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Abstract

This manuscript explores how a seemingly straightforward inquiry, emerging from
the widely accepted semiclassical description of laser-matter interaction, con-
cretely from a well-knows adiabatic technique as Coherent Population Return
(CPR), can pose a challenge to our comprehension of a fundamental principle
in Physics like energy conservation. Throughout our investigation to resolve this
apparent paradox, we have delved into fundamental concepts, thereby deepening
our understanding of the aspects inherent to the formalism of Quantum Mechan-
ics. We emphasize that the significance of attaining a conclusive answer extends
beyond the answer itself, encompassing the illuminating journey undertaken to
reach it. Consequently, our work holds educational value as it aims to foster a
deeper understanding of the phenomenon by elucidating the process employed.
This approach not only aids students in grasping the subject matter but also
enhances our own understanding of laser-matter interaction and the counter-
intuitive phenomena that continuously defied our understanding of Quantum
Mechanics.

Keywords: Laser-matter Interaction, Population Dynamics, Quantum Physics,
Science Education, Scientific Method

1 Introduction

When it comes to teaching Science, we often make the mistake of presenting facts
and ideas in isolation, without adequately considering the historical and contextual
development behind them. Additionally, we fail to emphasize the interconnectedness
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of scientific concepts and their implications across different fields. As a result, Science
is often taught as a collection of disjointed pieces, neglecting the inherent relationships
and connections between scientific disciplines. One prime example that exemplifies
this issue is the gap between mathematical concepts and their applications, such as
the Algebra of matrices and Quantum Mechanics, which we will delve into further.

Regrettably, this approach to teaching is pervasive in educational institutions,
despite its significant flaws. While it may work for students who already possess a
strong motivation for Science, it tends to discourage others and dampen their interest
in the subject. Moreover, recent advancements in educational theory have shown that
the context in which concepts are presented plays a critical role in understanding
them. Furthermore, if educators are able to actively engage students in the learning
process, allowing them to take on a protagonistic role rather than a passive one, the
chances of fostering significant and enduring learning increase substantially.

As an illustrative example, let us briefly delve into Constructivism, one of the
most influential modern educational theories which is widely accepted across various
educational systems, especially in primary and secondary schools (see for example
[1–3] and references therein). Constructivism posits that passive acquisition of knowl-
edge, through direct transmission, is significantly less effective from an educational
standpoint compared to situations where students actively participate in the process,
taking ownership of constructing their own knowledge. When students learn a con-
cept, they construct a new understanding and knowledge based on their experiences
and social context. Another key tenet of this theory is the recognition that newly
acquired knowledge is not randomly integrated into a student’s cognitive structure but
rather connected to prior knowledge and existing information. Hence, the generation
of knowledge must be understood as an inherently active process. This stands in stark
contrast to prevalent teaching methodologies in most universities, where knowledge is
typically transmitted directly from teachers to learners, with the latter often seen as
passive vessels to be filled with information.

Another aspect related to the aforementioned issues is the tendency to present sci-
entific concepts as closed and monolithic constructions, avoiding any discussion about
the various paths taken before arriving at the right one. This approach portrays Sci-
ence as a linear discipline, disregarding the iterative and constructive nature of its
development. For instance, it is not uncommon to hear phrases like ”Newton invented
differential calculus” or ”Einstein invented general relativity,” which not only overlook
the contextual nuances surrounding these breakthroughs, but also undermine the sig-
nificant contributions of other scientists to these advancements. It is well-known that
Einstein’s groundbreaking development of General Relativity would not have been
possible without the preceding studies of non-Euclidean geometry by Gauss, Riemann,
and Lobachevsky among others.

Furthermore, aligning with Constructivism, when learners produce new knowledge,
they are essentially exploring uncharted territories, which inherently opens the door
to making mistakes and being wrong. In other words, errors are an integral part of
the knowledge generation process. The development of any scientific theory serves as a
clear example of this (see for example the foundational history of Quantum Mechanics
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[4]). However, this clashes with the prevailing educational environment where mis-
takes are typically penalized, disregarding their immense educational potential. This
issue extends beyond education and permeates researchers as well. Our current view
of Science often considers negative results as inconclusive and, therefore, unpublish-
able. Thankfully, in recent years, efforts have been made to challenge this inertia.
For instance, some journals now encourage authors to publish negative data alongside
positive findings, recognizing the value of the former as complementary information.

With these ideas in mind, we present a story of a discussion filled with mistakes
until the right answer was eventually found. It all began with a seemingly simple ques-
tion that shook our understanding of the underlying Science, necessitating a revisiting
of the most fundamental concepts. This process took considerable time and involved
countless discussions where numerous mistakes, incorrect interpretations, and even
nonsensical theories emerged. Eventually, one day, the breakthrough idea emerged,
shedding light on the problem at hand. In the following sections, we will recount
the events exactly as they unfolded. We believe that uncovering the scientific process
in this manner can be immensely helpful for future students and possess undeniable
educational value. We failed numerous times throughout this journey, but isn’t this
precisely how Science progresses?

2 The problem

The ability to control the inherent coherent nature of laser-matter interaction has
proven to be a very valuable tool to steer population distributions, generate coherent
superpositions of quantum states, support spectroscopical investigations, manipu-
late linear or nonlinear optical properties, and control photofragmentation channels.
Techniques like Stimulated Raman Adiabatic Passage (STIRAP) [5], Electromag-
netic Induced Transparency (EIT) [6, 7], Retroreflection Induced Adiabatic Passage
(RIBAP) [8, 9], or Coherent Population Return (CPR) [10, 11] have been successfully
applied presenting a great robustness with respect to the experimental parameters. Let
us focus on CPR. This coherent technique allows a non-resonant laser pulse to produce
a non-permanent transfer of population from a ground state to a target excited state.
The transfer of population is non-permanent as the population completely returns to
the ground state once the excitation pulse ceases. This transient nature of the popula-
tion transfer distinguishes CPR from other processes where the population may remain
in the excited state even after the excitation pulse is finished. Also, it is important to
note that this phenomenon has no classical analogy; it is a pure quantum mechanical
effect. Additionally, a notable characteristic of CPR is the ability to employ a signif-
icantly large laser detuning. In fact, for the dynamics of the process to be adiabatic,
the detuning must be larger than the laser bandwidth. This will be discussed in detail
in the following sections.

In this scenario, let’s consider the introduction of a second laser to probe the tran-
siently excited population, for example, through photoionization. This leads to several
intriguing questions. How is the transfer of population achieved when the excitation
laser is significantly detuned from resonance? How is ionization produced when the
absorbed photon energy can be smaller than the system’s ionization potential? And
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how is energy conserved in the process? This situation somewhat resembles the quan-
tum tunneling effect, where the wavefunction partially resides beneath a potential
energy barrier while crossing it. Interrogating the wavefunction’s energy in such cir-
cumstances is not a trivial exercise. These thought-provoking questions have been the
primary motivation for this research, and we will endeavor to address them in the
subsequent investigation.

We believe that this work can be implemented within the framework of Problem-
Based Learning or Project-Based Learning, which are student-centered educational
approaches that emphasize active engagement in solving real-world problems or par-
ticipating in real-world projects to develop knowledge and skills. The concepts and
mathematics involved in this study are accessible to university-level students. These
methodologies promote critical thinking, problem-solving skills, and the application of
knowledge in practical contexts. Relevant literature on these educational approaches
includes references such as [12–14], for Problem-Based Learning, and references such
as the [15–17], for Project-Based Learning.

3 A two-state system interacting with a laser
radiation

For coherent interactions, the description of the population dynamics is provided by
the time dependent Schrödinger equation

i~
∂Ψ(t)

∂t
= H(t)Ψ(t), (1)

where Ψ(t) is the statevector of the system, and H(t) is the Hamiltonian that incorpo-
rates the interaction with a radiation field. Typically, when a long laser pulse interacts
with an atom or a simple molecule, e.g., nanosecond lasers, the interaction can be
modeled by considering only the states coupled by the radiation. This approximation
is justified because the bandwidth of the laser, that means, the uncertainty in energy
of the laser photon, is inversely proportional to the pulse duration (∆E∆τ ≥ 2π).
Thus, for long pulses, this bandwidth is significantly smaller compared to the energy
difference between the system’s states.

Let us consider a two-state system interacting with the electric field of a laser pulse
with carrier frequency ω, which is detuned from the transition frequency by ∆. This
situation is described by Fig 1. The time dependent Hamiltonian in the electric dipole
approximation can be written as

H(t) = H0 +HI(t), (2)

where H0 is the two-state field free Hamiltonian with energies E1 and E2

H0 =

[
E1 0
0 E2

]
, (3)
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Fig. 1 Two-state system interacting with a radiation field. The laser detuning from resonance is
represented by ∆. The energies of the excited and ground states are E2 and E1 respectively.

and HI is the interacting Hamiltonian

HI(t) =

[
0 〈ψ1|V |ψ2〉

〈ψ2|V |ψ1〉 0

]
, (4)

with
V = −d · [eE(t) cosωt], (5)

being d the dipole moment, and e and E(t) the polarization direction and the slow
varying envelope of the electric field respectively. It is important to acknowledge that
in the equations above we have neglected the contribution of the magnetic dipole to the
interaction, as well as higher-order interacting terms. This approximation is justified by
the significant difference in magnitude between electric and magnetic dipole moments,
and it remains valid as long as laser radiation is not extremely intense [18–20]. However,
for ultraintense lasers, such as Petawatt lasers, it becomes necessary to consider higher-
order interacting terms in order to accurately describe the interaction.

We can further simplify the Hamiltonian by applying the Rotating Wave Approxi-
mation (RWA) [18]. In Eq. 5, we observe that the term E(t) represents the contribution
of the slowly varying laser envelope, while the term ω corresponds to the fast oscil-
lations of the laser frequency. Typically, our interest lies in studying the population
dynamics over multiple optical cycles. Consequently, these fast oscillations can be effec-
tively averaged out. The RWA provides an excellent approximation as long as the laser
contains several optical cycles. However, for ultrashort laser pulses consisting of only
one or two cycles, the RWA cannot be applied [18, 21]. Thus, the RWA-Hamiltonian
reads

HRWA =
~
2

[
0 Ω(t)

Ω(t) 2∆

]
, (6)

where Ω(t) is the Rabi frequency, i.e., the interaction energy divided by ~,

Ω(t) = −(d · e)E(t)/~, (7)

and ∆ the laser detuning

∆ =
(E2 − E1)

~
− ω. (8)
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It is convenient to describe the population dynamics in the adiabatic basis 1

[Φ+,Φ−], which is the basis formed by the instantaneous eigenstates of the Hamilto-
nian described by Eq. 6. These adiabatic eigenstates are obtained by diagonalizing the
RWA-Hamiltonian shown in Eq. 6. Thus, the eigenstates can be written as [10]:

Φ+(t) = ψ1 sinϑ(t) + ψ2 cosϑ(t), (9)

Φ−(t) = ψ1 cosϑ(t)− ψ2 sinϑ(t), (10)

where ϑ(t) is the mixing angle

ϑ(t) =
1

2
arctan

Ω(t)

∆
, (11)

and ψj (j = 1, 2) are the bare states. The corresponding eigenenergies are

λ± =
1

2

[
∆±

√
Ω2(t) + ∆2

]
. (12)

Thus, the statevector of the system in the basis formed by the adiabatic states
[Φ+,Φ−], can be written as

Ψ(t) = B+(t)Φ+ +B−(t)Φ−. (13)

while in the diabatic basis [ψ1, ψ2] it is written as

Ψ(t) = C1(t)ψ1 + C2(t)ψ2. (14)

The relation between the probability amplitude of the diabatic states, i.e., bare
states, C(t) = [C1(t), C2(t)]T , and the adiabatic states B(t) = [B+(t), B−(t)]T , is

C(t) = R[ϑ(t)]B(t), (15)

where

R[ϑ(t)] =

[
cosϑ sinϑ
− sinϑ cosϑ

]
. (16)

To express the time-dependent Schrödinger equation (see Eq. 1) in the adiabatic
basis, we substitute Eq. 15 into Eq. 1. Taking into account that R(ϑ)R(−ϑ) results in
the identity matrix, we can write:

i~
d

dt
B(t) = Hb(t)B(t), (17)

1This basis is sometimes called dressed basis -dressed by the radiation- in contrast to the diabatic or bare
basis.
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with

Hb = R(−ϑ)HR(ϑ)− i~R(−ϑ)
d

dt
R(ϑ) = ~

[
λ− −iϑ̇
iϑ̇ λ+

]
. (18)

Once the adiabatic Hamiltonian and the Schrödinger equation in the adiabatic
basis are defined, it is important to establish the conditions for adiabatic evolution.
If the Hamiltonian (Eq.6) varies sufficiently slowly in time, indicating adiabatic evo-
lution, the statevector Ψ(t) of the system will always remain aligned with a single
adiabatic state or a coherent superposition of adiabatic states. In other words, if the
initial statevector Ψ(t) is aligned parallel to a specific adiabatic state, then during adi-
abatic evolution, Ψ(t) will remain parallel to this particular state. This implies that
the statevector Ψ(t) will follow the temporal evolution of the adiabatic state, and there
will be no mixing between different adiabatic states. Consequently, the non-diagonal
terms in Eq. 18 can be neglected resulting in a diagonal Hamiltonian. This condition
can be mathematically expressed as shown in Eq 19 (see A for further details):

|∆| & 1/τ (19)

being ∆ the laser detuning and τ the laser pulse duration. It is important to notice
that the adiabatic condition is independent of Ω(t), and therefore of the laser intensity.

3.1 Coherent Population Return (CPR)

Let us assume that a two state system interacting with a laser pulse with Rabi fre-
quency Ω(t) to be negligibly small outside a finite time interval ti < t < tf , i.e., outside
the pulse duration τ = tf − ti. Also, consider a situation where the laser frequency
ω is detuned from exact resonance (see Fig. 1), being the adiabatic evolution condi-
tion defined previously fulfilled, i.e., ∆ & 1/τ . If at the beginning of the interaction
(t = −∞) all the population is in the ground state ψ1, i.e., in Eq. 14 C2(−∞) = 0,
the statevector of the system Ψ is aligned parallel to the adiabatic state Φ−(t).

Ψ(−∞) = ψ1 = Φ−(−∞) (20)

This is so because according to the definition of the adiabatic states (see Eq. 9 and
Eq. 10) for t = −∞ the mixing angle ϑ(−∞) = 0 and, therefore, Φ−(−∞) = ψ1.

Since the adiabatic condition is fulfilled by hypothesis, the Hamiltonian varies
sufficiently slow in time, and the state vector of the system Ψ(t) remains always aligned
with the adiabatic state Φ−(t). Initially, at the beginning of the interaction (t = −∞),
when the Rabi frequency is zero (Ω(−∞) = 0) and the mixing angle is zero (ϑ(−∞) =
0), the population starts in the ground state. However, during the interaction (ti <
t < tf ), when the Rabi frequency is nonzero (Ω(t) 6= 0) and the mixing angle is
nonzero (ϑ 6= 0), the state vector Ψ(t) becomes a coherent superposition of the bare
states ψ1 and ψ2, leading to transient excitation of the population to the upper state.
Once the interaction has ceased (t = +∞), when the Rabi frequency returns to zero
(Ω(+∞) = 0) and the mixing angle goes back to zero (ϑ(+∞) = 0), the state vector
Ψ(t) becomes aligned with the ground state ψ1 again. As result, any population that
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Fig. 2 Population dynamics for a two level system on resonance (left frame) and when the adiabatic
condition for CPR is satisfied ( ∆ & 1/τ) (right frame). In the first case, the population exhibits Rabi
oscillations [18] while for CPR the population dynamics is smooth.

was transferred to the excited state during the interaction returns completely to the
ground state.

According to Eq.,10, the population in the ground state (P1(t) = |C1(t)|2) and the
excited state (P2(t) = |C2(t)|2) can be written as follows:

P1(t) = cos2 ϑ(t) P2(t) = sin2 ϑ(t) (21)

It is important to emphasize that no population remains permanently in the excited
state, regardless of the transient intensity of the laser pulse. This holds true even if the
laser pulse intensity is very high (see Fig. 2). The adiabatic evolution ensures that the
population transferred to the excited state during the interaction returns completely
to the ground state once the interaction has ceased. This coherent phenomenon is
known as Coherent Population Return (CPR) as has been subject of many theoretical
and experimental studies [10, 11, 22–26].

3.2 Introducing a probe laser

Let us consider now a second laser (probe laser) to detect, e.g., by photoionization, the
population transferred to the excited state ψ2. We assume the probe laser intensity
is sufficiently small so it can be treated like a small perturbation, and as a conse-
quence there is no direct photoionization from the ground state, e.g., REMPI processes.
According to our previous discussion, if the system evolves adiabatically (|∆| & 1/τ)
no population remains in the excited state once the pump pulse has ceased due to
CPR, and the ionization signal is produced exclusively when pump and probe pulses
overlap in time (see Fig. 2). On the other hand, if the evolution of the system is dia-
batic, meaning |∆| . 1/τ , there is a permanent population transferred to the excited
state, and consequently, ionization signal will be produced even when pump and probe
pulse do not temporally overlap. We should remember that we did not consider any
relaxation channel from the excited state.
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Fig. 3 Possible experimental scheme.

The situation we have discussed is paradigmatic because according to CPR, it is
possible the transfer of population from the ground state to an excited state, even when
the energy of the pump laser photons is lower than the energy gap between the ground
and excited states (as depicted in Fig- 1). Once the population is in the excited state,
the energy of the probe laser can be adjusted to match the energy gap between the
excited state and the continuum, and, therefore, the sum of the absorbed energies from
the pump and probe lasers would be smaller than the energy required for ionizing the
system. Importantly, the detuning of the pump laser energy can be as large as desired,
and the population will still be transferred to the excited state and subsequently
ionized by the probe laser. This demonstrates the flexibility of the method, as the
ionization process can be achieved even with significant detuning. Figure 3 illustrates
a possible experimental scheme, where nonresonant ionization requires the absorption
of three photons, while CPR-mediated ionization only requires the absorption of two
photons.

The discussion so far has covered well-known aspects of CPR, but there has been
one puzzling question that remained unanswered: how is energy conserved in this pro-
cess? According to the results, the absorption of pump and probe photons provides
enough energy to ionize the system, even though the sum of the absorbed photon ener-
gies is much smaller than the ionization potential (as shown in Fig.,3). There seems to
be a discrepancy in energy conservation, and this has been a source of confusion. How-
ever, CPR has been implemented in numerous experimental and theoretical studies,
indicating that the concept is valid. Thus, there must be a misconception or missing
piece in the theory presented so far. Our journey begins here, where we acknowledge
that there have been mistakes and wrong ideas along the way because energy must
be conserved in the process. In the following sections, we will present the different
ideas we generated and discuss them in the order they were explored, leading us to
the eventual solution.
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3.2.1 Nonresonant ionization

The initial idea that came to mind was to consider the ionization signal as a result
of the nonresonant absorption of pump and probe photons. In other words, instead
of transiently promoting the population to an excited state, it was proposed that the
population absorbs the necessary probe photons from a virtual state to reach the
continuum (refer to Fig.,3). However, three key arguments dismiss this possibility:

1. The current theoretical treatment of the time-dependent Schrödinger equation does
not account for the nonresonant ionization channel. To incorporate it, one would
need to introduce it ad hoc, typically as a loss channel, in the time-dependent
Hamiltonian outlined in Eq. 6.

2. As it is shown in Fig. 3, it is possible to tune the pump laser frequency to change the
number of probe photons required to ionize the system from the resonant and the
non-resonant situation. If the ionization order is different, and since the ionization
signal is proportional to In being I the probe laser intensity and n the number
of photons absorbed, it would be possible to discriminate between both channels
by recording the ionization signal versus the probe laser intensity. The display of
these data in logarithmic-logarithmic plot must be a line with slope equal to the
ionization order n.

Furthermore, one could think that maybe two pump photons are absorbed in
the process. This possibility does not hold because in Eq. 6 is not considered the
multiphoton absorption. Also, according to Eq. 21 the population transferred to the
excited state by CPR can be written as

P2(t) = sinϑ(t) =
1

2
− ∆

2
√

Ω2(t) + ∆2
. (22)

Under conditions of weak laser-matter interaction, specifically Ω(t)τ � 1, it can be
demonstrated [22] that the population in the excited state can be approximated as:

P2(t) ' Ω2(t)

∆2
∝ IPump(t). (23)

This equation indicates that even when the pump laser is significantly detuned
from resonance, the transfer of population from the ground to the excited state by
CPR is solely attributed to the absorption of a single pump laser photon.

3. If the ionization signal is indeed generated through the non-resonant absorption of
pump and probe photons, where ionization from the excited state does not occur, it
would require the pump and probe lasers to be synchronized in time. However, this
contradicts the theoretical treatment of CPR outlined previously. Specifically, if the
adiabatic condition (as shown in Eq.,19) is not satisfied, meaning |∆| . 1/τ , there
would be a permanent transfer of population to the excited state. This characteristic
of CPR has been experimentally utilized to address various challenges, such as
preventing power broadening [27]—the broadening of homogeneous line profiles
caused by intense laser fields—, in the detection of traces of isotopes by selective
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laser ionization [11] or in the analysis of ultrafast decays mechanisms of complex
molecules in time-resolved experiments [23].

3.2.2 Stark shift

The raised doubts about the conservation of energy during the CPR process may
appear to be explainable by Stark shifts, which have been extensively used for pop-
ulation manipulation of quantum systems through frequency-chirping techniques for
many years (see, for example, [28] and references therein). In these schemes, the tran-
sition frequency is chirped or swept by the interaction with the electric field of the
laser radiation through the laser frequency, instead of adjusting the laser frequency to
match the transition frequency. However, it is important to consider that the magni-
tude of the Stark shift depends on the intensity of the radiation and the detuning from
any off-resonant state. Thus, inducing significant shifts requires high laser intensities
[18]. To be more specific, the dynamic Stark shift between an excited state |ψ2〉 and a
ground state |ψ1〉, coupled to an off-resonant manifold of states |ψi〉, can be described
by Eq. 24 [18]:

S = − 1

4~2
∑
i

(
|d2i · e|2

∆2i
− |d1i · e|2

∆1i

)
E2 (24)

Thus, it was only with the development of nanosecond laser pulses that chirping
techniques became a viable option for population manipulation (see, for example,
[29, 30]). One of these techniques is SCRAP (Stark Shift Rapid Adiabatic Passage)
[29], where a pair of laser pulses, namely Stark shifting pulse and coupling pulse,
interact with a system achieving population transfers of 100%. In the case of CPR, in
contrast to SCRAP, only one laser is involved. Nevertheless, one might speculate that
the interaction of this laser with the system, even at low intensities, could modify the
level structure through Stark shifts and sweep the transition through the CPR laser
frequency. However, there are two key arguments that rule out this possibility:

� The theoretical formalism for CPR presented earlier does not account for Stark
shifts. To consider this effect, the coupling to all off-resonance levels must be taken
into account, requiring a term similar to Eq. 24 to be included in Eq. 6. However,
this is not the case because we are restricting ourselves to a two-level system.

� According to the theoretical description of CPR presented earlier, population is
transferred from the ground state to the excited state for all pump laser intensities
(see Eq. 22). This contradicts the hypothesis of Stark shifts being responsible for the
population transfer. If Stark shifts were the driving mechanism, one would expect
that below a certain laser intensity threshold the electric field of the radiation would
not be strong enough to sweep the resonance across the pump laser frequency.
However, this behavior is not observed in the presented theoretical formalism.

3.2.3 The concept of photon

It is widely acknowledged that our current description of electromagnetic radiation,
whether as a wave or as photons, is only applicable to non-interacting fields. Conse-
quently, when the system’s Hamiltonian depends on time, such as during interactions
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with laser pulses, the conservation of energy is not expected as explained, for exam-
ple, in [19]. In Quantum Mechanics time and energy are conjugate variables related
by an uncertainty principle meaning that is impossible to simultaneously determine
both variables with arbitrary precision (see Eq. 25).

∆E∆t ≥ ~/2 (25)

The nature of time in quantum mechanics is indeed a fascinating and distinctive aspect
that warrants careful analysis. Unlike other physical quantities such as position or
momentum, time does not have an associated operator in the formalism of Quantum
Mechanics. This fundamental difference raises intriguing questions and challenges our
intuitive understanding of time in the quantum realm. While, in classical physics,
time is commonly regarded as an absolute and universally flowing entity, in Quantum
Mechanics the nature of time becomes more elusive and less straightforward due to
the absence of an associated operator. This absence implies that time is treated dif-
ferently, and it is not subject to the same direct measurements and manipulations as
other observables like for example for momentum and position variables. As a conse-
quence, the uncertainty relation presented earlier (see Eq. 25) does not have a direct
derivation from the formalism of Quantum Mechanics, unlike the well-known position-
momentum uncertainty relation. The position-momentum uncertainty relation arises
naturally from the commutation relations between position and momentum operators.
However, in the case of time, since it does not have an associated operator, the uncer-
tainty relation involving time and energy (see Eq. 25) is not derived directly from
the mathematical framework. The uncertainty relation involving time and energy is a
result of theoretical considerations and physical arguments.

The absence of a time operator raises intriguing questions and challenges our con-
ventional understanding of time in the quantum domain. It means that time is not
considered a fundamental observable that can be directly measured or used to extract
information about a quantum system. Instead, time is often treated as an external
parameter that governs the evolution of quantum states and processes. This topic war-
rants a more comprehensive analysis and, in line with the present manuscript, can be
highly instructive for university-level students seeking to expand their understanding
of Quantum Mechanics.

Based on the preceding discussion and in accordance with Eq. 25, it becomes
apparent that during an interaction, the precise determination of the system’s energy
is not possible. This conclusion can also be reached by examining the equation that
governs the time evolution of an observable represented with associated operator A,
as presented in ”Quantum Mechanics” by Cohen-Tannoudji (pg 241) [19]:

d〈Ψ(t)|A|Ψ(t)〉
dt

=
1

ı~
〈Ψ(t)|[A,H(t)]|Ψ(t)〉+ 〈Ψ(t)|∂A

∂t
|Ψ(t)〉. (26)

This equation describes how the expectation value of the observable A changes with
time. The right-hand side consists of two terms: the commutator of A with the Hamil-
tonian H(t) and the expectation value of the partial derivative of A with respect to
time. Since the Hamiltonian is the associated operator to energy, the second term in
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the previous equation becomes zero

[H(t), H(t)] = 0, (27)

obtaining finally
d〈Ψ(t)|H|Ψ(t)〉

dt
=
dE

dt
= 〈Ψ(t)|∂H

∂t
|Ψ(t)〉. (28)

Thus, if the Hamiltonian explicitly depends on time, meaning that the expectation
value of the time derivative of the Hamiltonian is non-zero, i.e., 〈Ψ(t)|∂H∂t |Ψ(t)〉 6= 0,
then energy is not conserved in the system. This situation often occurs during an
interaction process or when there are time-dependent external fields or potentials
influencing the system. In such cases, the system’s energy can change over time, and
energy conservation does not hold. Hence, both from the analysis of Eq. 25 and the
equation governing the time evolution of observables, we arrive at the conclusion that
the exact energy of the system cannot be precisely determined during interactions.
According to this discussion, we can conclude that on one hand to achieve an accurate
energy balance, it is necessary to consider an additional term, namely the interaction
energy, and on the other hand, and as a consequence, during interactions involving
a time-dependent Hamiltonian, the concept of a photon becomes ambiguous. In fact,
it is worth noting that the concept of a photon originates from the quantization of a
time-independent electromagnetic field.

However, and despite the previous discussion, at the very beginning of the inter-
action and once the pump pulse has ceased there is no longer a time-dependent
interaction. Consequently, it becomes possible to reliably balance the energy of the
system. Let’s assume that at the end of the interaction, the system was ionized through
the combined action of the pump and probe lasers. Since, as discussed earlier (see
Section 3.2.1), non-resonant ionization is not feasible, we must assume that ionization
occurs via the excited state |ψ2〉 being the energy of the system at the end of the inter-
action higher than at the beginning. This leads to another intriguing question: if the
concept of a photon becomes blurred during the interaction, how many photons from
the pump laser have been absorbed to promote the population from the ground state
to the excited state during the CPR process? Is it possible to consider the absorption
of a non-integer number of photons during the interaction?

At this point, we must admit that we were completely confused. It is possible that
we had missed or misunderstood something, but coherent population redistribution
(CPR) had been extensively studied and implemented theoretical and experimentally.
Therefore, since our description had been so far semiclassical, with the electric field
not being quantized, we decided to delve deeper into the analysis by employing second
quantization of the electric field. This approach would enable us to effectively count
the number of photons involved in the process.

3.2.4 The Jaynes-Cummings model

The theoretical description presented so far is based on a semiclassical approximation
of the interaction between lasers and matter. In this approximation, matter is treated

13



using the principles of Quantum Mechanics, while the laser radiation is described clas-
sically. Usually, this semiclassical approach provides an accurate description of the
interaction between lasers and matter, and it is unnecessary to quantize the electric
field of the radiation. However, we have enhanced the theoretical description pre-
sented above by incorporating the quantization of the electric field. This addition was
motivated by our belief that effectively counting the number of photons involved in
the process will provide a crucial element for understanding how energy conservation
operates in CPR.

In principle the quantization of the electric field is only necessary when working
with close to single photon interaction processes 2, but such treatment allows us to
count exactly the photon that are absorbed and emitted by the system, and to calculate
exactly the energy of the system before, during and after the interaction. For taking
into account the quantization of the radiation, we have studied a slightly modified
version of the Jaynes-Cummings model (JCM). This model was developed to study a
two level atom interacting with a quantized mode of an optical cavity, with or without
the presence of light (see for example [31] or the issue commemorating the 50 years of
the Jaynes-Cumming physics and references therein [32]).

The right part of Fig. 4 illustrates the system we modeled using the Jaynes-
Cummings formalism. Initially, we considered a pump laser that is detuned from
resonance, resulting in the transient population transfer via CPR from the ground
state to the excited state. The population transferred to the latter state is probed by
a second laser, i.e., by a probe laser. Since we treated the continuum as a loss chan-
nel, without incorporating a bound state within the unstructured continuum through
a dressing interaction (as described in, for example, [33] and references therein), we
could replace the interaction with the continuum by considering the interaction with a
second dressed state, denoted as |2〉. This substitution is valid as long as the intensity
of the probe laser remains low. The latter condition justifies treating the interaction
between states |1〉 and |2〉 as a perturbation.

There were two main reasons for adopting this approach. Firstly, incorporating the
continuum into the Schrödinger equation is a challenging task that requires further
approximations. Secondly, the three-level system depicted in Fig. 4 is a closed system,
enabling a straightforward calculation of the system’s energy and the number of pho-
tons. The Hamiltonian in the JCM formalism of the system showed in the right part
of Fig. 4, it is composed of three distinct parts:

HJCM = Hatom +Hlight +Hinteraction (29)

� The Hamiltonian of the atom Hatom can be written as

Hatom = 0σ0 + ω01σ1 + ω02σ2 (30)

2A typical nanosecond laser pulse of energy of 300µJ and wavelength 400 nm contains of the order of
1014 photons.
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Fig. 4 The continuum is modeled as another bound state.

being

σ0 =

1 0 0
0 0 0
0 0 0

 σ1 =

0 0 0
0 1 0
0 0 0

 σ2 =

0 0 0
0 0 0
0 0 1

 (31)

being 0, ω01, and ω02 the energy of the state |0〉, |1〉, and |2〉 respectively. For the
sake of simplicity, we have omitted the use of ~ in this section.

� The Hamiltonian of the light Hlight can be written as

Hlight = ωL1(aa+) + ωL2(bb+) (32)

where ωL1 and ωL2 correspond to the frequency of the pump and probe laser respec-
tively, and a, a+, b, and b+ are the creation and annihilation operators of pump
and probe laser photons respectively [19]. For simplicity, we have omitted the zero
energy of the electric fields.

� The Hamiltonian of the interaction Hinteraction

Hinteraction = ω1(a+σ1−+aσ1++a+σ1++aσ1−)+ω2(b+σ2−+bσ2++b+σ2++bσ2−)
(33)

where ω1 and ω2 are the Rabi frequency per photon corresponding to pump and
probe laser respectively, and

σ1− =

0 1 0
0 0 0
0 0 0

 σ1+ =

0 0 0
1 0 0
0 0 0

 σ2− =

0 0 0
0 0 1
0 0 0

 σ2+ =

0 0 0
0 0 0
0 1 0


(34)

It is important to remark that no additional approximation, beyond the dipole
approximation and the Rotating Wave Approximation (RWA) is considered.

According to the previous discussion, the Hamiltonian without interaction H0 is
defined as H0 = Hatom + Hlight, and the total Hamiltonian H = H0 + HInteraction.
Furthermore, since we are now considering the photon numbers of pump and probe
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lasers, the description basis cannot remain as simple as {|0〉, |1〉, |2〉}, becoming neces-
sary to work in the following basis |atomstate, n,m〉 where n represents the number
of pump photons and m represents the number of probe photons. This extended basis
allows us to account for the varying photon numbers in the pump and probe lasers.

The chosen basis is indeed infinite, so it is necessary to truncate it. It is important
to note that due to the structure of the interaction Hamiltonian, which includes terms
that involve the excitation of an atom by emitting a photon and the relaxation by
absorbing a photon, the working basis must be sufficiently large. For this purpose, the
following basis has been selected:

B = {|0, n,m〉, |1, n− 1,m〉, |2, n− 1,m− 1〉, |2, n− 1,m+ 1〉, |1, n− 1,m+ 2〉, |1, n+ 1,m〉,
|2, n+ 1,m− 1〉, |2, n+ 1,m+ 1〉, |1, n+ 1,m+ 2〉, |0, n+ 2,m〉}

(35)
This selection ensures that the basis is sufficiently large to account for the relevant
interactions involving the emission and absorption of photons by the atoms in the
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system. After a tedious work, H in the basis B reads:
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(36)
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where

∆1 = ω01 − ωL1
∆2 = (ω02 − ω01)− ωL2

= ω12 − ωL2
. (37)

Once we have the Hamiltonian H expressed in the basis B, we can proceed to solve
the time-dependent Schrödinger equation, being |Ψ(t)〉 the instantaneous eigenvector
of the system, i.e.,

|Ψ(t)〉 = C1(t)|0, n,m〉+ C2(t)|1, n− 1,m〉+ C3(t)|2, n− 1,m− 1〉+ C4(t)|2, n− 1,m+ 1〉
+C5(t)|1, n− 1,m+ 2〉+ C6(t)|1, n+ 1,m〉+ C7(t)|2, n+ 1,m− 1〉+
C8(t)|2, n+ 1,m+ 1〉+ C9(t)|1, n+ 1,m+ 2〉+ C10(t)|0, n+ 2,m〉

(38)
with initial conditions

{C1(t), C2(t), C3(t), C4(t), C5(t), C6(t), C7(t), C8(t), C9(t), C10(t)}t=0 = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
(39)

and compute the total population in states {|0〉, |1〉, |2〉}, i.e.,

P0(t) = C1(t)C∗1 (t) + C10(t)C∗10(t)

P1(t) = C2(t)C∗2 (t) + C5(t)C∗5 (t) + C6(t)C∗6 (t) + C9(t)C∗9 (t)

P2(t) = C3(t)C∗3 (t) + C4(t)C∗4 (t) + C7(t)C∗7 (t) + C8(t)C∗8 (t),

(40)

the instantaneous mean energy of the system,

E(t) = 〈Ψ(t)|H|Ψ(t)〉, (41)

the number of photons of the pump laser

N = nP1(t) + (n− 1)P2(t) + (n− 1)P3(t) + (n− 1)P4(t) + (n− 1)P5(t)

+(n+ 1)P6(t) + (n+ 1)P7(t) + (n+ 1)P8(t) + (n+ 1)P9(t) + (n+ 2)P10(t),
(42)

the number of photons of the probe laser

M = mP1(t) +mP2(t) + (m− 1)P3(t) + (m+ 1)P4(t) + (m+ 2)P5(t)

+mP6(t) + (m− 1)P7(t) + (m+ 1)P8(t) + (m+ 2)P9(t) +mP10(t),
(43)

and the excitation number

ExcNumber(t) = ExcNumber01(t) + ExcNumber12(t) =

((1/2) + (1/2)(P2(t) + P1(t)− P0(t)) +N) + ((1/2) + (1/2)(P2(t)− P1(t)− P0(t)) +M).
(44)

For simplicity, we can define the quantities

Inver01 = (1/2)+(1/2)(P2(t)+P1(t)−P0(t)) Inver12 = (1/2)+(1/2)(P2(t)−P1(t)−P0(t)),
(45)
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resulting

ExcNumber(t) = ExcNumber01(t)+ExcNumber12(t) = Inver01+N+Inver12+M.
(46)

The excitation number takes into the number of photons into the system and the
number of atomic excitations. The sum of both numbers must remain constant, i.e., for
each absorbed photon an excitation must be produced and viceversa (see for example
[18] pg 630).

Let’s consider the simplest case where the atom is irradiated by a continuous wave
(CW) laser, meaning that the Hamiltonian of the system does not depend on time.
In this situation, as shown in Eq. 28 the energy remains constant. Figure 5 shows the
solution for the time-dependent Schrödinger equation with the Hamiltonian described
by Eq. 36 for an interaction that does not depend on time. As expected, while the

Fig. 5 Populations, energy, ExcNumber01, and ExcNumber12. The parameters of the simulation
are: ωL1

= 20π fs−1, ωL2
= 20π fs−1, ∆1 = 0, ∆2 = 0, ω1 = 0.2 fs−1, ω2 = 0.2 fs−1, Nt=0 = 5,

Mt=0 = 7

populations change over time, the energy and the excitation number (ExcNumber)
remain constant. The constant excitation number throughout the time evolution of the
system dynamics indicates that photons are absorbed as whole units, maintaining their
integer nature. In simpler terms, this addresses the speculation raised in the previous
section and confirms that the absorption of non-integer photons is not possible. This
finding underscores the discrete and quantized nature of photon absorption within the
system. This observation holds true even if ∆1 6= 0 (see Fig. 6).
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Fig. 6 Populations, energy, ExcNumber01, and ExcNumber12. The parameters of the simulation
are: ωL1

= 20π fs−1, ωL2
= 20π fs−1, ∆1 = 0.2π fs−1, ∆2 = 0, ω1 = 0.2 fs−1, ω2 = 0.2 fs−1,

Nt=0 = 5, Mt=0 = 7

Let us now consider pulsed excitation. We introduce time dependence in the Rabi
frequencies per photon, denoted as ω1 and ω2, while keeping the number of photons
(N and M) constant. It is important to note, that in experiments with pulsed lasers,
the number of photons changes with time, resulting in a varying Rabi frequency. This
scenario can be understood as a cavity that allows only one electromagnetic mode
inside it, filled with atoms and photons, where the length of the cavity changes with
time. The latter situation must be analogous to a situation where the excitation is
pulsed.

Let us study first the resonant case, i.e., the frequency of the pump laser matches
exactly the Bohr frequency between states |0〉 and |1〉 the energy (see Fig. 7). As in the
previous examples, the excitation number (ExcNumber) remains constant throughout
the process. However, since the interaction depends on time, the energy of the system,
as given by Eq. ??, is not constant during the interaction. Nonetheless, we can compare
the energy of the system before the interaction (at t = −∞) with the energy after the
interaction (at t = +∞) because Hinteraction = 0 in both cases. Therefore, we have:

H = H0 +HInteraction(t)|t=±∞ = H0 (47)

being the Hamiltonian time independent. As shown in Fig. 7, the energy at t = −∞
is equal to the energy at t = +∞.
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Fig. 7 Populations, energy, ExcNumber01, and ExcNumber12. The parameters of the simulation
are: ωL1

= 20πfs−1, ωL2
= 20π fs−1, ∆1 = 0, ∆2 = 0, ω1 = 5 exp[−((t − 20)2/25)] fs−1, ω2 =

5 exp[−((t− 20)2/25)] fs−1, Nt=0 = 5, Mt=0 = 7

After obtaining the previous results, which served as a simulation test, the next
step was to consider a time dependent excitation but with ∆1 6= 0, i.e., the CPR case.
Running the simulation for different parameters, we observed two distinct situations.
If the parameters were chosen in a way that no population remained in states |2〉
and/or |3〉 after the excitation, the energy before and after the excitation remains
equal (see Fig. 8). It must be noticed that during the dynamics it appears that a dual
CPR process is occurring: one between |0〉 and |1〉 induced by the pump laser and
another between |1〉 and |2〉 induced by the probe laser.

On the other hand, if the parameters were chosen is such a way that some popula-
tion remained in the states |1〉 and/or |2〉 after the excitation, the energy before and
after the excitation did not not remain constant (see Fig. 9). The simulations shown
in Fig. 9 might suggest that the system, comprising atoms and light in the Jaynes-
Cummings model, is capable of gaining energy ”seemingly out of nothing.” However,
in reality, the energy gained per excited atom, once the excitation has ceased exactly
corresponds to the detuning of the pump laser from resonance. This mathematical
relationship can be expressed as follows:

∆1 =
E(+∞)− E(−∞)

P1(+∞) + P2(+∞)
(48)

This equation shows that the gained energy is calculated by considering the difference
in energy between the final state at t = +∞ and the initial state at t = −∞, divided
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Fig. 8 Populations, energy, ExcNumber01, and ExcNumber12. The parameters of the simulation
are: ωL1 = 20πfs−1, ωL2 = 20π fs−1, ∆1 = 2π fs−1, ∆2 = 0, ω1 = 2 exp[−((t − 20)2/25)] fs−1,
ω2 = 3 exp[−((t− 20)2/25)] fs−1, Nt=0 = 5, Mt=0 = 7

by the sum of the populations of the relevant states at t = +∞. Based on the results
and observations, it appears that the Jaynes-Cummings formalism developed in this
section may not provide a complete explanation regarding how energy is conserved in
a coherent population return (CPR) process.

At this moment, we found ourselves perplexed, and realized that it might be nec-
essary to expand our theoretical framework and incorporate additional factors and
interactions that influence the energy dynamics of the system. In other words, maybe
we needed to move beyond the limitations of the presented model. This expansion
could encompass exploring the intricacies of atom-photon coupling dynamics, under-
standing the impact of external fields, and delving into the overall energy balance
within the system. However, by a stroke of luck or serendipity-, we stumbled upon
an idea that provided the key element to solve the paradox. As is often the case, the
solution turned out to be much simpler than the extensive efforts we had undertaken
to explain the apparent paradox.

4 Solution

The key insight that solved the paradox involved replacing the probing photoionization
process with a bound-bound transition. By doing so, the continuum was eliminated,
allowing for easy calculation of the system’s energy. Consider a three-level system as
depicted in Fig. 10, where a pump laser, detuned by ∆P from resonance, couples the
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Fig. 9 Populations, energy, ExcNumber01, and ExcNumber12. The parameters of the simulation
are: ωL1 = 20πfs−1, ωL2 = 20π fs−1, ∆1 = π fs−1, ∆2 = 0, ω1 = 2 exp[−((t − 20)2/25)] fs−1,
ω2 = 8 exp[−((t− 20)2/25)] fs−1, Nt=0 = 5, Mt=0 = 7

states |0〉 and |1〉. Additionally, a second laser, known as the Stokes laser, couples the
states |1〉 and |2〉. In our description, we make the following assumptions:

� The detuning ∆P is greater than the inverse of the pulse duration of the pump laser
τP , i.e., the laser bandwidth. This ensures that the adiabatic condition for CPR
between states |0〉 and |1〉 is satisfied.

� The perturbation induced by the Stokes laser is very small compared to that of the
pump laser (ΩP � ΩS), placing us in the context of of ”weak measurement” or
“non-perturbative measurement”.

� The temporal duration of the pump pulse, τP , is significantly longer than that of
the probe pulse, τS (τP > τS).

The Hamiltonian that describe the situation depicted in Fig. 10 in the Rotating
Wave Approximation (RWA) reads (see for example [18, 34] for the mathematical
treatment):

H(t) =
~
2

 0 ΩP (t) 0
ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)

 , (49)

Since we assume that the effect of the Stokes laser is negligible compared to the
dynamics induced by the pump laser, it becomes possible to separate the Hamiltonian
defined in Eq. 49 into blocks. Specifically, we can isolate the block that accounts for
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Fig. 10 (Color online) Level scheme. It is important to note the sign convention for the detunings.

the interaction between states |0〉 and |1〉. This block can be represented as:

Ĥ{0,1}(t) =
~
2

(
0 ΩP (t)

ΩP (t) 2∆P

)
. (50)

By diagonalizing this block independently from state |2〉, we can analyze it sep-
arately. This Hamiltonian, denoted as Ĥ{0,1}, corresponds to the typical coherent
population return (CPR) scheme in a two-level system, as discussed in the previous
sections. The adiabatic (dressed) eigenstates of Ĥ{0,1} are given by:

|Φ−(t)〉 = cosϑ(t)|0〉 − sinϑ(t)|1〉
|Φ+(t)〉 = sinϑ(t)|0〉+ cosϑ(t)|1〉

(51)

with associated eigenvalues (λ−(t), λ+(t))

λ∓(t) =
1

2

[
∆P ∓

√
Ω2
P (t) + ∆2

P

]
(52)

where the mixing angle is defined by

ϑ(t) = (1/2) arctan[ΩP (t)/∆P ]. (53)

In the adiabatic basis formed by the states BAdiab. = {|Φ−(t)〉, |Φ+(t)〉, |ψ2〉}
the hamiltonian of Eq. 49 -Hamiltonian written in the diabatic basis BDiab. =
{|ψ0〉, |ψ1〉, |ψ2〉}- reads (see B for the mathematical details):

HAdib.(t) = ~

 λ− 0 − 1
2ΩS(t) sinϑ(t)

0 λ+
1
2ΩS(t) cosϑ(t)

− 1
2ΩS(t) sinϑ(t) 1

2ΩS(t) cosϑ(t) (∆P −∆S)

 . (54)

The level scheme in this new basis is shown in Fig. 11. Also, since we assume
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Fig. 11 (Color online) Level scheme in the diabatic Bdiab. = {|ψ0〉, |ψ1〉, |ψ2〉} and adiabatic
BAdiab. = {|Φ−(t)〉, |Φ+(t)〉, |ψ2〉} basis.

Fig. 12 (Color online) Simplified level scheme in the adiabatic basis.

that ∆P > 1/τP , implying adiabatic evolution of the system when interacting with
the pump laser ΩP , and initially all the population resides in the ground state, it
follows from our previous discussion on CPR that the adiabatic state |Φ+〉 remains
unpopulated. Consequently, we can simplify the Hamiltonian of Eq. 54 to

H ′Adib.(t) = ~
(

λ− − 1
2ΩS(t) sinϑ(t)

− 1
2ΩS(t) sinϑ(t) (∆P −∆S)

)
, (55)

and the level scheme depicted in Fig. 11 to the one shown in Fig. 12
By examining Eq. 55, it becomes evident that in order to populate state |2〉, the

detuning of the Stokes laser must be equal to (resonance condition):

λ− = ∆P −∆S

∆S = ∆P − λ−

∆S =
1

2

[
∆P +

√
Ω2
P (t) + ∆2

P

] (56)

The obtained condition reveals an interesting insight: although one might assume
that during the CPR process the Stokes laser couples the states |1〉 and |2〉, it, in fact,
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Fig. 13 (Color online) Numerical results are obtained based on the level scheme illustrated in
Fig. 10. The upper left frame displays the population of state |2〉 as a function of the detuning of
the probe laser. The remaining frames depict the population dynamics for various detunings of the
probe laser. It is noteworthy that for ∆S = 0 and ∆S = 3 ns−1, the population of state |2〉 exhibits
transient dynamics characteristic of CPR induced by the interaction of two lasers, indicating that
the probe laser is clearly off resonance. However, when ∆S = 6.1 ns−1, the probe laser satisfies the
resonance condition between states |Φ−〉 and |2〉, leading to a permanent transfer of population.

couples states |Φ−〉 and |2〉. Given that the energy of state |Φ−〉 is lower than the
energy of |2〉 (see Eq. 52), this energy difference is compensated by the absorption of
a more energetic Stokes laser photon, thereby preserving the conservation of energy
principle. This theoretical result is confirmed by numerical simulations (see Fig. 13).
The simulation was based on the scheme shown in Fig. 10 and the following data:

� ΩP = Ω0PExp[−(4Ln[2]) t2

τ2
P

]; ΩS = Ω0SExp[−(4Ln[2]) t2

τ2
S

]

� Ω0P = 10 ns−1; Ω0S = 0.001 ns−1

� τP = 20 ns; τS = 2 ns−1

� ∆P = 2 ns−1.

According to our previous analysis the Stokes laser will be on resonance for a detuning
∆S equals to:

∆S =
1

2

[
∆P +

√
Ω2

P(t) + ∆2
P

]
= 6.1 ns−1. (57)

This agrees perfectly with the numerical simulation see Fig. 13
In conclusion, the mistake we made in interpreting the CPR dynamics was assum-

ing that we could reason in terms of bare states during the process. In reality, this is
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not the case. As we discussed earlier, during CPR, the state that becomes populated
is |Φ−〉, which has a lower energy than state |1〉. Consequently, any probing mecha-
nism of the population transfer, such as photoionization with a Stokes laser, must take
this energy difference into account to preserve the principle of energy conservation.
In other words, the system’s interaction with the lasers modifies the energy levels,
underscoring the importance of considering the dynamics and energies of the adiabatic
states rather than the bare states when describing laser-matter interaction processes.
While it is common to discuss systems in terms of bare states, paying attention to finer
details of the system dynamics can reveal the necessity for a different perspective.

It is worth noting that in the theoretical treatments conducted so far, both in the
semiclassical approach and the Jaynes- Cummings formalism, this interaction energy
has not been taken into account. In fact, in the latter formalism, a closed system
is assumed, where the absorption and emission of photons can be precisely counted.
However, as we have demonstrated, there are situations where energy is not conserved
between the initial and final moments once the interaction has ceased. Furthermore,
it is important to emphasize that this energy transfer, although reminiscent of Stark
shifts, involves a distinct mechanism. On one hand, the magnitude of the shift in CPR
is proportional to the Rabi frequency Ω(t), whereas for Stark shifts, it scales with the
intensity of the laser. On the other hand, Stark shifts result from an off-resonance
interaction between the laser and the other states of the system, requiring, therefor, the
consideration of all those states. However, in the case of CPR, as we have previously
shown, the involvement of any off-resonance state is not required. This energy shift
can occur in a two-level system, highlighting the unique nature of the CPR process.

5 Conclusion

In conclusion, this work has presented how a seemingly simple question arising from
a well-established theory, such as the semiclassical description of laser-matter interac-
tion, can challenge our understanding of a fundamental principle of Physics: energy
conservation. Along our journey to resolve this apparent paradox, we have revisited
fundamental concepts, gaining a more detailed understanding of the intriguing hidden
aspects encompassed by the theory of Quantum Mechanics. In fact, we believe that
the value of reaching a definitive answer lies not only in the answer itself but also in
the path taken to obtain it. This undoubtedly holds educational significance, align-
ing with our intention to stimulate comprehension of the phenomenon. By describing
the process followed, we aspire to facilitate the understanding of this subject for stu-
dents, while simultaneously deepening our own knowledge of laser-matter interaction
and the contra-intuitive facts that Quantum Mechanics still comprises.
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Appendix A The adiabatic condition

For an adiabatic evolution, it is necessary that the energy splitting between the adi-
abatic eigenenergies λ+ and λ− is significantly larger than the magnitudes of the
non-diagonal elements in the Hamiltonian (Eq. 18). This condition ensures that the
Hamiltonian can be approximated as a diagonal matrix. The specific criterion for
adiabaticity can be expressed as follows [10]:

|ϑ̇(t)| � λ+(t)− λ−(t), (A1)

or explicitly
|∆Ω̇(t)| � 2[Ω2(t) + ∆2]3/2. (A2)

Defining the function

f(t) =
∆Ω̇(t)

2[Ω2(t) + ∆2]3/2
. (A3)

the previous condition can be written as f(t)� 1.
Since f(t) is inversely proportional to Ω(t) and directly proportional to Ω̇(t), the

maximum of the function f(t) should occur at early or late times during the laser pulse.
This is because when the pulse reaches its maximum, i.e., when Ω(t) is maximum,
Ω̇(t) is equal to zero, resulting in f(t) = 0.

In experimental settings, laser pulses can often be reasonably modeled by slowly
varying functions such as Gaussian or hyperbolic secant functions. Considering the
hyperbolic secant function as an example, the temporal dependence of the Rabi fre-
quency can be written as Ω(t) = Ω0sech(t/τ), where τ represents the pulse duration.
In the limit of t→∞, we can approximate Ω̇(t) as follows:

|Ω̇(t)| ≈ Ω(t)

τ
. (A4)

This approximation can be substituted in Eq. A3 obtaining

f(t) =
∆Ω(t)

2τ [Ω2(t) + ∆2]3/2
. (A5)

Once obtained Eq. A5, we can study where it presents a maximum as function of
∆. Thus,

∂f(t)

∂∆
=

2Ω(t)τ [Ω2(t) + ∆2]3/2 − 6Ω(t)∆2τ [Ω2(t) + ∆2]1/2

4τ2[Ω2(t) + ∆2]3
= 0, (A6)

from where
[Ω2(t) + ∆2]2 = 3∆2, (A7)

obtaining
Ω(t) = ±

√
2∆. (A8)
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Substituting the obtained value for the maximum in Eq. A5, we finally obtain

|f(t)|max =
1

3
√

6|∆|τ
. (A9)

According to our previous discussion for adiabatic evolution is required that f(t)� 1
meaning that

|∆τ | & 1, i.e., |∆| & 1

τ
. (A10)

If this condition |∆| & 1
τ is not fulfilled the evolution will be diabatic.

It is important to note that the adiabatic region is solely determined by the
laser detuning parameter ∆ and is independent of the peak Rabi frequency Ω0 (as
shown in Eq. A10). This detuning parameter can typically be easily controlled and
adjusted in experiments. Furthermore, for achieving adiabatic evolution, a specific
detuning value is not required; it is sufficient to satisfy Equation A10. This simplifies
the experimental implementation significantly. Additionally, it should be mentioned
that for non-exponential pulse shapes, such as Gaussian pulses, there can be a slight
dependence of the Rabi frequency on Eq. A10. However, for smooth laser pulses, this
dependence is typically negligible and does not significantly affect the adiabaticity
condition.

Appendix B Hamiltonian expression in the
adiabatic basis

The Hamitonian given by Eq. B11 is expressed in the diabatic -bare- basis, denoted
as Bdiab. = {|ψ0〉, |ψ1〉, |ψ2〉}

HBdiab.
(t) =

~
2

 0 ΩP (t) 0
ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)

 . (B11)

To express this Hamiltonian in the adibatic basis formed by BAdiab. =
{|Φ−(t)〉, |Φ+(t)〉, |ψ2〉}, the following calculation is necessary:

HBAdib.
(t) =

 〈Φ∗−|HBdiab.
|Φ−〉 〈Φ∗−|HBdiab.

|Φ+〉 〈Φ∗−|HBdiab.
|ψ2〉

〈Φ∗+|HBdiab.
|Φ−〉 〈Φ∗+|HBdiab.

|Φ+〉 〈Φ∗+|HBdiab.
|ψ2〉

〈ψ∗2 |HBdiab.
|Φ−〉 〈ψ∗2 |HBdiab.

|Φ+〉 〈ψ∗2 |HBdiab.
|ψ2〉

 . (B12)

The first to terms in the main diagonal are easily calculated since |Φ−〉 and |Φ+〉 are
by construction normalized eigenvectors of HBdiab.

, thus:

〈Φ∗∓|HBdiab.
|Φ∓〉 = λ∓〈Φ∗∓|Φ∓〉 = λ∓. (B13)

The third term in the main diagonal has the same expression in both basis since the
third vector, i.e., |ψ2〉 is the same for both basis. The term 〈Φ∗−|HBdiab.

|Φ+〉 is directly
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zero since |Φ−〉 and |Φ+〉 are by construction orthogonal vectors

〈Φ∗−|HBdiab.
|Φ+〉 = λ+〈Φ∗−|Φ+〉. (B14)

The same reasoning works for 〈Φ∗+|HBdiab.
|Φ−〉.

As an example, we demonstrate the calculation for one of the remaining terms:

〈Φ∗−|HBdiab.
|ψ2〉 = |Φ−(t)〉 = (cosϑ(t)〈0| − sinϑ(t)〈1|)HBdiab.

|ψ2〉 = − sinϑ(t)ΩS(t)
(B15)

because states ψ0 and ψ2 are not connected but ψ1 and ψ2 are connected by the Stokes
laser. Therefore, the Hamiltonian in the adiabatic basis is given by Eq. B16:

HAdib.(t) = ~

 λ− 0 − 1
2ΩS(t) sinϑ(t)

0 λ+
1
2ΩS(t) cosϑ(t)

− 1
2ΩS(t) sinϑ(t) 1

2ΩS(t) cosϑ(t) (∆P −∆S)

 . (B16)
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