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Abstract

Background: Titanium dental implants are widely used, but their long-term mechanical
reliability under fatigue loading remains a key concern. Traditional finite element analysis
is accurate but computationally intensive. This study explores the integration of finite
element analysis data with neural networks to predict fatigue-related responses efficiently.
Methods: A dataset of 200 finite element analysis simulations was generated, varying load
intensity, load angle, and implant size. Each simulation provided three outputs: maximum
von Mises stress, maximum displacement, and fatigue safety factor. A feedforward neural
network with two hidden layers (64 neurons each, ReLU activation) was trained using
160 simulations, with 40 reserved for testing. Results: The neural network achieved high
accuracy across all outputs, with R? values of 0.97 for stress, 0.95 for deformation, and
0.92 for the fatigue safety factor. Mean errors across the test set were below 5%, indicat-
ing strong predictive performance under diverse conditions. Conclusions: The findings
demonstrate that neural networks can reliably replicate finite element analysis outcomes
with significantly reduced computational time. This approach offers a promising tool for
accelerating implant assessment and supports the growing role of Al in biomechanical
design and analysis.

Keywords: dental implants; finite element analysis; neural network model; fatigue prediction;
data integration

1. Introduction

Modern titanium dental implants have proven remarkably successful for replac-
ing missing teeth, consistently demonstrating longevity rates exceeding 95% for many
years [1]. Still, mechanical failures—specifically those caused by structural wear and tear
over time—remain a problem, especially when implants experience repetitive chewing
forces for lengthy periods [2]. Titanium and its alloys stay the materials of choice for
dental implants owing to their superb blend of resilience, resistance to degradation, and
compatibility with human biology [3]. That being said, titanium alloys (with an elasticity
modulus approximately 110 GPa) and human bone (ranging from 3 to 10 GPa for trabecular
bone and to 15 to 30 GPa for cortical bone) differ noticeably in stiffness, which can lead to
stress shielding, peri-implant bone resorption, and ultimately implant failure [4].
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These biomechanical challenges really highlight how crucial it is to conduct thorough
analyses when designing and evaluating implants. Finite element analysis (FEA) has
emerged as a vital computational tool in dental biomechanics. It enables researchers to
explore stress distributions, anticipate where failures might occur, and simulate various
clinical scenarios that would be tough, expensive, or even unethical to test in real life [5].

For instance, Van Staden et al. [6] provided an early review highlighting FEA’s role in
advancing implant design. More recently, Ziaie and Khalili [7] employed FEA to predict
abutment screw fatigue under cyclic loading, identifying probable failure after approx-
imately 3-10° cycles. Meanwhile, Zielifiski et al. [8] took it a step further by combining
FEA with physical fatigue testing, uncovering critical areas where cracks might start, all
influenced by different loading angles.

Even though finite element analysis is incredibly powerful, it does have its drawbacks
when it comes to being used in iterative design or clinical decision-making processes.
Creating high-fidelity, patient-specific simulations often involves complex geometry prepa-
ration, meshing, and tuning the solver, which can take anywhere from hours to days of
computational time. This really limits its usefulness in fast-paced clinical settings. To
address this issue, surrogate modeling techniques that leverage machine learning (ML)
have started to show great promise. Liang et al. implemented a deep learning model that
predicts aortic wall stress distributions based on input geometries, achieving less than 1%
error compared to traditional FEA results [9]. Similarly, Lu et al. created a neural network
to estimate cartilage stress in the knee during multibody dynamics, significantly cutting
down computation time [10]. These examples highlight how artificial neural networks
(ANNSs) can deliver FEA results with impressive accuracy and speed.

In the field of dental implant biomechanics, researchers are diving into the use of neural
networks for various applications, including design optimization, stress prediction, and
estimating fatigue life. Griggs introduced a framework based on artificial neural networks
(ANN) aimed at optimizing implant geometry to enhance fatigue resistance, taking into
account multiaxial loading and material properties [11]. Additionally, physics-informed
neural networks are becoming increasingly popular because they can integrate fundamental
physical equations into the learning process, which boosts the model’s generalizability
and interpretability.

This study showcases a proof-of-concept that combines FEA data with neural networks
to predict three crucial biomechanical indicators related to dental implant fatigue behavior:
von Mises stress, deformation, and the fatigue safety factor. By focusing on a Grade
4 titanium implant system, the present study explores various geometric and loading
scenarios to train and validate an ANN that can accurately estimate FEA results. Therefore,
the goal is to speed up the implant development process, lessen the reliance on repetitive
simulations, and establish a foundation for real-time, Al-driven biomechanical assessments
in clinical environments.

2. Materials and Methods
2.1. Finite Element Analysis Data Generation

A comprehensive numerical analysis was carried out through generating a database
of 200 finite element simulations to investigate the stress distribution and fatigue response
of dental implants under various loading scenarios and geometric configurations. First, a
computer-aided 3D model of a titanium dental implant was designed utilizing SolidWorks®
2024 software before being imported into the ANSYS® Workbench R1 2024 simulation
platform for further evaluation.

A 3D model of a generic titanium dental implant was designed using SolidWorks®. The
implant featured a cylindrical screw-type geometry with a tapered apical end, a standard
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V-thread profile, and rounded thread edges. The implant’s diameter was parametrically
varied between 3.0 and 5.0 mm across simulations, while other dimensions remained fixed
(Figure 1). The overall length was 11 mm, thread pitch was 0.8 mm, and core diameter was
2.5 mm. The surrounding jawbone was not explicitly defined; instead, the implant was
presumed to have achieved full osseointegration, with rigid fixation at the bone-implant
interface, representing a conservative boundary condition for stress evaluation [12]. This
virtual implant prototype was then composed within the program using the recognized me-
chanical attributes of Grade 4 titanium (Young’s modulus = 105 GPa, Poisson’s ratio = 0.34)
and fatigue S-N curve parameters [13]. 200 cases were executed for static structural FEA
calculations, where each case was defined by a unique combination of:

e Axial Force (F): 100-800 N (simulating bite forces).

e Load Angle (A): 0° (pure axial) to 45° (off-axis) in the buccal-lingual dimension,
simulating different angles of mastication.

¢ Implant Diameter (D): 3.0-5.0 mm (narrow- to wide-platform implants).

I1mm

Figure 1. Geometric schematic of the dental implant used in simulations. The model has a cylindrical
screw-type profile with a tapered apex, total length of 11 mm, coronal diameter (d between 3.0 and
5.0 mm, core diameter 2.5 mm, and thread pitch of 0.8 mm.

The 200 simulation cases were generated using a full-factorial sampling strategy,
systematically combining values of the three input variables. Specifically, axial force (F)
was varied at 5 levels between 100 N and 800 N, load angle (A) at 5 levels from 0° to 45°, and
implant diameter (D) at 8 levels from 3.0 mm to 5.0 mm. This resulted in 5 x 5 x 8 =200
distinct configurations. This sampling ensured that the model was trained across the entire
relevant design space, minimizing interpolation bias.
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A distributed load on the occlusal area subjected all experimental conditions to the
force exerted on the crown of the implant, following angle A, relative to the long axis of the
implant. The lower implant region was fixed in all degrees of freedom to simulate a fully
integrated implant in bone. The boundary conditions are represented in Figure 2.

Rigid
fixation
at base

Figure 2. Schematic representation of boundary conditions used in FEA.

For each simulation, three outcome metrics were calculated to evaluate mechanical performance:

e  Maximum von Mises Stress (0_VM): scalar values that are used to determine the level
of stress and are often used as an indicator of yielding and crack initiation of materials.

e  Maximum Deformation (5_max): defined as the peak magnitude of nodal displace-
ment within the implant under loading, reported in millimeters (mm).

e  Fatigue Safety Factor (FSF): the ratio between the material’s fatigue endurance limit
and the equivalent alternating stress amplitude at critical locations, given the fatigue
life target of 5- 10° cycles (run-out threshold). The Goodman criterion was employed
to calculate FSF, based on the extracted von Mises stress and literature-derived fatigue
strength. FSF values greater than 1 implies infinite fatigue life for cyclic loading,
whereas FSF values smaller than 1 implies that there is a high possibility of failure
occurring before the desired cycle limit.

2.2. Artificial Neural Network Development

A feed-forward artificial neural network was developed with an uncomplicated and
effective architecture for regression (prediction of continuous outputs) with three neurons
associated with the normalized values of force (F), angle (A), and diameter (D) in the input
layer. We completed feature normalization (zero-mean, unit-variance), so that all inputs
were within similar scale values which help with quicker convergence on training.

All FEA models were meshed using ANSYS Workbench'’s automatic meshing tools,
applying quadratic tetrahedral elements (SOLID187). A global element size of 0.15 mm was
used throughout the implant body, while curvature-based refinement with a local element
size of 0.05 mm was applied in high-gradient regions such as the implant threads and neck.
The mesh typically consisted of ~150,000 to 200,000 elements per model. Mesh convergence
studies showed that this resolution resulted in <2% variation in peak von Mises stress,
indicating sufficient accuracy for surrogate training.

A mesh convergence study was conducted on a representative implant model under
800 N axial loading at 0° to evaluate sensitivity of the output metrics to mesh refinement.
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Three meshes were compared, using global element sizes of 0.3 mm, 0.2 mm, and 0.15 mm,
with consistent local refinement (0.05 mm) at thread and neck regions. The peak von Mises
stress varied by less than 1.9% between the two finest meshes, while displacement showed
<1% variation. Based on this, the 0.15 mm mesh was selected for all simulations to ensure
numerical stability and convergence of the computed mechanical parameters. The net-
work’s hidden layers were configured as follows: two hidden layers with 64 neurons each,
using the Rectified Linear Unit (ReLU) activation function. This architecture was chosen
for its balance between complexity and generalization given a relatively small dataset
(200 samples). Similar hidden layer sizes have been effectively used in FEA surrogate
models with good accuracy. A dropout regularization (rate = 0.1) was applied to each
hidden layer during training to mitigate overfitting, considering the limited sample size.
The output layer had three linear neurons producing the predicted oy, dmax and Fsg
for a given input F, A and D. No activation function was used in the output layer (identity
activation), as this is standard for regression tasks. The network thus represents a function:

fe (F/ A/ D) — (O-VM/ 5max/ PSF)

with trainable parameters 0 (weights and biases). Figure 3 represents de ANN architecture.

64 hidden

Input layer Hidden Output layer
Layers

Figure 3. Artificial neural network architecture for multivariable regression based on normalized
input parameters (F, A, D).

The model was developed in Python 3.13 with TensorFlow /Keras. The total number
of trainable parameters was just under 4500. The authors made the network size small
in order to capture the main nonlinear relationships between the inputs and outputs but
do so with a chance of overfitting minimized. It also allows rapid execution: a single
prediction from the trained network takes milliseconds to execute on a typical CPU; much
faster than running a new FEA simulation (which can take minutes per case even for
t simplified models).

2.3. Training Procedure

The 200 FEA examples were divided into a test set (20%, n = 40) and a training set
(80%, n = 160) by random sampling. We randomly partitioned the test set, so it spanned the
range of each input to provide an unbiased test of interpolation capabilities. The training
employed the Adam optimizer (adaptive moment estimation) with an initial learning
rate of 0.001. The loss function was the mean squared error (MSE) averaged across the
three outputs:
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During training, a smoothly decrease loss was observed, with no major spikes, indi-
cating the learning was stable, as Figure 4 shows. The plot highlights consistent reduction
across all metrics, with validation loss stabilizing after ~40 epochs. The last training loss
(MSE) was on the order of 1073 (in normalized units), while the validation loss remained
slightly higher (=2 x 1073), reflecting that mild overfitting occurred but was not excessive.
The retention of dropout layers combined with L2 weight regularization (A = 1 x 10~°)
contributed to enhanced generalization.

Training and validation loss curve

3.5 1 — Total loss (Train)
=== Total loss (Val)
—— Sigma_vM_loss (Train)
3.0 —-—- Sigma_vM_loss (Val)
—— Deformation_loss (Train)
===~ Deformation_loss (Val)
2.5 —— Fatigue_SF_loss (Train)
-—- Fatigue_SF_loss (Val)
2.0 1
L
w
=
1.5 +
1.0 4
0.5 ~
0.0 7
T T T T T T
0 20 40 60 80 100
Epocas

Figure 4. Evolution of the mean squared error (MSE) during training and validation for total and
component losses.

2.4. Evaluation Metrics

The model’s performance on the independent test set was assessed using several key
evaluation metrics. First, the Coefficient of Determination (R?) was calculated for each
output variable to measure how much of the variance in the FEA results was captured by
the model. An R? value close to 1 is indicative of strong predictive accuracy and reliability.

In addition to R?, the Mean Absolute Error (MAE) was used to provide an intuitive
measure of the model’s average prediction error. MAE was expressed in physical units
relevant to each output: megapascals (MPa) for stress, millimeters (mm) for deformation,
and unitless for the fatigue safety factor (FSF). To complement this, the mean percentage
error was also computed for each output, offering a normalized view of prediction accuracy.
This was especially important for FSF predictions, where even small absolute errors could
be meaningful due to the values typically being close to 1.
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Scatter plots of predicted vs. actual values was examined in order to visually evaluate
performance and calculated the Pearson correlation coefficient (which will be in agreement
with R?) of each output.

3. Results
3.1. FEA Simulation Outcomes

Before presenting the artificial neural network predictions, a careful analysis of the
finite element analysis dataset—consisting of 200 test cases—was made in an effort to
determine significant mechanical trends. The range of von Mises stress (oy ) throughout
the tests varied from a value about 250 MPa, seen with the lowest loads and greatest
implant diameters, to those over 820 MPa under an 800 N oblique loading at an applied
angle of 45° on the lowest implant diameter. Of particular significance, a high percentage of
cases had oy values greater than the commercially pure Grade 4 titanium yield strength
of approximately 600 MPa and thus the point where plastic deformation began. The
most stressed regions were consistently found at either the implant’s neck (specifically
near the first threads) or the abutment screw, consistent with clinically identified failure
sites. Figure 5 details stress concentrations are located near the implant neck and thread
roots, with no isolated spikes. The smooth distribution confirms mesh convergence and
numerical stability.

von Mises
Stress
(MPa)

400
300
250
200
150
100
50
0

Figure 5. Representative von Mises stress distribution in the dental implant for a high-load, oblique
case (150 N, 45°, 3.0 mm diameter). Maximum displacement (84

) seen during computer simulation were quite small, generally falling in the range of
5 to 50 um, in keeping with the high rigidity of titanium. These displacements correlated
well with the magnitude of the applied force and inversely with implant size—thickest
implants had lower deflection. Maximum values of d,,x occurred when the specimens
were subjected to oblique loading at 45°, where effects of bending were greatest.

The fatigue safety factor (FSF) had a broad spread, ranging from about 0.5—corresponding
to high-load, oblique load conditions expected to lead to failure before 10° cycles—through
to values in excess of 1.5, characteristic of low-load or larger-diameter implant conditions,
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Sigma von Mises: Real vs. Pred

demonstrating a high margin of safety. About 30% of the simulated test cases had values
of FSF < 1.0, suggesting a finite fatigue life and increased risk of mechanical failure. This
broad spread of mechanical response yields a good and representative dataset to train the
ANN to separate safe from failure-inducing fatigue conditions.

The FEA results exhibited consistent and expected trends. Increases in axial force
and off-axis loading led to higher values of von Mises stress (6_vM) and maximum de-
formation (6_max). Conversely, implants with larger diameters showed reduced stress
levels, attributable to their increased cross-sectional area. Notably, several simulations
revealed localized stress concentrations at the implant-abutment junction and around the
first thread, which are well-documented regions of mechanical vulnerability. Furthermore,
an increase in the load angle (A) markedly reduced the fatigue safety factor (FSF), highlight-
ing the detrimental effect of oblique forces on fatigue performance due to elevated bending
moments. These mechanical patterns provided a realistic and diverse dataset suitable for
training the neural network model.

3.2. Neural Network Prediction Performance

The ANN's predictive accuracy was tested on a held-out test set of 40 cases not
employed in the training process. In prediction of the Von Mises stress, the ANN output
closely agreed with reference FEA results, as seen in Figure 6a. In predicting stress, the
coefficient of determination (R?) was 0.97, reflecting that the model captured 97% of
variance in maximum stresses. Mean absolute error (MAE) was 20.5 MPa, equivalent to an
average percent error of 3.2% compared to the mean oy of about 640 MPa in the test set.
Discrepancies were greatest in two test cases where extreme 45° loading occurred, and the
model under-predicted stress by some 50 MPa (7% error). These discrepancies result from
the sharp rise in bending stresses towards the upper edge of the design space. However,
the model accurately identified such cases as high-stress cases, with predicted values over
700 MPa.

Fatigue SF: Real vs. Pred
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Figure 6. Predicted vs. FEA true values for (a) von Mises stress; (b) fatigue safety factor on the
test dataset (40 cases). The neural network predictions closely track the FEA results (R2 > 0.90 for
all outputs).

At maximum displacement, the ANN had an R? of 0.95, and a mean absolute error of
1.8 um, or about 4.5% of the mean deformation (around 40 pm). The model had especially
good accuracy in test cases where the magnitude of the force and implant diameters were
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in the middle range. Minor underestimates occurred in cases with maximum deformations,
typically small-diameter implants subjected to high obliques—here the error went up to
5-6 pm. Most importantly, all predicted values of dmax fell well within a +10% range of
their ground-truth values.

Prediction of the fatigue safety factor (FSF) posed a greater challenge due to its inverse
relationship with stress and the bounded nature of its values. The ANN achieved an R?
of 0.92 for FSF prediction, with a mean absolute error of 0.06 (unitless) and an average
percent error of approximately 4.8%. In most cases, predicted FSF values deviated by
less than 0.05 from the FEA-calculated values. A few borderline cases exhibited minor
over-predictions—for instance, a true FSF of 0.95 was predicted as 1.02—which could lead
to a misclassification of a failing case as safe. However, no false negatives were observed
(i.e., the model never predicted failure for a case that was actually safe), which is a favorable
outcome in the context of conservative design principles.

Figure 6 below illustrates the correlation between ANN predictions and FEA results
for each output. A 45° line is shown for reference. All points lie close to this ideal line,
confirming strong agreement.

In addition to numerical accuracy, the ANN offers dramatic computational speed-
ups. While our FEA simulations took ~45 s per case, the trained ANN computes all three
outputs in under 0.01 s All simulations were performed on a workstation equipped with
an AMD Ryzen 9 5900X processor (AMD, Sunnyvale, CA, USA), 32 GB of RAM, and
an NVIDIA GeForce RTX 4060 Ti GPU (NVIDIA, Santa Clara, CA, USA) with 16 GB of
VRAM. This makes it feasible to perform real-time what-if analyses or optimize implant
designs via brute force evaluation of many scenarios—tasks impractical with direct FEA for
each iteration.

4. Discussion

The primary goal of the current work is to develop and validate an artificial neural
network model able to predict with precision important biomechanical parameters such
as von Mises stress, deformation, and fatigue safety factor from data derived from finite
element analysis (FEA) with the ultimate goal to optimize dental implant design.

Outcomes corroborate the viability of using neural networks as surrogates to bridge
FEA data to predict dental implant fatigue behavior. High R? (>0.92) values in all outputs
confirm that even a relatively straightforward feed-forward ANN is capable of modeling
complex biomechanical correlations in the dataset. This matches the trend in the litera-
ture where ANNSs have effectively extracted patterns from FEA or experimental data in
biomechanical contexts [14,15]. In the current work, the three input parameters (Force,
Angle, Diameter) were adequate to account for the majority variance in outcomes, as these
were the main variables under variation. Further input parameters (e.g., implant length,
thread characteristics, or material properties) can be added in the future to encompass
wider implant design spaces.

The data integration strategy applied in this study is particularly noteworthy. In-
stead of approaching the task purely as a black-box machine learning problem, domain
knowledge was incorporated into the development of both the FEA dataset and the ANN
architecture. For example, the inclusion of the loading angle as an input variable was based
on its established influence on implant stress distribution. By training the model on FEA
outputs, the ANN inherently reflects the physical principles embedded in those simulations,
at least within the bounds of the training data. Once trained, the ANN functions as a rapid
physics-based predictor [16,17].

This approach has promising applications in both implant design and clinical settings.
During the design process, engineers can quickly assess the fatigue implications of different
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implant geometries under varying loads. The ANN enables rapid screening of design
options before refinement with detailed FEA. This process is comparable to an optimization
loop, where the ANN acts as an estimator of the objective function. Previous studies have
proposed the use of neural networks for implant optimization, aiming to enhance fatigue
life and reduce undesirable stress shielding. The findings presented here provide concrete
validation that such a surrogate modeling approach can be both practical and accurate [18].

Clinically, while the ultimate decision will be not depend solely on stress, the avail-
ability of an in-real-time predictive tool whether or not an existing implant (of known
diameter) in a particular patient context (estimated biting force and inclination) is in risk
of failure due to mechanics would be beneficial. It might, for instance, warn the clinician
that an existing 3.3 mm implant under high inclination in a bruxism patient has relatively
low fatigue margin, leading to consideration of an implant with higher diameter or the
option to opt for an alternative treatment. Incorporation into treatment planning software
could further add value to risk assessment on an individual basis. This is part of the
overall trend towards personalized medicine and the application of computational tools to
surgical planning.

The performance outside of the precise training distribution was also quantified.
For instance, a test scenario where the load angle is 60°—just beyond the 45° maximum
encountered during training—was considered. The model extrapolated to give large ovM
(~900 MPa) and low FSF (~0.4) for an 800 N, 4.0 mm diameter implant for this loading
case. This outcome is qualitatively reasonable, since larger angle tends to induce more
bending stress.

The surrogate is valid within a constrained domain: Grade 4 titanium, 3.0-5.0 mm
implant diameter, 100-800 N static loads at 0—45°, and rigid fixation. Extrapolation (e.g.,
dynamic loading, other materials, partial osseointegration) requires retraining, valida-
tion, and uncertainty quantification. The 60° example is illustrative and not evidence
of generalization.

However, such extensions are made cautiously, for even the accuracy for those values
outside the training span cannot be guaranteed. The model remains strong within the
constraints of the original dataset. The performance suffers slightly for very high-stress and
low-FSF values. This limitation can be mitigated through augmentation using additional
training examples for that region or through adding physical constraints, e.g., specifying
the yield stress that is empirically known to be an upper bound [19,20].

The network learned well the force, angle, and diameter interactions. For instance,
keeping force constant, the model captures well more stress and deflection for larger values
of angle (due to effects of bending increasing stress). And it captures larger diameter
reducing stress nonlinearly, though with diminishing returns for very large diameters.

One such restriction we encountered was handling categorical variation in failure
modes—for some simulations, where position of max stress differed (e.g., between abutment
and thread). While our own results (=max values) do not offer location, a next-generation
version of our model could potentially encompass failure location classification. This
information our current ANN does not provide, since it was intended for regression.

Another factor is the absence of bone in our FEA analyses. Practically, bone presence
would alter stress distribution differently and could incur results such as bone microstrain
or implant-bone interface failure. Our ANN, modeled for in-air simulations of the implant,
would need to be reconnected or undergo transfer learning if mechanics for bone were
incorporated [5,21].

Our proof of concept utilized a simplified scenario (single implant, no bone, static
loading) and subsequent models could potentially include bone and perhaps dynamic
loading patterns mimicking actual chewing cycles. The fatigue safety factor which we



Appl. Sci. 2025, 15, 10362

11 0f 15

computed using high-cycle fatigue theory’s Goodman criterion is a simplification and one
could favor a more superior one to account for low-cycle fatigue, different failure criteria
(e.g., Soderberg, Gerber, etc.) or even directly output cycles to failure. Such models could
be trained through data derived from FEA supplemented with fatigue solvers or actual
physical fatigue tests corresponding to simulation results [22].

Expanding the surrogate’s scope requires integrating orthotropic bone domains,
contact-based osseointegration, and fatigue under multi-axial loading. These additions
will be phased through a roadmap combining high-fidelity FEA, ANN retraining with
calibrated UQ, and eventual clinical integration—bridging static implant modeling with
real-world complexity.

Also, even though our focus was regression, classification models could predict cate-
gorical variables (fail or no fail for selected cycles) that might be more clinically interpretable
for chosen cases. A third alternative, physics-informed neural networks (PINNs) offer a
way for inclusion of known physical constraints (like stress equilibrium or S-N curves)
during learning. For example, a PINN could be designed to impose Basquin’s fatigue
equation automatically during data fitting and enhance reliability in extrapolations [23,24].

Another potential future direction is expanding the input parameter space. In addition
to geometry and loading, one could include surface treatment (roughness), material choices
(titanium versus new alloys or PEEK), and even bone quality (D1 dense versus D4 soft
bone) and others. Each would necessitate more data, but active learning methods might be
able to reduce needed FEA simulations through recognition of most informative cases.

The idea of replacing traditional finite element analysis with machine learning is
no longer a speculative detour—it is becoming a credible alternative in computational
biomechanics. A striking illustration comes from the work of Liang et al., who demonstrated
that a deep neural network could predict full-field aortic wall stresses with less than 1%
error [9]. Their approach, fueled by imaging-based geometry and leveraging a sophisticated
convolutional neural network (CNN), tackled a problem of considerable anatomical and
computational complexity.

In contrast, our study deals with a more structured input-output relationship, where
a simpler artificial neural network was not only sufficient but remarkably effective. This
simplicity, however, does not diminish the significance of the task. It underscores the
importance of architectural alignment between model complexity and problem structure.

Lu et al. previously explored the synergy between multibody dynamics and ANN
for estimating cartilage stress in the knee joint. While their results indicated improved
computational speed and acceptable accuracy, a closer reading suggests they focused on
predicting stress at discrete locations rather than global maxima—an important distinction
in biomechanical applications [10].

Liang et al. developed a framework for full-field stress prediction using convolutional
neural networks (CNNs) trained on geometry encodings derived from medical imaging.
Their method optimizes pixel- or voxel-wise loss functions to replicate the spatial distri-
bution of stress, enabling detailed field-level outputs. However, this approach typically
demands larger model capacity and substantially more data to capture fine-grained patterns
across spatial domains [10].

In contrast, our problem formulation is inherently low-dimensional, with inputs com-
prising only force magnitude (F), insertion angle (A), and implant diameter (D), and outputs
limited to scalar quantities—namely, von Mises stress ((rf)’I ), maximum displacement (8;14x),
and the failure safety factor (FSF). Given this structure, a compact multilayer perceptron
(MLP) is more appropriate, prioritizing computational efficiency and data economy over
spatial resolution.
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A middle-ground approach is presented by Lu et al. [10], whose ANN functions as an
emulator within a multibody dynamics framework, predicting location-specific cartilage
stresses based on system-level kinematic inputs. This represents an intermediate level of
model complexity—balancing local specificity with broader system interactions.

Our model, by contrast, is designed to directly map (F, A, D) to global stress extrema
and FSF, enabling rapid, interactive “what-if” analyses during implant design or plan-
ning. Collectively, these comparisons illustrate a general design principle: the choice
of model architecture should align with the nature of the prediction target (full-field vs.
localized vs. global scalar), the dimensionality of the input data, and latency or data
availability constraints.

To our knowledge, this is among the first studies to apply an ANN to FEA-derived data
from dental implants, specifically targeting fatigue-related outputs. In doing so, it offers not
only a proof of concept but a practical pathway toward Al-driven design methodologies.
Our work aligns closely with the vision articulated by Griggs [11], who proposed Al as a
transformative tool in implant design. Here, we provide a tangible step in that direction:
a functioning model that could be readily adapted for generative or optimization-based
tasks in future implant development.

Although our current dataset of 200 finite element analysis (FEA) simulations suffices
to demonstrate the feasibility of the proposed surrogate model, the development of a more
robust and generalizable surrogate will benefit from the incorporation of a larger and more
diverse dataset. Expanding the dataset will help reduce variance, improve generalization,
and stabilize predictions—particularly near the boundaries of the design domain.

As part of our future work, we aim to extend the design space by adopting space-
filling sampling techniques, such as Latin hypercube designs, alongside adaptive or active
sampling strategies guided by model uncertainty or prediction error. This will enable
targeted enrichment of the training dataset in regions where the surrogate model exhibits
reduced predictive reliability or higher output sensitivity (e.g., under conditions of extreme
obliquity or reduced geometrical dimensions). While we currently report point estimates
derived from a held-out test set to provide clarity in performance metrics, small and struc-
tured datasets—such as ours—are better served by resampling-based validation strategies
that more accurately reflect generalization performance. In future work, we intend to adopt
K-fold cross-validation (e.g., K = 5) and repeated hold-out validation to quantify variability
induced by data partitioning. Performance will be summarized using robust statistics, such
as the median and interquartile ranges (IQRs) of R?, mean absolute error (MAE), and root
mean squared error (RMSE) across folds.

Ultimately, if artificial neural networks (ANNSs) are to inform safety-critical decisions,
their reliability must be validated with the same rigor traditionally reserved for established
engineering methods. We advocate for a hybrid approach: leveraging ANN predictions for
rapid insights and early-stage design filtering, then applying targeted FEA simulations to
the most critical or ambiguous cases for final verification. This strategy preserves the high
standards of decision trustworthiness while capitalizing on the speed and efficiency that
Al offers.

Looking ahead, the potential for continuous improvement is clear. As more data
become available—including real-world clinical outcomes—the ANN can be iteratively
retrained, gradually refining its accuracy and broadening its ability to capture patient- and
design-specific variability.

Even at this preliminary stage, the ANN has performed exceptionally well within
its defined scope: predicting key FEA outcomes for dental implants based on load and
geometric parameters. It is, we believe, a promising first step toward integrating Al not as
a replacement, but as a powerful partner in biomechanical design and evaluation.
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The surrogate can be deployed as a REST API or SDK, embedded in clinical CAD plat-
forms, accepting DICOM/CBCT and mesh inputs and returning FSF/ oM /8,,,» predictions
with uncertainty and safety checks. Regulatory compliance requires alignment with IEC
62304, ISO 14971, IEC 62366, and GDPR [25-28]. Deployment includes model versioning,
real-world validation, and drift monitoring to support reliable clinician use.

5. Conclusions

This study proposes a novel yet grounded integration of finite element analysis data
with a feed-forward neural network, aimed at predicting fatigue-related mechanical re-
sponses in titanium dental implants. The approach reflects a growing paradigm in compu-
tational biomechanics—where artificial intelligence does not replace physics, but rather
accelerates its practical application.

The neural network was trained on a triplet of input variables—applied force, angula-
tion, and implant diameter—to estimate three biomechanical outputs derived from FEA:
von Mises stress, total deformation, and the fatigue safety factor. Across all predicted vari-
ables, the model achieved a coefficient of determination (R?) exceeding 0.90, with average
errors hovering around 5%. In other words, the network learned not just to interpolate
data, but to approximate a highly nonlinear mechanical process with remarkable fidelity.

The advantage is not merely predictive accuracy, but speed. Traditional FEA, though
robust, is computationally expensive—often prohibitively so for iterative design or real-
time scenarios. In stark contrast, the trained network delivers near-instantaneous results,
enabling large-scale parametric sweeps and unlocking new possibilities in clinical decision-
making and design optimization workflows.

A crucial pillar of this framework lies in the thoughtful incorporation of domain
knowledge: from the generation of simulation datasets to the careful selection of inputs.
The fidelity of the results underscores the importance of interdisciplinary synergy—where
engineering expertise informs machine learning, and vice versa. This foundation also
allows for scalability: the methodology is readily extendable to more complex scenarios,
including bone-implant interactions, time-dependent loading, or even physics-informed
neural networks for enhanced generalizability.

This study presents several limitations that must be acknowledged before any clin-
ical or industrial application. First, all simulations were performed under static loading
conditions, without incorporating the dynamic, cyclic forces typical of mastication. This
significantly limits the model’s applicability to real-world fatigue scenarios. Although the
fatigue safety factor was estimated using the Goodman criterion, more comprehensive fa-
tigue life predictions (e.g., number of cycles to failure) were not included. From a geometric
perspective, only the implant diameter was varied, while other critical features such as im-
plant length, thread profile, and neck geometry remained fixed. This reduces the surrogate
model’s ability to generalize across a wider range of implant designs. Furthermore, the
ANN was trained within a constrained input domain—loads from 100 to 800 N, angles
from 0° to 45°, and diameters from 3.0 to 5.0 mm—which limits its reliability outside this
region unless retraining and validation are performed. Another important limitation is that
the network only predicts global output values (maximum stress, deformation, and FSF)
without providing spatial information or localizing stress concentrations. As such, it does
not distinguish whether critical stress points occur at the implant neck, abutment screw,
or thread roots—locations clinically relevant for failure prediction and design optimiza-
tion. Finally, the model assumes full osseointegration and excludes any representation of
surrounding bone or patient-specific anatomy. Consequently, factors such as bone density,
bruxism, and anatomical variability are not yet captured. These limitations should be
carefully considered when interpreting the results, and future work must address them by
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incorporating dynamic fatigue models, expanding the geometric and clinical parameter
space, and validating predictions with real patient data to ensure translational relevance.

In conclusion, this convergence between finite element modeling and artificial intelli-
gence marks a significant step forward in implant biomechanics. By uniting the precision
of traditional simulation with the speed and adaptability of Al, researchers are now better
equipped to explore broader design spaces, anticipate mechanical failures, and ultimately
improve clinical outcomes in dental implantology.

Author Contributions: Conceptualization, M.P.-P.; methodology, M.P-P. and T.G.-S.; validation,
M.P-P; formal analysis, M.P--P. and T.G.-S.; data curation, T.G.-S.; writing—original draft prepa-
ration, M.P.-P,; writing—review and editing, M.P.-P. and T.G.-S.; visualization, M.P.-P. and T.G.-S.;
supervision, M.P.-P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANN  Artificial Neural Network

FEA Finite Element Analysis

PINN  Physics-Informed Neural Networks
ReLU Rectified Linear Unit

MAE  Mean Absolute Error

References

1.

10.

11.

Pjetursson, B.E.; Thoma, D.; Jung, R.; Zwahlen, M.; Zembic, A. A systematic review of the survival and complication rates of
implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin. Oral Implant. Res.
2012, 23, 22-38. [CrossRef]

Albrektsson, T.; Zarb, G.; Worthington, P; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and
proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11-25.

Elias, C.N.; Lima, ].H.C.; Valiev, R.; Meyers, M.A. Biomedical Applications of Titanium and its Alloys. ]. Miner. Met. Mater. Soc.
March. 2008, 60, 46-49. [CrossRef]

Gasik, M.; Lambert, F.; Bacevic, M. Biomechanical Properties of Bone and Mucosa for Design and Application of Dental Implants.
Materials 2021, 14, 2845. [CrossRef]

Geng, ].P; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. ]. Prosthet.
Dent. 2001, 85, 585-598. [CrossRef] [PubMed]

Van Staden, R.C.; Guan, H.; Loo, Y.C. Application of the finite element method in dental implant research. Comput. Methods
Biomech. Biomed. Eng. 2006, 9, 257-270. [CrossRef] [PubMed]

Ziaie, B.; Khalili, S.M.R. Evaluation of Fatigue Life for Dental Implants Using FEM Analysis. Prosthesis 2021, 3, 300-313. [CrossRef]
Zielinski, R.; Lipa, S.; Piechaczek, M.; Sowinski, J.; Kotkowska, A.; Simka, W. Finite Element Analysis and Fatigue Test of
INTEGRA Dental Implant System. Materials 2024, 17, 1213. [CrossRef]

Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of
finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [CrossRef]

Lu, Y,; Pulasani, PR.; Derakhshani, R.; Guess, T.M. Application of neural networks for the prediction of cartilage stress in a
musculoskeletal system. Biomed. Signal Process. Control. 2013, 8, 475-482. [CrossRef]

Griggs, J.A. Artificial Neural Networks for the Design Optimization of Implants. In Artificial Intelligence in Dentistry; Springer
International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 83-96. [CrossRef]


https://doi.org/10.1111/j.1600-0501.2012.02546.x
https://doi.org/10.1007/s11837-008-0031-1
https://doi.org/10.3390/ma14112845
https://doi.org/10.1067/mpr.2001.115251
https://www.ncbi.nlm.nih.gov/pubmed/11404759
https://doi.org/10.1080/10255840600837074
https://www.ncbi.nlm.nih.gov/pubmed/17132532
https://doi.org/10.3390/prosthesis3040028
https://doi.org/10.3390/ma17051213
https://doi.org/10.1098/rsif.2017.0844
https://doi.org/10.1016/j.bspc.2013.04.004
https://doi.org/10.1007/978-3-031-43827-1_6

Appl. Sci. 2025, 15, 10362 15 0f 15

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

Chou, H.-Y.; Miiftii, S.; Bozkaya, D. Combined effects of implant insertion depth and alveolar bone quality on periimplant bone
strain induced by a wide-diameter, short implant and a narrow-diameter, long implant. ]. Prosthet. Dent. 2010, 104, 293-300.
[CrossRef]

Boyer, H.E. Atlas of Fatigue Curves; ASM International: Almere, The Netherlands, 2006.

Choudhury, S.; Rana, M.; Chakraborty, A.; Majumder, S.; Roy, S.; RoyChowdhury, A.; Datta, S. Design of patient specific basal
dental implant using Finite Element method and Artificial Neural Network technique. Proc. Inst. Mech. Eng. Part H |. Eng. Med.
2022, 236, 1375-1387. [CrossRef]

Roy, S.; Dey, S.; Khutia, N.; Roy Chowdhury, A.; Datta, S. Design of patient specific dental implant using FE analysis and
computational intelligence techniques. Appl. Soft Comput. 2018, 65, 272-279. [CrossRef]

Watanabe, F; Hata, Y.; Komatsu, S.; Ramos, T.C.; Fukuda, H. Finite element analysis of the influence of implant inclination,
loading position, and load direction on stress distribution. Odontology 2003, 91, 31-36. [CrossRef]

Zhang, P.; Tang, K.; Wang, A.; Wu, H.; Zhong, Z. Neural network integrated with symbolic regression for multiaxial fatigue life
prediction. Int. ]. Fatigue 2024, 188, 108535. [CrossRef]

Markovi¢, E.; Marohnié, T.; Basan, R. A Surrogate Artificial Neural Network Model for Estimating the Fatigue Life of Steel
Components Based on Finite Element Simulations. Materials 2025, 18, 2756. [CrossRef]

Lacki, P; Derlatka, A.; Kasza, P.; Gao, S. Numerical study of steel-concrete composite beam with composite dowels connectors.
Comput. Struct. 2021, 255, 106618. [CrossRef]

Sun, Y.; Veysset, D.; Nelson, K.A.; Schuh, C.A. The Transition from Rebound to Bonding in High-Velocity Metallic Microparticle
Impacts: Jetting-Associated Power-Law Divergence. J. Appl. Mech. 2020, 87, 091002. [CrossRef]

Papavasiliou, G.; Kamposiora, P.; Bayne, S.C.; Felton, D.A. Three-dimensional finite element analysis of stress-distribution
around single tooth implants as a function of bony support, prosthesis type, and loading during function. J. Prosthet. Dent. 1996,
76, 633-640. [CrossRef]

Martinez-Mondragon, M.; Urriolagoitia-Sosa, G.; Romero—AngeleS, B.; Garcia-Laguna, M.A.; Laguna-Canales, A.S.; Pérez-Partida,
J.C.; Mireles-Hernandez, J.; Carrasco-Hernandez, F; Urriolagoitia-Calderén, G.M. Biomechanical Fatigue Behavior of a Dental
Implant Due to Chewing Forces: A Finite Element Analysis. Materials 2024, 17, 1669. [CrossRef] [PubMed]

Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686-707. [CrossRef]

Zhang, X.-C.; Gong, J.-G.; Xuan, E-Z. A physics-informed neural network for creep-fatigue life prediction of components at
elevated temperatures. Eng. Fract. Mech. 2021, 258, 108130. [CrossRef]

UNE-EN 62304:2007/A1:2016; Medical Device Software—Software life-Cycle Processes. Spanish Association for Standardization:
Madrid, Spain, 2016.

UNE-EN ISO 14971:2020; Medical Devices—Application of Risk Management to Medical Devices. ISO: Geneva, Switzerland, 2020.
UNE-EN 62366-1:2015; Medical Devices—Part 1: Application of Usability Engineering to Medical Devices (Endorsed by AENOR
in June of 2015). Spanish Association for Standardization: Madrid, Spain, 2015.

GDPR 2016/679; Reglamento General de Proteccién de Datos (RGPD) o Reglamento (UE). European Comission: Brussels,
Belgium, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/S0022-3913(10)60142-4
https://doi.org/10.1177/09544119221114729
https://doi.org/10.1016/j.asoc.2018.01.025
https://doi.org/10.1007/s10266-003-0029-7
https://doi.org/10.1016/j.ijfatigue.2024.108535
https://doi.org/10.3390/ma18122756
https://doi.org/10.1016/j.compstruc.2021.106618
https://doi.org/10.1115/1.4047206
https://doi.org/10.1016/S0022-3913(96)90442-4
https://doi.org/10.3390/ma17071669
https://www.ncbi.nlm.nih.gov/pubmed/38612181
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.engfracmech.2021.108130

	Introduction 
	Materials and Methods 
	Finite Element Analysis Data Generation 
	Artificial Neural Network Development 
	Training Procedure 
	Evaluation Metrics 

	Results 
	FEA Simulation Outcomes 
	Neural Network Prediction Performance 

	Discussion 
	Conclusions 
	References

