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Abstract

We present an expanded and improved deep-learning (DL) methodology for determining centers of star images on
Hubble Space Telescope/Wide-Field Planetary Camera 2 (WFPC2) exposures. Previously, we demonstrated that
our DL model can eliminate the pixel-phase bias otherwise present in these undersampled images; however that
analysis was limited to the central portion of each detector. In the current work we introduce the inclusion of global
positions to account for the point-spread function (PSF) variation across the entire chip and instrumental
magnitudes to account for nonlinear effects such as charge transfer efficiency. The DL model is trained using a
unique series of WFPC2 observations of globular cluster 47 Tuc, data sets comprising over 600 dithered exposures
taken in each of two filters—F555W and F814W. It is found that the PSF variations across each chip correspond to
corrections of the order of ~100 mpix, while magnitude effects are at a level of ~10 mpix. Importantly, pixel-
phase bias is eliminated with the DL model; whereas, with a classic centering algorithm, the amplitude of this bias
can be up to ~40 mpix. Our improved DL model yields star-image centers with uncertainties of 8—10 mpix across
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, and

the full field of view of WFPC2.

Unified Astronomy Thesaurus concepts: Space astrometry (1541); Convolutional neural networks (1938)

1. Introduction

The astrometric potential, for proper-motion purposes, is yet
to be fully realized for archival images taken with the Wide-
Field Planetary Camera 2 (WFPC2), a legacy instrument of the
Hubble Space Telescope. Recently we have developed a deep-
learning (DL) methodology to improve the centering precision
of images taken with WFPC2. These images are severely
undersampled and thus suffer from a fractional pixel bias in the
stars’ centers due to the mismatch between the true point-
spread function (PSF) and the PSF used by the centering
algorithm. To address this problem, Anderson & King (2000)
built an effective PSF (ePSF) empirically from a set of
observations. However, the WFPC2 ePSF library is not
sufficient to remove this pixel-phase bias which can be as
large as 40-50 mpix. Once post corrections such as the 34th-
row correction (Anderson & King 1999) and classic distortion
(Anderson & King 2003) are applied, the pixel-phase bias is
manifested as unaccounted-for noise in the positions. As a
consequence, WFPC2 was deemed unfit for high-precision
astrometry and a large archive with images taken between 1993
and 2009 remains untapped for proper-motion studies.

Taking an entirely new approach to determining stellar
centers in WFPC2 images, we developed and refined a
DL code using both simulated and real data as described in

Baena-Gallé€ et al. (2023) and in Dinescu et al. (2023, hereafter,
Paper I). At that time, we focused only on the central part of
each WFPC?2 chip to avoid the complexity of the PSF variation
across the detector’s field of view. We modeled filters F555W
and F814W thanks to a unique data set available only in these
two filters. The method proved successful, yielding centering
uncertainties of the order of 10 mpix per single measurement
near the center of each chip.

In the current work, we have expanded upon our previous
model and restructure the DL code to include the variation of
the PSF across the chip as well as magnitude effects in the
determination of new stellar centers. In what follows, we will
make frequent reference to Paper I and encourage the interested
reader to look there for additional, specific details.

2. Deep Learning Model
2.1. Model Input

The data sets we use to build the DL model were taken in
1999 July at the core of globular cluster 47 Tuc (PID 8267,
Gilliland). These data are unique as there are over 600
exposures in each filter, taken with fractional-pixel offsets in
each axis, ranging up to about 2 PC pixels (07046 pixel ).
Theses offsets are critical in characterizing the pixel-phase bias.
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Table 1
Number of Input Objects Per Chip and Filter
Filter Nexp Npc Nwr2 Nwrs Nwra
F555W 636 2073996 1848851 2118360 1949340
F814W 654 2378226 2290724 2524498 2371043

Conveniently, on the scale of these offsets, effects due to
differential optical distortion and the 34th-row error can
effectively be ignored. The pattern of offsets is shown in
Figure 1 of Paper I; there is good coverage in both x and y chip
coordinates. There are 636 exposures in F555W and 654 in
F814W, all having 160 s per exposure. The data set is time-
wise contiguous, taken over some 8 days of observations.

We begin by first centering all exposures with the classic
ePSF-algorithm hstlpass® code (Anderson & King 2000;
Anderson 2022). It is worth noting that this code employs a
library consisting of a spatial grid of PSFs, meant to properly
model its variability across each chip. As in Paper I, the
hst1pass-determined positions are used to construct an average
catalog in each filter. This is done by transforming the positions
of each exposure into those of one chosen as reference
(typically the first one in the set). In this way we obtain
positions on the same system for all exposures, which are
afterwards averaged with outlier clipping. The polynomial
transformations between target and reference exposures include
up to third-order terms. From this average catalog we eliminate
all objects that have a neighbor within 5 pixels, in order that
crowding effects do not affect the training of the DL model.
The average catalog positions are then used as “true” positions
in the training process. The assumption is that these catalog
positions are no longer affected by pixel-phase bias given the
large number of nearly random offsets being averaged over.

Specifically, the input for the training process consists of the
intensity values of a raster of 6 x 6 pixels centered on each star
image, along with the star’s catalog-determined (x, y) center
with respect to the bottom left corner of the raster. In addition,
we also input the global X, Y coordinates of the raster within the
chip, and the star’s instrumental magnitude. The global-
coordinate input will allow the model to compensate for the
variation of the PSF across the field of view, while the input
magnitudes provide allowance for what we suspect may also be
a slight magnitude dependence present in the PSF. Just to be
clear, no attempt is made to have the model predict stellar
magnitudes; we are entirely focused on determining image
centers.

The number of input objects per chip and filter are listed in
Table 1. Compared to Paper I, we have a factor of ~9 more

5 While using a 2019 version of the code, we have checked that the 2022

version (Anderson 2022) gives the same results for WFPC2 images; the ePSF
library is identical in the two versions of the code.
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objects, as in that paper we modeled only the central one-third
of the chip.

2.2. Model Description

Our specific Convolutional Neural Network model is
developed from that presented in Baena-Gallé et al. (2023)
and Paper I. There, the DL model is based on the VGG
architecture (Simonyan & Zisserman 2014). Our approach does
not make any assumption regarding PSF shape, which is
fundamentally different from classic centering methods.
Instead, the (x, y) coordinates of stellar centers are estimated
by measuring correlations with pixel intensity values within a
6 x 6 square raster around each star.

The new architecture is illustrated in Figure 1. The model
consists of eight trainable layers, six of them convolutional and
the last two fully connected (FC) layers, with two outputs that
provide paired estimates along the x- and y-axis, respectively.
Hence, it should be considered a VGG8 model. One maxpool
layer is inserted every two convolutional ones, and all hidden
layers are equipped with Rectified Linear Unit nonlinear
activation functions except the last one, which is linear, in
accordance with the regression nature of this problem. As in
Paper I, inserting a batch-normalization layer after the fourth
convolutional one helps stabilize the convergence process in
our specific problem.

As an important novelty with respect to Paper I, scalar
parameters, such as the star magnitude m and its global position
within the CCD (X and Y), are fed into an FC layer and then
concatenated to the features extracted along the main branch
before the last FC layer. The underlying idea is that the main
branch computes estimates based on correlations between the
intensity values within the raster, while the scalar parameters
perform a fine tuning informing the network about possible
dependencies of the PSF shape with respect to the star
magnitude and its position across the CCD.

The design process of the model also differs with respect to
the aforementioned VGG6 model in Paper I in two important
aspects. First, in Paper I the architecture and the hyperpara-
meter space values (i.e., number of layers and kernels within,
kernels sizes, number of batches and epochs, type of optimizer,
loss function, etc.) were derived from a set of ~4000 mock
stars in each chip. The model was then trained over a data set of
real stars in WFPC2 images. Therefore, although the simulator
used to create the mock images was based on the WFPC2 ePSF
library of Anderson & King (2000), one may expect an
inconsistency between the data set used to design the
hyperparameter space of the model and the data set used to
train, validate and test it. In the current work, for the sake of
consistency of the model at both design and training stages, we
used real star images throughout. Specifically, at the design
stage we used a subset of ~12,000 star images (from the
F555W PC chip).
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Figure 1. VGGS8 model architecture. Input scalars are magnitude () and absolute position (X, Y). Outputs are x and y.

Table 2

VGG Model
Layer (Type) Output Shape # of Param. Connected to
convl1_input (InputLayer) (None, 12, 12, 1) 0 (1
convl (Conv2D) (None, 12, 12, 60) 1560 [“conv1_input[0][0]"]
conv2 (Conv2D) (None, 12, 12, 60) 90060 [“conv1[0][0]"]
max_pooling2d (MaxPooling2D) (None, 6, 6, 60) 0 [“conv2[0][0]"]
conv3 (Conv2D) (None, 6, 6, 120) 180120 [“max_pooling2d[0][0]"]
conv4 (Conv2D) (None, 6, 6, 120) 360120 [“conv3[0][0]”]
bn_2 (BatchNormalization) (None, 6, 6, 120) 480 [“conv4[0][0]”]
max_pooling2d_1 (MaxPooling2D) (None, 3, 3, 120) 0 [“bn_2[0][0]"]
conv5 (Conv2D) (None, 3, 3, 240) 259440 [“max_pooling2d_2[0][0]"]
conv6 (Conv2D) (None, 3, 3, 240) 518640 [“conv5[0][0]”
max_pooling2d_2 (MaxPooling2D) (None, 1, 1, 240) 0 [“conv6[0][0]”]
flatten (Flatten) (None, 240) 0 [“max_pooling2d_2[0][0]"]
gp_1_input (InputLayer) (None, 3) 0 (1
fc_1 (Dense) (None, 40) 9640 [“flatten[0][0]"]
gp_1 (Dense) (None, 40) 160 [“gp_1_input[0][0]”]
concatenate (Concatenate) (None, 80) 0 [“fc_1[0][0],”“gp_1[0][0]"]
fc_out (Dense) (None, 2) 162 [“concatenate[0][0]”]

Total parameters 1420382; trainable parameters 1420142

Second, we have performed an automatic search across the
hyperparameter space of solutions to find the best combination.
For this purpose, the HalvingRandomSearchCV estimator
was used, which searches within a parameter space using
successive halving (Li et al. 2016). This is somewhat like a
competition between different candidate combinations. It is an
iterative selection process where all candidates—i.e., the
hyperparameter combinations—are evaluated using a small

amount of resources in the first iteration. Those combinations
considered the best are selected for the next iteration, which are
then allocated more resources. Hence, the number of resources
are increased as the number of candidates decreases until
finding the best combination of hyperparameters. Other
estimators make use of grid parameter search strategies, which
are more exhaustive but more expensive in terms of
computational burden.
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Figure 2. The loss function trend with epoch for the four chips and the two
filters. Training and validation samples are shown.

Table 3
Standard Deviations of Position Differences and Number of Objects in Each
Test Sample
Chip F555W F814W
Ox Ty Nobj Ox Oy Nnbj
(mpix) (mpix)
PC 8.6 9.1 367955 9.2 9.6 427849
WE2 9.0 8.9 233466 7.8 7.7 395907
WF3 8.7 8.7 331569 9.2 9.0 404576
WF4 8.2 8.6 312578 8.3 8.7 388009

After exploring several hundreds of hyperparameter combi-

nations with this tool, we found our best design with the
following hyperparameters: 6 convolutional layers, 60 kernels
in the first group of two, doubling the number of kernels as the
model increases in depth. Both the flattened output of the
convolutional part and the three scalar inputs are processed by
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Figure 3. Standard error of the transformation (of a target exposure into the
reference exposure) as a function of offset phase. Each row represents a chip
while x- and y-coordinate values are shown in the left and right panels,
respectively. Larger standard errors near mid-pixel phase indicate the presence
of pixel-phase bias in the positions. The classic ePSF/hstlpass centering
algorithm is shown with red symbols, while the DL algorithm is shown with
blue symbols. A benchmark level of 20 mpix is shown with a dotted line. Note
the flat curves obtained for the DL centers at ~10 mpix. These results are for
exposures of NGC 104 in filter F555W.

FC layers of 40 neurons, concatenated and passed to the output
FC layer of 80 neurons. Thus, the network has a total of ~1.4M
trainable parameters. The properties of the model are sown in
Table 2 and in Figure 1. The same architecture is used for all
four WFPC2 chips and both filters.

For comparison, the VGG6 model in Paper I was made up of
~0.2M trainable parameters. The difference between that
model and the new VGGS illustrates the increase in complex-
ity. The new model must account for the variation of the PSF
across the chip, as well as the variation of the PSF with
magnitude.

We also obtained a best learning rate of 4 x 1075, and a
weight decay 8 x 10>, Different loss functions and metrics for
validation were tried, such as the logcosh, huber_loss, or
cosine_similarity, and the MeanAbsoluteError. The last of
these was found to be the most efficient (as in Paper I). Finally,
different types of optimizer were also tested such as Adam,
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Figure 4. As in Figure 3, only for NGC 6752 in F555W. The phase coverage is
poor in this case, however the trends of the curves are apparent.
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Figure 5. As in Figure 3, only for NGC 6441 in F555W.

Nadam, or RMSProp. We found AdamW provided the best
solution with an Exponential Moving Average momentum
equal to 0.95. The input data set of stars was divided into
subgroups of 70:10:20% for training, validation, and final
testing, respectively. We did not find noticeable differences
with respect to the batch size. All input cutout images’
intensities are first normalized to a sum of one. The initial 6 x 6
raster images are zero-padded, thus increasing their size to
12 x 12. This guarantees the relevant information (i.e., pixel
intensities) within the raster is preserved as the network layers
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Figure 6. As in Figure 3, only for NGC 6341 in F555W. This data set is the
farthest in time with respect to the NGC 104 set on which the DL model is
trained. Therefore, long-term time variation of the PSF may be responsible for
the lesser improvement of image centers in the WF chips.

reduce their sizes due to edge effects after convolutions with
the kernels. The model was designed in Keras/TF (Chollet &
others 2018).

2.3. Model Outcome

In Figure 2 we show the loss function for the training (70%)
and the validation (10%) samples as a function of epoch during
the training process. We have experimented with a couple of
values for the number of epochs, and eventually settled for
1000. The curves indicate that no overfitting is present.

Next, we look at the test sample which consists of 20% of
the input objects listed in Table 1. We calculate the standard
deviation of the differences between output and input positions
for the test sample and list these in Table 3. To calculate these
standard deviations, we limit the test sample to a magnitude
range corresponding to well measured stars, which is the same
for all chips and filters. We also discard 3¢ outliers. The values
in Table 3 represent the centering error per single measurement
in detector millipixels (0”046 pixel ' for the PC and
0”10 pixel ' for WF chips). Note these are conservative
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Figure 7. As in Figure 3, only for NGC 104 in F814W.
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Figure 8. As in Figure 3, only for NGC 6752 in F814W.

estimates, as they assume the input catalog positions are
completely free of error.

3. Applying the DL Model
3.1. Cluster Results

The models derived in Section 2 are now applied to the
(hstlpass-determined) detections in all exposures of the NGC
104 data set, as well as to other cluster data sets that have not
participated in the building of the model. We require data sets
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Figure 9. As in Figure 3, only for NGC 6656 in F§814W.

Table 4
Data Sets Used to Test the DL Models

Target Field Nexp Exp. Time Epoch Data Set #

F555W
NGC 104 636 160 1999.5 1
NGC 6752—PC 118 26 1994.6 3
NGC 6441 36 160 2007.3 4
NGC 6341 28 100 2008.1 5

F814W
NGC 104 653 160 1999.5 2
NGC 6752—PC 109 50 1994.6 6
NGC 6656 162 260 1999.1 7
NGC 6205 25 140 1999.8 8
NGC 5139 24 80 2008.1 9

Note. Bold values correspond to data sets that were used to build the model.

that are rich in well-measured stars and have repeated
exposures with small offsets,
systematic errors operating on scales of tens of pixels do not

affect the analysis.

such that other possible
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Figure 10. As in Figure 3, only for NGC 6205 in F814W.

We use the same cluster data sets as in Paper I, as these have
already been deemed the most appropriate for such testing. The
cluster fields, per filter, are listed in Table 4, including the
number of exposures, exposure times, and the epoch of
observation. In the last column of Table 4 we add a data set
number that corresponds to the specific MAST DOI link listed
in the Acknowledgments.

Star detection and cutout rasters are made using hstlpass star
centers as preliminary position estimates. Then, the DL models,
by filter and chip, are applied to each of these sets to calculate
new star centers.

To evaluate these, polynomial transformations of star
positions are made for each exposure into a chosen reference
exposure and the standard errors of these transformations are
recorded. The standard errors are then plotted as a function of
the pixel phase of the offset from the reference exposure. We
denote this pixel phase of the offset ¢, and its value ranges
from 0 to 1. In other words, this is the fractional part of the full
offset. In such plots, the pixel-phase bias shows itself as a curve
with minimum standard error at ¢ =0 and 1, but rising to an
elevated level at mid values of ¢. Conversely, when no pixel-
phase bias is present, the standard error curves will be flat. The
entire process is repeated using the original hstlpass centers, in
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Figure 11. As in Figure 3, only for NGC 5139 in F814W.

order to compare the amount of pixel-phase bias present in the
two centering algorithms.

The results for NGC 104 in FS55W presented in Figure 3
show a dramatic improvement of the DL positions over those
obtained with hstlpass, in all four chips. This demonstrates that
the method works, not only for the central part of the chip as
shown in Paper I, but also across the full field of view of each
chip. Our refinement of the DL model has effectively allowed
for modeling of the PSF variation across the chip.

Results for the other data sets observed in filter F555W are
shown in Figures 4-6, and in filter F814W in Figures 7-11.

Note that the DL models applied to these sets were trained
on (70% of) the NGC 104 data, while the target sets were taken
at a different observation epoch, at which temporal changes in
the PSF may become important. Also, none of these sets match
the number of repeats and offset-phase ¢ coverage of the NGC
104’s data sets. Therefore, the standard error plots appear less
coherent. Lastly, variation in the observation exposure times
and richness of these other target clusters yield a large range in
quality for their standard-error plots.

The data set for NGC 6752 had only PC observations, in
both filters. In spite of the poor sampling in offset pixel phase,
the trends are apparent: the DL positions are less affected by
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Figure 12. Sensitivity of the trained DL models to location on the chip, for an
F555W exposure. At each 2d grid point, the vector shows the amount of
change in model-calculated x and y star-image position had this centrally
located star’s image actually been at the indicated location on the chip. The
vectors are magnified by a factor of 1000. The length of the longest vector
shown is roughly 160 mpix. The plus symbol indicates the actual location of
the star image on the chip. The four WFPC2 chips are as labeled.

the bias error compared to the hstlpass positions—see
Figures 4 and 8.

Results for clusters NGC 6441 and NGC 6341 shown in
Figures 5 and 6 show great improvement for the PC, but more
modest improvement for the WF chips. Since these observa-
tions are taken some 8-9 yr after the NGC 104 set, it is possible
that the PSF of the WF chips varied with time, and thus the
NGC 104-based model is less representative for these two
clusters.

In filter F814W, the NGC 104 results once again show great
improvement in removing the pixel-phase bias (see Figure 7).
Results for NGC 6656 and NGC 6205 shown in Figures 9 and
10 are good for the WF chips and more modest for the PC.
Finally, for cluster NGC 5139 there is hardly any improvement
of the DL positions over the hstlpass ones as seen in Figure 11.
Overall, this data set has large errors, in excess of 20 mpix, and
the curves are rather flat, hardly indicating a pixel-phase bias. It
is possible that the signal-to-noise ratio dominates the errors in
this case. Therefore, we regard this data set as less instructive in
assessing the DL model versus the hstlpass one, but include it
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Figure 14. Sensitivity of the trained DL model to input magnitude. Differences
in model-calculated centers are shown as a function of input magnitude. In each
panel, square symbols show changes along the x-axis, while triangles show the
y-axis changes. The vertical line indicates the actual instrumental magnitude of
the star image. Filter and WFPC2 chip are as labeled.
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for the sake of completeness, as it was also presented in
Paper L.

3.2. Characterizing the Impact of Global Positions and
Magnitude

One of the main modifications made to our DL model, over
that presented in Paper I, is the inclusion of layers making use
of the star’s rough global position and instrumental magnitude.
The expectation is that these would effectively model the
known variation of the PSF across the chip and any possible
dependence on magnitude. How important are these new
parameters in the derived DL model solutions?

As a trained DL model solution can very much be a “black
box” in some respect, a simple test was performed to measure
the sensitivity of the model output to these specific input
parameters. A single star image was chosen from an exposure
in the NGC 104 data set, more precisely, one star near the
center of each chip for a single F555W exposure and a single
F814W exposure. The star images were selected to be
relatively bright, that is, with high signal to noise. The DL
model solution, appropriate to that chip and filter, was applied
to the star’s image, using its actual intensity raster cutout and
correct global position and instrumental magnitude. Addition-
ally, artificial repeats of the same image raster cutout were
made placing it at a grid of positions across the chip, while
keeping the input magnitude correct. Finally, repeats were also
made at the correct, near-center position, but with a range of
input magnitudes, spanning the effective range of magnitudes
used to train the model, i.e., the range over which the model
solution should be legitimate.

The changes in the DL-calculated output centers, as a
function of global position and magnitude, will measure the
dependence of the centers on those input parameters. The
calculated center at the actual position and magnitude is used as
fiducial and differences are taken with the centers derived while
varying the global position and magnitude, taking into account
the additional integer-value offsets for the grid of global
positions.

Figures 12 and 13 show the sensitivity of the calculated
positions to the location of the image on the chip. The vectors
indicate the change in calculated image center relative to what
would have been determined had the image been at its true
location near the center of the chip. The length of the largest
vectors in these figures is roughly 160 mpix, although near the
edges of the chip, the changes are more typically of the order of
~50 mpix. This demonstrates a rather large dependence on
global position, considering the ~10 mpix precision of the
centers. In other words, the PSF does vary significantly across
the chip and yet the model solution is able to make these large
adjustments with precision. Note that the variation, especially
for the WF chips, is much greater for the FS55W filter than in
F814W.

Casetti-Dinescu et al.

In Figure 14, the dependence on magnitude is shown. Within
each panel, the two curves illustrate the changes along the x and
y axes, while the vertical line indicates the actual instrumental
magnitude of this star’s image. Overall, the dependence on
magnitude is of smaller amplitude and is less well-behaved,
compared to the variation with global position. Still, the effect
of varying the input magnitude over a 6 mag range results in a
change in the calculated position of from 10 to 20 mpix. The
sensitivity of the trained DL model to global position is quite
large, while the effect due to magnitude is smaller but not
negligible.

4. Summary

We present a DL methodology that provides improved
astrometric centering for the full field of view of the WFPC2,
largely by overcoming the pixel-phase bias present in these
undersampled images. This bias can be as large as 40 mpix
when classic centering algorithms are used, presumably due to
a mismatch between an algorithm’s fitting PSF and the actual
PSF. The procedure we develop relies on a stellar-rich set of
repeated exposures that have small offsets, well-sampled in
fractional pixel phase, for the purpose of training a supervised
DL model.

Our new results indicate errors of the order of 8—10 mpix in
the centers of well-measured stars. We also found that the PSF
variations across each chip correspond to corrections of the
order of ~100 mpix, while magnitude effects are at a level of
~10 mpix.

While this procedure was developed specifically for under-
sampled WFPC2 images, preliminary testing has shown us that
ACS/WEFC exposures in narrow filters (e.g., F502N) also are
affected by pixel-phase bias when using classic centering
techniques. Thus, it may very well be possible to improve
ACS/WEC star centering with a similar DL approach. Our goal
is to explore this possibility in the future.
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All the HST data sets used in this paper can be found in
MAST. The data set number is that from the last column of
Table 4 as follows:

Set 1: 10.17909/n9b8-3721
Set 2: 10.17909/n07m-jb63
Set 3:  10.17909/q64r-dn92
Set 4: 10.17909,/0d26-v967
Set 5: 10.17909 /mkOb-mx64
Set 6: 10.17909 /rhae-wf34
Set 7: 10.17909/mzj9-0y54
Set 8: 10.17909/h7dk-6j75
Set 9: 10.17909 /9jm2-cf66.

Facilities: HST (WFPC2), MAST.
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