, DOI 10.5465/amp.2016.0184 Riddle BL, 2000, SMALL GR RES, V31, P554, DOI 10.1177/104649640003100503 Robert B.W., 2009, Handbook of individual differences in social behaviour, P369, DOI DOI 10.1037/0033-2909.126.1 Rosseel Y, 2012, J STAT SOFTW, V48, P1, DOI 10.18637/jss.v048.i02 Ryan RM, 2017, SELF-DETERMINATION THEORY: BASIC PSYCHOLOGICAL NEEDS IN MOTIVATION, DEVELOPMENT, AND WELLNESS, P1, DOI 10.1521/978.14625/28806 Sandi C, 2015, NAT REV NEUROSCI, V16, P290, DOI 10.1038/nrn3918 Schenkel MT, 2014, J DEV ENTREP, V19, DOI 10.1142/S1084946714500058 Schjoedt L, 2009, ENTREP THEORY PRACT, V33, P619, DOI 10.1111/j.1540-6520.2009.00319.x Schonfeld IS, 2015, J OCCUP HEALTH PSYCH, V20, P501, DOI 10.1037/a0038804 Scott P., 2003, ERGONOMICS SA, V15, P67 Searle BJ, 2015, ANXIETY STRESS COPIN, V28, P121, DOI 10.1080/10615806.2014.931378 Selig J.P., 2012, HDB DEVELOPMENTAL RE, P265 Semerci A.B., 2016, Academy of Entrepreneurship Journal, V22, P41 Shepherd D.A., 2014, PSYCHOL APPROACH ENT Shir N, 2019, J BUS VENTURING, V34, DOI 10.1016/j.jbusvent.2018.05.002 Stam W, 2014, J BUS VENTURING, V29, P152, DOI 10.1016/j.jbusvent.2013.01.002 Staniewski MW, 2016, INT ENTREP MANAG J, V12, P861, DOI 10.1007/s11365-016-0385-8 Starr J.A., 1992, ENTREP THEORY PRACT, P67, DOI DOI 10.1177/104225879201700108 Stephan U, 2020, INT J ENTREP BEHAV R, V26, P1133, DOI 10.1108/IJEBR-06-2019-0362 Stephan U, 2018, ACAD MANAGE PERSPECT, V32, P290, DOI 10.5465/amp.2017.0001 Stewart WH, 2007, J SMALL BUS MANAGE, V45, P401, DOI 10.1111/j.1540-627X.2007.00220.x Tabachnick B. G., 2007, Using Multivariate Statistics, V5, P481, DOI DOI 10.1037/022267 ten Brummelhuis LL, 2012, AM PSYCHOL, V67, P545, DOI 10.1037/a0027974 Thatcher Miller, 2003, STRESSORS STRESS STR Thompson N.A., 2020, Research handbook on entrepreneurial behavior, practice and process, P30 Thompson NA, 2020, ENTREP REGION DEV, V32, P247, DOI 10.1080/08985626.2019.1641978 Tsai FS, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.582133 Uy MA, 2013, J BUS VENTURING, V28, P583, DOI 10.1016/j.jbusvent.2012.04.003 van Dam K, 2010, TEACH TEACH EDUC, V26, P965, DOI 10.1016/j.tate.2009.10.038 Wang Y, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.01071 Webster JR, 2011, J VOCAT BEHAV, V79, P505, DOI 10.1016/j.jvb.2011.02.001 Wei YX, 2020, J AFFECT DISORDERS, V266, P753, DOI 10.1016/j.jad.2020.01.105 Welter F, 2018, STRATEG ENTREP J, V12, P23, DOI 10.1002/sej.1274 Werbel JD, 2010, J SMALL BUS MANAGE, V48, P421, DOI 10.1111/j.1540-627X.2010.00301.x Wersebe H, 2018, INT J CLIN HLTH PSYC, V18, P60, DOI 10.1016/j.ijchp.2017.09.002 White JV., 2020, Entrepreneurial and small business stressors, experienced stress, and well-being: Research in occupational stress and well-being, V18, P65, DOI [10.1108/s1479-355520200000018004, DOI 10.1108/S1479-355520200000018004] Wiklund J, 2019, J BUS VENTURING, V34, P579, DOI 10.1016/j.jbusvent.2019.01.002 Williams EN, 2019, CONTRIB MANAG SCI, P117, DOI 10.1007/978-3-030-19685-1_6 Wilmot MP, 2019, P NATL ACAD SCI USA, V116, P23004, DOI 10.1073/pnas.1908430116 Wilmot P., 2019, MACHINE LEARNING APP Wincent J, 2009, J BUS PSYCHOL, V24, P225, DOI 10.1007/s10869-009-9102-8 Winkel DE, 2010, J VOCAT BEHAV, V76, P336, DOI 10.1016/j.jvb.2009.10.011 Zedeikaite L., 2009, SOC EDUC, V8, P35 Zhang J, 2014, SOC INDIC RES, V115, P337, DOI 10.1007/s11205-012-0222-6 NR 163 TC 6 Z9 6 U1 13 U2 51 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1355-2554 EI 1758-6534 J9 INT J ENTREP BEHAV R JI Int. J. Entrep. Behav. Res. PD OCT 11 PY 2021 VL 27 IS 7 BP 1819 EP 1848 DI 10.1108/IJEBR-08-2020-0529 EA AUG 2021 PG 30 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA WF5CE UT WOS:000683531600001 DA 2024-03-27 ER PT J AU Jiang, M Huang, GQ AF Jiang, Min Huang, George Q. TI Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Forward-reserve warehouses; Synchronization; Intralogistics operations; Robotic warehouse systems ID VARIABLE NEIGHBORHOOD SEARCH; ORDER PICKING; MULTIPLE PICKERS; ALLOCATING SPACE; STRATEGIES; DESIGN; ASSIGNMENT; SYSTEMS; STORAGE; MODEL AB This paper treats intralogistics processing in a typical robotic forward-reserve e-commerce warehouse involving a reserve area with manual order-picking operations and a forward area with robotic parts-to-picker order sorting operations. It is critical to synchronize intralogistics operations between the two areas considering delivery requirements to optimize the performance in terms of makespan and costs. This challenge is formulated as a delivery-driven intralogistics synchronization (DDIS) problem. This paper develops a tailored variable neighborhood search solution method. A series of comprehensive numerical experiments under various scenarios show the superiority and stability of the DDIS as benchmarked with sequential approaches. A substantial reduction can be achieved in both makespan and forward area size, indicating significantly improved intralogistics operational efficiency and space utilization. Managerial insights are also discussed for specific action plans regarding the market size, the labor force, and the trolley configuration. C1 [Jiang, Min; Huang, George Q.] Univ Hong Kong, Dept Ind & Mfg Syst Engn, HKU Lab Phys Internet, Pokfulam, Hong Kong, Peoples R China. C3 University of Hong Kong RP Huang, GQ (autor correspondiente), Univ Hong Kong, Dept Ind & Mfg Syst Engn, HKU Lab Phys Internet, Pokfulam, Hong Kong, Peoples R China. EM mjiang@connect.hku.hk; gqhuang@hku.hk CR Albareda-Sambola M, 2009, ASIA PAC J OPER RES, V26, P655, DOI 10.1142/S0217595909002390 Ardjmand E, 2018, INT J PROD ECON, V206, P169, DOI 10.1016/j.ijpe.2018.10.001 Azadeh K, 2019, TRANSPORT SCI, V53, P917, DOI 10.1287/trsc.2018.0873 Bartholdi J. J., 2017, WAREHOUSE DISTRIBUTI Bartholdi JJ, 2008, IIE TRANS, V40, P1046, DOI [10.1080/07408170802167662, 10.1080/0740817080216766] Boysen N, 2019, EUR J OPER RES, V277, P396, DOI 10.1016/j.ejor.2018.08.023 Boysen N, 2018, EUR J OPER RES, V270, P386, DOI 10.1016/j.ejor.2018.03.026 Boysen N, 2017, EUR J OPER RES, V262, P550, DOI 10.1016/j.ejor.2017.03.053 Boywitz D, 2019, IISE TRANS, V51, P368, DOI 10.1080/24725854.2018.1513672 Chen BC, 2013, INT J PROD ECON, V141, P360, DOI 10.1016/j.ijpe.2012.08.019 Chen ZL, 2010, OPER RES, V58, P130, DOI 10.1287/opre.1080.0688 de Koster R, 2007, EUR J OPER RES, V182, P481, DOI 10.1016/j.ejor.2006.07.009 de Koster RBM, 2012, INT J PROD RES, V50, P757, DOI 10.1080/00207543.2010.543941 Enright John., 2011, AUTOMATED ACTION PLA, P33 Frazelle E.H., 1994, FORWARD RESERVE PROB Gu J, 2010, J OPER RES SOC, V61, P1013, DOI 10.1057/jors.2009.39 Gu JX, 2007, EUR J OPER RES, V177, P1, DOI 10.1016/j.ejor.2006.02.025 Gzara F., 2020, INFORMS J OPTIMIZATI, V2, P273, DOI DOI 10.1287/IJOO.2019.0039 HACKMAN ST, 1990, IIE TRANS, V22, P7, DOI 10.1080/07408179008964152 Han B, 2015, EUR J OPER RES, V244, P704, DOI 10.1016/j.ejor.2015.02.008 Hansen P, 2001, EUR J OPER RES, V130, P449, DOI 10.1016/S0377-2217(00)00100-4 He RH, 2020, INT J GEN SYST, V49, P497, DOI 10.1080/03081079.2020.1778681 Henn S, 2015, FLEX SERV MANUF J, V27, P86, DOI 10.1007/s10696-012-9164-1 Heragu SS, 2005, INT J PROD RES, V43, P327, DOI 10.1080/00207540412331285841 Jaghbeer Y, 2020, INT J PROD RES, V58, P4489, DOI 10.1080/00207543.2020.1788734 Jharkharia S, 2019, MANAG RES REV, V43, P223, DOI 10.1108/MRR-01-2019-0013 Jiang M, 2020, TRANSPORT RES E-LOG, V144, DOI 10.1016/j.tre.2020.102138 Jiang XW, 2018, PROCEDIA COMPUT SCI, V126, P1985, DOI 10.1016/j.procs.2018.07.254 Le-Duc T, 2007, EUR J OPER RES, V176, P374, DOI 10.1016/j.ejor.2005.03.052 Lee HY, 2019, INT J PROD RES, V57, P5821, DOI 10.1080/00207543.2018.1552031 Li K, 2016, EXPERT SYST APPL, V57, P12, DOI 10.1016/j.eswa.2016.02.033 Marchet G, 2011, J MANUF TECHNOL MANA, V22, P261, DOI 10.1108/17410381111102252 Menéndez B, 2017, EUR J OPER RES, V263, P82, DOI 10.1016/j.ejor.2017.05.001 Merschformann M., 2017, ARXIV PREPRINT ARXIV Mladenovic N, 1997, COMPUT OPER RES, V24, P1097, DOI 10.1016/S0305-0548(97)00031-2 Mohammadi S, 2020, INT J PROD ECON, V219, P347, DOI 10.1016/j.ijpe.2019.05.017 Monahan S., 2016, US ECOMMERCE TRENDS Parikh PJ, 2008, TRANSPORT RES E-LOG, V44, P696, DOI 10.1016/j.tre.2007.03.002 Roy D, 2019, TRANSPORT RES E-LOG, V122, P119, DOI 10.1016/j.tre.2018.11.005 Scholz A, 2017, EUR J OPER RES, V263, P461, DOI 10.1016/j.ejor.2017.04.038 Schubert D, 2021, NAV RES LOG, V68, P721, DOI 10.1002/nav.21954 Silva A, 2020, TRANSPORT RES E-LOG, V140, DOI 10.1016/j.tre.2020.102003 Tang CS, 2019, TRANSPORT RES E-LOG, V129, P1, DOI 10.1016/j.tre.2019.06.004 Valle CA, 2020, EUR J OPER RES, V284, P460, DOI 10.1016/j.ejor.2020.01.022 van den Berg JP, 1998, EUR J OPER RES, V111, P98, DOI 10.1016/S0377-2217(98)80013-1 van Gils T, 2019, TRANSPORT RES E-LOG, V125, P47, DOI 10.1016/j.tre.2019.02.010 van Gils T, 2018, EUR J OPER RES, V267, P1, DOI 10.1016/j.ejor.2017.09.002 Walter R, 2013, EUR J OPER RES, V229, P585, DOI 10.1016/j.ejor.2013.02.047 Weidinger F, 2018, TRANSPORT SCI, V52, P1479, DOI 10.1287/trsc.2018.0826 Wulfraat M., 2021, KIVA SYSTEMS IN DEPT Wurman PR, 2008, AI MAG, V29, P9 Xie L, 2021, EUR J OPER RES, V288, P80, DOI 10.1016/j.ejor.2020.05.032 Yuan Z, 2017, IEEE T ENG MANAGE, V64, P83, DOI 10.1109/TEM.2016.2634540 Zhang J, 2019, TRANSPORT RES E-LOG, V123, P180, DOI 10.1016/j.tre.2019.01.013 Zhang J, 2018, OMEGA-INT J MANAGE S, V79, P104, DOI 10.1016/j.omega.2017.08.004 Zhuang YL, 2022, EUR J OPER RES, V300, P527, DOI 10.1016/j.ejor.2021.08.003 Zou BP, 2018, EUR J OPER RES, V267, P733, DOI 10.1016/j.ejor.2017.12.008 NR 57 TC 7 Z9 7 U1 9 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 EI 1878-5794 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD FEB PY 2022 VL 158 AR 102619 DI 10.1016/j.tre.2022.102619 EA FEB 2022 PG 19 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA 0V2DZ UT WOS:000788155500004 DA 2024-03-27 ER PT J AU Gomes, MA Wönkhaus, M Meisen, P Meisen, T AF Alves Gomes, Miguel Wonkhaus, Mark Meisen, Philipp Meisen, Tobias TI TEE: Real-Time Purchase Prediction Using Time Extended Embeddings for Representing Customer Behavior SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE e-commerce; purchase prediction; real-time purchase prediction; embeddings; time embeddings; customer representation; machine learning; C45; C53; C55; L81; L86 ID INTENTION AB Real-time customer purchase prediction tries to predict which products a customer will buy next. Depending on the approach used, this involves using data such as the customer's past purchases, his or her search queries, the time spent on a product page, the customer's age and gender, and other demographic information. These predictions are then used to generate personalized recommendations and offers for the customer. A variety of approaches already exist for real-time customer purchase prediction. However, these typically require expertise to create customer representations. Recently, embedding-based approaches have shown that customer representations can be effectively learned. In this regard, however, the current state-of-the-art does not consider activity time. In this work, we propose an extended embedding approach to represent the customer behavior of a session for both known and unknown customers by including the activity time. We train a long short-term memory with our representation. We show with empirical experiments on three different real-world datasets that encoding activity time into the embedding increases the performance of the prediction and outperforms the current approaches used. C1 [Alves Gomes, Miguel; Wonkhaus, Mark; Meisen, Tobias] Univ Wuppertal, Inst Technol & Management Digital Transformat, D-42119 Wuppertal, Germany. [Meisen, Philipp] Breinify Inc, San Francisco, CA 94105 USA. C3 University of Wuppertal RP Gomes, MA (autor correspondiente), Univ Wuppertal, Inst Technol & Management Digital Transformat, D-42119 Wuppertal, Germany. EM alvesgomes@uni-wuppertal.de; woenkhaus@uni-wuppertal.de; philipp.meisen@breinify.com; meisen@uni-wuppertal.de OI Meisen, Philipp/0000-0002-8024-3074; Alves Gomes, Miguel/0000-0003-3664-0360; Meisen, Tobias/0000-0002-1969-559X FU University of Wuppertal FX The APC was funded by the Open Access Publication Fund of the University of Wuppertal. CR Akiba T, 2019, KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P2623, DOI 10.1145/3292500.3330701 Armstrong G., 2014, Principles of marketing Baumann A, 2018, EXPERT SYST APPL, V94, P137, DOI 10.1016/j.eswa.2017.10.046 Behera RK, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.03.026 Buitinck L., 2013, ECML PKDD WORKSHOP L, P108, DOI [10.48550/arXiv.1309.0238, DOI 10.48550/ARXIV.1309.0238] Card S. K., 1991, Human Factors in Computing Systems. Reaching Through Technology. CHI '91. Conference Proceedings, P181, DOI 10.1145/108844.108874 Chaudhuri N, 2021, DECIS SUPPORT SYST, V149, DOI 10.1016/j.dss.2021.113622 Chen C, 2022, PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, P2732, DOI 10.1145/3534678.3539053 Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805] Esmeli R, 2022, J BUS RES, V147, P420, DOI 10.1016/j.jbusres.2022.04.012 Esmeli R, 2020, IEEE IJCNN, DOI 10.1109/ijcnn48605.2020.9206871 Esmeli R, 2021, ELECTRON MARK, V31, P697, DOI 10.1007/s12525-020-00448-x Gomes MA, 2022, PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, P2873, DOI 10.1145/3511808.3557127 Gomes Miguel Alves, 2021, 2021 IEEE 23 INT C H, DOI DOI 10.1109/HPCC-DSS-SMARTCITY-DEPENDSYS53884.2021.00195 Gomez M, 2023, INT J SPEECH-LANG PA, DOI 10.1080/17549507.2023.2211750 Harris CR, 2020, NATURE, V585, P357, DOI 10.1038/s41586-020-2649-2 Hong T, 2012, EXPERT SYST APPL, V39, P2127, DOI 10.1016/j.eswa.2011.07.114 Huang GJ, 2020, ALGORITHMS, V13, DOI 10.3390/a13120342 Karingula SR, 2022, LECT NOTES COMPUT SC, V13164, P1, DOI 10.1007/978-3-030-95470-3_1 Kazemi S.M., 2019, arXiv, DOI 10.48550/arXiv.1907.05321 Kim KJ, 2004, LECT NOTES COMPUT SC, V3397, P409 Kumar V, 2008, J MARKETING, V72, P50, DOI 10.1509/jmkg.72.5.50 Leeflang PSH, 2014, EUR MANAG J, V32, P1, DOI 10.1016/j.emj.2013.12.001 Li Q, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), P1048, DOI 10.1109/ICDMW.2015.172 Li X, 2020, CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, P785, DOI 10.1145/3340531.3411952 Lin WQ, 2019, 2019 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2019), P9, DOI 10.1145/3350546.3352495 Liu X, 2019, J MARKETING RES, V56, P918, DOI 10.1177/0022243719866690 Martínez A, 2020, EUR J OPER RES, V281, P588, DOI 10.1016/j.ejor.2018.04.034 McKinney W., 2010, P 9 PYTHON SCI C, V445, P51, DOI [10.25080/Majora-92bf1922-00a, DOI 10.25080/MAJORA-92BF1922-00A] Mikolov T, 2013, Advances in neural information processing systems, DOI DOI 10.48550/ARXIV.1310.4546 Miller R.B., 1968, P DEC 9 11 1968 FA 1, P267, DOI [DOI 10.1145/1476589.1476628, 10.1145/1476589.1476628] Mokryn O, 2019, ELECTRON COMMER R A, V34, DOI 10.1016/j.elerap.2019.100836 Mulhern FJ, 1999, J INTERACT MARK, V13, P25, DOI 10.1002/(SICI)1520-6653(199924)13:1<25::AID-DIR3>3.0.CO;2-L Nalmpantis C, 2019, COMM COM INF SC, V1000, P80, DOI 10.1007/978-3-030-20257-6_7 Park D., 2015, INT ACM RECOMMENDER, P1, DOI [10.1145/2813448.2813517, DOI 10.1145/2813448.2813517] Paszke A, 2019, ADV NEUR IN, V32 Pedregosa F, 2011, J MACH LEARN RES, V12, P2825 Rahman MS, 2020, J GLOB INF MANAG, V28, P39, DOI 10.4018/JGIM.2020010103 Romov P., 2015, P 2015 INT ACM REC S, P1, DOI DOI 10.1145/2813448.2813510 Sheil H, 2018, Arxiv, DOI arXiv:1807.08207 Sismeiro C, 2004, J MARKETING RES, V41, P306, DOI 10.1509/jmkr.41.3.306.35985 Srilakshmi Madiraju, 2022, INTELL SYST APPL, V14, DOI 10.1016/j.iswa. 2022.200070 Statista Retail, 2022, E COMM SAL WORLDW 20 Sutskever I., 2014, ADV NEURAL INFORM PR, V3104, P3112, DOI DOI 10.5555/2969033.2969173 Tercan H, 2021, PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, P610, DOI 10.5220/0010400706100617 Uribarri G, 2022, CHAOS SOLITON FRACT, V154, DOI 10.1016/j.chaos.2021.111612 VanRossum G, 1995, PYTHON REFERENCE MAN Vasile F, 2016, PROCEEDINGS OF THE 10TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'16), P225, DOI 10.1145/2959100.2959160 Vaswani A, 2017, ADV NEUR IN, V30 Wu Z., 2015, IET International Conference on Resilience of Transmission and Distribution Networks (RTDN) 2015 Yao SW, 2021, PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), P2890, DOI 10.1145/3442381.3450129 Zeithaml VA, 2001, CALIF MANAGE REV, V43, P118, DOI 10.2307/41166104 Zeng M, 2019, ELECTRON MARK, V29, P263, DOI 10.1007/s12525-018-0311-8 Zhou GR, 2019, AAAI CONF ARTIF INTE, P5941 NR 54 TC 0 Z9 0 U1 7 U2 7 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD SEP PY 2023 VL 18 IS 3 BP 1404 EP 1418 DI 10.3390/jtaer18030070 PG 15 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA S8YO3 UT WOS:001073970900001 OA gold DA 2024-03-27 ER PT J AU Chang, JYS Cheah, JH Lim, XJ Morrison, AM AF Chang, Jennifer Yee-Shan Cheah, Jun-Hwa Lim, Xin-Jean Morrison, Alastair M. TI One pie, many recipes: The role of artificial intelligence chatbots in influencing Malaysian solo traveler purchase intentions SO TOURISM MANAGEMENT PERSPECTIVES LA English DT Article DE AI chatbot; Tourism; Solo travelers; Purchase intentions; PLS-SEM; fsQCA ID COMMUNICATION QUALITY; USER EXPERIENCE; BRAND-EQUITY; PLS-SEM; SATISFACTION; INNOVATION; ADOPTION; ACCEPTANCE; MODEL; TRUST AB Artificial intelligence (AI) chatbots are pervasive in the travel industry and have significantly alleviated solo travelers' concerns in trip planning and booking. However, many existing AI chatbots have yet to meet the expectations of solo travelers, especially when they demand more personalized information to assist in travel decision-making. Based on complexity theory, this research examines the factors that stimulate solo travelers' purchase intentions when using AI chatbots, particularly covering the three main aspects of marketing efforts, communication quality, and affective characteristics. Drawing from a sample of 281 solo travelers, partial least squares-structural equation modeling (PLS-SEM) and fuzzy-set qualitative comparative analysis (fsQCA) are used to examine the proposed relationships. The PLS-SEM results illustrate that interaction, entertainment, trendiness, communication competence, and satisfaction have significant direct effects on purchase intentions. The fsQCA results further revealed four solutions exhibiting high purchase intentions among solo travelers. Different core, peripheral, and necessary causal conditions in each configuration path were identified. The findings enrich the AI chatbot literature by examining the underlying reasons why solo travelers react differently to this emerging technology and produce practical recommendations for designing AI chatbot systems. C1 [Chang, Jennifer Yee-Shan] Univ Essex, Edge Hotel Sch, Wivenhoe Pk, Colchester CO4 3SQ, England. [Cheah, Jun-Hwa] Univ East Anglia, Norwich Business Sch, Norwich NR4 7TJ, Norfolk, England. [Lim, Xin-Jean] Univ Kebangsaan Malaysia, Fac Econ & Management, Ctr Value Creat & Human Well Being, Bangi, Selangor, Malaysia. [Morrison, Alastair M.] Univ Greenwich, Old Royal Naval Coll, Fac Business, Sch Mkt & Management, Pk Row, London SE10 9SL, England. C3 University of Essex; University of East Anglia; Universiti Kebangsaan Malaysia; University of Greenwich RP Cheah, JH (autor correspondiente), Univ East Anglia, Norwich Business Sch, Norwich NR4 7TJ, Norfolk, England. EM y.chang@essex.ac.uk; J.Cheah@uea.ac.uk; lim.xinjean@yahoo.com; a.morrison@greenwich.ac.uk RI Morrison, Alastair M./B-5706-2016; LIM, XIN JEAN/ABB-9802-2020; Cheah, Jun-Hwa/C-6463-2019 OI LIM, XIN JEAN/0000-0002-6794-3607; Cheah, Jun-Hwa/0000-0001-8440-9564 CR Adamopoulou E., 2020, MACHINE LEARNING APP, V2, DOI DOI 10.1016/J.MLWA.2020.100006 Aguilera-Caracuel J, 2014, J BUS RES, V67, P2385, DOI 10.1016/j.jbusres.2014.02.005 Alonso-Vazquez M., 2023, Current Issues in Tourism, P1 Azali M, 2023, J HOSP TOUR RES, V47, P177, DOI 10.1177/1096348020987634 Babin BJ, 2016, J BUS RES, V69, P3133, DOI 10.1016/j.jbusres.2015.12.001 Becker JM, 2023, INT J CONTEMP HOSP M, V35, P321, DOI 10.1108/IJCHM-04-2022-0474 Becker JM, 2013, MIS QUART, V37, P665, DOI 10.25300/MISQ/2013/37.3.01 Bernard, 2017, RES METHODS ANTHR QU Bernard S, 2022, TOUR MANAG PERSPECT, V41, DOI 10.1016/j.tmp.2021.100932 Bertalanffy L., 1968, General System Theory: Foundations, Development, Applications Bianchi C, 2022, TOUR REV, V77, P780, DOI 10.1108/TR-12-2020-0611 Bianchi C, 2016, INT J TOUR RES, V18, P197, DOI 10.1002/jtr.2049 Boavida-Portugal I., 2018, Frontiers, V1, P32 Booking.com, 2018, Booking.com research exposes surprising gap between travel ambitions and reality Booking.com, 2021, GUID BOOK COM SHAR 8 Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Calvaresi D., 2021, INFORM COMMUNICATION, V2021, P3 Chang JYS, 2024, J MARK ANAL, V12, P71, DOI 10.1057/s41270-023-00240-8 Chang YS, 2022, INT J HOSP MANAG, V104, DOI 10.1016/j.ijhm.2022.103249 Chen CC, 2018, TELEMAT INFORM, V35, P1512, DOI 10.1016/j.tele.2018.03.019 Chen X., 2020, DESIGN USER EXPERIEN, P581 Chen YH, 2007, IND MANAGE DATA SYST, V107, P21, DOI 10.1108/02635570710719034 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Chin W, 2020, IND MANAGE DATA SYST, V120, P2161, DOI 10.1108/IMDS-10-2019-0529 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Coelho PS, 2012, EUR J MARKETING, V46, P331, DOI 10.1108/03090561211202503 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Dabholkar P., 1996, J ACAD MARKET SCI, V24, P3, DOI [10.1177/009207039602400101, DOI 10.1007/BF02893933] DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dolnicar S, 2008, TOURISM MANAGEMENT: ANALYSIS, BEHAVIOUR AND STRATEGY, P129, DOI 10.1079/9781845933234.0129 Edwards C, 2014, COMPUT HUM BEHAV, V33, P372, DOI 10.1016/j.chb.2013.08.013 Emmers-Sommer TM, 2004, J SOC PERS RELAT, V21, P399, DOI 10.1177/0265407504042839 Faul F, 2009, BEHAV RES METHODS, V41, P1149, DOI 10.3758/BRM.41.4.1149 Filieri R, 2016, ANN TOURISM RES, V58, P46, DOI 10.1016/j.annals.2015.12.019 Fink A., 2009, How to conduct surveys: A step-by-step guide Fionda AM, 2009, J BRAND MANAG, V16, P347, DOI 10.1057/bm.2008.45 Fiss PC, 2007, ACAD MANAGE REV, V32, P1180, DOI 10.5465/AMR.2007.26586092 French L., 2020, Travel Weekly Frenken K, 2006, ECON INNOV NEW TECH, V15, P137, DOI 10.1080/10438590500141453 Godes D, 2005, MARKET LETT, V16, P415, DOI 10.1007/s11002-005-5902-4 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Haas A, 2014, J RETAILING, V90, P428, DOI 10.1016/j.jretai.2014.05.003 Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Hosseini S, 2022, INT J TOUR RES, V24, P256, DOI 10.1002/jtr.2498 Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Hulland J, 2018, J ACAD MARKET SCI, V46, P92, DOI 10.1007/s11747-017-0532-y Hwang H., 2020, BEHAVIORMETRIKA, V47, P219, DOI [DOI 10.1007/S41237-019-00085-5, https://doi.org/10.1007/s41237-019-00085-5] Iskender A, 2024, TOUR HOSP RES, V24, P95, DOI 10.1177/14673584221133667 Ivanov SH, 2022, TOURISM ECON, V28, P3, DOI 10.1177/1354816620946541 Izard C. E., 1977, HUMAN EMOTIONS, DOI [10.1007/978-1-4899-2209-0, DOI 10.1007/978-1-4899-2209-0, DOI 10.1007/S10853-018-3152-0] Jayawardhena C, 2007, INT J RETAIL DISTRIB, V35, P515, DOI 10.1108/09590550710750377 Jiménez-Barreto J, 2021, INT J CONTEMP HOSP M, V33, P3860, DOI 10.1108/IJCHM-10-2020-1244 Kaczorowska-Spychalska D, 2018, MANAG-POL, V22, P187, DOI 10.2478/manment-2018-0031 Karagöz D, 2021, CURR ISSUES TOUR, V24, P1595, DOI 10.1080/13683500.2020.1816929 Kayak, 2022, Travel Trends for 2023. Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim S, 2016, J BUS RES, V69, P5809, DOI 10.1016/j.jbusres.2016.04.178 Klook, 2019, Unpacking Solo Travel: Klook's global survey uncovers our love-hate relationship with solo travel Kock N, 2018, INFORM SYST J, V28, P227, DOI 10.1111/isj.12131 Kock N, 2012, J ASSOC INF SYST, V13, P546, DOI 10.17705/1jais.00302 Koponen JP, 2020, EUR J MARKETING, V54, P1205, DOI 10.1108/EJM-01-2019-0061 Kunze L, 2016, On chatbots Larson R., 2014, FLOW FDN POSITIVE PS, DOI [10.1007/978-94-017-9088-8, 10.1007/978-94-017-9088-8_2, DOI 10.1007/978-94-017-9088-8_2] Lee SY, 2017, INT J HUM-COMPUT ST, V103, P95, DOI 10.1016/j.ijhcs.2017.02.005 Letheren Kate, 2017, Embracing the bots: How direct to consumer advertising is about to change forever Lim XJ, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120763 Lisella M, 2019, The unstoppable trend: Solo Travel growing and going just about anywhere Liu KF, 2022, COMPUT HUM BEHAV, V127, DOI 10.1016/j.chb.2021.107026 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 McLean G, 2017, COMPUT HUM BEHAV, V76, P494, DOI 10.1016/j.chb.2017.08.005 MEHRABIAN A, 1968, PSYCHOL BULL, V70, P365, DOI 10.1037/h0026483 Mehran J, 2020, J RETAIL CONSUM SERV, V53, DOI 10.1016/j.jretconser.2019.101954 Min S, 2019, J TRAVEL TOUR MARK, V36, P770, DOI 10.1080/10548408.2018.1507866 Moore S., 2018, Gartner Says 25 Percent of Customer Service Operations Will Use Virtual Customer Assistants by 2020 Morgan SL, 2010, SOC FORCES, V88, P1934 Muangkammuen P., 2018, 2018 22 INT COMPUTER, P1 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 MyTravelResearch.com, 2017, Chatbots and the travel industry. Nath K., 2023, Travel Daily Media Nikjoo A, 2021, TOUR MANAG PERSPECT, V38, DOI 10.1016/j.tmp.2021.100817 Olya HGT, 2019, J TRAVEL RES, V58, P313, DOI 10.1177/0047287517751676 Ordanini A, 2014, J SERV RES-US, V17, P134, DOI 10.1177/1094670513513337 Ozturk UA, 2016, TOURISM GEOGR, V18, P194, DOI 10.1080/14616688.2015.1124446 Pant P, 2022, TOUR MANAG PERSPECT, V43, DOI 10.1016/j.tmp.2022.100978 Pappas IO, 2020, INT J INFORM MANAGE, V53, DOI 10.1016/j.ijinfomgt.2020.102128 Pappas IO, 2018, EUR J MARKETING, V52, P1679, DOI 10.1108/EJM-10-2017-0707 Pappas IO, 2016, J BUS RES, V69, P794, DOI 10.1016/j.jbusres.2015.07.010 Pappas N, 2021, INT J HOSP MANAG, V93, DOI 10.1016/j.ijhm.2020.102767 Park N, 2009, CYBERPSYCHOL BEHAV, V12, P729, DOI 10.1089/cpb.2009.0003 Perna A, 2018, J GLOB FASH MARK, V9, P73, DOI 10.1080/20932685.2017.1399081 Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Pizzi G, 2021, J BUS RES, V129, P878, DOI 10.1016/j.jbusres.2020.11.006 Ponte EB, 2015, TOURISM MANAGE, V47, P286, DOI 10.1016/j.tourman.2014.10.009 Poston RS, 2005, MIS QUART, V29, P221 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Pung JM, 2022, TOUR RECREAT RES, DOI 10.1080/02508281.2022.2117353 Pursel B, 2016, PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'16 COMPANION), P929, DOI 10.1145/2872518.2891077 Radojevic T, 2015, TOUR MANAG PERSPECT, V16, P247, DOI 10.1016/j.tmp.2015.08.004 Rasoolimanesh SM, 2021, INT J CONTEMP HOSP M, V33, P1571, DOI 10.1108/IJCHM-10-2020-1164 Redman T, 2002, SERV IND J, V22, P51, DOI 10.1080/714005085 Rihoux B., 2008, Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques, DOI DOI 10.4135/9781452226569 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Santini FD, 2018, J GLOB FASH MARK, V9, P305 Sarstedt M, 2019, J MARK ANAL, V7, P196, DOI 10.1057/s41270-019-00058-3 Shah S., 2021, Times of India Shin H, 2022, TOURISM MANAGE, V88, DOI 10.1016/j.tourman.2021.104428 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Solo Traveler, 2021, Solo travel statistics and data: 2021-2022. Straits Research, 2022, news-release Um XJ, 2022, TOUR REV, V77, P1166, DOI 10.1108/TR-11-2021-0497 Vendemia MA, 2017, COMPUT HUM BEHAV, V71, P99, DOI 10.1016/j.chb.2017.01.046 Viator, 2020, Understanding the rise of solo travelers: How they're different & how to reach them. Wang WT, 2012, INTERNET RES, V22, P142, DOI 10.1108/10662241211214548 Wang XH, 2023, TOUR MANAG PERSPECT, V46, DOI 10.1016/j.tmp.2023.101074 Wathen CN, 2002, J AM SOC INF SCI TEC, V53, P134, DOI 10.1002/asi.10016 Waugh J, 2021, Travel technology made simple: Convenience and security Woodside A.G., 2018, Improving the marriage of modeling and theory for accurate forecasts of outcomes, P1 Woodside AG, 2014, J BUS RES, V67, P2495, DOI 10.1016/j.jbusres.2014.07.006 Woodside AG, 2013, J BUS RES, V66, P463, DOI 10.1016/j.jbusres.2012.12.021 Xu J, 2022, INT J HOSP MANAG, V107, DOI 10.1016/j.ijhm.2022.103340 Yang ECL, 2022, TOUR MANAG PERSPECT, V41, DOI 10.1016/j.tmp.2021.100913 Yang ECL, 2022, INT J TOUR RES, V24, P347, DOI 10.1002/jtr.2506 Yang ECL, 2021, CURR ISSUES TOUR, V24, P2458, DOI 10.1080/13683500.2020.1839025 Yang ECL, 2019, TOUR REV, V74, P1047, DOI 10.1108/TR-10-2018-0150 [杨敬 Yang Jing], 2022, [焊接学报, Transactions of the China Welding Institution], V43, P1 Yang Y, 2021, ANN TOURISM RES, V91, DOI 10.1016/j.annals.2021.103313 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Yu CE, 2020, J HOSP MARKET MANAG, V29, P22, DOI 10.1080/19368623.2019.1592733 Zhang M, 2018, J GLOB SCHOLARS MARK, V28, P305, DOI 10.1080/21639159.2018.1513338 Zhao JY, 2020, COMPUT HUM BEHAV, V108, DOI 10.1016/j.chb.2020.106334 Zolkepli IA, 2015, COMPUT HUM BEHAV, V43, P189, DOI 10.1016/j.chb.2014.10.050 NR 134 TC 0 Z9 0 U1 36 U2 36 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 2211-9736 EI 2211-9744 J9 TOUR MANAG PERSPECT JI Tour. Manag. Perspect. PD NOV PY 2023 VL 49 AR 101191 DI 10.1016/j.tmp.2023.101191 EA OCT 2023 PG 14 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA X9RU1 UT WOS:001101747200001 DA 2024-03-27 ER PT J AU Singh, AK Kumar, VRP Shoaib, M Adebayo, TS Irfan, M AF Singh, Atul Kumar Kumar, V. R. Prasath Shoaib, Muhammad Adebayo, Towiwa Sunday Irfan, Muhammad TI A strategic roadmap to overcome blockchain technology barriers for sustainable construction: A deep learning-based dual-stage SEM-ANN approach SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Blockchain technology; Sustainable construction; Barriers; Partial least squares structural equation; modeling; Artificial neural networks; India ID BUILT ENVIRONMENT; INDUSTRY; IMPACT; CHAIN AB The adoption of blockchain technology in the sustainable construction industry in India is slow. Existing literature in this area has primarily focused on the potential applications of blockchain technology in construction but little attention is given to the barriers, impeding its adoption. This study fills this research gap by identifying the most significant barriers to adopting blockchain technology for India's sustainable construction industry. The collected data were analyzed via a two-stage PLS-SEM-artificial-neural-network (ANN) predictive analytical approach. In total, 722 construction stakeholder surveys were conducted, and the final model of barriers to adopting blockchain technology for sustainable construction was statistically validated. This study's findings suggest that significant organizational, technological, cultural, legal, security and government barriers limit the adoption of blockchain technology for sustainable construction in India. These findings also imply that effective legislative processes and economic incentives are crucial for ensuring blockchain technology integration into sustainable construction and for efficient implementation of practices. As a further step, a roadmap is developed to support decision-makers in overcoming these barriers in the short, medium, and long terms. Finally, multitiered strategies that construction mapping, sustainability, and integration should be adopted to ensure the successful integration of BT into sustainable construction practices in India. C1 [Singh, Atul Kumar; Kumar, V. R. Prasath] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Civil Engn, Kattankulathur 603203, Tamil Nadu, India. [Shoaib, Muhammad] Tomas Bata Univ Zlin, Fac Management & Econ, Dept Business Adm, Mostni 5139, Zlin 76001, Czech Republic. [Adebayo, Towiwa Sunday] Cyprus Int Univ, Fac Econ & Adm Sci, Dept Business Adm, Mersin 10, TR-99040 Haspolat, Turkiye. [Irfan, Muhammad] Beijing Technol & Business Univ, Sch Econ, Beijing 100048, Peoples R China. [Irfan, Muhammad] ILMA Univ, Fac Management Sci, Dept Business Adm, Karachi 75190, Pakistan. [Adebayo, Towiwa Sunday] New Uzbekistan Univ, Dept Econ & Data Sci, 54 Mustaqillik Ave, Tashkent 100007, Uzbekistan. C3 SRM Institute of Science & Technology Chennai; Tomas Bata University Zlin; Cyprus International University; Beijing Technology & Business University RP Kumar, VRP (autor correspondiente), SRM Inst Sci & Technol, Fac Engn & Technol, Dept Civil Engn, Kattankulathur 603203, Tamil Nadu, India.; Irfan, M (autor correspondiente), Beijing Technol & Business Univ, Sch Econ, Beijing 100048, Peoples R China. EM prasathv@srmist.edu.in; irfansahar@bit.edu.cn RI PRASATH KUMAR, V R/ABE-7690-2021; Singh, Atul Kumar/GYU-6499-2022; Adebayo, Tomiwa Sunday/HCH-3612-2022; Irfan, Muhammad/AAL-9371-2020 OI PRASATH KUMAR, V R/0000-0001-7292-0963; Singh, Atul Kumar/0000-0003-3092-2041; Irfan, Muhammad/0000-0003-1446-583X; Shoaib, Muhammad/0000-0003-0970-2343 CR Adu-Gyamfi G, 2022, RENEW SUST ENERG REV, V156, DOI 10.1016/j.rser.2021.111979 Akram SV, 2021, SECUR COMMUN NETW, V2021, DOI 10.1155/2021/6952121 Al Azmi N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14116427 Al-Otaibi A., 2023, APPL SCI SWITZERLAND, V13, P1, DOI [10.3390/app13042630, DOI 10.3390/APP13042630] Arpaci I, 2022, TECHNOL SOC, V71, DOI 10.1016/j.techsoc.2022.102120 Ashaari MA, 2021, TECHNOL FORECAST SOC, V173, DOI 10.1016/j.techfore.2021.121119 Badi S, 2021, CONSTR MANAG ECON, V39, P36, DOI 10.1080/01446193.2020.1819549 Bai CG, 2022, J CLEAN PROD, V358, DOI 10.1016/j.jclepro.2022.131896 Balci G, 2021, TRANSPORT RES E-LOG, V156, DOI 10.1016/j.tre.2021.102539 Bardach L, 2020, INT J RES METHOD EDU, V43, P348, DOI 10.1080/1743727X.2020.1791071 Belfitt R.J., 2011, TSBE ENGD C Benzidia S, 2021, TECHNOL FORECAST SOC, V169, DOI 10.1016/j.techfore.2021.120819 Bibri Simon Elias, 2020, Energy Informatics, V3, DOI 10.1186/s42162-020-00107-7 Biswas B, 2019, COMPUT IND ENG, V136, P225, DOI 10.1016/j.cie.2019.07.005 Bjorklund V., 2019, BLOCKCHAIN SMART CON Bohmecke-Schwafert M, 2023, TECHNOL FORECAST SOC, V191, DOI 10.1016/j.techfore.2023.122446 Bowen P, 2014, J CONSTR ENG M, V140, DOI 10.1061/(ASCE)CO.1943-7862.0000877 Caldarelli G, 2021, J ORGAN CHANGE MANAG, V34, P507, DOI 10.1108/JOCM-09-2020-0299 Chen KY, 2021, J CLEAN PROD, V287, DOI 10.1016/j.jclepro.2020.125071 Chen YF, 2016, J CONSTR ENG M, V142, DOI 10.1061/(ASCE)CO.1943-7862.0001147 Chung KHY, 2023, TECHNOL FORECAST SOC, V187, DOI 10.1016/j.techfore.2022.122258 Ciotta V, 2021, AUTOMAT CONSTR, V132, DOI 10.1016/j.autcon.2021.103925 Dal Mas F, 2023, TECHNOL FORECAST SOC, V187, DOI 10.1016/j.techfore.2022.122155 Das CP, 2021, TRANSPORT RES D-TR E, V100, DOI 10.1016/j.trd.2021.103055 Dehdasht G, 2023, ENG CONSTR ARCHIT MA, V30, P4294, DOI 10.1108/ECAM-02-2022-0121 Durdyev S, 2022, J BUILD ENG, V46, DOI 10.1016/j.jobe.2021.103736 Durdyev S, 2018, J CLEAN PROD, V204, P564, DOI 10.1016/j.jclepro.2018.08.304 Durdyev S, 2018, J CONSTR ENG M, V144, DOI 10.1061/(ASCE)CO.1943-7862.0001452 Elavarasan RM, 2022, RENEW SUST ENERG REV, V159, DOI 10.1016/j.rser.2022.112204 Elseufy SM, 2022, STRUCTURES, V46, P713, DOI 10.1016/j.istruc.2022.10.100 Ershadi M, 2021, CLEAN ENG TECHNOL, V3, DOI 10.1016/j.clet.2021.100125 Espinoza Perez A.T., 2022, AUTOM Farooque M, 2020, COMPUT IND ENG, V147, DOI 10.1016/j.cie.2020.106684 Figueiredo K, 2022, J CLEAN PROD, V343, DOI 10.1016/j.jclepro.2022.131047 Fosso Wamba Samuel., 2020, LOGISTIQUEAND MANAGE, V28, P88, DOI 10.1080/12507970.2019.1679046 Friedman N, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121403 Garg RK, 2021, J CLEAN PROD, V311, DOI 10.1016/j.jclepro.2021.127597 Ghanim MS, 2022, SUSTAIN CITIES SOC, V81, DOI 10.1016/j.scs.2022.103830 Gopalakrishnan PK, 2021, WASTE MANAGE, V120, P594, DOI 10.1016/j.wasman.2020.10.027 Götz CS, 2022, SMART SUSTAIN BUILT, V11, P532, DOI 10.1108/SASBE-08-2020-0115 Government A., 2020, NATL BLOCKCHAIN ROAD Govindan K, 2022, BUS STRATEG ENVIRON, V31, P3769, DOI 10.1002/bse.3031 Guan W, 2023, TECHNOL FORECAST SOC, V192, DOI 10.1016/j.techfore.2023.122552 Hair J., 2017, International Journal of Multivariate Data Analysis, V1, P107, DOI [DOI 10.1504/IJMDA.2017.087624, https://doi.org/10.1504/IJMDA.2017.087624, 10.1504/ijmda.2017.10008574] Hamledari H, 2021, ADV ENG INFORM, V50, DOI 10.1016/j.aei.2021.101444 Hao Y, 2022, BUS STRATEG ENVIRON, V31, P3100, DOI 10.1002/bse.3066 Harvest, 2018, BLOCKCHAIN EVOLUTION Hultgren M., 2018, BLOCKCHAIN TECHNOLOG, P1 Irfan M, 2020, ENERGY STRATEG REV, V32, DOI 10.1016/j.esr.2020.100540 Isik C, 2022, ENVIRON SCI POLLUT R, V29, P16472, DOI 10.1007/s11356-021-16720-2 Kamble SS, 2023, ANN OPER RES, V327, P575, DOI 10.1007/s10479-021-04129-6 Karamchandani A, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.10.004 Khalil M., 2022, Quality & Quantity, V56, P2435, DOI [10.1007/s11135-021-01229-0, DOI 10.1007/S11135-021-01229-0] Khan RU, 2022, TECHNOL FORECAST SOC, V184, DOI 10.1016/j.techfore.2022.122047 Khan SA, 2022, BUS STRATEG ENVIRON, V31, P3742, DOI 10.1002/bse.3029 Kim K, 2020, KSCE J CIV ENG, V24, P2561, DOI 10.1007/s12205-020-0188-x Kineber AF, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15032458 Kopyto M, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120330 Kouhizadeh M, 2021, INT J PROD ECON, V231, DOI 10.1016/j.ijpe.2020.107831 Kroesen M, 2022, J TRANSP GEOGR, V102, DOI 10.1016/j.jtrangeo.2022.103379 Kulkarni M, 2020, Int. J. Sci. Technol. Res., V9, P1109 Kumar A, 2020, DECISION SCI, V51, P8, DOI 10.1111/deci.12396 Lee D, 2021, AUTOMAT CONSTR, V127, DOI 10.1016/j.autcon.2021.103688 Leong LY, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102047 Li J, 2019, AUTOMAT CONSTR, V102, P288, DOI 10.1016/j.autcon.2019.02.005 Lo PS, 2022, J BUS RES, V147, P325, DOI 10.1016/j.jbusres.2022.04.013 Loh XM, 2022, EXPERT SYST APPL, V205, DOI 10.1016/j.eswa.2022.117659 Loosemore M, 2021, INT J PROJ MANAG, V39, P750, DOI 10.1016/j.ijproman.2021.07.002 Ma ZW, 2017, RENEW SUST ENERG REV, V67, P1300, DOI 10.1016/j.rser.2016.06.085 Mansi M, 2015, J PURCH SUPPLY MANAG, V21, P125, DOI 10.1016/j.pursup.2014.12.002 Munianday P, 2022, J MANAGE ENG, V38, DOI 10.1061/(ASCE)ME.1943-5479.0001038 Nawari NO, 2019, J BUILD ENG, V25, DOI 10.1016/j.jobe.2019.100832 Nawari NO, 2019, J INF TECHNOL CONSTR, V24, P209 Nicolas C, 2020, SUSTAIN CITIES SOC, V53, DOI 10.1016/j.scs.2019.101916 Oke AE, 2023, INT J BUILD PATHOL, V41, P988, DOI 10.1108/IJBPA-07-2021-0098 Olanrewaju OI, 2022, SUSTAIN CITIES SOC, V81, DOI 10.1016/j.scs.2022.103865 OReilly A., 2019, CITA BIM GATHER, DOI [10.21427/ksah-3-95, DOI 10.21427/KSAH-3-95] Parn EA, 2019, ENG CONSTR ARCHIT MA, V26, P245, DOI 10.1108/ECAM-03-2018-0101 Pérez ATE, 2022, INFORM FUSION, V79, P44, DOI 10.1016/j.inffus.2021.09.021 Rane SB, 2019, MANAG ENVIRON QUAL, V31, P741, DOI 10.1108/MEQ-06-2019-0136 Rauf A, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su132212361 Ren S., 2022, J. Econ. Anal, V1, P50, DOI [10.58567/jea01010004, DOI 10.58567/JEA01010004] Risso LA, 2023, COMPUT IND ENG, V179, DOI 10.1016/j.cie.2023.109195 Ronaghi MH, 2022, ENVIRON DEV SUSTAIN, V24, P6834, DOI 10.1007/s10668-021-01729-x Saberi S, 2019, INT J PROD RES, V57, P2117, DOI 10.1080/00207543.2018.1533261 Sadeghi M, 2022, ENVIRON SCI POLLUT R, V29, P10495, DOI 10.1007/s11356-021-16376-y Sahebi IG, 2020, TECHNOL SOC, V63, DOI 10.1016/j.techsoc.2020.101427 Sciarelli M, 2022, J STRATEGY MANAG, V15, P495, DOI 10.1108/JSMA-02-2021-0054 Sharma MG, 2020, IIM KOZHIKODE SOC MA, V9, P177, DOI 10.1177/2277975220932343 Shojaei A., 2019, 10 INT STRUCTURAL EN, DOI [10.14455/ISEC.res.2019.78, DOI 10.14455/ISEC.RES.2019.78] Shojaei A, 2021, J CLEAN PROD, V294, DOI 10.1016/j.jclepro.2021.126352 Singh AK, 2023, J CLEAN PROD, V403, DOI 10.1016/j.jclepro.2023.136840 Singh AK, 2022, J ENG RES-KUWAIT, V10, DOI 10.36909/jer.ACMM.16307 Su D, 2023, TECHNOL FORECAST SOC, V188, DOI 10.1016/j.techfore.2022.122275 Sun YP, 2022, RENEW ENERG, V193, P334, DOI 10.1016/j.renene.2022.04.159 Suprapto M, 2016, INT J PROJ MANAG, V34, P1071, DOI 10.1016/j.ijproman.2015.08.003 Tangi L, 2021, INT J INFORM MANAGE, V60, DOI 10.1016/j.ijinfomgt.2021.102356 Tawalare A, 2020, J CONSTR ENG M, V146, DOI 10.1061/(ASCE)CO.1943-7862.0001723 Teng JY, 2019, SUSTAIN CITIES SOC, V44, P215, DOI 10.1016/j.scs.2018.09.038 Tezel A, 2021, J MANAGE ENG, V37, DOI 10.1061/(ASCE)ME.1943-5479.0000939 Toufaily E, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103444 Treiblmaier H, 2018, SUPPLY CHAIN MANAG, V23, P545, DOI 10.1108/SCM-01-2018-0029 Tripoli M., 2018, EMERGING OPPORTUNITI, P21 Trivedi A, 2021, J CLEAN PROD, V295, DOI 10.1016/j.jclepro.2021.126301 Vafadarnikjoo A, 2023, ANN OPER RES, V327, P129, DOI 10.1007/s10479-021-04048-6 Wang GQ, 2022, TECHNOL FORECAST SOC, V175, DOI 10.1016/j.techfore.2021.121345 Wang R, 2022, AUTOMAT CONSTR, V134, DOI 10.1016/j.autcon.2021.104080 Wang Y, 2021, WIREL COMMUN MOB COM, V2021, DOI 10.1155/2021/1674412 Wolf D.B., 2020, WORLD EC FORUM INSIG, V2020, P1 Wong LW, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.08.005 Wu HT, 2021, ENERG POLICY, V153, DOI 10.1016/j.enpol.2021.112247 Wu XY, 2023, INT J PROD RES, V61, P3717, DOI 10.1080/00207543.2021.1894497 Xiang H, 2022, FRONT PSYCHOL, V13, DOI 10.3389/fpsyg.2022.837042 Xu YS, 2023, ENG CONSTR ARCHIT MA, V30, P125, DOI 10.1108/ECAM-04-2021-0335 Yadav VS, 2020, RESOUR CONSERV RECY, V161, DOI 10.1016/j.resconrec.2020.104877 Yang C., 2019, IS THERE ROLE BLOCKC Yang R, 2020, AUTOMAT CONSTR, V118, DOI 10.1016/j.autcon.2020.103276 Yaqoob I, 2022, NEURAL COMPUT APPL, V34, P11475, DOI 10.1007/s00521-020-05519-w Yevu SK, 2023, INT J CONSTR MANAG, V23, P964, DOI 10.1080/15623599.2021.1946900 Zhang J, 2022, TECHNOL FORECAST SOC, V182, DOI 10.1016/j.techfore.2022.121881 Zhang MY, 2019, J CONSTR ENG M, V145, DOI 10.1061/(ASCE)CO.1943-7862.0001582 Zhou JL, 2021, SUSTAIN CITIES SOC, V70, DOI 10.1016/j.scs.2021.102910 Zhou YS, 2020, MAR POLICY, V122, DOI 10.1016/j.marpol.2020.104265 Zima K, 2020, BUILDINGS-BASEL, V10, DOI 10.3390/buildings10010016 NR 124 TC 7 Z9 7 U1 25 U2 40 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD SEP PY 2023 VL 194 AR 122716 DI 10.1016/j.techfore.2023.122716 EA JUN 2023 PG 21 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA M6DY8 UT WOS:001031115400001 DA 2024-03-27 ER PT J AU Misra, K Schwartz, EM Abernethy, J AF Misra, Kanishka Schwartz, Eric M. Abernethy, Jacob TI Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments SO MARKETING SCIENCE LA English DT Article DE dynamic pricing; e-commerce; online experiments; machine learning; multiarmed bandits; partial identification; minimax regret; nonparametric econometrics; A/B testing; field experiments ID BRAND CHOICE; ROBUST; MARKET; MODEL; UNCERTAINTY; ALLOCATION; DECISIONS AB Pricing managers at online retailers face a unique challenge. They must decide on real-time prices for a large number of products with incomplete demand information. The manager runs price experiments to learn about each product's demand curve and the profitmaximizing price. In practice, balanced field price experiments can create high opportunity costs, because a large number of customers are presented with suboptimal prices. In this paper, we propose an alternative dynamic price experimentation policy. The proposed approach extends multiarmed bandit (MAB) algorithms from statistical machine learning to include microeconomic choice theory. Our automated pricing policy solves this MAB problem using a scalable distribution-free algorithm. We prove analytically that our method is asymptotically optimal for any weakly downward sloping demand curve. In a series of Monte Carlo simulations, we show that the proposed approach performs favorably compared with balanced field experiments and standard methods in dynamic pricing from computer science. In a calibrated simulation based on an existing pricing field experiment, we find that our algorithm can increase profits by 43% during the month of testing and 4% annually. C1 [Misra, Kanishka] Univ Calif San Diego, Rady Sch Management, La Jolla, CA 92093 USA. [Schwartz, Eric M.] Univ Michigan, Ross Sch Business, Ann Arbor, MI 48109 USA. [Abernethy, Jacob] Georgia Inst Technol, Sch Comp Sci, Coll Comp, Atlanta, GA 30332 USA. C3 University of California System; University of California San Diego; University of Michigan System; University of Michigan; University System of Georgia; Georgia Institute of Technology RP Misra, K (autor correspondiente), Univ Calif San Diego, Rady Sch Management, La Jolla, CA 92093 USA. EM kamisra@ucsd.edu; ericmsch@umich.edu; prof@gatech.edu OI Abernethy, Jacob/0000-0002-3115-6804 CR Acquisti A, 2005, MARKET SCI, V24, P367, DOI 10.1287/mksc.1040.0103 AGHION P, 1991, REV ECON STUD, V58, P621, DOI 10.2307/2297825 AGRAWAL R, 1995, ADV APPL PROBAB, V27, P1054, DOI 10.2307/1427934 Akçay Y, 2010, MANAGE SCI, V56, P1345, DOI 10.1287/mnsc.1100.1178 Anderson E, 2015, REV ECON STAT, V97, P813, DOI 10.1162/REST_a_00507 [Anonymous], 1989, Wiley-Interscience Series in Systems and Optimization Audibert JY, 2009, THEOR COMPUT SCI, V410, P1876, DOI 10.1016/j.tcs.2009.01.016 Auer P, 2002, MACH LEARN, V47, P235, DOI 10.1023/A:1013689704352 Auer P, 2003, J MACHINE LEARNING R, V3, P397, DOI DOI 10.4271/610369 Aviv Y, 2002, WORKING PAPER Baker W., 2014, USING BIG DATA MAKE BAYUS BL, 1992, MARKET SCI, V11, P251, DOI 10.1287/mksc.11.3.251 Bergemann D, 2000, REV ECON STUD, V67, P213, DOI 10.1111/1467-937X.00128 Bergemann D, 2008, J EUR ECON ASSOC, V6, P560, DOI 10.1162/JEEA.2008.6.2-3.560 Bergemann D, 2011, J ECON THEORY, V146, P2527, DOI 10.1016/j.jet.2011.10.018 Berger J.O., 1985, STAT DECISION THEORY, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2] Besbes O, 2009, OPER RES, V57, P1407, DOI 10.1287/opre.1080.0640 Biyalogorsky E, 2004, MARKET SCI, V23, P146, DOI 10.1287/mksc.1030.0030 Biyalogorsky E, 2014, PROD OPER MANAG, V23, P1539, DOI 10.1111/poms.12167 Bonatti A, 2011, AM ECON J-MICROECON, V3, P124, DOI 10.1257/mic.3.3.124 BRADEN DJ, 1994, MARKET SCI, V13, P310, DOI 10.1287/mksc.13.3.310 Brezzi M, 2002, J ECON DYN CONTROL, V27, P87, DOI 10.1016/S0165-1889(01)00028-8 Cesa-Bianchi N., 2006, PREDICTION LEARNING Chintagunta P, 2016, MARKET SCI, V35, P341, DOI 10.1287/mksc.2016.0996 DENBOER AV, 2015, SURVEYS OPER RES MAN, V20, P1, DOI DOI 10.1016/J.SORMS.2015.03.001 Desai PS, 2010, J MARKETING RES, V47, P90, DOI 10.1509/jmkr.47.1.90 Dube Jean-pierreSanjog Misra., 2017, Scalable Price Targeting Elmaghraby W, 2003, MANAGE SCI, V49, P1287, DOI 10.1287/mnsc.49.10.1287.17315 Erdem T, 1996, MARKET SCI, V15, P1, DOI 10.1287/mksc.15.1.1 Furman J, 2015, WHITE HOUSE BLO 0206 Gittins J, 2011, Multi-Armed Bandit Allocation Indices Hall P, 2002, ANN STAT, V30, P1460 Handel BR, 2015, MARKET SCI, V34, P864, DOI 10.1287/mksc.2015.0914 Handel BR, 2013, J ECONOMETRICS, V174, P165, DOI 10.1016/j.jeconom.2013.02.007 Hauser JR, 2009, MARKET SCI, V28, P202, DOI 10.1287/mksc.1080.0459 Hendel I, 2006, ECONOMETRICA, V74, P1637, DOI 10.1111/j.1468-0262.2006.00721.x Hitsch GJ, 2006, MARKET SCI, V25, P25, DOI 10.1287/mksc.1050.0140 Hviid M, 1999, J ECON MANAGE STRAT, V8, P489, DOI 10.1162/105864099567730 Jiang YC, 2011, MARKET SCI, V30, P737, DOI 10.1287/mksc.1100.0631 Kalyanam K, 1996, MARKET SCI, V15, P207, DOI 10.1287/mksc.15.3.207 KALYANARAM G, 1995, MARKET SCI, V14, pG161, DOI 10.1287/mksc.14.3.G161 Karunamuni R., 2005, Statistical Methodology, V2, P191, DOI DOI 10.1016/J.STAMET.2005.04.001 Kleinberg R, 2014, WORKING PAPER Kuleshov VolodymyrDoina Precup., 2014, ALGORITHMS MULTIARME LAI TL, 1987, ANN STAT, V15, P1091, DOI 10.1214/aos/1176350495 LAI TL, 1985, ADV APPL MATH, V6, P4, DOI 10.1016/0196-8858(85)90002-8 Lei Y, 2014, 1252 U MICH ROSS SCH LODISH LM, 1980, J MARKETING RES, V17, P203, DOI 10.2307/3150930 MANSKI C., 2005, SOCIAL CHOICE PARTIA Mas-Colell A., 1995, MICROECONOMIC THEORY MILNOR J, 1954, DECISION PROCESSES, P49 Nair H, 2007, QME-QUANT MARK ECON, V5, P239, DOI 10.1007/s11129-007-9026-4 Nair H, 2004, QME-QUANT MARK ECON, V2, P23, DOI 10.1023/B:QMEC.0000017034.98302.44 Oren SS., 1982, Marketing Science, V1, P287 RAJAN A, 1992, MANAGE SCI, V38, P240, DOI 10.1287/mnsc.38.2.240 RAO RC, 1985, J MARKETING RES, V22, P283, DOI 10.2307/3151425 ROTHSCHILD M, 1974, J ECON THEORY, V9, P185, DOI 10.1016/0022-0531(74)90066-0 Schwartz EM, 2017, MARKET SCI, V36, P500, DOI 10.1287/mksc.2016.1023 Smith S.A., 1986, MARKET SCI, V5, P70, DOI DOI 10.1287/MKSC.5.1.70 Stoye J, 2011, J ECON THEORY, V146, P2226, DOI 10.1016/j.jet.2011.10.004 Sutton RS, 2018, ADAPT COMPUT MACH LE, P1 Thompson WR, 1933, BIOMETRIKA, V25, P285, DOI 10.1093/biomet/25.3-4.285 Urban GL, 2014, MARKET SCI, V33, P27, DOI 10.1287/mksc.2013.0803 WALD ABRAHAM, 1950 Wang ZZ, 2014, PROD OPER MANAG, V23, P1919, DOI 10.1111/poms.12202 WERNERFELT B, 1986, MANAGE SCI, V32, P1562, DOI 10.1287/mnsc.32.12.1562 WHITTLE P, 1980, J ROY STAT SOC B MET, V42, P143 WINER RS, 1986, J CONSUM RES, V13, P250, DOI 10.1086/209064 NR 68 TC 46 Z9 59 U1 5 U2 23 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0732-2399 EI 1526-548X J9 MARKET SCI JI Mark. Sci. PD MAR-APR PY 2019 VL 38 IS 2 BP 226 EP 252 DI 10.1287/mksc.2018.1129 PG 27 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA HT9XB UT WOS:000464924900002 DA 2024-03-27 ER PT J AU Wang, SR Yan, Q Wang, LL AF Wang, Siran Yan, Qiang Wang, Lingli TI Task-oriented vs. social-oriented: chatbot communication styles in electronic commerce service recovery SO ELECTRONIC COMMERCE RESEARCH LA English DT Article; Early Access DE Chatbots; Communication styles; Service recovery; Relationship orientation; Service satisfaction ID WORD-OF-MOUTH; RECOMMENDATION AGENTS; TRUST; SATISFACTION AB Chatbots are being increasingly utilized for service recovery in e-commerce. However, chatbot communication styles in service recovery and their impacts on consumer satisfaction remain understudied. In this study, we conducted a scenario-based experiment to explore the appropriate communication styles for chatbots and to identify the underlying mechanisms that influence consumer satisfaction in service recovery. Our findings reveal that a social-oriented chatbot is more effective in delivering service recovery responses compared to a task-oriented chatbot. Interacting with social-oriented chatbots enhances consumers' service recovery satisfaction by increasing their cognition-based trust and affect-based trust. Importantly, we also find that social-oriented chatbots outperform task-oriented chatbots in service tasks that vary in terms of complexity and for consumers with different relationship orientations. Our study contributes to chatbot designs by providing theoretical and practical guidance for online retailers to design appropriate communication styles for chatbots in service recovery. C1 [Wang, Siran] Beijing Univ Posts & Telecommun, Sch Econ & Management, Beijing, Peoples R China. [Yan, Qiang; Wang, Lingli] Beijing Univ Posts & Telecommun, Sch Modern Post, Beijing, Peoples R China. C3 Beijing University of Posts & Telecommunications; Beijing University of Posts & Telecommunications RP Wang, LL (autor correspondiente), Beijing Univ Posts & Telecommun, Sch Modern Post, Beijing, Peoples R China. EM wangsiran@bupt.edu.cn; yan@bupt.edu.cn; wang.ll@bupt.edu.cn RI Paleja, Heer/IQT-1538-2023 OI Wang, Siran/0009-0001-1577-6261 FU Ministry of Education in China [2021090003]; Beijing University of Posts and Telecommunications [2022RC21, CX2022154]; National Natural Science Foundation of China [72201038] FX This work was funded by Ministry of Education in China (Grant No. 2021090003), Beijing University of Posts and Telecommunications (Grant No. 2022RC21; Grant No. CX2022154), National Natural Science Foundation of China (Grant No. 72201038). CR Aggarwal P, 2004, J CONSUM RES, V31, P87, DOI 10.1086/383426 Aguirre-Urreta MI, 2019, DATA BASE ADV INF SY, V50, P45 Ahmad R., 2020, P 26 AM C INF SYST, P1 Arikan E, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103175 Bao Z., 2022, P PACIS, V2022, P1 Benner D., 2021, P ICIS, V2021, P1 Bickmore T., 2001, CHI 2001 Conference Proceedings. Conference on Human Factors in Computing Systems, P396, DOI 10.1145/365024.365304 Bleier A, 2019, J MARKETING, V83, P98, DOI 10.1177/0022242918809930 Bolton LE, 2015, J RETAILING, V91, P140, DOI 10.1016/j.jretai.2014.10.001 Brill TM, 2019, J MARKET MANAG-UK, V35, P1401, DOI 10.1080/0267257X.2019.1687571 Chang W, 2022, J BUS RES, V141, P462, DOI 10.1016/j.jbusres.2021.11.044 Chattaraman V, 2019, COMPUT HUM BEHAV, V90, P315, DOI 10.1016/j.chb.2018.08.048 Chen A., 2022, ARE YOU WILLING FORG Chen JV, 2021, INTERNET RES, V31, P1376, DOI 10.1108/INTR-11-2019-0447 Chen Y., 2022, Phys Med Rehabil Kurortmedizin, V2022, P1 Cheng XS, 2022, INFORM PROCESS MANAG, V59, DOI 10.1016/j.ipm.2022.102940 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Choi S, 2021, J SERV RES-US, V24, P354, DOI 10.1177/1094670520978798 CLARK MS, 1987, J PERS SOC PSYCHOL, V53, P94, DOI 10.1037/0022-3514.53.1.94 CLARK MS, 1993, PERS SOC PSYCHOL B, V19, P684, DOI 10.1177/0146167293196003 Consulting A. R. a., 2022, CHATB MARK SIZ SHAR Eren BA, 2021, INT J BANK MARK, V39, P294, DOI 10.1108/IJBM-02-2020-0056 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Fota A., 2022, P 55 HAW INT C SYST, P4273 Goles T, 2009, J COMPUT INFORM SYST, V49, P1 Hair JF, 2011, J MARKET THEORY PRAC, V19, P139, DOI 10.2753/MTP1069-6679190202 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Han ELZB, 2023, INFORM SYST RES, V34, P1296, DOI 10.1287/isre.2022.1179 Harrison-Walker LJ, 2012, J SERV MARK, V26, P115, DOI 10.1108/08876041211215275 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Hsu CL, 2023, J RETAIL CONSUM SERV, V71, DOI 10.1016/j.jretconser.2022.103211 Huang B, 2021, SERV IND J, V41, P877, DOI 10.1080/02642069.2020.1748014 Huang R, 2020, J BUS RES, V121, P616, DOI 10.1016/j.jbusres.2020.04.034 Jain M, 2018, PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), DOI 10.1145/3173574.3174042 Jeong M, 2017, J HOSP TOUR TECHNOL, V8, P5, DOI 10.1108/JHTT-09-2016-0049 Johnson D, 2005, J BUS RES, V58, P500, DOI 10.1016/S0148-2963(03)00140-1 Jones CLE, 2022, J BUS RES, V144, P703, DOI 10.1016/j.jbusres.2022.01.012 Jung NY, 2017, J RETAIL CONSUM SERV, V37, P23, DOI 10.1016/j.jretconser.2017.01.012 Keeling K, 2010, J BUS RES, V63, P793, DOI 10.1016/j.jbusres.2008.12.015 Klein K, 2023, ELECTRON COMMER RES, V23, P2789, DOI 10.1007/s10660-022-09562-8 Komiak S. X., 2004, Information Technology & Management, V5, P181, DOI 10.1023/B:ITEM.0000008081.55563.d4 Lei SI, 2021, INT J CONTEMP HOSP M, V33, P3977, DOI 10.1108/IJCHM-12-2020-1399 LEWIS JD, 1985, SOC FORCES, V63, P967, DOI 10.2307/2578601 Li XS, 2019, J CONSUM RES, V45, P973, DOI 10.1093/jcr/ucy016 Lidén SB, 2003, INT J SERV IND MANAG, V14, P36, DOI 10.1108/09564230310465985 Lv XY, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106993 Lv XY, 2021, ANN TOURISM RES, V87, DOI 10.1016/j.annals.2020.103114 MacKenzie SB, 2011, MIS QUART, V35, P293 Maxham JG, 2001, J BUS RES, V54, P11, DOI 10.1016/S0148-2963(00)00114-4 MCALLISTER DJ, 1995, ACAD MANAGE J, V38, P24, DOI 10.5465/256727 Miller JL, 2000, J OPER MANAG, V18, P387, DOI 10.1016/S0272-6963(00)00032-2 Poser M., 2021, Proceedings of the 54th hawaii international conference on system sciences p, P1181 Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Sands S, 2022, PSYCHOL MARKET, V39, P2039, DOI 10.1002/mar.21723 Schaubroeck J, 2011, J APPL PSYCHOL, V96, P863, DOI 10.1037/a0022625 Scherer K. R., 2001, Appraisal processes inemotion: Theory, methods, research, DOI DOI 10.1016/S0166-4115(08)62387-0 Sheth J., 1976, BUYER SELLER INTERAC Song MM, 2023, J RETAIL CONSUM SERV, V73, DOI 10.1016/j.jretconser.2023.103323 Song MM, 2022, ELECTRON COMMER R A, V55, DOI 10.1016/j.elerap.2022.101199 Sun Y, 2022, ELECTRON MARK, V32, P17, DOI 10.1007/s12525-021-00483-2 Verhagen T, 2014, J COMPUT-MEDIAT COMM, V19, P529, DOI 10.1111/jcc4.12066 Wang SK, 2022, PAIN RES MANAG, V2022, DOI 10.1155/2022/9052246 Wang WQ, 2007, J MANAGE INFORM SYST, V23, P217, DOI 10.2753/MIS0742-1222230410 Wang WQ, 2018, MANAGE SCI, V64, P5198, DOI 10.1287/mnsc.2017.2906 Webster C, 2009, J SERV MARK, V23, P104, DOI 10.1108/08876040910946369 Wei C, 2020, J BUS RES, V118, P321, DOI 10.1016/j.jbusres.2020.06.061 WILLIAMS KC, 1985, J MARKETING RES, V22, P434, DOI 10.2307/3151588 Xing XY, 2022, TECHNOL SOC, V70, DOI 10.1016/j.techsoc.2022.102049 Xu XA, 2022, ANN TOURISM RES, V95, DOI 10.1016/j.annals.2022.103439 Xu X, 2019, J TRAVEL RES, V58, P1034, DOI 10.1177/0047287518789285 Xu Y, 2023, NANKAI BUS REV NT, V14, P249, DOI 10.1108/NBRI-06-2021-0041 Xu YZ, 2020, AUSTRALAS MARK J, V28, P189, DOI 10.1016/j.ausmj.2020.03.005 Yao Q, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103082 Zhou YY, 2022, J BUS ETHICS, V178, P849, DOI 10.1007/s10551-022-05045-w NR 75 TC 2 Z9 2 U1 60 U2 79 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD 2023 AUG 1 PY 2023 DI 10.1007/s10660-023-09741-1 EA AUG 2023 PG 33 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA O0NB7 UT WOS:001040863900001 DA 2024-03-27 ER PT J AU Bhilat, EE El Jaouhari, A Hamidi, LS AF Bhilat, El Mehdi El El Jaouhari, Asmae Hamidi, L. Saadia TI Assessing the influence of artificial intelligence on agri-food supply chain performance: the mediating effect of distribution network efficiency SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE AI technology; Agri-food supply chain; Distribution logistics; Efficiency; SEM ID BIG DATA; INDUSTRY 4.0; MANAGEMENT; LOGISTICS; CAPABILITIES; TECHNOLOGY; CHALLENGES; FRAMEWORK; BARRIERS; DESIGN AB The urge for greater agri-food supply chain efficiency (AFSCE) has been gaining in prominence increasingly, spurred on by escalating logistics costs and advances in industry 4.0 technologies (e.g artificial intelligence AI). The latter significant contributions in logistics have led academics to point their attention more to AI utility in operations management. Drawing on dynamic capability view (DCV) and organizational information-processing theories, this study aims to examine the effect of AI based technologies on reducing wastes and minimizing afrifood supply chain costs, hence increasing organization profitability. It also analyzes how outbound logistics and distribution network efficiency (DNE) (warehousing, transportation, packaging, etc.) mediates the relationship between AI and AFSCE. This research investigates the moderating impact of AI adoption impediments (AIAI) on the mediating correlation between AI, DNE and AFSCE as well. Using Partial Least Square-Structural Equation Modeling (PLS-SEM) approach, conceptual model and hypothesis were analyzed and tested with 348 responses collected from executives and managers in the Moroccan agri-food industry. As a novel result, distribution network efficiency and by way of mediation AFSCE and organization performance are found to be directly and positively affected by AI integration. The researchers find also that with more AIAI, the relationship between the aforementioned variables weakens. C1 [Bhilat, El Mehdi El; Hamidi, L. Saadia] Mohammed V Univ Rabat Souissi, Rabat, Morocco. [El Jaouhari, Asmae] Sidi Mohamed Ben Abdellah Univ, Higher Sch Technol, Fes, Morocco. [Bhilat, El Mehdi El] 5 Ave 10 allotment Dayaa Tghat Fez, Rabat, Morocco. C3 Sidi Mohamed Ben Abdellah University of Fez RP Bhilat, EE (autor correspondiente), Mohammed V Univ Rabat Souissi, Rabat, Morocco.; Bhilat, EE (autor correspondiente), 5 Ave 10 allotment Dayaa Tghat Fez, Rabat, Morocco. EM elmehdi.elbhilat@um5r.ac.ma; asmae.eljaouhari@usmba.ac.ma; s.hamidi@um5r.ac.ma CR Abbasi R, 2022, SMART AGR TECHNOL, V2, DOI 10.1016/j.atech.2022.100042 Ada N, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13126812 Allam Z, 2019, CITIES, V89, P80, DOI 10.1016/j.cities.2019.01.032 Andrejic M, 2016, TRANSPORT POLICY, V45, P99, DOI 10.1016/j.tranpol.2015.09.013 Arora C, 2022, BRIT FOOD J, V124, P2061, DOI 10.1108/BFJ-08-2021-0934 Bag S, 2023, J BUS RES, V154, DOI 10.1016/j.jbusres.2022.113315 Bag S, 2021, INT J PROD ECON, V231, DOI 10.1016/j.ijpe.2020.107844 Behnke K, 2020, INT J INFORM MANAGE, V52, DOI 10.1016/j.ijinfomgt.2019.05.025 Ben-Othman S, 2020, MOLECULES, V25, DOI 10.3390/molecules25030510 Bhat SA, 2022, AGRICULTURE-BASEL, V12, DOI 10.3390/agriculture12010040 Boice EN, 2022, J IMAGING, V8, DOI 10.3390/jimaging8090249 Canli Funda., 2017, Morocco-Agri-food value-chains strengthening program for results Chatur A.A., 2006, Driving costs out of the Supply Chain: Inbound Logistics (Infosys View Point Report) Chen LJ, 2022, J BUS IND MARK, V37, P1025, DOI 10.1108/JBIM-09-2020-0448 Compagnucci L, 2022, J ENG TECHNOL MANAGE, V65, DOI 10.1016/j.jengtecman.2022.101700 Costa C, 2013, FOOD BIOPROCESS TECH, V6, P353, DOI 10.1007/s11947-012-0958-7 Cravero A, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10050552 de Janvry A, 2010, J AFR ECON, V19, pii7, DOI 10.1093/jae/ejp028 Di Vaio A, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12124851 Dubois A, 2019, INT J LOGIST MANAG, V30, P620, DOI 10.1108/IJLM-12-2017-0325 Dwivedi YK, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2019.08.002 Esteso A, 2021, APPL MATH MODEL, V96, P20, DOI 10.1016/j.apm.2021.02.027 Falk R.F., 1992, A primer for soft modeling Feng L, 2016, PROCEEDINGS OF 2016 IEEE ADVANCED INFORMATION MANAGEMENT, COMMUNICATES, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IMCEC 2016), P228, DOI 10.1109/IMCEC.2016.7867206 Feng Tian, 2016, 2016 13th International Conference on Service Systems and Service Management (ICSSSM), P1, DOI 10.1109/ICSSSM.2016.7538424 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 Fugate BS, 2010, J BUS LOGIST, V31, P43, DOI 10.1002/j.2158-1592.2010.tb00127.x GALBRAITH JR, 1974, INTERFACES, V4, P28, DOI 10.1287/inte.4.3.28 Gilman CP, 1917, ANN AM ACAD POLIT SS, V74, P123, DOI 10.1177/000271621707400118 Hadidi A., 2021, Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, Studies in Computational Intelligence, P45, DOI DOI 10.1007/978-3-030-51920 Hair J.F., 2009, Multivariate data analysis Hair J. F., 2021, Partial least squares structural equation modeling (PLS-SEM) using R, P1, DOI 10.1007/978-3-030-80519-7_1 Hallikas J, 2021, SUPPLY CHAIN MANAG, V26, P629, DOI 10.1108/SCM-05-2020-0201 Hancock JT, 2020, J COMPUT-MEDIAT COMM, V25, P89, DOI 10.1093/jcmc/zmz022 Hangl J, 2022, LOGISTICS-BASEL, V6, DOI 10.3390/logistics6030063 Hayes AF, 2018, COMMUN MONOGR, V85, P4, DOI 10.1080/03637751.2017.1352100 Heard BR, 2018, RESOUR CONSERV RECY, V128, P22, DOI 10.1016/j.resconrec.2017.09.021 Helfat CE, 2003, STRATEGIC MANAGE J, V24, P997, DOI 10.1002/smj.332 Helo P, 2022, PROD PLAN CONTROL, V33, P1573, DOI 10.1080/09537287.2021.1882690 Henseler J, 2015, J ACAD MARKET SCI, V43, P115, DOI 10.1007/s11747-014-0403-8 Horváth D, 2019, TECHNOL FORECAST SOC, V146, P119, DOI 10.1016/j.techfore.2019.05.021 Ivanov D, 2019, GLOBAL SUPPLY CHAIN, P481, DOI DOI 10.1007/978-3-319-94313-8_16 Javaid M., 2023, Adv Agrochem, V2, P15, DOI [10.1016/j.aac.2022.10.001, DOI 10.1016/J.AAC.2022.10.001] Karantininis K, 2010, FOOD POLICY, V35, P112, DOI 10.1016/j.foodpol.2009.10.003 Keding C., 2020, Manag. Rev. Q, P1 Khan SAR, 2021, BUS STRATEG ENVIRON, V30, P4001, DOI 10.1002/bse.2853 Kock N, 2015, INT J E-COLLAB, V11, P1, DOI 10.4018/ijec.2015100101 Kollia I, 2021, ELECTRONICS-SWITZ, V10, DOI 10.3390/electronics10111223 Kosior K., 2018, Roczniki (Annals), V2018, DOI DOI 10.5604/01.3001.0011.8122 Krstic M, 2022, SUSTAIN FUTURES, V4, DOI 10.1016/j.sftr.2022.100097 Kumari S, 2023, OPER MANAGE RES, V16, P489, DOI 10.1007/s12063-022-00295-3 Lacirignola C., 2016, Afkar Idees, P58 Lakshmi Vijaya, 2020, Asia Pac. J. Energy Environ., DOI [DOI 10.18034/APJEE.V6I2.542, 10.18034/apjee.v6i2.542] Lans T., 2004, International Journal of Training and Development, V8, P73, DOI [10.1111/j.1360-3736.2004.00197.x, DOI 10.1111/J.1360-3736.2004.00197.X] Lau KH, 2013, INT J PROD ECON, V146, P598, DOI 10.1016/j.ijpe.2013.08.008 Lezoche M, 2020, COMPUT IND, V117, DOI 10.1016/j.compind.2020.103187 Liu HF, 2013, DECIS SUPPORT SYST, V54, P1452, DOI 10.1016/j.dss.2012.12.016 Liu WH, 2022, TRANSPORT RES E-LOG, V163, DOI 10.1016/j.tre.2022.102735 Liu WH, 2022, INT J LOGIST-RES APP, V25, P965, DOI 10.1080/13675567.2020.1837760 Liu Y, 2019, COMPUT IND ENG, V127, P196, DOI 10.1016/j.cie.2018.12.022 Liu Y, 2021, IEEE T IND INFORM, V17, P4322, DOI 10.1109/TII.2020.3003910 Lotfi R, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-26449-8 Lui TKL, 2020, GASTROINTEST ENDOSC, V92, P821, DOI 10.1016/j.gie.2020.06.034 Lummus RR, 2001, IND MANAGE DATA SYST, V101, P426, DOI 10.1108/02635570110406730 Manning L, 2022, TRENDS FOOD SCI TECH, V125, P33, DOI 10.1016/j.tifs.2022.04.025 Maqueira JM, 2021, SUPPLY CHAIN MANAG, V26, P256, DOI 10.1108/SCM-02-2020-0083 Meindl B, 2021, TECHNOL FORECAST SOC, V168, DOI 10.1016/j.techfore.2021.120784 Monteiro J, 2021, PROCEDIA COMPUT SCI, V192, P3020, DOI 10.1016/j.procs.2021.09.074 Morella P, 2021, AGRONOMY-BASEL, V11, DOI 10.3390/agronomy11122526 Ng KKH, 2021, ADV ENG INFORM, V47, DOI 10.1016/j.aei.2021.101246 O'Grady MJ, 2019, ARTIF INTELL AGR, V3, P42, DOI 10.1016/j.aiia.2019.12.001 Olivier Treguer D., 2019, Morocco-Digital and Climate Smart Agriculture Program Project, V1, P5 Patrício DI, 2018, COMPUT ELECTRON AGR, V153, P69, DOI 10.1016/j.compag.2018.08.001 Pishvaee MS, 2010, INT J ADV MANUF TECH, V47, P269, DOI 10.1007/s00170-009-2194-5 Podsakoff PM, 2012, ANNU REV PSYCHOL, V63, P539, DOI 10.1146/annurev-psych-120710-100452 Potts J., 2019, Blockchain in Agriculture, DOI [10.2139/ssrn.3397786, DOI 10.2139/SSRN.3397786] Pramanik PKD, 2018, LECT NOTE DATA ENG, V14, P1, DOI 10.1007/978-3-319-70688-7_1 Premkumar G, 2005, J MANAGE INFORM SYST, V22, P257, DOI 10.1080/07421222.2003.11045841 Priyadarshini P, 2023, J CLEAN PROD, V385, DOI 10.1016/j.jclepro.2022.135660 Qian JP, 2022, CRIT REV FOOD SCI, V62, P679, DOI 10.1080/10408398.2020.1825925 Racine Eric, 2019, Healthc Manage Forum, V32, P272, DOI 10.1177/0840470419843831 Reay T, 2011, FAM BUS REV, V24, P105, DOI 10.1177/0894486511406427 Routroy S, 2017, J AGRIBUS DEV EMERG, V7, P275, DOI 10.1108/JADEE-06-2016-0039 Ruiz-Real JL, 2020, AGRONOMY-BASEL, V10, DOI 10.3390/agronomy10111839 Sakthivel A.R., 2021, Managing Supply Chain Risk and Disruptions: Post COVID-19, P29, DOI DOI 10.1007/978-3-030-72575-4_3 Sharma M, 2021, J CLEAN PROD, V281, DOI 10.1016/j.jclepro.2020.125013 Sharma S, 2021, LOGISTICS-BASEL, V5, DOI 10.3390/logistics5040066 Smith MJ, 2020, ANIM PROD SCI, V60, P46, DOI 10.1071/AN18522 Stenius O, 2016, OPER RES, V64, P906, DOI 10.1287/opre.2016.1510 Stephens EC, 2020, AGR SYST, V183, DOI 10.1016/j.agsy.2020.102873 Sun TQ, 2019, GOV INFORM Q, V36, P368, DOI 10.1016/j.giq.2018.09.008 Talaviya T., 2020, Artif Intell Agric, V4, P58, DOI DOI 10.1016/J.AIIA.2020.04.002 Teece DJ, 2007, STRATEGIC MANAGE J, V28, P1319, DOI 10.1002/smj.640 Teece DJ, 2014, ACAD MANAGE PERSPECT, V28, P328, DOI 10.5465/amp.2013.0116 Tomasiello S, 2021, SOFT COMPUT, V25, P7479, DOI 10.1007/s00500-021-05707-3 Tsolakis NK, 2014, BIOSYST ENG, V120, P47, DOI 10.1016/j.biosystemseng.2013.10.014 Turk J, 2016, J ANIM SCI, V94, P53, DOI 10.2527/jas.2016-0547 Turk T., 2019, CUMHUR SCI J, DOI [10.17776/csj.352607, DOI 10.17776/csj.352607] Tzachor Asaf, 2021, International Journal of Innovation in the Digital Economy, V12, P30, DOI 10.4018/IJIDE.2021070103 Tzachor A, 2020, Report Vern P., 2022, Agri-Food 4.0, VVolume 27, P17, DOI 10.1108/S1877-636120220000027002 Vilas-Boas JL, 2023, J IND INF INTEGR, V31, DOI 10.1016/j.jii.2022.100393 Vinzi E.V., 2010, Handbook of partial least squares, DOI [DOI 10.1007/978-3-540-32827-8, 10.1007/978-3-540-32827-8_31] Wang JX, 2020, TRANSPORT RES E-LOG, V135, DOI 10.1016/j.tre.2020.101886 Weerabahu SK, 2022, J AGRIBUS DEV EMERG, V12, P161, DOI 10.1108/JADEE-01-2021-0004 Winfield AFT, 2018, PHILOS T R SOC A, V376, DOI 10.1098/rsta.2018.0085 Wirtz BW, 2019, INT J PUBLIC ADMIN, V42, P596, DOI 10.1080/01900692.2018.1498103 Wolfert S, 2017, AGR SYST, V153, P69, DOI 10.1016/j.agsy.2017.01.023 Wright RT, 2012, COMMUN ASSOC INF SYS, V30 Yang J, 2019, IND MANAGE DATA SYST, V119, P1988, DOI 10.1108/IMDS-01-2019-0029 Yeo SF, 2022, TECHNOL FORECAST SOC, V177, DOI 10.1016/j.techfore.2022.121551 Zerfass A, 2020, J COMMUN MANAG, V24, P377, DOI 10.1108/JCOM-10-2019-0137 Zhang ZQ, 2019, ARTIF INTELL AGR, V1, P14, DOI 10.1016/j.aiia.2019.02.002 Zhao GQ, 2019, COMPUT IND, V109, P83, DOI 10.1016/j.compind.2019.04.002 NR 114 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD MAR PY 2024 VL 200 AR 123149 DI 10.1016/j.techfore.2023.123149 EA DEC 2023 PG 14 WC Business; Regional & Urban Planning WE Social Science Citation Index (SSCI) SC Business & Economics; Public Administration GA FE6K0 UT WOS:001144123300001 DA 2024-03-27 ER PT J AU Chung, M Ko, E Joung, H Kim, SJ AF Chung, Minjee Ko, Eunju Joung, Heerim Kim, Sang Jin TI Chatbot e-service and customer satisfaction regarding luxury brands SO JOURNAL OF BUSINESS RESEARCH LA English DT Article DE Chatbot; Communication; Digital marketing; Luxury brand; Service agents ID SOCIAL MEDIA; COMMUNICATION QUALITY; MOBILE SERVICES; FASHION BRANDS; EQUITY; LOYALTY; IMPACT; UTILITARIAN; INTENTIONS; EXPERIENCE AB This study was undertaken to analyze whether luxury fashion retail brands can adhere to their core essence of providing personalized care through e-services rather than through traditional face-to-face interactions, particularly through Chatbot, an emerging digital tool offering convenient, personal, and unique customer assistance. The authors use customer data to test a five-dimension model measuring Chatbot for customer perceptions of interaction, entertainment, trendiness, customization, and problem-solving. The study reveals that Chatbot e-service provides interactive and engaging brand/customer service encounters. Marketers and managers in the luxury context can adopt the instrument to measure whether e-service agents provide desired outcomes and to determine whether they should adopt Chatbot virtual assistance. C1 [Chung, Minjee; Ko, Eunju; Joung, Heerim] Yonsei Univ, Dept Clothing & Text, Seoul, South Korea. [Kim, Sang Jin] Changwon Natl Univ, Dept Business Adm, Changwon Si, Gyeongsangnam D, South Korea. C3 Yonsei University; Changwon National University RP Ko, E (autor correspondiente), Yonsei Univ, Dept Clothing & Text, Seoul, South Korea. EM ejko@yonsei.ac.kr FU National Research Foundation of Korea Grant - Korean Government (MOE) [NRF-2017S1A2A2041810] FX This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MOE) (NRF-2017S1A2A2041810). CR Adjei MT, 2010, J ACAD MARKET SCI, V38, P634, DOI 10.1007/s11747-009-0178-5 Aggarwal P, 2005, J MARKET THEORY PRAC, V13, P16, DOI 10.1080/10696679.2005.11658547 [Anonymous], 2017, Retail Dive [Anonymous], 2017, Forbes [Anonymous], 2017, GLOBAL SOCIAL MEDIA Atwal G, 2009, J BRAND MANAG, V16, P338, DOI 10.1057/bm.2008.48 Bailey J.J., 2000, Journal of Professional Services Marketing, V20, P51, DOI [10.1300/J090v20n02_05, DOI 10.1300/J090V20N02_05] Balmer JMT, 2006, EUR J MARKETING, V40, P730, DOI 10.1108/03090560610669964 Barry B, 2000, ORGAN SCI, V11, P648, DOI 10.1287/orsc.11.6.648.12537 Ben Mimoun MS, 2017, INFORM MANAGE-AMSTER, V54, P545, DOI 10.1016/j.im.2016.11.008 Bolton RN, 2013, J SERV MANAGE, V24, P245, DOI 10.1108/09564231311326987 Calantone RJ, 2018, J GLOB SCHOLARS MARK, V28, P33, DOI 10.1080/21639159.2017.1410771 Chakrabarty S, 2014, J PERS SELL SALES M, V34, P112, DOI 10.1080/08853134.2014.890899 Chen YB, 2008, MANAGE SCI, V54, P477, DOI 10.1287/mnsc.1070.0810 Chiou JS, 2006, J ACAD MARKET SCI, V34, P613, DOI 10.1177/0092070306286934 Choi E, 2016, J BUS RES, V69, P5827, DOI 10.1016/j.jbusres.2016.04.180 Clokie TL, 2016, BUS PROF COMMUN Q, V79, P442, DOI 10.1177/2329490616657635 Coelho PS, 2012, EUR J MARKETING, V46, P331, DOI 10.1108/03090561211202503 Correa T, 2010, COMPUT HUM BEHAV, V26, P247, DOI 10.1016/j.chb.2009.09.003 Crosby LA, 2002, MARK MANAG, V11, P10 Dabholkar P., 1996, J ACAD MARKET SCI, V24, P3, DOI [10.1177/009207039602400101, DOI 10.1007/BF02893933] Darke PR, 2016, J RETAILING, V92, P287, DOI 10.1016/j.jretai.2016.02.001 Dhaoui C, 2014, J GLOB FASH MARK, V5, P209, DOI 10.1080/20932685.2014.907605 Edwards C, 2014, COMPUT HUM BEHAV, V33, P372, DOI 10.1016/j.chb.2013.08.013 Emmers-Sommer TM, 2004, J SOC PERS RELAT, V21, P399, DOI 10.1177/0265407504042839 Fionda AM, 2009, J BRAND MANAG, V16, P347, DOI 10.1057/bm.2008.45 Gautam V., 2017, J PROMOTION MANAGEME, P1 Godes D, 2005, MARKET LETT, V16, P415, DOI 10.1007/s11002-005-5902-4 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Haas A, 2014, J RETAILING, V90, P428, DOI 10.1016/j.jretai.2014.05.003 Hagberg J, 2016, INT J RETAIL DISTRIB, V44, P694, DOI 10.1108/IJRDM-09-2015-0140 Holzwarth M, 2006, J MARKETING, V70, P19, DOI 10.1509/jmkg.70.4.19 Hutter K, 2013, J PROD BRAND MANAG, V22, P342, DOI 10.1108/JPBM-05-2013-0299 Insider-Trends, 2017, RET TRENDS FACTF 201 Izard C. E., 1977, HUMAN EMOTIONS Jian GW, 2014, MANAGE COMMUN Q, V28, P375, DOI 10.1177/0893318914533201 Jin SAA, 2012, MARK INTELL PLAN, V30, P687, DOI 10.1108/02634501211273805 Joosten H, 2016, J SERV MANAGE, V27, P218, DOI 10.1108/JOSM-12-2014-0325 Kang G.D., 2006, MANAG SERV QUAL, V16, P37, DOI [DOI 10.1108/09604520610639955, 10.1108/09604520610639955] Kim AJ, 2012, J BUS RES, V65, P1480, DOI 10.1016/j.jbusres.2011.10.014 Kim AJ, 2010, J GLOB FASH MARK, V1, P164, DOI 10.1080/20932685.2010.10593068 Kim J, 2018, J GLOB SCHOLARS MARK, V28, P96, DOI 10.1080/21639159.2017.1420423 Kim S, 2016, J BUS RES, V69, P5809, DOI 10.1016/j.jbusres.2016.04.178 Ko E, 2016, J BUS RES, V69, P5749, DOI 10.1016/j.jbusres.2016.04.170 Ladhari R, 2017, J RETAIL CONSUM SERV, V34, P10, DOI 10.1016/j.jretconser.2016.09.005 Lee D, 2017, INT CONF BIG DATA, P437, DOI 10.1109/BIGCOMP.2017.7881752 Lee SY, 2017, INT J HUM-COMPUT ST, V103, P95, DOI 10.1016/j.ijhcs.2017.02.005 LinkedIn, 2012, GUCCI SOCIAL MEDIA M Liu F, 2012, EUR J MARKETING, V46, P922, DOI 10.1108/03090561211230098 Locker K.O., 1995, Business and administrative communication, V3rd Lowry PB, 2009, J MANAGE INFORM SYST, V26, P155, DOI 10.2753/MIS0742-1222260107 Maltz E, 2000, J PROD INNOVAT MANAG, V17, P110, DOI 10.1111/1540-5885.1720110 McAlexander JH, 2002, J MARKETING, V66, P38, DOI 10.1509/jmkg.66.1.38.18451 McCroskey JC, 1999, COMMUN MONOGR, V66, P90, DOI 10.1080/03637759909376464 Mohr JJ, 1995, J RETAILING, V71, P393, DOI 10.1016/0022-4359(95)90020-9 Morra MC, 2018, J GLOB FASH MARK, V9, P24 Muntinga DG, 2011, INT J ADVERT, V30, P13, DOI 10.2501/IJA-30-1-013-046 Nysveen H, 2005, J ACAD MARKET SCI, V33, P330, DOI 10.1177/0092070305276149 O'Keefe D. J., 2002, Persuasion: Theory and research, V2nd ed. Perna A, 2018, J GLOB FASH MARK, V9, P73, DOI 10.1080/20932685.2017.1399081 Perrey J., 2011, RETAIL MARKETING B 2 Redman T, 2002, SERV IND J, V22, P51, DOI 10.1080/714005085 Reynolds KE, 1999, J RETAILING, V75, P11, DOI 10.1016/S0022-4359(99)80002-5 Rios Andrea., 2016, Central European Business Review, V5, P17 Santini F. D. O., 2018, J GLOBAL FASHION MAR, V9, P1 Setia P, 2013, MIS QUART, V37, P565, DOI 10.25300/MISQ/2013/37.2.11 Snavely W.B., 2008, J LEADERSHIP ORG STU, V14, P219, DOI DOI 10.1177/1071791907308464 Spitzberg B.H., 2006, Journal of Computer-Mediated Communication, V11, P629, DOI DOI 10.1111/J.1083-6101.2006.00030.X TAYLOR SA, 1994, J RETAILING, V70, P163, DOI 10.1016/0022-4359(94)90013-2 The Korea Bizwire, 2017, KOREA BIZWIRE Vos M, 2009, J COMMUN MANAG, V13, P362, DOI 10.1108/13632540911004623 Wang WT, 2012, INTERNET RES, V22, P142, DOI 10.1108/10662241211214548 Webster C, 2009, J SERV MARK, V23, P104, DOI 10.1108/08876040910946369 Wiedmann KP, 2009, PSYCHOL MARKET, V26, P625, DOI 10.1002/mar.20292 Woodside AG, 2013, ADV CULT TOUR HOSP R, V7, P1, DOI 10.1108/S1871-3173(2013)0000007004 Yonhap, 2018, THE KOREA HERALD Yuan CL, 2016, J BUS RES, V69, P3795, DOI 10.1016/j.jbusres.2015.12.071 Zhang M, 2018, J GLOB SCHOLARS MARK, V28, P305, DOI 10.1080/21639159.2018.1513338 Zhang Weinan, 2017, ARXIV170102073 Zhao DJ, 2009, GROUP 2009 PROCEEDINGS, P243 Zolkepli IA, 2015, COMPUT HUM BEHAV, V43, P189, DOI 10.1016/j.chb.2014.10.050 NR 81 TC 310 Z9 323 U1 135 U2 654 PU ELSEVIER SCIENCE INC PI NEW YORK PA STE 800, 230 PARK AVE, NEW YORK, NY 10169 USA SN 0148-2963 EI 1873-7978 J9 J BUS RES JI J. Bus. Res. PD SEP PY 2020 VL 117 BP 587 EP 595 DI 10.1016/j.jbusres.2018.10.004 PG 9 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA MW2RD UT WOS:000556889900054 HC Y HP N DA 2024-03-27 ER PT J AU Phang, DCW Wang, KL Wang, QH Kauffman, RJ Naldi, M AF Phang, David C. W. Wang, Kanliang Wang, Qiuhong Kauffman, Robert J. Naldi, Maurizio TI How to derive causal insights for digital commerce in China? A research commentary on computational social science methods SO ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS LA English DT Article DE Big data; Business insights; Causal inference; Causal methods; Computational social science (CSS); Consumer behavior; China; Data analytics; Digital economy; E-commerce; Emerging markets; Empirical research; Information systems (IS) research; Machine learning (ML); M-commerce; Policy analytics; Research design; Secondary data; Sensor data; Streaming data; Social insights; Theory testing ID BIG DATA ANALYTICS; CONSUMER PURCHASE DECISION; SUPPLY CHAIN; INFORMATION; ADOPTION; SEARCH; TRUST; TRANSFORMATION; INFORMEDNESS; SATISFACTION AB The transformation of empirical research due to the arrival of big data analytics and data science, as well as the new availability of methods that emphasize causal inference, are moving forward at full speed. In this Research Commentary, we examine the extent to which this has the potential to influence how e-commerce research is conducted. China offers the ultimate in data-at-scale settings, and the construction of real-world natural experiments. Chinese e-commerce includes some of the largest firms involved in e-commerce, mobile commerce, social media and social networks. This article was written to encourage young faculty and doctoral students to engage in research that can be carried out in near real-time, with truly experimental or quasi-experimental research designs, and with the clear intention of establishing causal inferences that relate the precursors and drivers of observable outcomes through various kinds of processes. We discuss: the relevant data sources and research contexts; the methods perspectives that are appropriate which blend Computer Science, Statistics and Econometrics, how the research can be made relevant for China; and what kinds of findings and research directions are available. This article is not a tutorial on big data analytics methods in general though, nor does it cover just those published works that demonstrate big data methods and empirical causality in other disciplines. Instead, the empirical research covered is mostly taken from Electronic Commerce Research and Applications, which has published many articles on Chinese e-commerce. This Research Commentary invites researchers in China and the Asia Pacific region to expand their coverage to bring into their empirical work the new methods and philosophy of causal data science. C1 [Phang, David C. W.] Univ Nottingham, Ningbo, Zhejiang, Peoples R China. [Wang, Kanliang] Renmin Univ, Renmin Business Sch, Beijing, Peoples R China. [Wang, Qiuhong; Kauffman, Robert J.] Singapore Management Univ, Sch Informat Syst, Singapore, Singapore. [Naldi, Maurizio] Univ Roma Tor Vergata, Dept Civil Engn & Comp Sci, Rome, Italy. C3 University of Nottingham Ningbo China; Renmin University of China; Singapore Management University; University of Rome Tor Vergata RP Kauffman, RJ (autor correspondiente), Singapore Management Univ, Sch Informat Syst, Singapore, Singapore. EM cheewei.phang@nottingham.edu.cn; wangkanliang@rmbs.ruc.edu.cn; qiuhongwang@smu.edu.sg; rkauffman@smu.edu.sg; maurizio.naldi@uniroma2.it RI WANG, Qiuhong/L-9577-2016; Naldi, Maurizio/GXW-3240-2022; KAUFFMAN, Robert J/G-2767-2012; NALDI, MAURIZIO/M-5612-2015 OI Kauffman, Robert J/0000-0002-3757-0010; NALDI, MAURIZIO/0000-0002-0903-398X; WANG, QIUHONG/0000-0003-3472-5037 CR Aggarwal R., 2012, INFORM SYSTEMS RES 2, V23, P976 Hoang AP, 2018, J MANAGE INFORM SYST, V35, P575, DOI 10.1080/07421222.2018.1451958 Aigner W, 2008, IEEE T VIS COMPUT GR, V14, P47, DOI 10.1109/TVCG.2007.70415 Akter S, 2016, ELECTRON MARK, V26, P173, DOI 10.1007/s12525-016-0219-0 Alliance of Industrial Internet (AII), 2018, WHIT PAP CHIN IND BI Andrews M, 2016, MARKET SCI, V35, P218, DOI 10.1287/mksc.2015.0905 [Anonymous], 1996, HDB STAT [Anonymous], P 14 INT C EL COMM A [Anonymous], 2017, VENT CAP INV FINT RE Balasubramanian S, 2002, J ACAD MARKET SCI, V30, P348, DOI 10.1177/009207002236910 Banker R. D., 1990, Journal of Management Information Systems, V7, P29 Bauza R, 2013, J NETW COMPUT APPL, V36, P1295, DOI 10.1016/j.jnca.2012.02.007 Benaroch M, 2001, IEEE T ENG MANAGE, V48, P428, DOI 10.1109/17.969422 Biuk-Aghai RP, 2016, IEEE REGION 10 SYMP, P173, DOI 10.1109/TENCONSpring.2016.7519399 Chan SWK, 2017, DECIS SUPPORT SYST, V94, P53, DOI 10.1016/j.dss.2016.10.006 Chang HH, 2017, ELECTRON COMMER R A, V24, P50, DOI 10.1016/j.elerap.2017.06.002 Chang M. R., 2013, P 2013 CHIN SUMM WOR Chang RM, 2014, DECIS SUPPORT SYST, V63, P67, DOI 10.1016/j.dss.2013.08.008 Chang YP, 2011, COMPUT HUM BEHAV, V27, P1840, DOI 10.1016/j.chb.2011.04.006 Chen G., 2000, WORKING PAPER Chen G. Q., 2018, CHIN J MANAGE SCI Chen HC, 2012, MIS QUART, V36, P1165 Chen K, 2018, ELECTRON COMMER R A, V28, P159, DOI 10.1016/j.elerap.2018.01.015 Chen K, 2017, ELECTRON COMMER R A, V26, P81, DOI 10.1016/j.elerap.2017.10.003 China Academy of Information and Communications Technology (CAICT), 2018, WHIT PAP BIG DAT China Electronics Standardization Institute (CESI), 2017, WHIT PAP IND BIG DAT Chunmei Gan, 2015, Journal of Systems and Information Technology, V17, P351, DOI 10.1108/JSIT-06-2015-0052 Clemons EK, 2006, J MANAGE INFORM SYST, V23, P149, DOI [10.2753/MIS0742-1222230207, 10.2753/M1S0742-1222230207] Clemons EK, 2017, J MANAGE INFORM SYST, V34, P425, DOI 10.1080/07421222.2017.1334474 Cohen D., 2014, ADWEEK Cook TD, 2002, EXPT QUASIEXPERIMENT Curty RG, 2013, ELECTRON COMMER R A, V12, P260, DOI 10.1016/j.elerap.2013.04.001 De Marchi G, 2016, ANN OPER RES, V236, P15, DOI 10.1007/s10479-014-1578-6 Ding Y., 2015, P 2015 INT C INF SYS Edin F, 2004, J COMPUT NEUROSCI, V17, P47, DOI 10.1023/B:JCNS.0000023868.18446.a2 Efron B., 2016, COMPUTER AGE STAT IN Erevelles S, 2016, J BUS RES, V69, P897, DOI 10.1016/j.jbusres.2015.07.001 Evidence-Based Policy-Making Collaborative, 2016, CISC VIS NETW IND GL Fan SG, 2011, REV DEV FINANC, V1, P47, DOI 10.1016/j.rdf.2010.10.001 Fang Z, 2015, INFORM SYST RES, V26, P552, DOI 10.1287/isre.2015.0586 Feng Z. Y., 2013, CHIN J MANAGE SCI Fiorini PD, 2018, INT J INFORM MANAGE, V43, P112, DOI 10.1016/j.ijinfomgt.2018.07.005 Fong NM, 2015, J MARKETING RES, V52, P726, DOI 10.1509/jmr.14.0229 Gao BJ, 2016, ELECTRON COMMER R A, V17, P161, DOI 10.1016/j.elerap.2016.04.005 Ghasemaghaei M, 2018, J STRATEGIC INF SYST, V27, P101, DOI 10.1016/j.jsis.2017.10.001 Gibreel O, 2018, ELECTRON COMMER R A, V27, P152, DOI 10.1016/j.elerap.2017.12.008 GOEL AL, 1979, IEEE T RELIAB, V28, P206, DOI 10.1109/TR.1979.5220566 Goel V, 2014, NY TIMES Goes PB, 2014, MIS QUART, V38, pIII Gomber P, 2018, J MANAGE INFORM SYST, V35, P220, DOI 10.1080/07421222.2018.1440766 Grover V, 2018, J MANAGE INFORM SYST, V35, P388, DOI 10.1080/07421222.2018.1451951 Gu B, 2007, INFORM SYST RES, V18, P68, DOI 10.1287/isre.1070.0114 Gunasekaran A, 2017, J BUS RES, V70, P308, DOI 10.1016/j.jbusres.2016.08.004 Guo XT, 2016, ELECTRON COMMER R A, V16, P55, DOI 10.1016/j.elerap.2015.11.001 Han H. Q., 2018, FINTECH CHINA INTRO Han H, 2018, ELECTRON COMMER R A, V30, P38, DOI 10.1016/j.elerap.2018.05.005 Han SQ, 2018, ELECTRON COMMER R A, V28, P244, DOI 10.1016/j.elerap.2018.02.006 Hoang A. P., 2018, 2018 WORKSH STAT CHA Hoang A. P., 2018, WORKING PAPER Hofstede G., 1984, ASIA PAC J MANAG, V2, P22, DOI [DOI 10.1177/106939718301800403, 10.1177/106939718301800403] Hofstede G, 2006, J INT BUS STUD, V37, P882, DOI 10.1057/palgrave.jibs.8400233 Hsiao KL, 2016, ELECTRON COMMER R A, V16, P18, DOI 10.1016/j.elerap.2016.01.001 Hsu CL, 2015, ELECTRON COMMER R A, V14, P46, DOI 10.1016/j.elerap.2014.11.003 Huang JH, 2009, INFORM MANAGE-AMSTER, V46, P100, DOI 10.1016/j.im.2008.12.003 Huang Z, 2017, ELECTRON COMMER R A, V25, P40, DOI 10.1016/j.elerap.2017.08.003 Huang Z, 2013, ELECTRON COMMER R A, V12, P246, DOI 10.1016/j.elerap.2012.12.003 Ittmann HW, 2015, J TRANSP SUPPLY CHAI, V9, DOI 10.4102/jtscm.v9i1.165 Jeske M., 2013, BIG DATA LOGISTICS, P12 Kauffman R. J., 2016, P 2016 HAW INT C SYS, P5048 Kauffman RJ, 2017, ELECTRON COMMER R A, V25, P115, DOI 10.1016/j.elerap.2017.04.004 Kauffman RJ, 2010, J ASSOC INF SYST, V11, P303 Kauffman RJ, 2009, DECIS SUPPORT SYST, V48, P3, DOI 10.1016/j.dss.2009.05.009 Kharas H., 2017, The unprecedented expansion of the global middle class: An update Kim Y., 2018, WORKING PAPER Kitchin R, 2014, BIG DATA SOC, V1, DOI 10.1177/2053951714528481 Ko HC, 2018, ELECTRON COMMER R A, V28, P1, DOI 10.1016/j.elerap.2017.12.011 Kohavi R, 2014, PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), P1857, DOI 10.1145/2623330.2623341 Koppel M, 2006, COMPUT INTELL-US, V22, P100, DOI 10.1111/j.1467-8640.2006.00276.x Larmer B, 2017, NY TIMES Lazer D, 2009, SCIENCE, V323, P721, DOI 10.1126/science.1167742 LeCun Y, 2015, NATURE, V521, P436, DOI 10.1038/nature14539 Lee JY, 2018, J RETAILING, V94, P247, DOI 10.1016/j.jretai.2018.06.002 Li T, 2014, INFORM SYST RES, V25, P345, DOI 10.1287/isre.2014.0521 Liang XJ, 2018, ELECTRON COMMER R A, V27, P83, DOI 10.1016/j.elerap.2017.12.007 Lien CH, 2014, COMPUT HUM BEHAV, V41, P104, DOI 10.1016/j.chb.2014.08.013 Lien CH, 2017, COMPUT HUM BEHAV, V68, P403, DOI 10.1016/j.chb.2016.11.061 Lin JB, 2011, ELECTRON COMMER R A, V10, P615, DOI 10.1016/j.elerap.2011.07.008 Liu DR, 2011, ELECTRON COMMER R A, V10, P94, DOI 10.1016/j.elerap.2010.08.004 Liu J., 2018, CHINA MECH ENG, V2018, P1, DOI DOI 10.1155/2018/3491960 Long D., 2017, CHINAS E COMMERCE MA Lu BZ, 2016, ELECTRON COMMER R A, V20, P116, DOI 10.1016/j.elerap.2016.10.004 Lu M, 2015, IEEE CONF VIS ANAL, P203, DOI 10.1109/VAST.2015.7347679 Luo XM, 2014, MANAGE SCI, V60, P1738, DOI 10.1287/mnsc.2013.1836 Lv ZP, 2018, ELECTRON COMMER R A, V28, P102, DOI 10.1016/j.elerap.2018.01.003 Malhotra R., 2017, P 2017 INT C BIG DAT Martens R, 2006, ELECTRON COMMER R A, V5, P140, DOI [10.1016/j.elerap.2005.10.008, 10.1128/EC.5.1.140-147.2006] Morgan Stanley Research, 2015, CHIN E COMM REV Müller O, 2016, EUR J INFORM SYST, V25, P289, DOI 10.1057/ejis.2016.2 Natali F., 2017, P 2017 IEEE ACM INT National Academies of Sciences Engineering and Medicine (NASEM), 2016, COMM MOT VEH DRIV FA Office of the United States Trade Representative, 2017, 2017 OUT CYCL REV NO Pearl J., 2009, Causality: Models, Reasoning, and Inference, V2nd ed., DOI DOI 10.1017/CBO9780511803161 Prabu K., 2014, BAIDU LEVERAGES BIG Qin R, 2017, ELECTRON COMMER R A, V24, P68, DOI 10.1016/j.elerap.2017.07.001 Quah E., 2007, Cost-benefit analysis Rana R, 2014, COMM COM INF SC, V466, P270 Raphaeli O, 2017, ELECTRON COMMER R A, V26, P1, DOI 10.1016/j.elerap.2017.09.003 Razeghian M, 2019, ELECTRON COMMER R A, V33, DOI 10.1016/j.elerap.2018.06.001 ROSENBAUM PR, 1983, BIOMETRIKA, V70, P41, DOI 10.1093/biomet/70.1.41 Savicky P., 2003, P 2003 CRYPT HARDW E Schlager T, 2018, J MANAGE INFORM SYST, V35, P319, DOI 10.1080/07421222.2018.1440763 SIMS CA, 1980, ECONOMETRICA, V48, P1, DOI 10.2307/1912017 Song PJ, 2018, INFORM MANAGE-AMSTER, V55, P633, DOI 10.1016/j.im.2018.01.004 Sumita U, 2010, ELECTRON COMMER R A, V9, P217, DOI 10.1016/j.elerap.2009.11.006 Sun Y, 2016, ELECTRON COMMER R A, V18, P37, DOI 10.1016/j.elerap.2016.06.002 Tan CH, 2014, INFORM SYST RES, V25, P307, DOI 10.1287/isre.2014.0519 Tian F, 2016, ELECTRON COMMER R A, V16, P66, DOI 10.1016/j.elerap.2015.10.003 Tian J, 2018, ELECTRON COMMER R A, V28, P194, DOI 10.1016/j.elerap.2018.02.001 Tong F., 2017, ONLINE RETAIL SALES Tosun A., 2010, P 22 INN APPL ART IN Tse E., 2016, CHINESE COMPANIES LE Tsoukias A, 2013, EURO J DECIS PROCESS, V1, P115, DOI 10.1007/s40070-013-0008-3 Van Den Broeke M., 2018, EUR J OPER RES VentureScanner, 2017, START UP MARK REP DA Vuylsteke A, 2010, J INTERACT MARK, V24, P309, DOI 10.1016/j.intmar.2010.02.010 Walters J., 2011, CISC VIS NETW IND GL Wang JN, 2018, ELECTRON COMMER R A, V28, P16, DOI 10.1016/j.elerap.2018.01.002 Wang NX, 2018, ELECTRON COMMER R A, V27, P106, DOI 10.1016/j.elerap.2017.12.004 Wang W., 2018, WHATS HAPPENING CHIN Weber TA, 2017, J MANAGE INFORM SYST, V34, P341, DOI 10.1080/07421222.2017.1334466 Weber TA, 2014, J MANAGE INFORM SYST, V31, P35, DOI 10.1080/07421222.2014.995520 Wells P., 2014, NEW LABOUR EVIDENCE Wen XH, 2016, INT J ADV MANUF TECH, V87, P1491, DOI 10.1007/s00170-014-6348-8 Witten IH, 2011, MOR KAUF D, P1 Wu J, 2017, ELECTRON COMMER R A, V22, P24, DOI 10.1016/j.elerap.2017.02.002 Xiao BM, 2015, ELECTRON COMMER R A, V14, P641, DOI 10.1016/j.elerap.2015.10.001 Xinhua, 2018, CHINADAILY 0112 Xu Zongben, 2014, MANAGEMENT WORLD, V11, P158 Yan J., 2017, FOR AFFAIRS 1109 Yang MC, 2018, INFORM SYST RES, V29, P4, DOI 10.1287/isre.2017.0727 Yao XL, 2017, INFORM MANAGE-AMSTER, V54, P599, DOI 10.1016/j.im.2016.12.001 Yu C., 2016, ADV MECH ENG, V8, P7 Zhang C. B., 2016, COMPUT HUM BEHAV, V69 Zhang LX, 2018, BMJ-BRIT MED J, V360, DOI 10.1136/bmj.j5910 Zhang WS, 2013, ACM T INTEL SYST TEC, V4, DOI 10.1145/2414425.2414434 Zhong RY, 2016, COMPUT IND ENG, V101, P572, DOI 10.1016/j.cie.2016.07.013 Zhou MG, 2016, LANCET, V387, P251, DOI 10.1016/S0140-6736(15)00551-6 NR 147 TC 22 Z9 22 U1 12 U2 110 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 1567-4223 EI 1873-7846 J9 ELECTRON COMMER R A JI Electron. Commer. Res. Appl. PD MAY-JUN PY 2019 VL 35 AR 100837 DI 10.1016/j.elerap.2019.100837 PG 16 WC Business; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science GA IM0HP UT WOS:000477668400001 OA Green Accepted DA 2024-03-27 ER PT J AU De Gauquier, L Willems, K Cao, HL Vanderborght, B Brengman, M AF De Gauquier, Laurens Willems, Kim Cao, Hoang-Long Vanderborght, Bram Brengman, Malaika TI Together or alone: Should service robots and frontline employees collaborate in retail-customer interactions at the POS? SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Service robot; Frontline employee; Automated social presence; Human social presence; Retail; Field study; POS conversion Funnel ID AUTOMATED SOCIAL PRESENCE; TECHNOLOGY; TOUCH AB This study investigates shopper behavior when interacting with an employee-robot team (vs. both actors in isolation), along the metrics of the POS conversion funnel. An unobtrusive field study was conducted using video observations, evenly spread over four conditions: (1) a control condition (i.e., no stimulus), (2) a frontline employee, (3) a humanoid service robot, and (4) an employee-robot team. The results indicate that the service robot was the better option to generate attention and stop passers-by, but in this condition the least amount of passers-by were lured into the store. While the frontline employee initiated the lowest amount of interactions, he could convert the highest number of passersby into actual buyers. The robot-employee team managed to encourage the highest number of passers-by to look at the store, but did not convert more of them into actual buyers than the robot on its own. C1 [De Gauquier, Laurens; Willems, Kim; Brengman, Malaika] Vrije Univ Brussel, Dept Business Mkt & Consumer Behav, Pl Laan 2, B-1050 Brussels, Belgium. [Cao, Hoang-Long; Vanderborght, Bram] Vrije Univ Brussel, Pl Laan 2, B-1050 Brussels, Belgium. [Cao, Hoang-Long; Vanderborght, Bram] Imec, Brubot, Pl Laan 2, B-1050 Brussels, Belgium. C3 Vrije Universiteit Brussel; Vrije Universiteit Brussel; IMEC RP Brengman, M (autor correspondiente), Vrije Univ Brussel, Dept Business Mkt & Consumer Behav, Pl Laan 2, B-1050 Brussels, Belgium. EM Malaika.Brengman@vub.be RI Vanderborght, Bram/A-1599-2008 OI Cao, Hoang-Long/0000-0003-2851-5527; De Gauquier, Laurens/0000-0002-4343-1412; Willems, Kim/0000-0002-0941-8599; Brengman, Malaika/0000-0001-9860-7107 CR [Anonymous], 2013, PSYCHOL TODAY Belanche D, 2020, J SERV MANAGE, V31, P267, DOI 10.1108/JOSM-05-2019-0156 Bhimasta RA, 2019, UBICOMP/ISWC'19 ADJUNCT: PROCEEDINGS OF THE 2019 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2019 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, P1107, DOI 10.1145/3341162.3350843 Biocca F, 2003, PRESENCE-VIRTUAL AUG, V12, P456, DOI 10.1162/105474603322761270 Bowen DE, 2016, HUM RESOUR MANAGE R, V26, P4, DOI 10.1016/j.hrmr.2015.09.002 Brengman M., 2019, Homo Roboticus, P167 Brengman M, 2021, J BUS RES, V134, P263, DOI 10.1016/j.jbusres.2021.05.025 Choi S, 2019, INT J HOSP MANAG, V82, P32, DOI 10.1016/j.ijhm.2019.03.026 Dahl DW, 2005, J CONSUM PSYCHOL, V15, P307, DOI 10.1207/s15327663jcp1504_5 De Gauquier L., 2020, RETAIL FUTURES, P15 De Gauquier L, 2021, INT J RETAIL DISTRIB, V49, P846, DOI 10.1108/IJRDM-10-2020-0413 De Keyser A, 2019, J SERV MANAGE, V30, P156, DOI 10.1108/JOSM-03-2018-0082 Gartner, 2020, GARTN TOP STRAT TREN Giebelhausen M, 2014, J MARKETING, V78, P113, DOI 10.1509/jm.13.0056 Guo WX, 2017, EUR J MARKETING, V51, P1577, DOI 10.1108/EJM-05-2016-0278 Hagberg J, 2016, INT J RETAIL DISTRIB, V44, P694, DOI 10.1108/IJRDM-09-2015-0140 Heerink M, 2010, VIRTUAL REAL-LONDON, V14, P77, DOI 10.1007/s10055-009-0142-1 Heikkilä P, 2019, LECT NOTES ARTIF INT, V11876, P548, DOI 10.1007/978-3-030-35888-4_51 Hertzfeld E., 2019, HOTEL MANAGEMENT Hollebeek L.D., 2021, RISE MACHINES CUSTOM Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Oh H, 2012, J RETAIL CONSUM SERV, V19, P27, DOI 10.1016/j.jretconser.2011.08.003 Jean D., 2018, HENN HOTEL TOKYO GIN Kim S, 2021, INT J HOSP MANAG, V93, DOI 10.1016/j.ijhm.2020.102795 Knapton S., 2018, TELEGRAPH Larivière B, 2017, J BUS RES, V79, P238, DOI 10.1016/j.jbusres.2017.03.008 Lee JY, 2018, J ADV NURS, V74, P2094, DOI 10.1111/jan.13711 Lee SM, 2020, SERV BUS, V14, P1, DOI 10.1007/s11628-019-00408-2 Lin IY, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2021.102876 Marinova D, 2017, J SERV RES-US, V20, P29, DOI 10.1177/1094670516679273 Marketwatch, 2020, RET ROB MARK SIZ FOR Mayet R, 2019, IEEE ROMAN, DOI 10.1109/ro-man46459.2019.8956418 McLeay F, 2021, J SERV RES-US, V24, P104, DOI 10.1177/1094670520933354 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Michelis D, 2011, INT J HUM-COMPUT INT, V27, P562, DOI 10.1080/10447318.2011.555299 Miley J., 2018, ROBOT GETS FIRED SUP Nijssen EJ, 2016, J SERV MANAGE, V27, P276, DOI 10.1108/JOSM-08-2015-0233 Paluch S., 2020, Journal of Service Management Research, V4, P3, DOI DOI 10.15358/2511-8676-2020-1-3 Seiler S, 2017, MARKET SCI, V36, P565, DOI 10.1287/mksc.2017.1026 Shin HH, 2020, INT J CONTEMP HOSP M, V32, P2613, DOI 10.1108/IJCHM-09-2019-0798 Sissi C., 2020, WALMART PREFERS HUMA Smith JB, 1997, J MARKETING, V61, P3, DOI 10.2307/1252186 Solnet D, 2019, J SERV MANAGE, V30, P392, DOI 10.1108/JOSM-12-2018-0380 Song SR, 2023, ENVIRON TECHNOL, V44, P82, DOI 10.1080/09593330.2021.1964001 Tonkin M, 2017, IEEE ROMAN, P42, DOI 10.1109/ROMAN.2017.8172278 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Lu VN, 2020, J SERV THEOR PRACT, V30, P361, DOI 10.1108/JSTP-04-2019-0088 Weinberg N., 2019, ROBOT BUS REV Weitz BA, 1999, J ACAD MARKET SCI, V27, P241, DOI 10.1177/0092070399272008 Wirtz J, 2007, INT J SERV IND MANAG, V18, P6, DOI 10.1108/09564230710732876 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309 NR 53 TC 7 Z9 7 U1 10 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JAN PY 2023 VL 70 AR 103176 DI 10.1016/j.jretconser.2022.103176 EA NOV 2022 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 9A6EB UT WOS:000934148200006 DA 2024-03-27 ER PT J AU Croux, C Jagtiani, J Korivi, T Vulanovic, M AF Croux, Christophe Jagtiani, Julapa Korivi, Tarunsai Vulanovic, Milos TI Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform SO JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION LA English DT Article DE Big data; Crowdfunding; Financial innovation; Household finance; Lasso selection methods; Machine learning; Peer to peer lending; P2P/marketplace lending ID POST-SELECTION; INFERENCE; MODELS; CREDIT; LASSO; RISK AB This study examines the default determinants of Fintech loans, utilizing a sample of more than a million of personal loans that were originated through the LendingClub consumer platform during the period 2007-2018. We identify a robust set of contractual loan characteristics, borrower characteristics, and macroeconomic variables that are important in determining the likelihood of default, such as loan maturity, homeownership, loan purposes, occupation, etc. We also find an important role of alternative data in determining the default, even after controlling for the obvious risk characteristics of the borrowers, loan characteristics, and the local economic factors. The results are robust to different empirical approaches. Results imply that it would be important for regulators to provide greater transparency in terms of guidance and regulatory clarity on which alternative data can be used legally without violating fair lending rules. Lenders need to pay closer attention to how they make decisions and understand their own decisions that may be driven by complex algorithms inside the "black boxes."(C) 2020 Elsevier B.V. All rights reserved. C1 [Croux, Christophe; Vulanovic, Milos] EDHEC Business Sch, Dept Data Sci Econ & Finance, 24 Ave Gustave Delory,CS 50411, F-59057 Roubaix, France. [Jagtiani, Julapa] Fed Reserve Bank Philadelphia, Supervis Regulat & Credit Dept, Philadelphia, PA 19106 USA. [Korivi, Tarunsai] Amazoncom, Data Engn, 33 Rives de Clausen 31, L-2165 Luxembourg, Luxembourg. C3 Universite Catholique de Lille; EDHEC Business School; Federal Reserve System - USA; Federal Reserve Bank - Philadelphia RP Vulanovic, M (autor correspondiente), EDHEC Business Sch, Dept Data Sci Econ & Finance, 24 Ave Gustave Delory,CS 50411, F-59057 Roubaix, France. EM christophe.croux@edhec.edu; Julapa.Jagtiani@phil.frb.org; ttark@amazon.com; milos.vulanovic@edhec.edu RI Vulanovic, Milos/A-8815-2012; Croux, Christophe/E-4386-2016 OI Vulanovic, Milos/0000-0001-6628-9300; Croux, Christophe/0000-0003-2912-3437 CR Adams R.M., 2018, 20181022 BOARD GOV F, DOI [10.17016/2380-7172.2268., DOI 10.17016/2380-7172.2268] Athey S., 2018, IMPACT MACHINE LEARN Baker SR, 2016, Q J ECON, V131, P1593, DOI 10.1093/qje/qjw024 Balyuk T, 2017, 2802220 ROTM SCH MAN, DOI [10.2139/ssrn.2802220, DOI 10.2139/SSRN.2802220] Balyuk T, 2019, 3189236 SSRN Bastos JA, 2010, J BANK FINANC, V34, P2510, DOI 10.1016/j.jbankfin.2010.04.011 Belloni A, 2012, ECONOMETRICA, V80, P2369, DOI 10.3982/ECTA9626 Belloni A, 2016, J BUS ECON STAT, V34, P606, DOI 10.1080/07350015.2016.1166116 Belloni A, 2014, J ECON PERSPECT, V28, P29, DOI 10.1257/jep.28.2.29 Belloni A, 2013, BERNOULLI, V19, P521, DOI 10.3150/11-BEJ410 Bhanot SP, 2017, J ECON BEHAV ORGAN, V140, P246, DOI 10.1016/j.jebo.2017.04.007 Bjorkegren D., 2018, WORLD BANK EC REV Braggion Fabio, 2020, CAN TECHNOLOGY UNDER, DOI [10.2139/ssrn.2957411, DOI 10.2139/SSRN.2957411] Buchak G, 2018, J FINANC ECON, V130, P453, DOI 10.1016/j.jfineco.2018.03.011 Carmichael D., 2014, MODELING DEFAULT PEE, DOI [10.2139/ssrn.2529240, DOI 10.2139/SSRN.2529240] Chernozhukov V, 2015, ANNU REV ECON, V7, P649, DOI 10.1146/annurev-economics-012315-015826 Chinco A, 2019, J FINANC, V74, P449, DOI 10.1111/jofi.12733 Danisewicz P., 2018, REAL EFFECTS FINANCI, DOI [10.2139/ssrn.3208908, DOI 10.2139/SSRN.3208908] De Luca G, 2011, STATA J, V11, P213, DOI 10.1177/1536867X1101100204 de Roure C., 2019, P2P LENDERS VERSUS B, DOI [10.2139/ssrn.3174632, DOI 10.2139/SSRN.3174632] Duarte J, 2012, REV FINANC STUD, V25, P2455, DOI 10.1093/rfs/hhs071 Durovic A, 2017, J CENT BANK THEOR PR, V6, P149, DOI 10.1515/jcbtp-2017-0017 Emekter R, 2015, APPL ECON, V47, P54, DOI 10.1080/00036846.2014.962222 Freyberger J., 2017, W23227 NAT BUR EC RE, DOI [10.3386/w23227., DOI 10.3386/W23227] Funk, 2011, J INTERNET BANK COMM, V16, P1, DOI DOI 10.1016/J.JBUSVENT.2013.07.003 Goodman LS, 2018, J ECON PERSPECT, V32, P31, DOI 10.1257/jep.32.1.31 Havrylchyk O., 2019, SSRN ELECT J, DOI [10.2139/ssrn.2841316, DOI 10.2139/SSRN.2841316] HECKMAN JJ, 1979, ECONOMETRICA, V47, P153, DOI 10.2307/1912352 Hertzberg A, 2018, REV FINANC STUD, V31, P3532, DOI 10.1093/rfs/hhy024 Hughes J.P, 2019, CONSUMER LENDING EFF Jagtiani J, 2018, CLEARING HOUSE BANKI Jagtiani J., 2019, J ECON BUS Jagtiani J. L., 2019, FINTECH LENDING MORT Jagtiani J, 2019, FINANC MANAGE, V48, P1009, DOI 10.1111/fima.12295 Klafft M., 2008, PEER PEER LENDING AU Koudijs P, 2016, AM ECON REV, V106, P3367, DOI 10.1257/aer.20140259 Kozak S, 2020, J FINANC ECON, V135, P271, DOI 10.1016/j.jfineco.2019.06.008 Kraussl R., 2018, PERFORMANCE MARKETPL, DOI [10.2139/ssrn.3240020., DOI 10.2139/SSRN.3240020] Meier L, 2008, J R STAT SOC B, V70, P53, DOI 10.1111/j.1467-9868.2007.00627.x Meinshausen N, 2009, ANN STAT, V37, P246, DOI 10.1214/07-AOS582 Mollick E, 2014, J BUS VENTURING, V29, P1, DOI 10.1016/j.jbusvent.2013.06.005 Mullainathan S, 2017, J ECON PERSPECT, V31, P87, DOI 10.1257/jep.31.2.87 Philippon T., 2016, The fintech opportunity (No. w22476), DOI [10.3386/w22476, DOI 10.3386/W22476] Rosenberg R., 2013, Microfinance 3.0, P69, DOI DOI 10.1007/978-3-642-41704-7_4 Ryan S.G., 2018, FINTECH ISNT SO DIFF, DOI [10.2139/ssrn.3212902, DOI 10.2139/SSRN.3212902] Serrano-Cinca C, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0139427 Tang H, 2019, REV FINANC STUD, V32, P1900, DOI 10.1093/rfs/hhy137 Tian SN, 2015, J BANK FINANC, V52, P89, DOI 10.1016/j.jbankfin.2014.12.003 Tibshirani R, 1996, J ROY STAT SOC B, V58, P267, DOI 10.1111/j.2517-6161.1996.tb02080.x Vallée B, 2019, REV FINANC STUD, V32, P1939, DOI 10.1093/rfs/hhy100 VANDEVEN WPMM, 1981, J ECONOMETRICS, V17, P229, DOI 10.1016/0304-4076(81)90028-2 Varian HR, 2014, J ECON PERSPECT, V28, P3, DOI 10.1257/jep.28.2.3 Wang H., 2018, DOES ONLINE LENDING, DOI [10.2139/ssrn.2958916, DOI 10.2139/SSRN.2958916] Wei ZY, 2017, MANAGE SCI, V63, P4236, DOI 10.1287/mnsc.2016.2531 NR 54 TC 24 Z9 26 U1 5 U2 69 PU ELSEVIER PI AMSTERDAM PA RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS SN 0167-2681 EI 1879-1751 J9 J ECON BEHAV ORGAN JI J. Econ. Behav. Organ. PD MAY PY 2020 VL 173 BP 270 EP 296 DI 10.1016/j.jebo.2020.03.016 PG 27 WC Economics WE Social Science Citation Index (SSCI) SC Business & Economics GA LP1FG UT WOS:000534065100015 OA hybrid DA 2024-03-27 ER PT J AU Matin, A Khoshtaria, T Todua, N Bareja-Wawryszuk, O Pajewski, T Todua, N AF Matin, Arian Khoshtaria, Tornike Todua, Nugzar Bareja-Wawryszuk, Ola Pajewski, Tomasz Todua, Nia TI Determinants of Green Smartphone Application Adoption for Sustainable Food Consumption Among University Students SO INTERNATIONAL JOURNAL OF MARKETING COMMUNICATION AND NEW MEDIA LA English DT Article DE Technology adoption; Green smartphone applications; Sustainability; Food consumption behaviour; UTAUT; SEM; Machine Learning ID TECHNOLOGY ACCEPTANCE MODEL; MOBILE LIBRARY APPLICATIONS; USER ACCEPTANCE; ENVIRONMENTAL ATTITUDES; SOCIAL MEDIA; INFORMATION-TECHNOLOGY; CUSTOMER EXPERIENCE; CONSUMER-BEHAVIOR; EXTENSION; INTENTION AB This study aims to investigate the determinants of green smartphone application adoption among users. The study employs content richness model and modified Unified Theory of Acceptance and Use of Technology (UTAUT) as well as extrinsic constructs such as customisation and environmental concerns. A quantitative approach using a survey is utilised by collecting 700 responses. The data is analysed using Structural Equation Modelling (SEM) and three machine learning techniques including Artificial Neural Networks (ANN), Classification Regression Tree (CRT) and Chi-Squared Automatic Interaction Detection (CHAID). The results indicate that UTAUT, customisation and environmental concerns positively impact the adoption of green applications. Further analysis revealed fitness of analytical methods and the importance of variables for the overall sample and the subsamples derived. The study provides theoretical and practical contributions to academics, marketers and software developers in understanding consumer behaviour in the field. The result assist developers and marketers to decipher consumer behaviour towards green applications for sustainable consumption. The research contributes to theory and practice by employing an integrative model to investigate the role of technology in sustainable consumption. Moreover, the findings revealed the fitness of three machine learning methods to analyse the data collected for green consumption and the importance of variables in the model. The data is collected by employing convenience sampling. Hence, the results cannot be generalised accurately. Furthermore, data collection is conducted using a cross-sectional approach. Future researchers can add to the findings using a probability sampling and/or longitudinal data collection to generalise the results and reveal the changes in consumer behaviour. C1 [Matin, Arian] Int Black Sea Univ, Tbilisi, Georgia. [Khoshtaria, Tornike] Teaching Univ Geomedi, Tbilisi, Georgia. [Todua, Nugzar; Todua, Nia] Ivane Javakashvili Tbilisi State Univ, Tbilisi, Georgia. [Bareja-Wawryszuk, Ola] Siedlce Univ Nat Sci & Humanities, Siedlce, Poland. [Pajewski, Tomasz] Helena Chodkowska Univ Technol & Econ, Warsaw, Poland. C3 International Black Sea University RP Matin, A (autor correspondiente), Int Black Sea Univ, Tbilisi, Georgia. EM arianmatin@outlook.com; tornike.khoshtaria@geomedi.edu.ge; nugzar.todua@tsu.ge; ola.bareja-wawryszuk@uph.edu.pl; tomasz.pajewski@uth.edu.pl; niatodua24@gmail.com CR Abbad MMM, 2021, EDUC INF TECHNOL, V26, P7205, DOI 10.1007/s10639-021-10573-5 Aburayya A., 2022, INFORM MED UNLOCKED, V28, P100859, DOI DOI 10.1016/J.IMU.2022.100859 Alantari HJ, 2022, INT J RES MARK, V39, P1, DOI 10.1016/j.ijresmar.2021.10.011 Almousa M, 2020, INT J MARKET COMMUN, P78 Alnawas I, 2016, J RETAIL CONSUM SERV, V31, P313, DOI 10.1016/j.jretconser.2016.04.004 Aryadoust V, 2016, EDUC ASSESS, V21, P135, DOI 10.1080/10627197.2016.1166343 Bamberg S, 2003, J ENVIRON PSYCHOL, V23, P21, DOI 10.1016/S0272-4944(02)00078-6 Bekaroo G, 2018, SUSTAIN ENERGY TECHN, V30, P279, DOI 10.1016/j.seta.2018.10.016 Bengtsson F, 2011, J STRATEGIC INF SYST, V20, P96, DOI 10.1016/j.jsis.2010.09.007 Bilgihan A, 2016, INT J QUAL SERV SCI, V8, P102, DOI 10.1108/IJQSS-07-2015-0054 Blewitt ME, 2008, NAT GENET, V40, P663, DOI 10.1038/ng.142 Borges AP, 2021, INT J MARKET COMMUN, V9, P25 Bruggemann P., 2022, Advances in National Brand and Private Label Marketing. Springer Proceedings in Business and Economics, DOI [10.1007/978-3-031-06581-1_5, DOI 10.1007/978-3-031-06581-1_5] Bryne B.M., 2010, Structural Equation Modelling with AMOS: Basic Concepts, Applications and Programming, V2nd, DOI [10.4324/9781315757421, DOI 10.4324/9781315757421] Cabero Almenara Julio, 2016, Rev. Lasallista Investig., V13, P18 Chang SC, 2008, BRIT J EDUC TECHNOL, V39, P71, DOI 10.1111/j.1467-8535.2007.00742.x Chen JL, 2011, COMPUT EDUC, V57, P1501, DOI 10.1016/j.compedu.2011.02.009 Chen YF, 2014, INT J TECHNOL HUM IN, V10, P19, DOI 10.4018/ijthi.2014010102 CHIN WW, 1995, MIS QUART, V19, P237, DOI 10.2307/249690 Chiu CY, 2022, APPL SCI-BASEL, V12, DOI 10.3390/app12147002 Choi AS, 2013, ECOL ECON, V89, P24, DOI 10.1016/j.ecolecon.2013.01.027 DAVIS FD, 1989, MANAGE SCI, V35, P982, DOI 10.1287/mnsc.35.8.982 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 De Wulf K, 2006, INFORM MANAGE-AMSTER, V43, P434, DOI 10.1016/j.im.2005.10.005 Dehghani M, 2018, BEHAV INFORM TECHNOL, V37, P145, DOI 10.1080/0144929X.2018.1424246 Doligalski T, 2021, ROUT STUD INNOV ORG, P1, DOI 10.4324/9781003207481 DOLL WJ, 1988, MIS QUART, V12, P259, DOI 10.2307/248851 Dwivedi YK, 2019, INFORM SYST FRONT, V21, P719, DOI 10.1007/s10796-017-9774-y Ebrahimi P, 2022, BIG DATA COGN COMPUT, V6, DOI 10.3390/bdcc6020035 Eiriksdottir E, 2011, HUM FACTORS, V53, P749, DOI 10.1177/0018720811419154 Enginkaya Erkent E, 2021, INT J CONTEMP ECON A, V11, P354, DOI 10.5281/zenodo.5831643 Fraj-Andrés E, 2007, J INT CONSUM MARK, V19, P73, DOI 10.1300/J046v19n03_05 Franzen A, 2010, EUR SOCIOL REV, V26, P219, DOI 10.1093/esr/jcp018 Ghose A, 2019, MANAGE SCI, V65, P1363, DOI 10.1287/mnsc.2017.2991 Givens JE, 2013, SOC SCI RES, V42, P418, DOI 10.1016/j.ssresearch.2012.10.005 Greene G., 2012, J NUTR EDUC BEHAV, V44, pS19, DOI DOI 10.1016/J.JNEB.2012.03.028 Gupta A, 2021, BEHAV INFORM TECHNOL, V40, P1341, DOI 10.1080/0144929X.2020.1748715 Hadler M, 2013, INT SOCIOL, V28, P484, DOI 10.1177/0268580913494661 Haraty RA, 2019, HELIYON, V5, DOI 10.1016/j.heliyon.2019.e01141 Hilpert H., 2014, EUR C INF SYST ECIS Hsiao CH, 2016, TELEMAT INFORM, V33, P342, DOI 10.1016/j.tele.2015.08.014 Huang WHD, 2013, INTERNET HIGH EDUC, V16, P57, DOI 10.1016/j.iheduc.2012.02.001 Humbani M, 2019, INT J BANK MARK, V37, P646, DOI 10.1108/IJBM-03-2018-0072 Jain K., 2019, International Journal of Technology Marketing, V13, P83, DOI [10.1504/IJTMKT.2018.10020929, DOI 10.1504/IJTMKT.2018.10020929] Kannan PK, 2017, INT J RES MARK, V34, P22, DOI 10.1016/j.ijresmar.2016.11.006 Kemp A, 2019, BRIT J EDUC TECHNOL, V50, P2394, DOI 10.1111/bjet.12833 Khoshtaria Tornike, 2021, International Journal of Electronic Marketing and Retailing, V12, P394, DOI 10.1504/IJEMR.2021.118305 Kim H.-Y., 2017, International Journal of Fashion Design, Technology and Education, V10, P26, DOI [10.1080/17543266.2016.1177737, DOI 10.1080/17543266.2016.1177737] Kim J, 2022, ASIA PAC J EDUC, V42, P699, DOI 10.1080/02188791.2020.1776213 Kim J, 2016, INT J CONTEMP HOSP M, V28, P1535, DOI 10.1108/IJCHM-06-2015-0289 Kim Y, 2005, ADV CONSUM RES, V32, P592 Lazzarini GA, 2018, J CLEAN PROD, V198, P564, DOI 10.1016/j.jclepro.2018.07.033 Lea E, 2005, BRIT FOOD J, V107, P855, DOI 10.1108/00070700510629797 Lee CH, 2011, TOURISM MANAGE, V32, P987, DOI 10.1016/j.tourman.2010.08.011 Lee DY, 2013, COMPUT EDUC, V61, P193, DOI 10.1016/j.compedu.2012.10.001 Lee MC, 2010, INT J HUM-COMPUT INT, V26, P601, DOI 10.1080/10447311003781318 Lee YC, 2006, ONLINE INFORM REV, V30, P517, DOI 10.1108/14684520610706406 Lee YH, 2011, EDUC TECHNOL SOC, V14, P124 Barboza MNL, 2019, J INT CONSUM MARK, V31, P66, DOI 10.1080/08961530.2018.1490052 Leong LY, 2019, EXPERT SYST APPL, V133, P296, DOI 10.1016/j.eswa.2019.05.024 Liébana-Cabanillas F, 2018, TECHNOL FORECAST SOC, V129, P117, DOI 10.1016/j.techfore.2017.12.015 Lin CA, 2016, COMPUT HUM BEHAV, V64, P710, DOI 10.1016/j.chb.2016.07.027 Lubowiecki-Vikuk A, 2021, SUSTAIN PROD CONSUMP, V25, P91, DOI 10.1016/j.spc.2020.08.007 Magrath V, 2013, J FASH MARK MANAG, V17, P115, DOI 10.1108/13612021311305173 Matin A., 2023, International Journal of Technology Marketing, V17, P378, DOI [10.1504/IJTMKT.2023.133971, DOI 10.1504/IJTMKT.2023.133971] Matin A, 2022, INT REV PUB NON MARK, V19, P709, DOI 10.1007/s12208-021-00325-z Matthes J, 2014, J ADVERTISING, V43, P115, DOI 10.1080/00913367.2013.834804 McLean G, 2016, COMPUT HUM BEHAV, V60, P602, DOI 10.1016/j.chb.2016.02.084 Meyer R, 2010, POPUL ENVIRON, V32, P42, DOI 10.1007/s11111-010-0116-y Morales-Solana D, 2022, ELECTRON COMMER RES, V22, P1195, DOI 10.1007/s10660-021-09460-5 Mortenson MJ, 2016, INT J INFORM MANAGE, V36, P1248, DOI 10.1016/j.ijinfomgt.2016.07.007 Mousa Ayad Hameed, 2020, IOP Conference Series: Materials Science and Engineering, V671, DOI 10.1088/1757-899X/671/1/012031 Mróz B, 2021, ROUT STUD INNOV ORG, P113, DOI 10.4324/9781003207481-7 Nasidi QY, 2022, INT J MARKET COMMUN, V10, P206, DOI 10.54663/2182-9306.2022.v10.n18.206-228 O'Rourke D, 2016, J IND ECOL, V20, P882, DOI 10.1111/jiec.12310 Osman M, 2021, BASIC APPL SOC PSYCH, V43, P169, DOI 10.1080/01973533.2021.1889553 Osman M, 2019, APPETITE, V138, P60, DOI 10.1016/j.appet.2019.03.015 Parasuraman A, 2015, J SERV RES-US, V18, P59, DOI 10.1177/1094670514539730 Park N, 2009, INT J INFORM MANAGE, V29, P196, DOI 10.1016/j.ijinfomgt.2008.07.001 Park Y, 2012, AUTOMAT CONSTR, V22, P377, DOI 10.1016/j.autcon.2011.09.016 Perera C, 2018, J BUS ETHICS, V152, P843, DOI 10.1007/s10551-016-3376-3 Pindeh N, 2015, PROC ECON FINANC, V37, P372, DOI 10.1016/S2212-5671(16)30139-3 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Rafique H, 2020, COMPUT EDUC, V145, DOI 10.1016/j.compedu.2019.103732 Rafique H, 2018, LIBRI, V68, P99, DOI 10.1515/libri-2017-0041 Remane G., 2016, 20 PAC AS C INF SYST Remondes J, 2021, INT J MARKET COMMUN, V9, P1 Romano R, 2014, FOOD QUAL PREFER, V33, P27, DOI 10.1016/j.foodqual.2013.11.006 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 Saari UA, 2021, ECOL ECON, V189, DOI 10.1016/j.ecolecon.2021.107155 Sapci O, 2014, J BEHAV EXP ECON, V52, P29, DOI 10.1016/j.socec.2014.06.001 Shaikh AA, 2022, INT J SYST ASSUR ENG, V13, P681, DOI 10.1007/s13198-021-01590-1 Sharma SK, 2019, INT J INFORM MANAGE, V44, P65, DOI 10.1016/j.ijinfomgt.2018.09.013 Shukla A, 2018, VISION-INDIA, V22, P185, DOI 10.1177/0972262918766136 Singh L, 2021, INT J MARKET COMMUN, P82 Song L, 2019, J CLEAN PROD, V218, P685, DOI 10.1016/j.jclepro.2019.01.283 Song SY, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10103688 Sousa B, 2021, INT J MARKET COMMUN, P1 Surendran P., 2012, International Journal of Business and Social Research (IJBSR), V2, P175, DOI DOI 10.18533/IJBSR.V2I4.161 Tan BC, 2022, BRIT FOOD J, V124, P1187, DOI 10.1108/BFJ-01-2021-0005 Tarka P., 2017, Archives of Data Science. Series A, V2 Temple NJ, 2020, APPETITE, V144, DOI 10.1016/j.appet.2019.104485 Torlak NG, 2020, INT J PRODUCT PERFOR, V69, P1903, DOI 10.1108/IJPPM-01-2019-0001 Vainio A, 2014, ECOL ECON, V108, P18, DOI 10.1016/j.ecolecon.2014.09.026 Venkatesh V, 2000, MANAGE SCI, V46, P186, DOI 10.1287/mnsc.46.2.186.11926 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 vom Brocke J, 2013, COMMUN ASSOC INF SYS, V33, P509 Wallace LG, 2014, INFORM MANAGE-AMSTER, V51, P249, DOI 10.1016/j.im.2013.12.003 Wang RJH, 2015, J RETAILING, V91, P217, DOI 10.1016/j.jretai.2015.01.002 Wang Y, 2017, ENVIRON BEHAV, V49, P1128, DOI 10.1177/0013916516680264 Wang YS, 2012, SERV IND J, V32, P1505, DOI 10.1080/02642069.2010.531271 Wang Y, 2020, TRANSPORTATION, V47, P397, DOI 10.1007/s11116-018-9893-4 Weiss M, 2012, PERS UBIQUIT COMPUT, V16, P655, DOI 10.1007/s00779-011-0432-y Weller KE, 2014, J NUTR EDUC BEHAV, V46, P324, DOI 10.1016/j.jneb.2014.01.002 Wen D, 2017, COMPUT METH PROG BIO, V140, P131, DOI 10.1016/j.cmpb.2016.12.009 Wen Ling-Yu Melody, 2013, International Journal of Organizational Innovation, V5, P124 Yau HK, 2018, J MARK ANAL, V6, P6, DOI 10.1057/s41270-017-0026-2 Yoon HY, 2016, J ACAD LIBR, V42, P687, DOI 10.1016/j.acalib.2016.08.003 Zhang YC, 2018, MARKET SCI, V37, P425, DOI 10.1287/mksc.2017.1076 NR 120 TC 0 Z9 0 U1 0 U2 0 PU INST SUPERIOR ENTRE DOURO & VOUGA PI SANTA MARIA DA FEIRA PA RUA ANT CASTRO CORTE REAL, SANTA MARIA DA FEIRA, AVEIRO 4520-909, PORTUGAL SN 2182-9306 J9 INT J MARKET COMMUN JI Int. J. Market. Commun. New Media PD DEC PY 2023 VL 11 IS 21 BP 179 EP 212 DI 10.54663/2182-9306.2023.v11.n21.179-212 PG 34 WC Communication WE Emerging Sources Citation Index (ESCI) SC Communication GA II1E7 UT WOS:001165598200001 OA hybrid DA 2024-03-27 ER PT J AU Pillai, R Sivathanu, B AF Pillai, Rajasshrie Sivathanu, Brijesh TI Adoption of AI-based chatbots for hospitality and tourism SO INTERNATIONAL JOURNAL OF CONTEMPORARY HOSPITALITY MANAGEMENT LA English DT Article DE AI-based chatbots; Anthropomorphism; Mixed method; Perceived trust; Perceived intelligence; PLS-SEM; TAM ID WORD-OF-MOUTH; TECHNOLOGY ACCEPTANCE; PERCEIVED SAFETY; USER ACCEPTANCE; SOCIAL MEDIA; BIG DATA; SERVICE; ROBOT; TRUST; DETERMINANTS AB Purpose This study aims to investigate the customers' behavioral intention and actual usage (AUE) of artificial intelligence (AI)-powered chatbots for hospitality and tourism in India by extending the technology adoption model (TAM) with context-specific variables. Design/methodology/approach To understand the customers' behavioral intention and AUE of AI-powered chatbots for tourism, the mixed-method design was used whereby qualitative and quantitative techniques were combined. A total of 36 senior managers and executives from the travel agencies were interviewed and the analysis of interview data was done using NVivo 8.0 software. A total of 1,480 customers were surveyed and the partial least squares structural equation modeling technique was used for data analysis. Findings As per the results, the predictors of chatbot adoption intention (AIN) are perceived ease of use, perceived usefulness, perceived trust (PTR), perceived intelligence (PNT) and anthropomorphism (ANM). Technological anxiety (TXN) does not influence the chatbot AIN. Stickiness to traditional human travel agents negatively moderates the relation of AIN and AUE of chatbots in tourism and provides deeper insights into manager's commitment to providing travel planning services using AI-based chatbots. Practical implications This research presents unique practical insights to the practitioners, managers and executives in the tourism industry, system designers and developers of AI-based chatbot technologies to understand the antecedents of chatbot adoption by travelers. TXN is a vital concern for the customers; so, designers and developers should ensure that chatbots are easily accessible, have a user-friendly interface, be more human-like and communicate in various native languages with the customers. Originality/value This study contributes theoretically by extending the TAM to provide better explanatory power with human-robot interaction context-specific constructs - PTR, PNT, ANM and TXN - to examine the customers' chatbot AIN. This is the first step in the direction to empirically test and validate a theoretical model for chatbots' adoption and usage, which is a disruptive technology in the hospitality and tourism sector in an emerging economy such as India. C1 [Pillai, Rajasshrie] Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. [Sivathanu, Brijesh] Sri Balaji Univ, Dept Management, Pune, Maharashtra, India. RP Pillai, R (autor correspondiente), Pune Inst Business Management, Dept Management, Pune, Maharashtra, India. EM rajasshrie1@gmail.com; brij.jesh2002@gmail.com RI Pillai, Rajasshrie/GRO-0859-2022; S, BRIJESH/AAQ-4753-2021 OI Sivathanu, Dr. Brijesh/0000-0003-2505-9140 CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Ali F, 2019, INT J CONTEMP HOSP M, V31, P2641, DOI 10.1108/IJCHM-10-2018-0832 ARMSTRONG JS, 1977, J MARKETING RES, V14, P396, DOI 10.2307/3150783 Ba SL, 2002, MIS QUART, V26, P243, DOI 10.2307/4132332 Bartneck C, 2007, 2007 RO-MAN: 16TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1-3, P367 Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 Beldona S, 2018, INT J CONTEMP HOSP M, V30, P2327, DOI 10.1108/IJCHM-03-2017-0148 Bowen J, 2018, WORLDW HOSP TOUR THE, V10, P726, DOI [10.1108/whatt-07-2018-0045, 10.1108/WHATT-07-2018-0045] Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Burton-Jones A, 2013, INFORM SYST RES, V24, P632, DOI 10.1287/isre.1120.0444 Candello H, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3476, DOI 10.1145/3025453.3025919 Cassell J, 2003, USER MODEL USER-ADAP, V13, P89, DOI 10.1023/A:1024026532471 Chi OH, 2020, J HOSP MARKET MANAG, V29, P757, DOI 10.1080/19368623.2020.1721394 Creswell JW, 2007, COUNS PSYCHOL, V35, P236, DOI 10.1177/0011000006287390 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Demers E., 2001, Review of Accounting Studies, V6, P331 Denzin NK, 2012, J MIX METHOD RES, V6, P80, DOI 10.1177/1558689812437186 Deshmukh A, 2018, HAI'18: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON HUMAN-AGENT INTERACTION, P293, DOI 10.1145/3284432.3284445 Dieck MCT, 2017, INT J CONTEMP HOSP M, V29, P530, DOI 10.1108/IJCHM-10-2015-0552 Dubey R, 2018, INT J LOGIST MANAG, V29, P485, DOI 10.1108/IJLM-02-2017-0039 Duffy BR, 2003, ROBOT AUTON SYST, V42, P177, DOI 10.1016/S0921-8890(02)00374-3 El-Manstrly D, 2020, INT J HOSP MANAG, V88, DOI 10.1016/j.ijhm.2020.102535 Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864 Evanschitzky H, 2015, J PROD INNOVAT MANAG, V32, P459, DOI 10.1111/jpim.12241 Fetscherin M, 2008, J ELECTRON COMMER RE, V9, P231 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Galloway DA, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.00790 Ghanem MM, 2017, TOURISM, V65, P234 Ghosh J., 2018, EXPEDITION 3 0 TRAVE Gillespie A., 1999, Online Behavior: Stickiness Glaser B., 1967, SOCIOLOGY, V12, P27, DOI DOI 10.4324/9780203793206 Go H, 2020, TOUR REV, V75, P625, DOI 10.1108/TR-02-2019-0062 Golodov V, 2017, 2017 SECOND RUSSIA AND PACIFIC CONFERENCE ON COMPUTER TECHNOLOGY AND APPLICATIONS (RPC 2017), P72, DOI 10.1109/RPC.2017.8168071 Gray K, 2012, COGNITION, V125, P125, DOI 10.1016/j.cognition.2012.06.007 GUADAGNOLI E, 1988, PSYCHOL BULL, V103, P265, DOI 10.1037/0033-2909.103.2.265 Guide VDR, 2015, J OPER MANAG, V37, pV, DOI 10.1016/S0272-6963(15)00056-X Gupta Alisha, 2017, Int J Trichology, V9, P50, DOI 10.4103/ijt.ijt_38_17 Gursoy D, 2019, INT J INFORM MANAGE, V49, P157, DOI 10.1016/j.ijinfomgt.2019.03.008 Guzman I., 2016, CHATBOTS CUSTOMER SE, DOI [10.1007/BF02490459, DOI 10.1007/BF02490459] Hair JF, 2017, LONG RANGE PLANNING Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Ho CC, 2010, COMPUT HUM BEHAV, V26, P1508, DOI 10.1016/j.chb.2010.05.015 Hoque R, 2017, INT J MED INFORM, V101, P75, DOI 10.1016/j.ijmedinf.2017.02.002 Hsu CL, 2014, INFORM MANAGE-AMSTER, V51, P833, DOI 10.1016/j.im.2014.08.005 Hsu CL, 2016, TECHNOL FORECAST SOC, V108, P42, DOI 10.1016/j.techfore.2016.04.012 Hua LY, 2017, INFORM SYST MANAGE, V34, P265, DOI 10.1080/10580530.2017.1330004 Hughes P., 2015, WORLD ROB INT C ROB, P145 IGBARIA M, 1989, J MANAGE, V15, P373, DOI 10.1177/014920638901500302 Io H., 2019, ADV INFORM COMMUNICA, P632 Ivanov S., 2017, Revista Turismo & Desenvolvimento, P1501 Ivanov S, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P237, DOI 10.1007/978-3-030-05940-8_19 Ivanov S, 2019, J HOSP TOUR TECHNOL, V10, P489, DOI 10.1108/JHTT-08-2018-0087 Ivanov S, 2019, INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2019, P249, DOI 10.1007/978-3-030-05940-8_20 Kallmuenzer A, 2019, TOURISM MANAGE, V74, P319, DOI 10.1016/j.tourman.2019.04.002 Kaushik AK, 2015, TOUR MANAG PERSPECT, V16, P278, DOI 10.1016/j.tmp.2015.09.002 Kim HB, 2009, TOURISM MANAGE, V30, P266, DOI 10.1016/j.tourman.2008.07.001 Kim S, 2016, J RES INTERACT MARK, V10, P177, DOI 10.1108/JRIM-06-2015-0046 Klopping I. M., 2004, Information Technology, Learning, and Performance Journal, V22, P35 Komiak S.X., 2003, INFORM TECHNOL MANAG, V5, P181 Kuo CM, 2017, INT J CONTEMP HOSP M, V29, P1305, DOI [10.1108/ijchm-08-2015-0414, 10.1108/IJCHM-08-2015-0414] Lai YY, 2018, INT J LOGIST MANAG, V29, P676, DOI 10.1108/IJLM-06-2017-0153 Lam SY, 2008, J INTERACT MARK, V22, P19, DOI 10.1002/dir.20119 Law R, 2019, INT J CONTEMP HOSP M, V32, P511, DOI 10.1108/IJCHM-07-2018-0586 Lee L.Y., 2013, J HOSP TOUR MANAG, V40, P1 Lee WH, 2018, INT J MOB COMMUN, V16, P361, DOI 10.1504/IJMC.2018.092666 Leue M, 2014, e-Review of Tourism Res., V5, P1 Li DJ, 2010, INT J SOC ROBOT, V2, P175, DOI 10.1007/s12369-010-0056-9 Lin JCC, 2007, BEHAV INFORM TECHNOL, V26, P507, DOI 10.1080/01449290600740843 Lin TC, 2008, INFORM MANAGE-AMSTER, V45, P410, DOI 10.1016/j.im.2008.06.004 Litvin SW, 2018, INT J CONTEMP HOSP M, V30, P313, DOI 10.1108/IJCHM-08-2016-0461 Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Luo M.M., 2008, INFORM TECHNOLOGY TO, V9, P67 Luque-Martínez T, 2007, SERV IND J, V27, P881, DOI 10.1080/02642060701570586 Ma SF, 2019, ASLIB J INFORM MANAG, V71, P618, DOI 10.1108/AJIM-09-2018-0213 Maciag G.A., 2000, National Underwrite, V104, P19 Mangno F., 2016, INT J CONT HOSPITALI, V29, P1 Mani Z, 2018, J PROD INNOVAT MANAG, V35, P780, DOI 10.1111/jpim.12463 Mariani M, 2020, INT J CONTEMP HOSP M, V32, P1643, DOI 10.1108/IJCHM-04-2019-0378 Martins C, 2014, INT J INFORM MANAGE, V34, P1, DOI 10.1016/j.ijinfomgt.2013.06.002 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 McGinn C, 2019, ACMIEEE INT CONF HUM, P602, DOI [10.1109/HRI.2019.8673161, 10.1109/hri.2019.8673161] McLean G, 2020, INT J CONTEMP HOSP M, V32, P1795, DOI 10.1108/IJCHM-07-2019-0605 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Meuter ML, 2005, J MARKETING, V69, P61, DOI 10.1509/jmkg.69.2.61.60759 Meuter ML, 2003, J BUS RES, V56, P899, DOI 10.1016/S0148-2963(01)00276-4 Mirnig N, 2017, FRONT ROBOT AI, V4, DOI 10.3389/frobt.2017.00021 Mori M, 1970, ENERGY, V7, P33, DOI DOI 10.1109/MRA.2012.2192811 Morosan C, 2019, INT J CONTEMP HOSP M, V31, P1183, DOI 10.1108/IJCHM-04-2018-0314 Moussawi S, 2019, PROCEEDINGS OF THE 52ND ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES, P115 Moussawi S, 2021, ELECTRON MARK, V31, P343, DOI 10.1007/s12525-020-00411-w Murphy J, 2019, J TRAVEL TOUR MARK, V36, P784, DOI 10.1080/10548408.2019.1571983 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Oh H, 2013, J BUS RES, V66, P692, DOI 10.1016/j.jbusres.2011.09.005 Pan L., 2017, DESTECH T ENV ENERGY, P271 Parasuraman W, 2000, Journal of Service Research, V2, P307, DOI [10.1177/109467050024001, DOI 10.1177/109467050024001] Park Y.A., 2007, INFORM COMMUNICATION, P371 Petisca S, 2015, LECT NOTES ARTIF INT, V9388, P522, DOI 10.1007/978-3-319-25554-5_52 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Ponte EB, 2015, TOURISM MANAGE, V47, P286, DOI 10.1016/j.tourman.2014.10.009 Racherla P., 2012, SSRN Electronic Journal, DOI [DOI 10.2139/SSRN.2187056, 10.2139/ssrn.2187056] Rajan K, 2017, ARTIF INTELL, V247, P1, DOI 10.1016/j.artint.2017.03.003 Ramachandran A., 2018, USER ADOPTION CHATBO, P1 Rietz T., 2019, P 14 INT C WIRTSCH S, V57, P1642 Ringle C.M., 2005, Smart PLS 2.0 Robinson P, 2007, AUST NZ J PUBL HEAL, V31, P388, DOI 10.1111/j.1753-6405.2007.00096.x Rosenthal-von der Puetten AM, 2017, ACMIEEE INT CONF HUM, P483, DOI 10.1145/2909824.3020251 Roy MC, 2001, INTERNET RES, V11, P388, DOI 10.1108/10662240110410165 Ruijten PAM, 2019, INT J SOC ROBOT, V11, P477, DOI 10.1007/s12369-019-00516-z Ryan C, 2008, INT J TOUR RES, V10, P329, DOI 10.1002/jtr.660 SAP, 2018, BUILD YOUR OWN CHATB Saunders MNK, 2016, BRIT J MANAGE, V27, P836, DOI 10.1111/1467-8551.12182 Seilov GA, 2015, INT J CONTEMP HOSP M, V27, P71, DOI 10.1108/IJCHM-12-2013-0547 Sheehan B.T., 2018, Customer service chatbots: Anthropomorphism, adoption and word of mouth (Doctoral dissertation, Queensland University of Technology) Si S, 2020, ENTREP REGION DEV, V32, P1, DOI 10.1080/08985626.2019.1640485 Sivathanu B, 2019, J SCI TECHNOL POLICY, V10, P143, DOI 10.1108/JSTPM-07-2017-0033 Stadler S, 2014, IEEE ROMAN, P1030, DOI 10.1109/ROMAN.2014.6926388 Stark J, 2018, ACMIEEE INT CONF HUM, P245, DOI 10.1145/3173386.3176998 STEWART I, 1995, SCI AM, V272, P96, DOI 10.1038/scientificamerican0195-96 Sweezey M, 2018, FORBECOM Tomhawk, 2017, CHATB FUT TRAV Tsou HT, 2015, INT J INFORM MANAGE, V35, P1, DOI 10.1016/j.ijinfomgt.2014.09.001 Tung VWS, 2017, INT J CONTEMP HOSP M, V29, P2498, DOI 10.1108/IJCHM-09-2016-0520 Tussyadiah I.P., 2018, Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference, P308, DOI DOI 10.1007/978-3-319-72923-7_24 Tussyadiah I.P., 2016, TRAVEL TOURISM RES A, P44 Tussyadiah I, 2020, ANN TOURISM RES, V81, DOI 10.1016/j.annals.2020.102883 Tussyadiah IP, 2009, ANN TOURISM RES, V36, P24, DOI 10.1016/j.annals.2008.10.001 Ukpabi DC, 2018, EUROMED ACAD BUS CON, P1339 van Doorn J, 2017, J SERV RES-US, V20, P43, DOI 10.1177/1094670516679272 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2000, INFORM SYST RES, V11, P342, DOI 10.1287/isre.11.4.342.11872 Wang YY, 2018, INT J INFORM MANAGE, V38, P7, DOI 10.1016/j.ijinfomgt.2017.07.003 WARNER RM, 1986, J PERS SOC PSYCHOL, V50, P792, DOI 10.1037/0022-3514.50.4.792 Weiss A, 2015, 2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), P381, DOI 10.1109/ROMAN.2015.7333568 Werner K., 2012, 2012 Sixth International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), P455, DOI 10.1109/CISIS.2012.36 Willemse C, 2019, PHILOS T R SOC B, V374, DOI 10.1098/rstb.2018.0036 xcubelabs, 2017, 5 WAYS CHATB AR CHAN Yagoda RE, 2012, INT J SOC ROBOT, V4, P235, DOI 10.1007/s12369-012-0144-0 Yeoman I, 2012, FUTURES, V44, P365, DOI 10.1016/j.futures.2011.11.004 You S, 2018, AUTOMAT CONSTR, V96, P161, DOI 10.1016/j.autcon.2018.09.008 Yu CE, 2020, J HOSP MARKET MANAG, V29, P22, DOI 10.1080/19368623.2019.1592733 Zarouali B, 2018, CYBERPSYCH BEH SOC N, V21, P491, DOI 10.1089/cyber.2017.0518 Zhang TR, 2019, TRANSPORT RES C-EMER, V98, P207, DOI 10.1016/j.trc.2018.11.018 Zhou T, 2010, COMPUT HUM BEHAV, V26, P760, DOI 10.1016/j.chb.2010.01.013 NR 144 TC 213 Z9 217 U1 217 U2 754 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 0959-6119 EI 1757-1049 J9 INT J CONTEMP HOSP M JI Int. J. Contemp. Hosp. Manag. PD OCT 14 PY 2020 VL 32 IS 10 BP 3199 EP 3226 DI 10.1108/IJCHM-04-2020-0259 EA SEP 2020 PG 28 WC Hospitality, Leisure, Sport & Tourism; Management WE Social Science Citation Index (SSCI) SC Social Sciences - Other Topics; Business & Economics GA OG3EJ UT WOS:000570435200001 HC Y HP N DA 2024-03-27 ER PT J AU Zhuang, YL Zhou, Y Hassini, E Yuan, YF Hu, XP AF Zhuang, Yanling Zhou, Yun Hassini, Elkafi Yuan, Yufei Hu, Xiangpei TI Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE e-commerce warehousing; Robotic mobile fulfillment systems; Rack storage assignment; Robot-rack assignment ID WAREHOUSE ORDER PICKING; DESIGN AB Robotic mobile fulfillment systems provide a new solution for e-commerce retailers to fulfill customers' orders, wherein racks are moved by mobile robots to workstations so pickers can retrieve the purchased products. While such automated parts-to-picker systems can save on labor costs, they raise new operational challenges. In this paper, we investigate the rack storage and robot assignment to racks problem during order processing. We formulate this problem with the goal of minimizing the makespan of the system. Based on a rolling horizon framework and the simulated annealing method, we develop a matheuristic decomposition approach, which involves the solution of a special axial 3-index assignment problem in each stage to solve the problem. We test the performance of the proposed method for both large-scale cases based on a real-world dataset and small-scale instances generated synthetically. Computational results demonstrate the good performance of the proposed approach. C1 [Zhuang, Yanling; Hu, Xiangpei] Dalian Univ Technol, Sch Econ & Management, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China. [Zhou, Yun; Hassini, Elkafi; Yuan, Yufei] McMaster Univ, DeGroote Sch Business, 1280 Main St West, Hamilton, ON L8S 3L8, Canada. C3 Dalian University of Technology; McMaster University RP Hu, XP (autor correspondiente), Dalian Univ Technol, Sch Econ & Management, 2 Linggong Rd, Dalian 116024, Liaoning, Peoples R China. EM fuding_yanling@mail.dlut.edu.cn; zhouy185@mcmaster.ca; hassini@mcmaster.ca; yuanyuf@mcmaster.ca; drhxp@dlut.edu.cn RI Yuan, Yu/KBQ-0606-2024; yuan, yu/HZI-6841-2023; Yuan, Yu/HTM-9814-2023; Zhuang, Yanling/GWV-0107-2022; Hassini, Elkafi/JGE-1957-2023 OI Zhuang, Yanling/0000-0003-4313-6189; Hassini, Elkafi/0000-0002-5337-5389 FU key projects of the National Natural Science Foundation of China [71931009, 72010107002] FX This research was supported by the key projects of the National Natural Science Foundation of China (71931009, 72010107002) . CR Boschetti MA, 2009, LECT NOTES COMPUT SC, V5818, P171, DOI 10.1007/978-3-642-04918-7_13 Boysen N, 2019, EUR J OPER RES, V277, P396, DOI 10.1016/j.ejor.2018.08.023 Boysen N, 2017, EUR J OPER RES, V262, P550, DOI 10.1016/j.ejor.2017.03.053 BURKARD RE, 1985, DISCRETE APPL MATH, V12, P21, DOI 10.1016/0166-218X(85)90037-X Cai JM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13105644 Ceven E, 2017, TRANSPORT SCI, V51, P52, DOI 10.1287/trsc.2015.0642 Cho HS, 2005, COMPUT IND ENG, V48, P753, DOI 10.1016/j.cie.2004.12.005 de Koster R, 2007, EUR J OPER RES, V182, P481, DOI 10.1016/j.ejor.2006.07.009 Erera AL, 2009, OPER RES, V57, P468, DOI 10.1287/opre.1080.0650 Forma IA, 2015, TRANSPORT RES B-METH, V71, P230, DOI 10.1016/j.trb.2014.10.003 Gharehgozli A, 2020, TRANSPORT RES E-LOG, V142, DOI 10.1016/j.tre.2020.102087 Giannikas V, 2017, INT J PROD ECON, V189, P63, DOI 10.1016/j.ijpe.2017.04.002 HAN MH, 1987, IIE TRANS, V19, P56, DOI 10.1080/07408178708975370 Jiang M, 2020, TRANSPORT RES E-LOG, V144, DOI 10.1016/j.tre.2020.102138 JORESKOG KG, 1982, J MARKETING RES, V19, P404, DOI 10.2307/3151714 Karp R. M., 1972, INCOM PLEXITY COMPUT, P85 Kim HJ, 2020, IEEE T AUTOM SCI ENG, V17, P1854, DOI 10.1109/TASE.2020.2979897 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Kuzmicz KA, 2019, OMEGA-INT J MANAGE S, V85, P194, DOI 10.1016/j.omega.2018.06.004 Lamballais T, 2017, EUR J OPER RES, V256, P976, DOI 10.1016/j.ejor.2016.06.063 Lee CKM, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100998 Li XW, 2020, TRANSPORT RES E-LOG, V144, DOI 10.1016/j.tre.2020.102158 Marufuzzaman M, 2017, TRANSPORT SCI, V51, P494, DOI 10.1287/trsc.2015.0632 Merschformann M, 2019, OPER RES PERSPECT, V6, DOI 10.1016/j.orp.2019.100128 Mirzaei M, 2021, TRANSPORT RES E-LOG, V146, DOI 10.1016/j.tre.2020.102207 Mueller R. O., 1999, Basic principles of structural equation modeling: An introduction to LISREL and EQS Roy D, 2019, TRANSPORT RES E-LOG, V122, P119, DOI 10.1016/j.tre.2018.11.005 Song DP, 2008, EUR J OPER RES, V185, P760, DOI 10.1016/j.ejor.2006.12.034 Spieksma FCR, 2000, COMB OPT (SER), V7, P1 Tessensohn TL, 2020, IISE TRANS, V52, P1, DOI 10.1080/24725854.2018.1560517 Van Nieuwenhuyse I, 2009, INT J PROD ECON, V121, P654, DOI 10.1016/j.ijpe.2009.01.013 Vis IFA, 2006, EUR J OPER RES, V170, P677, DOI 10.1016/j.ejor.2004.09.020 Weidinger F, 2018, TRANSPORT SCI, V52, P1479, DOI 10.1287/trsc.2018.0826 Weidinger F, 2018, TRANSPORT SCI, V52, P1412, DOI 10.1287/trsc.2017.0779 Williams HP, 2013, MODEL BUILDING MATH Wulfraat M., 2012, SUPPLY CHAIN CONSULT Wurman PR, 2008, AI MAG, V29, P9 Xie L, 2021, EUR J OPER RES, V288, P80, DOI 10.1016/j.ejor.2020.05.032 Yuan R, 2019, PROD OPER MANAG, V28, P354, DOI 10.1111/poms.12925 Yuan Z, 2017, IEEE T ENG MANAGE, V64, P83, DOI 10.1109/TEM.2016.2634540 Zhuang YL, 2022, EUR J OPER RES, V300, P527, DOI 10.1016/j.ejor.2021.08.003 Zou BP, 2017, INT J PROD RES, V55, P6175, DOI 10.1080/00207543.2017.1331050 NR 42 TC 7 Z9 7 U1 14 U2 48 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 EI 1878-5794 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD NOV PY 2022 VL 167 AR 102920 DI 10.1016/j.tre.2022.102920 EA OCT 2022 PG 28 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA 6A1TM UT WOS:000880443600001 DA 2024-03-27 ER PT J AU Gharehgozli, A Zaerpour, N AF Gharehgozli, Amir Zaerpour, Nima TI Robot scheduling for pod retrieval in a robotic mobile fulfillment system SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Distribution; e-commerce fulfillment; Robotic mobile fulfillment systems; Travel time; Asymmetric traveling salesman problem ID LARGE NEIGHBORHOOD SEARCH; SEQUENTIAL ORDERING PROBLEM; AUTOMATED STORAGE; LOCAL SEARCH; GENETIC ALGORITHM; BERTH ALLOCATION; WAREHOUSE; PICKING; PERFORMANCE; STRATEGIES AB In order to increase the order picking efficiency, e-commerce retailers have started to implement order picking systems where mobile robots carry inventory pods to pick stations. In pick stations, pickers pick the products from inventory pods and put them in customer bins. In such a robotic mobile fulfillment center, pickers are constantly busy with picking customer orders and avoid non-value adding activities such as walking to reach storage locations. To fulfill customer orders, each robot needs to complete a sequence of missions and each mission includes a set of retrieval requests. We study the operational problem of scheduling a mobile robot fulfilling a set of customer orders from a pick station. The mobile robot needs to bring each pod from a retrieval location to the pick station and return the pod to a storage location. The objective is to minimize the total travel time of the robot which can be considered as a proxy for other objectives such a shorter lead time, higher throughput and less capital investment. We formulate the basic problem as an asymmetric traveling salesman problem. We then extend the model by adding general precedence constraints to give different priorities to customer orders based on their urgency (e.g. same-day, one-day, two-day, and standard orders). We also study a variation of the problem where the pod can be stored in multiple alternative locations. In this case, we model the problem as a generalized asymmetric traveling salesman problem. An adaptive large neighborhood search heuristic is developed to efficiently solve real size instances. The method outperforms the heuristics commonly used in practice. C1 [Gharehgozli, Amir] Calif State Univ Northridge, Coll Business & Econ, Northridge, CA 91330 USA. [Zaerpour, Nima] Calif State Univ Northridge, Coll Business Adm, Northridge, CA 91330 USA. C3 California State University System; California State University Northridge; California State University System; California State University Northridge RP Gharehgozli, A (autor correspondiente), 18111 Nordhoff St, Northridge, CA 91330 USA. EM amir.gharehgozli@csun.edu; nzaerpour@csusm.edu RI Gharehgozli, Amir/P-8928-2015; Zaerpour, Nima/AAS-2254-2021 CR Anghinolfi D, 2011, COMPUT OPER RES, V38, P1076, DOI 10.1016/j.cor.2010.10.014 Ascheuer N, 1993, SIAM J OPTIMIZ, V3, P25, DOI 10.1137/0803002 Azadeh K, 2019, TRANSPORT SCI, V53, P917, DOI 10.1287/trsc.2018.0873 BALAS E, 1995, MATH PROGRAM, V68, P241, DOI 10.1007/BF01585767 Beckschäfer M, 2017, LECT NOTES COMPUT SC, V10572, P468, DOI 10.1007/978-3-319-68496-3_31 Bent R, 2004, TRANSPORT SCI, V38, P515, DOI 10.1287/trsc.1030.0049 Bontoux B, 2010, COMPUT OPER RES, V37, P1844, DOI 10.1016/j.cor.2009.05.004 Boysen N, 2019, EUR J OPER RES, V277, P396, DOI 10.1016/j.ejor.2018.08.023 Boysen N, 2017, EUR J OPER RES, V262, P550, DOI 10.1016/j.ejor.2017.03.053 Boysen N, 2016, EUR J OPER RES, V254, P691, DOI 10.1016/j.ejor.2016.04.008 Boysen N, 2016, EUR J OPER RES, V249, P618, DOI 10.1016/j.ejor.2015.09.033 Bozer YA, 2018, INT J PROD RES, V56, P3838, DOI 10.1080/00207543.2018.1424364 Bruglieri M, 2019, DISCRETE APPL MATH, V253, P185, DOI 10.1016/j.dam.2018.03.067 Bruns F, 2016, EUR J OPER RES, V249, P1074, DOI 10.1016/j.ejor.2015.09.036 CARPANETO G, 1980, MANAGE SCI, V26, P736, DOI 10.1287/mnsc.26.7.736 Cohen L., 2015, 8 ANN S COMBINATORIA De Koster R, 1998, IIE TRANS, V30, P469, DOI 10.1080/07408179808966487 de Koster R, 2007, EUR J OPER RES, V182, P481, DOI 10.1016/j.ejor.2006.07.009 Del Ray J., 2019, ROBOTS ARE TRANSFORM Enright John., 2011, AUTOMATED ACTION PLA, P33 Escudero L. F., 1994, Annals of Operations Research, V50, P219, DOI 10.1007/BF02085641 Escudero L.F., 1997, TOP, V5, P159 ESCUDERO LF, 1988, EUR J OPER RES, V37, P236, DOI 10.1016/0377-2217(88)90333-5 Eshtehadi R, 2020, COMPUT OPER RES, V115, DOI 10.1016/j.cor.2019.104859 Fareeha A., 2019, US ECOMMERCE SALES G Fischetti M, 1997, OPER RES, V45, P378, DOI 10.1287/opre.45.3.378 FISCHETTI M, 1995, NETWORKS, V26, P113, DOI 10.1002/net.3230260206 Gagliardi JP, 2012, INT J PROD RES, V50, P7110, DOI 10.1080/00207543.2011.633234 Gambardella LM, 2000, INFORMS J COMPUT, V12, P237, DOI 10.1287/ijoc.12.3.237.12636 Garey M. R., 1976, Mathematics of Operations Research, V1, P117, DOI 10.1287/moor.1.2.117 Gharehgozli A.H, 2017, TRANSP SCI Gharehgozli A, 2021, EUR J OPER RES, V289, P495, DOI 10.1016/j.ejor.2020.07.038 Gharehgozli A, 2019, TRANSPORT RES E-LOG, V125, P261, DOI 10.1016/j.tre.2019.03.008 Gharehgozli A, 2018, EUR J OPER RES, V267, P977, DOI 10.1016/j.ejor.2017.12.040 Gharehgozli AH, 2016, MARIT ECON LOGIST, V18, P103, DOI 10.1057/mel.2015.3 Gharehgozli AH, 2015, TRANSPORT SCI, V49, P686, DOI 10.1287/trsc.2014.0533 Gharehgozli AH, 2014, INT J PROD RES, V52, P2592, DOI 10.1080/00207543.2013.861618 Gharehgozli AH, 2014, EUR J OPER RES, V235, P431, DOI 10.1016/j.ejor.2013.09.038 Gharout-Sait A, 2019, MICROB DRUG RESIST, V25, P1057, DOI [10.1089/mdr.2018.0471, 10.1057/s41278-019-00131-9] Giannikas V, 2017, INT J PROD ECON, V189, P63, DOI 10.1016/j.ijpe.2017.04.002 Gonzalez A., 2017, AMAZONS ROBOT ARMY G Gu JX, 2007, EUR J OPER RES, V177, P1, DOI 10.1016/j.ejor.2006.02.025 Gu JX, 2010, EUR J OPER RES, V203, P539, DOI 10.1016/j.ejor.2009.07.031 Gue KR, 2015, COMPUT OPER RES, V63, P46, DOI 10.1016/j.cor.2015.04.019 Guizzo E., 2008, IEEE spectrum, V45, P26 HALL RW, 1993, IIE TRANS, V25, P76, DOI 10.1080/07408179308964306 Hang Ma, 2017, AI Matters, V3, P15, DOI 10.1145/3137574.3137579 Hanson R, 2018, IFAC PAPERSONLINE, V51, P1493, DOI 10.1016/j.ifacol.2018.08.290 Helsgaun K, 2000, EUR J OPER RES, V126, P106, DOI 10.1016/S0377-2217(99)00284-2 Hornstra RP, 2020, COMPUT OPER RES, V115, DOI 10.1016/j.cor.2019.104858 Iris C, 2017, TRANSPORT RES E-LOG, V105, P123, DOI 10.1016/j.tre.2017.06.013 Karapetyan D, 2012, EUR J OPER RES, V219, P234, DOI 10.1016/j.ejor.2012.01.011 KIRKPATRICK S, 1983, SCIENCE, V220, P671, DOI 10.1126/science.220.4598.671 Kuhn HW., 1955, NAV RES LOG, V2, P83, DOI [DOI 10.1002/NAV.3800020109, DOI 10.1002/NAV.20053, 10.1002/nav.3800020109] Lamballais T, 2017, EUR J OPER RES, V256, P976, DOI 10.1016/j.ejor.2016.06.063 LAPORTE G, 1987, DISCRETE APPL MATH, V18, P185, DOI 10.1016/0166-218X(87)90020-5 Lee CKM, 2019, ADV ENG INFORM, V42, DOI 10.1016/j.aei.2019.100998 Lee HF, 1997, COMPUT IND ENG, V32, P351, DOI 10.1016/S0360-8352(96)00298-7 Ma H, 2017, IEEE INTELL SYST, V32, P6, DOI 10.1109/MIS.2017.4531217 Mahulea C., 2020, Path planning of cooperative mobile robots using discrete event models Mauri GR, 2016, COMPUT OPER RES, V70, P140, DOI 10.1016/j.cor.2016.01.002 Merschformann M, 2019, OPER RES PERSPECT, V6, DOI 10.1016/j.orp.2019.100128 Merschformann M., 2018, Logistics Res., V11, P1 MILLER DL, 1991, SCIENCE, V251, P754, DOI 10.1126/science.251.4995.754 Montemanni R, 2008, COMPUT OPER RES, V35, P3931, DOI 10.1016/j.cor.2007.05.003 Mountz M. C., 2005, Material handling system and method using mobile autonomous inventory trays and peer-to-peer communica-tions, US/ 6950722, Patent No. 6950722 NOON CE, 1991, OPER RES, V39, P623, DOI 10.1287/opre.39.4.623 RATLIFF HD, 1983, OPER RES, V31, P507, DOI 10.1287/opre.31.3.507 Roodbergen KJ, 2009, EUR J OPER RES, V194, P343, DOI 10.1016/j.ejor.2008.01.038 Roodbergen KJ, 2001, EUR J OPER RES, V133, P32, DOI 10.1016/S0377-2217(00)00177-6 Roodbergen KJ, 2001, INT J PROD RES, V39, P1865, DOI 10.1080/00207540110028128 Ropke S, 2006, EUR J OPER RES, V171, P750, DOI 10.1016/j.ejor.2004.09.004 Ropke S, 2006, TRANSPORT SCI, V40, P455, DOI 10.1287/trsc.1050.0135 Roy D, 2019, TRANSPORT RES E-LOG, V122, P119, DOI 10.1016/j.tre.2018.11.005 Sarasola B, 2020, NETWORKS, V75, P64, DOI 10.1002/net.21905 Seo DI, 2003, LECT NOTES COMPUT SC, V2723, P669 Shao SJ, 2020, TRANSPORT RES B-METH, V133, P1, DOI 10.1016/j.trb.2019.12.004 Shaw P., 1997, NEW LOCAL SEARCH ALG Snyder LV, 2006, EUR J OPER RES, V174, P38, DOI 10.1016/j.ejor.2004.09.057 Spieckermann S, 2004, INT J PROD RES, V42, P1865, DOI 10.1080/00207540310001646821 Sun P, 2020, TRANSPORT RES E-LOG, V138, DOI 10.1016/j.tre.2020.101942 Tessensohn TL, 2020, IISE TRANS, V52, P1, DOI 10.1080/24725854.2018.1560517 Tompkins J.A., 2003, FACILITIES PLANNING, VThird van den Berg JP, 1999, IIE TRANS, V31, P407, DOI 10.1080/07408179908969844 van Gils T, 2018, INT J PROD ECON, V197, P243, DOI 10.1016/j.ijpe.2017.11.021 van Gils T, 2018, EUR J OPER RES, V267, P1, DOI 10.1016/j.ejor.2017.09.002 Vaughan TS, 1999, INT J PROD RES, V37, P881, DOI 10.1080/002075499191580 Vis IFA, 2009, OPER RES, V57, P456, DOI 10.1287/opre.1080.0621 Wen M, 2016, COMPUT OPER RES, V76, P73, DOI 10.1016/j.cor.2016.06.013 Wurman PR, 2008, AI MAG, V29, P9 Yu J, 2015, INT J METALCAST, V9, P33 Yuan R, 2018, INT J PROD RES, V56, P333, DOI 10.1080/00207543.2017.1398428 Zaerpour N, 2019, TRANSPORT SCI, V53, P1235, DOI 10.1287/trsc.2018.0884 Zaerpour N, 2019, INFOR, V57, P100, DOI 10.1080/03155986.2018.1532765 Zaerpour N, 2017, IISE TRANS, V49, P653, DOI 10.1080/24725854.2016.1273564 Zaerpour N, 2017, IISE TRANS, V49, P461, DOI 10.1080/24725854.2016.1273563 Zaerpour N, 2017, TRANSPORT SCI, V51, P34, DOI 10.1287/trsc.2015.0586 Zaerpour N, 2015, PROD OPER MANAG, V24, P1266, DOI 10.1111/poms.12321 Zaerpour N, 2013, INT J PROD RES, V51, P6891, DOI 10.1080/00207543.2013.774502 Zhang RY, 2020, COMPUT IND ENG, V139, DOI 10.1016/j.cie.2019.106143 Zou B., 2018, TRANSP SCI Zou BP, 2018, EUR J OPER RES, V267, P733, DOI 10.1016/j.ejor.2017.12.008 Zou BP, 2017, INT J PROD RES, V55, P6175, DOI 10.1080/00207543.2017.1331050 NR 103 TC 35 Z9 37 U1 8 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 EI 1878-5794 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD OCT PY 2020 VL 142 AR 102087 DI 10.1016/j.tre.2020.102087 PG 19 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA OC3EE UT WOS:000579040400008 OA hybrid DA 2024-03-27 ER PT J AU Klein, K Martinez, LF AF Klein, Katharina Martinez, Luis F. TI The impact of anthropomorphism on customer satisfaction in chatbot commerce: an experimental study in the food sector SO ELECTRONIC COMMERCE RESEARCH LA English DT Article DE Consumer behavior; Conversational commerce; e-commerce; Chatbot; Anthropomorphism; Customer experience; Customer satisfaction ID SOCIAL PRESENCE; EXPERIENCE; INTERACTIVITY; PERSPECTIVE; ACCEPTANCE; LOYALTY; AGENCY; TRUST; CUES AB Food retailers are lagging behind other industries in implementing innovative mobile solutions offering their services and purchasing processes on their online platforms. Chatbots can be leveraged as an application to provide customer-centric services while retailers benefit from collecting consumer data. Previous literature on chatbot technology provides evidence that human characteristics enhance the customer experience. This is the first experimental study to investigate consumer attitudes and satisfaction with anthropomorphic chatbots in food e-commerce. A sample of 401 participants was tested to verify the proposed hypotheses. The test group interacted with a standard chatbot without human-like characteristics, while the control group communicated with the anthropomorphically designed agent. The results confirm the vast potential of anthropomorphic cues in chatbot applications and show that they are positively associated with customer satisfaction and mediated by the variables enjoyment, attitude, and trust. The findings suggest that to remain competitive, food retailers should immediately adopt innovative technologies for their omnichannel strategy and incorporate anthropomorphic design cues. C1 [Klein, Katharina; Martinez, Luis F.] Univ Nova Lisboa, Nova Sch Business & Econ, Campus Carcavelos,Rua Holanda 1, P-2775405 Carcavelos, Portugal. C3 Universidade Nova de Lisboa RP Klein, K (autor correspondiente), Univ Nova Lisboa, Nova Sch Business & Econ, Campus Carcavelos,Rua Holanda 1, P-2775405 Carcavelos, Portugal. EM contact@klein-katharina.de; luis.martinez@novasbe.pt RI Martinez, Luis F./V-6776-2019 OI Klein, Katharina/0000-0002-8405-6807; Martinez, Luis/0000-0002-9554-5374 FU Fundacao para a Ciencia e a Tecnologia [UID ECO/00124/2019, UIDB/00124/2020, PINFRA/22209/2016]; POR Lisboa; POR Norte (Social Sciences DataLab) [PINFRA/22209/2016]; Fundação para a Ciência e a Tecnologia [UIDB/00124/2020, UID/ECO/00124/2019] Funding Source: FCT FX This work was funded by Fundacao para a Ciencia e a Tecnologia (UID ECO/00124/2019, UIDB/00124/2020 and Social Sciences DataLab, PINFRA/22209/2016), POR Lisboa and POR Norte (Social Sciences DataLab, PINFRA/22209/2016). CR Aggarwal P, 2007, J CONSUM RES, V34, P468, DOI 10.1086/518544 Agichtein E, 2020, PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), P897, DOI 10.1145/3336191.3371882 Alger K., 2018, Forbes [Anonymous], 2018, ASPECT Anshu K, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102798 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173 Begley S., 2020, Digital disruption at the grocery store Bilgihan A, 2016, INT J QUAL SERV SCI, V8, P102, DOI 10.1108/IJQSS-07-2015-0054 Bleier A, 2019, J MARKETING, V83, P98, DOI 10.1177/0022242918809930 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Brown SA, 2016, J ASSOC INF SYST, V17, P614, DOI 10.17705/1jais.00436 Burgoon JK, 2000, COMPUT HUM BEHAV, V16, P553, DOI 10.1016/S0747-5632(00)00029-7 Chaudhuri A., 2006, EMOTION REASON CONSU, DOI [10.4324/9780080461762, DOI 10.4324/9780080461762] Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Crolic C, 2022, J MARKETING, V86, P132, DOI 10.1177/00222429211045687 Cyr D, 2007, INTERACT COMPUT, V19, P43, DOI 10.1016/j.intcom.2006.07.010 Darke PR, 2016, J RETAILING, V92, P287, DOI 10.1016/j.jretai.2016.02.001 de Melo CM, 2014, J PERS SOC PSYCHOL, V106, P73, DOI 10.1037/a0034251 de Visser EJ, 2016, J EXP PSYCHOL-APPL, V22, P331, DOI 10.1037/xap0000092 Eeuwen M. van, 2017, THESIS U TWENTE Elder RS, 2017, J CONSUM RES, V44, P877, DOI 10.1093/jcr/ucx070 Epley N, 2008, SOC COGNITION, V26, P143, DOI 10.1521/soco.2008.26.2.143 Epley N, 2008, PSYCHOL SCI, V19, P114, DOI 10.1111/j.1467-9280.2008.02056.x Epley N, 2007, PSYCHOL REV, V114, P864, DOI 10.1037/0033-295X.114.4.864 Etlinger S., 2017, The Conversational Business: How Chatbots Will Reshape Digital Experiences Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009 Field A., 2009, DISCOVERING STAT USI, V3rd Francis T., 2018, TRUE GENGENERATION I, V12 Gefen D., 2003, e-Service Journal, V2, P7, DOI DOI 10.2979/ESJ.2003.2.2.7 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Goetz J., 2003, P 12 IEEE INT WORKSH, P5560 Hair J.F., 2009, Multivariate data analysis Han MC, 2021, J INTERNET COMMER, V20, P46, DOI 10.1080/15332861.2020.1863022 Hassanein K, 2005, INT J ELECTRON COMM, V10, P31, DOI 10.2753/JEC1086-4415100202 Hayes AF, 2018, COMMUN MONOGR, V85, P4, DOI 10.1080/03637751.2017.1352100 Hussain Shafquat, 2019, Web, Artificial Intelligence and Network Applications. Proceedings of the Workshops of the 33rd International Conference on Advanced Information Networking and Applications (WAINA-2019). Advances in Intelligent Systems and Computing (AISC 927), P946, DOI 10.1007/978-3-030-15035-8_93 Irfan W, 2019, INT J RETAIL DISTRIB, V47, P350, DOI 10.1108/IJRDM-03-2018-0045 Isbister K, 2000, INT J HUM-COMPUT ST, V53, P251, DOI 10.1006/ijhc.2000.0368 Joshi N., 2020, Forbes Kim H, 2013, INFORM MANAGE-AMSTER, V50, P169, DOI 10.1016/j.im.2013.02.003 Knijnenburg BP, 2016, ACM T INTERACT INTEL, V6, DOI 10.1145/2963106 Kraus D., 2019, Internationale Tagung Wirtschaftsinformatik, Siegen, V14, P23 Lazar J., 2017, Research Methods in Human-Computer Interaction Lee J., 2003, J ASSOC INF SYST, V4, P2, DOI [10.17705/1jais.00029, DOI 10.17705/1JAIS.00029] LEHMANN EL, 1993, J AM STAT ASSOC, V88, P1242 Lim W.M., 2012, MODERN APPL SCI, V6, P48, DOI DOI 10.5539/MAS.V6N5P48 Lindecrantz E., 2020, PERSONALIZING CUSTOM Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 MacKinnon DP, 2007, ANNU REV PSYCHOL, V58, P593, DOI 10.1146/annurev.psych.58.110405.085542 Mathwick C, 2001, J RETAILING, V77, P39, DOI 10.1016/S0022-4359(00)00045-2 Mikalef Patrick, 2013, J. theor. appl. electron. commer. res., V8, P17, DOI 10.4067/S0718-18762013000100003 Moe WW, 2003, J CONSUM PSYCHOL, V13, P29, DOI 10.1207/153276603768344762 Molla A., 2001, J ELECTRON COMMER RE, V2, P131 Nass C, 1996, INT J HUM-COMPUT ST, V45, P669, DOI 10.1006/ijhc.1996.0073 Nowak K. L., 2005, J. Computer-Mediated Commun, V11, P153, DOI [DOI 10.1111/J.1083-6101.2006.TB00308.X, 10.1111/j.1083-6101.2006.tb00308.x, 10.1111/j.10836101.2006.tb00308.x, DOI 10.1111/J.10836101.2006.TB00308.X, 10.1111/j.1083-6101.2006.tb00308] Oliver R.L., 1997, SATISFACTION Opreana A., 2014, Expert Journal of Marketing, V2, P1 Osman Z, 2013, EUR J TOUR RES, V6, P192 Qiu LY, 2009, J MANAGE INFORM SYST, V25, P145, DOI 10.2753/MIS0742-1222250405 Repko M., 2020, CNBC Rhim J, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.107034 Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Saunders M., 2012, RES METHODS BUSINESS, DOI DOI 10.1007/S13398-014-0173-7.2 Schlosser AE, 2003, J CONSUM RES, V30, P184, DOI 10.1086/376807 Schmitt B.H., 1999, J MARKET MANAG, V15, P53, DOI [10.1362/026725799784870496, DOI 10.1362/026725799784870496] Schunemann Rogerio, 2014, ISRN Microbiol, V2014, P135675, DOI 10.1155/2014/135675 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Spears N., 2004, Journal of Current Issues Research in Advertising, V26, P53, DOI [DOI 10.1080/10641734.2004.10505164, 10.1080/10641734.2004.10505164] Specia, 2019, NEW YORK TIMES Stefanoff S., 2021, UNLOCKING POTENTIAL Suki N., 2007, International Journal of Business and Society, V8, P81 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Verhoef PC, 2009, J RETAILING, V85, P31, DOI 10.1016/j.jretai.2008.11.001 Wang WQ, 2014, J ASSOC INF SYST, V15, P454 Waytz A, 2010, TRENDS COGN SCI, V14, P383, DOI 10.1016/j.tics.2010.05.006 Weathers D, 2007, J RETAILING, V83, P393, DOI 10.1016/j.jretai.2007.03.009 Yiru Wang, 2020, IEEE Engineering Management Review, V48, P202, DOI 10.1109/EMR.2020.3011054 Yoon D, 2008, PSYCHOL MARKET, V25, P602, DOI 10.1002/mar.20227 Zarantonello L., 2016, The Handbook of Brand Management Scales, V1st NR 82 TC 18 Z9 18 U1 44 U2 158 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1389-5753 EI 1572-9362 J9 ELECTRON COMMER RES JI Electron. Commer. Res. PD DEC PY 2023 VL 23 IS 4 BP 2789 EP 2825 DI 10.1007/s10660-022-09562-8 EA MAY 2022 PG 37 WC Business; Management WE Social Science Citation Index (SSCI) SC Business & Economics GA AE1U6 UT WOS:000796310000001 OA Bronze DA 2024-03-27 ER PT J AU Cheng, XS Bao, Y Zarifis, A Gong, WK Mou, J AF Cheng, Xusen Bao, Ying Zarifis, Alex Gong, Wankun Mou, Jian TI Exploring consumers' response to text-based chatbots in e-commerce: the moderating role of task complexity and chatbot disclosure SO INTERNET RESEARCH LA English DT Article DE Text-based chatbot; Trust; Consumers' response; Task complexity; Identity disclosure ID SHARING ECONOMY; SERVICE ROBOTS; TRUST MATTER; MODEL; ONLINE; QUALITY; DESIGN; RESPONSIVENESS; METAANALYSIS; ANTECEDENTS AB Purpose Artificial intelligence (AI)-based chatbots have brought unprecedented business potential. This study aims to explore consumers' trust and response to a text-based chatbot in e-commerce, involving the moderating effects of task complexity and chatbot identity disclosure. Design/methodology/approach A survey method with 299 useable responses was conducted in this research. This study adopted the ordinary least squares regression to test the hypotheses. Findings First, the consumers' perception of both the empathy and friendliness of the chatbot positively impacts their trust in it. Second, task complexity negatively moderates the relationship between friendliness and consumers' trust. Third, disclosure of the text-based chatbot negatively moderates the relationship between empathy and consumers' trust, while it positively moderates the relationship between friendliness and consumers' trust. Fourth, consumers' trust in the chatbot increases their reliance on the chatbot and decreases their resistance to the chatbot in future interactions. Research limitations/implications Adopting the stimulus-organism-response (SOR) framework, this study provides important insights on consumers' perception and response to the text-based chatbot. The findings of this research also make suggestions that can increase consumers' positive responses to text-based chatbots. Originality/value Extant studies have investigated the effects of automated bots' attributes on consumers' perceptions. However, the boundary conditions of these effects are largely ignored. This research is one of the first attempts to provide a deep understanding of consumers' responses to a chatbot. C1 [Cheng, Xusen] Renmin Univ China, Beijing, Peoples R China. [Bao, Ying] Univ Int Business & Econ, Beijing, Peoples R China. [Zarifis, Alex] Univ Loughborough, Loughborough, Leics, England. [Gong, Wankun] Beijing Univ Chem Technol, Beijing, Peoples R China. [Mou, Jian] Pusan Natl Univ, Management Informat Syst, Kumjeong Ku, South Korea. C3 Renmin University of China; University of International Business & Economics; Loughborough University; Beijing University of Chemical Technology; Pusan National University RP Cheng, XS (autor correspondiente), Renmin Univ China, Beijing, Peoples R China. EM xusen.cheng@ruc.edu.cn; bycoco1@outlook.com; zarifis.a@unic.ac.cy; wk_gong@163.com; jian.mou@pusan.ac.kr OI Mou, Jian/0000-0001-6497-9105; Gong, Wankun/0000-0002-0271-5849; Bao, Ying/0000-0001-5411-8723; Zarifis, Alex/0000-0003-3103-4601; Cheng, Xusen/0000-0002-5218-4628 FU Fundamental Research Funds for the Central Universities; Research Funds of Renmin University of China [21XNO002] FX This work is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No.21XNO002). CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Birnbaum GE, 2016, COMPUT HUM BEHAV, V63, P416, DOI 10.1016/j.chb.2016.05.064 BITNER MJ, 1992, J MARKETING, V56, P57, DOI 10.2307/1252042 Bjorn P, 2009, INFORM SYST J, V19, P227, DOI 10.1111/j.1365-2575.2007.00281.x Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bolton RN, 1998, MARKET SCI, V17, P45, DOI 10.1287/mksc.17.1.45 Breuer C, 2016, J APPL PSYCHOL, V101, P1151, DOI 10.1037/apl0000113 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Chang HJ, 2011, INT REV RETAIL DISTR, V21, P233, DOI 10.1080/09593969.2011.578798 Chen CC, 2012, RES DEV DISABIL, V33, P1832, DOI 10.1016/j.ridd.2012.05.006 Cheng XS, 2020, INFORM PROCESS MANAG, V57, DOI 10.1016/j.ipm.2020.102281 Cheng XS, 2018, INT J INFORM MANAGE, V41, P57, DOI 10.1016/j.ijinfomgt.2018.03.005 Ciechanowski L, 2019, FUTURE GENER COMP SY, V92, P539, DOI 10.1016/j.future.2018.01.055 Cram WA, 2019, MIS QUART, V43, P525, DOI 10.25300/MISQ/2019/15117 Cyr D, 2009, MIS QUART, V33, P539 Czaplewski AJ, 2002, MARK MANAG, V11, P14 Daugherty PR., 2019, MIT Sloan Manag Rev, V60, P1 Davenport TH, 2019, MIT SLOAN MANAGE REV, V60, P18 Dayan M, 2010, IND MARKET MANAG, V39, P691, DOI 10.1016/j.indmarman.2010.01.001 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 Desideri L, 2019, COMPUT HUM BEHAV, V90, P331, DOI 10.1016/j.chb.2018.08.013 DONOVAN RJ, 1982, J RETAILING, V58, P34 Duan YQ, 2019, INT J INFORM MANAGE, V48, P63, DOI 10.1016/j.ijinfomgt.2019.01.021 Edwards JC, 2003, J ORGAN BEHAV, V24, P1, DOI 10.1002/job.177 Eroglu SA, 2003, PSYCHOL MARKET, V20, P139, DOI 10.1002/mar.10064 Eroglu SA, 2001, J BUS RES, V54, P177, DOI 10.1016/S0148-2963(99)00087-9 Ert E, 2016, TOURISM MANAGE, V55, P62, DOI 10.1016/j.tourman.2016.01.013 Everard A, 2005, J MANAGE INFORM SYST, V22, P55, DOI 10.2753/MIS0742-1222220303 Fiore AM, 2007, INT J RETAIL DISTRIB, V35, P421, DOI 10.1108/09590550710750313 Fridin M, 2014, COMPUT HUM BEHAV, V33, P23, DOI 10.1016/j.chb.2013.12.016 Froehlich A, 2018, Pros and cons of chatbots in the IT helpdesk Gilbert RL, 2015, INT J HUM-COMPUT ST, V73, P30, DOI 10.1016/j.ijhcs.2014.08.001 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 GOODHUE DL, 1995, MIS QUART, V19, P213, DOI 10.2307/249689 Griffith DA, 2007, J MARKETING, V71, P129, DOI 10.1509/jmkg.71.1.129 Heerink M, 2010, INT J SOC ROBOT, V2, P361, DOI 10.1007/s12369-010-0068-5 Hoff KA, 2015, HUM FACTORS, V57, P407, DOI 10.1177/0018720814547570 Hoy W.K., 1999, J SCH LEADERSHIP, V9, P184, DOI [DOI 10.1177/105268469900900301, https://doi.org/10.1177/105268469900900301] Hua Y, 2020, DECISION SCI, V51, P755, DOI 10.1111/deci.12372 Ischen C., 2019, INT WORKSH CHATB RES, P34, DOI DOI 10.1007/978-3-030-39540-7_3 Jacoby J, 2002, J CONSUM PSYCHOL, V12, P51, DOI 10.1207/S15327663JCP1201_05 Jarvenpaa S. L., 1998, Journal of Management Information Systems, V14, P29 Jensen ML, 2017, MIS QUART, V41, P629, DOI 10.25300/MISQ/2017/41.2.13 Kamboj S, 2018, INT J INFORM MANAGE, V39, P169, DOI 10.1016/j.ijinfomgt.2017.12.001 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kelley ScottW., 1994, J ACAD MARKET SCI, V22, P52, DOI DOI 10.1177/0092070394221005 Kim HW, 2009, MIS QUART, V33, P567 Kim MJ, 2020, J TRAVEL RES, V59, P69, DOI 10.1177/0047287518818915 Krishnan R, 2006, ACAD MANAGE J, V49, P894, DOI [10.2307/20159808, 10.5465/20159808] Lapointe L, 2005, MIS QUART, V29, P461 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Liang HG, 2019, MIS QUART, V43, P373, DOI 10.25300/MISQ/2019/14360 Lin JB, 2019, INFORM MANAGE-AMSTER, V56, P213, DOI 10.1016/j.im.2018.05.009 Lindell MK, 2000, J APPL PSYCHOL, V85, P331, DOI 10.1037/0021-9010.85.3.331 Longoni C, 2019, J CONSUM RES, V46, P629, DOI 10.1093/jcr/ucz013 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 MAYER RC, 1995, ACAD MANAGE REV, V20, P709, DOI 10.2307/258792 Mehrabian A., 1974, An approach to environmental psychology Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Mitchell V, 2018, Gartner: why humans will still be at the core of great CX Mollen A, 2010, J BUS RES, V63, P919, DOI 10.1016/j.jbusres.2009.05.014 Morgeson FP, 2006, J APPL PSYCHOL, V91, P1321, DOI 10.1037/0021-9010.91.6.1321 Murray J, 2019, INT J RETAIL DISTRIB, V47, P1364, DOI 10.1108/IJRDM-01-2019-0016 NASS C, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P72, DOI 10.1145/191666.191703 Önkal D, 2009, J BEHAV DECIS MAKING, V22, P390, DOI 10.1002/bdm.637 Piçarra N, 2018, COMPUT HUM BEHAV, V86, P129, DOI 10.1016/j.chb.2018.04.026 Pise R., 2018, CHATBOT MARKET SIZE Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Powell PA, 2017, COMPUT HUM BEHAV, V68, P137, DOI 10.1016/j.chb.2016.11.024 Pugh SD, 2001, ACAD MANAGE J, V44, P1018, DOI 10.5465/3069445 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 Saldanha TJV, 2017, MIS QUART, V41, P267 Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Shawar B.A., 2005, International Journal of Corpus Linguistics, V10, P489, DOI DOI 10.1075/IJCL.10.4.06SHA Shiau WL, 2019, INTERNET RES, V29, P398, DOI 10.1108/IntR-10-2018-0447 Starzyk KB, 2006, J PERS SOC PSYCHOL, V90, P833, DOI 10.1037/0022-3514.90.5.833 Thatcher JB, 2018, MIS QUART, V42, P831, DOI 10.25300/MISQ/2018/11881 Thompson, 2018, MAY AI HELP YOU Tsai WC, 2002, J APPL PSYCHOL, V87, P1001, DOI 10.1037//0021-9010.87.5.1001 Turing A.M., 1950, Computing machinery and intelligence, P29 van Doorn J, 2010, J SERV RES-US, V13, P253, DOI 10.1177/1094670510375599 Wirtz J, 2018, J SERV MANAGE, V29, P907, DOI 10.1108/JOSM-04-2018-0119 Wood SL, 2001, J MARKETING RES, V38, P157, DOI 10.1509/jmkr.38.2.157.18847 Wu YL, 2018, INTERNET RES, V28, P74, DOI 10.1108/IntR-08-2016-0250 Yuan LY, 2019, J MANAGE INFORM SYST, V36, P450, DOI 10.1080/07421222.2019.1598691 Zhang M, 2016, J BUS ETHICS, V134, P1, DOI 10.1007/s10551-014-2074-2 Zlotowski J, 2017, INT J HUM-COMPUT ST, V100, P48, DOI 10.1016/j.ijhcs.2016.12.008 NR 88 TC 60 Z9 63 U1 92 U2 404 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1066-2243 J9 INTERNET RES JI Internet Res. PD MAR 15 PY 2022 VL 32 IS 2 SI SI BP 496 EP 517 DI 10.1108/INTR-08-2020-0460 EA JUL 2021 PG 22 WC Business; Computer Science, Information Systems; Telecommunications WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Computer Science; Telecommunications GA ZY6TT UT WOS:000672746600001 DA 2024-03-27 ER PT J AU Li, MC Wang, R AF Li, Meichan Wang, Rui TI Chatbots in e-commerce: The effect of chatbot language style on customers' continuance usage intention and attitude toward brand SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Chatbots; Human-chatbot interaction; Continuance usage intention; Parasocial interaction; Brand affiliation ID PARASOCIAL INTERACTION; COMMUNICATION; IMPACT; INFORMATION; ENGAGEMENT; RESPONSES; VOICE; CUES AB The utilization of chatbots has grown in popularity in recent years, leading to an increasing interest among academics and practitioners. This study investigates the effect of chatbot language style on customers' contin-uance usage intention and attitude toward brand. Two scenario-based experiments were conducted to examine the underlying mechanism. The results show that when chatbots adopt an informal (vs. formal) language style, customers' continuance usage intention and brand attitude increase through the mediating role of parasocial interaction. Further, this study identifies brand affiliation as a pertinent moderator, such that the effect of chatbot language style is attenuated for people who have no prior relationship with the brand. The findings contribute to the existing chatbot literature and offer practical implications for brand managers to develop optimal language strategies when deploying chatbots in e-commerce. C1 [Li, Meichan; Wang, Rui] Jinan Univ, Sch Management, Guangzhou, Peoples R China. [Li, Meichan] Jinan Univ, 601 Huangpu West Ave, Guangzhou 510632, Peoples R China. C3 Jinan University; Jinan University RP Li, MC (autor correspondiente), Jinan Univ, 601 Huangpu West Ave, Guangzhou 510632, Peoples R China. EM elmca@outlook.com RI wang, rui/JAC-6240-2023 FU National Natural Science Foundation of China [71302151]; Ministry of Education of the People's Republic of China Humanities and Social Sciences Youth Foundation [12YJC630208]; Jinan University Key Discipline Construction Foundation [GY14011] FX This research was funded by the National Natural Science Foundation of China (71302151) , Ministry of Education of the People's Republic of China Humanities and Social Sciences Youth Foundation (12YJC630208) , and Jinan University Key Discipline Construction Foundation (GY14011) . CR Aggarwal P, 2004, J CONSUM RES, V31, P87, DOI 10.1086/383426 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Atwell E., 2007, Ldv forum, V22, P29 Bhattacherjee A, 2001, MIS QUART, V25, P351, DOI 10.2307/3250921 Burgoon J. K., 1993, Journal of Language and Social Psychology, V12, P30, DOI [DOI 10.1177/0261927X93121003, 10.1177/0261927x93121003] BURGOON JK, 1993, HUM COMMUN RES, V20, P67, DOI 10.1111/j.1468-2958.1993.tb00316.x Chattaraman V, 2019, COMPUT HUM BEHAV, V90, P315, DOI 10.1016/j.chb.2018.08.048 Chaves AP, 2021, INT J HUM-COMPUT INT, V37, P729, DOI 10.1080/10447318.2020.1841438 Chen JS, 2021, INT J RETAIL DISTRIB, V49, P1512, DOI 10.1108/IJRDM-08-2020-0312 Chen JV, 2021, INTERNET RES, V31, P1376, DOI 10.1108/INTR-11-2019-0447 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 De Cicco R, 2020, INT J RETAIL DISTRIB, V48, P1213, DOI 10.1108/IJRDM-12-2019-0406 Deloitte, 2020, CONV AI IS RESH HUM Drift, 2021, 2021 STAT CONV MARK Dube S., 2020, E-Commerce Chatbots-Using Chatbots Customer Support to Improve eCommerce Conversion Rate Elsholz E, 2019, PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), P301, DOI 10.1145/3295750.3298956 EPAM, 2017, CHATB ADD CUST TOUCH Feine J, 2019, INT J HUM-COMPUT ST, V132, P138, DOI 10.1016/j.ijhcs.2019.07.009 Gartner, 2020, DEL CUST SERV COV 19 Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Gretry A, 2017, J BUS RES, V74, P77, DOI 10.1016/j.jbusres.2017.01.012 Hair J.F., 2009, Multivariate data analysis Han MC, 2021, J INTERNET COMMER, V20, P46, DOI 10.1080/15332861.2020.1863022 Hayes AF., 2018, Introduction to mediation, moderation, and conditional process analysis: A regression-based approach, DOI DOI 10.1111/JEDM.12050 Holmqvist J, 2017, J BUS RES, V72, P114, DOI 10.1016/j.jbusres.2016.10.005 HORTON D, 1956, PSYCHIATR, V19, P215, DOI 10.1080/00332747.1956.11023049 Huang YS, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103044 iiMedia, 2021, CHIN CHATB SAT REP 2 Jakic A, 2017, J SERV MANAGE, V28, P418, DOI 10.1108/JOSM-12-2016-0325 Jiang K, 2022, J CONSUM BEHAV, V21, P756, DOI 10.1002/cb.2034 Jin SAA, 2010, PRESENCE-TELEOP VIRT, V19, P331, DOI 10.1162/PRES_a_00001 Juniper Research, 2018, CHATB DEL 11BN ANN C Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kelleher T, 2009, J COMMUN, V59, P172, DOI 10.1111/j.1460-2466.2008.01410.x Klein K, 2023, ELECTRON COMMER RES, V23, P2789, DOI 10.1007/s10660-022-09562-8 Kronrod A, 2012, J CONSUM RES, V39, P51, DOI 10.1086/661933 Kull AJ, 2021, J BUS RES, V135, P840, DOI 10.1016/j.jbusres.2021.03.005 Kumar V, 2021, J BUS RES, V125, P864, DOI 10.1016/j.jbusres.2020.01.007 Labrecque LI, 2014, J INTERACT MARK, V28, P134, DOI 10.1016/j.intmar.2013.12.003 Leah, 2021, WHAT DO YOUR CUSTOME Lee S, 2020, INT J HUM-COMPUT INT, V36, P930, DOI 10.1080/10447318.2019.1699748 Lee Y, 2011, ELECTRON COMMER R A, V10, P342, DOI 10.1016/j.elerap.2010.11.005 Liebrecht Christine, 2021, Chatbot Research and Design. 4th International Workshop, CONVERSATIONS 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12604), P16, DOI 10.1007/978-3-030-68288-0_2 Liebrecht Christine, 2020, Chatbot Research and Design. Third International Workshop, CONVERSATIONS 2019. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 11970), P51, DOI 10.1007/978-3-030-39540-7_4 Liebrecht C, 2021, J BUS RES, V132, P124, DOI 10.1016/j.jbusres.2021.03.050 Lou C, 2022, INT J ADVERT, V41, P655, DOI 10.1080/02650487.2021.1951510 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 McArthur T., 2018, Oxford companion to the English language Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 Papas P., 2018, DIGITAL CUSTOMER CAR Paulssen M, 2014, EUR J MARKETING, V48, P964, DOI 10.1108/EJM-11-2011-0657 Rapp A, 2021, INT J HUM-COMPUT ST, V151, DOI 10.1016/j.ijhcs.2021.102630 Reports and Data, 2022, GLOB CHATB MARK REAC Rese A, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102176 Robinson S, 2020, J BUS RES, V116, P366, DOI 10.1016/j.jbusres.2019.08.038 Roy R, 2021, J BUS RES, V126, P23, DOI 10.1016/j.jbusres.2020.12.051 Ruan YY, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103059 Rubin A.M., 2002, Media effects: advances in theory and research, P525, DOI DOI 10.4324/9780429491146 Sands S, 2021, J SERV MANAGE, V32, P246, DOI 10.1108/JOSM-06-2019-0203 Schuetzler RM, 2020, J MANAGE INFORM SYST, V37, P875, DOI 10.1080/07421222.2020.1790204 Sela A, 2012, J CONSUM RES, V39, P644, DOI 10.1086/664972 Sengupta J, 2002, J CONSUM RES, V29, P39, DOI 10.1086/339920 ServiceBell, 2022, 57 CHATB IND STAT US Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Sheth J., 1976, ADV CONSUM RES, P382 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Thomas P, 2018, CHIIR'18: PROCEEDINGS OF THE 2018 CONFERENCE ON HUMAN INFORMATION INTERACTION & RETRIEVAL, P42, DOI 10.1145/3176349.3176388 Tsai WHS, 2021, J RES INTERACT MARK, V15, P460, DOI 10.1108/JRIM-12-2019-0200 Van Noort G., 2015, Integrated communications in the postmodern era, P77, DOI [10.1057/9781137388551_4, DOI 10.1057/9781137388551_4] Verhagen T, 2014, J COMPUT-MEDIAT COMM, V19, P529, DOI 10.1111/jcc4.12066 Verma A., 2019, ENTREPRENEUR Wu J., 2022, Nankai Bus. Rev. Wu LR, 2017, TOURISM MANAGE, V59, P590, DOI 10.1016/j.tourman.2016.09.006 Xu Y, 2023, NANKAI BUS REV NT, V14, P249, DOI 10.1108/NBRI-06-2021-0041 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Youn S, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106721 Zarouali B, 2018, CYBERPSYCH BEH SOC N, V21, P491, DOI 10.1089/cyber.2017.0518 Zheng XB, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.102043 NR 81 TC 27 Z9 27 U1 85 U2 232 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD MAR PY 2023 VL 71 AR 103209 DI 10.1016/j.jretconser.2022.103209 EA NOV 2022 PG 12 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 7A5FE UT WOS:000898481000011 DA 2024-03-27 ER PT J AU Kumar, S Sheu, JB Kundu, T AF Kumar, Suryakant Sheu, Jiuh-Biing Kundu, Tanmoy TI Planning a parts-to-picker order picking system with consideration of the impact of perceived workload SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Smart warehouses; Order picking system; Parts-to-picker; Robot-human coordination; Queueing theory; E-commerce ID OPEN QUEUING-NETWORKS; STORAGE ASSIGNMENT; PERFORMANCE; FRAMEWORK; DESIGN AB In the digital age, coordinating robots and humans is critical in e-commerce warehousing. Motivated by observed industrial practices, this study presents a queueing theory based analytical model to investigate the planning issue of robot-human coordination in a parts-to-picker warehousing system. The critical planning decisions involve finding the optimal number of robots in the warehouse, the expected number of robots at essential locations of the warehouse, and performance analysis of the order picking system. A distinctive feature of this study is the conceptualization of a human factor called perceived workload (which depends on the number of robots) in the order picking planning model for efficient order fulfillment. Our analyses interestingly suggest that deploying more robots in warehouses with a parts-to-picker system does not necessarily increase the warehousing system's performance; instead, a trade-off exists. Additionally, the workload-dependent service rate significantly influences the robots queueing in front of the order picking station (internal queue) and the synchronization station (external queue) in the warehouse. More importantly, this work contributes to the design of a human-centric work environment for parts-to-picker order fulfillment system. C1 [Kumar, Suryakant; Sheu, Jiuh-Biing] Natl Taiwan Univ, Dept Business Adm, Taipei, Taiwan. [Kundu, Tanmoy] Indian Inst Technol Jodhpur, Sch Management & Entrepreneurship, Jodhpur, India. C3 National Taiwan University; Indian Institute of Technology System (IIT System); Indian Institute of Technology (IIT) - Jodhpur RP Sheu, JB (autor correspondiente), Natl Taiwan Univ, Dept Business Adm, Taipei, Taiwan. EM d08741010@ntu.edu.tw; jbsheu@ntu.edu.tw; tanmoykundu@iitj.ac.in OI Kumar, Suryakant/0000-0002-6871-4013 FU Ministry of Science and Technology of Taiwan, R.O.C [MOST 109-2410-H-002-076-MY3] FX Acknowledgements This research is supported by grant MOST 109-2410-H-002-076-MY3 from Ministry of Science and Technology of Taiwan, R.O.C. The authors also wish to thank the editors and referees for their helpful comments and suggestions. Any errors or omissions remain the sole responsibility of the authors. CR Amazon.com Inc, 2021, FAST SAM DAY DEL MAR Amazon.com Inc, 2022, LOOK BACK 10 YEARS A Amazon.com Inc, 2021, NEW TECHN IMPR AM EM Amazon.com Inc, 2019, STOR AM NEXT GEN ROB [Anonymous], 1998, Queueing networks and Markov chains: modeling and performance evaluation with computer science applications Azadeh K., 2020, EUR J OPER RES, DOI [10.2139/ssrn.3585396, DOI 10.2139/SSRN.3585396] Azadeh K, 2019, TRANSPORT SCI, V53, P1213, DOI 10.1287/trsc.2018.0883 Azadeh K, 2019, TRANSPORT SCI, V53, P917, DOI 10.1287/trsc.2018.0873 Battini D, 2016, COMPUT IND ENG, V94, P147, DOI 10.1016/j.cie.2016.01.020 Battini D, 2017, INT J PROD RES, V55, P2764, DOI 10.1080/00207543.2016.1190879 Boucherie R. J., 1993, Queueing Systems Theory and Applications, V13, P251, DOI 10.1007/BF01158934 Bowles R., 2020, WAREHOUSE ROBOTICS E Boysen N, 2019, EURO J TRANSP LOGIST, V8, P169, DOI 10.1007/s13676-018-0116-0 Brown A.S., 2022, AMAZON ROBOTS NAVIGA Buitenhek R, 2000, ANN OPER RES, V93, P15, DOI 10.1023/A:1018967622069 Calzavara M, 2019, INT J PROD RES, V57, P2392, DOI 10.1080/00207543.2018.1518609 CHANDY KM, 1975, IBM J RES DEV, V19, P36, DOI 10.1147/rd.191.0036 Chevalier S., 2022, Global retail e-commerce market size 2014-2025 Choi TM, 2022, PROD OPER MANAG, V31, P9, DOI 10.1111/poms.13622 Cimini C, 2021, HUM FACTOR ERGON MAN, V31, P98, DOI 10.1002/hfm.20872 DALLERY Y, 1990, PERFORM EVALUATION, V11, P209, DOI 10.1016/0166-5316(90)90013-9 Day M., 2021, INSIDE AMAZON FLAGSH de Koster R, 2007, EUR J OPER RES, V182, P481, DOI 10.1016/j.ejor.2006.07.009 De Lombaert T, 2023, INT J PROD RES, V61, P3300, DOI 10.1080/00207543.2022.2079437 Deborah P., 2019, 50000 WAREHOUSES USE Do HT, 2018, PROD OPER MANAG, V27, P1553, DOI 10.1111/poms.12883 Futch M., 2018, DAWN AUTOMATED WAREH Gao D, 2017, IEEE T ENG MANAGE, V64, P134, DOI 10.1109/TEM.2017.2666265 Gharehgozli A, 2020, TRANSPORT RES E-LOG, V142, DOI 10.1016/j.tre.2020.102087 Glock CH, 2019, EUR J OPER RES, V273, P516, DOI 10.1016/j.ejor.2018.08.015 Greene J., 2021, AMAZON MONITORS ITS Grosse EH, 2017, INT J PROD RES, V55, P1260, DOI 10.1080/00207543.2016.1186296 Grosse EH, 2015, INT J PROD ECON, V170, P882, DOI 10.1016/j.ijpe.2014.12.018 Grosse EH, 2015, INT J PROD RES, V53, P695, DOI 10.1080/00207543.2014.919424 Hanson R, 2018, INT J IND ERGONOM, V64, P199, DOI 10.1016/j.ergon.2017.07.001 JD.com, 2021, JD COM OP AUT WAR EU Jones C., 2021, AUTONOMOUS MOBILE RO Kc DS, 2009, MANAGE SCI, V55, P1486, DOI 10.1287/mnsc.1090.1037 Lamballais T, 2022, EUR J OPER RES, V300, P937, DOI 10.1016/j.ejor.2021.09.001 Lamballais T, 2017, EUR J OPER RES, V256, P976, DOI 10.1016/j.ejor.2016.06.063 Larco JA, 2017, INT J PROD RES, V55, P6407, DOI 10.1080/00207543.2016.1165880 Lecher Colin, 2019, How Amazon automatically tracks and fires warehouse workers for ' productivity' Li XW, 2020, TRANSPORT RES E-LOG, V144, DOI 10.1016/j.tre.2020.102158 Li YN, 2016, IEEE T ROBOT, V32, P1408, DOI 10.1109/TRO.2016.2597322 Li YN, 2014, IEEE-ASME T MECH, V19, P1007, DOI 10.1109/TMECH.2013.2264533 Merschformann M, 2019, OPER RES PERSPECT, V6, DOI 10.1016/j.orp.2019.100128 Michel R., 2016, WAREHOUSE DC OPERATI Mirzaei M, 2021, TRANSPORT RES E-LOG, V146, DOI 10.1016/j.tre.2020.102207 Qin HL, 2022, INFORMS J APPL ANAL, V52, P42, DOI 10.1287/inte.2021.1100 Ramanathan R, 2010, TRANSPORT RES E-LOG, V46, P950, DOI 10.1016/j.tre.2010.02.002 Sharma M, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3143466 Sheu JB, 2023, PROD OPER MANAG, V32, P794, DOI 10.1111/poms.13899 Shortle J.F., 2017, FUNDAMENTALS QUEUEIN, DOI [10.1002/9781119453765, DOI 10.1002/9781119453765] Tompkins J.A., 2010, FACILITIES PLANNING Virmani N, 2023, IEEE T ENG MANAGE, V70, P3976, DOI 10.1109/TEM.2021.3091398 Wang W, 2022, IEEE T ENG MANAGE, DOI 10.1109/TEM.2022.3142282 Wang Y., 2020, TOP INT MEDIA VISIT Wang Z, 2022, PROD OPER MANAG, V31, P98, DOI 10.1111/poms.13406 Wurman PR, 2008, AI MAG, V29, P9 Young J, 2021, AMAZON PRIME DAY 202 Yuan Z, 2017, IEEE T ENG MANAGE, V64, P83, DOI 10.1109/TEM.2016.2634540 NR 61 TC 2 Z9 2 U1 23 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 EI 1878-5794 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD MAY PY 2023 VL 173 AR 103088 DI 10.1016/j.tre.2023.103088 EA MAR 2023 PG 18 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA M9KZ7 UT WOS:001033342400001 DA 2024-03-27 ER PT J AU Wang, CC Li, YY Fu, WZ Jin, J AF Wang, Cuicui Li, Yiyang Fu, Weizhong Jin, Jia TI Whether to trust chatbots: Applying the event-related approach to understand consumers? emotional experiences in interactions with chatbots in e-commerce SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Chatbots; Emotional experience; Cognitive appraisal theory; Trust; Event-related potential ID COGNITIVE APPRAISAL; ERP; POTENTIALS; ATTENTION; BEHAVIOR; PRODUCT; ALGORITHMS; IMPACT AB Chatbots can be used in marketing services to substantially improve the consumer experience. Based on cognitive appraisal theory, this study applied an event-related potential (ERP) approach to investigate consumers' emotional experiences and consumer trust in passive interaction with chatbots versus humans, taking into ac-count objective or subjective tasks in e-commerce. The results showed that chatbot (vs. human) service in-teractions automatically drew more consumer attention at the subconscious stage (i.e., a larger P2); consumers purposefully allocated more resources to regulate the negative emotions elicited by chatbots at the conscious stage (i.e., a larger LPP); and there was a lower trust in chatbots than in humans. Moreover, under subjective tasks, the differences between chatbots and human agents in emotional experience (as reflected by LPP) and trust were amplified. The findings will encourage e-retailers to improve the emotional service experience of their chatbots and prioritize the application of chatbots for objective tasks in customer service. C1 [Wang, Cuicui; Li, Yiyang; Fu, Weizhong] Hefei Univ Technol, Sch Management, 193 Tunxi Rd, Hefei 230009, Peoples R China. [Wang, Cuicui; Fu, Weizhong] Minist Educ, Key Lab Proc Optimizat & Intelligent Decis Making, Hefei, Peoples R China. [Jin, Jia] Shanghai Int Studies Univ, Sch Business & Management, Lab Appl Brain & Cognit Sci, 1550 Wenxiang Rd, Shanghai 200083, Peoples R China. C3 Hefei University of Technology; Shanghai International Studies University RP Fu, WZ (autor correspondiente), Hefei Univ Technol, Sch Management, 193 Tunxi Rd, Hefei 230009, Peoples R China.; Jin, J (autor correspondiente), Shanghai Int Studies Univ, Sch Business & Management, Lab Appl Brain & Cognit Sci, 1550 Wenxiang Rd, Shanghai 200083, Peoples R China. EM weizhongfu@sina.com; jinjia.163@163.com OI Jin, Jia/0000-0003-1124-2999 FU Humanities and Social Sciences Foundation of the Ministry of Education of China [20YJAZH098]; National Nature Science Foundation of China [72271166]; Open project of Shanghai key lab of brain-machine intelligence [2022KFKT003]; Fundamental Research Funds for the Central Universities [JS2020HGXJ0032] FX Acknowledgments This work was supported by the Humanities and Social Sciences Foundation of the Ministry of Education of China (No. 20YJAZH098) , the National Nature Science Foundation of China (No. 72271166) , Open project of Shanghai key lab of brain-machine intelligence for informa-tion behavior (No. 2022KFKT003) , and the Fundamental Research Funds for the Central Universities (No. JS2020HGXJ0032) . The funders had no role in the study design, collection, data analysis, or interpre-tation of the data, in the report?s writing, or in the decision to submit the article for publication. CR Adam M, 2021, ELECTRON MARK, V31, P427, DOI 10.1007/s12525-020-00414-7 [Anonymous], 1994, J Clin Neurophysiol, V11, P111 Bai B., 2020, IMPACTS ALGORITHMIC, DOI DOI 10.2139/SSRN.3550887 Becker L, 2020, J ACAD MARKET SCI, V48, P630, DOI 10.1007/s11747-019-00718-x Cachero-Martínez S, 2021, J RETAIL CONSUM SERV, V60, DOI 10.1016/j.jretconser.2021.102481 Cadario R, 2021, NAT HUM BEHAV, V5, P1636, DOI 10.1038/s41562-021-01146-0 Castelo N, 2019, J MARKETING RES, V56, P809, DOI 10.1177/0022243719851788 Castelo Noah, 2019, ACR N AM ADV Chen T, 2021, GOV INFORM Q, V38, DOI 10.1016/j.giq.2020.101520 Cheng XS, 2022, INTERNET RES, V32, P496, DOI 10.1108/INTR-08-2020-0460 Chi OH, 2020, J HOSP MARKET MANAG, V29, P757, DOI 10.1080/19368623.2020.1721394 Choi H, 2019, J TRAVEL RES, V58, P732, DOI 10.1177/0047287518776805 Chong T, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102735 Chung K, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20175016 Darwin C. R., 1859, ORIGIN SPECIES MEANS Dasu S, 2010, MIT SLOAN MANAGE REV, V52, P33 de Visser EJ, 2018, FRONT HUM NEUROSCI, V12, DOI 10.3389/fnhum.2018.00309 Diab DL, 2011, INT J SELECT ASSESS, V19, P209, DOI 10.1111/j.1468-2389.2011.00548.x Dietrich DE, 2001, NEUROPSYCHOBIOLOGY, V43, P96, DOI 10.1159/000054874 Dietvorst BJ, 2018, MANAGE SCI, V64, P1155, DOI 10.1287/mnsc.2016.2643 Dietvorst BJ, 2015, J EXP PSYCHOL GEN, V144, P114, DOI 10.1037/xge0000033 Doney PM, 1997, J MARKETING, V61, P35, DOI 10.2307/1251829 Folstein JR, 2008, PSYCHOPHYSIOLOGY, V45, P152, DOI 10.1111/j.1469-8986.2007.00602.x Gardener EKT, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073475 Garvey AM, 2023, J MARKETING, V87, P10, DOI 10.1177/00222429211066972 Gaudiello I, 2016, COMPUT HUM BEHAV, V61, P633, DOI 10.1016/j.chb.2016.03.057 Gkinko L., 2022, COCREATING CONTEXT T, P105, DOI [10.1007/978-3-031-17968-6_7, DOI 10.1007/978-3-031-17968-6_7] Granulo A, 2021, J CONSUM PSYCHOL, V31, P72, DOI 10.1002/jcpy.1181 Hajcak G, 2006, COGN AFFECT BEHAV NE, V6, P291, DOI 10.3758/CABN.6.4.291 Hajcak G, 2010, DEV NEUROPSYCHOL, V35, P129, DOI 10.1080/87565640903526504 Herbert C, 2006, PSYCHOPHYSIOLOGY, V43, P197, DOI 10.1111/j.1469-8986.2006.00385.x Heutink J, 2011, NEUROCASE, V17, P297, DOI 10.1080/13554794.2010.504730 Holmes A, 2003, COGNITIVE BRAIN RES, V16, P174, DOI 10.1016/S0926-6410(02)00268-9 Huang MH, 2018, J SERV RES-US, V21, P155, DOI 10.1177/1094670517752459 Inbar Y, 2010, J PERS SOC PSYCHOL, V99, P232, DOI 10.1037/a0020215 Jin J, 2017, NEUROSCI RES, V125, P21, DOI 10.1016/j.neures.2017.07.006 Kim S, 2016, J BUS RES, V69, P5809, DOI 10.1016/j.jbusres.2016.04.178 Kunz WH, 2019, J SERV MARK, V33, P479, DOI 10.1108/JSM-01-2019-0039 Laros FJM, 2005, J BUS RES, V58, P1437, DOI 10.1016/j.jbusres.2003.09.013 Lazarus R. S., 1991, Emotion and adaptation Lee KJ, 2021, J TRAVEL TOUR MARK, V38, P399, DOI 10.1080/10548408.2021.1921094 Li B., 2022, HAWAII INT C SYSTEM, DOI [10.24251/HICSS.2022.604, DOI 10.24251/HICSS.2022.604] Li SS, 2021, J HOSP TOUR MANAG, V47, P72, DOI 10.1016/j.jhtm.2021.03.004 Lin HY, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.01927 Logg JM, 2019, ORGAN BEHAV HUM DEC, V151, P90, DOI 10.1016/j.obhdp.2018.12.005 Longoni C, 2022, J MARKETING, V86, P91, DOI 10.1177/0022242920957347 Longoni C, 2019, J CONSUM RES, V46, P629, DOI 10.1093/jcr/ucz013 Lu JY, 2016, JUDGM DECIS MAK, V11, P332 Lu YZ, 2017, BIOL PSYCHOL, V125, P105, DOI 10.1016/j.biopsycho.2017.02.010 Luan J, 2016, COMPUT HUM BEHAV, V65, P420, DOI 10.1016/j.chb.2016.08.037 Luck SJ, 2014, INTRODUCTION TO THE EVENT-RELATED POTENTIAL TECHNIQUE, 2ND EDITION, P1 Luo XM, 2019, MARKET SCI, V38, P937, DOI 10.1287/mksc.2019.1192 Lv XY, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106993 Lv XY, 2021, ANN TOURISM RES, V87, DOI 10.1016/j.annals.2020.103114 MacLeod J, 2017, COGN AFFECT BEHAV NE, V17, P592, DOI 10.3758/s13415-017-0499-7 Madsen M., 2000, Measuring human-computer trust, V53, P6 Mauss IB, 2005, EMOTION, V5, P175, DOI 10.1037/1528-3542.5.2.175 Moore S, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102755 Mostafa RB, 2022, EUR J MARKETING, V56, P1748, DOI 10.1108/EJM-02-2020-0084 Munanura IE, 2023, J SUSTAIN TOUR, V31, P581, DOI 10.1080/09669582.2021.1901104 Norris CJ, 2021, EMOTION, V21, P499, DOI 10.1037/emo0000716 Olofsson JK, 2008, BIOL PSYCHOL, V77, P247, DOI 10.1016/j.biopsycho.2007.11.006 Ostrom AL., 2018, Handbook of service science, Vii, P77, DOI DOI 10.1007/978-3-319-98512-1_5 Paulmann S, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00345 Pozharliev R, 2015, J MARKETING RES, V52, P546, DOI 10.1509/jmr.13.0560 Rodgers W, 2021, J BUS RES, V126, P401, DOI 10.1016/j.jbusres.2020.12.039 Roseman IJ., 2001, Appraisal processes in emotion: Theory, methods, research, P3, DOI [10.1093/oso/9780195130072.003.0001, DOI 10.1080/02699939108411034] Schmitt B, 2019, J CONSUM RES, V46, P825, DOI 10.1093/jcr/ucz038 Schuetzler RM, 2020, J MANAGE INFORM SYST, V37, P875, DOI 10.1080/07421222.2020.1790204 Schupp HT, 2007, J NEUROSCI, V27, P1082, DOI 10.1523/JNEUROSCI.3223-06.2007 Schupp HT, 2000, PSYCHOPHYSIOLOGY, V37, P257, DOI 10.1111/1469-8986.3720257 Schupp HT, 2003, PSYCHOL SCI, V14, P7, DOI 10.1111/1467-9280.01411 SEMLITSCH HV, 1986, PSYCHOPHYSIOLOGY, V23, P695, DOI 10.1111/j.1469-8986.1986.tb00696.x SMITH CA, 1985, J PERS SOC PSYCHOL, V48, P813, DOI 10.1037/0022-3514.48.4.813 Song CS, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102727 Song MM, 2022, J RETAIL CONSUM SERV, V66, DOI 10.1016/j.jretconser.2021.102900 Tiberio L, 2013, ROBOTICS, V2, P92, DOI 10.3390/robotics2020092 Trope Y, 2003, PSYCHOL REV, V110, P403, DOI 10.1037/0033-295X.110.3.403 Wang CC, 2020, FRONT PSYCHOL, V11, DOI 10.3389/fpsyg.2020.01440 Wang QZ, 2016, ELECTRON COMMER RES, V16, P1, DOI 10.1007/s10660-015-9209-0 Watson L, 2007, EUR J MARKETING, V41, P487, DOI 10.1108/03090560710737570 Yang JM, 2012, NEUROSCI LETT, V514, P198, DOI 10.1016/j.neulet.2012.02.094 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Yeomans M, 2019, J BEHAV DECIS MAKING, V32, P403, DOI 10.1002/bdm.2118 Ying TY, 2021, TOURISM MANAGE, V86, DOI 10.1016/j.tourman.2021.104355 Yun JH, 2021, PSYCHOL MARKET, V38, P610, DOI 10.1002/mar.21445 Zhao MN, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102617 NR 87 TC 12 Z9 12 U1 60 U2 154 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JUL PY 2023 VL 73 AR 103325 DI 10.1016/j.jretconser.2023.103325 EA MAR 2023 PG 11 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 0A0PE UT WOS:000951531400001 DA 2024-03-27 ER PT J AU Kuzyk, O Kabanova, O Chyrva, H Vlasenko, D Komarnytska, H AF Kuzyk, Oleg Kabanova, Olena Chyrva, Hanna Vlasenko, Dmytro Komarnytska, Hanna TI TRENDS AND PERSPECTIVES ON THE IMPACT OF DIGITAL TECHNOLOGIES ON THE EFFICACY OF MARKETING COMMUNICATION SO FINANCIAL AND CREDIT ACTIVITY-PROBLEMS OF THEORY AND PRACTICE LA English DT Article DE MarTech; FinTech; AI & ML; social commerce; influencer marketing; Big Data & Analytics; web analytics; VR/AR/MR; extended reality; voice marketing; interac-tive content marketing; reduction of financial and credit risks AB The research conducted aimed to determine the most attractive digital marketing tech-nologies for future investment opportunities. This was achieved through a cross-priority ranking analysis, which identified trends in the development of digital technologies in marketing communications and global marketing. Data from 25 expert organisations was used to form a set of 32 digital solutions. Using a developed methodology, these solutions were ranked, revealing the top 6 with the highest potential for transforming marketing communications. The rankings showed a discrepancy between the mentioned frequency ranking and the priority ranking, indicating the influence of marketing organizations' experience. Currently, social media platforms, particularly influencer marketing, are closely integrated with e-commerce, explaining their high mention frequency. However, a cross-ranking analysis revealed a trend towards AI technologies in marketing communications pro-cesses. It has been established that obtaining credit funds for the deployment of modernized marketing campaigns and strategies impacts the financial security of such organizations. Moreover, the utilization of optimal conversion-oriented digital marketing tools allows for a significant reduction in financial risks and an increase in the profitability of com-panies. The study further identified the future direction of global marketing development, which involves immersive strategies that deeply integrate and extensively use AI technologies. These strategies aim to enhance consumer interest and engagement. The practicality of this research lies in its ability to assist stakeholders in making informed investment decisions and reducing the risks of misdirected investments. Further research is recommended to explore practical mechanisms for implementing the identified digital solutions in global marketing processes. This would involve developing a detailed strategy aligned with these technologies. C1 [Kuzyk, Oleg] Ivan Franko Natl Univ Lviv, Dept Mkt, Lvov, Ukraine. [Kabanova, Olena] Branch Class Private Univ, Dept Logist Management, Kremenchuk, Ukraine. [Chyrva, Hanna] Pavlo Tychyna Uman State Pedag Univ, Inst Econ & Business Educ, Dept Econ & Social & Behav Sci, Uman, Ukraine. [Vlasenko, Dmytro] Natl Univ Bioresources & Nat Management Ukraine, Separate Div Nizhinsky Agrotech Inst, Dept Management & Agr Econ, Kiev, Ukraine. [Komarnytska, Hanna] Ivan Franko Natl Univ Lviv, Dept Publ Adm & business management, Lvov, Ukraine. C3 Ministry of Education & Science of Ukraine; Ivan Franko National University Lviv; Ministry of Education & Science of Ukraine; Pavlo Tychyna Uman State Pedagogical University; Ministry of Education & Science of Ukraine; Ivan Franko National University Lviv RP Kabanova, O (autor correspondiente), Branch Class Private Univ, Dept Logist Management, Kremenchuk, Ukraine. EM desigura15@gmail.com RI Komarnic'ka, Ganna/H-8623-2018 OI Komarnic'ka, Ganna/0000-0002-5533-6439 CR Al-Dmour Hani, 2020, Interdisciplinary Journal of Information, Knowledge, and Management, V15, P203, DOI 10.28945/4619 [Anonymous], 2023, Top 10 Digital Marketing Trends for 2023: Stay Ahead of the Curve [Anonymous], 2023, Top 8 Digital Marketing Trends for Businesses in 2023 [Anonymous], 2023, Intellipaat BlogDec, 23 [Anonymous], 2023, Essential digital marketing vs traditional marketing statistics in 2023-ZipDo [Anonymous], 2023, Digital marketing vs traditional marketing statistics and trends in 2023-Gitnux [Anonymous], 2023, Top digital marketing vs traditional marketing statistics in 2023-Amra and Elma LLC [Anonymous], 2023, Top 10 Upcoming Digital Marketing trends in 2024 [Anonymous], 2023, Top 9 Marketing Technology Trends in 2023 | StartUs Insights [Anonymous], 2022, Top Technologies that Boosts the Digital Marketing [Anonymous], 2023, Five Martech Trends for 2023 [Anonymous], 2023, The 7 top digital marketing trends of 2023 Bannikova K., 2019, The potential of organizational culture in the management of human resources of international companies Barnhart B., 2022, 21 Must-have digita l marketing tools to help you grow Bennett C., 2023, Business News DailyApril 28 Best Digital Marketing Tools, 2023, Mageplaza Chornyy A., 2023, PlerdyAugust 11 Dong XB, 2023, INTERNET RES, DOI 10.1108/INTR-02-2022-0121 Duggal N., 2023, Simplilearn SolutionsAugust 9 Dykan V, 2021, J E EUR CENT ASIAN R, V8, P51, DOI 10.15549/jeecar.v8i1.646 Gustavsen A., 2023, From SEO to Social Media: What Are the 8 Types of Digital Marketing? Hu P, 2023, INT J RES MARK, V40, P109, DOI 10.1016/j.ijresmar.2022.04.006 Jadhav GG, 2023, J INDIAN BUS RES, V15, P76, DOI 10.1108/JIBR-05-2022-0129 Jarboe G., 2023, Search Engine JournalApril 18 Jung SU, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15075711 Karapetov A., 2021, Futurity Economics&Law, V1, P20, DOI [10.57125/FEL.2021.06.25.4, DOI 10.57125/FEL.2021.06.25.4] Karr D., 2022, Martech ZoneJanuary 22 Kinga E., 2022, DetermSeptember 06 Kovalchuk S. V., 2019, Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, V2, P163, DOI [10.29202/nvngu/2019-2/17, DOI 10.29202/NVNGU/2019-2/17] Lou C, 2023, J CURR ISS RES AD, V44, P60, DOI 10.1080/10641734.2022.2124471 Malthouse E, 2023, INT J ADVERT, V42, P128, DOI 10.1080/02650487.2022.2122249 Manohar Bhanushali Mahesh, 2023, 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), P1026, DOI 10.1109/ICACITE57410.2023.10182372 Martynenko M., 2023, Futurity Economics&Law, V3, P63, DOI [10.57125/FEL.2023.03.25.07, DOI 10.57125/FEL.2023.03.25.07] Matthews J., 2023, Veza DigitalMarch 16 Munir A., 2023, International Journal of Data and Network Science, V7, P65, DOI [110.5267/j.ijdns.2022.12.005, DOI 10.5267/J.IJDNS.2022.12.005] Muzyka B., 2022, Top 12 MarTech Trends in 2023-TechMagic Nalbant K. G., 2023, Journal of Metaverse, V3, P9, DOI [10.57019/jmv.1148015, DOI 10.57019/JMV.1148015] Pascucci F, 2023, Italian J Market, P27 Pec T., 2023, ForbesMarc 21 Petrullo L., 2023, DigitalMarketerJune 15 Poperechnaya A., 2023, Sloboda StudioMay 19 Prokopenko O., 2021, Futurity Economics&Law, V1, P23, DOI [10.57125/FEL.2021.03.25.4, DOI 10.57125/FEL.2021.03.25.4] Sale W., 2023, FiftyFive and FiveAugust 2 Sanakuiev M., 2023, Futurity Economics&Law, V3, P16, DOI [10.57125/FEL.2023.03.25.02, DOI 10.57125/FEL.2023.03.25.02] Sangarathas D., 2023, Asian Journal of Marketing Management, V2, DOI [10.31357/ajmm.v2i02.6466, DOI 10.31357/AJMM.V2I02.6466] Shakharova A., 2022, Futurity Education, V2, P19, DOI [10.57125/FED/2022.10.11.21, DOI 10.57125/FED/2022.10.11.21] Spiryn J., 2023, Brand24January 5 Top 20 Internet Marketing Technologies You Shouldn't Miss, 2022, Serpstat-Growth Hacking Tool for SEO, PPC and Content Marketing Utomo H., 2022, P 1 LEKANTARA ANN C, DOI [10.4108/eai.3-8-2021.2315084, DOI 10.4108/EAI.3-8-2021.2315084] Vasylyuk-Zaitseva S., 2023, Futurity Education, V3, P78, DOI [10.57125/FED.2023.09.25.05, DOI 10.57125/FED.2023.09.25.05] Verbivska Liudmyla, 2022, WSEAS Transactions on Business and Economics, P1824, DOI 10.37394/23207.2022.19.164 Zeng JY, 2023, SUSTAINABILITY-BASEL, V15, DOI 10.3390/su15097278 NR 52 TC 0 Z9 0 U1 2 U2 2 PU FINTECHALIANCE PI Kyiv PA Highway Kharkivska, bldg 180/21, Kyiv, UKRAINE SN 2306-4994 EI 2310-8770 J9 FINANC CREDIT ACT JI Financ. Credit Act. PY 2023 VL 6 IS 53 BP 471 EP 486 DI 10.55643/fcaptp.6.53.2023.4259 PG 16 WC Business, Finance WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HS2S3 UT WOS:001161435400001 OA hybrid DA 2024-03-27 ER PT J AU Nayal, K Kumar, S Raut, RD Queiroz, MM Priyadarshinee, P Narkhede, BE AF Nayal, Kirti Kumar, Shashank Raut, Rakesh D. Queiroz, Maciel M. Priyadarshinee, Pragati Narkhede, Balkrishna E. TI Supply chain firm performance in circular economy and digital era to achieve sustainable development goals SO BUSINESS STRATEGY AND THE ENVIRONMENT LA English DT Article DE AI-IoT; circular economy (CE); resource orchestration theory; SEM; supply chain flexibility; Sustainable Development Goals (SDG) ID MANUFACTURING FLEXIBILITY; SCALE DEVELOPMENT; INDUSTRY 4.0; BIG DATA; MANAGEMENT; AGILITY; MODEL; CAPABILITIES; UNCERTAINTY; COMPETENCE AB Digitalization of the supply chain (SC) has received plenty of attention from practitioners and researchers in recent years to address the challenges of the business environment and assist firms in achieving a circular SC. Implementing circularity in business operations is a practice of achieving sustainability which is of utmost significance for achieving sustainable development goals established by the United Nations. This study empirically examines the relation among flexibility, AI-IoT adoption, and SC firm performance under the circular economy (CE) environment based on resource orchestration theory (ROT), an integrated version of the extended-resource-based view, and dynamic capability theory (DCT). Data were collected from Indian manufacturing firms through a questionnaire-based survey and examined using "structural equation modeling (SEM)." The study results show that information flexibility and organizational flexibility have the highest impact on AI-IoT adoption. Organizational flexibility shows full mediation with AI-IoT, which would influence the SC firm performance directly. The analysis also indicates that CE will affect the relation between organizational flexibility and AI-IoT adoption. These findings pave the way for cross-country analysis, formation of practical strategies, and policies related to AI-IoT and CE implementations. C1 [Nayal, Kirti; Kumar, Shashank; Raut, Rakesh D.; Narkhede, Balkrishna E.] Natl Inst Ind Engn NITIE, Dept Operat & Supply Chain Management, Mumbai, Maharashtra, India. [Queiroz, Maciel M.] Paulista Univ UNIP, Postgrad Program Business Adm, Sao Paulo, India. [Priyadarshinee, Pragati] Chaitanya Bharathi Inst Technol CBIT, Hyderabad, Telangana, India. C3 National Institute of Industrial Engineering (NITIE); Chaitanya Bharathi Institute of Technology RP Raut, RD (autor correspondiente), Natl Inst Ind Engn NITIE, NITIE, Dept Operat & Supply Chain Management, Mumbai 400087, Maharashtra, India. EM rraut@nitie.ac.in RI Priyadarshinee, Pragati/ABF-7111-2020; Queiroz, Maciel M./F-1274-2014; Queiroz, Maciel M./U-8499-2019; Narkhede, Balkrishna Eknath/AAL-2918-2020; Kumar, Shashank/AAM-8087-2021; Nayal, Kirti/JDM-2498-2023; Nayal, Kirti/AAB-4674-2022 OI Priyadarshinee, Pragati/0000-0003-1408-0577; Queiroz, Maciel M./0000-0002-6025-9191; Narkhede, Balkrishna Eknath/0000-0002-9277-3005; Kumar, Shashank/0000-0003-0841-987X; nayal, kirti/0000-0003-1477-0500; Raut, Rakesh/0000-0002-0469-1326 CR Abdallah AB, 2021, INT J PHYS DISTR LOG, V51, P785, DOI 10.1108/IJPDLM-01-2020-0011 Akhtar P, 2018, TECHNOL FORECAST SOC, V136, P307, DOI 10.1016/j.techfore.2017.04.023 [Anonymous], 2019, GLOBAL MAT RESOURCES, DOI DOI 10.1787/9789264307452-EN Asamoah D, 2021, INT J INFORM MANAGE, V58, DOI 10.1016/j.ijinfomgt.2020.102195 Asiaei K, 2022, BUS STRATEG ENVIRON, V31, P76, DOI 10.1002/bse.2875 Awan U, 2021, BUS STRATEG ENVIRON, V30, P2038, DOI 10.1002/bse.2731 Bag S, 2021, IND MARKET MANAG, V92, P178, DOI 10.1016/j.indmarman.2020.12.001 Bag S, 2021, TECHNOL FORECAST SOC, V163, DOI 10.1016/j.techfore.2020.120420 Bag S, 2021, PROD PLAN CONTROL, V32, P1368, DOI 10.1080/09537287.2020.1817602 Bai CG, 2020, INT J PROD RES, V58, P5893, DOI 10.1080/00207543.2019.1661532 BARNEY J, 1991, J MANAGE, V17, P99, DOI 10.1177/014920639101700108 Baryannis G, 2019, INT J PROD RES, V57, P2179, DOI 10.1080/00207543.2018.1530476 Blum Christopher, 2017, PRIMER PARTIAL LEAST, V5, P94, DOI [10.1016/j.scp.2017.01.001, DOI 10.1016/J.LRP.2013.01.002, 10.1016/j.scitotenv.2014.10.071] Borges AFS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102225 Brous P, 2020, INT J INFORM MANAGE, V51, DOI 10.1016/j.ijinfomgt.2019.05.008 Cai YJ, 2020, TRANSPORT RES E-LOG, V141, DOI 10.1016/j.tre.2020.102010 Chan HL, 2020, TRANSPORT RES E-LOG, V142, DOI 10.1016/j.tre.2020.102063 Chang SC, 2003, INT J PROD ECON, V83, P13, DOI 10.1016/S0925-5273(02)00263-3 Chen YS, 2021, INT J INFORM MANAGE, V57, DOI 10.1016/j.ijinfomgt.2020.102232 Deb SK, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, P758, DOI 10.1109/CONFLUENCE.2018.8442900 Delic M, 2020, INT J PROD ECON, V228, DOI 10.1016/j.ijpe.2020.107689 Diaz-Chao A., 2021, Journal of Cleaner Production, V281, P1, DOI DOI 10.1016/J.JCLEPRO.2020.125264 Dubey R, 2021, INT J PROD RES, V59, P110, DOI 10.1080/00207543.2019.1582820 Dubey R, 2019, MANAGE DECIS, V57, P2092, DOI 10.1108/MD-01-2018-0119 Dutta P, 2020, TRANSPORT RES E-LOG, V142, DOI 10.1016/j.tre.2020.102067 Esmaeilikia M, 2016, ANN OPER RES, V244, P407, DOI 10.1007/s10479-014-1544-3 Fantazy KA, 2016, J ENTERP INF MANAG, V29, P525, DOI 10.1108/JEIM-10-2014-0102 Farooque M, 2019, J CLEAN PROD, V228, P882, DOI 10.1016/j.jclepro.2019.04.303 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Forslund H, 2021, INT J PHYS DISTR LOG, V51, P4, DOI 10.1108/IJPDLM-08-2019-0265 Frank AG, 2019, INT J PROD ECON, V210, P15, DOI 10.1016/j.ijpe.2019.01.004 GALBRAITH JR, 1974, INTERFACES, V4, P28, DOI 10.1287/inte.4.3.28 Burin ARG, 2020, J PURCH SUPPLY MANAG, V26, DOI 10.1016/j.pursup.2020.100610 Geissdoerfer M, 2017, J CLEAN PROD, V143, P757, DOI 10.1016/j.jclepro.2016.12.048 GERBING DW, 1988, J MARKETING RES, V25, P186, DOI 10.2307/3172650 Gligor D, 2018, J OPER MANAG, V58-59, P73, DOI 10.1016/j.jom.2018.05.002 Gosling J, 2010, INT J PROD ECON, V128, P11, DOI 10.1016/j.ijpe.2009.08.029 Govindan K, 2021, TRANSPORT RES E-LOG, V149, DOI 10.1016/j.tre.2021.102279 Gupta A, 2022, ANN OPER RES, V315, P1617, DOI 10.1007/s10479-020-03913-0 Han JH, 2017, INT J PROD ECON, V187, P196, DOI 10.1016/j.ijpe.2017.02.018 Handfield R.B., 2006, J SUPPLY CHAIN MANAG, V34, P2, DOI [10.1111/j.1745-493X.1998.tb00042.x, DOI 10.1111/J.1745-493X.1998.TB00042.X] Hitt MA, 2016, J OPER MANAG, V41, P107, DOI 10.1016/j.jom.2015.11.004 Hogevold NM, 2021, INT J PHYS DISTR LOG, V51, P281, DOI 10.1108/IJPDLM-11-2019-0336 Hou DY, 2014, J CLEAN PROD, V84, P439, DOI 10.1016/j.jclepro.2014.01.054 Ivanov D, 2021, INT J PHYS DISTR LOG, V51, P97, DOI 10.1108/IJPDLM-03-2021-409 Jazairy A, 2021, INT J PHYS DISTR LOG, V51, P25, DOI 10.1108/IJPDLM-08-2019-0237 Jin Y, 2014, INT J PROD ECON, V153, P24, DOI 10.1016/j.ijpe.2014.03.016 Kettunen J, 2015, EUR J OPER RES, V244, P892, DOI 10.1016/j.ejor.2015.02.016 Khanday SA, 2021, B ENG GEOL ENVIRON, V80, P5539, DOI 10.1007/s10064-021-02248-9 Kline R. B., 2015, PRINCIPLES PRACTICE Kristoffersen E, 2020, J BUS RES, V120, P241, DOI 10.1016/j.jbusres.2020.07.044 Kumar RL, 2014, EUR J INFORM SYST, V23, P151, DOI 10.1057/ejis.2012.53 Kumar S, 2021, INT J PROD RES, V59, P3470, DOI 10.1080/00207543.2020.1867923 Kumar S, 2021, TECHNOL SOC, V67, DOI 10.1016/j.techsoc.2021.101737 Kumar S, 2022, INT J PRODUCT PERFOR, V71, P696, DOI 10.1108/IJPPM-10-2020-0511 Kumar S, 2021, J CLEAN PROD, V293, DOI 10.1016/j.jclepro.2021.126023 Lee H, 2014, INT J INFORM MANAGE, V34, P285, DOI 10.1016/j.ijinfomgt.2013.10.003 Li Y, 2020, INT J PROD ECON, V229, DOI 10.1016/j.ijpe.2020.107777 Lieder M, 2016, J CLEAN PROD, V115, P36, DOI 10.1016/j.jclepro.2015.12.042 Lin QJ, 2019, IEEE ACCESS, V7, P20698, DOI 10.1109/ACCESS.2019.2897792 Liu JJ, 2018, INT J PHYS DISTR LOG, V48, P794, DOI 10.1108/IJPDLM-01-2017-0049 Lloréns FJ, 2005, INT J PROD ECON, V98, P273, DOI 10.1016/j.ijpe.2004.05.011 Jabbour ABLD, 2018, ANN OPER RES, V270, P273, DOI 10.1007/s10479-018-2772-8 Luthra S, 2020, INT J PROD RES, V58, P1505, DOI 10.1080/00207543.2019.1660828 Ma SY, 2019, J CLEAN PROD, V226, P892, DOI 10.1016/j.jclepro.2019.04.134 Malhotra MK, 1998, J OPER MANAG, V16, P407, DOI 10.1016/S0272-6963(98)00021-7 Malik M, 2021, BUS STRATEG ENVIRON, V30, P3866, DOI 10.1002/bse.2845 Mehmood A, 2021, BUS STRATEGY DEV, V4, P465, DOI 10.1002/bsd2.171 Mikalef P, 2019, J BUS RES, V98, P261, DOI 10.1016/j.jbusres.2019.01.044 Mishra AA, 2009, J OPER MANAG, V27, P324, DOI 10.1016/j.jom.2008.10.001 Mishra D, 2019, MANAGE DECIS, V57, P1734, DOI 10.1108/MD-03-2018-0324 Nayal K, 2023, INT J LOGIST MANAG, V34, P304, DOI 10.1108/IJLM-01-2021-0002 Novais L, 2020, INT J LOGIST MANAG, V31, P629, DOI 10.1108/IJLM-02-2019-0052 Nunnally JC, 1978, PSYCHOMETRIC THEORY, DOI DOI 10.1037/018882 Pagell M, 2004, J OPER MANAG, V21, P629, DOI 10.1016/j.jom.2003.11.002 Paul PS, 2008, ERGONOMICS, V51, P737, DOI 10.1080/00140130701747483 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Prajogo D, 2012, INT J PROD ECON, V136, P123, DOI 10.1016/j.ijpe.2011.09.022 Rahman M, 2022, PROD PLAN CONTROL, V33, P228, DOI 10.1080/09537287.2020.1810758 Rajput S, 2020, J CLEAN PROD, V277, DOI 10.1016/j.jclepro.2020.123853 Rajput S, 2019, INT J INFORM MANAGE, V49, P98, DOI 10.1016/j.ijinfomgt.2019.03.002 Rosa P, 2020, INT J PROD RES, V58, P1662, DOI 10.1080/00207543.2019.1680896 Rovanto IK, 2021, BUS STRATEG ENVIRON, V30, P1153, DOI 10.1002/bse.2677 Sawe FB, 2021, BUS STRATEG ENVIRON, V30, P2951, DOI 10.1002/bse.2781 Sawhney R, 2006, J OPER MANAG, V24, P476, DOI 10.1016/j.jom.2005.11.008 Sethi A. K., 1990, International Journal of Flexible Manufacturing Systems, V2, P289, DOI 10.1007/BF00186471 Shaban F., 2020, UNCERTAIN SUPPLY CHA, V8, P537, DOI [10.5267/j.uscm.2020.3.002, DOI 10.5267/J.USCM.2020.3.002] Shalender K., 2015, Global Journal of Flexible Systems Management, Volume, V16, P251, DOI DOI 10.1007/S40171-015-0097-X Sharma M, 2021, J CLEAN PROD, V281, DOI 10.1016/j.jclepro.2020.125013 Siems E, 2021, BUS STRATEG ENVIRON, V30, P3105, DOI 10.1002/bse.2792 Sirmon DG, 2011, J MANAGE, V37, P1390, DOI 10.1177/0149206310385695 Sreedevi R, 2017, INT J PROD ECON, V193, P332, DOI 10.1016/j.ijpe.2017.07.024 Swafford PM, 2006, J OPER MANAG, V24, P170, DOI 10.1016/j.jom.2005.05.002 Tang CS, 2019, TRANSPORT RES E-LOG, V129, P1, DOI 10.1016/j.tre.2019.06.004 Thomas EF, 2014, EUR J INNOV MANAG, V17, P107, DOI 10.1108/EJIM-06-2013-0055 Thomé AMT, 2014, INT J PROD ECON, V158, P91, DOI 10.1016/j.ijpe.2014.07.024 Huynh TLD, 2020, TECHNOL FORECAST SOC, V159, DOI 10.1016/j.techfore.2020.120188 Tsang YP, 2022, J MANUF SYST, V62, P777, DOI 10.1016/j.jmsy.2021.02.003 United Nations, 2016, SUST DEV GOALS REP 2 Wang JR, 2020, BUS STRATEG ENVIRON, V29, P361, DOI 10.1002/bse.2369 Xu J, 2021, INT J PHYS DISTR LOG, V51, P656, DOI 10.1108/IJPDLM-04-2020-0129 Yadav S, 2021, J ENTERP INF MANAG, V34, P292, DOI 10.1108/JEIM-11-2019-0369 Yang J, 2014, INT J PROD ECON, V150, P104, DOI 10.1016/j.ijpe.2013.12.018 Zhang QY, 2003, J OPER MANAG, V21, P173, DOI 10.1016/S0272-6963(02)00067-0 Zhang QY, 2002, INT J PROD RES, V40, P561, DOI 10.1080/00207540110091695 Zhang Z, 2000, INT J OPER PROD MAN, V20, P496, DOI 10.1108/01443570010314818 Zouari D, 2021, INT J PHYS DISTR LOG, V51, P149, DOI 10.1108/IJPDLM-01-2020-0038 NR 107 TC 52 Z9 52 U1 42 U2 194 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0964-4733 EI 1099-0836 J9 BUS STRATEG ENVIRON JI Bus. Strateg. Environ. PD MAR PY 2022 VL 31 IS 3 BP 1058 EP 1073 DI 10.1002/bse.2935 EA NOV 2021 PG 16 WC Business; Environmental Studies; Management WE Social Science Citation Index (SSCI) SC Business & Economics; Environmental Sciences & Ecology GA ZL5MM UT WOS:000719263200001 DA 2024-03-27 ER PT J AU Jenneboer, L Herrando, C Constantinides, E AF Jenneboer, Liss Herrando, Carolina Constantinides, Efthymios TI The Impact of Chatbots on Customer Loyalty: A Systematic Literature Review SO JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH LA English DT Article DE chatbots; trust; satisfaction; commitment; customer experience; loyalty; service quality; digital marketing; information quality; privacy ID SATISFACTION; EXPERIENCE; TRUST AB More and more companies have implemented chatbots on their websites to provide support to their visitors on a 24/7 basis. The new customer wants to spend less and less time and therefore expects to reach a company anytime and anywhere, regardless of time, location, and channel. This study provides insight into the influence of chatbots on customer loyalty. System quality, service quality, and information quality are crucial dimensions that a chatbot must meet to give a good customer experience. To make a chatbot more personal, companies can alter the language style. Human-like chatbots lead to greater satisfaction and trust among customers, leading to greater adoption of the chatbot. The results of this study showed that a connection between chatbots and customer loyalty is very likely. Besides, some customers suffer from the privacy paradox because of personalization. Implications of this study are discussed. C1 [Jenneboer, Liss] Univ Twente, Dept Commun Sci, NL-7522 NH Enschede, Netherlands. [Herrando, Carolina] Univ Zaragoza, Dept Mkt, Zaragoza 50009, Spain. [Constantinides, Efthymios] Univ Twente, Dept High Tech Business & Entrepreneurship, NL-7522 NH Enschede, Netherlands. C3 University of Twente; University of Zaragoza; University of Twente RP Jenneboer, L (autor correspondiente), Univ Twente, Dept Commun Sci, NL-7522 NH Enschede, Netherlands. EM l.jenneboer@student.utwente.nl; cherrando@unizar.es; e.constantinides@utwente.nl RI ; Herrando, Carolina/H-4286-2015; Constantinides, Efthymios/C-9806-2013 OI Jenneboer, Liss/0000-0002-5102-3451; Herrando, Carolina/0000-0002-2653-2473; Constantinides, Efthymios/0000-0002-9396-7071 CR Akhtar M, 2019, CONF BUS INFORM, P397, DOI 10.1109/CBI.2019.00052 Ameen N, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106761 [Anonymous], 2018, GARTNER SAYS 25 PERC [Anonymous], 1994, J MARK THEORY PRACT, DOI DOI 10.1080/10696679.1994.11501650 [Anonymous], MSI Research Priorities 2020-2022 Carvajal SA, 2011, AFR J BUS MANAGE, V5, P13187, DOI 10.5897/AJBM11.1162 Araujo T, 2018, COMPUT HUM BEHAV, V85, P183, DOI 10.1016/j.chb.2018.03.051 Armstrong G, 2010, PRINCIPLES MARKETING Ashfaq M, 2020, TELEMAT INFORM, V54, DOI 10.1016/j.tele.2020.101473 Ba SL, 2008, PROD OPER MANAG, V17, P107, DOI 10.3401/poms.1070.0006 Balakrishnan J, 2021, PSYCHOL MARKET, V38, P643, DOI 10.1002/mar.21462 Borau S, 2021, PSYCHOL MARKET, V38, P1052, DOI 10.1002/mar.21480 Brandtzaeg PB, 2017, LECT NOTES COMPUT SC, V10673, P377, DOI 10.1007/978-3-319-70284-1_30 Bryant A., 2002, J ELECTRON COMMER RE, V3, P32 Chattaraman V, 2012, COMPUT HUM BEHAV, V28, P2055, DOI 10.1016/j.chb.2012.06.009 Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Crolic C, 2022, J MARKETING, V86, P132, DOI 10.1177/00222429211045687 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 Elsholz E, 2019, PROCEEDINGS OF THE 2019 CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'19), P301, DOI 10.1145/3295750.3298956 Folstad A, 2019, PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES (CUI 2019), DOI 10.1145/3342775.3342784 Folstad A, 2018, LECT NOTES COMPUT SC, V11193, P194, DOI 10.1007/978-3-030-01437-7_16 FORNELL C, 1992, J MARKETING, V56, P6, DOI 10.2307/1252129 Gnewuch Ulrich, 2018, ECIS Go E, 2019, COMPUT HUM BEHAV, V97, P304, DOI 10.1016/j.chb.2019.01.020 Goot Margot J., 2021, Chatbot Research and Design. 4th International Workshop, CONVERSATIONS 2020. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 12604), P190, DOI 10.1007/978-3-030-68288-0_13 Gutierrez A, 2019, COMPUT HUM BEHAV, V95, P295, DOI 10.1016/j.chb.2018.09.015 Hagberg J, 2017, J RETAIL CONSUM SERV, V39, P264, DOI 10.1016/j.jretconser.2017.08.005 Hallam C, 2017, COMPUT HUM BEHAV, V68, P217, DOI 10.1016/j.chb.2016.11.033 Hallowell R, 1996, INT J SERV IND MANAG, V7, P27, DOI 10.1108/09564239610129931 Herrmann A, 2007, J PROD BRAND MANAG, V16, P49, DOI 10.1108/10610420710731151 Hokanson S., 1995, MARKETING NEWS, V29, P16 Hoy Matthew B., 2018, Medical Reference Services Quarterly, V37, P81, DOI 10.1080/02763869.2018.1404391 Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Hwang Shinhee, 2019, LNCS, P222, DOI DOI 10.1007/978-3-030-23570-317 Johari Nurul Muizzah, 2019, Advances in Visual Informatics. 6th International Visual Informatics Conference, IVIC 2019. Proceedings. Lecture Notes in Computer Science (LNCS 11870), P135, DOI 10.1007/978-3-030-34032-2_13 Kokolakis S, 2017, COMPUT SECUR, V64, P122, DOI 10.1016/j.cose.2015.07.002 Kormpho P, 2018, 2018 SEVENTH ICT INTERNATIONAL STUDENT PROJECT CONFERENCE (ICT-ISPC), P176 Kvale Knut, 2020, Chatbot Research and Design. Third International Workshop, CONVERSATIONS 2019. Revised Selected Papers. Lecture Notes in Computer Science (LNCS 11970), P187, DOI 10.1007/978-3-030-39540-7_13 LAKE DG, 1995, HUM RESOURCE MANAGE, V34, P463, DOI 10.1002/hrm.3930340308 Leck D., 1992, EMPLOY RESPONSIB RIG, V5, P219, DOI [DOI 10.1007/BF01385049, 10.1007/BF01385049] Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Liebrecht C., 2021, Chatbot research and design, V12604, P16, DOI [10.1007/978-3-030-68288-0_2, DOI 10.1007/978-3-030-68288-0_2] Ling EC, 2021, PSYCHOL MARKET, V38, P1031, DOI 10.1002/mar.21491 Lyngdoh T, 2021, J BUS RES, V122, P518, DOI 10.1016/j.jbusres.2020.09.031 Maroengsit W, 2019, PROCEEDINGS OF 2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND EDUCATION TECHNOLOGY (ICIET 2019), P111, DOI 10.1145/3323771.3323824 Martin KD, 2020, J RETAILING, V96, P474, DOI 10.1016/j.jretai.2020.08.003 McLean G, 2016, COMPUT HUM BEHAV, V60, P602, DOI 10.1016/j.chb.2016.02.084 McMullan R, 2008, EUR J MARKETING, V42, P1084, DOI 10.1108/03090560810891154 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Moriuchi E, 2021, PSYCHOL MARKET, V38, P21, DOI 10.1002/mar.21407 Nordheim CB, 2019, INTERACT COMPUT, V31, P317, DOI 10.1093/iwc/iwz022 Pratminingsih R., 2013, International Journal of Trade, Economics and Finance, V4, P104, DOI DOI 10.7763/IJTEF.2013.V4.268 Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Rajaobelina L, 2021, PSYCHOL MARKET, V38, P2339, DOI 10.1002/mar.21548 Rese A, 2020, J RETAIL CONSUM SERV, V56, DOI 10.1016/j.jretconser.2020.102176 Rossmann Alexander, 2020, Advances in the Human Side of Service Engineering. Proceedings of the AHFE 2020 Virtual Conference on The Human Side of Service Engineering. Advances in Intelligent Systems and Computing (AISC 1208), P237, DOI 10.1007/978-3-030-51057-2_33 RUST RT, 1993, J RETAILING, V69, P193, DOI 10.1016/0022-4359(93)90003-2 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Shoemaker S., 1999, International Journal of Hospitality Management, V18, P345, DOI 10.1016/S0278-4319(99)00042-0 Sidaoui K, 2020, J SERV MANAGE, V31, P745, DOI 10.1108/JOSM-11-2019-0341 Siswi A.A., 2020, Manag. Anal. J, V9, P17, DOI [10.15294/maj.v9i1.34427, DOI 10.15294/MAJ.V9I1.34427] Suwono L.V., 2016, Jurnal Dinamika Manajemen, V7, P45 Sweezy M., 2019, SALESFORCE 0804 Toader DC, 2020, SUSTAINABILITY-BASEL, V12, DOI 10.3390/su12010256 Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Nguyen TM, 2022, J CONSUM BEHAV, V21, P481, DOI 10.1002/cb.1974 van der Goot M. J., 2020, LECT NOTES COMP SCI, V11970, P173, DOI [10.1007/978-3-030-39540-7_12, DOI 10.1007/978-3-030-39540-7_12] van Vuuren T, 2012, SOUTH AFR BUS REV, V16, P81 Xu AB, 2017, PROCEEDINGS OF THE 2017 ACM SIGCHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'17), P3506, DOI 10.1145/3025453.3025496 Yen C, 2021, BEHAV INFORM TECHNOL, V40, P1177, DOI 10.1080/0144929X.2020.1743362 Youn S, 2021, COMPUT HUM BEHAV, V119, DOI 10.1016/j.chb.2021.106721 NR 72 TC 31 Z9 31 U1 24 U2 122 PU MDPI PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 0718-1876 J9 J THEOR APPL EL COMM JI J. Theor. Appl. Electron. Commer. Res. PD MAR PY 2022 VL 17 IS 1 BP 212 EP 229 DI 10.3390/jtaer17010011 PG 18 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA 0B7GD UT WOS:000774798100001 OA Green Published, gold DA 2024-03-27 ER PT J AU Qin, HL Xiao, J Ge, DD Xin, LW Gao, JJ He, SM Hu, HD Carlsson, JG AF Qin, Hengle Xiao, Jun Ge, Dongdong Xin, Linwei Gao, Jianjun He, Simai Hu, Haodong Carlsson, John Gunnar TI JD.com: Operations Research Algorithms Drive Intelligent Warehouse Robots to Work SO INFORMS JOURNAL ON APPLIED ANALYTICS LA English DT Article DE intelligent warehouse; robotic system; automatic guided vehicle (AGV); integer program; cutting planes; dispatching; e-commerce; order picking; order fulfillment; Edelman Award AB JD.com pioneered same-day delivery as a standard service in China's business to-consumer e-commerce sector in 2010. To balance the urgent need to meet growing demands while maintaining high-quality logistics services, the company built intelligent warehouses that use analytics to significantly improve warehouse efficiency. The brain of the intelligent warehouse system is the dispatching algorithm for storage rack-moving robots, which makes real-time dispatching decisions among robots, racks, and workstations after solving large-scale integer programs in seconds. The intelligent warehouse technology has helped the company decrease its fulfillment expense ratio to a world-leading level of 6.5%. The construction of intelligent warehouses has led to estimated annual savings of hundreds of millions of dollars. In 2020, JD.com delivered 90% of its first-party-owned retail orders on the same day or on the day after the order was placed. The agility of such intelligent warehouses has allowed JD.com to handle 10 times the normal volume of orders during peak sales seasons and has also helped the company respond quickly to COVID-19 and ensure the rapid recovery of production capabilities. C1 [Qin, Hengle; Ge, Dongdong; Gao, Jianjun; He, Simai; Hu, Haodong] Shanghai Univ Finance & Econ, Res Inst Interdisciplinary Sci, Shanghai 200433, Peoples R China. [Qin, Hengle; Xiao, Jun] JDcom, JD Logist, Dept AI & Big Data, Beijing 100176, Peoples R China. [Xin, Linwei] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA. [Carlsson, John Gunnar] Univ Southern Calif, Dept Ind & Syst Engn, Los Angeles, CA 90089 USA. C3 Shanghai University of Finance & Economics; University of Chicago; University of Southern California RP Qin, HL (autor correspondiente), Shanghai Univ Finance & Econ, Res Inst Interdisciplinary Sci, Shanghai 200433, Peoples R China.; Qin, HL (autor correspondiente), JDcom, JD Logist, Dept AI & Big Data, Beijing 100176, Peoples R China. EM qinhengle@jd.com; xiaojun@jd.com; ge.dongdong@shufe.edu.cn; linwei.xin@chicagobooth.edu; gao.jianjun@shufe.edu.cn; simaihe@mail.shufe.edu.cn; hu.haodong@shufe.edu.cn; jcarlsso@usc.edu RI Xin, Linwei/IQR-5058-2023; Xin, Linwei/D-9249-2015 OI Xin, Linwei/0000-0002-8160-6877; FU National Natural Science Foundation of China [71825003] FX D. Ge is partially supported by the National Natural Science Foundation of China [Grants 11831002, 11471205, and 72150001]. J. Gao is partially supported by the National Natural Science Foundation of China [Grants 71971132 and 61573244]. S. He is partially supported by the National Natural Science Foundation of China [Grant 71825003]. CR [Anonymous], 2017, CCTV 4 [Anonymous], 2017, CHINA DAILY [Anonymous], 2018, JD [Anonymous], 2017, JD Azadeh K, 2019, TRANSPORT SCI, V53, P917, DOI 10.1287/trsc.2018.0873 Banker S, 2016, ROBOTS WAREHOUSE ITS Bartholdi J., 2016, Warehouse Distribution Science - Release 0.97. The Supply Chain Bersimas D, 1997, INTRO LINEAR OPTIMIZ Boysen N, 2017, EUR J OPER RES, V262, P550, DOI 10.1016/j.ejor.2017.03.053 Burkard R. E., 1999, Linear Assignment Problems and Extensions, P75, DOI [10.1007/978-1-4757-3023-4{_}2, DOI 10.1007/978-1-4757-3023-4_2.] CCTV, 2018, INTELLIGENCE DRIVES Cezik T, 2021, VELOCITY BASED STOWA, DOI [10.2139/ssrn.3784731, DOI 10.2139/SSRN.3784731] Eisenstein DD, 2008, NAV RES LOG, V55, P350, DOI 10.1002/nav.20289 Huang E., 2017, In China, a robot has started delivering packages to people Lin J, 2017, E COMMERCE GIANT BUI Mountz M.C., 2008, US Patent, Patent No. [7,402,018, 7402018] Palmer A, 2018, CHINESE E COMMERCE C Sierksma G., 2015, Linear and integer optimization: theory and practice Wang Z, 2022, PROD OPER MANAG, V31, P98, DOI 10.1111/poms.13406 Wulfraat M., 2012, SUPPLY CHAIN CONSULT Wurman PR, 2008, AI MAG, V29, P9 Yuan R, 2019, PROD OPER MANAG, V28, P354, DOI 10.1111/poms.12925 Yuan R, 2018, INT J PROD RES, V56, P333, DOI 10.1080/00207543.2017.1398428 NR 23 TC 13 Z9 15 U1 22 U2 82 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 2644-0865 EI 2644-0873 J9 INFORMS J APPL ANAL JI INFORMS J. Appl. Anal. PD JAN-FEB PY 2022 VL 52 IS 1 BP 42 EP 55 DI 10.1287/inte.2021.1100 PG 15 WC Management; Operations Research & Management Science WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Operations Research & Management Science GA YV8KA UT WOS:000752972300005 DA 2024-03-27 ER PT J AU Song, CL AF Song, Chunlai TI Enhancing Multimodal Understanding With LIUS: A Novel Framework for Visual Question Answering in Digital Marketing SO JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING LA English DT Article DE Digital Marketing; Feature Extraction and Fusion; Image Features; LLM; Text Information; Text-Image Matching; VQA AB VQA (visual question and answer) is the task of enabling a computer to generate accurate textual answers based on given images and related questions. It integrates computer vision and natural language processing and requires a model that is able to understand not only the image content but also the question in order to generate appropriate linguistic answers. However, current limitations in cross-modal understanding often result in models that struggle to accurately capture the complex relationships between images and questions, leading to inaccurate or ambiguous answers. This research aims to address this challenge through a multifaceted approach that combines the strengths of vision and language processing. By introducing the innovative LIUS framework, a specialized vision module was built to process image information and fuse features using multiple scales. The insights gained from this module are integrated with a "reasoning module" (LLM) to generate answers. C1 [Song, Chunlai] Kyungil Univ, Dept Global Business, Gyongsan, South Korea. C3 Kyungil University RP Song, CL (autor correspondiente), Kyungil Univ, Dept Global Business, Gyongsan, South Korea. RI hu, guangchen/KEI-6324-2024; CHUN LAI, SONG/AGM-6731-2022 CR Aishwarya R, 2022, ANNU IEEE IND CONF, DOI 10.1109/INDICON56171.2022.10040113 Akula AR, 2021, 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), P2148 Alayrac JB., 2022, ADV NEURAL INFORM PR, V35, P23716, DOI DOI 10.48550/ARXIV.2204.14198 Anderson P, 2018, PROC CVPR IEEE, P6077, DOI 10.1109/CVPR.2018.00636 Antol S, 2015, IEEE I CONF COMP VIS, P2425, DOI 10.1109/ICCV.2015.279 Bao H., 2022, Adv. Neural Inf. Process. Syst., V35, P32897 Chen CQ, 2022, PATTERN RECOGN, V132, DOI 10.1016/j.patcog.2022.108980 Firat M., 2023, Journal of Applied Learning and Teaching, V6 Guo JX, 2023, PROC CVPR IEEE, P10867, DOI 10.1109/CVPR52729.2023.01046 Gupta V, 2022, PROC CVPR IEEE, P5068, DOI 10.1109/CVPR52688.2022.00502 Hamza A., 2023, ACM Transactions on Asian and Low-Resource Language Information Processing Han K, 2023, IEEE T PATTERN ANAL, V45, P87, DOI 10.1109/TPAMI.2022.3152247 Hou R, 2020, SIGNAL PROCESS-IMAGE, V83, DOI 10.1016/j.image.2020.115782 Li J., 2021, Advances in neural information processing systems, V34, P9694, DOI DOI 10.48550/ARXIV.2107.07651 Li J., 2022, INT C MACHINE LEARNI Li X., 2023, P IEEECVF INT C COMP Li X., 2020, COMPUTER VISION ECCV Li Y., 2021, TAM at VQA-Med 2021: A Hybrid Model with Feature Extraction and Fusion for Medical Visual Question Answering Lu JS, 2019, ADV NEUR IN, V32 Lu SY, 2023, INT J COMPUT INT SYS, V16, DOI 10.1007/s44196-023-00233-6 Marino K, 2019, PROC CVPR IEEE, P3190, DOI 10.1109/CVPR.2019.00331 Schwenk D., 2022, EUROPEAN C COMPUTER Shen S., 2021, arXiv preprint arXiv:2107.06383 Shwartz V., Science and Technology, V37, P38, DOI [10.1109/CVPR.2019.00331, DOI 10.1109/CVPR.2019.00331] Vaswani A, 2017, ADV NEUR IN, V30 Whalen J., 2023, Contemporary Issues in Technology & Teacher Education, V23, P1 Yang ZY, 2022, AAAI CONF ARTIF INTE, P3081 Yang ZC, 2016, PROC CVPR IEEE, P21, DOI 10.1109/CVPR.2016.10 Yu JH, 2022, Arxiv, DOI [arXiv:2205.01917, DOI 10.48550/ARXIV.2205.01917] Zhang LT, 2023, IEEE INT CONF COMP V, P4631, DOI 10.1109/ICCVW60793.2023.00497 Zhang LM, 2022, MULTIMED TOOLS APPL, V81, P9277, DOI 10.1007/s11042-021-11549-w Zhang SS, 2022, Arxiv, DOI [arXiv:2205.01068, DOI 10.48550/ARXIV.2205.01068, 10.48550/arXiv.2205.01068] NR 32 TC 0 Z9 0 U1 1 U2 1 PU IGI GLOBAL PI HERSHEY PA 701 E CHOCOLATE AVE, STE 200, HERSHEY, PA 17033-1240 USA SN 1546-2234 EI 1546-5012 J9 J ORGAN END USER COM JI J. Organ. End User Comput. PY 2024 VL 36 IS 1 AR 336276 DI 10.4018/JOEUC.336276 PG 17 WC Computer Science, Information Systems; Information Science & Library Science; Management WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Computer Science; Information Science & Library Science; Business & Economics GA II1V4 UT WOS:001165615200012 OA gold DA 2024-03-27 ER PT J AU Lemardelé, C Estrada, M Pagès, L Bachofner, M AF Lemardele, Clement Estrada, Miquel Pages, Laia Bachofner, Monika TI Potentialities of drones and ground autonomous delivery devices for last-mile logistics SO TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW LA English DT Article DE Last-mile logistics; E-commerce; Continuous approximation; Delivery drones; Autonomous delivery robot; Operation costs; Externalities; Parcel lockers; Paris (France); Barcelona (Spain) ID LED CONSOLIDATION STRATEGIES; SAME-DAY DELIVERY; TRUCK; EFFICIENCY; VEHICLES; EXPRESS; COURIER; FRANCE AB The e-commerce boom has increased the complexity of last-mile logistics operations in urban environments. In this context, unmanned aerial vehicles (UAVs), also known as delivery drones, and ground autonomous delivery devices (GADDs) show great potentialities. The objective of this paper is to provide strategic insights to adequately match these autonomous technologies with some given characteristics of cities and help define relevant decision variables. Using continuous approximation equations, the operations costs as well as the externalities induced by a) GADDs in association with an urban consolidation center (UCC) and b) truck-launched UAVs are estimated. Then, the developed mathematical formulations are applied in two different use cases: a part of the Paris suburbs (France) and the historical center of Barcelona (Spain). In less dense and larger service regions such as the Paris suburbs, truck-launched delivery drones seem more suitable to reduce the carriers? operations costs. In denser neighborhoods such as the Barcelona historical center, GADDs are expected to be more economically profitable. In both use cases, GADDs would generate less externalities. Finally, considering the high uncertainty of some input parameters, a sensitivity analysis of the models is done. C1 [Lemardele, Clement] Univ Politecn Catalunya Barcelona TECH, Civil Engn Sch Barcelona, C Jordi Girona 1-3,Edificio Omega, Barcelona 08034, Spain. [Estrada, Miquel] Univ Politecn Catalunya Barcelona TECH, Civil Engn Sch Barcelona, C Jordi Girona 1-3,B1-110, Barcelona 08034, Spain. [Pages, Laia; Bachofner, Monika] CARNET Barcelona, C Jordi Girona 1-3,Edificio Omega, Barcelona 08034, Spain. C3 Universitat Politecnica de Catalunya; Universitat Politecnica de Catalunya RP Lemardelé, C (autor correspondiente), Univ Politecn Catalunya Barcelona TECH, Civil Engn Sch Barcelona, C Jordi Girona 1-3,Edificio Omega, Barcelona 08034, Spain. EM clement.lemardele@upc.edu; miquel.estrada@upc.edu; laia.pages@carnetbarcelona.com; monika.bachofner@carnetbarcelona.com RI Estrada, Miquel/L-3294-2017 OI Estrada, Miquel/0000-0002-5114-7796; Lemardele, Clement/0000-0003-1673-6509 CR [Anonymous], 2015, NCFRP38 APUR, 2019, POP DENS Barcelona city council, 2018, CIUT VELL WEB PAG Barthuly D., 2019, AUTONOMOUS GROUND VE Boysen N, 2018, EUR J OPER RES, V271, P1085, DOI 10.1016/j.ejor.2018.05.058 Burns S., 2017, Drone meets delivery truck Campbell J.F., 2017, SUSTAINABILITY SWITZ Carlsson JG, 2018, MANAGE SCI, V64, P4052, DOI 10.1287/mnsc.2017.2824 Cepolina E.M., 2014, ROUTING PROBLEM INNO Cloete S., 2017, SEEKING CONSENSUS EX Dablanc L., 2015, PARKING FREIGHT VEHI Daganzo Carlos, 2005, LOGISTICS SYSTEMS AN DAGANZO CF, 1984, TRANSPORT RES B-METH, V18, P135, DOI 10.1016/0191-2615(84)90027-4 Dayarian I, 2020, TRANSPORT SCI, V54, P229, DOI 10.1287/trsc.2019.0944 Dieke A., 2018, ASSESSMENT EU PARCEL Ducret R, 2014, RES TRANSP BUS MANAG, V11, P15, DOI 10.1016/j.rtbm.2014.06.009 EEA, 2019, EEA Report, DOI DOI 10.2800/293657 Estrada M, 2017, TRANSPORT RES E-LOG, V104, P165, DOI 10.1016/j.tre.2017.06.009 Estrada M, 2018, TRANSPORT-VILNIUS, V33, P930, DOI 10.3846/transport.2018.6058 European Commission, 2019, Handbook on the external costs of transport Eurostat, 2019, EL PRIC INCL TAX HOU Eurostat, 2019, EL GEN STAT FedEx, 2020, BOX PACK SHIPP MOV Feng W, 2013, TRANSPORT RES C-EMER, V26, P135, DOI 10.1016/j.trc.2012.06.007 Figliozzi MA, 2017, TRANSPORT RES D-TR E, V57, P251, DOI 10.1016/j.trd.2017.09.011 Giordano A, 2018, TRANSPORT RES D-TR E, V64, P216, DOI 10.1016/j.trd.2017.10.003 Goodchild A, 2018, TRANSPORT RES D-TR E, V61, P58, DOI 10.1016/j.trd.2017.02.017 Hoffmann T, 2018, MACHINES, V6, DOI 10.3390/machines6030033 Holguín-Veras J, 2014, PROCD SOC BEHV, V125, P36, DOI 10.1016/j.sbspro.2014.01.1454 Jennings D, 2019, TRANSPORT RES REC, V2673, P317, DOI 10.1177/0361198119849398 Keen K, 2020, BATTERY COSTS PLUMME Keeney T., 2015, CAN AMAZON CHARGE 1 Kirschstein T, 2020, TRANSPORT RES D-TR E, V78, DOI 10.1016/j.trd.2019.102209 Lee H. N., 2016, SCI REPORTS, P1 Li Y., 2018, Enterprise Inf. Syst., V00, P1 Macharis C., 2012, DESCRIPTION EVALUATI Marks M., 2019, SSRN ELECT J Mazareanu E., 2020, SAME DAY DELIVERY MA Morganti E, 2018, TRANSPORT POLICY, V63, P90, DOI 10.1016/j.tranpol.2017.12.010 Morganti E, 2014, TRANSP RES PROC, V4, P178, DOI 10.1016/j.trpro.2014.11.014 Moshref-Javadi M, 2020, APPL MATH MODEL, V80, P290, DOI 10.1016/j.apm.2019.11.020 Murray CC, 2015, TRANSPORT RES C-EMER, V54, P86, DOI 10.1016/j.trc.2015.03.005 Okholm H., 2013, E-commerce and delivery Palmer M., 2020, EUROPES 6 WHEELED DE Pierce D., 2013, VERGE Ponza A., 2016, THESIS U Raimbault N., 2014, THESIS Ranieri L, 2018, SUSTAINABILITY-BASEL, V10, DOI 10.3390/su10030782 Roca-Riu M, 2019, 19 SWISS TRANSPORT R Roca-Riu M., 2016, TRANSP RES PROCEDIA, V12 Samadi S, 2017, ENERGIES, V10, DOI 10.3390/en10030356 SeLoger.com, 2020, PRIX LOCATION M2 Stolaroff JK, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-017-02411-5 Sudbury A.W., 2016, J ECON EDUC, V16, P1 The World Bank, 2020, GDP per capita (current US$) Ulmer MW, 2019, COMPUT OPER RES, V108, P1, DOI 10.1016/j.cor.2019.03.017 Ulmer MW, 2018, NETWORKS, V72, P475, DOI 10.1002/net.21855 van Duin JHR, 2013, EUR TRANSP van Duin JHR, 2016, TRANSP RES PROC, V12, P14, DOI 10.1016/j.trpro.2016.02.006 van Duin J.H. R., Transp. Res. Procedia, V46, P37, DOI DOI 10.1016/J.TRPRO.2020.03.161 Wang D., 2019, IEEE Internet of Things Journal, V6, p10 483 Zenezini G, 2018, IFAC PAPERSONLINE, V51, P594, DOI 10.1016/j.ifacol.2018.08.383 Zhang J, 2021, TRANSPORT RES D-TR E, V90, DOI 10.1016/j.trd.2020.102668 NR 63 TC 66 Z9 69 U1 24 U2 184 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1366-5545 EI 1878-5794 J9 TRANSPORT RES E-LOG JI Transp. Res. Pt. e-Logist. Transp. Rev. PD MAY PY 2021 VL 149 AR 102325 DI 10.1016/j.tre.2021.102325 EA APR 2021 PG 51 WC Economics; Engineering, Civil; Operations Research & Management Science; Transportation; Transportation Science & Technology WE Science Citation Index Expanded (SCI-EXPANDED); Social Science Citation Index (SSCI) SC Business & Economics; Engineering; Operations Research & Management Science; Transportation GA RY2YZ UT WOS:000647784100004 OA Green Submitted DA 2024-03-27 ER PT J AU Aghimien, D Ikuabe, M Aghimien, LM Aigbavboa, C Ngcobo, N Yankah, J AF Aghimien, Douglas Ikuabe, Matthew Aghimien, Lerato Millicent Aigbavboa, Clinton Ngcobo, Ntebo Yankah, Jonas TI PLS-SEM assessment of the impediments of robotics and automation deployment for effective construction health and safety SO JOURNAL OF FACILITIES MANAGEMENT LA English DT Article; Early Access DE Health; Automation; Construction; Safety; Robotics; South Africa ID TECHNOLOGY; MECHANIZATION; BARRIERS; RECOVERY; BEHAVIOR; ISSUES AB Purpose The importance of robotics and automation (R&A) in delivering a safe built environment cannot be overemphasised. This is because R&A systems can execute a hazardous job function that the construction workforce may not execute. Based on this knowledge, this study aims to present the result of an assessment of the impediments to the deployment of R&A for a safe and healthy construction environment. Design/methodology/approach This study adopted a post-positivist philosophical stance, using a quantitative research approach and a questionnaire administered to construction professionals in South Africa. The data gathered were analysed using frequency, percentage, mean item score, Kruskal-Wallis H-test, exploratory factor analysis and partial least square structural equation modelling (SEM). Findings This study revealed that the impediments to the deployment of R&A could be grouped into: industry, technology, human and cost-related factors. However, SEM assessment showed that only the industry, human and cost-related factors would significantly impact attaining specific health and safety-related outcomes. Practical implications The findings offer valuable benefits to construction organisations as the careful understanding of the identified impeding factors can help lead to better deployment of R&A and the attainment of its inherent safety benefits. Originality/value This study attempts to fill the gap in the shortage of literature exploring the deployment of R&A for a safe construction environment, particularly in developing countries like South Africa, where such studies are non-existent. This paper, therefore, offers a theoretical backdrop for future works on R&A deployment, particularly in developing countries where such a study has not been explored. C1 [Aghimien, Douglas; Ngcobo, Ntebo] Univ Johannesburg, Fac Engn & Built Environm, Dept Civil Engn Technol, Johannesburg, South Africa. [Ikuabe, Matthew; Aigbavboa, Clinton] Univ Johannesburg, Fac Engn & Built Environm, CIDB Ctr Excellence, Johannesburg, South Africa. [Aghimien, Lerato Millicent] Univ Johannesburg, Fac Engn & Built Environm, Dept Construct Management & Quant Surveying, Johannesburg, South Africa. [Yankah, Jonas] Cape Coast Tech Univ, Fac Built & Nat Environm, Cape Coast, Ghana. C3 University of Johannesburg; University of Johannesburg; University of Johannesburg RP Aghimien, D (autor correspondiente), Univ Johannesburg, Fac Engn & Built Environm, Dept Civil Engn Technol, Johannesburg, South Africa. EM Aghimiendouglas@gmail.com RI Ikuabe, Matthew/AGO-2623-2022; Aigbavboa, Clinton/AAS-6493-2020; Aghimien, Douglas Omoregie/H-4534-2018 OI Aigbavboa, Clinton/0000-0003-2866-3706; CR Abbasi M.S., 2011, THESIS BRUNEL U LOND Abusafiya HA., 2017, MODERN APPL SCI, V11, P28, DOI DOI 10.5539/MAS.V11N7P28 Adams M A., 2007, Movement, Stability, and Lumbopelvic Pain: Integration and Research, P167 Aghimien D., 2018, JOINT CIB W099 TG59, P337 Aghimien D.O., 2019, P 36 CIB W78 2019 C, P84 Aghimien D, 2021, CONSTR INNOV-ENGL, V21, P456, DOI 10.1108/CI-02-2020-0026 Aghimien DO, 2020, J ENG DES TECHNOL, V18, P1063, DOI 10.1108/JEDT-09-2019-0237 Aigbavboa C., 2014, THESIS U JOHANNESBUR Akinradewo O., 2018, P INT C IND ENG OPER, V201 Akinradewo O. I., 2021, IOP Conference Series: Materials Science and Engineering, V1107, DOI 10.1088/1757-899X/1107/1/012011 Akshatha D., 2017, INT J ADV RES SCI EN, P2319 Akter S., 2011, P 17 AM C INF SYST A, P151 Bagozzi RP, 2012, J ACAD MARKET SCI, V40, P8, DOI 10.1007/s11747-011-0278-x Bahrin MAK, 2016, J TEKNOL, V78, P137 Balaguer C., 2008, Robotics and Automation in Construction Benitez J, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.003 Bin Yahya Mohd Yamani, 2019, MATEC Web of Conferences, V266, DOI 10.1051/matecconf/201926605012 Bock T., 2017, CONSTRUCTION ROBOTS Bock T, 2015, AUTOMAT CONSTR, V59, P113, DOI 10.1016/j.autcon.2015.07.022 Bohari M., 2017, E2017106 CHALM U TEC Byrne P., 2005, RISK UNCERTAINTY DEC, V2 Cai S., 2018, IS-ARC. Proceedings of the International Symposium on Automation and Robotics in Construction, V35, P1 Chen Q, 2018, AUTOMAT CONSTR, V94, P22, DOI 10.1016/j.autcon.2018.05.028 Chin WW, 1998, MIS QUART, V22, pVII COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037/0033-2909.112.1.155 Cropp C, 2021, AUTOMATION ROBOTICS Dall'Omo S., 2017, DRIVING AFRICAN DEV, P1 de Looze MP, 2016, ERGONOMICS, V59, P671, DOI 10.1080/00140139.2015.1081988 Delgado JMD, 2019, J BUILD ENG, V26, DOI 10.1016/j.jobe.2019.100868 Dimick, 2014, OTTAWATHE C BOARD CA, P1 Field A., 2013, DISCOVERING STAT USI, DOI DOI 10.1016/B978-012691360-6/50012-4 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Franke G, 2019, INTERNET RES, V29, P430, DOI 10.1108/IntR-12-2017-0515 Galal S., 2020, NUMBER PEOPLE EMPLOY Golizadeh H, 2019, CONSTR INNOV-ENGL, V19, P149, DOI 10.1108/CI-09-2018-0074 Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hampson K. D., 2014, RD INVESTMENT GLOBAL, P1, DOI 10.4324/9781315774916. Heckathorn DD, 2011, SOCIOL METHODOL, V41, P355, DOI 10.1111/j.1467-9531.2011.01244.x Henseler J, 2016, IND MANAGE DATA SYST, V116, P2, DOI 10.1108/IMDS-09-2015-0382 Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Huang Z, 2022, ENG CONSTR ARCHIT MA, V29, P3664, DOI 10.1108/ECAM-03-2021-0267 Hwang H, 2010, J MARKETING RES, V47, P699, DOI 10.1509/jmkr.47.4.699 Jung K, 2013, AUTOMAT CONSTR, V32, P62, DOI 10.1016/j.autcon.2012.12.011 Kamaruddin SS, 2016, PROCD SOC BEHV, V222, P111, DOI 10.1016/j.sbspro.2016.05.197 Kamaruddin SS, 2013, PROCD SOC BEHV, V105, P106, DOI 10.1016/j.sbspro.2013.11.012 Keil M, 2000, MIS QUART, V24, P299, DOI 10.2307/3250940 Keski-Säntti P, 2010, INT ARCH OCC ENV HEA, V83, P703, DOI 10.1007/s00420-009-0493-7 Kim S., 2020, Likely impact of COVID-19 on the UK media industry Kumar V. P., 2016, INDIAN J SCI TECHNOL, V9, P1, DOI [DOI 10.17485/ijst/2016/v9i23/95974, 10.17485/ijst/2016/v9i23/95974] Lavikka R, 2018, CONSTR MANAG ECON, V36, P635, DOI 10.1080/01446193.2018.1476729 Lawrence M., 2017, Managing automation: Employment, inequality and ethics in the digital age: IPPR Commission on Economic Justice Li Y, 2019, INT J CONSTR MANAG, V19, P401, DOI 10.1080/15623599.2018.1452101 Mahbub R., 2012, J CIVIL ENG ARCHITEC, V6, DOI [10.17265/1934-7359/2012.07.008, DOI 10.17265/1934-7359/2012.07.008] Manzo J., 2019, IMPACT CONSTRUCTION Marcoulides G.A., 2006, MIS QUART, V30, P3, DOI [https://doi.org/10.2307/25148727, DOI 10.2307/25148727] Maryani A, 2015, PROCEDIA MANUF, V4, P392, DOI 10.1016/j.promfg.2015.11.055 Melchiorri C., 2013, ENCY SYSTEMS CONTROL MISTRI PS, 2015, INT J ADV RES ENG SC, P1 Mone G., 2014, POPULAR SCI Muro M., 2017, DIGITALIZATION AM WO Mzekandaba S., 2018, Tech to contribute to job losses in SA Oke A., 2018, Proceedings of the International Conference on Industrial Engineering and Operations Management Bandung, Indonesia, 20 March 2018, P2472 Oke AE, 2021, INT J BUILD PATHOL, DOI 10.1108/IJBPA-06-2021-0093 Pallant J., 2011, SPSS SURVIVAL MANUAL Pan M, 2020, J MANAGE ENG, V36, DOI 10.1061/(ASCE)ME.1943-5479.0000846 Parn EA, 2019, ENG CONSTR ARCHIT MA, V26, P245, DOI 10.1108/ECAM-03-2018-0101 Preacher KJ, 2002, BEHAV GENET, V32, P153, DOI 10.1023/A:1015210025234 Rahman A.B.A., 2006, P 6 AS PAC STRUCT EN Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Ruggiero A.N., 2016, ROBOTICS CONSTRUCTIO Sacks R., 2010, Journal of Professional Issues in Engineering Education and Practice, V136, P30, DOI 10.1061/(ASCE)EI.1943-5541.0000003 Salento A, 2018, AI SOC, V33, P369, DOI 10.1007/s00146-017-0738-z Samari M., 2012, IMPLEMENTATION INDUS, V1, P19 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Siderska J, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13148020 Singh R., 2009, The Marketing Review, V9, P199, DOI DOI 10.1362/146934709X467767 Smallwood J.J., 2004, INT COST ENG COUNCIL Son H, 2010, KSCE J CIV ENG, V14, P131, DOI 10.1007/s12205-010-0131-7 Strukova Z., 2013, J INTERDISCIPLINARY, V1, P121 Tabachnick G.B., 2013, Using multivariate statistics, V6th Tan W.C.K., 2011, PRACTICAL RES METHOD, V4th ed. Teizer J., 2016, 33 INT S AUTOMATION, P191, DOI 10.22260/isarc201 6/0024. Tenenhaus M, 2005, COMPUT STAT DATA AN, V48, P159, DOI 10.1016/j.csda.2004.03.005 Tharshanapriya K, 2017, INDO AM J PHARM SCI, V4, P1559, DOI 10.5281/zenodo.817581 Trujillo D.J., 2020, EPiC Series in Built Environment, V1, P257, DOI DOI 10.29007/1SHP Vähä P, 2013, AUTOMAT CONSTR, V36, P168, DOI 10.1016/j.autcon.2013.08.002 Williams B., 2010, Journal of Emergency Primary Health Care (JEPHC), V8, P1, DOI [10.33151/ajp.8.3.93, DOI 10.33151/AJP.8.3.93] Windapo AO, 2013, J CONSTR DEV CTRIES, V18, P65 Wong K.K.-K., 2013, MARKETING B, V24, P1, DOI DOI 10.1108/EBR-10-2013-0128 Wu ZZ, 2019, INT J ENV RES PUB HE, V16, DOI 10.3390/ijerph16173140 Yang GZ, 2018, SCI ROBOT, V3, DOI 10.1126/scirobotics.aar7650 Yap JBH, 2023, J ENG DES TECHNOL, V21, P1414, DOI 10.1108/JEDT-07-2021-0379 NR 92 TC 5 Z9 5 U1 1 U2 7 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1472-5967 EI 1741-0983 J9 J FACIL MANAG JI J. Facil. Manag. PD 2022 AUG 31 PY 2022 DI 10.1108/JFM-04-2022-0037 EA AUG 2022 PG 21 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA 4D7EQ UT WOS:000847302000001 OA hybrid DA 2024-03-27 ER PT J AU Srivastava, P Mishra, N Srivastava, S Shivani, S AF Srivastava, Praveen Mishra, Niraj Srivastava, Shelly Shivani, Shradha TI Banking with Chatbots: The Role of Demographic and Personality Traits SO FIIB BUSINESS REVIEW LA English DT Article; Early Access DE Chatbot; banking industry; PLS-SEM; ANN ID MOBILE-BANKING; PLS-SEM; ACCEPTANCE; METHODOLOGY; INTENTION; BUSINESS; ADOPTION; MODELS; TRUST; HABIT AB This research seeks to investigate the influence of performance expectancy, effort expectancy, facilitating conditions, habit and hedonic motivation on behavioural intention in the context of chatbot utilization within the banking industry. Additionally, the study explores the moderation effects of age, gender and personality type on the relationships between behavioural intention and use behaviour. The study employs a quantitative survey of banking customers, and the data have been analysed using partial least squares structural equation modelling and artificial neural network. The findings suggest that the use and acceptance of chatbots in banking are influenced by a range of factors, including performance expectancy, facilitating conditions and hedonic motivation. The study also reveals that only personality types can moderate the relationship between behavioural intentions and use behaviour. The study provides insights for banks and other financial institutions that are considering the implementation of chatbots as part of their customer service strategy. C1 [Srivastava, Praveen] Birla Inst Technol, Dept HMCT, Ranchi, Jharkhand, India. [Mishra, Niraj; Srivastava, Shelly; Shivani, Shradha] Birla Inst Technol Mesra, Dept Management, Ranchi, Jharkhand, India. [Mishra, Niraj] Birla Inst Technol, Dept Management, Ranchi 835215, Jharkhand, India. C3 Birla Institute of Technology Mesra; Birla Institute of Technology Mesra; Birla Institute of Technology Mesra RP Mishra, N (autor correspondiente), Birla Inst Technol, Dept Management, Ranchi 835215, Jharkhand, India. EM nirajmishra@bitmesra.ac.in RI Srivastava, Praveen/AAU-6208-2021 OI Srivastava, Praveen/0000-0001-5310-694X; Mishra, Niraj/0000-0001-9593-0312 CR Aburayya A., 2022, INFORM MED UNLOCKED, V28, P100859, DOI DOI 10.1016/J.IMU.2022.100859 Adamopoulou E., 2020, MACHINE LEARNING APP, V2, DOI DOI 10.1016/J.MLWA.2020.100006 Al-Azawei A, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101325 Al-Emran M, 2023, IEEE T ENG MANAGE, DOI 10.1109/TEM.2023.3237789 Al-Okaily M, 2023, KYBERNETES, V52, P4876, DOI 10.1108/K-08-2021-0710 Alalwan AA, 2015, J FINANC SERV MARK, V20, P145, DOI 10.1057/fsm.2015.5 Alomari ASA, 2023, COGENT BUS MANAG, V10, DOI 10.1080/23311975.2023.2178092 Alsmadi AA, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141710630 Aruldoss A, 2023, J MARKET THEORY PRAC, DOI 10.1080/10696679.2023.2221442 Bouhia M, 2022, INT J BANK MARK, V40, P1159, DOI 10.1108/IJBM-09-2021-0442 Caldarini G, 2022, INFORMATION, V13, DOI 10.3390/info13010041 Carvalho I, 2024, TOUR REV, V79, P290, DOI 10.1108/TR-02-2023-0088 Chen Q, 2023, INTERNET RES, V33, P2205, DOI 10.1108/INTR-09-2021-0686 Chen WL, 2020, RES PRACT TECH ENHAN, V15, DOI 10.1186/s41039-020-00127-7 Cheng Y, 2020, J BROADCAST ELECTRON, V64, P592, DOI 10.1080/08838151.2020.1834296 Chiou JS, 2012, BEHAV INFORM TECHNOL, V31, P859, DOI 10.1080/0144929X.2010.549509 Cohen J., 1988, Statistical power analysis for the behavioral sciences, V2nd ed., DOI DOI 10.4324/9780203771587 Cubric M, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101257 De Andrade IM, 2022, REGE-REV GEST, V29, P238, DOI 10.1108/REGE-07-2021-0120 de Guinea AO, 2009, MIS QUART, V33, P433 Dehnert M, 2022, ELECTRON MARK, V32, P1503, DOI 10.1007/s12525-022-00524-4 Dinh CM, 2023, ELECTRON COMMER RES, DOI 10.1007/s10660-022-09662-5 Dreiseitl S, 2002, J BIOMED INFORM, V35, P352, DOI 10.1016/S1532-0464(03)00034-0 Nguyen DM, 2022, J CONSUM BEHAV, V21, P1219, DOI 10.1002/cb.2073 Nguyen DM, 2021, SUSTAINABILITY-BASEL, V13, DOI 10.3390/su13147625 Eren BA, 2021, INT J BANK MARK, V39, P294, DOI 10.1108/IJBM-02-2020-0056 Faqih KMS, 2022, TECHNOL SOC, V69, DOI 10.1016/j.techsoc.2022.101958 Farah MF, 2018, INT J BANK MARK, V36, P1386, DOI 10.1108/IJBM-10-2017-0215 Farooq MS, 2017, INTERACT TECHNOL SMA, V14, P329, DOI 10.1108/ITSE-06-2016-0015 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Foster JK, 2022, J RES INTERACT MARK, V16, P237, DOI 10.1108/JRIM-01-2020-0007 Gatzioufa P., 2022, Applied Computing and Informatics, DOI [10.1108/ACI-01-2022-0021/FULL/PDF, DOI 10.1108/ACI-01-2022-0021/FULL/PDF] Gunasinghe A, 2020, INT J TECHNOL ENHANC, V12, P458, DOI 10.1504/IJTEL.2020.110056 Gunasinghe A, 2019, INTERACT TECHNOL SMA, V17, P86, DOI 10.1108/ITSE-05-2019-0020 Hair J, 2017, IND MANAGE DATA SYST, V117, P442, DOI 10.1108/IMDS-04-2016-0130 Hair JF, 2014, EUR BUS REV, V26, P106, DOI 10.1108/EBR-10-2013-0128 Husain A. R. A. M., 2022, Future of organizations and work after the 4th industrial revolution: The role of artificial intelligence, big data, automation, and robotics, P145 Illescas-Manzano M., 2021, Journal of Open Innovation, V7, P125, DOI [10.3390/joitmc7020125, DOI 10.3390/JOITMC7020125] Jang M, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106747 Janssen A, 2022, INT J HUM-COMPUT ST, V168, DOI 10.1016/j.ijhcs.2022.102921 Jiang Y, 2023, COMPUT HUM BEHAV, V138, DOI 10.1016/j.chb.2022.107485 John O. P., 1999, HDB PERSONALITY THEO, P102, DOI DOI 10.1525/FQ.1998.51.4.04A00260 Kallel A, 2023, J STRATEG MARK, DOI 10.1080/0965254X.2023.2175020 Kasilingam DL, 2020, TECHNOL SOC, V62, DOI 10.1016/j.techsoc.2020.101280 Kaushal V, 2023, CONCURR COMP-PRACT E, V35, DOI 10.1002/cpe.7450 Kumar J, 2024, COMPET REV, V34, P92, DOI 10.1108/CR-04-2023-0076 Kwangsawad A, 2022, J INNOV KNOWL, V7, DOI 10.1016/j.jik.2022.100211 Lally P, 2013, HEALTH PSYCHOL REV, V7, pS137, DOI 10.1080/17437199.2011.603640 Lappeman J, 2023, J FINANC SERV MARK, V28, P337, DOI 10.1057/s41264-022-00154-z Li CY, 2023, J RETAIL CONSUM SERV, V72, DOI 10.1016/j.jretconser.2023.103264 Ling EC, 2021, PSYCHOL MARKET, V38, P1031, DOI 10.1002/mar.21491 Lui A, 2018, INF COMMUN TECHNOL L, V27, P267, DOI 10.1080/13600834.2018.1488659 Luo B, 2022, WIRES DATA MIN KNOWL, V12, DOI 10.1002/widm.1434 Mehrolia S, 2023, FIIB BUS REV, DOI 10.1177/23197145231169900 Melián-González S, 2021, CURR ISSUES TOUR, V24, P192, DOI 10.1080/13683500.2019.1706457 Mishra N, 2023, INT J QUAL RELIAB MA, DOI 10.1108/IJQRM-03-2023-0093 Mogaji E, 2021, TELEMAT INFORM, V65, DOI 10.1016/j.tele.2021.101711 Nikolopoulou K, 2021, COMPUT EDUC OPEN, V2, DOI 10.1016/j.caeo.2021.100041 Pinto A. S., 2022, Journal of Information Systems Engineering and Management, V7, P14550, DOI [10.55267/IADT.07.12012, DOI 10.55267/IADT.07.12012] Przegalinska A, 2019, BUS HORIZONS, V62, P785, DOI 10.1016/j.bushor.2019.08.005 Rahim NIM, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su141912726 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Shandilya G., 2023, Parikalpana-KIIT Journal of Management, V19, P142, DOI [10.23862/kiit-parikalpana/2023/v19/i2/223471, DOI 10.23862/KIIT-PARIKALPANA/2023/V19/I2/223471] Shandilya Gautam, 2023, ATNA - Journal of Tourism Studies, V18, P51, DOI 10.12727/ajts.29.3 Silva SC, 2023, INT J RETAIL DISTRIB, V51, P285, DOI 10.1108/IJRDM-05-2022-0163 Sugumar M., 2021, Journal of International Technology and Information Management, V30, P38 Talukder MS, 2020, TECHNOL FORECAST SOC, V150, DOI 10.1016/j.techfore.2019.119793 Tan E, 2016, YOUNG CONSUM, V17, P18, DOI 10.1108/YC-07-2015-00537 Vassilakopoulou P, 2023, EUR J INFORM SYST, V32, P10, DOI 10.1080/0960085X.2022.2096490 Venkatesh V, 2012, MIS QUART, V36, P157 Wahyuningsih B. A., 2023, International Journal of Multidisciplinary Research and Publications, V5, P159 Wang XQ, 2023, J ASSOC INF SCI TECH, V74, P339, DOI 10.1002/asi.24621 Yang J, 2023, APPL SCI-BASEL, V13, DOI 10.3390/app13116355 NR 73 TC 0 Z9 0 U1 2 U2 2 PU SAGE PUBLICATIONS INDIA PVT LTD PI NEW DELHI PA B-1-I-1 MOHAN CO-OPERATIVE INDUSTRIAL AREA, MATHURA RD, POST BAG NO 7, NEW DELHI 110 044, INDIA SN 2319-7145 EI 2455-2658 J9 FIIB BUS REV JI FIIB Bus. Rev. PD 2024 FEB 11 PY 2024 DI 10.1177/23197145241227757 EA FEB 2024 PG 19 WC Business; Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA HP2N2 UT WOS:001160643600001 DA 2024-03-27 ER PT J AU Magno, F Dossena, G AF Magno, Francesca Dossena, Giovanna TI The effects of chatbots' attributes on customer relationships with brands: PLS-SEM and importance-performance map analysis SO TQM JOURNAL LA English DT Article DE Chatbots; e-service agents; New technologies; Customer satisfaction; Consumer-brand interaction ID MEDIATING ROLE; INFORMATION; TECHNOLOGY; QUALITY; MANAGEMENT; RESPONSES; ACCEPTANCE; EXPERIENCE; IMPACT AB Purpose Many firms are investing in digital services to improve customer experiences. Virtual service agents, or "e-service agents" ("e-agents") such as chatbots, are examples of these efforts. Chatbots are types of virtual-assistant software programs that interact with users through speech or text. This paper aims to investigate whether the perceived hedonic and utilitarian attributes of chatbots can influence customer satisfaction and, consequently, their relationships with brands. Design/methodology/approach Data were collected through a questionnaire-based survey among a sample of Italian consumers. A convenience sampling technique was used. Data were then analyzed through Partial Least Squares Structural Equation Modeling to provide a prediction-oriented model assessment. The findings were then complemented with an importance-performance map analysis (IPMA) to gain more detailed insights and actionable guidelines for managers. Findings The findings highlighted that the perceived hedonic and utilitarian attributes of chatbots positively influenced customer satisfaction and improved customer relationships with the brands. However, the IMPA highlighted that the performance levels of two most important attributes - system quality and experience with chatbot - could be improved resulting in additional improvements of customer satisfaction. Practical implications This study suggests the importance of firms' investments in and adoption of e-agents to strengthen consumer-brand relationships and of considering both the hedonic and utilitarian attributes of their e-agents. Originality/value This article attempts to enrich and consolidate the growing body of literature concerning the impacts of new technologies - and, specifically, chatbots - in service marketing. C1 [Magno, Francesca; Dossena, Giovanna] Univ Bergamo, Bergamo, Italy. C3 University of Bergamo RP Magno, F (autor correspondiente), Univ Bergamo, Bergamo, Italy. EM francesca.magno@unibg.it OI Magno, Francesca/0000-0002-5607-6309 CR Agarwal N., 2017, QUAL PROG, V50, P76 Algesheimer R, 2005, J MARKETING, V69, P19, DOI 10.1509/jmkg.69.3.19.66363 Azzopardi E, 2013, TOURISM MANAGE, V35, P222, DOI 10.1016/j.tourman.2012.07.007 Batra R., 1990, MARKET LETT, V2, P159, DOI [DOI 10.1007/BF00436035, 10.1007/BF00436035] Brah S. A., 2006, International Journal of Physical Distribution & Logistics Management, V36, P192, DOI 10.1108/09600030610661796 Campbell C, 2020, BUS HORIZONS, V63, P227, DOI 10.1016/j.bushor.2019.12.002 Chaiprasit S, 2011, COMPET REV, V21, P188, DOI 10.1108/10595421111117461 Chen MM, 2016, J HOSP TOUR MANAG, V29, P69, DOI 10.1016/j.jhtm.2016.05.001 Cheng Y, 2022, J PROD BRAND MANAG, V31, P252, DOI 10.1108/JPBM-05-2020-2907 Chiarini A, 2020, TQM J, V32, P603, DOI 10.1108/TQM-04-2020-0082 Chung M, 2020, J BUS RES, V117, P587, DOI 10.1016/j.jbusres.2018.10.004 Coyle JR, 2012, J RES INTERACT MARK, V6, P27, DOI 10.1108/17505931211241350 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 de Souza FF, 2022, TQM J, V34, P749, DOI 10.1108/TQM-10-2020-0238 DeLone WH, 1992, INFORM SYST RES, V3, P60, DOI 10.1287/isre.3.1.60 Dhar R, 2000, J MARKETING RES, V37, P60, DOI 10.1509/jmkr.37.1.60.18718 Dijkstra TK, 2015, MIS QUART, V39, P297, DOI 10.25300/MISQ/2015/39.2.02 Fiore AM, 2005, PSYCHOL MARKET, V22, P669, DOI 10.1002/mar.20079 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Gao LL, 2015, COMPUT HUM BEHAV, V53, P249, DOI 10.1016/j.chb.2015.07.014 Godey B, 2016, J BUS RES, V69, P5833, DOI 10.1016/j.jbusres.2016.04.181 Hair J. F., 2022, A primer on partial least squares structural equation modeling (PLS-SEM), V3rd Hair J. F., 2017, ADV ISSUES PARTIAL L Hair J.F., 2020, EQUAZIONI STRUTTURAL Hair J.F., 2009, Multivariate data analysis Hair JF, 2019, EUR BUS REV, V31, P2, DOI 10.1108/EBR-11-2018-0203 Hoyer WD, 2020, J INTERACT MARK, V51, P57, DOI 10.1016/j.intmar.2020.04.001 Kaplan A, 2019, BUS HORIZONS, V62, P15, DOI 10.1016/j.bushor.2018.08.004 Kulviwat S, 2007, PSYCHOL MARKET, V24, P1059, DOI 10.1002/mar.20196 Laranjo L, 2018, J AM MED INFORM ASSN, V25, P1248, DOI 10.1093/jamia/ocy072 Lee YW, 2002, INFORM MANAGE-AMSTER, V40, P133, DOI 10.1016/S0378-7206(02)00043-5 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Libai B, 2020, J INTERACT MARK, V51, P44, DOI 10.1016/j.intmar.2020.04.002 MARTILLA JA, 1977, J MARKETING, V41, P77, DOI 10.2307/1250495 Martínez-López FJ, 2013, IND MARKET MANAG, V42, P489, DOI 10.1016/j.indmarman.2013.03.001 May R, 2022, INFORM HEALTH SOC CA, V47, P194, DOI 10.1080/17538157.2021.1983578 Murtarelli G, 2023, TQM J, V35, P719, DOI 10.1108/TQM-01-2022-0010 Nasco SA, 2008, PSYCHOL MARKET, V25, P987, DOI 10.1002/mar.20249 Nelson RR, 2005, J MANAGE INFORM SYST, V21, P199, DOI 10.1080/07421222.2005.11045823 Oh H, 2001, TOURISM MANAGE, V22, P617, DOI 10.1016/S0261-5177(01)00036-X Pavon G., 2020, Journal of Service Management Research, V4, P35, DOI [10.15358/2511-8676-2020-1-35, DOI 10.15358/2511-8676-2020-1-35] Pérez JQ, 2020, COMPUT APPL ENG EDUC, V28, P1549, DOI 10.1002/cae.22326 Phadermrod B, 2019, INT J INFORM MANAGE, V44, P194, DOI 10.1016/j.ijinfomgt.2016.03.009 Prajogo DI, 2006, EUR J OPER RES, V168, P35, DOI 10.1016/j.ejor.2004.03.033 Ringle C.M., 2015, SmartPLS 3, DOI DOI 10.1037/0003-066X.55.1.68 Ringle CM, 2016, IND MANAGE DATA SYST, V116, P1865, DOI 10.1108/IMDS-10-2015-0449 Rose S, 2012, J RETAILING, V88, P308, DOI 10.1016/j.jretai.2012.03.001 Roy AS, 2020, TQM J, V32, P401, DOI 10.1108/TQM-09-2019-0232 Sarstedt M, 2023, J MARKET THEORY PRAC, V31, P261, DOI 10.1080/10696679.2022.2056488 Sarstedt M, 2022, PSYCHOL MARKET, V39, P1035, DOI 10.1002/mar.21640 Scheidt S, 2019, INT J INFORM MANAGE, V45, P223, DOI 10.1016/j.ijinfomgt.2018.01.002 Schmitt B, 2019, J CONSUM RES, V46, P825, DOI 10.1093/jcr/ucz038 Shmueli G, 2019, EUR J MARKETING, V53, P2322, DOI 10.1108/EJM-02-2019-0189 Swanson EB, 1997, INFORM SOFTWARE TECH, V39, P845, DOI 10.1016/S0950-5849(97)00043-8 Tasleem M, 2019, INT J QUAL RELIAB MA, V36, P1574, DOI 10.1108/IJQRM-01-2018-0017 Trivedi J, 2019, J INTERNET COMMER, V18, P91, DOI 10.1080/15332861.2019.1567188 Wang R. Y., 1996, Journal of Management Information Systems, V12, P5 Wiedmann KP, 2009, PSYCHOL MARKET, V26, P625, DOI 10.1002/mar.20292 Zarouali B, 2018, CYBERPSYCH BEH SOC N, V21, P491, DOI 10.1089/cyber.2017.0518 NR 59 TC 0 Z9 0 U1 14 U2 32 PU EMERALD GROUP PUBLISHING LTD PI BINGLEY PA HOWARD HOUSE, WAGON LANE, BINGLEY BD16 1WA, W YORKSHIRE, ENGLAND SN 1754-2731 EI 1754-274X J9 TQM J JI TQM J. PD JUN 26 PY 2023 VL 35 IS 5 SI SI BP 1156 EP 1169 DI 10.1108/TQM-02-2022-0080 EA AUG 2022 PG 14 WC Management WE Emerging Sources Citation Index (ESCI) SC Business & Economics GA L0IZ8 UT WOS:000844616100001 OA hybrid DA 2024-03-27 ER PT J AU de Kervenoael, R Schwob, A Hasan, R Psylla, E AF de Kervenoael, Ronan Schwob, Alexandre Hasan, Rajibul Psylla, Evangelia TI SIoT robots and consumer experiences in retail: Unpacking repeat purchase intention drivers leveraging computers are social actors (CASA) paradigm SO JOURNAL OF RETAILING AND CONSUMER SERVICES LA English DT Article DE Social internet of things; Retail service; Supermarkets; CASA; Smart robots; Repeat purchase; PLS-SEM ID CUSTOMER EXPERIENCE; SERVICE ROBOT; INFORMATION-TECHNOLOGY; USER ACCEPTANCE; ANTHROPOMORPHISM; INTELLIGENCE; PERCEPTIONS; MANAGEMENT; FRAMEWORK; MACHINES AB This study contributes to knowledge on the so far limited understanding of how to manage collaboration between Social Internet of Things (SIoT) service robots and consumers in the retail context. Embedded in Computers Are Social Actors (CASA) paradigm, we leverage a Partial Least Approach - Structural Equation Modelling (PLS-SEM) (n = 356) to show that word of mouth, consumer promotion experience, relationship quality, and inspiration significantly impact consumers' repeat purchase intention when SIoT robots are used. Noticeably, while relationship quality is significant, it has a negative coefficient indicating that consumers may have high pre-existing anxiety towards SIoT service robots. C1 [de Kervenoael, Ronan] Rennes Sch Business, Dept Mkt, Rennes, France. [Schwob, Alexandre] Excelia Business Sch, Dept Mkt, La Rochelle, France. [Hasan, Rajibul] EM Normandie Business Sch, Metis Lab, Le Havre, France. [Psylla, Evangelia] Ex Ogilvy, ELF Media, Grtraveller Magazine, Athens, Greece. C3 Universite de Rennes RP de Kervenoael, R (autor correspondiente), Rennes Sch Business, Dept Mkt, Rennes, France. EM ronan.jouan-de-kervenoael@rennes-sb.com; schwoba@excelia-group.com; rhasan@em-normandie.fr; lilian.psilla@gmail.com OI de kervenoael, ronan/0000-0002-9970-5101 CR Ailawadi KL, 2009, J RETAILING, V85, P42, DOI 10.1016/j.jretai.2008.11.002 Al-Emran M., 2020, SOCIAL INTERNET THIN, P197, DOI DOI 10.1007/978-3-030-24513-9_12 Ameen N, 2022, COMPUT HUM BEHAV, V126, DOI 10.1016/j.chb.2021.106976 Amelia A, 2022, J SERV MANAGE, V33, P321, DOI 10.1108/JOSM-10-2020-0374 Amenuvor Fortune Edem, 2020, [Journal of Marketing Studies, 마케팅논집(Journal of Marketing Studies)], V28, P15, DOI 10.22736/jms.28.2.02 Appel M, 2021, COMPUT HUM BEHAV, V120, DOI 10.1016/j.chb.2021.106749 Arghashi V, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102756 Argo JJ, 2020, J RETAILING, V96, P25, DOI 10.1016/j.jretai.2019.12.005 Arikan E, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103175 Atzori L, 2011, IEEE COMMUN LETT, V15, P1193, DOI 10.1109/LCOMM.2011.090911.111340 Baidya M.K., 2019, J. Bus. Manag, V25 Bartneck C., 2020, HUMAN ROBOT INTERACT Bartneck C, 2009, INT J SOC ROBOT, V1, P71, DOI 10.1007/s12369-008-0001-3 Becker L, 2020, J ACAD MARKET SCI, V48, P630, DOI 10.1007/s11747-019-00718-x Belanche D, 2020, SERV IND J, V40, P203, DOI 10.1080/02642069.2019.1672666 Belk R, 2021, MARKETING THEOR, V21, P25, DOI 10.1177/1470593120961461 Belk R, 2020, J MACROMARKETING, V40, P221, DOI 10.1177/0276146719897361 Benitez J, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.05.003 Berg Julia., 2020, Current Robotics Reports, V1, P27, DOI [10.1007/s43154-020-00005-6, DOI 10.1007/S43154-020-00005-6] Birnbaum GE, 2016, COMPUT HUM BEHAV, V63, P416, DOI 10.1016/j.chb.2016.05.064 Blasco-Arcas L, 2022, J BUS RES, V146, P436, DOI 10.1016/j.jbusres.2022.03.054 Blut M, 2021, J ACAD MARKET SCI, V49, P632, DOI 10.1007/s11747-020-00762-y Bock DE, 2020, J SERV MARK, V34, P317, DOI 10.1108/JSM-01-2019-0047 Bortnikov Sergey Petrovich, 2020, Digital Transformation of the Economy: Challenges, Trends and New Opportunities. Advances in Intelligent Systems and Computing (AISC 908), P32, DOI 10.1007/978-3-030-11367-4_3 Böttger T, 2017, J MARKETING, V81, P116, DOI 10.1509/jm.15.0007 Brengman M, 2021, J BUS RES, V134, P263, DOI 10.1016/j.jbusres.2021.05.025 Campa R., 2016, J. Evol. Technol, V26 Cao LL, 2021, INT J RETAIL DISTRIB, V49, P958, DOI 10.1108/IJRDM-09-2020-0350 Celik V, 2013, COMPUT EDUC, V60, P148, DOI 10.1016/j.compedu.2012.06.008 Chang RCS, 2018, COMPUT HUM BEHAV, V84, P194, DOI 10.1016/j.chb.2018.02.025 CHIN W. W., STAT STRATEGIES SMAL, P307 Chin WW, 2003, INFORM SYST RES, V14, P189, DOI 10.1287/isre.14.2.189.16018 Chin WW, 1998, QUANT METH SER, P295 Chuah SHW, 2021, J RETAIL CONSUM SERV, V61, DOI 10.1016/j.jretconser.2021.102551 Costanzo M, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.672995 Danaher J, 2019, J POSTHUMAN STUD, V3, P5, DOI 10.5325/jpoststud.3.1.0005 Daqau M.A.M.A., 2019, INT REV MANAG MARK, V9, P22 Darling Kate., 2021, The New Breed: What Our History with Animals Reveals about Our Future with Robots DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 Dawes JG, 2021, EUR J MARKETING, V55, P763, DOI 10.1108/EJM-01-2018-0042 De Gauquier L., 2020, RETAIL FUTURES, P15, DOI DOI 10.1108/978-1-83867-663-620201007 De Gauquier L, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103176 De Gauquier L, 2021, INT J RETAIL DISTRIB, V49, P846, DOI 10.1108/IJRDM-10-2020-0413 de Kervenoael R, 2023, BEHAV INFORM TECHNOL, DOI 10.1080/0144929X.2023.2212088 de Kervenoael R, 2020, TOURISM MANAGE, V78, DOI 10.1016/j.tourman.2019.104042 de Kervenoael R, 2018, CONSUMP MARK CULT, V21, P417, DOI 10.1080/10253866.2018.1462583 De Keyser A, 2020, J SERV RES-US, V23, P433, DOI 10.1177/1094670520928390 Deloitte, 2015, Navigating the New Digital Divide: Capitalising on Digital Influence in Retail. Durdevic N, 2022, SUSTAINABILITY-BASEL, V14, DOI 10.3390/su14063256 Edwards C, 2020, IEEE ROMAN, P1063, DOI 10.1109/RO-MAN47096.2020.9223496 Elbasheer M, 2023, IET COLL INTEL MANUF, V5, DOI 10.1049/cim2.12066 Filieri R, 2022, J SERV RES-US, V25, P614, DOI 10.1177/10946705221103937 Filipe S, 2017, J RETAIL CONSUM SERV, V37, P78, DOI 10.1016/j.jretconser.2017.03.002 FORNELL C, 1982, J MARKETING RES, V19, P440, DOI 10.2307/3151718 Fox J, 2021, CYBERPSYCH BEH SOC N, V24, P294, DOI 10.1089/cyber.2020.0181 Gambino A., 2020, HUMAN MACHINE COMMUN, V1, P71, DOI DOI 10.30658/HMC.1.5 Giger JC, 2019, HUM BEHAV EMERG TECH, V1, P111, DOI 10.1002/hbe2.147 Glikson E, 2020, ACAD MANAG ANN, V14, P627, DOI 10.5465/annals.2018.0057 Goodrich Michael A., 2007, Foundations and Trends in Human-Computer Interaction, V1, P203, DOI 10.1561/1100000005 Gordon J.S, 2020, Smart Technologies and Fundamental Rights, P17 Goudey A, 2016, RECH APPL MARKET-ENG, V31, P2, DOI 10.1177/2051570716643961 Graef R, 2023, J DECIS SYST, V32, P439, DOI 10.1080/12460125.2022.2029049 Grewal D, 2009, J RETAILING, V85, P1, DOI 10.1016/j.jretai.2009.01.001 Grewal D, 2021, J BUS RES, V134, P198, DOI 10.1016/j.jbusres.2021.05.004 Grewal D, 2020, J ACAD MARKET SCI, V48, P96, DOI 10.1007/s11747-019-00697-z Gunkel D, 2019, SURVIVE ROBOT INVASI Gunkel D.J, 2018, A Networked Self and Human Augmentics, Artificial Intelligence, Sentience, P51 Gunkel DJ, 2018, ETHICS INF TECHNOL, V20, P87, DOI 10.1007/s10676-017-9442-4 Guo B, 2013, J NETW COMPUT APPL, V36, P1531, DOI 10.1016/j.jnca.2012.12.028 Hair JF, 2013, LONG RANGE PLANN, V46, P1, DOI 10.1016/j.lrp.2013.01.001 Hall A., 2017, International Journal of Retail & Distribution Management Hartzog W., 2014, MD L REV, V74, P785 Hartzog W, 2016, J HUM-ROBOT INTERACT, V5, P70, DOI 10.5898/JHRI.5.3.Hartzog Heikkilä P, 2019, LECT NOTES ARTIF INT, V11876, P548, DOI 10.1007/978-3-030-35888-4_51 Heller J, 2019, J RETAILING, V95, P94, DOI 10.1016/j.jretai.2019.03.005 Hennig-Thurau T., 2000, Journal of Marketing Management, V16, P55, DOI [10.1362/026725700785100497, DOI 10.1362/026725700785100497] Henseler J, 2014, ORGAN RES METHODS, V17, P182, DOI 10.1177/1094428114526928 Hentout A, 2019, ADV ROBOTICS, V33, P764, DOI 10.1080/01691864.2019.1636714 Herbrechter S, 2021, Before Humanity, P184 Hermann E, 2022, J BUS ETHICS, V179, P43, DOI 10.1007/s10551-021-04843-y Holmlund M, 2020, J BUS RES, V116, P356, DOI 10.1016/j.jbusres.2020.01.022 Honig S, 2018, FRONT PSYCHOL, V9, DOI 10.3389/fpsyg.2018.00861 Hottat E, 2023, J SERV MANAGE, V34, P696, DOI 10.1108/JOSM-04-2022-0125 Hu MY, 2020, INTERNET RES, V30, P1019, DOI 10.1108/INTR-03-2019-0082 Huang MH, 2021, J SERV RES-US, V24, P30, DOI 10.1177/1094670520902266 Hwang Hyeon-Chul, 2019, [Journal of Korea Academia-Industrial cooperation Society, 한국산학기술학회논문지], V20, P287, DOI 10.5762/KAIS.2019.20.12.287 Iacobucci D., 2009, Marketing research: Methodological foundations (with Qualtrics Card) South Inkulu AK, 2022, IND ROBOT, V49, P226, DOI 10.1108/IR-04-2021-0077 Iwasaki M, 2018, IEEE ROMAN, P300, DOI 10.1109/ROMAN.2018.8525772 Jain R, 2017, J SERV THEOR PRACT, V27, P642, DOI 10.1108/JSTP-03-2015-0064 Joe W.Y., 2019, Int. J. Mech. Eng. Robot. Res, V8 Juniper Research, 2023, AI spending by retailer. Kalaignanam K, 2018, J RETAILING, V94, P265, DOI 10.1016/j.jretai.2018.05.001 Kathleen B, 2022, ACTA PSYCHOL, V222, DOI 10.1016/j.actpsy.2021.103476 Kothgassner OD, 2017, COMPUT HUM BEHAV, V70, P261, DOI 10.1016/j.chb.2016.12.059 Lee SK, 2023, BEHAV INFORM TECHNOL, V42, P2754, DOI 10.1080/0144929X.2022.2145998 Lemon KN, 2016, J MARKETING, V80, P69, DOI 10.1509/jm.15.0420 Li DJ, 2010, INT J SOC ROBOT, V2, P175, DOI 10.1007/s12369-010-0056-9 Lima J, 2020, IEEE INT CONF AUTON, P239, DOI [10.1109/ICARSC49921.2020.9096164, 10.1109/icarsc49921.2020.9096164] Longoni C, 2021, When Do We Trust AI's Recommendations More than People's Loscri V, 2019, PROCEEDINGS OF THE 2019 ACM MOBIHOCWORKSHOP ON PERVASIVE SYSTEMS IN THE IOT ERA (PERSIST-IOT '19), P1, DOI 10.1145/3331052.3332470 Lowry PB, 2014, IEEE T PROF COMMUN, V57, P123, DOI 10.1109/TPC.2014.2312452 Lu L, 2021, INT J HOSP MANAG, V94, DOI 10.1016/j.ijhm.2020.102823 Lu L, 2019, INT J HOSP MANAG, V80, P36, DOI 10.1016/j.ijhm.2019.01.005 Mahmoud AB, 2020, Retail Futures, P165, DOI [10.1108/978-1-83867-663-620201019, DOI 10.1108/978-1-83867-663-620201019] Makarius EE, 2020, J BUS RES, V120, P262, DOI 10.1016/j.jbusres.2020.07.045 Mamak K, 2022, INT J SOC ROBOT, V14, P1057, DOI 10.1007/s12369-021-00852-z Mamak K, 2021, FRONT ROBOT AI, V8, DOI 10.3389/frobt.2021.712427 Mann JA, 2015, COMPUT HUM BEHAV, V43, P112, DOI 10.1016/j.chb.2014.10.029 Marek L., 2017, Jagiellonian Journal of Management, V3, P163, DOI [10.4467/2450114XJJM.17.011.9562, DOI 10.4467/2450114XJJM.17.011.9562] Martin K, 2019, J BUS ETHICS, V160, P835, DOI 10.1007/s10551-018-3921-3 Mende M, 2019, J MARKETING RES, V56, P535, DOI 10.1177/0022243718822827 Merdin-Uygur E, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103174 Meyer P, 2023, J RETAIL CONSUM SERV, V70, DOI 10.1016/j.jretconser.2022.103173 Mori M, 2012, IEEE ROBOT AUTOM MAG, V19, P98, DOI 10.1109/MRA.2012.2192811 Mukherjee S, 2021, DECISION-INDIA, V48, P445, DOI 10.1007/s40622-021-00300-x Nass C, 2000, J SOC ISSUES, V56, P81, DOI 10.1111/0022-4537.00153 NASS C, 1994, HUMAN FACTORS IN COMPUTING SYSTEMS, CHI '94 CONFERENCE PROCEEDINGS - CELEBRATING INTERDEPENDENCE, P72, DOI 10.1145/191666.191703 Nastjuk I, 2020, TECHNOL FORECAST SOC, V161, DOI 10.1016/j.techfore.2020.120319 Niemela M., 2019, inSocial Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction, P119 Nitti M, 2015, 2015 IEEE 2ND WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P424, DOI 10.1109/WF-IoT.2015.7389092 Nitti M, 2014, 2014 IEEE WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P405, DOI 10.1109/WF-IoT.2014.6803200 Noble SM, 2022, J RETAILING, V98, P199, DOI 10.1016/j.jretai.2022.04.003 Nyholm S, 2019, CAMB Q HEALTHC ETHIC, V28, P592, DOI 10.1017/S0963180119000537 Odekerken-Schröder G, 2022, J SERV MANAGE, V33, P246, DOI 10.1108/JOSM-10-2020-0372 Oosthuizen K, 2021, AUSTRALAS MARK J, V29, P264, DOI 10.1016/j.ausmj.2020.07.007 Pantano E, 2022, J SERV RES-US, V25, P583, DOI 10.1177/10946705221103538 Pantano E, 2019, J RETAIL CONSUM SERV, V49, P297, DOI 10.1016/j.jretconser.2019.01.019 Pelau C, 2021, COMPUT HUM BEHAV, V122, DOI 10.1016/j.chb.2021.106855 Peltier J.W., 2023, J. Res. Interact. Market Piçarra N, 2018, COMPUT HUM BEHAV, V86, P129, DOI 10.1016/j.chb.2018.04.026 Pillai R, 2020, INT J CONTEMP HOSP M, V32, P3199, DOI 10.1108/IJCHM-04-2020-0259 Podsakoff PM, 2003, J APPL PSYCHOL, V88, P879, DOI 10.1037/0021-9010.88.5.879 Ponce P., 2023, Data and AI Driving Smart Cities, P125 Postnikoff B, 2018, ACMIEEE INT CONF HUM, P313, DOI 10.1145/3173386.3176908 Prentice C, 2021, J RETAIL CONSUM SERV, V62, DOI 10.1016/j.jretconser.2021.102661 Pusca Corneliu Andy, 2020, Science and Technologies for Smart Cities. 5th EAI International Summit SmartCity360. Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (LNICST 323), P412, DOI 10.1007/978-3-030-51005-3_33 PWC, 2019, Whom do customers really trust, Global consumer insights survey. Rauschnabel PA, 2019, J RETAIL CONSUM SERV, V49, P43, DOI 10.1016/j.jretconser.2019.03.004 Rehman AU, 2020, ELECTRONICS-SWITZ, V9, DOI 10.3390/electronics9060918 Rogers, 2003, DIFFUSION INNOVATION Rond J, 2019, IEEE ROMAN, DOI 10.1109/ro-man46459.2019.8956410 Roopa MS, 2019, COMPUT COMMUN, V139, P32, DOI 10.1016/j.comcom.2019.03.009 Sabanovic S., 2006, 9th IEEE International Workshop on Advanced Motion Control, P576 Sandoval EB, 2021, INT J SOC ROBOT, V13, P851, DOI 10.1007/s12369-020-00658-5 Sarwar MA, 2022, J PUBLIC AFF, V22, DOI 10.1002/pa.2357 Schultze U, 2019, INFORM SYST J, V29, P707, DOI 10.1111/isj.12230 Seeber I, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103174 Shahab Saima, 2022, ICT Analysis and Applications. Lecture Notes in Networks and Systems (314), P289, DOI 10.1007/978-981-16-5655-2_28 Shankar V, 2021, J RETAILING, V97, P13, DOI 10.1016/j.jretai.2020.10.006 Sheehan B, 2020, J BUS RES, V115, P14, DOI 10.1016/j.jbusres.2020.04.030 Siegel D., 2017, J TECHNOLOGY STUDIES, V43, P58, DOI [10.21061/jots.v43i2.a.1, DOI 10.21061/JOTS.V43I2.A.1] Söderlund M, 2022, J RETAIL CONSUM SERV, V67, DOI 10.1016/j.jretconser.2022.102999 Song CS, 2022, J BUS RES, V146, P489, DOI 10.1016/j.jbusres.2022.03.087 Song CS, 2021, J RETAIL CONSUM SERV, V63, DOI 10.1016/j.jretconser.2021.102727 Song SY, 2022, CLOTH TEXT RES J, V40, P3, DOI 10.1177/0887302X20941261 Song X, 2022, INFORM MANAGE-AMSTER, V59, DOI 10.1016/j.im.2022.103595 Spekman MLC, 2018, COMPUT HUM BEHAV, V85, P308, DOI 10.1016/j.chb.2018.03.043 Stelea GA, 2020, IEEE ACCESS, V8, P153578, DOI 10.1109/ACCESS.2020.3018331 Sternbeck M., 2022, Robotics for Intralogistics in Supermarkets and Retail Stores, P1 Strasser A, 2020, CULTURALLY SUSTAINAB, P295, DOI [10.3233/FAIA200926, DOI 10.3233/FAIA200926] Subero-Navarro A, 2022, J RETAIL CONSUM SERV, V64, DOI 10.1016/j.jretconser.2021.102813 Sunnafrank M, 2004, J SOC PERS RELAT, V21, P361, DOI 10.1177/0265407504042837 Tandon U, 2023, GLOB KNOWL MEM COMMU, DOI 10.1108/GKMC-06-2022-0125 Thellman S, 2020, ISCIENCE, V23, DOI 10.1016/j.isci.2020.101625 Tuomi A, 2021, CORNELL HOSP Q, V62, P232, DOI 10.1177/1938965520923961 Turja T, 2020, INFORM MANAGE-AMSTER, V57, DOI 10.1016/j.im.2019.103220 Tussyadiah I.P., 2018, Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference, P308, DOI DOI 10.1007/978-3-319-72923-7_24 Tyrväinen O, 2020, J RETAIL CONSUM SERV, V57, DOI 10.1016/j.jretconser.2020.102233 van Pinxteren MME, 2019, J SERV MARK, V33, P507, DOI 10.1108/JSM-01-2018-0045 Venkatesh V, 2003, MIS QUART, V27, P425, DOI 10.2307/30036540 Venkatesh V, 2012, MIS QUART, V36, P157 Wang C, 2018, J ACAD MARKET SCI, V46, P190, DOI 10.1007/s11747-017-0573-2 Wang YW, 2022, J RETAIL CONSUM SERV, V68, DOI 10.1016/j.jretconser.2022.103002 Wellendorf K., 2022, MAST: the Journal of Media Art Study and Theory, V3, P1 Wong A., 2006, Int. J. Qual. Reliab. Manag Yoganathan V, 2021, TOURISM MANAGE, V85, DOI 10.1016/j.tourman.2021.104309 Yu B, 2021, INFORM MANAGE-AMSTER, V58, DOI 10.1016/j.im.2021.103503 Yu CE, 2019, TOUR REV, V74, P428, DOI 10.1108/TR-07-2018-0097 Zhong VJ, 2022, ACMIEEE INT CONF HUM, P1140, DOI 10.1109/HRI53351.2022.9889602 Zibafar A, 2021, INT J SOC ROBOT, V13, P509, DOI 10.1007/s12369-019-00566-3 곽소나, 2014, [Archives of Design Research, 디자인학연구], V27, P81 NR 182 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCI LTD PI London PA 125 London Wall, London, ENGLAND SN 0969-6989 EI 1873-1384 J9 J RETAIL CONSUM SERV JI J. Retail. Consum. Serv. PD JAN PY 2024 VL 76 AR 103589 DI 10.1016/j.jretconser.2023.103589 EA OCT 2023 PG 14 WC Business WE Social Science Citation Index (SSCI) SC Business & Economics GA Y2IL0 UT WOS:001103553700001 DA 2024-03-27 ER PT J AU Lin, SP Chan, YH Lu, IY AF Lin, Shu-Ping Chan, Ya-Hui Lu, I-Ying TI A hybrid framework for understanding mobile robotic financial service adoption, encompassing utility and trust theories to define service redesign actions SO INTERNATIONAL JOURNAL OF MOBILE COMMUNICATIONS LA English DT Article DE mobile banking; mobile robotic financial service; MRFS; mobile communication; utility theory; trust theory; adoption behaviour; structural equation modelling; SEM; service design; service diffusion ID STRUCTURAL EQUATION MODELS; E-COMMERCE; CONSUMERS; BANKING; ACCEPTANCE; LOYALTY AB The mobile robotic financial service (MRFS) is an important disruptive innovation in mobile banking development. However, very few studies have been conducted to investigate MRFS adoption behaviour in order to help define MRFS redesign actions for responding to dynamic markets. Thus, this study's main aims are: 1) to propose a service redesign framework for continuous MFRS innovation; 2) to perform an empirical analysis to explain how to apply it to identify the antecedents of user behaviours, extract determinants, and finally define service redesign actions. Data analysis reveals that the hybrid causal model is partially mediated by extending utility theory to include trust theory. Thus the direct and indirect effects that affect adoption behaviours significantly must be calculated. Finally, action matrix analysis is employed, and the results reveal that the service redesign action changes after the causal dynamics of the hybrid model are considered. C1 [Lin, Shu-Ping; Chan, Ya-Hui] CTBC Business Sch, Dept Banking & Finance, Tainan, Taiwan. [Lu, I-Ying] Advantech Co Ltd, 1,Alley 20,Lane 26,Rueiguang Rd, Taipei 114519, Taiwan. RP Chan, YH (autor correspondiente), CTBC Business Sch, Dept Banking & Finance, Tainan, Taiwan. EM splin@ctbc.edu.tw; yahui0219@gmail.com; cooper.lu@advantech.com.tw CR Al-Ajam AliSaleh., 2013, European Journal of Business and Management, V5, P207 Al-Sharafi M.A., 2016, J ENG APPL SCI, V11, P545 Alalwan AA, 2017, INT J INFORM MANAGE, V37, P99, DOI 10.1016/j.ijinfomgt.2017.01.002 Alfina Ika, 2014, Journal of Computer Science, V10, P2518, DOI 10.3844/jcssp.2014.2518.2524 Becker JM, 2013, MIS QUART, V37, P665, DOI 10.25300/MISQ/2013/37.3.01 Brengman M, 2012, MANAG RES REV, V35, P791, DOI 10.1108/01409171211256569 Dadzie KQ, 2018, J BUS IND MARK, V33, P134, DOI 10.1108/JBIM-04-2017-0090 DAVIS FD, 1989, MIS QUART, V13, P319, DOI 10.2307/249008 FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312 Ganesan S., 1994, J MARKETING, V58, P1, DOI DOI 10.2307/1252265 Gao LL, 2017, INFORM SYST FRONT, V19, P525, DOI 10.1007/s10796-015-9611-0 Gefen D, 2003, MIS QUART, V27, P51, DOI 10.2307/30036519 Gianni G, 2003, INT J SERV IND MANAG, V14, P331, DOI 10.1108/09564230310478855 Hair J.F., 2009, Multivariate data analysis Hanafizadeh P, 2014, TELEMAT INFORM, V31, P62, DOI 10.1016/j.tele.2012.11.001 Harris LC, 2004, J RETAILING, V80, P139, DOI 10.1016/j.jretai.2004.04.002 Hourahine B., 2004, J FINANCIAL SERVICE, V9, P57 Jeong B.K., 2013, BUSINESS MANAGEMENT, V2, P31, DOI [10.5430/bmr.v2n1p31, DOI 10.5430/BMR.V2N1P31] Johnson D, 2005, J BUS RES, V58, P500, DOI 10.1016/S0148-2963(03)00140-1 JORESKOG KG, 1970, BIOMETRIKA, V57, P239, DOI 10.2307/2334833 Kesharwani A, 2012, INT J BANK MARK, V30, P303, DOI 10.1108/02652321211236923 Koenig-Lewis N, 2010, INT J BANK MARK, V28, P410, DOI 10.1108/02652321011064917 Lewicki R., 1995, CONFLICT COOPERATION, P133, DOI DOI 10.1177/0149206306294405 Lin JB, 2011, ELECTRON COMMER R A, V10, P615, DOI 10.1016/j.elerap.2011.07.008 Matemba ED, 2018, TECHNOL SOC, V53, P55, DOI 10.1016/j.techsoc.2017.12.001 McKnight DH, 2002, INFORM SYST RES, V13, P334, DOI 10.1287/isre.13.3.334.81 Mohammadi H, 2015, COMPUT HUM BEHAV, V44, P35, DOI 10.1016/j.chb.2014.11.015 Moro A, 2013, J BANK FINANC, V37, P927, DOI 10.1016/j.jbankfin.2012.10.023 Morrow J., 2004, J MANAGEMENT ISSUES, V16, P48 Ngo-Ye T.L., 2018, Issues in Information Systems, V19, P128, DOI DOI 10.48009/1_IIS_2018_128-138 Nicholson CY, 2001, J ACAD MARKET SCI, V29, P3, DOI 10.1177/0092070301291001 Phoon K, 2018, J ALTERN INVEST, V20, P79, DOI 10.3905/jai.2018.20.3.079 Pi S-M., 2012, INT J BUSINESS MANAG, V7, P108, DOI DOI 10.5539/IJBM.V7N9P108 REMPEL JK, 1985, J PERS SOC PSYCHOL, V49, P95, DOI 10.1037/0022-3514.49.1.95 Rogers E., 2005, Diffusion of Innovations, V4th ed., DOI DOI 10.1007/978-3-642-79868-9_2 Sullivan YW, 2018, INT J INFORM MANAGE, V39, P199, DOI 10.1016/j.ijinfomgt.2017.12.008 Treanor J., 2014, The Guardian Trivedi N, 2018, INFORM SYST FRONT, V20, P239, DOI 10.1007/s10796-016-9719-x Yang SQ, 2012, COMPUT HUM BEHAV, V28, P129, DOI 10.1016/j.chb.2011.08.019 Yi MY, 2006, INFORM MANAGE-AMSTER, V43, P350, DOI 10.1016/j.im.2005.08.006 Zhang KZK, 2014, INT J INFORM MANAGE, V34, P89, DOI 10.1016/j.ijinfomgt.2013.12.001 Zhou T, 2012, INFORM TECHNOL MANAG, V13, P27, DOI 10.1007/s10799-011-0111-8 NR 42 TC 1 Z9 1 U1 3 U2 18 PU INDERSCIENCE ENTERPRISES LTD PI GENEVA PA WORLD TRADE CENTER BLDG, 29 ROUTE DE PRE-BOIS, CASE POSTALE 856, CH-1215 GENEVA, SWITZERLAND SN 1470-949X EI 1741-5217 J9 INT J MOB COMMUN JI Int. J. Mob. Commun. PY 2022 VL 20 IS 2 BP 196 EP 219 DI 10.1504/IJMC.2022.121435 PG 24 WC Communication WE Social Science Citation Index (SSCI) SC Communication GA ZU1GM UT WOS:000769593700004 DA 2024-03-27 ER EF