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Abstract: In numerous scientific and engineering domains, fractional-order derivatives and integral
operators are frequently used to represent many complex phenomena. They also have numerous
practical applications in the area of fixed point iteration. In this article, we introduce the notion of
generalized Meir-Keeler-Khan-Rational type (¢ — «)-contraction mapping and propose fixed point
results in partial metric spaces. Our proposed results extend, unify, and generalize existing findings
in the literature. In regards to applicability, we provide evidence for the existence of a solution for
the fractional-order differential operator. In addition, the solution of the integral equation and its
uniqueness are also discussed. Finally, we conclude that our results are superior and generalized as
compared to the existing ones.

Keywords: metric space; fixed point; fractional differential operator; non-linear equation; order

of convergence

MSC: 47H10; 54H25

1. Introduction

Many generalizations of the usual metric space have been introduced by many authors
in the literature, and PMS (partial metric space) is one of them. Matthews [1] defined PMS
in 1992 by considering the fact that self-distance is not necessary to be zero. He proposed
the notion of PMS in his research on the denotational semantics of dataflow networks by
proving that the BCP (Banach contraction principle) can be extended to the PMS for use in
the verification of programs. The main purpose of deriving PMS is to transfer mathematical
techniques into computer science. Inspired by this innovative idea of PMS, various authors
have worked on this space and its physical properties, and also proved many FPRs (fixed
point results) for single and multivalued-maps. Fixed point theory is simply based on
the solution of a simple equation fiv = v for a SM (self-map) / defined on a non-empty
set x. It is the most effective and successful technique for solving many mathematical
problems, such as differential and integral equations which appear in economics, physics,
chemistry, game theory, etc. The FP (fixed point) problem was first seen in the solution
of a differential equation with an initial value. Liouville [2] was the first to obtain the
solution of the FP equation by solving a differential equation with an initial value in 1837.
Later, Picard [3] proposed the aforementioned method systematically and simplified the
differential equation. Further, Banach [4] derived a celebrated FP theorem in complete
metric space by developing the successive approximation method. This celebrated FP
result was characterized by Caccioppoli [5], who showed that in a complete metric space,
there is a UFP (unique fixed point) for each contraction. This result is also known as the
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Picard-Banach FP theorem, the Banach—Caccioppoli FP theorem, Banach’s FP theorem,
and BCP.

After that, as a result of extending and generalizing the BCP, various FPRs have been
proved by many authors in numerous spaces. Jaggi [6] was the first to establish a FP result
by considering the rational expression in 1977. In 2018, Karapinar generated the idea of
interpolative type contraction, and many more results have been proven in the context of
interpolative type contraction by linking it with interpolative theory [7-10]. Inspired by
Mitrovic et al. [11], Karapinar [8] introduced the notion of hybrid contraction by combining
the ideas of interpolative type contractions and Reich type contractions in 2019. In 2021,
Reena Jain et al. [12] defined an implicit contractive condition by an implicit relation on
rational quasi PMS and derived periodic, and FP result. They also attained sufficient
conditions for existing the unique positive solution of a non-linear matrix equation. Using
auxiliary functions, the existence of FP with its uniqueness was proven by Kumar et al. [13]
in 2021. Later in 2022, Nuseir et al. established a FP result for SM with some contractive
conditions in partially ordered “E” MS. Saluja [14] attained a few common FPRs using
auxiliary functions in a complete weak PMS.

In 1969, Meir and Keeler [15] demonstrated the concept of Meir-Keeler type contraction.
This contraction is generalized by many authors in numerous type of spaces [16-19].
Motivated by these studies, Aydi et al. [9] defined GMKC (generalized Meir-Keeler type
contraction) on PMS and they demonstrated that in 0-complete MS, a UFP exists for an
orbitally continuous SM that satisfies the requirements of a GMKC. Later, Redjel et al. [20]
derived the idea of (¢ — &) Meir-Keeler-Khan mapping in metric space. Further, in 2018,
Kumar and Araci [21] established the notion of GMKK(y — a)C (generalized Meir-Keeler-
Khan type (i — a) contraction), which includes the a-admissibility of the function. Here,
a FP result is established in complete PMS for GMKK(y — «)C using the continuity of
a-function, that is:

“In a complete PMS (x, p), GMKK(y — «)C has a FP, if

there exists vy € x in such a manner that a(vp, vo) > 1,
if a(vg, wi) > 1foreach k € N, then limy_,, (v, wi) > 1,
3.  a:x*— Rt isa continuous function in each coordinate”.

N o=

Moreover, in 2019, Karapinar and Fulga [8] initiated the notion of hybrid type con-
traction in complete metric space by combining the idea of Jaggi type contraction with
interpolative type contraction and stated FPRs using the continuity of the SM. Their pro-
posed results state that “A Jaggi type hybrid contraction s : x — x possesses a FP in a
complete metric space (x,d), if i is continuous and attained a UFP if /” is continuous
for some integer p > 1”. Furthermore, they established the solution of FDE(fractional
differential equation) in the framework of their demonstrated result.

Inspired by [8,21], we have related the idea of Jaggi type hybrid contraction with
GMKK(¢ — «)C and stated GMKKR(¢)C (generalized Meir-Keeler-Khan-Rational type
y-contraction) and GMKKR (¢ — a)C (generalized Meir-Keeler-Khan-Rational type (¢ — «)
contraction) and proved FPRs in complete PMS by relaxing the condition of continuity
of the a-function and the continuity of SM. Additionally, we have provided illustrative
examples in support of our result. Furthermore, we have applied our proposed result in
integral and fractional calculus to obtained the existence and uniqueness of solutions of VIE
(Volterra integral equation), Caputo type FDE, and Riemann-Liouville type FDO (fractional
differential operator), and to justify all of these results, we have proposed examples for
each result.

Beginning with the introduction in Section 1, we have given some fundamental
definitions in Section 2. In Section 3, we have proposed the concept of GMKKR(y)C,
GMKKR (¢ — «)C and proved FPRs with their uniqueness in complete PMS. To justify our
result attained in Section 3, we have given examples. We have also worked on a VIE of
second kind, a FDE of Caputo type, and a FDO of Riemann-Liouville type and attained
the existence and uniqueness of solutions for all of these in the framework of our main
theorem, with examples in Section 4.
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p(v, w)p(v, hw) + p(w, hw)p(w, hv)

2. Definitions

Here, a few fundamental definitions are presented pertaining to our work.

Definition 1. ¥ is the family of  functions. i : [0,00) — [0, 00) is a function satisfying the
below prepositions:

1. is non-decreasing and continuous,
2. X2 9" (t) < oo foreacht >0,
3. y(t) <tforallt > 0and (t) = 0ifand only if t = 0.

Definition 2. Consider a non-empty set x. Definea SM T : x — x and a function « : X x X —
[0, 00). Then, T is said to be a—admissible, if

Vx,y € X,a(x,y) > 1= a(Tx, Ty) > 1.

Definition 3 ([8]). Let i be a SM defined on a MS (x,d). Then, h is known as Jaggi type hybrid
contraction if there exists € Y (defined in Definition 1) in such a way that

d(hv,hw) < (G (v, w)), ©)
for every distinct v,w € x,s > 0. Now, the function ; (v, w) is defined as

s S
i) = | (1P o)) 5> 0, v, € xly £ @),
(p(v, )" (pl(w, hw))™, 5 =0, v, € x/Fy(x),

with F,(x) ={z € x : hz = z} and 01,09 > 0 such that o + 0o = 1.

Definition 4 ([21]). Definea SM hona PMC (x, p). Then, h is called GMKK (¢ — «)C, if

1.  his a-admissible,
2. foreach e > 0, there exists some & > 0 such that

p(v, hw) + p(w, hv) ) <e+d=a(vv)a(w w)p(v,iv) <e, (2)

foreachv,w € x. The -function and a-admissibility of the function is defined in Definitions
1 and 2 respectively.

Remark 1 ([21]). If i is GMKK(¢ — «)C, then

p(v, hv)p(v, hw) + p(w, hw)p(w, iv)
p(v,hw) + p(w, hv)

a(v,v)a(w,w)p(hv, hw) < 1p< ),Vv,w €x. 3

3. Development of Extension of Meir-Keeler-Khan (¢ — «) Type Contraction and
Related FPRs

Here, we have proposed GMKKRyC and GMKKR(¢ — «)C in PMS as an extension of
Meir-Keeler-Khan (i — «) type contraction. Additionally, we have established FPRs for
these proposed contractions.

Definition 5. Assume h be a SM defined on a PMS (x, p). Then, h is called GMKKR (y)C, if for
each € > 0, there exists some 6 > 0 satisfying

€< YP(l3(v,w)) <e+d= p(hv,hw) <e. 4)

Here, the functions ¢ and {;, (v, w) are the same as defined in Definitions 1 and 3,
respectively.
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Definition 6. Suppose h is an SM defined on a PMS (x, p). Then, I is called GMKKR (¢ — «)C, if

1.  his a-admissible,
2. foreach € > 0, there exists some 6 > 0 in such a manner that

e<YP(lh(v,w)) <e+d=a(v,v)a(w, w)p(hv, iw) < (5)

The functions i and {j (v, w) are same as defined in Definitions 1 and 3 respectively,
and a-admissibility of the function is defined in Definition 2.

Remark 2. If i is GMKKR(yp — «)C, then
a(v,v)a(w,w)p(hv, hw) < (g5 (v, w)), Vv, w € x. (6)

Theorem 1. Suppose (x, p) be a complete PMS and h : x — x be a GMKKR(yp — «)C. Then, h
has a UFP, if

1. thereexists vy € x such that a(vg,vg) > 1,
2. p(t) <4,

Here, the function ¢ is same as defined in Definition 1 and « : X x X — [0, 00).

Proof. Construct a Picard sequence for vy € x as
Ve = v, Vk=0,1,2, ... (7)
From given condition 1, we have
a(vg,vg) > 1. 8)
Since 71 is GMKKR(¢ — a)C, 1 is a-admissible. Therefore, using Definition 2, we attain
a(hvg, hvg) > 1= a(vy,v1) > 1. [using (7))
By proceeding with the process in the same manner, we obtain
a(ve, ) > 1,Vk=0,1,2,... 9)

Here, we have two cases:

Case (I): If vg, = vg,41 for some kg € N, then, vy, = hiyy,. Therefore, vy, is FP of 7.
Case (II): If vy, # v, +1, then again we have two cases:
case (a): Fors > 0:

From definition of ¢ (defined in Definition 1), we have
P(t) > 0,Vt > 0. (10)
Therefore, (3 (v, w)) > 0,

lP(m (p(v' F;/(z/;fgj;'hw)f + Uz(P(v,w))s> > 0.

@

For v = v, and w = vk, the above inequality becomes

p (e, frvi) p (Vi v 1) )S )
gk + oo (p(v, v, >0,
¢< 1( (Ve Ves 1) 2 (P (Vi Vies1)
P (Vi Vi 1) P (Vi 1, Vit2) ) )
v + oo (p(vg, v, >0,
¢( l( P(Vi, Vis1) 2(P (Vi Vi)
$(01(p(Vir1, Vir2))* + 02 (p (Vi v 11)))F > 0
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Now, if p(vk, k1) < p(Vki1, Vks2)- Then, using above inequality, we can say

1
s

¥((01 + 02) (p(Vks1, vi42))°)

>0,
P(p(Ver1, Vksa)) > 0.

las o1 +0p = 1]
From Remark 2 (for v = v} and w = v4;1), we have
o (Vi Vie) & (Vi1 Vie1) p (v, Aviey 1) < (85 (Vs Vi) (11)

Using Equations (7) and (9) in above expression (11), we obtain

P (Vi1 Vig2) < (87 (Vi Vies1)),
< P(p(Vig1,Vis2))s
< p(Vit1,Vit2),

which is a contradiction. Therefore, our assumption is wrong. Hence
(Vi1 Ves2) < p (Vg Vir)- (12)

Thus, sequence {v;} is a decreasing sequence and hence, converges to some € > 0, i.e.,

lim p(vg, vei1) =€, (13)

k—o0

where € = inf{p(v, vk 1)}, k € NU{0}.

Now, we will show that € = 0. On the contrary, suppose that € # 0. Then, using
Definition 4 for y = vx and v = v 1, we get

P (Vs Vies2) = p(Mvg, veyq),
< (v, ve)a(Ver1, Vi1 ) p(Rvg, ivg 1) < €, [using Equation (9)]

which is a contradiction because € = inf{p(vk, x11)},k € NU {0}. Thus, our supposition
is wrong and therefore, € = 0. Hence, Equation (13) becomes

lim p(vg, k1) =0,Vk € N. (14)
k—o0
From the definition of partial metric, we have
0 < Lim p(vg,ve) < lim p(vg, viesq).
k—o0 k—o0
Using Equation (14) in the above inequality, we attain
lim p(vg, v,) = 0. (15)
k—o0
Further, we will demonstrate that sequence {vy} is a Cauchy sequence in PMS (x, p).
To show this, it is sufficient to prove that sequence {vy} is a Cauchy sequence in metric
space (x,dp), where
dp (Vi Vir1) = 2P (Vio Vies1) — PVio Vi) — P(Vig1, Vig1)- (16)
Letting k — oo and applying expressions (14) and (15) in Equation (16), we attain

klil’n dp(Vk, Vk+1) =0,Vk e N. (17)
—00
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Now, suppose that sequence {vy } is not a Cauchy sequence in metric space (x, dp). So, there
exists a number 1 > 0 such that for any ¢ € N, there are two numbers n¢, m.(n, > mq > c)
satisfying

dp(Vme, Vn.) > 17 (18)

Additionally, for m; > ¢, we can choose a small positive integer 7. in such a manner
that for n, > m. > ¢, we have
dy(Ving, Vn_p) <17 (19)

From Equation (18), we have

n < dp (Vmcr Vn, )/
S dp (Vmc’ V”C—Z) + dp (Vn672’ U”c—l) + dP (V”cfl’ Vnc)’

Letting ¢ — co and using Equations (17) and (19) in above inequality, we get

lim dp (i, V) =17, (20)

c—00

Also, 17 < dp(Vine, V),
< dP (VmuVmc+1) + dP (Vmc+1/ V”c+1) + dP <V"c+1/1/"c)'

< dp (Vmﬂ’ Vi1 ) + dp (Vmc+1’ th:) + dP (Vmc’ Vﬂc) + dp (Vnc’ V”c+1) + dp (Vnc+1/ Vnc)'

Letting ¢ — oo and substituting Equations (17) and (20) in above inequality, we obtain

lim dlf’ (Vmc+1' V”c+1) =1. (21)

c—00

Further, for v = v, and v = v, Equation (16) becomes

dp(vmclvnc) = Zp(vm,;/ Vl’lc) - p(VmC/VmE) - P(Vnc, V”c)/

d]ﬂ (Vmc+1’ Vnc+1) = Zp(vmc+l 4 1/nchl) - p(vchrl’ Vmc+1 ) - p(Vnc+1’ VnC+l )

Letting ¢ — oo and applying Equations (17), (20) and (21) in above expression, we get
lim PV, Vne) = Bm p (Vi Vi) = g (22)
p(vmc+1 4 Vnc+] ) = p(hvmc/ hvmr)/
< &(Ving, Vi )& (Vng, V) p(HVm,, Vi),
< (& (Vme,vn.)),  [using Equation (6)]

w( ( (Vmcrh%)p(vn”mm)y+02(P(vmc,vnc))s)ll

p (Umc’ Vn, )

<y (01 (p(va’VmC+l)p(Vnc/V"c+1 ) ) S + UZ(p(VmC,Vnc))s> N

P(vmc’ Vn, )

Letting ¢ — oo and substituting Equations (14) and (22) in the above inequality, we get

@ =

< lim (o2 (p(Vm,, vn.))?) 5,

c—00

< lim ¢(p(Vm,, vn,)), [asor <1]

c— 00

< lim p(Vm,, Vi), [as(t) < tfrom Definition 1]

C—00

7
<3

NN N I\)\Q
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which is not true. Therefore, our supposition is wrong. Thus, sequence (v;) is a Cauchy
sequence in metric space (x,dp) and hence, a Cauchy sequence in PMS (y, p). Further,
completeness of PMS (x, p) implies completeness of metric space (x, dp). Therefore, Cauchy
sequence {v;} converges in metric space (x,d,). Hence, there exists a number z € x in
such a manner that limy_,, vy = z, thatis

lim d ,z) = lim d ,v1) = 0. 23
lim d (v, z) (i p(Vie, V1) (23)
Now, we know that

lim dy(z,v¢) = 0« lim p(z,v¢) = lim p(v,v;) = p(z,2).
k— 00 k—o00 k,l—o0

Thus, p(z,z) = kl;m p(v, z) = klliinoo p(vg,v;) =0, [using Equation (15)] (24)

p Vg1, hiz) = p(hvk,hz
(v, vi)a(z, z) p(hvg, hz),
(3 (v, 2)), [using Equation (6)]

=y (al (PP G2 o a2 |

(p(vi2) + p(z, V) — P(z,2)p(z )\
<o(o (S )

s

+ Uz(P(Vk,Z))S> :

Letting k — oo and substituting Equation (24) in the above inequality, we get

@ =

klgglop(z,hZ) < P(o1(p(z,hz))%)s,

1
— (e (=120,
1
207 p(z,hz)
— 3 4
< 2p(z3, hz), [as oy < 1]
3p(z,hz) < 2p(z, hz),
p(z,hz) =0,
hz = z.
Therefore, z is FP of 7.
Uniqueness of FP:

Assume z1 (# z) be another FP of i, then

hz Z1 = 41,
p(z,z1) = p(hz, hzy),
< a(z,z)a(z1,21)p(hz, hz1),
< ({3(z,21)), [using Equation (6)]
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P(Z,Zl) = lP 0—1< (Z hz (Zl,hzl) 5

p(z,21) >S+UZ(P(2121))S) ,

( )»
(o (PP < o)

1

(02(p(z,21))°)5, [as p(z,z) = 0 from Equation (24)]
Y(o5 pz21),

1
< Zazsp(z,zl)/
- 3

< Zp(z,zl),

- 3

I
< <

[as oy < 1]

(25)

0
p
a(z1,21)a(z1,21)p(hzy, hzy),
¥(Cy(z1,21)), [using Equation (6)]
%

(P o)

(
(01 (P(Zl;qz(lz)fz(f)l’zl)y + (Tz(P(zl,m))s) %,

(01 +02)(p(on,21))°)

S5 lsata=1

p(z1,z1) = 0. (26)

From Equations (24)—-(26), we obtain

p(z2) = p(z,21) = p(z1,21) = 0.

Therefore, from the definition of the partial metric, we conclude that z = z;. Hence, z
is the UFP of 7.
case (b): Fors =0:

Since 1 is GMKKR(¢ — «)C. So, for v = v and w = vy, 1, we have

P (Vg1 Vir2) = p(fvg, fvggq),

< a(vg, v )a(Vig 1, Vi) p(ve, ivg 1),
< (3 (v vit1)), [ using Equation (6)]
=P ((p(vi, Viks1)) ™ (P(Viy1, Viy2)) ), [from Definition 3]
< (p(vi, vie41)) ™ (P(Vkt1, Vks2))™,  [from Definition 1]
(P(Vks1, Vis2))' ™2 < (P (v, vkg1)) ™
(P (Vi1 Vi42))7 < (P (Vi vet1))
P (Vs View2) < p(Vks Viesn)-

Therefore, {vi} is a decreasing sequence and hence convergent to some € > 0. Further,
applying the same procedure as in case (a), we get
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lim p(vg, V1) = 0. (27)
k—o0
lim d , =0,
Hm dp (v, ve)
Clgngo dp (UmC’ Vnc) = Cll)l'{.h dp (Vmc-H’ 1/"c+l ) =1, (28)
C11—>I£lo p(vmc’ V”lc) = Ch_{]go P(vmc+1’ U”Hl) = g’
p(vmc+1’ V”c+l ) - p(hvmc’ hvﬂc)/
S a(vmc’ Vine )DC(V”E’ Vne ) p(hymc’ hvnc )’
S 1P(€}S‘z (Umc’ Vn, ) )’
= ¢((P(Vmuvmc+1 )7 (p(va,, Vngq ))72).

Letting ¢ — co and using Equations (27) and (28) in above inequality, we obtain
5 SO =0,
2
which is not true as 7 > 0. Again applying the sane procedure as in case (a), we get
p(z,z) = lim p(v,z) = Um p(vg,v;) = 0. (29)
k—o0 k,1—o0

p(vksq, hz) = p(hvg, hz),

< a(vg, vp)a(z,z)p(hvg, hz),
< 9(Z3 (v, 2)), [using Equation (6)]
=((p(vk, vky1)) (p(z,hz2))72).  [from definition of ¢ defined in Definition 1]

Letting k — oo and using Equation (29), we attain

p(z,hz) = ¢(0) =0,
hz = z.

Hence, z is FP of #.
Uniqueness of FP for case (b):

We can attain the uniqueness in the same manner as in case (a). O

Theorem 2. Consider a complete PMS (x,p) anda SM T : x — x. If his GMKKR(y)C, then h
has a UFP for y(t) < %, Vt.

Proof. The result can be directly attained from above Theorem 1 by taking a(v,w) = 1 for
eachv,we . O

4. Numerical Results

Here, in this part, some examples are illustrated in support of our proposed Theorem 1
in Section 3.

Example 1. Consider a complete PMS (x, p) with x = [0,1] and p(v, w) = max{v, w}. Define
aSMh:x — xas

v
h= 2
V=3
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and a function « as

1+ +%v,w#1,
ac(v,cu) - {1 1/3:w3:1

Then, Tt has UFP fors = 2,(t) = L and oy = 0 = .
Proof. To show that 71 has a UFP, it is sufficient to show that all the assumptions of our
proposed Theorem 1 are satisfied.

1. Obviously, Yv,w € x,a(v,w) > 1. Therefore, there exists vy € x in such a way that
a(vp,vp) > 1.

2. a(v,w)>1= a(hv,hw) > 1,Yv,w € x, which shows that /i is « —admissible.
3. Without loss of generality, suppose v > w. Therefore,

p(v,w) = max{v,w} = w,

p(v, hv) = max{v, v} = max{ ;} _

p(w, hw) = max{w, hw} = max {w cg} =w,

p(hv, hw) = max{hv, hw} = max {; cg} = %,
0@ = p(or (PRI o piv, 1))
V2 L w?)3
pGwe) = TR s 0w ey, @)

2,/2

(v, 1)a (w0, 0)plhv, heo) = (1+3) (%) (8) w22

()=

a(v,v)a(w,w)p(hv,hiw) = (14+v)(1+ w) <g>,

_ (v(1+v;w+vw)>.

[e</}S

31)
From Equations (30) and (31), we can clearly see that

a(v,v)a(w,w)p(hv, hw) < P (v, w)), Vv, w € x,

which shows that 71 is GMKKR (¢ — «)C.

Hence, every hypothesis of Theorem 1 is satisfied. Thus, 7 has a UFP 0. Now, since «
is not continuous at v = 1, UFP cannot be determined for FPRs in [19,21]. [

Example 2. Assume a PMS (x, p) with x = [0,1] and p(v,w) = max{v,w}. Define a SM
h: x — hand function « as
0,ve [0,;),

%,v IS [%,1]

hv
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Vv, w € x. Then, hhas UFP 0 for y(t) = Z,01 = 1,00 = 3 and s = 2.

3

Proof. For this, we will establish that every assumption of Theorem 1 is satisfied.

1.

2.
3.

Clearly a(v,w) > 1,Vv,w € x. Thus, there exists some vy € x in such a manner that
a(vg,vp) > 1.

a(v,w) > 1= a(hv,hw) > 1,Yv,w € x. Therefore, I is a-admissible.

Without loss of generality, suppose v > w. Now, we have two cases:

Case (I): If v, w € [ , 2), then

plv,w) =

max{v,w} =,

p(v,hv) = max{v, v} = max{v,0} = v,
p(w, hw) = max{w, hw} = max{w,0} = w,
p(hv, hv) = max{hv, hw} = max{0,0} =0,
(G5 (v, w)) = Y(G(v,w),
2 )
— (o (PSRN o 1,02
2 3,2\ %
vae) =3((“F)) @)
alpha(v,v)a(w,w)p(hv, hw) = (1 + % + 16/> (1 + % + cg) (0)=0. (33)

From Equations (32) and (33), we attain

a(v,v)a(w,w)p(hv, hw) < (v, w)), Vv, w € {0,;).

Case (I): If v,w € {;, 1] , then

= max{v,w} =,

p(v,w)

p(v,hv) = max{v, hv} = max {v,é

Il
S

p(w, hw) = max{w, hw} = max {w,

p(hv, hw) = max{hv, hw} = max{1 1} E

6’6 6’
PG (v, w)) = P(Gh(v,w),
_ofo (PPN
= (o (PEBIETDN o i)
PG = B 5 g N
a(v,v)a(w,w)p(hv, hw) = % (35)
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From Equations (34) and (35), we get

)y, (i, ) < PG, W0 € [31].

Therefore, 11 is GMKKR (¢ — «)C.
Thus, each requirement of Theorem 1 is fulfilled. Thus, # has a UFP 0. However, since

function « is discontinuous at (v,w) = <%, %), UFP cannot be determined for FPRs

in[1921]. O

Example 3. Consider a complete PMS (), p) with x = Cla, b] and p(v,w) = max{v, w}. Define
aSMh : x — x defined in terms of VIE as

hv(t) = g(t) + /ﬂtK(t,s,v(s))ds,Vv(t),w(t) € x,t€labl].

Then, ithasa UFP fors = 1, a(v,w) = 14+v —w,p(t) = Z and 0y = 05 = 1 if
1. K(ts,w(s)) < K(ts,v(s)),
2. g+ f;K(t,s,v(s))ds < V(St)

For instance, t has UFP 0 for x = C[0,1],v(t) = t + 2, w(t) = t + 3, ¢(t) = % and
K(t,s,v(s)) = ),

Proof. To show the existence of UFP, it is sufficient to show that all the above conditions
are satisfied. For each v(t), w(t) € x,t € [0, 1], we have

sv(s)  s2+s°

K(t,s,v(s)) = . e (36)
2., 4
K(t,s,w(s)) = swls) _ s 4s , (37)
6 6
From Equations (36) and (37), we attain
K(t,s,w(s)) < K(ts,v(s)). (38)
't 3 ot o2 3
8+ [ Klts,v(s)ds = =+ [ T,
Jo 6 a 6
t+ 12
_— 3 7
v(t)
<
<3 (39)
t t+t3  ts? 4t
g(t)—l—/o K(t,s,w(s))ds = g +/0 g ds,
t+ 13
_— 3 7
(t)
< )
<5 (40)

Thus, from Equations (38)—(40), we can say that all the above requirements are fulfilled.
Therefore, /i has a UFP.

Verification: To verify the result, it is sufficient to show that our example satisfies each
assumption of our main Theorem 1.

1. Ve xalwvw)=1>1,
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2y =%F<%
3,
av(t),w(t) =1+v(t) —w(t) =14+ 2+ >1,
1/t4 ¥
(v (t), heo(t)) = 1+ hu(e) — heolt) =1+ ¢ (4 - 5) >1,
which shows that # is a-admissible.
p(v(t),w(t)) = max{v(t),w(t)} = max{t+ 2, t+ 13} = t + > = v(1),
p(v(E), v (t)) = max{v(t), hv(£)} = max {t P, t+4§6+t4} -
p(w(t), hw(t)) = max{w(t), hov(t)} = max {t + £, t+4§6+t5} =t+ 8 =w(t),
p(hw(£), heo(t)) = max{v(£), hw(f)} = max { s 456 aak s 43; 5 } _ 456 T
=hv(t),
: _ p(v(8), i (1)) p(w(t), heo(b) \° A
PG 0),()) = p (o (PEDEEOPELICONN o w0y )
(1 (v(Hw(t) 1
=v(5("0") + 20m)
2 3
P@ (), w) = 2 )
w8
w(v(8), V(1) (D), (D)l (D), ho(t)) = (D) (v(e) = 25 (@)

From Equations (41) and (42), we attain

a(v(t),v(t))a(w(t),w(t))p(hv(t), hw(t)) < (G (v(E), w(t))).

Therefore, 1 is GMKKR(y — «)C. Thus, each hypothesis of Theorem 1 is satisfied.
Hence, 7 has a UFP. In this example, 0 is the UFP of ras t = 0,v(t) = hv(t) = w(t) =
hw(t) =0. O

Example 4. There have been plenty of additions made to the area of solutions of fractional order
differential and integral equations. BCP is used to prove uniqueness of solutions of fractional
differential equations [22-24].

Consider a complete PMS (x, p) with x = C[0,1] and p(v(t), w(t)) = max{v(t),w(t)}.
Definea SM I : x — ) in terms of Caputo fractional derivative as

2t

CDy(t) = r(la) {/Ot(t OV u()dT - 55 /01(1 — (1, u(T))dt

"2 EtZZ /OZ (/OT(T - ﬂ)“_lf(ﬂ/V(ﬂ))dﬂ)] :

Then, h has a UFP for a(v(t),w(t)) = 1+ 09Ol vy (1), w(t) € C0,1],n € N,9(t) =
2 vte(o,1],

(a)oy =0y = %,5=0,and

(b)or =0,00=1,5>0,

if, for each v(t), w(t) € C[0, 1], we have the below assumptions:
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1. v(t) > w(t),
2. hv(t) <4
For instance, t hasa UFP 0 for x = C[0,1],v(t) = t+ %,w ) =t—t+ tg,f(t,v(t)) =
1+ u(t) — 2, a(v(t),w(t) =1+ MOl e N (1) = 2,0 =3,2=1,
Proof. Since for every t € [0,1],
12
w(t) = e + 13 (44)
2 4 ’
2
FlbvE) =1+ -2 =14t -1,
1 t

hu(t) = T(a) [ 0 (t—=0)* ' f(r,v(r))dT - ziitzz /01(1 — 1) L (t,v(7))dr
2 [ = toan)ae,

1
1 1 T\4 72 18t 1
_F(Z)[/O“(l_t) (1+T—2>dT—17.0(1—T)
18t 2 ( [T 1 2
2ot 1 ¥ _®
3/ (A T4(1 T) (1+y z)dy)}

Substituting T = ¢&; and £ = ¢ in the above equation, we get

W=

2
<1+T—T2)dT

19 1 27,2 1 1 2
FlV(f)Iré){/O f4(151)4<1+T§1T2§1 )fdéllls; A (1T)4(1+TTZ)dT

z 1 27 2
_l’_ﬁ </ 71(1—(;‘2)411<]+t§2—1-€2 )Tdéz)d”f],
17 Jo 0 2
hu(t) = —0.9712¢ 4 0.72512¢3 + 0.32177¢% — 0.099704¢ 7, (45)

2
Fltw) =14w(t) ~F=1+2 "+ ¢,

() = s | [ -0 mwtenie - 22 [T -0 (o)

—_

1
AR CU -
1 - (1—1—2 1 +u )dy)dr],

1 L 1 e 52C1% 4.3 18t 1 1 T 512 4
- | [ ta- 1 LS MR ) P L O RS Y L d
I‘(){/o i 51)4<+2 R 51) Gi=37 J, ( T)4(+2 4+T)T

'z 1 1 2x 2
+ﬁ.0 (/0 T4(1§2)4<1+T§25T4§2+T3€23)Td§2>d’(],

hew(t) = —0.75077t + 0725121 + 0.1064+1 — 0.24744t % + 0.14¢3 . (46)
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Thus, from Equations (43)—(46), we get Vt € [0,1],

Hence, every hypothesis is satisfied. Thus, & has UFP. Further, we can verify our
result in the same way as in Example 3. In this example, clearly, 0 is UFP of 7 as at
F=0,v(t) =) =w(t) =hw(t) =0. O

Example 5. Consider a complete PMS (x, p) with x = C[0,a] and, p(v(t),w(t)) = max{v(t), w(t)}
and definea SM h : x — x in terms of FDO of Riemann-Liouville type as

hu(t) = Wﬁl_“);tn /ut(t ) ty()dr,
_yn V(k) (a)(t B a)kia 1 t n—u,,(n
X0 T(k+1—a) | Tntl—a) /a (t= " D (.

Then, h has a UFP for a(v(t), w(t)) = 1+ M,Vv(t),w(t) € Cl[0,a],n € N,y(t) =
3,
(a) oy =0p = %,S =0,
(b)oy =0,00=1,5>0,
if, for every v(t), w(t) € C[0, a], we have
1. v(t) > w(t),
2. () <4l

For instance, / has a UFP for xy = C[0,1],v(t) =t — 13, w(t) = % =283, a(v(t), w(t)) =
14 Wl e N p(t) =%, 0= 3

n 4 4 4 .

Proof. Since forall t € [0,1],

v(t) =1- 2000 = =322, v (1) = —et, @)
o v® () (t =)k 1 f nay (1)
h(t) =X T(k+1—a) + T(n+1-a) /a (t=m) ()T

By substituting ¢ = ¢, we attain

hu(t) = —6.770212. (48)
2
w(t) = tz —283, 0 (t) = é —6t2and w? (1) = = — 12, (49)

hw(t)—zizo‘”(k)(())(t_o)k_f+ 1 )/Of(t_r)l_gdz)(r)dn

hew(t) = (1—16t)t2. (50)
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Thus, from Equations (47)-(50), we attain

hv(t) < v(t) and hiw(t) < @,
foreacht € [0, 1]. Hence, 71 has a UFP. Additionally, we can also verify our result in the
same manner as in Example 3. Here, clearly, 0 is the UFP of hhas att = 0,v(t) = hv(t) =

w(t) =hw(t)=0. O

5. Conclusions

In this manuscript, by generalizing the idea of GMKK(¢ — a)C, we have demonstrated
the concept of GMKKR(y)C and GMKKR(¢ — a)C, and established FPRs in complete PMS.
Some examples are also proposed in context of our main result. Moreover, by applying
our established result, solutions for VIE of second kind, FDE of Caputo type, and FDO of
Riemann-Liouville type are obtained with examples in terms of FP.

In future, we may try to extend and generalize our obtained result in other spaces
by further expanding the idea of GMKKR (¢ — «)C. Additionally, we can try to attain the
applications of our result in differential calculus, optimization theory, etc.
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PMS Partial Metric Space

BCP Banach Contraction Principle

FP Fixed Point

FPRs Fixed Point Results

UFP Unique Fixed Point

SM Self-Map

VIE Volterra Integral Equation

FDE Fractional Differential Equation

FDO Fractional Differential Operator

GMKK(yp — a)C Generalized Meir-Keeler-Khan Type (¢ — «)-Contraction
GMKKR(y)C Ggeneralized Meir-Keeler-Khan-Rational Type i-Contraction
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