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Abstract

Curve running is a common form of training and competition. Conducting research on posture estimation 
during curve running can provide more accurate training and competition data for athletes. However, due to 
the unique nature of curve running, traditional posture estimation methods neglect the temporal changes in 
athlete posture, resulting in a decrease in estimation accuracy. Therefore, a posture estimation method for curve 
running motion using nano-biosensor and machine learning is proposed. First, the motion parameters of humans 
are collected by nano-biosensor, and the posture coordinates are obtained preliminarily. Second, the posture 
coordinates are established according to the human motion parameters, and the curve running posture data is 
obtained and filtered to obtain more accurate data. Finally, the Bayesian network in machine learning is used 
to continuously track the posture, and a nonlinear equation is established to fuse the posture angle obtained by 
the sensor and the posture tracked by the Bayesian network, to realize the posture estimation of curve running 
motion. The results show that the proposed estimation method has a good motion posture estimation effect, 
and the hip joint estimation error, knee joint estimation error and ankle joint estimation error are all less than 
5°, and the endpoint displacement estimation offset rate is less than 2%. It can realize accurate motion posture 
estimation of curve running motion, and has important application value in the field of track training.
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I.	 Introduction

Curve running is one of the most important activities of human 
beings in daily life/social interaction/production, which reflects 

the difference in individual physical quality to a certain extent [1]. 
At the same time, it is also a basic event in track and field sports, 
playing a very important role in the development of human speed, 
agility, endurance, coordination, etc. Running can promote the growth 
and development of the body, improve the cardiopulmonary function, 
and enhance the physical quality of people. And the curve running 
estimation of athletes can help timely find the shortcomings of athletes, 
and then guidance can be provided to improve the athletes’ sports level 
[2]. Posture estimation refers to the process of accurately determining 
and analyzing the body’s position and alignment in a given context 
or activity. In the case of curve running, posture estimation involves 
precisely identifying and tracking the positions and movements of 
the athlete’s body during the running process, especially during the 

turns [3]-[4]. Motion posture estimation is a key content in the current 
computer vision research field [5]-[6]. However, traditional posture 
estimation methods are not sufficient to meet the high-precision and 
high-efficiency posture estimation needs of curve runners. Therefore, 
it is necessary to conduct posture estimation research specifically for 
curve running. During the process of curve running, the posture of 
athletes changes continuously over time, and there is a significant 
posture change during turning, which brings great challenges to 
posture estimation [7]. Furthermore, due to the rapid and complex 
nature of athlete posture changes, traditional posture estimation 
methods cannot accurately capture posture changes, resulting in a 
decrease in estimation accuracy. Therefore, a curve running posture 
estimation study is proposed using nano-biosensors and machine 
learning. Nano-biosensors are biosensors based on nanotechnology. 
Their main function is to detect and analyze small biological systems, 
such as biological molecules or cells. Typically, nano-biosensors consist 
of nanomaterials, biological recognition elements, and transducers. 
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By utilizing the special properties of nanomaterials, nano-biosensors 
can achieve high-sensitivity detection of trace amounts of biological 
molecules, while also having advantages such as high selectivity, 
rapid response, miniaturization, and low cost, making them widely 
applicable in fields such as medical diagnosis, food safety testing, and 
environmental monitoring [8]-[9].

The traditional biosensors used for human motion posture 
analysis are based on optical detection. Nano-biosensors include 
optics, electricity, mechanics, acoustics, and so on. They are not only 
sensitive and fast, but also portable and have low energy consumption, 
becoming one of the preferred technologies for human motion posture 
analysis [10]. The combination of nano-biosensors and vision-based 
machine learning can create a digital version of the human posture of 
curve running in real- time, and a virtual and real interactive three-
dimensional (3D) environment is generated. It provides a basis for the 
study of the posture estimation of curve running.  In addition to its 
benefits for athletes, curve running and its posture estimation have 
broader implications for the general population. Running, as a form of 
exercise, promotes overall physical fitness, enhances cardiopulmonary 
function, and contributes to the growth and development of 
the body. By accurately estimating curve running postures, the 
proposed nano-biosensor and machine learning approach can help 
individuals improve their running techniques, prevent injuries, and 
optimize their training regimen. Furthermore, the combination of 
nano-biosensors and machine learning not only provides real-time 
posture estimation but also generates a virtual and interactive 3D 
environment. This immersive environment allows athletes, coaches, 
and researchers to analyze and visualize the runner’s movements from 
different perspectives. By examining and manipulating this digital 
representation, athletes can gain a deeper understanding of their 
running form, identify areas for improvement, and experiment with 
different strategies in a risk-free virtual setting [11]-[12].

At present, some scholars have studied motion posture estimation 
methods. In which, Shimada et al.[13] studied the method of 3D human 
motion capture and posture estimation with physical consciousness. 
The proportional differential controller is introduced, whose gain is 
predicted by the neural network, which can reduce the delay even in 
the case of fast motion, to realize the construction of human motion 
capture architecture. According to the results of monocular 3D human 
motion capture, the neural network is standardized based on physical 
awareness. This makes it possible to estimate the global translation 
more accurately without loss of generality, and use the trained neural 
network model to estimate the motion posture. The experimental 
results show that this method has the problem of poor motion posture 
estimation effect, and it is difficult to achieve the relevant expected 
goals. Gao et al.[14] studied the motion posture estimation method 
based on wireless wearable technology. Wireless wearable sensors are 
used to collect human motion data, and the collected data format is 
processed accordingly. The features of different posture signals are 
studied, and the signal feature sequence that can identify the signal 
posture is selected. According to the signal feature sequence of the 
posture in the posture database, a multi-level human posture estimation 
algorithm is designed, and the human motion posture estimation 
results are obtained. The analysis of the test results shows that the 
method has high estimation error and poor estimation accuracy for 
hip joint posture. Liu et al. [15] studied the human motion posture 
estimation method of RGB-D sensor, and designed a human motion 
capture system combining human priori and performance capture. This 
system only uses a single RGB-D sensor. To break the self-scanning 
constraint, the front view input is used to initialize geometric capture 
to ensure the quality of human motion capture. Based on the motion 
capture results, a human motion posture estimation model is built to 
obtain the human motion posture estimation results. However, this 

method has a high error in estimating the knee joint posture, making 
it difficult to accurately estimate the posture of curve running, and 
the actual application effect is poor. Liu  et al. [16] studied the motion 
posture estimation method based on micro-inertial measurement unit 
(MIMU). By combining micro flow sensor with MIMU, a wearable flow 
MIMU human motion capture device is pro-postured. The motion 
speed is detected by the micro flow sensor and used to calculate the 
motion acceleration. The gravitational acceleration is extracted by 
eliminating the motion acceleration from the accelerometer output. 
Posture estimation is realized by fusing the gyro output of the Kalman 
filter and the extracted gravity acceleration data. This method needs 
better estimation error for ankle joint posture, resulting in low 
estimation accuracy, which affects its further promotion in practice. 
Chen and Li [17] studied the motion posture estimation method based 
on semi-supervised learning. First, the Internet of Things is used to 
collect human motion target images, extract human motion posture 
features based on the eight-star model, and fuse multiple features to 
form a 17-dimensional feature vector image block. Then, the random 
fern classifier is optimized, and semi-supervised learning is used to 
calculate a large number of un-calibrated data in the time domain, 
space domain and data. The classifier is trained to complete the 
image block classification. Finally, classifier’s parameters are updated 
iteratively to complete the posture estimation of moving human 
objects. However, this method has the problems of a high offset rate of 
terminal displacement estimation, low accuracy of posture estimation 
and poor practical application effect.

To address the problem of poor posture estimation effect, high hip 
joint estimation error, knee joint estimation error, ankle joint estimation 
error and endpoint displacement estimation offset rate in traditional 
motion posture estimation methods, combined with the advantages 
of nano-biosensor and Bayesian network[18], it is applied to curve 
running motion posture estimation to improve the estimation effect. 
The main contributions of this paper are as follows:(1) Nanometer 
biosensor has the advantages of high sensitivity and wide detection 
range, which can improve the speed and quality of athletes’ initial 
posture acquisition, and solve the problem of rising posture estimation 
error caused by poor quality of athletes’ initial posture acquisition.(2) 
The Bayesian network is used to track the posture, and all the postures 
are fused to ensure the depth estimation of the hip joint, knee joint, 
ankle joint and other postures, and ensure the accuracy of posture 
estimation. (3) experiment’s results using different data sets prove 
that the proposed method of curve running posture estimation using 
nano-biosensors and machine learning can achieve fast and accurate 
estimation of curve running posture.

II.	 Methodology

A.	Design of Posture Estimation Method for Curve Running
To address the issues of poor posture estimation, high hip joint 

estimation error, knee joint estimation error, ankle joint estimation 
error, and high endpoint displacement estimation offset rate in 
traditional motion posture estimation methods, the advantages of 
nano-biosensors and Bayesian networks are combined and applied to 
the curve running motion posture estimation to improve estimation 
effectiveness. The central idea of this research method is to use nano-
biosensor to obtain the initial posture of a motion, get the solution, and 
use machine learning methods to continuously track and calculate, to 
achieve the posture estimation, as shown in Fig. 1.

The nano-biosensor is installed in the appropriate position to obtain 
the athletes’ initial posture information and determine whether the 
posture calibration is completed. After the posture calibration meeting, 
the posture data is obtained and filtered. After initial alignment and 
solution, the posture angle is obtained to obtain more accurate data. 
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The Bayesian method in machine learning is used to continuously track 
the posture. After the pre-training is completed, a nonlinear equation 
is established to fuse the posture angle obtained by the sensor with 
the posture tracked by the machine learning method, and the posture 
estimation result of the curve running motion is output.
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Fig.1. Framework of estimation Process of Curved Running Posture.

B.	Posture Coordinate Acquisition Based on Nano-Biosensor
In this paper, Nano-biosensor is used to collect human motion 

parameters and preliminarily obtain posture coordinates. Nano-
biosensor is a new type of biological sensing medium using 
nanomaterials. Compared with inertial sensor-based data acquisition 
methods, it has advantages in the field of biological data acquisition 
because of its small device size, free labeling, good specificity, and high 
data acquisition efficiency. It consists of Nano recognition element, 
transducer, and an electronic instrument. The nano-biosensor is 
installed on the subject, the data acquisition site is determined, and 
the collected electrical signal or optical signal is transmitted to the 
computer through wireless communication, and the signal is amplified 
and processed to ensure the data acquisition accuracy and efficiency.

The nano-biosensor is used to collect human motion parameters. 
The position of the sensor determines whether the posture information 
of different bones and joints can be accurately obtained. There are 
206 bones in the human body, and all bones are connected to human 
skeleton by joints of different forms [19]. In this study, a skeleton 
model with 15 rigid bodies is used for posture measurement. The 
sensor is worn on these 15 parts. The fixing position is shown in Fig. 2.
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Fig.2. Fixed position of sensor.

Binding the sensor to each joint-driven bone enables the specific 
biometric information captured to be converted into easily detectable 
physicochemical signals, such as optical and electrical signals, and 
the rotation information of the joint is determined by the associated 
biological signals. For further analysis, mathematical language is used 
to describe the human skeleton and calculate the posture of each sensor 
unit [20]. In the sensor coordinate system, the three-axis acceleration 
vector output by the accelerometer is recorded [𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 ], and the 
acceleration vector obtained after integration is recorded as [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 ]. 
In an ideal state, these two groups of acceleration vectors are equal 
[21]. However, in the measurement, it is inevitable to be affected by 
the system error and the installation error of the device itself, resulting 
in that they are not completely equal. Therefore, the two vectors are 
multiplied to calculate the error 𝐼. Equation (1) refers to

	 (1)

During posture solution, the angle is the rotation around the axis 𝑧, 
i.e., to form an intersection angle on the plane 𝑥𝑜𝑦.

After the above preparation, the initial posture is determined by 
using the three-axis measurement values [22]. After the initial posture 
matrix of the motion is determined [23], the initial alignment is 
completed. Equation (2) and Equation (3) refer to

	 (2)

	 (3)

where [𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧 ] represents each angle parameter in the coordinate 
system. θ and γ represent pitch angle and roll angle, respectively.

The euler angle can represent any 3D coordinate curve. Therefore, 
this method is used to describe the carrier posture angle [24], and the 
sum of rotation angles is

	 (4)

where φ, α and β are the rotation angle vectors of heading axis, 
pitch axis and roll axis. 

The three angle values calculated above represent the orientation 
information of the motion. However, the posture angle obtained based on 
the nano-biosensor is only fixed. Since the motion posture of curve running 
is real-time, it needs to be tracked in real-time for further processing.

C.	Data Filtering of Curve Running Posture
Using nano-biosensor to collect human motion parameters, the 

initial posture coordinates is obtained, and the posture data of curve 
running are obtained. Because the detection object is constantly 
moving, it is necessary to estimate the curve running posture. 
Therefore, there will be some errors in the detection. It is necessary 
to filter and enhance the data [25] to avoid excessive bridging of the 
model and improving the accuracy of the motion posture description.

The sample database is defined as D, the spatial position of human 
joints is recorded as l(𝑥, 𝑦), and the goal is to filter the motion posture 
data of curve running. In the whole process, the random gradient 
descent method [26] is used to iterate and update the algorithm. 
Equation (5) refers to 

	 (5)

where St+1 is the updated sample data set. At represents a sample 
set randomly selected from the database, γt represents the gradient 
value of the loss function within the time t, and Dt represents the target 
function of the identification performance. 
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Data filtering is realized through an additional random sampling 
process to enhance the effect on each small batch of collected samples. 
Polynomial distribution is adopted for the training samples to be 
disturbed. Equation (6) refers to

	 (6)

where ∂ refers to the possibility for different categories to emerge. c 
is the error ratio, and h means the category of the real label.

The distribution of training data is obtained through the above 
calculation. If c is 0, the sample does not include error data; if c is 100%, 
most of the labels are abandoned, and the training process is close 
to unsupervised. Each iteration is trained on different noise samples 
relative to the model, and the data filtering process will be ended until 
all samples are trained.

D.	Posture Estimation of Curve Running Based on Bayesian Network
After the above Data filtering processing, the Bayesian network 

in machine learning is used to continuously track the posture and 
realize motion posture estimation. In machine learning, there are two 
known variables, which are recorded as 𝑚 and 𝑛. There is a certain 
dependency between the two variables, that is, there is an unknown 
joint probability distribution 𝐻(𝑚, 𝑛). Machine learning estimates the 
maximum a posteriori probability based on 𝑙 different samples. 

In the actual calculation, it is assumed that the data obey the 
Gaussian distribution, and a radial basis function is used to represent 
the data association [27]. Because the joint distribution prior has 
the characteristics of Gaussian distribution, the posterior prediction 
output value B(𝑦(𝑐)) of new data is expressed as

	 (7)

where 𝑦(𝑐) is a posteriori prediction parameter,  is the observation 
value of the vector Z, and DX is the hidden structure associate parameter 
of the data X.

Track the target after obtaining the posterior predictive output 
value. Scale Adaptive with Multiple Features Tracker is a scale 
adaptive kernel correlation filter tracker with feature fusion. Aiming 
at the problem of fixed template size in tracking, an adaptive scheme 
is proposed [28]. The image target of the previous frame is taken as 
the processing center, and the image blocks in the matrix area around 
the processing center target are recorded 𝑚 x 𝑛. Process all cyclic block 
shifting. Equation (8) refers to

	 (8)

where 𝑢 is bandwidth parameter of Gaussian kernel function, e 
is offline Fourier transform parameter, and P is scale transformation 
parameter.

To combine the motion posture obtained from biosensors with the 
tracking and measurement equation based on machine learning [29], 
it is necessary to establish a nonlinear equation to update the motion 
posture estimation [30]. When changes occur, one of the coordinate 
systems shall be translated in advance. Equation (9) refers to 

	 (9)

where J( j0, j1, j2, j3) represents the coordinate system after translation.
j0, j1, j2 and j3 are unit vectors.

Under J( j0, j1, j2, j3) coordinate system. The angular change within 
the same sampling time interval is called angular increment [31]. 
Equation (10) refers to 

	 (10)

where C(tk) is the incremental value at moment t, and q is the 
sampling time interval.

According to the transformation relationship in the posture fusion 
coordinate system [32], the geographic coordinate system and the 
carrier coordinate system are transformed to further describe the 
posture information in motion. Equation (11) refers to 

	 (11)

where a represents the attitude angle after conversion. h0, h1, h2 
and h3 represent posture angle vector, respectively, and B represents 
conversion parameter.

According to the nonlinear state equation [33], the relationship 
between the measurement equation and the state equation can be 
obtained by processing the measured data with the Jacobian matrix. 
The Jacobian matrix is in the form of

	 (12)

Finally, the loss function is used to recover the 3D human posture, 
and the final estimation results are obtained

	 (13)

where At (θ) represents the action-angle of node A at time t. Aa (θ)
stands for A unit parameter at joint point α.

Based on obtaining the posture angle, the motion trend is tracked 
continuously, and the posture estimation of curve running is 
completed.

III.	Experimental Analysis and Results

A.	Data Sets 
A total of two data sets are used for comparative experiments, 

namely, MS COCO data set [34] and actual collection data set, which 
are recorded as data set 1 and data set 2. Data set 1: MSCOC data 
set is large in scale, including many scenes such as target detection, 
segmentation, image description, and so on. The target category is 
diverse, and contains many different human motion pose images. It is 
a dataset specially used for image recognition. The dataset contains 91 
classifications, 82 of which each have more than 5000 instance objects. 
Data set 2: The second dataset is collected data. The experimenter hung 
the sensor on his waist and ran according to different habits. Since 
the limit frequency of human daily movement is within 100Hz, this 
experiment samples at 100Hz, and 18000 sample data can be obtained 
for each posture. The data set covers 10 human activities, and the test 
objects of each activity include 50 men and 50 women. Each image has 
activity labels and human joints are labeled. Selecting 625 experimental 
images from two datasets, each with multiple angles, different speeds, 
and positions, the images were preprocessed before experimenting. 
During the experiment, 80% of the randomly selected data samples 
were experimental, while 20% were test samples. All data were input 
into the computer for experimental analysis. The Bayesian network 
model was used. The number of neurons in each node was adjusted 
according to specific circumstances to achieve optimal performance. 
The learning rate was set to 0.1 to control the convergence speed of 
the model and avoid overfitting or under-fitting situations.

1.	Evaluation Metrics
Motion posture estimation effect: The closer the posture angle 

calculated by different methods is to the actual athlete’s posture angle, 
the better the estimation effect is. Equation (14) refers to 

	 (14)
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where Ki is the posture angle calculated by different methods, and 
Kj is the posture angle of an athlete in reality. 

where  is the posture angle calculated by different methods, and Kj 
is the posture angle of an athlete in reality. 

Hip joint estimates: The closer the estimated result of knee joint 
angle is to the actual result, the better the estimated effect is. Equation 
(15) refers to 

	 (15)

where, gi is the hip joint angle estimation results calculated by 
different methods, and gj is the athlete’s actual hip angle.

Knee joint estimates: The closer the estimated result of knee joint 
angle is to the actual result, the better the estimated effect is. Equation 
(16) refers to 

	 (16)

where hi is knee joint angle estimation results are calculated by 
different methods, and hj is the athlete’s actual knee joint angle.

Ankle joint estimates: The closer the ankle angle estimation result 
is to the actual result, the better the estimation effect is. Equation (17) 
refers to 

	 (17)

where zi is the angle estimation results of ankle joint calculated by 
different methods, and zj is the athlete’s actual ankle joint angle.

Endpoint displacement estimation offset rate: The above process 
obtains the corresponding experimental results more intuitively. To 
further verify the posture estimation effect of each method, a detailed 
comparison is made. The Data set 2 set is used to compare the hip joint 
estimation error, knee joint estimation error, ankle joint estimation 
error and endpoint displacement estimation offset rate of the six 
methods. Equation (18) refers to 

	 (18)

where pv is the actual distance of the track, f is the actual coordinate 
value of the terminal point, and d is the estimated coordinate of the 
terminal point. 

Curve running motion pose estimation time: This indicator refers to 
the time taken to complete the curve running motion pose estimation 
step, the shorter the time, the more efficient the algorithm, Equation 
(19) refers to 

	 (19)

where ti represents the estimated time of the motion posture of the 
ith curve run.

B.	Results and Discussion
The data sampling frequency of the sensor used in this paper is 

100Hz, that is, in 1s, there will be one hundred pieces of data each 
time. To avoid the transition between two actions in a specific split 
window, a 40% window overlap is used to reduce this effect. After 
selecting the window to extract the original data, the focus is placed 
on the extraction of posture and statistical features. In this study, the 
stochastic gradient descent method described was employed for data 
augmentation processing to obtain the motion posture angles. The 
angle between shoulder joint and root node is shown in Fig. 3.

Analysis of Fig. 3 shows that the included angle of shoulder joint in 
x axis relative to root node changes from 15 ° to 20 °, with a relatively 
low change range, indicating that the included angle of shoulder joint 
in x axis relative to root node changes more smoothly. The included 
angle of shoulder joint in y axis with respect to the root node varies 

between 65 ° and 80 °, with a high angle value and a low range of 
variation, which indicates that the included angle of shoulder joint 
in Y axis with respect to the root node changes steadily. The included 
angle of z axis shoulder joint relative to the root node varies from 15 ° 
to 40 °, with a high variation range, indicating that the included angle 
of z axis shoulder joint relative to the root node changes unstably.

A
ng

le
/º

100

80

60

40

20

50 100

X-axis

Y-axis

Z-axis

150 200 250 300 350 400 450 500
Samples

Fig. 3. Angle between shoulder joint and root node.
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Fig. 4. Included angle between boom and jib.

According to the data in Fig. 4. The included angle between the x 
axis and y axis boom and the jib varies from 15 ° to 20 °. The angle value 
is low and the change in posture is small. The included angle between 
the z axis boom and the jib varies from 15 ° to 80 °. The change of the 
angle value is unstable, indicating that the included angle between the 
axial arm and the jib varies greatly.

The changing angle of the included angle between the bones of the 
left leg within a period of motion is shown in Fig. 5.

in
cl

ud
ed

 a
ng

le
/º

100

80

60

40

20

50 100

Included angle between femur and tibia of le� leg

Included angle between le� leg tibia and in step

150 200 250 300 350 400 450 500
Samples

Fig. 5. Included angle between left leg bones in a cycle.
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Through the analysis of the results in Fig. 5, it can be seen that the 
included angle between the left leg femur and tibia varies from 57 ° 
to 90 °, and the included angle between the left leg tibia and instep 
varies from 45 ° to 70 °. Both of them show irregular changes, and the 
angle values are kept at a high level, indicating that the included angle 
between the left leg bones changes greatly during the curve running 
of the human. After the posture angles of different parts of the athletes 
are obtained, the curve running posture estimation is developed.

Taking an image in data set 1 as the experimental image, as shown in 
Fig. 6. The proposed method and five other methods are used to estimate 
the athlete’s posture Fig. 7 in data set1, and the results are shown in Fig. 7.

Fig. 6. Experimental image.

As shown in Fig. 7, the motion posture of the athlete was simulated in 
three-dimensional space, where the horizontal and vertical coordinates 
were based on the spatial coordinate system. The differences in the 
estimation performance between the comparative method and the 
proposed method have been highlighted in red. The posture angle 
obtained by the proposed method is consistent with that of actual 
athletes, which shows that the method can accurately estimate the 
motion posture. However, the method in HMCPA [13] has deviation for 
left and right elbow joint and knee joint posture estimation, the method 
in WHMPC [14] has deviation for knee joint posture estimation, and 
the method in HMTLC [15] has deviation for left and right elbow 
joint and knee joint posture estimation, which is the largest deviation 
among the six methods. The method in MHDM [16] and the method in 
HMTPD [17] both have deviations in elbow posture estimation. To sum 
up, the five methods have different degrees of estimation bias, and the 
posture estimation effect is poor. This is because the posture changes 
involved in curve motion are complex, encompassing variations in 
multiple directions and angles, and both the speed and posture of 
posture changes can vary over time. These complexities with the 
changes may lead to significant posture estimation errors when using 
comparative methods. The comparison results of hip joint estimation 
effects of six methods are shown in Table I.
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Fig. 7. Comparison of motion posture estimation effects.

In curve motion, the hip joint angle in the human tends to be 
concentrated in the range of 25°, 35°, and 40°. Therefore, selecting 
these angles can better adapt to real-world situations. Additionally, 
choosing these angle ranges can better capitalize on the strengths of 
various methods. According to the data in Table 1.When the actual 
angle of the hip joint is 40 °, the hip joint estimated by the proposed 
method is 42 °, with a difference of 1 °, 4 ° lower than the method in 
HMCPA [13], 2 ° lower than the method in WHMPC [14], 4 ° lower 
than the method in HMTLC [15], 4 ° lower than the method in MHDM 
[16], and 13 ° lower than the method in HMTPD [17]. It can be seen 
from the analysis and comparison results that the difference between 
the hip joint estimation results obtained by the proposed method and 
the actual angle is the lowest, which indicates that the method has 
higher accuracy in hip joint estimation.

Table II shows the comparison results of the knee joint estimation 
effects of the six methods.

In curve motion, the knee joint angles in the human tend to be 
concentrated in the range of 20°, 40°, 50°, 60°, 62°, and 82°. Therefore, 
selecting these angles can better adapt to real-world situations. 
Additionally, choosing these angle ranges can better capitalize on 

TABLE I.  Comparison Results of Hip Joint Estimation

Actual angle° Proposed method/°
HMCPA [13]

method/°
WHMPC[14]

method /°
HMTLC[15]

method /°
MHDM[16]
method /°

HMTPD[17]
method /°

25 27 35 28 30 32 18
35 36 36 39 40 40 39
40 41 35 43 45 45 54
25 25 34 26 35 35 42
25 23 32 36 35 26 36
35 35 40 42 40 25 30
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the strengths of various methods. According to the results in Table II. 
When the actual angle of the knee joint is 82 °, the knee joint estimation 
result of the proposed method is 83 °, and the difference between them 
is 1 °, which is lower than 6 °, 6 °, 5 °, 6 ° and 7 °, respectively compared 
with the method in HMCPA [13], the method in WHMPC [14], the 
method in HMTLC [15], the method in MHDM [16] and the method 
in HMTPD [17]. This shows that compared with the experimental 
comparison method, the knee joint estimation result of the proposed 
method is closer to the actual angle, and the knee joint estimation 
accuracy is higher.

The ankle joint estimation results of different methods are shown 
in Table III.

In curve motion, the ankle joint angles in the human body tend to 
be concentrated in the range of 11°, 10°, 12°, 15°, 22°, and 10°. Therefore, 
selecting these angles can better adapt to real-world situations. 
Additionally, choosing these angle ranges can better capitalize on the 
strengths of various methods. By analyzing the data in Table 3, it can 
be known that when the actual ankle angle is 22 °. The ankle joint 
estimation result of the proposed method is also 22 °, and the difference 
between the two is 0, 1 ° lower than the method in HMCPA [13], 1 ° 
lower than the method in WHMPC [14], 2 ° lower than the method 
in HMTLC [15], 3 ° lower than the method in MHDM [16], and 3 ° 
lower than the method in HMTPD [17]. This shows that the estimation 
error of the proposed method is the lowest and the effect is the best, 
and the proposed method also has good estimation accuracy in the 
estimation of each detail of each joint angle of the motion posture, and 
the estimation error is not less than 5 °.

According to the data in Fig. 8. The endpoint offset rate of the 
proposed estimation method after running is low, basically below 
2%, which is lower than the other five methods. When the number of 
experiments is 8, the offset rate of the proposed method reaches the 
maximum of 0.7%; When the number of experiments is 7, the offset 
rate of the method in HMCPA [13] reaches the maximum value of 5.9%; 
When the number of experiments is 8, the offset rate of the method in 
WHMPC [14] reaches the maximum value of 2.7%; When the number 
of experiments is 6, the offset rate of the method in HMTLC [15] 
reaches the maximum value of 5.6%; When the number of experiments 
is 8, the offset rate of the method in MHDM [16] reaches the maximum 
value of 8.2%; When the number of experiments is 8, the offset rate of 
the method in HMTPD [17] reaches the maximum value of 4.6%. In 
summary, the maximum offset rate of the proposed method is 5.2%, 

2%, 3.9%, 6.5% and 3.9% lower than that of the method in HMCPA[13], 
the method in WHMPC[14], the method in HMTLC[15], the method in 
MHDM [16] and the method in HMTPD[17], respectively. Compared 
with the experimental comparison method, the proposed method 
cannot only estimate the current motion angle, but also accurately 
estimate the changes of each joint azimuth angle of human motion.
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Fig. 8. Comparison results of end point displacement offset rate.

The results of the comparison of the curve running motion posture 
estimation times for the six methods are shown in Table IV.

According to the data in Table IV. The mean value of curve running 
motion posture estimation time for the proposed method is 0.65s. The 
mean value of curve running motion posture estimation time for the 
method of HMCPA[13] is 1.42s. The mean value of curve running 
motion posture estimation time for the method of WHMPC[14] is 
2.18s. The mean value of curve running motion posture estimation 
time for the method of HMTLC[15] is 1.52s. The mean value of curve 
running motion posture estimation time for the method of MHDM[16] 
is 2.64s. The mean value of curve running motion posture estimation 
time for the method of HMTPD[17] is 1.59s.The comparison results 
show that the estimation time of the proposed method is the shortest, 

TABLE II.   Comparison Results of Knee Joint Estimation

Actual angle° Proposed method/°
HMCPA[13]

method/°
WHMPC[14]

method /°
HMTLC [15]

method /°
MHDM[16]
method /°

HMTPD [17]
method /°

50 51 55 60 62 59 62
60 61 69 69 69 70 71
40 41 48 49 48 42 48
82 83 89 89 88 89 90
62 63 70 68 69 52 72
20 22 30 30 32 33 32

TABLE III. Comparison Results of Ankle Joint Estimation

Actual angle° Proposed method/°
HMCPA [13]

method/°
WHMPC[14]

method /°
HMTLC [15]

method /°
MHDM[16]
method /°

HMTPD [17]
method /°

11 10 15 16 18 18 19
10 11 15 18 19 13 18
12 12 17 19 18 19 18
15 16 18 19 17 18 20
22 22 23 21 24 25 25
10 12 13 14 15 14 13
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which is 0.77s, 1.53s, 0.87s, 1.99s, and 0.94s lower than the methods 
of HMCPA[13], WHMPC [14], HMTLC[15], MHDM[16], and 
HMTPD[17], respectively, indicating that the estimation time of the 
proposed method is shorter and the proposed method is more efficient.

I.	 Conclusion

Based on the research background of curve running posture 
estimation, a method of curve running posture estimation based on 
nano-biosensor and machine learning is designed. The experimental 
results show that the posture angle obtained by the proposed method 
is consistent with that of actual athletes, which shows that the method 
can accurately estimate the motion posture. The difference in hip joint 
estimation error is 1°, the difference in knee joint estimation error is 1°, 
the difference in ankle joint estimation error is 0°, and the maximum 
deviation rate is only 0.7%. The proposed method has important practical 
value in the field of athletic training, providing more accurate training 
and competition data for athletes. Although the proposed method has 
higher accuracy in estimating motion postures and can overcome the 
limitations of traditional estimation methods, the efficiency of various 
estimation methods has not been verified in the experimental process. 
The limitation of this study is that the experimental results provided 
may come from a smaller sample size. To ensure the reliability and 
universality of the proposed method, further experiments with larger 
scale and more diverse samples are needed. Therefore, in the future, it 
is necessary to evaluate the performance of this method in real scenes, 
including the impact of various factors (such as lighting conditions, 
dynamic motion, and different body types) on estimation accuracy. 
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