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Abstract 

Background: Metabolic syndrome, a clinical condition defined by central obesity, im-

paired glucose regulation, elevated blood pressure, hypertriglyceridemia, and low high-

density lipoprotein cholesterol across the lifespan, is now a major public health issue typ-

ically managed with lifestyle, behavioral, and dietary recommendations. However, “one-

size-fits-all” recommendations often yield modest, heterogeneous responses and poor 

long-term adherence, creating a clinical need for more targeted and implementable pre-

ventive and therapeutic strategies. Objective: To synthesize evidence on how the gut mi-

crobiome can inform precision nutrition and exercise approaches for metabolic syndrome 

prevention and management, and to evaluate readiness for clinical translation. Key find-

ings: The gut microbiome may influence cardiometabolic risk through microbe-derived 

metabolites and pathways involving short-chain fatty acids, bile acid signaling, gut barrier 

integrity, and low-grade systemic inflammation. Diet quality (e.g., Mediterranean-style 

patterns, higher fermentable fiber, or lower ultra-processed food intake) consistently re-

lates to more favorable microbial functions, and intervention studies show that high-fi-

ber/prebiotic strategies can improve glycemic control alongside microbiome shifts. Phys-

ical exercise can also modulate microbial diversity and metabolic outputs, although effects 

are typically subtle and may depend on baseline adiposity and sustained adherence. 

Emerging “microbiome-informed” personalization, especially algorithms predicting 

postprandial glycemic responses, has improved short-term glycemic outcomes compared 

with standard advice in controlled trials. Targeted microbiome-directed approaches (e.g., 

Akkermansia muciniphila-based supplementation and fecal microbiota transplantation) 

provide proof-of-concept signals, but durability and scalability remain key limitations. 

Conclusions: Microbiome-informed personalization is a promising next step beyond ge-

neric guidelines, with potential to improve adherence and durable metabolic outcomes. 

Clinical implementation will require standardized measurement, rigorous external vali-

dation on clinically meaningful endpoints, interpretable decision support, and equity-fo-

cused evaluation across diverse populations. 
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1. Introduction 

Metabolic syndrome (MetS) is a clinical condition defined by the combination of cen-

tral obesity, hypertension, impaired glucose, elevated triglycerides, and low high-density 

lipoprotein cholesterol [1]. MetS substantially amplifies the risk of multiple complications 

for a large proportion of global morbidity, disability, and health-care costs [2–5]. Current 

estimates suggest that up to one in three adults may meet criteria for MetS, underscoring 

its importance as a major non-communicable disease priority [6]. 

Changes in diet and physical exercise remain the cornerstone of MetS prevention and 

management in clinical practice and public health guidelines [7]. Diet recommendations 

are focused on energy restriction, weight loss, and improvement in diet quality, with par-

ticular attention to cardiometabolic dietary patterns, including the Mediterranean and 

DASH diets [8–10]. Of note, clinical trials and cohort studies based on diet and physical 

exercise have shown important benefits using a general approach [11–13]. However, “one-

size-fits-all” guidelines have frequently yielded modest and heterogeneous responses at 

the individual level, and long-term adherence is often poor [11]. In routine care, this com-

bination of variable response and poor adherence translates into repeated cycles of weight 

regain and persistent cardiometabolic risk. This highlights a practical clinical gap: clini-

cians need implementable strategies to match dietary and lifestyle prescriptions to the 

patients most likely to benefit and adhere to them [14]. Recent studies have shown inter-

individual variability in postprandial glycemic and lipemic responses to standardized 

meals, even among individuals with similar clinical characteristics, highlighting substan-

tial biological heterogeneity and suggesting that generalized dietary prescriptions may be 

suboptimal for many patients with or at risk of MetS [15–17]. Therefore, personalization 

is clinically relevant not only as a mechanistic refinement, but also to improve the “fit” of 

recommendations to patient biology and preferences, potentially strengthening adher-

ence and yielding more durable improvements in glycemic control, lipemia, and other 

MetS components [18]. 

The gut microbiome has emerged as a key biological candidate to explain some of 

this variability and to refine weight-loss lifestyle interventions for cardiometabolic health 

[19]. The intestinal tract harbors a complex, dynamic community of bacteria, Archaea, vi-

ruses, and fungi whose collective genomes and metabolic activities profoundly influence 

host physiology [20,21]. Beyond their classical roles in nutrient metabolism and energy 

harvest, gut microbes contribute to the biotransformation of dietary components, short-

chain fatty acids (SCFAs), and other relevant bioactive metabolites production [22]. In ad-

dition, they influence the regulation of bile acid (BA) pools and signaling, modulation of 

intestinal barrier integrity and immune tone, and crosstalk with endocrine and neural 

pathways [23,24]. Perturbations in microbiome diversity and structure (“dysbiosis”)—of-

ten characterized by reduced diversity and depletion of SCFA-producing taxa—have been 

repeatedly associated with obesity and MetS-related phenotypes. Although causal rela-

tionships and the directionality of these associations remain areas of active investigation 

to date [25]. 

Personalized nutrition broadly refers to the tailoring of dietary recommendations to 

individual characteristics, including clinical and metabolic profiles, genetic background, 

microbiome features, and behavioral patterns and preferences, with the goal of optimizing 

human health outcomes [26]. Advances in high-throughput “omics” technologies, includ-

ing host genomics, metabolomics, and microbiome-focused metagenomics and 
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metatranscriptomics, along with deep metabolic phenotyping (e.g., continuous glucose 

monitoring, postprandial testing) and digital health tools (wearables, mobile applications, 

machine-learning algorithms), now enable the collection and integration of large-scale, 

person-specific data streams [27]. 

Recent studies have shown that models incorporating data from gut microbiome, to-

gether with clinical, lifestyle, and dietary approaches, can improve the prediction of indi-

vidual postprandial glycemic responses to meals [28,29]. In some cases, these models have 

been used to guide personalized dietary interventions that improve short-term glycemic 

control compared with standard approaches [30]. In parallel, more recent trials have ex-

tended these approaches to broader cardiometabolic endpoints, using multi-omics and 

digital phenotyping to design app-based personalized dietary programs for individuals 

at increased metabolic risk [31,32]. Nevertheless, most available studies were short term, 

involved relatively small and selected cohorts, and their generalizability and long-term 

clinical impact remain uncertain. 

This review aims to inform the development of precision strategies for the prevention 

and management of MetS. Alongside diet and physical activity, modulation of the gut 

microbiome is increasingly recognized as a central component of MetS care, with benefi-

cial effects on insulin sensitivity and chronic low-grade systemic inflammation. Here, we 

describe the diet–gut microbiome–host axis in MetS and the key mechanistic pathways 

through which microbial activity influences host metabolism. We discuss personalized 

nutrition and exercise as foundational elements of lifestyle management and summarize 

intervention studies. Finally, we evaluate the potential and the current limitations of inte-

grating microbiome profiles with clinical, metabolic, and fitness measures to support in-

dividualized lifestyle recommendations. 

2. Concept and Tools of Personalized Nutrition 

2.1. Definitions and Frameworks 

Population-based dietary guidelines are designed to improve human health at scale 

by targeting the “average” person within broad life-stage or sex categories [33]. This pub-

lic-health logic is fundamentally different from personalized approaches, which start from 

the premise that interindividual variability in physiology, behaviors, and contexts, mean-

ingfully shapes dietary response [34]. In this space, a widely used definition frames per-

sonalized nutrition “as the use of information on individual characteristics to deliver tar-

geted advice, products, or services that facilitate sustained, health-relevant dietary 

change” [35]. 

Between generic guidelines and fully individualized prescriptions lies stratified nu-

trition, which tailors recommendations to subgroups (e.g., defined by phenotype, baseline 

risk, or other measurable characteristics) rather than “n = 1” designs, an increasingly rele-

vant concept as dietary guidance evolves toward identifying population segments with 

distinct needs and response profiles. In parallel, precision nutrition is commonly used to 

emphasize the integration of multi-layer biological and behavioral data (multi-omics, clin-

ical phenotypes, microbiome features, and digital measures) with analytic methods to 

generate recommendations that are more granular, dynamic, and potentially adaptative 

over time [35,36]. 

Operationally, “levels of personalization” can be organized as phenotype-based 

(clinical and biochemical traits), genotype-based (nutrigenetic/nutrigenomic information 

where evidence supports differential response), microbiome-based (composition and 

functional capacity), and digital/behavioral tailoring (preferences, barriers, context, and 

real-time behavioral/physiological signals) [37,38]. Importantly, the field’s credibility de-

pends on demonstrating that these added layers improve prediction and, crucially, trans-

late into durable behavior change and better outcomes; large pragmatic trials such as 
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Food4Me [39] provide evidence that personalized advice can improve dietary behaviors 

compared with conventional guidance, while also underscoring the need for rigorous 

evaluation across populations and endpoints [39]. 

2.2. Data Layers in Precision Nutrition 

A precision nutrition architecture typically begins with host factors, spanning genet-

ics/epigenetics and other omics, alongside clinical phenotypes that anchor recommenda-

tions in cardiometabolic risk, adiposity, and related traits [40]. Contemporary frameworks 

emphasize that these biomedical layers should not be treated in isolation [18]. They are 

most informative when combined with behavioral signatures and contextual determi-

nants that influence both exposure (diet) and response (adherence and physiology) [18]. 

Microbiome adds an additional set of data layers that move from “who is there” to 

“what they can do” and “what they are doing.” In practice, 16S rRNA profiling provides 

taxonomic structure but limited functional resolution [41]. However, shotgun meta-

genomics improves taxonomic breadth and enables pathway-level functional inference; 

comparative work shows that 16S rRNA [42]. Metatranscriptomics extends this further by 

quantifying microbial gene expression (activity), and metabolomics captures downstream 

host–microbe co-metabolites that are often closest to mechanism and phenotype [43]. 

Finally, digital tools and artificial intelligence (AI) enable high-frequency, real-world 

measurement and iterative feedback [44]. They provide the substrate for machine-learn-

ing models that predict postprandial responses [45]. Evidence demonstrated that integrat-

ing clinical features, lifestyle data, and microbiome information can improve prediction 

of individualized glycemic (and broader metabolic) responses [45]. At the same time, sys-

tematic reviews highlight that model performance, generalizability, and clinical utility de-

pend on transparent validation and careful feature selection, particularly when translat-

ing from controlled cohorts to diverse populations and settings. 

3. Diet–Gut Microbiome–Host Axis in Metabolic Syndrome 

3.1. Core Microbiome Alterations in Metabolic Syndrome and Obesity 

Several observational and metagenomic studies indicates that obesity and MetS are 

accompanied by characteristic, albeit heterogeneous, alterations in gut microbiome com-

position [46–48]. A frequently reported feature is reduced microbial α-diversity, often in-

terpreted as a loss of ecological resilience and functional redundancy, depending of the α-

diversity metrics used [49]. 

With the intention to create a unique variable for disease, including obesity, the early 

work proposed an increased Bacillota/Bacteroidota ratio as a hallmark of obesity [50]. How-

ever, subsequent studies across different populations and sequencing platforms have 

yielded inconsistent results, with some reporting no differences or even opposite trends 

[50,51]. These discrepancies underscore that simple phylum-level metrics are unlikely to 

capture the complexity of obesity- and MetS-associated dysbiosis and that taxonomic 

shifts are context-dependent, influenced by diet, medication use, geography, and host ge-

netics [52]. 

Regarding to species taxa, several recurrent patterns have been described [53–56], 

although not universally replicated. Results from several cohorts have shown that indi-

viduals living with obesity or MetS often show depletion of SCFA-producing species, such 

as Faecalibacterium prausnitzii [57] and certain Roseburia and Eubacterium species. In con-

trast, they also shown enrichment of genera like Collinsella, Blautia, or Prevotella [53–56]. 

These gut microbiome compositional shifts are related to adverse metabolic traits, includ-

ing key components of MetS [58,59]. For example, microbiome profiles are enriched in 

lipopolysaccharide (LPS) biosynthesis pathways or branched-chain amino acid (BCAA) 

https://doi.org/10.3390/nu18020290


Nutrients 2026, 18, 290 5 of 28 
 

https://doi.org/10.3390/nu18020290 

production. BA-modifying enzymes have also been associated with higher HOMA-IR, in-

creased triglycerides, hepatic steatosis, and markers of vascular risk [58,59]. 

However, it is increasingly recognized that there is no single “obese” or “MetS” mi-

crobiome [60]. MetS microbial signature appears to be characterized by functionally con-

vergent but taxonomically heterogeneous communities. Distinct microbial configurations 

may give rise to similar metabolic outputs (e.g., reduced butyrate production, increased 

endotoxin load or altered BA pools) [60,61]. Microbiome-based stratification may need to 

focus more on metabolic pathways and community functions than on the presence or ab-

sence of specific taxa. 

3.2. Mechanistic Pathways 

3.2.1. Short-Chain Fatty Acids and Other Metabolites 

SCFAs, primarily acetate, propionate, and butyrate, are the main end-products of 

bacterial fermentation of dietary fibers and resistant starches. They act as key mediators 

of diet–microbiome–host interactions [62,63]. Their biological relevance in MetS extends 

beyond being “beneficial metabolites,” because SCFAs operate at the interface of (i) epi-

thelial energy metabolism and barrier function, (ii) endocrine signaling, and (iii) im-

munometabolic regulation [62,63]. Butyrate is the preferred oxidative fuel for colonocytes 

and supports epithelial respiration, which helps maintain a low-oxygen luminal environ-

ment that favors obligate anaerobes and limits expansion of facultative taxa [64]. Thus, 

SCFAs can contribute to ecosystem stability while simultaneously supporting host muco-

sal homeostasis [65]. At the barrier level, SCFAs have been shown to enhance epithelial 

integrity through increased expression and/or assembly of tight junction components 

(e.g., occludin/claudins/ZO proteins) [66]. In addition, the activation of mucus-associated 

pathways and the enhancement of antimicrobial defenses and epithelial repair responses 

act together to reduce intestinal permeability and limit the translocation of pro-inflamma-

tory microbial products [67]. In parallel, SCFAs exert immunomodulatory effects via both 

receptor-dependent and epigenetic routes, including inhibition of histone deacetylases 

and signaling through SCFA-sensing receptors expressed on epithelial and immune cells 

[68], thereby shaping cytokine profiles and supporting regulatory immune phenotypes 

relevant to the low-grade inflammation characteristic of MetS [69]. 

Endocrine and metabolic effects are mediated in part by activation of G protein-cou-

pled receptors—notably FFAR2/GPR43 and FFAR3/GPR41— which are expressed on en-

teroendocrine L cells and other cell types [70–73]. SCFA signaling in L cells promotes se-

cretion of incretins and satiety hormones, particularly GLP-1 and PYY, linking microbial 

fermentation to improved postprandial glycemic control, appetite regulation, and gastric 

emptying dynamics [70–73]. Beyond gut hormone release, SCFAs can influence systemic 

metabolism through effects on hepatic lipid handling (including lipogenesis and substrate 

partitioning), adipose tissue biology, and vascular tone, providing plausible pathways for 

observed associations with triglycerides, insulin sensitivity, and blood pressure [74]. Mecha-

nistically, these effects are best interpreted as networked outputs of SCFA signaling across 

tissues (gut–liver–adipose–vasculature), rather than as a single linear pathway [70–74]. 

In MetS and related phenotypes, multiple cohorts report depletion of SCFA-produc-

ing taxa and altered fecal and/or circulating SCFA patterns, although the direction and 

magnitude of associations are not uniform [75,76]. Importantly, fecal SCFA concentrations 

reflect the net balance of production, microbial cross-feeding, host absorption, and colonic 

transit. Therefore, do not always track “SCFA benefit” monotonically across populations; 

habitual diet composition, sampling matrix (fecal vs. plasma), and analytical methods fur-

ther contribute to this heterogeneity [75,76]. Despite these measurement caveats, the con-

vergent interpretation across the human and mechanistic literature supports a model in 

which fiber-poor diets and reduced community capacity for fermentation-related functions 
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are linked to impaired incretin signaling, weakened barrier integrity, and a more pro-inflam-

matory metabolic milieu, features that align with core pathophysiology of MetS [77]. 

Trimethylamine N-oxide (TMAO), produced from dietary choline, was related to ath-

erosclerosis, CVD events, and mortality [78–80]. Moreover, bacteria-driven alterations in 

branched-chain amino acid metabolism have been linked to insulin resistance, impaired 

glucose tolerance and type 2 diabetes (T2D) risk [81–83]. This association was possibly 

through effects on mTOR signaling and ectopic lipid accumulation [81–83]. Aromatic 

amino acid-derived indoles and phenolic compounds can influence intestinal barrier in-

tegrity, aryl hydrocarbon receptor signaling, incretin secretion, and hepatic inflammation, 

thereby connecting dietary patterns, microbial metabolism, and NAFLD/MASLD progres-

sion [84]. Taken together, these findings support a model in which the gut microbiome 

functions as a metabolic endocrine organ, producing a complex mixture of small mole-

cules that collectively modulate host metabolic pathways central to MetS. 

3.2.2. Bile Acids and FXR/TGR5 Signaling 

BAs are not only detergents that facilitate lipid absorption but also endocrine-like 

signaling molecules that regulate glucose, lipid, and energy homeostasis through nuclear 

and membrane receptors, particularly the farnesoid X receptor (FXR) and the G protein-

coupled receptor TGR5 [85]. BA signaling is inherently microbiome-sensitive because in-

testinal microbes shape both the composition and signaling potency of the BA pool [86]. 

Primary BAs synthesized from cholesterol in the liver are conjugated (glycine/taurine) 

and secreted into the intestine [87], where bacterial bile salt hydrolases (BSH) deconjugate 

them and enable downstream transformations (e.g., 7α-dehydroxylation, oxidation/epi-

merization) that generate a diverse set of secondary BAs with distinct receptor affinities 

[87]. Consequently, changes in microbiome structure and functional capacity translate 

into shifts in BA diversity, hydrophobicity, and the relative abundance of BA species that 

act as agonists/antagonists or partial agonists of FXR- and TGR5-driven pathways [88]. 

Mechanistically, BA–FXR signaling contributes to metabolic regulation through co-

ordinated control of BA synthesis and transport (e.g., feedback inhibition of hepatic BA 

synthesis), as well as broader effects on hepatic glucose and lipid metabolism [89]. FXR 

activation influences pathways relevant to MetS, including regulation of gluconeogenesis, 

lipogenesis, and very-low-density lipoprotein secretion, and it also intersects with enter-

ohepatic signaling through endocrine mediators such as fibroblast growth factor signaling 

from the gut to the liver (often discussed as a key FXR-linked gut–liver axis mechanism) 

[90,91]. In parallel, TGR5 activation in metabolically relevant tissues has been linked to 

energy expenditure and glucose control, in part via effects on thermogenic programs and 

incretin physiology, providing a plausible route by which BA composition can influence 

postprandial metabolism and insulin sensitivity [92]. Importantly, BA signaling also inte-

grates with gut barrier and inflammatory biology, because BA species differ in their anti-

microbial activity and their capacity to shape microbial niches, while BA receptor signal-

ing can modulate inflammatory tone, features that are highly relevant to chronic low-

grade inflammation in MetS [93]. 

In obesity and MetS, accumulating human and experimental evidence supports a 

model of dysregulated BA–microbiome crosstalk, characterized by altered BA composi-

tion, impaired receptor-mediated signaling, and associations between specific BA signa-

tures, microbial features, and metabolic outcomes such as insulin resistance, 

dyslipidemia, and hepatic steatosis within the NAFLD/MASLD spectrum [94]. Several 

studies report that altered BA pools track with hepatic fat content and other cardiometa-

bolic traits, consistent with the concept that BA profiles can serve as both functional 

readouts of microbiome activity and candidate mediators linking diet to metabolic phe-

notypes [85]. However, inter-individual variation in diet, medication exposure, and host 
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factors (e.g., liver function, intestinal transit, and enterohepatic circulation dynamics) can 

influence BA measurements and partially explain heterogeneity across cohorts. 

Intervention evidence further supports the therapeutic relevance of this axis. Dietary 

patterns that restructure the microbiome can shift BA pools, and pharmacologic strategies 

such as BA sequestrants and receptor-targeting agents (FXR/TGR5 agonists) provide 

proof-of-concept that modifying BA signaling can influence cardiometabolic risk factors 

[95,96]. Nevertheless, despite strong biological plausibility, direct causal pathways in hu-

mans remain incompletely resolved, and translation to clinical personalization will re-

quire studies that link intervention-induced BA changes to downstream receptor signal-

ing, metabolomic outputs, and durable clinical endpoints (e.g., insulin sensitivity, hepatic 

fat, triglycerides) in well-characterized populations [95,96]. 

3.2.3. Metabolic Endotoxemia and Low-Grade Inflammation 

Metabolic endotoxemia defined as a low-grade elevation of circulating LPS could acts 

as a trigger for obesity-related insulin resistance and systemic inflammation [97,98]. In 

rodent models, feeding with a high-fat or Western-type diet increases intestinal permea-

bility and plasma LPS concentrations, and activates TLR4-dependent inflammatory path-

ways [99–101]. In addition, induces weight gain, insulin resistance, and hepatic steatosis; 

in this regard, antibiotic treatment or genetic disruption of TLR4 signaling attenuates 

these effects [99–101]. 

In humans, higher LPS or LPS-binding protein levels are related to abdominal obesity, 

MetS, and CVD [18,102,103]. Nonetheless, this pathway provides a plausible mechanistic link 

between Western diets, dysbiosis, increased gut permeability, and systemic inflammatory 

tone. Figure 1 shows the key mechanistic pathways in gut microbiome–host interactions. 

 

Figure 1. Key mechanistic pathways in gut microbiome–host interactions. 

3.3. Diet as a Primary Modulator of the Microbiome in Metabolic Syndrome 

Among the many determinants of gut microbiome structure, diet is arguably the 

most powerful and modifiable [104]. Long-term dietary patterns shape the overall com-

munity ecology. Moreover, short-term changes in energy intake or macronutrient distri-

bution can induce rapid shifts in microbial composition and function [105]. Diets rich in 

plant-based foods and fermentable fibers generally increase microbial diversity and the abun-

dance of SCFA-producing species. In contrast, diets high in saturated fat, refined carbohy-

drates, and low in fiber tend to relate to dysbiosis and pro-inflammatory profiles [106]. 

The Mediterranean diet has consistently been associated with increased microbial di-

versity, enrichment of butyrate-producing bacteria, reduced markers of gut inflammation 

and more favorable metabolic profiles in observational and interventional studies [107–
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109]. Conversely, Western-style dietary patterns have been linked to reduced SCFA pro-

duction, increased LPS-producing bacteria, and BA profiles related to metabolic dysfunc-

tion [110]. 

Plant-based dietary patterns often promote species that participate in complex car-

bohydrate fermentation (e.g., Prevotella spp.), increase levels of SCFAs, and improve car-

diometabolic markers [111]. Beyond macronutrient composition, fiber type and polyphe-

nol content are important modulators of the microbiome. Different fibers (e.g., inulin-type 

fructans, resistant starch, β-glucans) select for distinct bacterial guilds with varying capac-

ities to produce SCFAs and other metabolites. Polyphenol-rich foods (berries, cocoa, tea, 

coffee, extra-virgin olive oil) can exert prebiotic-like effects. Increasing these beneficial 

taxa and SCFA production while their microbial catabolites influence vascular and meta-

bolic pathways [108,109,111]. 

More recently, attention has turned to ultra-processed foods (UPFs) as a potential 

disruptor of the diet–microbiome–metabolic axis. UPFs, typically energy-dense, fiber-

poor, and rich in additives, are now major contributors to total energy intake in many 

countries and have been consistently associated with higher risks of obesity, T2D, and 

CVD [112,113]. Emerging evidence suggests that habitual UPF consumption is linked to 

reduced microbial diversity, depletion of beneficial commensals, increased gut permea-

bility, and pro-inflammatory microbiota profiles. Providing a plausible mechanistic 

bridge between UPFs and cardiometabolic risk [113,114]. These effects may be mediated 

not only by nutrient composition but also by disruption of the food matrix and direct ac-

tions of additives on microbial communities and the intestinal barrier [113]. The main 

modulator effects of dietary patters on the microbiome are represented in Figure 2. 

 

Figure 2. Dietary patterns as modulators of the microbiome. 

In the context of MetS, these data collectively support the view that diet is both a 

driver of dysbiosis and a primary lever for microbiome-targeted interventions. Under-

standing how specific dietary components and patterns reshape microbiome structure 

and function. Moreover, how these changes translate into metabolic outcomes, provides 

the foundation for developing microbiome-informed, personalized nutritional strategies 

in individuals with or at risk of MetS. 

4. Physical Exercise, Gut Microbiome, and Metabolic Syndrome 

4.1. Exercise as a Core Component of Lifestyle Management in Metabolic Syndrome 

MetS management usually is based on lifestyle changes. Structured physical activity 

or physical exercise repeatedly showing clinically meaningful benefits across the main 

MetS domains [115–117]. Contemporary syntheses and clinical reviews consistently high-

light improvements in insulin sensitivity and glycemic control, blood pressure, 
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atherogenic dyslipidemia, and central and visceral adiposity [115–117]. Importantly, these 

improvements are observed across multiple exercise modalities (aerobic, resistance, and 

combined training), although the magnitude of benefit typically depends on baseline car-

diometabolic risk, adherence, training volume, and whether concomitant dietary energy 

restriction is present [118]. Importantly, implementation in practice and even in many 

guideline-adjacent documents still tends to treat them as parallel “pillars” rather than as 

a single adaptive intervention [115–117]. From a mechanistic perspective, this separation 

is artificial: exercise modifies substrate flux, inflammation, gut motility, bile acid dynam-

ics, and intestinal barrier physiology [115–117]. Each of which can plausibly influence mi-

crobial ecology and microbial metabolite production, creating a biologically coherent 

route linking physical activity to gut microbiome-mediated metabolic effects [119]. 

4.2. Effects of Exercise on the Gut Microbiome 

4.2.1. Microbiome Composition and Diversity 

Physical exercise is frequently associated with higher microbial diversity and detect-

able changes in community microbial structure. Randomized clinical trials (RCTs) and 

controlled interventions provide particularly valuable evidence [120]. In adults with over-

weight/obesity, a 6-month RCT reported a small but significant increase in Shannon di-

versity in the vigorous-intensity arm and measurable beta-diversity shifts across exercise 

groups versus control [121]. Notably, the “signal” in such trials is often stronger for com-

munity-level structure (beta-diversity) than for single taxa, suggesting that physical exer-

cise may act as a broad ecological perturbation rather than a selective “one-bacterium” 

intervention [120,121]. Controlled training studies also indicate that exercise can alter the 

microbiome in ways that depend on baseline adiposity. In one study, compositional and 

functional changes differed by obesity status and were largely reversible after stopping 

exercise [122]. This reversibility is an important translational constraint: it implies that 

microbiome changes may require sustained training to persist, and that studies with 

short-term interventions or poor adherence are likely to underestimate true effects. At the 

taxonomic level, many studies and reviews describe enrichment of taxa often linked to 

SCFA production, including butyrate-associated genera (e.g., Faecalibacterium and Rose-

buria in some cohorts). However, results are heterogeneous and not uniformly replicated, 

likely reflecting differences in participant characteristics, exercise prescription (aerobic vs. 

resistance vs. type), study duration, diet control, and sequencing/analytic pipelines [123–

126]. For example, some interventions report increases in taxa typically considered “ben-

eficial” in metabolic health (often within butyrate-producing guilds), whereas other stud-

ies show minimal genus-level changes despite clear physiological improvements, imply-

ing that the functional output of the microbiome may shift even when taxonomy appears 

stable [123–126]. A critical interpretation is that physical exercise effects on taxonomy may 

be contingent on the dietary substrate environment, as without adequate fermentable fi-

ber intake, expansion of saccharolytic/butyrate-producing communities may be con-

strained, which could partially explain inconsistent taxonomic findings across cohorts 

with different habitual diets [121–124]. 

4.2.2. Microbial Metabolites and Host Physiology 

Mechanistically, exercise–microbiome links are increasingly interpreted through the 

lens of microbial metabolites [127]. SCFAs are a leading candidate pathway because they 

connect microbial fermentation to gut barrier integrity, inflammatory tone, and metabolic 

regulation [127]. In controlled human training, exercise increased fecal SCFAs in lean par-

ticipants and exercise-related changes in microbial functional potential aligned with shifts 

in SCFA-producing capacity [122]. This is consistent with a model in which physical ex-

ercise increases intestinal transit dynamics and substrate availability to distal colonic 
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fermenters, while also lowering systemic inflammation, conditions that may favor SCFA-

producing consortia and/or their metabolic activity [122]. Broader reviews converge on 

the idea that exercise can support SCFA-related functionality and improve gut barrier and 

systemic metabolic signaling [124,128,129], although the magnitude and durability of 

these effects likely depend on baseline metabolic health and the sustainability of the ac-

tivity pattern [124,128,129]. 

However, an important nuance is that higher fecal SCFAs do not necessarily imply 

higher host absorption or beneficial signaling, because fecal concentrations reflect the bal-

ance between production, host uptake, and transit time [130,131]. Therefore, future stud-

ies should triangulate fecal SCFAs with circulating SCFAs, targeted metabolomics, and 

host signaling readouts (e.g., GLP-1/PYY, inflammatory markers) to strengthen mechanis-

tic inference [132,133]. Beyond SCFAs, exercise may influence microbial pathways linked 

to branched-chain amino acid metabolism, lactate cross-feeding, and aromatic amino acid 

derivatives, which are increasingly implicated in insulin sensitivity and inflammatory 

tone [134]. However, evidence remains less consistent than for SCFA-related functions 

and requires more standardized functional profiling [135]. 

Exercise may also influence BA profiles indirectly through changes in the gut micro-

biome and host metabolism [136,137]. This could be carried out by FXR/TGR5-mediated 

signaling pathways implicated in lipid and glucose homeostasis. The biological plausibil-

ity of microbiome-driven BA modulation as a metabolic lever is well supported by au-

thoritative reviews of BA–microbiome–receptor biology [136,137]. From a physiological 

standpoint, exercise can alter BA circulation through effects on hepatic metabolism, intes-

tinal motility, and enterohepatic cycling. These host-driven changes can then feed back to 

the microbiome because of BA composition and concentration shape microbial selection 

pressures and antimicrobial constraints [138]. Nevertheless, BA outcomes are particularly 

sensitive to sampling context (fasting vs. postprandial), diet composition, and analytical 

platform [139]. Thus, discrepancies across studies may reflect methodological rather than 

biological differences, emphasizing the need for harmonized BA profiling in exercise–mi-

crobiome research [119,127]. 

Collectively, these observations support a synergy model. Diet provides the substrate 

environment for microbial metabolism, while exercise can reshape intestinal physiology 

and microbial ecology, together amplifying metabolic benefits [124,140,141]. This synergy 

framework predicts that the largest microbiome-mediated benefits occur when physical 

exercise is paired with dietary patterns that provide fermentable substrates (e.g., Mediter-

ranean-style, fiber-rich diets), whereas exercise in a low-fiber dietary context may yield 

smaller or more variable microbiome shifts [142]. 

4.3. Exercise–Microbiome Interventions in Metabolic Syndrome and Obesity 

Intervention evidence in obesity/MetS-adjacent populations increasingly supports 

the idea that exercise, alone or combined with diet, can remodel gut ecology [143]. How-

ever, also makes clear that effects are often subtle, context-dependent, and require careful 

interpretation [143]. RCTs in adults with overweight/obesity demonstrate that structured 

exercise can shift beta-diversity and inferred functional potential, even when genus-level 

changes are limited [121,143,144]. This pattern suggests that exercise may primarily affect 

microbial “activity states” (functional capacity/expression) rather than producing large, 

consistent taxonomic turnover—an interpretation aligned with the observation that phys-

iological improvements can occur in parallel with modest compositional changes 

[121,143,144]. Complementary controlled trials show that exercise-induced microbial 

changes can differ by obesity status and may revert when training stops. Moreover, they 

highlight the importance of adherence and long-term maintenance for durable microbi-

ome modulation [122,144]. From a clinical perspective, this indicates that microbiome 
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modulation should not be framed as an automatic consequence of prescribing exercise; it 

depends on sustained behavior change and may require complementary dietary design 

to support ecological stability [122,144]. 

Beyond exercise-only designs, combined lifestyle interventions provide a pragmatic 

template closer to real clinical care. In PREDIMED-Plus, a 1-year lifestyle intervention in-

corporating an energy-restricted Mediterranean diet and physical activity was associated 

with gut microbiota changes linked to SCFA-producing bacteria [140]. This is particularly 

relevant because it reflects a real-world intervention package where diet provides fer-

mentable substrate and exercise may reinforce barrier and metabolic improvements, 

which are conditions expected to favor SCFA-related ecology [140]. A more recent RCT in 

the same framework has extended these observations to the gut metabolome and micro-

biota in relation to cardiometabolic risk factors [145]. The addition of metabolomic 

readouts is important because it enables testing whether microbiome changes translate 

into functional chemical outputs that plausibly mediate cardiometabolic improvements, 

rather than relying on taxonomy alone [145]. In metabolically compromised patients 

(NAFLD with prediabetes), a four-arm randomized controlled trial showed that the com-

bined aerobic exercise + diet intervention was associated with diversified and stabilized 

keystone taxa and that baseline microbial network properties could help predict individ-

ual liver-fat response [141]. This is an important proof-of-concept for microbiome-in-

formed stratification [141]. Critically, such results suggest that microbial network features 

(i.e., community connectivity/keystones) may provide more clinically useful “response 

biomarkers” than single taxa, because they capture ecological stability and resilience—

properties likely relevant to long-term metabolic maintenance [141]. At the same time, 

network metrics can be sensitive to sequencing depth, compositionality, and analytic 

choices. Therefore, replication across cohorts and standardized network pipelines are es-

sential before these approaches can be translated into clinical tools [141]. 

Taken together, these trials suggest three clinically relevant messages: (i) exercise can 

influence the gut microbiome in humans, (ii) the most translational signals may lie in func-

tional/metabolite readouts and network properties rather than single taxa, and (iii) heter-

ogeneity of response is not noise to be averaged away but a feature that precision lifestyle 

strategies should aim to explain and harness [122,140,141,145]. 

5. Microbiome-Informed Personalized Nutrition in Metabolic  

Syndrome 

5.1. Evidence from Observational Studies 

A consistent body of observational evidence indicates that dietary patterns linked to 

lower MetS risk [146]. In a large prospective analysis, Mediterranean-style diet adherence 

related to cardiometabolic outcomes varied according to baseline microbial composition 

[147]. This implying that a “one-size-fits-all” dietary recommendation may yield hetero-

geneous benefit partly due to differences in microbial functional potential (e.g., carbohydrate 

utilization, BA transformations, and other microbially mediated metabolic routes) [147]. 

5.2. Intervention Studies Targeting the Microbiome in Metabolic Syndrome 

Whole-diet interventions. Controlled dietary interventions provide stronger evi-

dence that shifting dietary pattern can induce coordinated changes in gut microbiome 

structure and metabolic readouts relevant to MetS [148]. For example, switching to a Med-

iterranean diet has been shown to lower plasma cholesterol and reshape both the gut mi-

crobiome and metabolome [149]. Moreover, the diet-induced metabolic changes co-varied 

with specific microbial taxa and microbial metabolic outputs (including BA-related fea-

tures) [149]. More “enhanced” Mediterranean variants (e.g., Green-MED) have further 
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supported that microbiome features may partially mediate improvements in cardiometa-

bolic risk markers. This reinforce the need to move from descriptive microbiome changes 

to mechanistically anchored mediators [150]. 

Specific components/supplements. A major strategy has been to increase fermentable 

substrates (prebiotics) and target SCFA production capacity. High-fiber dietary interven-

tions can selectively promote SCFA-producing organisms and improve glycemic control 

in humans [151,152]. Resistant starch has also emerged as a promising substrate. In an 8-

week supplementation trial in individuals with excess body weight reported improve-

ments in insulin resistance alongside microbiome shifts, with Bifidobacterium adolescentis 

highlighted as a candidate taxon linked to benefit [153]. In a proof-of-concept randomized 

trial, pasteurized Akkermansia muciniphila supplementation in overweight/obese insulin-re-

sistant adults was safe and showed directionally favorable metabolic signals versus placebo, 

bringing the field closer to organism-level, mechanism-driven interventions [154]. Evidence 

for conventional probiotics/synbiotics in MetS remains mixed but suggests modest improve-

ments in selected cardiometabolic traits in meta-analytic summaries, tempered by strain spec-

ificity, short follow-up, and variability in endpoints and co-interventions [155,156]. Polyphe-

nols, omega-3, and multi-component formulations are also being explored for microbiome 

modulation with cardiometabolic relevance. However, attribution to a single component is 

often limited by combined interventions and heterogeneous microbiome methods [157–159]. 

Advanced microbiome-based therapies. Fecal microbiota transplantation provides 

an informative “causal probe” in MetS. In a seminal randomized study, lean-donor intes-

tinal microbiota infusion increased insulin sensitivity at 6 weeks in male recipients with 

MetS, with corresponding changes in microbial composition [160]. Subsequent work un-

derscored the transient nature of benefit and the importance of baseline recipient micro-

biome configuration in predicting response, emphasizing that “donor–recipient match-

ing” and ecological engraftment constraints are central barriers to reliable translation 

[161]. Newer trials testing adjunct strategies (e.g., fiber to support engraftment) reflect a 

pragmatic evolution toward combined, ecology-supportive protocols, but durability and 

scalability remain unresolved [162]. Table 1 summarizes the main effects of interventional 

studies regarding microbiome, exercise, and diet in patients with MetS. 

Table 1. Effect of intervention studies in the context of MetS. 

Physical Exercise 

Structured exercise interventions Changes in beta-diversity and functional potential 

Combined with energy-restricted 

Mediterranean diet 
Increased of SCFA-producing bacteria 

Aerobic exercise and diet inter-

vention 

Diversified and stabilized keystone taxa in patients 

with NAFLD and prediabetes 

Dietary interventions 

Whole-diet interventions 
Changes in gut microbiome structure and metabolic 

readouts 

Specific components or supple-

ments 
 

High-fiber dietary/prebiotics 
Increase in SCFA-producing organisms and improve-

ment of glycemic control  

Resistant starch 
Reduction in insulin resistance alongside microbiome 

shifts (Bifidobacterium adolescentis) 

Akkermansia muciniphila Favorable metabolic signals 

Fecal microbiota transplantation 
Changes in microbial composition and increased insu-

lin sensitivity 

Abbreviations. NAFLD, non-alcoholic fatty liver disease; SCFAs, short-chain fatty acids. 
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5.3. Trials Explicitly Using Microbiome in Personalized Nutrition Algorithms 

The most mature “microbiome-informed personalization” paradigm has been the 

prediction of postprandial responses using integrated clinical, dietary, and microbiome 

features [28]. A landmark study demonstrated that machine-learning models incorporat-

ing microbiome data can predict individualized postprandial glycemic responses, and 

that algorithm-guided dietary advice can improve glycemic control compared with stand-

ardized guidance in controlled settings [163,164]. 

More recently, intervention studies have started to test “microbiome-aware” or 

multi-kingdom microbiome personalization approaches in dysglycemia/prediabetes—an 

adjacent phenotype tightly linked to MetS trajectories. For instance, microbiome features 

(gut and/or oral) have been integrated into dietary intervention frameworks, highlighting 

both predictive potential and the practical need for interpretable, clinic-friendly decision 

rules [165–167]. Overall, these trials position the microbiome not merely as a correlational 

marker but as a measurable layer that can (i) stratify responders, (ii) guide selection 

among dietary options (e.g., fiber types), and (iii) provide intermediate endpoints for 

monitoring adherence and biological effect—yet external validation across populations, 

labs, and diet cultures remains a key translational requirement. 

5.4. Effects on Related Comorbidities 

Type 2 diabetes/prediabetes. Diet–microbiome interventions in dysglycemia provide 

some of the strongest proof-of-concept microbial functional targeting (especially SCFA-

related ecology) [168]. However, generalization to broader MetS populations requires cau-

tion given differences in baseline phenotype and medication exposure [151]. Personalized 

nutrition algorithms leveraging the microbiome further support the feasibility of “re-

sponse-guided” dietary prescriptions for glycemic control [169]. 

NAFLD/MAFLD. Microbial transformations of BA and signaling through FXR/TGR5 

integrate with host lipid/glucose metabolism and inflammatory tone. This offers mecha-

nistic targets for microbiome-informed dietary strategies [88,96,170]. Clinical lifestyle trials in 

NAFLD have reported microbiome rearrangements alongside improvements in hepatic stea-

tosis-related measures, supporting the plausibility of microbiome-linked pathways in liver 

outcomes, although causal mediation remains incompletely established [171,172]. 

Cardiovascular disease. Microbiome-mediated metabolites provide a direct bridge 

from habitual diet to vascular risk biology [21]. The choline/carnitine/TMAO pathway, in 

particular, has been mechanistically tied to atherosclerosis-related processes and associ-

ated with cardiometabolic outcomes in prospective settings [173]. This makes it a prime 

example of a diet–microbiome–metabolite axis with potential utility for risk stratification 

and targeted dietary modification [174–176]. 

6. Clinical Translation and Implementation Challenges 

6.1. Heterogeneity of Response and Metabolic Phenotypes 

MetS is not a single biological entity but a syndrome-level label that aggregates dis-

tinct underlying pathophysiologies [177]. In practice, patients often cluster into partially 

overlapping tissue-dominant metabolic phenotypes [178]. Adipose dysfunction, hepatic 

insulin resistance/steatosis, or skeletal muscle insulin resistance may predominate [179], 

each with different biomarker profiles and potentially different dietary leverage points 

(e.g., macronutrient quality/quantity, energy restriction, or dietary fat composition) 

[180,181]. Evidence from long-term dietary interventions supports this concept: in the 

CORDIOPREV-DIAB randomized trial, baseline liver vs. muscle insulin-resistance phe-

notypes modified metabolic responses to different diet patterns over follow-up [182], 
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illustrating why “one-size-fits-all” advice can yield heterogeneous results in MetS-like 

populations [183]. 

This heterogeneity is further amplified by the gut microbiome, where inter-individ-

ual differences in community structure and functional capacity can meaningfully shape 

metabolic responses to the same foods [184]. Large, deeply phenotyped studies of postpran-

dial metabolism demonstrate that person-specific factors contribute to variability in glycemic 

and lipemic responses [17,35,184]. This reinforces the idea that microbiome-informed stratifi-

cation could help explain non-response and guide more targeted dietary prescriptions. 

6.2. Methodological Challenges 

Microbiome findings can vary substantially with choices across the analytic chain 

[185], sequencing platform and library preparation, reference databases, taxonomic/func-

tional profiling tools, normalization, contaminant handling, and statistical models for dif-

ferential abundance [186]. Comparative evaluations show that different differential abun-

dance methods and pipelines can produce meaningfully different “discoveries” on the 

same underlying datasets [185,187,188]. These aspects directly impact biomarker credibil-

ity and downstream clinical claims. To address this, the field has increasingly emphasized 

standardized reporting and transparent methods [189]. The STORMS reporting guidelines 

were developed specifically to improve comparability and interpretability across human 

microbiome studies [189]. 

Many precision nutrition and microbiome intervention studies remain limited by small 

sample sizes, short follow-up, inconsistent outcome definitions, and limited replication and 

external validation [190]. Workshop-based and systematic syntheses highlight that robust 

translation will require better-powered studies, harmonized endpoints, and prospective vali-

dation in independent cohorts before clinical adoption can be justified [191,192]. 

6.3. Practical and Ethical Aspects 

Multi-omics profiling and continuous digital monitoring can be costly and logisti-

cally complex. In contrast, the clinical workforce is not uniformly trained to interpret om-

ics-derived outputs or machine learning (ML)-based predictions [193,194]. Some reviews 

on the intersection of digital health and personalized nutrition repeatedly identify the 

need for user-friendly interfaces. Here, the important variables are related to clinical de-

cision support, and clinician education so that precision recommendations are interpreta-

ble, actionable, and aligned with standard care pathways [30,193,195]. 

Ethically, the combination of omics data and high-frequency digital phenotypes 

(wearables and apps) raises non-trivial concerns around consent, data governance, sec-

ondary use, and privacy [196]. Recent reviews of AI-driven precision nutrition and digital-

health ecosystems emphasize that privacy safeguards, transparency, and regulatory align-

ment must be treated as core design requirements rather than afterthoughts [196–198]. 

Particularly as commercial platforms increasingly mediate data capture and recommen-

dation delivery. 

6.4. Equity and Generalizability 

Public microbiome resources and many precision nutrition datasets remain dispro-

portionately drawn from Western, high-income settings [199]. This limits the portability 

of microbiome biomarkers and prediction models to populations with different ancestries, 

food environments, infectious exposures, and sociocultural contexts [200]. Quantitative 

audits of public microbiome data demonstrate strong geographic skew. Recent perspec-

tives and large-scale efforts explicitly argue that underrepresentation constrains discovery 

and risks widening health disparities [201]. The field needs study designs that deliberately 
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include diverse diets and contexts, invest in regional research capacity, and validate tools 

across settings—so that “precision nutrition” does not become “precision for the few”. 

6.5. How Clinicians Can Use Microbiome Data Today and Next Steps for Implementation 

At present, clinically actionable use of microbiome science remains uneven across 

indications. The strongest evidence base and clearest care pathways are concentrated in 

selected gastrointestinal settings [19], particularly with recurrent Clostridioides difficile in-

fection, where fecal microbiota-based therapies and microbiota restoration strategies have 

demonstrated clinical benefit and are increasingly reflected in clinical guidance and piv-

otal trials [202–204]. In contrast, for MetS, most outputs from 16S rRNA gene sequencing 

or metagenomics remain insufficiently validated for routine decision-making. This is em-

phasized by recent consensus efforts urging caution when translating microbiome test re-

ports into clinical recommendations without rigorous validation and clear clinical action 

thresholds [205]. Consequently, when microbiome testing is obtained in MetS-like popu-

lations, results should generally be interpreted as hypothesis-generating and contextual-

ized alongside diet quality, medication exposures (including antibiotics and acid-sup-

pressing drugs), adiposity distribution, hepatic steatosis markers, and glycemic patterns, 

rather than used as stand-alone determinants of dietary prescriptions [205]. 

A feasible implementation pathway in cardiometabolic care requires moving beyond 

descriptive “dysbiosis” labels toward reproducible, function-centered outputs that can be 

audited clinically. First, microbiome measurement must become more reproducible 

through harmonized pre-analytics, sequencing, and bioinformatic workflows, and 

through transparent reporting standards; adoption of structured reporting frameworks 

such as STORMS is a necessary foundation to improve comparability and interpretability 

across human studies [189]. Second, methodological choices across the analytic chain can 

materially change results; comparative evaluations show that different differential-abun-

dance methods and pipelines can yield meaningfully different “discoveries” on identical 

datasets, directly affecting biomarker credibility and downstream clinical claims [186]. 

Third, translation will depend on demonstrating incremental value over standard risk 

stratification using clinically meaningful endpoints (e.g., glycemic trajectories, blood pres-

sure, lipids, hepatic fat, and weight maintenance), with external validation before adop-

tion—an approach aligned with expert recommendations for clinical microbiome testing 

and interpretation [205]. Fourth, implementation should prioritize clinician-facing deci-

sion support that produces interpretable. Moreover, guideline-compatible recommenda-

tions rather than long lists of taxa reflect the broader consensus that clinical usefulness 

depends on actionable outputs with explicit uncertainty and validated thresholds [205]. 

Finally, feasibility, privacy, and equity must be treated as core design requirements. 

Public microbiome datasets are geographically skewed toward high-income settings, 

which constrains generalizability and risks widening disparities if biomarkers and models 

are deployed without validation in diverse ancestries, diets, and environments [201]. At 

the same time, microbiome-based precision approaches increasingly intersect with sensi-

tive omics and digital phenotypes, raising privacy and governance challenges that require 

robust safeguards, particularly when data are handled through commercial or cross-insti-

tutional pipelines [206]. Together, these considerations reinforce that near-term progress 

in MetS will be driven less by additional associative findings and more by standardized 

measurement, rigorous validation, equity-conscious cohort building, and privacy-pre-

serving translational infrastructure [186,189,201,205,206]. 

7. Future Directions 

The future of precision nutrition lies in a decisive shift away from isolated, single-

layer associations toward integrated, mechanism-informed biological signatures that are 
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reproducible across cohorts and analytically robust [207]. In microbiome research, this 

transition requires moving beyond descriptive profiling to the coordinated integration of 

complementary data layers. Shotgun metagenomics provides insight into taxonomic com-

position and functional potential, but when combined with metatranscriptomics, metap-

roteomics, and metabolomics to unravel microbial functions, they can be meaningfully 

linked to host cardiometabolic pathways that are actionable through diet [208]. The great-

est gains are likely to come from analyses that explicitly integrate microbial and host-de-

rived omics, such as circulating metabolomics, to bridge microbial activity with systemic 

metabolic regulation. 

Comprehensive reviews of multi-omic integration consistently underline this prom-

ise, while also issuing an important caveat: integration alone is not sufficient. Without 

rigorous standardization, harmonized analytical pipelines, robust quality control, and in-

dependent validation, multi-omic model risk being complex without being reliable [209]. Es-

tablishing shared methodological frameworks will therefore be essential if microbiome-in-

formed signatures are to move from exploratory research into clinically meaningful tools. 

In parallel, ML and AI are rapidly becoming central to precision nutrition research. 

However, the primary barrier to translation is no longer predictive performance, but in-

terpretability and clinical trust. Seminal studies demonstrating the prediction of individ-

ual postprandial responses illustrate the transformative potential of data-driven models, 

while recent syntheses of the field reveal a fast-growing AI ecosystem accompanied by 

persistent shortcomings, including limited generalizability across populations, incon-

sistent benchmarking practices, and insufficient attention to transparency, equity, and de-

ployment in real-world settings [17,210]. In response, there is a clear shift toward explain-

able approaches—such as feature attribution, constrained modeling, and model simplifi-

cation—that prioritize clinical interpretability, facilitate auditing, and support patient-

centered decision-making rather than opaque “black-box” predictions [211]. 

Equally important is the adoption of a life-course perspective. Early life represents a 

critical window of developmental plasticity for both host metabolism and the gut micro-

biome. Accumulating evidence links early microbial configurations and microbial-de-

rived metabolites to metabolic phenotypes later in life, suggesting that cardiometabolic 

risk may be shaped long before clinical disease becomes apparent [212]. This recognition 

is driving a new generation of cohort studies that begin in pregnancy or infancy, incorpo-

rate repeated multi-omic sampling and explicitly examine pediatric cardiometabolic tra-

jectories alongside potential intergenerational influences, both biological and social [213]. 

Together, these studies reinforce the concept that early-life exposure can durably imprint 

microbial and metabolic features, strengthening the rationale for prevention-oriented pre-

cision nutrition strategies initiated well ahead of overt disease [214,215]. 

Finally, truly “precise” nutrition must move beyond biology alone to incorporate be-

havioral, psychological, and environmental determinants that shape both physiological 

responses and long-term adherence. Sleep quality, physical activity, psychosocial stress, 

and socioeconomic context all influence dietary exposures and metabolic outcomes [216]. 

In addition, circadian alignment and meal timing are increasingly recognized as mecha-

nistically relevant regulators of metabolism, with potential interactions across microbial 

and host pathways [217]. Digital health technologies, including wearables, continuous 

glucose monitoring, and high-resolution dietary assessment tools, offer practical avenues 

to capture these dynamic factors and support adaptive, context-aware interventions. At 

the same time, their integration demands careful validation, governance, and ethical over-

sight to ensure that increased data complexity leads to better decisions and broader ben-

efit, rather than confusion or widening health disparities [218]. 
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8. Conclusions 

The gut microbiome has emerged as a key biological link between diet, lifestyle, and 

metabolic health in MetS, helping to explain why individuals often respond so differently 

to the same dietary advice. By shaping energy harvest, glucose and lipid metabolism, BA 

signaling, gut barrier integrity, and systemic inflammation—largely through the actions 

of microbial metabolites—the microbiome provides a biologically plausible framework 

for more personalized interventions. A growing body of evidence shows that diet and 

physical activity can be used to modulate microbiome composition and function in ways 

that meaningfully influence cardiometabolic risk, positioning microbiome-informed per-

sonalized nutrition as a natural evolution beyond “one-size-fits-all” approaches. 

At the same time, this field remains in its early stages. Much of the current evidence 

comes from relatively small, short-term, and methodologically heterogeneous studies. En-

couragingly, research is now shifting toward mechanistic studies, controlled interven-

tions, and questions of real-world implementation. With stronger long-term evidence, 

greater methodological standardization, and the development of interpretable and scala-

ble tools, microbiome-informed diet and exercise strategies have the potential to refine the 

prevention and management of MetS and deliver more precise, durable, and equitable 

reductions in cardiometabolic risk. 
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