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Abstract: In numerous scientific and engineering domains, fractional-order derivatives and integral
operators are frequently used to represent many complex phenomena. They also have numerous
practical applications in the area of fixed point iteration. In this article, we introduce the notion of
generalized Meir-Keeler-Khan-Rational type (ψ − α)-contraction mapping and propose fixed point
results in partial metric spaces. Our proposed results extend, unify, and generalize existing findings
in the literature. In regards to applicability, we provide evidence for the existence of a solution for
the fractional-order differential operator. In addition, the solution of the integral equation and its
uniqueness are also discussed. Finally, we conclude that our results are superior and generalized as
compared to the existing ones.

Keywords: metric space; fixed point; fractional differential operator; non-linear equation; order
of convergence
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1. Introduction

Many generalizations of the usual metric space have been introduced by many authors
in the literature, and PMS (partial metric space) is one of them. Matthews [1] defined PMS
in 1992 by considering the fact that self-distance is not necessary to be zero. He proposed
the notion of PMS in his research on the denotational semantics of dataflow networks by
proving that the BCP (Banach contraction principle) can be extended to the PMS for use in
the verification of programs. The main purpose of deriving PMS is to transfer mathematical
techniques into computer science. Inspired by this innovative idea of PMS, various authors
have worked on this space and its physical properties, and also proved many FPRs (fixed
point results) for single and multivalued-maps. Fixed point theory is simply based on
the solution of a simple equation h̄ν = ν for a SM (self-map) h̄ defined on a non-empty
set χ. It is the most effective and successful technique for solving many mathematical
problems, such as differential and integral equations which appear in economics, physics,
chemistry, game theory, etc. The FP (fixed point) problem was first seen in the solution
of a differential equation with an initial value. Liouville [2] was the first to obtain the
solution of the FP equation by solving a differential equation with an initial value in 1837.
Later, Picard [3] proposed the aforementioned method systematically and simplified the
differential equation. Further, Banach [4] derived a celebrated FP theorem in complete
metric space by developing the successive approximation method. This celebrated FP
result was characterized by Caccioppoli [5], who showed that in a complete metric space,
there is a UFP (unique fixed point) for each contraction. This result is also known as the
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Picard–Banach FP theorem, the Banach–Caccioppoli FP theorem, Banach’s FP theorem,
and BCP.

After that, as a result of extending and generalizing the BCP, various FPRs have been
proved by many authors in numerous spaces. Jaggi [6] was the first to establish a FP result
by considering the rational expression in 1977. In 2018, Karapinar generated the idea of
interpolative type contraction, and many more results have been proven in the context of
interpolative type contraction by linking it with interpolative theory [7–10]. Inspired by
Mitrovic et al. [11], Karapinar [8] introduced the notion of hybrid contraction by combining
the ideas of interpolative type contractions and Reich type contractions in 2019. In 2021,
Reena Jain et al. [12] defined an implicit contractive condition by an implicit relation on
rational quasi PMS and derived periodic, and FP result. They also attained sufficient
conditions for existing the unique positive solution of a non-linear matrix equation. Using
auxiliary functions, the existence of FP with its uniqueness was proven by Kumar et al. [13]
in 2021. Later in 2022, Nuseir et al. established a FP result for SM with some contractive
conditions in partially ordered “E” MS. Saluja [14] attained a few common FPRs using
auxiliary functions in a complete weak PMS.

In 1969, Meir and Keeler [15] demonstrated the concept of Meir-Keeler type contraction.
This contraction is generalized by many authors in numerous type of spaces [16–19].
Motivated by these studies, Aydi et al. [9] defined GMKC (generalized Meir-Keeler type
contraction) on PMS and they demonstrated that in 0-complete MS, a UFP exists for an
orbitally continuous SM that satisfies the requirements of a GMKC. Later, Redjel et al. [20]
derived the idea of (ψ − α) Meir-Keeler-Khan mapping in metric space. Further, in 2018,
Kumar and Araci [21] established the notion of GMKK(ψ − α)C (generalized Meir-Keeler-
Khan type (ψ − α) contraction), which includes the α-admissibility of the function. Here,
a FP result is established in complete PMS for GMKK(ψ − α)C using the continuity of
α-function, that is:

“In a complete PMS (χ, p), GMKK(ψ − α)C has a FP, if

1. there exists ν0 ∈ χ in such a manner that α(ν0, ν0) ≥ 1,
2. if α(νk, ωk) ≥ 1 for each k ∈ N, then limk→∞ α(νk, ωk) ≥ 1,
3. α : χ2 → R+ is a continuous function in each coordinate”.

Moreover, in 2019, Karapinar and Fulga [8] initiated the notion of hybrid type con-
traction in complete metric space by combining the idea of Jaggi type contraction with
interpolative type contraction and stated FPRs using the continuity of the SM. Their pro-
posed results state that “A Jaggi type hybrid contraction h̄ : χ → χ possesses a FP in a
complete metric space (χ, d), if h̄ is continuous and attained a UFP if h̄p is continuous
for some integer p > 1”. Furthermore, they established the solution of FDE(fractional
differential equation) in the framework of their demonstrated result.

Inspired by [8,21], we have related the idea of Jaggi type hybrid contraction with
GMKK(ψ − α)C and stated GMKKR(ψ)C (generalized Meir-Keeler-Khan-Rational type
ψ-contraction) and GMKKR(ψ − α)C (generalized Meir-Keeler-Khan-Rational type (ψ − α)
contraction) and proved FPRs in complete PMS by relaxing the condition of continuity
of the α-function and the continuity of SM. Additionally, we have provided illustrative
examples in support of our result. Furthermore, we have applied our proposed result in
integral and fractional calculus to obtained the existence and uniqueness of solutions of VIE
(Volterra integral equation), Caputo type FDE, and Riemann-Liouville type FDO (fractional
differential operator), and to justify all of these results, we have proposed examples for
each result.

Beginning with the introduction in Section 1, we have given some fundamental
definitions in Section 2. In Section 3, we have proposed the concept of GMKKR(ψ)C,
GMKKR(ψ − α)C and proved FPRs with their uniqueness in complete PMS. To justify our
result attained in Section 3, we have given examples. We have also worked on a VIE of
second kind, a FDE of Caputo type, and a FDO of Riemann-Liouville type and attained
the existence and uniqueness of solutions for all of these in the framework of our main
theorem, with examples in Section 4.
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2. Definitions

Here, a few fundamental definitions are presented pertaining to our work.

Definition 1. Ψ is the family of ψ functions. ψ : [0, ∞) → [0, ∞) is a function satisfying the
below prepositions:

1. ψ is non-decreasing and continuous,
2. Σ∞

n=1ψn(t) < ∞ for each t > 0,
3. ψ(t) < t for all t > 0 and ψ(t) = 0 if and only if t = 0.

Definition 2. Consider a non-empty set χ. Define a SM T : χ → χ and a function α : X × X →
[0, ∞). Then, T is said to be α−admissible, if

∀x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 3 ([8]). Let h̄ be a SM defined on a MS (χ, d). Then, h̄ is known as Jaggi type hybrid
contraction if there exists ψ ∈ Ψ (defined in Definition 1) in such a way that

d(h̄ν, h̄ω) ≤ ψ(ζs
h̄(ν, ω)), (1)

for every distinct ν, ω ∈ χ, s ≥ 0. Now, the function ζs
h̄(ν, ω) is defined as

ζs
h̄(ν, ω) =


(

σ1

(
p(ν,h̄ν)p(ω,h̄ω)

p(ν,ω)

)s

+ σ2(p(ν, ω))s
) 1

s

, s > 0, ν, ω ∈ χ(ν ̸= ω),

(p(ν, h̄ν))σ1(p(ω, h̄ω))σ2 , s = 0, ν, ω ∈ χ/Fh̄(χ),

with Fh̄(χ) = {z ∈ χ : h̄z = z} and σ1, σ2 ≥ 0 such that σ1 + σ2 = 1.

Definition 4 ([21]). Define a SM h̄ on a PMC (χ, p). Then, h̄ is called GMKK(ψ − α)C, if

1. h̄ is α-admissible,
2. for each ϵ > 0, there exists some δ > 0 such that

ϵ ≤ ψ

(
p(ν, h̄ν)p(ν, h̄ω) + p(ω, h̄ω)p(ω, h̄ν)

p(ν, h̄ω) + p(ω, h̄ν)

)
< ϵ + δ ⇒ α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) < ϵ, (2)

for each ν, ω ∈ χ. The ψ-function and α-admissibility of the function is defined in Definitions
1 and 2 respectively.

Remark 1 ([21]). If h̄ is GMKK(ψ − α)C, then

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) ≤ ψ

(
p(ν, h̄ν)p(ν, h̄ω) + p(ω, h̄ω)p(ω, h̄ν)

p(ν, h̄ω) + p(ω, h̄ν)

)
, ∀ν, ω ∈ χ. (3)

3. Development of Extension of Meir-Keeler-Khan (ψ − α) Type Contraction and
Related FPRs

Here, we have proposed GMKKRψC and GMKKR(ψ − α)C in PMS as an extension of
Meir-Keeler-Khan (ψ − α) type contraction. Additionally, we have established FPRs for
these proposed contractions.

Definition 5. Assume h̄ be a SM defined on a PMS (χ, p). Then, h̄ is called GMKKR(ψ)C, if for
each ϵ > 0, there exists some δ > 0 satisfying

ϵ ≤ ψ(ζs
h̄(ν, ω)) < ϵ + δ ⇒ p(h̄ν, h̄ω) < ϵ. (4)

Here, the functions ψ and ζs
h̄(ν, ω) are the same as defined in Definitions 1 and 3,

respectively.
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Definition 6. Suppose h̄ is an SM defined on a PMS (χ, p). Then, h̄ is called GMKKR(ψ − α)C, if

1. h̄ is α-admissible,
2. for each ϵ > 0, there exists some δ > 0 in such a manner that

ϵ ≤ ψ(ζs
h̄(ν, ω)) < ϵ + δ ⇒ α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) < ϵ, (5)

The functions ψ and ζs
h̄(ν, ω) are same as defined in Definitions 1 and 3 respectively,

and α-admissibility of the function is defined in Definition 2.

Remark 2. If h̄ is GMKKR(ψ − α)C, then

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) ≤ ψ(ζs
h̄(ν, ω)), ∀ν, ω ∈ χ. (6)

Theorem 1. Suppose (χ, p) be a complete PMS and h̄ : χ → χ be a GMKKR(ψ − α)C. Then, h̄
has a UFP, if

1. there exists ν0 ∈ χ such that α(ν0, ν0) ≥ 1,
2. ψ(t) ≤ 2t

3 , ∀t.

Here, the function ψ is same as defined in Definition 1 and α : X × X → [0, ∞).

Proof. Construct a Picard sequence for ν0 ∈ χ as

νk+1 = h̄νk, ∀k = 0, 1, 2, . . . (7)

From given condition 1, we have

α(ν0, ν0) ≥ 1. (8)

Since h̄ is GMKKR(ψ − α)C, h̄ is α-admissible. Therefore, using Definition 2, we attain

α(h̄ν0, h̄ν0) ≥ 1 ⇒ α(ν1, ν1) ≥ 1. [using (7)]

By proceeding with the process in the same manner, we obtain

α(νk, νk) ≥ 1, ∀k = 0, 1, 2, . . . (9)

Here, we have two cases:

Case (I): If νk0 = νk0+1 for some k0 ∈ N , then, νk0 = h̄νk0 . Therefore, νk0 is FP of h̄.
Case (II): If νk0 ̸= νk0+1, then again we have two cases:
case (a): For s > 0:

From definition of ψ (defined in Definition 1), we have

ψ(t) > 0, ∀t > 0. (10)

Therefore, ψ(ζs
h̄(ν, ω)) > 0,

ψ

(
σ1

(
p(ν, h̄ν)p(ω, h̄ω)

p(ν, ω)

)s

+ σ2(p(ν, ω))s
) 1

s

> 0.

For ν = νk and ω = νk+1, the above inequality becomes

ψ

(
σ1

(
p(νk, h̄νk)p(νk+1, h̄νk+1)

p(νk, νk+1)

)s

+ σ2(p(νk, νk+1))
s
) 1

s

> 0,

ψ

(
σ1

(
p(νk, νk+1)p(νk+1, νk+2)

p(νk, νk+1)

)s

+ σ2(p(νk, νk+1))
s
) 1

s

> 0,

ψ(σ1(p(νk+1, νk+2))
s + σ2(p(νk, νk+1))

s)
1
s > 0.
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Now, if p(νk, νk+1) ≤ p(νk+1, νk+2). Then, using above inequality, we can say

ψ((σ1 + σ2)(p(νk+1, νk+2))
s)

1
s > 0,

ψ(p(νk+1, νk+2)) > 0. [as σ1 + σ2 = 1]

From Remark 2 (for ν = νk and ω = νk+1), we have

α(νk, νk)α(νk+1, νk+1)p(h̄νk, h̄νk+1) ≤ ψ(ζs
h̄(νk, νk+1)). (11)

Using Equations (7) and (9) in above expression (11), we obtain

p(νk+1, νk+2) ≤ ψ(ζs
h̄(νk, νk+1)),

≤ ψ(p(νk+1, νk+2)),

< p(νk+1, νk+2),

which is a contradiction. Therefore, our assumption is wrong. Hence

p(νk+1, νk+2) ≤ p(νk, νk+1). (12)

Thus, sequence {νk} is a decreasing sequence and hence, converges to some ϵ ≥ 0, i.e.,

lim
k→∞

p(νk, νk+1) = ϵ, (13)

where ϵ = inf{p(νk, νk+1)}, k ∈ N∪ {0}.

Now, we will show that ϵ = 0. On the contrary, suppose that ϵ ̸= 0. Then, using
Definition 4 for µ = νk and ν = νk+1, we get

p(νk+1, νk+2) = p(h̄νk, h̄νk+1),

≤ α(νk, νk)α(νk+1, νk+1)p(h̄νk, h̄νk+1) < ϵ, [using Equation (9)]

which is a contradiction because ϵ = inf{p(νk, νk+1)}, k ∈ N∪ {0}. Thus, our supposition
is wrong and therefore, ϵ = 0. Hence, Equation (13) becomes

lim
k→∞

p(νk, νk+1) = 0, ∀k ∈ N. (14)

From the definition of partial metric, we have

0 ≤ lim
k→∞

p(νk, νk) ≤ lim
k→∞

p(νk, νk+1).

Using Equation (14) in the above inequality, we attain

lim
k→∞

p(νk, νk) = 0. (15)

Further, we will demonstrate that sequence {νk} is a Cauchy sequence in PMS (χ, p).
To show this, it is sufficient to prove that sequence {νk} is a Cauchy sequence in metric
space (χ, dp), where

dp(νk, νk+1) = 2p(νk, νk+1)− p(νk, νk)− p(νk+1, νk+1). (16)

Letting k → ∞ and applying expressions (14) and (15) in Equation (16), we attain

lim
k→∞

dp(νk, νk+1) = 0, ∀k ∈ N. (17)
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Now, suppose that sequence {νk} is not a Cauchy sequence in metric space (χ, dp). So, there
exists a number η > 0 such that for any c ∈ N, there are two numbers nc, mc(nc ≥ mc ≥ c)
satisfying

dp(νmc , νnc) ≥ η. (18)

Additionally, for mc ≥ c, we can choose a small positive integer nc in such a manner
that for nc ≥ mc ≥ c, we have

dp(νmc , νnc−2) < η. (19)

From Equation (18), we have

η ≤ dp(νmc , νnc),

≤ dp(νmc , νnc−2) + dp(νnc−2 , νnc−1) + dp(νnc−1 , νnc).

Letting c → ∞ and using Equations (17) and (19) in above inequality, we get

lim
c→∞

dp(νmc , νnc) = η, (20)

Also, η ≤ dp(νmc , νnc),

≤ dp(νmc , νmc+1) + dp(νmc+1 , νnc+1) + dp(νnc+1 , νnc),

≤ dp(νmc , νmc+1) + dp(νmc+1 , νmc) + dp(νmc , νnc) + dp(νnc , νnc+1) + dp(νnc+1 , νnc).

Letting c → ∞ and substituting Equations (17) and (20) in above inequality, we obtain

lim
c→∞

dp(νmc+1 , νnc+1) = η. (21)

Further, for ν = νmc and ν = νnc , Equation (16) becomes

dp(νmc , νnc) = 2p(νmc , νnc)− p(νmc , νmc)− p(νnc , νnc),

dp(νmc+1 , νnc+1) = 2p(νmc+1 , νnc+1)− p(νmc+1 , νmc+1)− p(νnc+1 , νnc+1).

Letting c → ∞ and applying Equations (17), (20) and (21) in above expression, we get

lim
c→∞

p(νmc , νnc) = lim
c→∞

p(νmc+1 , νnc+1) =
η

2
, (22)

p(νmc+1 , νnc+1) = p(h̄νmc , h̄νmc),

≤ α(νmc , νmc)α(νnc , νnc)p(h̄νmc , h̄νmc),

≤ ψ(ζs
h̄(νmc , νnc)), [using Equation (6)]

= ψ

(
σ1

(
p(νmc , h̄νmc)p(νnc , h̄νnc)

p(νmc , νnc)

)s

+ σ2(p(νmc , νnc))
s
) 1

s

,

≤ ψ

(
σ1

(
p(νmc , νmc+1)p(νnc , νnc+1)

p(νmc , νnc)

)s

+ σ2(p(νmc , νnc))
s
) 1

s

.

Letting c → ∞ and substituting Equations (14) and (22) in the above inequality, we get

η

2
≤ lim

c→∞
ψ(σ2(p(νmc , νnc))

s)
1
s ,

η

2
≤ lim

c→∞
ψ(p(νmc , νnc)), [as σ2 ≤ 1]

η

2
< lim

c→∞
p(νmc , νnc), [as ψ(t) < t from Definition 1]

η

2
<

η

2
,
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which is not true. Therefore, our supposition is wrong. Thus, sequence (νk) is a Cauchy
sequence in metric space (χ, dp) and hence, a Cauchy sequence in PMS (χ, p). Further,
completeness of PMS (χ, p) implies completeness of metric space (χ, dp). Therefore, Cauchy
sequence {νk} converges in metric space (χ, dp). Hence, there exists a number z ∈ χ in
such a manner that limk→∞ νk = z, that is

lim
k→∞

dp(νk, z) = lim
k,l→∞

dp(νk, νl) = 0. (23)

Now, we know that

lim
k→∞

dp(z, vk) = 0 ⇔ lim
k→∞

p(z, vk) = lim
k,l→∞

p(vk, vl) = p(z, z).

Thus, p(z, z) = lim
k→∞

p(νk, z) = lim
k,l→∞

p(νk, νl) = 0, [using Equation (15)] (24)

p(νk+1, h̄z) = p(h̄νk, h̄z),

≤ α(νk, νk)α(z, z)p(h̄νk, h̄z),

≤ ψ(ζs
h̄(νk, z)), [using Equation (6)]

= ψ

(
σ1

(
p(νk, h̄νk)p(z, h̄z)

p(νk, z)

)s

+ σ2(p(νk, z))s
) 1

s

,

≤ ψ

(
σ1

(
(p(νk, z) + p(z, νk+1)− P(z, z))p(z, h̄z)

p(νk, z)

)s

+ σ2(p(νk, z))s
) 1

s

.

Letting k → ∞ and substituting Equation (24) in the above inequality, we get

lim
k→∞

p(z, h̄z) ≤ ψ(σ1(p(z, h̄z))s)
1
s ,

= ψ

(
σ

1
s

1 (p(z, h̄z))
)

,

≤
2σ

1
s

1 p(z, h̄z)
3

,

≤ 2p(z, h̄z)
3

, [as σ1 ≤ 1]

3p(z, h̄z) ≤ 2p(z, h̄z),

p(z, h̄z) = 0,

h̄z = z.

Therefore, z is FP of h̄.

Uniqueness of FP:

Assume z1( ̸= z) be another FP of h̄, then

h̄z1 = z1,

p(z, z1) = p(h̄z, h̄z1),

≤ α(z, z)α(z1, z1)p(h̄z, h̄z1),

≤ ψ(ζs
h̄(z, z1)), [using Equation (6)]
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p(z, z1) = ψ

(
σ1

(
p(z, h̄z)p(z1, h̄z1)

p(z, z1)

)s

+ σ2(p(z, z1))
s
) 1

s

,

= ψ

(
σ1

(
p(z, z)p(z1, z1)

p(z, z1)

)s

+ σ2(p(z, z1))
s
) 1

s

,

= ψ(σ2(p(z, z1))
s)

1
s , [as p(z, z) = 0 from Equation (24)]

= ψ(σ
1
s

2 p(z, z1)),

≤
2σ

1
s

2 p(z, z1)

3
,

≤ 2p(z, z1)

3
, [as σ2 ≤ 1]

3p(z, z1) ≤ 2p(z, z1),

p(z, z1) ≤ 0,

p(z, z1) = 0. (25)

p(z1, z1) = p(h̄z1, h̄z1),

≤ α(z1, z1)α(z1, z1)p(h̄z1, h̄z1),

≤ ψ(ζs
h̄(z1, z1)), [using Equation (6)]

= ψ

(
σ1

(
p(z1, h̄z1)p(z1, h̄z1)

p(z1, z1)

)s

+ σ2(p(z1, z1))
s
) 1

s

,

= ψ

(
σ1

(
p(z1, z1)p(z1, z1)

p(z1, z1)

)s

+ σ2(p(z1, z1))
s
) 1

s

,

= ψ((σ1 + σ2)(p(σ1, z1))
s)

1
s ,

≤ 2p(z, z1)

3
, [as σ1 + σ2 = 1]

3p(z1, z1) ≤ 2p(z1, z1),

p(z1, z1) = 0. (26)

From Equations (24)–(26), we obtain

p(z, z) = p(z, z1) = p(z1, z1) = 0.

Therefore, from the definition of the partial metric, we conclude that z = z1. Hence, z
is the UFP of h̄.

case (b): For s = 0:

Since h̄ is GMKKR(ψ − α)C. So, for ν = νk and ω = νk+1, we have

p(νk+1, νk+2) = p(h̄νk, h̄νk+1),

≤ α(νk, νk)α(νk+1, νk+1)p(h̄νk, h̄νk+1),

≤ ψ(ζs
h̄(νk, νk+1)), [ using Equation (6)]

= ψ((p(νk, νk+1))
σ1(p(νk+1, νk+2))

σ2), [from Definition 3]

< (p(νk, νk+1))
σ1(p(νk+1, νk+2))

σ2 , [from Definition 1]

(p(νk+1, νk+2))
1−σ2 < (p(νk, νk+1))

σ1 ,

(p(νk+1, νk+2))
σ1 < (p(νk, νk+1))

σ1 ,

p(νk+1, νk+2) < p(νk, νk+1).

Therefore, {νk} is a decreasing sequence and hence convergent to some ϵ ≥ 0. Further,
applying the same procedure as in case (a), we get
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lim
k→∞

p(νk, νk+1) = 0. (27)

lim
k→∞

dp(νk, νk) = 0,

lim
c→∞

dp(νmc , νnc) = lim
c→∞

dp(νmc+1 , νnc+1) = η,

lim
c→∞

p(νmc , νnc) = lim
c→∞

p(νmc+1 , νnc+1) =
η

2
,

(28)

p(νmc+1 , νnc+1) = p(h̄νmc , h̄νnc),

≤ α(νmc , νmc)α(νnc , νnc)p(h̄νmc , h̄νnc),

≤ ψ(ζs
h̄(νmc , νnc)),

= ψ((p(νmc , νmc+1))
σ1(p(νnc , νnc+1))

σ2).

Letting c → ∞ and using Equations (27) and (28) in above inequality, we obtain

η

2
≤ ψ(0) = 0,

which is not true as η > 0. Again applying the sane procedure as in case (a), we get

p(z, z) = lim
k→∞

p(νk, z) = lim
k,l→∞

p(νk, νl) = 0. (29)

p(νk+1, h̄z) = p(h̄νk, h̄z),

≤ α(νk, νk)α(z, z)p(h̄νk, h̄z),

≤ ψ(ζs
h̄(νk, z)), [using Equation (6)]

= ψ((p(νk, νk+1))
σ1(p(z, h̄z))σ2). [from definition of ψ defined in Definition 1]

Letting k → ∞ and using Equation (29), we attain

p(z, h̄z) = ψ(0) = 0,

h̄z = z.

Hence, z is FP of h̄.

Uniqueness of FP for case (b):

We can attain the uniqueness in the same manner as in case (a).

Theorem 2. Consider a complete PMS (χ, p) and a SM h̄ : χ → χ. If h̄ is GMKKR(ψ)C, then h̄
has a UFP for ψ(t) ≤ 2t

3 , ∀t.

Proof. The result can be directly attained from above Theorem 1 by taking α(ν, ω) = 1 for
each ν, ω ∈ χ.

4. Numerical Results

Here, in this part, some examples are illustrated in support of our proposed Theorem 1
in Section 3.

Example 1. Consider a complete PMS (χ, p) with χ = [0, 1] and p(ν, ω) = max{ν, ω}. Define
a SM h̄ : χ → χ as

h̄ν =
ν

8
,
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and a function α as

α(ν, ω) =

{
1 + ν

3 + ω
3 , ν, ω ̸= 1,

1, ν = ω = 1,

Then, h̄ has UFP for s = 2, ψ(t) = t
2 and σ1 = σ2 = 1

2 .

Proof. To show that h̄ has a UFP, it is sufficient to show that all the assumptions of our
proposed Theorem 1 are satisfied.

1. Obviously, ∀ν, ω ∈ χ, α(ν, ω) ≥ 1. Therefore, there exists ν0 ∈ χ in such a way that
α(ν0, ν0) ≥ 1.

2. α(ν, ω) ≥ 1 ⇒ α(h̄ν, h̄ω) ≥ 1, ∀ν, ω ∈ χ, which shows that h̄ is α−admissible.
3. Without loss of generality, suppose ν ≥ ω. Therefore,

p(ν, ω) = max{ν, ω} = ω,

p(ν, h̄ν) = max{ν, h̄ν} = max
{

ν,
ν

8

}
= ν,

p(ω, h̄ω) = max{ω, h̄ω} = max
{

ω,
ω

8

}
= ω,

p(h̄ν, h̄ω) = max{h̄ν, h̄ω} = max
{

ν

8
,

ω

8

}
=

ν

8
,

ψ(ζs
h̄(ν, ω)) = ψ

(
σ1

(
p(ν, h̄ν)p(ω, h̄ω)

p(ν, ω)

)s

+ σ2(p(ν, ω))s
) 1

s

,

ψ(ζs
h̄(ν, ω)) =

(ν2 + ω2)
1
2

2
√

2
≥ 0, ∀ν, ω ∈ χ, (30)

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) =


(

1 + 2ν
3

)(
1 + 2ω

3

)(
ν
8

)
, ν, ω ̸= 1,(

ν
8

)
, ν = ω = 1,

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) = (1 + ν)(1 + ω)

(
ν

8

)
,

=

(
ν(1 + ν + ω + νω)

8

)
. (31)

From Equations (30) and (31), we can clearly see that

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) ≤ ψ(ζs
h̄(ν, ω)), ∀ν, ω ∈ χ,

which shows that h̄ is GMKKR(ψ − α)C.

Hence, every hypothesis of Theorem 1 is satisfied. Thus, h̄ has a UFP 0. Now, since α
is not continuous at ν = 1, UFP cannot be determined for FPRs in [19,21].

Example 2. Assume a PMS (χ, p) with χ = [0, 1] and p(ν, ω) = max{ν, ω}. Define a SM
h̄ : χ → h̄ and function α as

h̄ν =


0, ν ∈

[
0, 1

2

)
,

1
6 , ν ∈

[
1
2 , 1

]
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α(ν, ω) =


1 + ν

6 + ω
6 , ν, ω ∈

[
0, 1

2

)
,

1 + ν
6 − ω

6 , ν, ω ∈
[

1
2 , 1

]

∀ν, ω ∈ χ. Then, h̄ has UFP 0 for ψ(t) = 2t
3 , σ1 = 1

4 , σ2 = 3
4 and s = 2.

Proof. For this, we will establish that every assumption of Theorem 1 is satisfied.

1. Clearly α(ν, ω) ≥ 1, ∀ν, ω ∈ χ. Thus, there exists some ν0 ∈ χ in such a manner that
α(ν0, ν0) ≥ 1.

2. α(ν, ω) ≥ 1 ⇒ α(h̄ν, h̄ω) ≥ 1, ∀ν, ω ∈ χ. Therefore, h̄ is α-admissible.
3. Without loss of generality, suppose ν ≥ ω. Now, we have two cases:

Case (I): If ν, ω ∈
[

0, 1
2

)
, then

p(ν, ω) = max{ν, ω} = ν,

p(ν, h̄ν) = max{ν, h̄ν} = max{ν, 0} = ν,

p(ω, h̄ω) = max{ω, h̄ω} = max{ω, 0} = ω,

p(h̄ν, h̄v) = max{h̄ν, h̄ω} = max{0, 0} = 0,

ψ(ζs
h̄(ν, ω)) = ψ(ζ2

h̄(ν, ω)),

= ψ

(
σ1

(
p(ν, h̄ν)p(ω, h̄ω)

p(ν, ω)

)2

+ σ2(p(ν, ω))2
) 1

2

,

ψ(ζs
h̄(ν, ω)) =

2
3

((
ω2 + 3ν2

4

) 1
2
)

, (32)

alpha(ν, ν)α(ω, ω)p(h̄ν, h̄ω) =

(
1 +

ν

6
+

ν

6

)(
1 +

ω

6
+

ω

6

)
(0) = 0. (33)

From Equations (32) and (33), we attain

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) ≤ ψ(ζs
h̄(ν, ω)), ∀ν, ω ∈

[
0,

1
2

)
.

Case (II): If ν, ω ∈
[

1
2 , 1

]
, then

p(ν, ω) = max{ν, ω} = ν,

p(ν, h̄ν) = max{ν, h̄ν} = max
{

ν,
1
6

}
= ν,

p(ω, h̄ω) = max{ω, h̄ω} = max
{

ω,
1
6

}
= ω,

p(h̄ν, h̄ω) = max{h̄ν, h̄ω} = max
{

1
6

,
1
6

}
=

1
6

,

ψ(ζs
h̄(ν, ω)) = ψ(ζ2

h̄(ν, ω)),

= ψ

(
σ1

(
p(ν, h̄ν)p(ω, h̄ω)

p(ν, ω)

)2

+ σ2(p(ν, ω))2
) 1

2

,

ψ(ζs
h̄(ν, ω)) =

(3ν2 + ω2)
1
2

3
≥ 0, (34)

α(ν, ν)α(ω, ω)p(h̄ν, h̄ω) =
1
6

. (35)
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From Equations (34) and (35), we get

α(ν, ν)α(y, y)p(h̄ν, h̄y) ≤ ψ(ζs
h̄(ν, ω)), ∀ν, v ∈

[
1
2

, 1
]

.

Therefore, h̄ is GMKKR(ψ − α)C.

Thus, each requirement of Theorem 1 is fulfilled. Thus, h̄ has a UFP 0. However, since

function α is discontinuous at (ν, ω) =

(
1
2 , 1

2

)
, UFP cannot be determined for FPRs

in [19,21].

Example 3. Consider a complete PMS (χ, p) with χ = C[a, b] and p(ν, ω) = max{ν, ω}. Define
a SM h̄ : χ → χ defined in terms of VIE as

h̄ν(t) = g(t) +
∫ t

a
K(t, s, ν(s))ds, ∀ν(t), ω(t) ∈ χ, t ∈ [a, b].

Then, h̄ has a UFP for s = 1, α(ν, ω) = 1 + ν − ω, ψ(t) = 2t
3 and σ1 = σ2 = 1

2 , if

1. K(t, s, ω(s)) ≤ K(t, s, ν(s)),

2. g(t) +
∫ t

a K(t, s, ν(s))ds ≤ ν(t)
3 .

For instance, h̄ has UFP 0 for χ = C[0, 1], ν(t) = t + t2, ω(t) = t + t3, g(t) = t+t3

6 and

K(t, s, ν(s)) = sν(s)
6 .

Proof. To show the existence of UFP, it is sufficient to show that all the above conditions
are satisfied. For each ν(t), ω(t) ∈ χ, t ∈ [0, 1], we have

K(t, s, ν(s)) =
sν(s)

6
=

s2 + s3

6
, (36)

K(t, s, ω(s)) =
sω(s)

6
=

s2 + s4

6
, (37)

From Equations (36) and (37), we attain

K(t, s, ω(s)) ≤ K(t, s, ν(s)). (38)

g(t) +
∫ t

0
K(t, s, ν(s))ds =

t + t3

6
+

∫ t

a

s2 + s3

6
ds,

≤ t + t2

3
,

≤ ν(t)
3

, (39)

g(t) +
∫ t

0
K(t, s, ω(s))ds =

t + t3

6
+

∫ t

0

s2 + s4

6
ds,

≤ t + t3

3
,

≤ ω(t)
3

. (40)

Thus, from Equations (38)–(40), we can say that all the above requirements are fulfilled.
Therefore, h̄ has a UFP.

Verification: To verify the result, it is sufficient to show that our example satisfies each
assumption of our main Theorem 1.

1. ∀ ν0 ∈ χ, α(ν0, ν0) = 1 ≥ 1,
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2. ψ(t) = 2t
3 ≤ 2t

3 ,
3.

α(ν(t), ω(t)) = 1 + ν(t)− ω(t) = 1 + t2 + t3 ≥ 1,

α(h̄ν(t), h̄ω(t)) = 1 + h̄ν(t)− h̄ω(t) = 1 +
1
6

(
t4

4
− t5

5

)
≥ 1,

which shows that h̄ is α-admissible.

p(ν(t), ω(t)) = max{ν(t), ω(t)} = max{t + t2, t + t3} = t + t2 = ν(t),

p(ν(t), h̄ν(t)) = max{ν(t), h̄ν(t)} = max
{

t + t2,
t + 4t3

3 + t4

4
6

}
= t + t2 = ν(t),

p(ω(t), h̄ω(t)) = max{ω(t), h̄v(t)} = max
{

t + t3,
t + 4t3

3 + t5

5
6

}
= t + t3 = ω(t),

p(h̄ν(t), h̄ω(t)) = max{h̄ν(t), h̄ω(t)} = max
{

t + 4t3

3 + t4

4
6

,
t + 4t3

3 + t5

5
6

}
=

t + 4t3

3 + t4

4
6

,

= h̄ν(t),

ψ(ζs
h̄(ν(t), ω(t))) = ψ

(
σ1

(
p(ν(t), h̄ν(t))p(ω(t), h̄ω(t))

p(ν(t), ω(t))

)s

+ σ2(p(ν(t), ω(t)))s
) 1

s

,

= ψ

(
1
2

(
ν(t)ω(t)

ν(t)

)
+

1
2
(ν(t))

)
,

ψ(ζs
h̄(ν(t), ω(t))) =

2t + t2 + t3

3
, (41)

α(ν(t), ν(t))α(ω(t), ω(t))p(h̄ν(t), h̄ω(t)) = (1)(1)(h̄ν(t)) =
t + 4t3

3 + t4

4
6

. (42)

From Equations (41) and (42), we attain

α(ν(t), ν(t))α(ω(t), ω(t))p(h̄ν(t), h̄ω(t)) ≤ ψ(ζs
h̄(ν(t), ω(t))).

Therefore, h̄ is GMKKR(ψ − α)C. Thus, each hypothesis of Theorem 1 is satisfied.
Hence, h̄ has a UFP. In this example, 0 is the UFP of h̄ as t = 0, ν(t) = h̄ν(t) = ω(t) =
h̄ω(t) = 0.

Example 4. There have been plenty of additions made to the area of solutions of fractional order
differential and integral equations. BCP is used to prove uniqueness of solutions of fractional
differential equations [22–24].

Consider a complete PMS (χ, p) with χ = C[0, 1] and p(ν(t), ω(t)) = max{ν(t), ω(t)}.
Define a SM h̄ : χ → χ in terms of Caputo fractional derivative as

CDαν(t) =
1

Γ(α)

[ ∫ t

0
(t − τ)α−1 f (τ, ν(τ))dτ − 2t

2 − z2

∫ 1

0
(1 − τ)α−1 f (τ, ν(τ))dτ

+
2t

2 − z2

∫ z

0

( ∫ τ

0
(τ − µ)α−1 f (µ, ν(µ))dµ

)]
.

Then, h̄ has a UFP for α(ν(t), ω(t)) = 1 + |ν(t)−ω(t)|
n , ∀ν(t), ω(t) ∈ C[0, 1], n ∈ N, ψ(t) =

2t
3 , ∀t ∈ [0, 1],
(a) σ1 = σ2 = 1

2 , s = 0, and
(b) σ1 = 0, σ2 = 1, s > 0,
if, for each ν(t), ω(t) ∈ C[0, 1], we have the below assumptions:
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1. ν(t) ≥ ω(t),

2. h̄ν(t) ≤ ν(t)
3 .

For instance, h̄ has a UFP 0 for χ = C[0, 1], ν(t) = t+ t2

2 , ω(t) = t− t2 + t3

6 , f (t, ν(t)) =

1 + ν(t)− t2, α(ν(t), ω(t)) = 1 + |ν(t)−ω(t)|
n , n ∈ N, ψ(t) = 2t

3 , α = 5
4 , z = 1

3 .

Proof. Since for every t ∈ [0, 1],

ν(t) = t +
t2

2
, (43)

ω(t) =
t
2
− t2

4
+ t3, (44)

f (t, ν(t)) = 1 + ν(t)− t2 = 1 + t − t2

2
,

h̄ν(t) =
1

Γ(α)

[ ∫ t

0
(t − τ)α−1 f (τ, ν(τ))dτ − 2t

2 − z2

∫ 1

0
(1 − τ)α−1 f (τ, ν(τ))dτ

+
2t

2 − z2

∫ z

0

( ∫ τ

0
(τ − µ)α−1 f (µ, ν(µ))dµ

)
dτ

]
,

=
1

Γ( 5
4 )

[ ∫ t

0
t

1
4

(
1 − τ

t

) 1
4
(

1 + τ − τ2

2

)
dτ − 18t

17

∫ 1

0
(1 − τ)

1
4

(
1 + τ − τ2

2

)
dτ

+
18t
17

∫ z

0

( ∫ τ

0
τ

1
4

(
1 − µ

τ

) 1
4
(

1 + µ − µ2

2

)
dµ

)]
.

Substituting τ
t = ξ1 and µ

τ = ξ2 in the above equation, we get

h̄ν(t) =
1

Γ( 5
4 )

[ ∫ 1

0
t

1
4 (1 − ξ1)

1
4

(
1 + τξ1 −

τ2ξ1
2

2

)
tdξ1 −

18t
17

∫ 1

0
(1 − τ)

1
4

(
1 + τ − τ2

2

)
dτ

+
18t
17

∫ z

0

( ∫ 1

0
τ

1
4 (1 − ξ2)

1
4

(
1 + tξ2 −

τ2ξ2
2

2

)
τdξ2

)
dτ

]
,

h̄ν(t) = −0.9712t + 0.72512t
5
4 + 0.32177t

9
4 − 0.099704t

13
4 , (45)

f (t, ω(t)) = 1 + ω(t)− t2 = 1 +
t
2
− 5t2

4
+ t3,

h̄ω(t) =
1

Γ(α)

[ ∫ t

0
(t − τ)α−1 f (τ, ω(τ))dτ − 2t

2 − z2

∫ 1

0
(1 − τ)α−1 f (τ, ω(τ))dτ

+
2t

2 − z2

∫ z

0

( ∫ τ

0
(τ − µ)α−1 f (µ, ω(µ))dµ

)
dτ

]
,

=
1

Γ( 5
4 )

[ ∫ t

0
t

1
4

(
1 − τ

t

) 1
4
(

1 +
τ

2
− 5τ2

4
+ τ3

)
dτ − 18t

17

∫ 1

0
(1 − τ)

1
4

(
1 +

τ

2
− 5τ2

4
+ τ3

)
dτ

+
18t
17

∫ z

0

( ∫ τ

0
τ

1
4

(
1 − µ

τ

) 1
4
(

1 +
µ

2
− 5µ2

4
+ µ3

)
dµ

)
dτ

]
,

=
1

Γ( 5
4 )

[ ∫ 1

0
t

1
4 (1 − ξ1)

1
4

(
1 +

tξ1

2
− 5t2ξ1

2

4
+ t3ξ1

3
)

tdξ1 −
18t
17

∫ 1

0
(1 − τ)

1
4

(
1 +

τ

2
− 5τ2

4
+ τ3

)
dτ

+
18t
17

∫ z

0

( ∫ 1

0
τ

1
4 (1 − ξ2)

1
4

(
1 +

τξ2

2
− 5τ2ξ2

2

4
+ τ3ξ2

3
)

τdξ2

)
dτ

]
,

h̄ω(t) = −0.75077t + 0.72512t
5
4 + 0.1064t

9
4 − 0.24744t

13
4 + 0.14t

21
4 . (46)
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Thus, from Equations (43)–(46), we get ∀t ∈ [0, 1],

h̄ν(t) ≤ ν(t)
3

and h̄ω(t) ≤ ω(t)
3

.

Hence, every hypothesis is satisfied. Thus, h̄ has UFP. Further, we can verify our
result in the same way as in Example 3. In this example, clearly, 0 is UFP of h̄ as at
t = 0, ν(t) = h̄ν(t) = ω(t) = h̄ω(t) = 0.

Example 5. Consider a complete PMS (χ, p)with χ = C[0, a] and, p(ν(t), ω(t)) = max{ν(t), ω(t)}
and define a SM h̄ : χ → χ in terms of FDO of Riemann-Liouville type as

h̄ν(t) =
1

Γ(n + 1 − α)

dn

dtn

∫ t

a
(t − τ)n−αν(τ)dτ,

= Σn
k=0

ν(k)(a)(t − a)k−α

Γ(k + 1 − α)
+

1
Γ(n + 1 − α)

∫ t

a
(t − τ)n−αν(n+1)(τ)dτ.

Then, h̄ has a UFP for α(ν(t), ω(t)) = 1+ |ν(t)−ω(t)|
n , ∀ν(t), ω(t) ∈ C[0, a], n ∈ N, ψ(t) =

2t
3 , ∀t,
(a) σ1 = σ2 = 1

2 , s = 0,
(b) σ1 = 0, σ2 = 1, s > 0,
if, for every ν(t), ω(t) ∈ C[0, a], we have

1. ν(t) ≥ ω(t),

2. h̄ν(t) ≤ ν(t)
3 .

For instance, h̄ has a UFP for χ = C[0, 1], ν(t) = t − t3, ω(t) = t2

4 − 2t3, α(ν(t), ω(t)) =
1 + |ν(t)−ω(t)|

n , n ∈ N, ψ(t) = 2t
3 , α = 3

2 .

Proof. Since for all t ∈ [0, 1],

ν(t) = 1 − t3, ν(1)(t) = −3t2, ν(2)(t) = −6t, (47)

h̄ν(t) = Σn
k=0

ν(k)(a)(t − a)k−α

Γ(k + 1 − α)
+

1
Γ(n + 1 − α)

∫ t

a
(t − τ)n−αν(n+1)(τ)dτ,

=
ν(0)(0)t−

3
2

Γ
(
− 1

2

) +
ν(1)(0)t−

1
2

Γ
(

1
2

) +
1

Γ
(

1
2

) ∫ t

0
t−

1
2

(
1 − τ

t

)− 1
2

(−6τ)dτ.

By substituting τ
t = ξ, we attain

h̄ν(t) = −6.7702t
3
2 . (48)

ω(t) =
t2

4
− 2t3, ω(1)(t) =

t
2
− 6t2 and ω(2)(t) =

1
2
− 12t, (49)

h̄ω(t) = Σ1
k=0

ω(k)(0)(t − 0)k− 3
2

Γ
(

k − 1
2

) +
1

Γ
(

2 − 3
2

) ∫ t

0
(t − τ)1− 3

2 ω(2)(τ)dτ,

h̄ω(t) =
ω(0)(0)(t)−

3
2

Γ
(
− 1

2

) +
ω(1)(0)(t)−

1
2

Γ
(

1
2

) +
1

Γ
(

1
2

) ∫ t

0
(t − τ)−

1
2

(
1
2
− 12τ

)
dτ,

h̄ω(t) =
1

Γ
(

1
2

) (1 − 16t)t
1
2 . (50)
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Thus, from Equations (47)–(50), we attain

h̄ν(t) ≤ ν(t)
3

and h̄ω(t) ≤ ω(t)
3

,

for each t ∈ [0, 1]. Hence, h̄ has a UFP. Additionally, we can also verify our result in the
same manner as in Example 3. Here, clearly, 0 is the UFP of h̄ as at t = 0, ν(t) = h̄ν(t) =
ω(t) = h̄ω(t) = 0.

5. Conclusions

In this manuscript, by generalizing the idea of GMKK(ψ− α)C, we have demonstrated
the concept of GMKKR(ψ)C and GMKKR(ψ − α)C, and established FPRs in complete PMS.
Some examples are also proposed in context of our main result. Moreover, by applying
our established result, solutions for VIE of second kind, FDE of Caputo type, and FDO of
Riemann-Liouville type are obtained with examples in terms of FP.

In future, we may try to extend and generalize our obtained result in other spaces
by further expanding the idea of GMKKR(ψ − α)C. Additionally, we can try to attain the
applications of our result in differential calculus, optimization theory, etc.
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