
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 74 -

Please cite this article as: S. Dhahbi, N. Saleem, T. S. Gunawan, S. Bourouis, I. Ali, A. Trigui, A. D. Algarni, “Lightweight Real-Time Recurrent Models for 
Speech Enhancement and Automatic Speech Recognitionˮ, International Journal of Interactive Multimedia and Artificial Intelligence, vol. 8, no. 6, pp. 74-85, 
2024,  http://dx.doi.org/10.9781/ijimai.2024.04.003

Keywords

Real-Time Speech, 
Simple Recurrent 
Unit (SRU), Speech 
Enhancement, Speech 
Processing, Speech 
Quality. 

Abstract

Traditional recurrent neural networks (RNNs) encounter difficulty in capturing long-term temporal 
dependencies. However, lightweight recurrent models for speech enhancement are important to improve noisy 
speech, while being computationally efficient and able to capture long-term temporal dependencies efficiently. 
This study proposes a lightweight hourglass-shaped model for speech enhancement (SE) and automatic speech 
recognition (ASR). Simple recurrent units (SRU) with skip connections are implemented where attention 
gates are added to the skip connections, highlighting the important features and spectral regions. The model 
operates without relying on future information that is well-suited for real-time processing. Combined acoustic 
features and two training objectives are estimated. Experimental evaluations using the short time speech 
intelligibility (STOI), perceptual evaluation of speech quality (PESQ), and word error rates (WERs) indicate 
better intelligibility, perceptual quality, and word recognition rates. The composite measures further confirm 
the performance of residual noise and speech distortion. With the TIMIT database, the proposed model 
improves the STOI and PESQ by 16.21% and 0.69 (31.1%) whereas with the LibriSpeech database, the model 
improves STOI by 16.41% and PESQ by 0.71 (32.9%) over the noisy speech. Further, our model outperforms 
other deep neural networks (DNNs) in seen and unseen conditions. The ASR performance is measured using 
the Kaldi toolkit and achieves 15.13% WERs in noisy backgrounds.  
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I. Introduction

BUILDING lightweight recurrent models for speech enhancement 
and Automatic Speech Recognition (ASR) involves designing 

models that can process audio data efficiently while improving speech 
quality and intelligibility, mostly in noisy or degraded environments. 
The speech enhancement (SE) is particularly significant as it reduces 
listener fatigue, especially when individuals are subjected to prolonged 
exposure to high noise. The SE positively impacts the efficiency of 
communication and multimedia systems. Furthermore, it improves 
the intelligibility of speech, thereby enhancing ASRs and interactions 

between humans and machines. Various proposals are available in the 
literature, encompassing methods such as spectral subtraction [1]-[2], 
Wiener filtering [3], and minimum mean square error (MMSE) [4]-[5].

To address the SE challenges, supervised learning models are 
considered. These models undergo training using large speech datasets 
[6]-[7]. Among successful models for SE are the regression-based deep 
neural networks (DNNs) [8]-[11]. Given that the relationship between 
input and target features is nonlinear, a multi-layer DNN incorporating 
nonlinear activation is a suitable option. Essential considerations for a 
DNN-based SE include the type of network, the learning objective, and 
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the loss function [12]-[14]. For SE, the learning models are categorized 
into spectral mapping and masking. Mapping models entail training 
networks through direct mapping rules. They learn to estimate clean 
spectral features from noisy spectral features. However, these methods 
often result in excessively smooth spectra [9]. Conversely, masking-
based learning algorithms have shown greater success in SE. They 
involve multiplying the estimated parameters of objectives (ideal ratio 
mask (IRM) or ideal binary mask (IBM)) with noisy magnitudes. Many 
deep-learning approaches have recently emerged time-frequency (T-F) 
masks as training objectives, yielding favorable results [15]-[21]. Fully 
connected feedforward DNNs (FDNNs) predict labels for individual 
time frames using small context windows. Yet, they lack control over 
the long-term context windows crucial for accurately tracking the 
target speaker. DNN-based SE algorithms employ multi-layer DNNs 
for learning nonlinear regression functions or estimate a spectral 
mask using noisy magnitudes. These models forego the requisite for 
statistical distributions assumption, yielding superior noise reduction 
when handling non-stationary noises. The SE system using recurrent 
neural networks (RNNs) with T-F masking is depicted in Fig. 1. 
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Fig. 1. SE with RNNs estimating T-F masking.

Recurrent neural network (RNN) has attainment significance in 
several challenging applications within Natural Language Processing, 
including neural machine translation [22], conversational/dialogue 
modeling [23], and ASR modeling [24]. Given that speech waveform 
is a sequential data type, it requires a temporal context for effective 
processing, and RNNs excel in capturing long-range temporal 
sequences. Previous research [10] [25] has recommended framing 
SE as a sequence-to-sequence procedure to manage long-term 
contextual window. Various models, including RNN, CNN [57], and 
other deep learning architectures, have been proposed and assessed 
on diverse noises and speakers. In a work [25], LSTM is introduced 
for speaker’s generalization. The results indicate that the LSTM 
model demonstrates superior generalization to untrained speakers, 
significantly outperforming a DNN-based model in terms of speech 
intelligibility. Multiple studies have emphasized that employing the 
sequence-to-sequence approach enables LSTM to effectively control 
long-term context windows, leading to successful outcomes in speech 
enhancement [26]. To model the long input sequential data, RNNs 
face problems in capturing long-term temporal dependencies. Further, 
training an RNN with back propagation through time is exposed to 
vanish and explode the gradients. These challenges are addressed by 
proposing RNN variants using novel transition functional units and 
optimization techniques, such as LSTM [11] [27] and gated recurrent 
unit (GRU) [28]-[29]. Several approaches focused on connection 
architectures, including stacked RNNs [30] and skip RNNs [31]. In this 
paper, we have proposed efficient simple recurrent unit (SRU) models 
that are able to detain the long-term temporal dependencies and prevent 
the gradient from decaying. The contributions are highlighted below.

• A proposed SRU model takes on an hourglass shape, effectively 
capturing long-term temporal and sequential data. This results in 
reduced feature resolutions without sacrificing data in the layers. 

• Skip connections are introduced between nonadjacent layers to 
mitigate decaying gradient. Additionally, attention gates within 

the skip connections are used to reduce irrelevant features and 
highlight crucial features across different spectral regions.

• Robust training of the proposed SRU-based model is achieved by 
extracting combined feature sets from the noisy speech.

• We estimate two distinct training objectives, Ideal Ratio Mask 
and Ideal Binary Mask, to attenuate noise in the noisy mixture. 
This approach aims to enhance speech quality, intelligibility, and 
reduce word error rates.

The rest of this study is structured as follows: Section II outlines 
the formulation of the SE problem. Section III introduces the proposed 
SE. Details of the experiments conducted are outlined in Section IV. 
Section V provides the results and discussions. Ultimately, Section VI 
presents the drawn conclusions.

II. Problem Formulation 

Take into account that a clear speech signal 𝑥(t) undergoes 
degradation due to presence of background noise 𝑛 (t). This leads to the 
generation of a noisy speech signal s(t), which can be represented as:

 (1)

The noisy speech signal, denoted as s(t), undergoes a transformation 
to the frequency domain through application of the short-time Fourier 
Transform (STFT). This results in the acquisition of the frequency 
domain depiction:

 (2)

Where t and f denote the frame and frequency indexes, respectively. 
A combined feature set is extracted to robustly train the proposed SRU 
model. During inference, the trained parameters estimate Ideal Ratio 
Mask and the Ideal Binary Mask as training objectives. The estimated 
magnitude masks are then multiplied by noisy magnitudes to suppress 
the background noises:

 (3)

Where |M(t, f)| is the estimated T-F mask. The estimated magnitude 
and noisy phase reconstruct noise-free enhanced speech waveforms. 
The block diagram of the proposed SE is depicted in Fig. 2.

III. Proposed Speech Enhancement

SRUs can detain the information in speech waveforms which 
is a kind of long-term temporal sequence. The proposed network 
architecture effectively addresses the limitations of traditional RNNs 
using the following approaches. Our aim is to reduce the complexity 
(which is directly linked with neurons quantity and number of steps) 
without degrading the speech enhancement performance. Since equal 
number of neurons is each layer will introduce computational load, 
we have arranged neurons in increasing-decreasing order which 
forms a U-Shape layer. With this arrangement, the overall complexity 
of the model is reduced (with reduced neurons). Further, the same 
mechanism is adopted for time steps. By increasing the number of 
time steps, the computational complexity can indeed increase. This 
is because the model needs to process information across multiple 
time steps, leading to a higher demand for computational resources. 
More time steps may require more complex models to capture long-
term dependencies in the data. Firstly, the network architecture has 
a unique shape with bottom and upper pyramids. For the upper 
pyramid, there is a decrease in time steps while the number of neurons 
increases. Conversely, the lower pyramid exhibits an increase in time 
steps paired with a decrease in number of neurons across layers. This 
architectural design enables the model to manage high-resolution 
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features without encountering memory overflow issues. Additionally, 
skip connections have been incorporated between layers of similar 
shapes, spanning from upper to lower pyramid. This inclusion 
enhances the mitigation of gradient decay throughout the layers. To 
further refine the skips, an attention gate is introduced, emphasizing 
crucial spectral regions. Given that the speech spectrum showcases 
dominant formants in low-frequency areas and a sparse distribution 
in high-frequency zones, it becomes imperative to employ attention 
weights for distinguishing these varied spectral regions through the 
attention process. The model consists of five SRU layers featuring 
two attention-gated skip connections, as illustrated in Fig. 3. Details 
regarding time steps and units can be found in Table I. The network 
adeptly learns the nonlinear relationship, effecting the transformation 
of noisy speech, denoted as s(t), into a clear and intelligible speech 
signal, denoted as 𝑥(t).

A

A

SRU Layer 1

SRU Layer 2

SRU Layer 3

SRU Layer 4

SRU Layer 5

Fig. 3. The proposed SRU architecture.

TABLE I. Proposed SRU Details

Layer Neurons in Layer Time-Steps in Layers
1 256 512
2 512 256
3 1024 128
4 512 256
5 256 512

The SRU is a type of recurrent neural network (RNN) that 
incorporates parallelism analogous to convolutional and feedforward 
networks. It achieves an exact stability between sequential dependency 
and independency. While the state computation in SRU is time-
dependent, each dimension within the state operates independently. 
Additionally, SRU improves the training of deep recurrent models 
through the integration of highway connections and a specialized 
parameter initialization technique tailored for effective gradient 

propagation in deep architectures. The computational process of SRU 
includes the following steps.

 (4)

 (5)

 (6)

 (7)

Where W and b are learnable weight matrices and bias terms. In 
the SRU architecture, the computation of forget and reset gates is 
independent, eliminating interdependence and simplifying the gating 
mechanism for faster training. Moreover, the candidate hidden state is 
determined through element-wise multiplication of the reset gate with 
the previous hidden state, enhancing SRU’s ability to capture long-
term dependencies more effectively compared to the traditional RNN. 
This streamlined SRU design enhances network capacity by sharing 
hidden states among similar and lower layers. The SRU architecture 
incorporates a strategy of decreasing time-steps and increasing neurons 
from the first layer to the mid-layer, and conversely, increasing time-
steps and decreasing neurons from the mid-layer to the last layer. This 
approach facilitates a deeper representation. The shared hidden states 
among layers in SRU mean that the hidden states in layer ‘𝑙’ at time ‘t’ 
are derived by combining hidden states from the (𝑙-1) lower layer at 
time (t-1). Before the skips, the hidden states of upper and lower layers 
are combined, resulting in a final output similar to the input vectors:

 (8)

The output vector is generated through the combination of the 
hidden states across all layers, as follows:

 (9)

Here, Z represents the output vector from the final layer in the SRU. 
To prevent gradient decay across the layers, two skips are introduced. 
These skips promote enhanced generalization by integrating low-level 
and high-level features. Given that speech spectra include various 
frequency components with formants dominating in the low-frequency 
regions and displaying sparse distributions in higher-frequency areas, 
it becomes crucial to employ an attention process that assigns attention 
weights to discern different frequency regions. This attention process 
focuses on crucial regions and features, thereby enhancing the output 
quality. Initially, the alignment vector is calculated for the output yout 
of the layer as follows:

 (10)

Where W indicates trainable weights. The score λ for corresponding 
alignment vector is given as:
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Fig. 2. The block diagram of the proposed Speech Enhancement System.
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 (11)

The dynamic range for λ is 0 to 1. To avoid weak scores, a controlling 
parameter β is incorporated. The parameter λ assigns different scores 
to different features in the feature space. The output of the attention 
process is given as:

 (12)

Where ʘ denotes Hadamard product used to weigh all feature 
streams by using the obtained Scores. The feature-level computation 
process of attention weights is depicted in Fig. 4. The features are 
derived from input frames of the speech. The frame shift and duration 
remain at a consistent 10 milliseconds and 20 milliseconds. The features 
consist of 31-dimensional Mel-Frequency Cepstral Coefficients, 
13-dimensional Relative Spectral Transformed Perceptual Linear 
Prediction Coefficient, 64-dimensional Gammatone Filter-bank, and 
15-dimensional Amplitude Modulation Spectrogram, outlined as 
follows:

 (13)

 (14)

Where fx and fs show feature sets of clean 𝑥(t) and noisy speech s(t), 
respectively. GFE features are derived from a Cochleagram [32]. The 
delta features (∆fx and ∆fs) are affixed to the features.
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Fig. 4. Attention procedure over Features.

IV. Experiments

A. Dataset
In order to evaluate the proposed SE, a set of experiments is conducted 

exploiting speech utterances from the TIMIT [33] and LibriSpeech 
[34] databases. The TIMIT database comprises phonetically balanced 
speech waveforms sampled at a rate of 16 kHz, while LibriSpeech 
encompasses 1000 hours of speech waveforms sampled at the rate of 
16 kHz. The experiments exclusively utilize clean speech utterances 
obtained from both databases. For evaluating the effectiveness of the 
proposed SE under varying noisy conditions, various background 
noises are selected from Noisex-92 and Aurora-4 databases [35]-[36]. 
To mix noises with clean utterances, four signal-to-noise ratios (SNRs) 
are utilized, ranging from -8dB to 4dB in increments of 4dB. To train 
the SRU network proposed in this study, sentences are selected from 
the TIMIT database. These utterances are used to generate an ideal 
ratio mask (IRM) and an ideal binary mask (IBM) for each SNR. To 
enhance the generalization of the model across different speakers, 
the training sentences belong to male/female speakers and degraded 
by all noises. This amounted to 10500 training sentences from TIMIT 
database. An additional 1500 utterances were randomly chosen for 
testing. All noise sources, except for two (factory2 and cafeteria), are 
used in both the training and testing. These two sources are reserved 

as unseen noises. Furthermore, 2000 sentences are extracted from 
the LibriSpeech dataset and used to estimate IRM and IBM across all 
SNRs (8dB to 4dB). This creates a total of 10500 training utterances 
from the LibriSpeech. In this case, five noise sources are introduced 
in experiments for training the models with LibriSpeech. These noise 
sources are airport, babble, street, cafeteria, and car noise, respectively.

B. Network Setting
This study uses five-layered SRU network to enhance speech 

degraded by noise. The input layer is provided with a 1408-d context 
window containing 11 frames. Each SRU layer comprises M neurons and 
N time steps, while the output layer encompasses 257 neurons. During 
the training process, backpropagation through time (BPTT) [37] is 
utilized. For optimization, the adaptive gradient descent [38] method 
with a momentum parameter m is employed, where a scaling factor 
of 0.0010 is set for AGD. The learning rate follows a linear reduction 
from 0.06 to 0.002 over the course of processing. Samples of 512 batch 
size are chosen for training. A total of 80 epochs are completed, during 
which m remains constant at 0.4 for initial epochs, and subsequently, 
it is raised to 0.8 for other epochs. Dropout regularization [39] with 
a 0.02 rate is used to mitigate overfitting. During mask estimation, 
the Mean Squared Error (MSE) is used as a loss function. Notably, the 
SRU model operates without exploiting future information, ensuring 
causality. To estimate current speech frame, a feature context window 
of 11 frames (comprising 10 previous and 1 current frame) is employed. 
This approach involves concatenating 11 frames of features into 
extended vectors, serving as the network’s input for each time step, 
as depicted in Fig. 5. For further details regarding the deep model’s 
hyperparameters, refer to Table II.

Input Frames: 10 Previous and 1 Current speech frames

SRU Network SRU Network

t-1
(Current Frame)

t-11 t-10

...... ......

t-10 t-9t-2 t-1 t-1 t

t
(Current Frame)

Fig. 5. Causal SRU with feature window of 11 frames.

TABLE II. Proposed SRU Details

Hyper Parameters Baseline SRU Baseline DNN Proposed SRU
Hidden Layers 5 5 5

Layer 1 Neurons 1024 1024 256
Layer 2 Neurons 1024 1024 512
Layer 3 Neurons 1024 1024 1024
Layer 4 Neurons 1024 1024 512
Layer 5 Neurons 1024 1024 256

Learning Rate 0.0001 0.0001 0.0001
No. of Epochs 80 80 80

Momentum Rate 0.8 0.8 0.8
Dropout Rate 0.2 0.2 0.2
Loss Function MSE MSE MSE

Activation ReLU ReLU ReLU

C. Evaluation Metrics
The assessment of our SE involves the use of four objective metrics 

during the experiments. These metrics encompass the short-time 
objective intelligibility (STOI), the perceptual evaluation of speech 
quality (PESQ), and composite measures (CM). These metrics serve 
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purpose of evaluating intelligibility, quality, distortion, and residual 
noise. The perceptual speech quality, as determined by PESQ [40] 
following ITU-T P.862 guidelines, is scored within -0.5 to 4.5. STOI 
[41] quantifies speech intelligibility from 0 to 1 with percentage. 
Further, the composite measures [42] consist of the CSIG (indicating 
speech distortions) and the CBAK (reflecting residual noise) [56]. 

D. Model Representation
To evaluate the proposed SE models, various configurations are 

considered, each with specific interpretations. The SRU-NoSkip-IRM 
model estimates IRM using the proposed SRU architecture without 
skip connections, while the SRU-NoSkip-IBM focuses on estimating 
IBM without skip connections. In contrast, the SRU-WithSkip-IRM 
and SRU-WithSkips-IBM models aim to estimate IRM and IBM, 
respectively, utilizing the proposed SRU with skip connections. 
Additionally, the SRU-AttSkip-IRM and SRU-AttSkip-IBM models 
incorporate attention skip connections in their quest to estimate IRM 
and IBM. The baseline SRU [25], denoted as SRU-IRM and SRU-IBM, 
employs IRM and IBM as training objectives. All models are trained 
using the TIMIT and LibriSpeech datasets.

V. Results and Discussions

A. Speech Enhancement in Seen Noises
Table III and Table IV illustrate a comparison of our speech 

enhancement (SE) algorithms across three distinct noise types, 
evaluated by STOI. The training objectives involve estimating the 
Ideal Ratio Mask (IRM) and the Ideal Binary Mask (IBM). The SRU 
model, incorporating mask estimation, combined feature sets, and 
attention skips, demonstrated superior performance in comparison to 
networks lacking skips or utilizing skips without attention. Enhanced 
intelligibility and quality were observed in the proposed models when 
applied to noisy speech. For instance, in Table III and Table IV, both 
SRU-AttSkip-IRM and SRU-AttSkip-IBM exhibited improvements in 
STOI by 7.7% and 6.9%, respectively, over noisy speech (UNP) at -8dB 
babble noise. Similarly, at -4dB car noise, these models improved STOI 
by 23.9% and 23.5%. At 0dB factory noise, the SRU-AttSkip-IRM and 
SRU-AttSkip-IBM showed STOI improvements of 20.2% and 19.7% 
over noisy speech. In comparison to the SRU-WithSkip-IRM and SRU-
WithSkip-IBM, the proposed models with attention skips achieved a 
2.1% and 2.5% improvement in STOI at -8dB babble noise. Additionally, 
these attention skip models outperformed SRU-NoSkip-IRM and SRU-
NoSkip-IRM by 9.1% and 8.5% at -8dB babble noise. Overall, SRU-
AttSkip-IRM exhibited notable advantages over SRU-AttSkip-IBM, 
displaying improved average STOI across noise types and Signal-to-
Noise Ratios (SNRs) by 1.23%.

TABLE III. STOI in Seen Noise for IRM Training-Objective

Noise Model -8dB -4dB 0dB 4dB

Babble
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

48.2

52.7

53.8

55.9

58.1

66.7

68.8

70.1

67.1

77.0

79.1

80.3

76.2

84.8

87.0

88.6

C
ar

N
oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

51.8

72.4

74.5

75.7

58.9

79.2

86.9

88.3

68.6

84.9

86.9

88.3

77.1

89.4

91.6

93.2

Factory
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

55.2

66.3

68.3

69.5

61.7

76.7

78.8

79.9

69.8

84.5

86.5

87.9

78.0

90.5

92.6

93.7

TABLE IV. STOI in Seen Noise for IBM Training-Objective

Noise Model -8dB -4dB 0dB 4dB

Babble
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

48.2

51.6

52.6

55.1

58.1

66.7

64.7

66.2

67.1

77.0

77.5

79.8

76.2

84.8

85.7

88.1

C
ar

N
oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

51.8

72.4

71.5

75.3

58.9

79.2

84.3

87.7

68.7

85.0

84.3

87.7

77.1

89.4

88.8

92.2

Factory
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

55.2

66.3

67.2

68.2

61.7

76.7

77.5

78.8

69.8

84.5

84.4

86.8

78.0

90.5

89.5

91.7

TABLE-V. PESQ in Seen Noise for IRM Training-Objective

Noise Model -8dB -4dB 0dB 4dB
Babble
N

oise
Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.17

1.65

1.68

1.79

1.52

1.88

1.90

2.06

1.86

2.17

2.20

2.25

2.10

2.51

2.54

2.65

C
ar

N
oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.27

1.97

2.01

2.10

1.42

2.26

2.29

2.34

1.62

2.57

2.60

2.66

1.87

2.84

2.87

2.96

Factory
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.28

1.52

1.55

1.62

1.32

1.86

1.87

2.01

1.52

2.16

2.17

2.26

1.76

2.53

2.55

2.67

TABLE-VI. PESQ in Seen Noise for IBM Training-Objective

Noise Model -8dB -4dB 0dB 4dB

Babble 
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.17

1.63

1.66

1.69

1.52

1.85

1.87

1.91

1.86

2.17

2.20

2.23

2.10

2.50

2.53

2.56

C
ar

N
oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.27

2.01

2.04

2.07

1.42

2.24

2.27

2.30

1.62

2.57

2.61

2.63

1.87

2.83

2.86

2.89

Factory 
N

oise

Noisy Mixture

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.28

1.49

1.50

1.59

1.32

1.83

1.84

1.92

1.52

2.14

2.15

2.23

1.76

2.51

2.52

2.59

Table V and Table VI assess the performance of the proposed SE 
models across seen noise types. According to PESQ evaluations, our 
SRU model, incorporating combined features and attention skips, 
demonstrated superior performance compared to models lacking skips 
or utilizing skips without an attention gate. This resulted in enhanced 
perceptual speech quality relative to counterpart models when applied 
to both noisy and proposed model-processed speech. For example 
in Table V and Table VI, SRU-AttSkip-IRM and SRU-AttSkip-IBM 
improved the PESQ by 0.34 (20.98%) and 0.31 (19.49%) over the noisy 
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mixture at -8dB factory noise. SRU-AttSkip-IRM and SRU-AttSkip-
IBM improved the PESQ by 0.54 (26.21%) and 0.39 (20.41%) over noisy 
mixture at -4dB babble noise. Moreover, at 0dB car noise, the SRU-
AttSkip-IRM and SRU-AttSkip-IBM enhanced PESQ by 1.04 (39.1%) and 
1.01 (38.4%) over noisy mixture. Compare to other models, the proposed 
SRU-WithSkip-IRM and SRU-WithSkip-IBM with attention skips 
improved PESQ by 3.04% and 1.04% at 4dB in car noisy background. It 
shows that at high SNRs all the proposed SRU models perform nearly 
equally. Furthermore, models with attention skips improved the PESQ 
by 6.17% over SRU-NoSkip-IRM and 0.06 (2.34%) SRU-NoSkip-IRM at 
4dB babble noise. For PESQ, SRU-AttSkip-IRM outscored SRU-AttSkip-
IBM by 3.07%. Average STOI and PESQ for both masks can be found in 
Table VII and Table VIII, respectively. These scores are averaged across 
different seen noises. The obtained results validate that the proposed 
SRU-AttSkip achieved noteworthy results. 

Average enhancements (STOIi and PESQi) across various noises are 
illustrated in Fig. 6. Additional experimentation involved evaluating 
our SE models on the LibriSpeech dataset. This dataset, comprising 
1000 hours of audiobook-derived utterances at 16 kHz sampling 
frequency, was chosen for evaluation. For this study, clean utterances 
were exclusively selected and mixed with noises (car, babble, airport, 
street, cafeteria). Table VIII shows PESQ and STOI for the LibriSpeech 
database. SRU-AttSkip-IRM and SRU-AttSkip-IBM configurations 
exhibited a significant 16.44% and 14.9% average STOI improvement 

over noisy speech. Correspondingly, these configurations led to an 
average PESQ improvement of 33.19% (0.78 factor) and 31.14% (0.71 
factor) over the unprocessed speech. Cross-corpus comparisons 
highlighted the superior performance of the proposed models when 
trained on the LibriSpeech dataset in contrast to the TIMIT dataset.

Table IX presents the outcomes of the testing, focusing on CBAK and 
CSIG. The results clearly demonstrate that the robust feature sets and 
attention skips yielded superior performance in terms of both residual 
noise and distortion. In comparison, SRU-AttSkip-IRM and SRU-
AttSkip-IBM effectively mitigated background noises and introduced 
less distortions when compared with SRU-NoSkip-IRM and SRU-
NoSkip-IBM. Average CSIG and CBAK scores showed an enhancement 
from 2.02 and 1.73 with the noisy speech to 3.04, 3.01, 3.10, and 2.45 
with SRU-NoSkip-IRM and SRU-NoSkip-IBM, marking progresses of 
1.02 (33.55%) and 0.72 (29.4%), respectively. Correspondingly, CSIG and 
CBAK scores progressed from 3.04 and 2.45 with the SRU-NoSkip-IRM 
model to 3.10 and 2.49 with the SRU-WithSkip-IRM model. Lastly, CSIG 
and CBAK advanced from 3.05 and 2.43 with the SRU-WithSkip-IBM 
model to 3.13 and 2.48 with SRU-AttSkip-IBM.

Table X presents the performance in the seen noisy backgrounds. 
To evaluate our SE for noise generalization, Table XI presents the 
outcomes of PESQ and STOI tests for two unseen noises (cafeteria and 
factory2). Our SE models demonstrated significant performance over 

TABLE-VII. STOI and PESQ Test Scores in All Example Noise Sources for TIMIT Dataset

Metric Model
IRM IBM

-8dB -4dB 0dB 4dB -8dB -4dB 0dB 4dB

STOI

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

63.8

65.5

67.3

74.2

78.2

79.5

82.1

84.2

85.6

88.2

90.4

91.8

62.1

63.8

66.2

71.4

75.5

77.6

80.0

82.1

84.8

85.9

88.0

90.7

PESQ

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.71

1.75

1.84

2.00

2.02

2.14

2.30

2.32

2.39

2.63

2.65

2.76

1.71

1.73

1.78

1.97

1.99

2.05

2.29

2.32

2.36

2.61

2.64

2.68
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Fig. 6. Average enhancements (STOIi and PESQi) across various noises.
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TABLE-VIII. STOI and PESQ Test Scores in Five Example Noise Sources for LibriSpeech Dataset. 

Metric Model
IRM IBM

-8dB -4dB 0dB 4dB -8dB -4dB 0dB 4dB

STOI

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

63.9

66.1

67.4

75.0

78.6

79.7

81.7

84.3

86.0

88.3

90.2

92.0

62.9

64.4

66.4

71.1

74.7

77.0

80.4

81.4

84.9

86.3

88.2

90.6

PESQ

SRU-NoSkips

SRU-WithSkips

SRU-AttenSkips

1.72

1.75

1.83

2.04

2.11

2.21

2.30

2.41

2.49

2.66

2.74

2.86

1.66

1.71

1.80

1.98

2.03

2.11

2.28

2.31

2.43

2.61

2.68

2.77

TABLE IX. CSIG and CBAK Test Scores in All Noise Sources at Four SNRs

Metric CSIG CBAK

SNR (in dB) -8 -4 0 4 Avg -8 -4 0 4 Avg

Noisy Mixture 1.38 1.78 2.22 2.69 2.02 1.35 1.59 1.83 2.14 1.73

SRU-NoSkips-IRM

SRU-NoSkips-IBM

2.35

2.33

2.85

2.82

3.22

3.19

3.74

3.71

3.04

3.01

1.95

1.90

2.27

2.21

2.65

2.60

2.92

2.86

2.45

2.39

SRU-WithSkips-IRM

SRU-WithSkips-IBM

2.40

2.35

2.89

2.84

3.31

3.23

3.81

3.76

3.10

3.05

1.97

1.94

2.32

2.26

2.68

2.63

2.98

2.90

2.49

2.43

SRU-AttenSkips-IRM

SRU-AttenSkips-IBM

2.54

2.47

3.01

2.96

3.41

3.28

3.91

3.82

3.22

3.13

2.06

1.98

2.40

2.32

2.78

2.66

3.06

2.97

2.58

2.48

TABLE X. STOI and PESQ Test Scores in Seen Noise Sources Against Competing SE Algorithms 

Metric STOI PESQ

SNR (in dB) -8 -4 0 4 Avg -8 -4 0 4 Avg

Noisy Mixture 51.7 59.6 68.5 77.1 64.2 1.24 1.48 1.67 1.91 1.58

SRU-AttenSkips-IRM

SRU-AttenSkips-IBM

65.5

64.6

76.0

74.9

83.9

83.2

90.3

89.1

79.0

78.0

1.81

1.77

2.09

2.03

2.39

2.35

2.72

2.67

2.25

2.21

LSTM-IRM [3]

LSTM-IBM [3]

63.5

62.7

74.2

72.1

82.4

81.7

88.9

87.8

77.3

76.1

1.71

1.67

2.00

1.86

2.33

2.29

2.67

2.63

2.18

2.11

DNN-IRM [43]

DNN-IBM [43]

58.5

56.1

70.0

67.3

78.7

76.5

85.6

83.1

73.2

70.8

1.57

1.49

1.75

1.70

2.19

2.11

2.53

2.45

2.01

1.94

CNN [14]

GAN [3]

59.3

54.3

70.0

65.0

79.8

75.7

86.8

82.6

74.0

70.0

1.62

1.53

1.83

1.72

2.25

2.15

2.59

2.44

2.07

1.96

TABLE XI. STOI and PESQ Test Scores in Unseen Noise Sources Against Competing SE Algorithms 

Metric STOI PESQ

SNR (in dB) -8 -4 0 4 Avg -8 -4 0 4 Avg

Noisy Mixture 50.3 58.3 67.5 76.3 63.1 1.15 1.39 1.58 1.88 1.50

SRU-AttenSkips-IRM

SRU-AttenSkips-IBM

64.3

63.4

74.8

72.7

82.7

82.0

90.0

88.9

78.0

77.8

1.79

1.76

2.05

1.98

2.34

2.28

2.69

2.65

2.22

2.17

LSTM-IRM [3]

LSTM-IBM [3]

62.0

61.3

72.9

70.8

81.3

80.6

88.2

87.0

76.1

75.0

1.62

1.58

1.91

1.77

2.24

2.20

2.64

2.60

2.10

2.04

DNN-IRM [43]

DNN-IBM [43]

57.0

55.0

68.6

66.0

77.7

75.5

84.8

82.4

72.0

69.7

1.48

1.40

1.66

1.61

2.10

2.02

2.51

2.42

1.94

1.86

CNN [14]

GAN [3]

57.9

52.9

68.7

63.8

78.8

74.6

86.0

81.9

72.9

68.3

1.53

1.44

1.74

1.63

2.16

2.06

2.56

2.41

2.00

1.89
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both baseline and competing networks in situations involving unseen 
noises. The most noteworthy STOI and PESQ scores were achieved 
by SRU-WithSkip-IRM and SRU-WithSkip-IBM models, owing to their 
sophisticated network architecture. With robust acoustic features 
and architectural changes applied to the proposed SRU models, the 
performance remained relatively stable across both seen and unseen 
noises. For instance, the average STOI values observed improvements 
of 14.9% and 13.7% over noisy speech when using SRU-WithSkip-IRM 
and SRU-WithSkips-IBM, respectively, resulting in STOI values of 78% 
and 76.8%. Notably, at SNRs (-4dB and -8dB) SRU-WithSkip-IRM and 
SRU-WithSkip-IBM exhibited STOI improvements of 1.89% and 1.78% 
as compared to baseline SRU (SRU-IRM and SRU-IBM). Furthermore, 
PESQ scores observed significant improvements, reaching 2.22 (32.43%) 
and 2.17 (31.90%) with SRU-WithSkip-IRM and SRU-WithSkip-IBM, 
respectively, compared to score of 1.50. This represents a substantial 
improvement in PESQ in unseen noisy conditions, outperforming the 
noisy speech. Across various metrics, our SRU models showcased 
considerable performance improvements compared to baseline SRU 
(SRU-IRM and SRU-IBM) and related models. Specifically, our SRU 
models exhibited STOI enhancements of 1.80%, 2.90%, 5.90%, 8.20%, 
5%, and 9.6%, respectively, while also enhancing PESQ by factors of 
0.10 (4.54%), 0.16 (7.27%), 0.26 (11.8%), 0.34 (15.45%), 0.20 (9.1%), and 
0.31 (14.1%).

We present the results of the proposed models and their competitive 
counterparts, evaluated using STOI and PESQ metrics. The findings 
indicate notable improvements in speech quality, intelligibility, noise 
suppression, and speech distortions attributable to the proposed SRU. 
These models also showed superior performance when compared to 
the baseline SRU [25], DNN [12], CNN [43], and GAN (employing 
a 3-layer ReLU MLP) [19]. The results encompassing the proposed 
and competing models are tabulated in Table X and Table XI. The 
obtained results are averaged over all SNRs. The obtained scores 
show improvements in intelligibility and quality of the proposed SRU 
models for SE. For STOI, SRU-AttSkip-IRM and SRU-AttSkip-IBM 
surpassed DNN-IRM and DNN-IBM by 3.99% and 6.7%, respectively.

SRU-AttSkip-IRM showcased STOI improvement of 5.10% and 
9.7% over CNN and GAN, whereas SRU-AttSkip-IBM showed an 
improvement of 8.49% over GAN and 5.01% over CNN. For PESQ, 
SRU-AttSkip-IRM, and SRU-AttSkip-IBM enhanced by 9.09% and 
14.09% as compared to CNN and GAN, respectively. Moreover, a 
comparison with three unsupervised techniques was conducted to 
show success of supervised learning over unsupervised counterparts. 
These unsupervised methods include Low-rank sparse decomposition 
(LRSD) [44], Nonnegative RPCA (NRPCA) [45], and MMSE [46] for 
SE. Table XII provides the results. STOI scores showed improvements 
of 11.2%, 10.5%, and 13.4% with SRU-AttSkip-IRM, and 11%, 103%, 
and 13.2% with SRU-AttSkip-IBM. Similarly, PESQ scores showed 
improvements of 0.39 (equal to 17.56%), 0.34 (equivalent to 15.31%), 
and 0.54 (equal to 24.32%) with SRU-AttSkip compared to LRSD, 
NRPCA, and MMSE, respectively.

B. Spectrogram Analysis
To illustrate the spectral parts of speech that have undergone 

processing, this section presents a spectro-temporal analysis. Fig. 7 
shows the spectrograms representing different speech utterances. In 
Fig. 7(a), we observe the spectrogram of clean speech. Fig. 7(b) shows 
that a clean sentence is mixed at 0dB with babble noise, resulting in 
noisy speech. This specific noisy condition is noteworthy because 
the noise characteristics resemble those of the target speech. Fig. 7(c) 
shows the enhanced speech through SRU-IBM, where background 
noise is evident. Figure 7(d) portrays the signals of SRU-IRM-enhanced 
speech, showcasing even lower levels of residual noise and distortion 
when compared to SRU-IBM. Figure 7(e) shows a spectrogram of the 
enhanced speech generated by SRU-AttSkip-IRM. This presentation 
indicates reduced distortion and residual noise. Concluding this 
experiment, Fig. 7(f) illustrates the enhanced speech attributed to SRU-
AttSkip-IBM, revealing less distortions and residual noise.
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Fig. 7. Spectro-Temporal Analysis. (a) Clean, (b) Noisy, (c) SRU-IBM, (d) SRU-
IRM, (e) SRU-AttSkip-IBM, and (f) SRU-AttSkip-IRM.

C. Computational Complexity
In practical applications, computational resources are frequently 

limited. Therefore, it is essential to strike a suitable balance between 
model performance and computational efficiency. Table XIII presents 
efficiency of parameters in the proposed SRU model. The assessment 
shows that implementing SRU-based SE with attention gates in skip 
connections considerably reduces the trainable parameters (2.607M) 
and parameter size (12.54MB), in comparison to similar models such as 
LSTM (17.384M, 65.42MB), GRU (13.33M, 52.33MB), and the baseline 
SRU (8.69M, 35.98MB). The introduction of attention gates into the 
skip connections leads to a slight increase in parameter count. In 

TABLE XII. STOI and PESQ Test Scores Against Unsupervised Competing SE Algorithms 

Metric STOI PESQ

SNR (in dB) -8 -4 0 4 Avg -8 -4 0 4 Avg

Noisy Mixture 50.3 58.3 67.5 76.3 63.1 1.15 1.39 1.58 1.88 1.50

SRU-AttenSkips-IRM

SRU-AttenSkips-IBM

64.3

63.4

74.8

72.7

82.7

82.0

90.0

88.9

78.0

77.8

1.79

1.76

2.05

1.98

2.34

2.28

2.69

2.65

2.22

2.17

LRSD [36]

NRPCA [33]

MMSE [6]

54.3

55.8

50.8

63.2

63.3

60.5

70.6

70.6

68.8

79.2

80.2

78.2

66.8

67.5

64.6

1.38

1.41

1.28

1.71

1.78

1.51

1.98

2.02

1.81

2.28

2.32

2.10

1.83

1.88

1.68
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current DNN research for SE, there is a focus on enhancing model 
performance for hardware accelerators to execute these models rapidly 
and efficiently. To make the suggested SRU applicable in embedded 
systems, there is a need to minimize hardware memory consumption. 
This necessitates an examination of multiply–accumulate operations 
(MACs), where it is evident that the proposed SRU exhibits the lowest 
MACs (0.986 G/s with attention gates), ensuring efficient execution 
without compromising speech enhancement performance. Our SRU-
based approach not only significantly reduces parameter size but also 
minimizes MACs. Additionally, the study evaluates the Real-Time 
Factor (RTF) in the proposed model, measuring the ratio of processing 
time to input audio data duration, which is crucial for real-time 
applications. Conducted on single-core Intel(R) Core (TM) i5-1135G7 
CPU @ 2.40GHz processor, the experiment yields an RTF of 0.36.

TABLE XIII. Computational Complexity and Efficiency

Model Para# MACs Memory

LSTM
GRU

SRU-(Baseline)
SRU-(Proposed)

17.38M
13.33M
08.69M
2.607M

3.291 G/s
2.605 G/s
1.554 G/s
0.986 G/s

65.42 MB
52.33 MB
35.98 MB
12.54 MB

D. Automatic Speech Recognition (ASR)
The results of the SE assessments demonstrate notable reduction of 

background noises and successfully recover the speech with a better 
intelligibility. Consequently, this study expects improved speech 
recognition capabilities, especially in presence of difficult noisy 
environments. Our speech enhancement model can be served as a front 
end preprocessor for obtaining lower word error rates (WER as ASR 
results). For ASR, this study implements the Kaldi toolkit [46], which 
adopts a GMM-HMM system and subsequently trains a DNN utilizing 
Mel-frequency filter-bank features. The training methodology draws 
inspiration from Tachioka [47]-[48]. Assessment of ASR performance 
is based on word error rates. For training the proposed SRU-driven 
speech enhancement models, a random selection of 2000 utterances 
was made from TIMIT and LibriSpeech. Following training the SRU 
models, the speech enhancement process was performed, leading 
to the synthesis of time-domain utterances. The synthesized time-
domain utterances were used to train ASR models. As shown in Table 

XIV, ASR system presented improved performance when trained with 
data processed by SRU-AttSkip. The WERs showed a gradual reduction 
with more favorable SNR levels. On average, a WER of 14.25% was 
attained with the utilization of utterances processed by the proposed 
SRU-AttSkip. The results show that the proposed approach can 
effectively be utilized as a pre-processor to enhance ASR performance.

E. Performance Comparison Using VoiceBank+DEMAND
This section conducts experiments on the VoiceBank+DEMAND. 

The purpose of these experiments is to highlight the validation of the 
proposed SE approaches in comparison to contemporary benchmarks. 
The results of these experiments are detailed in Table XV. The analysis 
of results, as shown by PESQ, STOI, and Segmental SNR (SNRSeg), 
reveals certain observations. Higher values in these metrics signify 
enhanced performance. Notably, the experiments showcase results 
for SRU with skips, emphasizing a superior performance of attention 
skips with SRU. Our SRU perform better on VoiceBank+DEMAND 
and obtains competitive results: PESQ, STOI, SNRSeg, and trainable 
parameters. From GAGNet [49], the proposed SRU improves the 
metrics by 0.22 (PESQ), 0.5% STOI, and 0.64dB (SNRSeg), respectively. 
Further, from DCCRN [51], the proposed SRU improves the metrics 
by 0.47 (PESQ), 1.5% STOI, and 1.26dB (SNRSeg). The parameter count 
of the proposed SRU is better than all models except TSTNN [54]; 
however, PESQ = 2.96, STOI = 95.1%, and SNRSeg = 9.72dB are not 
reasonable to SRU. Our SRU obtains superior STOI, PESQ, and SNRSeg 
results with fewer trainable parameters (2.607M), MACs (0.986 G/s), 
and memory size (12.54MB).

F. Additional Experiments
We further examined the proposed SRU for different languages 

additional to English such as Urdu, Turkish, and Spanish. Although 
the speech enhancement aims to reduce the background noises from 
target speech, the results in Table XVI show that they are not severely 
degraded by different languages. However, since Urdu, Turkish, 
and Spanish are low-resource languages, the ASR performance is 
severely degraded in noisy environments. The STOI and PESQ values 
for all languages are marginally different which indicates that SE 
performance is not significantly affected by languages. To improve 
WERs, different strategies, such as speech augmentation and neural 
speech synthesis, can be used for ASR.

TABLE XIV. Computational Complexity and Efficiency

DNN Model Noisy Mixture SRU-AttSkip-IRM SRU-AttSkip-IBM SRU-IRM SRU-IBM DNN-IRM DNN-IBM

WERs 55.35% 14.25% 14.75% 19.20% 19.95% 29.25% 30.02%

TABLE XV. Performance Evaluation on the VoiceBank+DEMAND Database

Model Domain Year Parameter # PESQ STOI SNRSeg

SEGAN [50]

DCCRN [51]

GAGNet [49]

RDL-Net [52]

DEMUCS [53]

TSTNN [54]

SE-Conformer [55]

PFR-Net [58]

FAF-Net [59]

MAB-CED [60]

Time

Time-Frequency

Time-Frequency

Time-Frequency

Time

Time

Time-Frequency

Time-Frequency

Time-Frequency

Time-Frequency

2017

2019

2021

2020

2020

2021

2021

2022

2022

2022

97.5M

3.70M

5.64M

3.91M

128M

0.92M

--

4.61M

6.90M

4.82M

2.16

2.68

2.94

3.02

3.07

2.96

3.13

3.19

3.24

2.84

93.1

93.7

94.7

93.8

95.1

95.1

95.1

95.0

95.0

85.0

7.66

8.62

9.24

--

8.53

9.72

--

--

--

--

SRU (Baseline)

SRU (Proposed)

Time-Frequency

Time-Frequency

2024

2024

8.69M

2.61M

3.09

3.15

94.4

95.4

9.11

9.88
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TABLE XVI. ASR for Different Languages

Model SRU-AttSkip-IRM SRU-AttSkip-IBM
Language STOI PESQ WERs STOI PESQ WERs

English

Urdu

Turkish

Spanish

78.12

78.10

77.95

77.47

2.19

2.14

2.09

2.01

14.25

30.14

20.22

26.11

78.03

77.94

77.84

77.34

2.15

2.10

2.04

1.98

14.75

31.21

22.14

27.25

VI. Conclusions

In this study, a novel speech enhancement (SE) system is introduced, 
utilizing lightweight recurrent neural networks (RNNs) that have been 
trained with robust features. The approach includes the development 
of an hourglass SRU model, which effectively captures temporal 
dependencies by decreasing feature resolutions. To counteract gradient 
decline across layers, nonadjacent symmetrical layers are connected 
through skip connections. Furthermore, an attention gate is integrated 
into these skips, aiming to emphasize significant features and spectral 
regions. Composite and robust features are derived from the noisy 
magnitude, enhancing training of the proposed models for improved 
SE and ASR performance. The model independently estimates two 
masks: ideal ratio mask and ideal binary mask. The findings show 
several key aspects of the proposed speech enhancement model. The 
incorporation of combined feature learning allows for the integration 
of additional information, enabling the network to grasp the 
intricate nonlinear relationship between noisy and clean speech. The 
adopted SRU architecture proficiently captures long-term temporal 
dependencies while downsizing the feature resolution for parameter 
estimation during testing, thereby preventing excessive memory 
usage. The introduction of the skips and attention gates within these 
skips significantly addressed gradient decay across layers, additionally 
highlighting important features and spectral regions. The proposed 
SRU strategy contributes to superior performance compared to the 
baseline, as evident from enhanced trainable parameter metrics. The 
proposed speech enhancement model outperforms the recent deep SE 
representations across diverse background noises, showing promising 
outcomes concerning speech distortion and residual noise. Notably, the 
models showcase superior results not only in seen noisy environments 
but also in unseen noise contexts. Results from GMM-HMM ASR show 
the potential of SRU-AttSkip SE model as a preprocessor for enhancing 
ASR performance in noisy environments. Our SRU model performs 
better on the VoiceBank+DEMAND and obtains competitive results: 
PESQ, STOI, SNRSeg, and trainable parameters. Further, the proposed 
SRU has the lowest MACs (0.986 G/s) with attention gates. SRU 
obtains superior STOI, PESQ, and SNRSeg results with fewer trainable 
parameters (2.607M), MACs (0.986 G/s), and memory size (12.54MB).

The SRU model can be sensitive to the noisy inputs. If the input 
data contains significant noise or errors, the model’s performance may 
degrade. In the future, we anticipate the extension of the proposed 
network architecture to address this limitation and use for regression-
based speech enhancement (SE), jointly optimized with application 
to automatic speech recognition and automatic speaker recognition. 
Additionally, the potential for devising more robust acoustic features 
is observed, offering the prospect for further work.  
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