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We review and slightly improve the known k-polysymplectic Marsden–Weinstein reduction 
theory by removing some technical conditions on k-polysymplectic momentum maps by 
developing a theory of affine Lie group actions for k-polysymplectic momentum maps, 
removing the necessity of their co-adjoint equivariance. Then, we focus on the analysis 
of a particular case of k-polysymplectic manifolds, the so-called fibred ones, and we 
study their k-polysymplectic Marsden–Weinstein reductions. Previous results allow us to 
devise a k-polycosymplectic Marsden–Weinstein reduction theory, which represents one of 
our main results. Our findings are applied to study coupled vibrating strings and, more 
generally, k-polycosymplectic Hamiltonian systems with field symmetries. We show that k-
polycosymplectic geometry can be understood as a particular type of k-polysymplectic 
geometry. Finally, a k-cosymplectic to �-cosymplectic geometric reduction theory is 
presented, which reduces, geometrically, the space-time variables in a k-cosymplectic 
framework. An application of this latter result to a vibrating membrane with symmetries 
is given.
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1. Introduction

The problem of the reduction of systems with symmetry has attracted for decades the interest of mathematicians and 
theoretical physicists, who have sought to reduce the number of equations describing the behaviour of the systems by 
finding first-integrals or conservation laws [54,59].

The general procedure of the symplectic reduction can be traced back to E. Cartan, and it goes as follows (see [1, pg. 
298] or [54,59] and references therein):

“Suppose that P is a manifold and ω is a closed two-form on P ; let kerω = {v ∈ TP | ιv ω = 0} be the characteristic 
distribution of ω and call ω regular if kerω is a subbundle of TP . In the regular case, kerω is an involutive distribution. 
By the Fröbenius theorem, kerω is integrable and it defines a foliation F on P . This gives rise to a quotient space P/F
by identification of all points on the same leaf of F . Assume now that P/F is a manifold, the canonical projection 
x ∈ P �→ [x] ∈ P/F being a submersion. Then, the tangent space at a point [x] is isomorphic to Tx P/ kerωx and ω
projects onto a well-defined closed, nondegenerate two-form on P/F ; that is, P/F is a symplectic manifold: a so-called 
reduced space.”

The use of geometrical methods has proved to be a powerful tool in the study of this topic and a breakthrough was 
performed by Marsden and Weinstein in their work on the reduction of autonomous Hamiltonian systems on symplectic 
manifolds under the action of a Lie group of symmetries, with regular values of their momentum maps [53]. Just before 
that work, Meyer obtained some similar findings [56], but not as detailed and sound as Weinstein and Marsden’s ones [54]. 
In a more general context, all their results were indeed the culmination of many other previous achievements by Smale, 
Sternberg, Kostant, Robbin, and many others, who gave partial but relevant approaches to the reduction procedure (see 
[54]). In their famous work [53], Marsden and Weinstein apply a very powerful version of the previous reduction scheme 
to the case of submanifolds defined by the level sets of an equivariant momentum mapping J� : P → g∗ for a certain Lie 
group action on the dual g∗ of a Lie algebra g and a Hamiltonian action on a symplectic manifold P leaving invariant a 
certain function on P : the Hamiltonian. The so-obtained reduced space is a symplectic manifold and inherits a Hamiltonian 
dynamics from the initial Hamiltonian.

After Marsden and Weinstein’s work, the Marsden–Weinstein reduction technique was subsequently applied and gen-
eralised to many different situations. For instance, the reduction of Hamiltonian systems with singular values of the 
momentum map has been studied in several papers such as [65] for the autonomous case. In that work, stratified re-
duced manifolds admitting symplectic structures are obtained. The so-called orbifolds can also appear as Marsden–Weinstein 
reductions, which have motivated a separate research topic with physical and mathematical applications [33,39,45]. The re-
duction of time-dependent regular Hamiltonian systems (with regular values) is developed in the framework of cosymplectic 
manifolds in [2,18], obtaining a reduced phase space that is a cosymplectic manifold. The study of autonomous systems com-
ing from certain kinds of singular Lagrangians can be found in [13], where the conditions for the reduced phase space to 
inherit an almost-tangent structure are given. Another approach to this question is adopted in [51], where the authors give 
conditions for the existence of a regular Lagrangian function in the reduced phase space, which allows them to construct 
the reduced cosymplectic or contact structure (and hence the reduced Hamiltonian function) from it.

It is worth noting that there have been many generalisations of the Marsden–Weinstein reduction to deal with many 
types of geometric structures. The Marsden–Weinstein reduction was extended by Marsden and Ratiu to Poisson manifolds 
in [52], the case of locally conformally symplectic manifolds was developed in [38], while the reduction of Dirac structures 
was solved and further analysed in several papers [11,12,16]. On the other hand, the Marsden–Weinstein reduction of Jacobi 
manifolds is analysed in [40].

After almost fifty years of their foundational work [53], the development of Marsden–Weinstein reductions for different 
types of geometries and schemes of reduction is a very active research field as results can be extended to many geometric 
structures, it admits many modifications and generalisations, e.g. for the so-called singular cases [18,41], and it has lots 
2
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Fig. 1. Scheme of the different structures involved in the k-polycosymplectic reduction through k-polysymplectic fibred manifolds. It is worth noting that 
k-polysymplectic manifolds in the above diagram admit a series of vector fields satisfying properties extending the ones for Reeb vector fields in k-
polycosymplectic geometry.

of applications as illustrated by the many works constantly using them [5,9,33,39,45,64,66]. It is worth noting that the 
development of a multisymplectic Marsden–Weinstein reduction has been an open problem for decades now [29], and 
there is a lot of interest in developing even partial results [7].

Geometric covariant descriptions of first-order classical field theories can be performed by appropriate generalisations of 
some of the above-mentioned structures. The simplest one is k-symplectic geometry, introduced by A. Awane [3,4] and used 
later by M. de León et al. [20–22], and L. K. Norris [55,58] to describe first-order classical field theories. They coincide with 
the polysymplectic structures described by G. C. Günther [37] (although these last ones are different from those introduced 
by G. Sardanashvily et al. [31,63] and I. V. Kanatchikov [42], that are also called polysymplectic). This structure is applied 
to first-order regular autonomous field theories [10,28,62]. A natural extension of the above structures are k-cosymplectic 
manifolds, which allow us to generalise the cosymplectic description of non-autonomous mechanical systems [1] to regular 
field theories whose Lagrangian and/or Hamiltonian functions, in the local description, depend on the space-time coordinates 
[23,24]. We refer to [25,34,57] for more details on the k-symplectic and k-cosymplectic formalisms. In [60], the relationships 
that exist between k-symplectic, k-cosymplectic and multisymplectic structures are established.

The present work is part of an ambitious research project in which we want to develop the Marsden–Weinstein multi-
symplectic reduction. In this paper, we are focused on the extension of the Marsden–Weinstein reduction theory to the case 
of k-polycosymplectic manifolds [5,25]. The search for a k-polycosymplectic reduction can be traced back to [8], where a 
particular case was studied. Next, some ideas of how a k-polycosymplectic reduction should be were pointed out in [49], but 
no proofs were given. Some of the ideas in [49] gave rise to [50], where no k-polycosymplectic reduction was studied, and 
[51], where the k-polysymplectic reduction was fully described instead. An initial approach to k-polysymplectic reduction 
was made in the seminal work of Günther [37], where the author attempts to reply to the Marsden–Weinstein reduction 
theory for symplectic manifolds to the k-polysymplectic case. Nevertheless, the proof of one of the fundamental results 
fails to be true as a consequence of the technical properties of the orthogonal k-polysymplectic complement. In [51] this 
problem was solved. It is worth noting that [51] provided new relevant ideas and solutions that were not depicted in [49]
so as to develop a Marsden–Weinstein k-polysymplectic reduction. Nowadays, more than a decade after [49], the Marsden–
Weinstein k-polycosymplectic reduction is still to be developed. Achieving this reduction and studying its properties and 
applications is the main aim of this work, which has been drawing some attention until the present day.

This work will show how some of the ideas of [49], along with other ones in [51] and new others to be disclosed here-
after, allow for devising a k-polycosymplectic Marsden–Weinstein reduction. In particular, a k-polycosymplectic manifold 
will be associated with a k-polysymplectic manifold of a larger dimension and a specific type, a so-called k-polysymplectic 
fibred manifold, to be defined and studied in this work for the first time. In particular, k-polysymplectic fibred manifolds 
admit, among other properties, the hereafter referred to as k-polysymplectic Reeb vector fields. A slight generalisation of 
the k-polysymplectic Marsden–Weinstein reduction developed in [51] will be applied to k-polysymplectic fibred mani-
folds obtained from k-polycosymplectic manifolds to obtain reduced k-polysymplectic fibred manifolds. The latter will 
be related to k-polycosymplectic manifolds that will be identified with the Marsden–Weinstein reductions of the initial 
k-polycosymplectic manifolds. In particular, the general scheme for our k-polycosymplectic reduction to be explained in 
detail in this paper is displayed in Fig. 1. It is worth noting that k-polysymplectic manifolds and k-polycosymplectic 
manifolds, in the way defined in this work, do not need to admit Darboux coordinates [61], which makes many proofs 
of our paper more technical and complicated than other generalisations of the Marsden–Weinstein symplectic reduction. 
Most main results describing our k-polycosymplectic Marsden–Weinstein reduction are described in Section 6, while The-
orem 6.13 is one of the most important results concerning this topic. Note that Theorem 6.14 describes the reduction of 
Hamiltonian k-polycosymplectic vector fields, which is related to the HDW (Hamilton–De Donder–Weyl) equations for the 
k-polycosymplectic formalism.

As a byproduct of our work, the k-polysymplectic reduction theory in [51] is improved by removing some unnecessary 
technical conditions imposed there, namely the Ad∗k-invariance of the momentum map and other minor aspects concerning 
the existence of a quotient manifold structure in the quotients spaces appearing in the k-polysymplectic Marsden–Weinstein 
reduction. This is mainly performed by generalising the standard theory of affine Lie group actions for the symplectic 
case (see [59]) to the k-polycosymplectic and k-polysymplectic realms. Our techniques also generalise the known relations 
between cosymplectic and symplectic manifolds and their reductions [18].
3
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Also as a byproduct of our results, we obtain in Theorem 6.7 that k-polycosymplectic geometry is a particular case of 
k-polysymplectic geometry when the k-polysymplectic manifolds admit a certain fibration. Such k-polysymplectic manifolds 
are here called k-polysymplectic fibred manifolds. Note that this result is very relevant, as it shows that k-polycosymplectic 
geometry is a particular case of k-polysymplectic geometry and it allows us to use the techniques of k-polysymplectic ge-
ometry to study k-polycosymplectic manifolds. In fact, this result is employed here to devise a k-polycosymplectic reduction 
from a k-polysymplectic fibred one.

It is convenient to stress that Theorem 6.7 connects a k-polycosymplectic structure on M with a k-polysymplectic struc-
ture on Rk × M . The larger dimension of the k-polysymplectic manifold may lead to certain complications. For example, 
Section 6.3 shows that Hamiltonian k-vector fields in the k-polycosymplectic realm are related to k-polysymplectic Hamilto-
nian k-vector fields with different equilibrium points, which may potentially introduce difficulties to study certain problems. 
For instance, [27] shows that the extension from cosymplectic Hamiltonian vector fields with equilibrium points may lead to 
Hamiltonian vector fields in the associated symplectic manifolds without them, which gives rise to problems, for instance, 
in the study of relative equilibrium points [27]. Briefly speaking, these extensions techniques are interesting for studying 
geometric structures in terms of others, but their interest is quite restricted for analysing associated dynamical systems.

Finally, a Marsden–Weinstein k-cosymplectic to �-cosymplectic reduction is presented. This reduction can be employed 
to reduce geometrically k-cosymplectic manifolds using k-cosymplectic Lie group symmetries that do not leave invariant the 
coordinates of the base manifold. As far as we know, this approach is pioneering in the literature and radically different from 
previous geometric results. The corresponding reduction of the HDW equations from a k-cosymplectic to an �-cosymplectic 
reduction is accomplished provided some technical conditions are satisfied. An application of our findings to a vibrating 
membrane is accomplished. The procedure is developed in such a way that a momentum map relative to a k-cosymplectic 
Lie group action for an original k-cosymplectic manifold allows for the reduction of the resulting �-cosymplectic manifold 
by our previous �-polycosymplectic Marsden–Weinstein reduction. An analogue result for HDW equations is devised.

Apart from the previous theoretical results, some applications of our findings to two coupled vibrating strings, a partic-
ular sort of vibrating membrane, and field theories with symmetries are accomplished.

The structure of the paper goes as follows. Section 2 introduces some basic notions from cosymplectic geometry. In 
particular, it presents three distinguished vector fields related to a smooth function on a cosymplectic manifold and set 
conventions to be used hereafter. Section 3 recalls the main results from the theory of non-Ad∗-equivariant momentum 
maps on cosymplectic manifolds and presents a generalisation of the Marsden–Weinstein reduction theorem to the cosym-
plectic setting. At the end of this section, the classical Marsden–Weinstein reduction is used to obtain a cosymplectic 
reduced manifold, this very slightly generalises a result in [18], while provides a very simple example about some of the 
ideas to be generalised in our main theorems. Section 4 defines and presents all crucial properties of k-polysymplectic 
and k-polycosymplectic manifolds. This section finishes with an example of a vibrating membrane subject to an external 
force, where the k-polycosymplectic setting applies. Section 5 generalises the notion of the k-polysymplectic momentum 
map by omitting the Ad∗k-equivariant condition, and as a byproduct, it also generalises the known k-polysymplectic re-
duction theorem for non-Ad∗k-equivariant k-polysymplectic momentum maps. Section 6 is divided into three subsections. 
k-Polycosymplectic momentum maps with and without Ad∗k-equivariance are defined in Sections 6.1 and 6.2, respectively. 
Section 6.3 performs a k-polycosymplectic reduction via an extended k-polysymplectic manifold and a k-polysymplectic re-
duction theorem. It also discusses the conditions essential to execute the reduction and comments on how these conditions 
recover via the approach presented in [51]. Section 7 demonstrates a k-polycosymplectic reduction in action on the examples 
of a product of cosymplectic manifolds and on a system consisting of two coupled vibrating strings. Finally, Section 8 stud-
ies Marsden–Weinstein reductions of k-cosymplectic to �-cosymplectic manifolds and other associated �-polycosymplectic 
reductions. Section 8 also analyses the associated reduction of HDW equations and it provides an example illustrating our 
techniques.

2. Cosymplectic geometry

Let us survey the basic notions and results on cosymplectic geometry and related concepts to be used in this work (see 
[27,47,48] for details). This will serve as a simple illustrative example of our further methods. M is hereafter assumed to be 
a manifold. Throughout the paper, all structures are assumed to be smooth and globally defined, unless otherwise stated. 
Manifolds are second-countable, Hausdorff, and connected. The sum over crossed repeated indices is understood unless 
indexes are hatted. Indexes have a standard range of values, which are implicitly assumed. In case a sum over an index 
is carried out over a non-standard range of values, a explanatory summation symbol will be explicitly written. This will 
mainly occur in Section 8.

Definition 2.1. Let M be a manifold equipped with a closed differential two-form ω ∈ �2(M) and a non-vanishing differen-
tial one-form τ ∈ �1(M) such that kerτ ⊕ kerω = TM . Then, (M, τ , ω) is called a cosymplectic manifold.

Given a point x ∈ M , the cosymplectic orthogonal of a subspace V x ⊂ TxM with respect to the cosymplectic manifold 
(M, τ , ω) is defined by

V ⊥ω
x = {zx ∈ TxM | ωx(zx, vx) = 0 , ∀vx ∈ V x} .
4
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Note that (M, τ , ω) is a cosymplectic manifold if and only if M is a (2n + 1)-dimensional manifold such that ωn ∧ τ is 
a volume form on M . Hence, cosymplectic manifolds are always orientable and odd-dimensional. Physically, cosymplectic 
manifolds appear in the description of t-dependent mechanical systems [2].

The Darboux theorem for cosymplectic manifolds [2,17,32,46] states that, given a cosymplectic manifold (M, τ , ω), each 
x ∈ M admits a local coordinate system {t, q1, . . . , qn, p1, . . . , pn} on an open neighbourhood of x so that

τ = dt , ω = dqi ∧ dpi .

Such local coordinates are called cosymplectic Darboux coordinates, although we will simply call them Darboux coordinates if 
it is clear from the context what we mean. Note that Darboux coordinates are not unique.

Every cosymplectic manifold (M, τ , ω) gives rise to a unique vector field R ∈ X(M), called the Reeb vector field of 
(M, τ , ω), characterised by

ιR τ = 1 , ιR ω = 0 .

In cosymplectic Darboux coordinates, the Reeb vector field reads R = ∂/∂t .

Definition 2.2. A cosymplectomorphism is a map ϕ : M1 → M2 between cosymplectic manifolds (M1, τ1, ω1) and (M2, τ2, ω2)

so that ϕ∗τ2 = τ1 and ϕ∗ω2 = ω1.

A cosymplectic manifold (M, τ , ω) leads to a vector bundle isomorphism � : TM → T∗M given by

vx ∈ TxM �−→ ιvx ωx + (ιvx τx)τx ∈ T∗
x M , ∀x ∈ M . (2.1)

Moreover, given closed differential forms τ ∈ �1(M) and ω ∈ �2(M), if the map � : TM → T∗M of the form (2.1) is a vector 
bundle isomorphism, then τ and ω give rise to a cosymplectic manifold (M, τ , ω).

From now on, (M, τ , ω) will always stand for a cosymplectic manifold. In cosymplectic geometry, every function f ∈
C ∞(M) allows one to define three distinguished types of vector fields given in the following definition.

Definition 2.3. Every function f ∈ C ∞(M) gives rise, via (M, τ , ω), to three relevant vector fields on M:

• A gradient vector field, namely

∇ f = �−1(d f ) , (2.2a)

which amounts to ι∇ f ω = d f − (R f )τ and ι∇ f τ = R f .
• A Hamiltonian vector field, X f , given by

X f = �−1(d f − (R f )τ ) , (2.2b)

which is equivalent to ιX f ω = d f − (R f )τ and ιX f τ = 0.
• An evolution vector field

E f = R + X f , (2.2c)

which is the unique vector field on M satisfying the conditions ιE f ω = d f − (R f )τ and ιE f τ = 1.

In Darboux coordinates for (M, τ , ω) around a point x ∈ M , the vector fields (2.2a), (2.2b), and (2.2c) read

∇ f = ∂ f

∂t

∂

∂t
+ ∂ f

∂ pi

∂

∂qi
− ∂ f

∂qi

∂

∂ pi
, X f = ∂ f

∂ pi

∂

∂qi
− ∂ f

∂qi

∂

∂ pi
,

and

E f = ∂

∂t
+ ∂ f

∂ pi

∂

∂qi
− ∂ f

∂qi

∂

∂ pi
.

These local expressions are quite convenient to understand, quickly, several results. The integral curves of E f are given, in 
Darboux coordinates, by the solutions of

dt

ds
= 1 ,

dqi

ds
= ∂ f

∂ pi
(t,q, p) ,

dpi

ds
= − ∂ f

∂qi
(t,q, p) , i = 1, . . . ,n , (2.3)

where (t, q, p) stands for (t, q1, . . . , qn, p1, . . . , pn).
Let N be a one-dimensional manifold and let (P , ωP ) be a symplectic manifold. Let us define a cosymplectic manifold 

on M = N × P and its related Hamilton equations. Let πN : M → N and let πP : M → P be the projections onto the first 
5
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and second factors of N × P , respectively. Then, ω = π∗
P ωP becomes a closed differential two-form on M . Meanwhile, a 

non-vanishing closed differential one-form τN on N gives rise to a non-vanishing closed differential one-form τ = π∗
NτN

on M and a cosymplectic manifold (M, τ , ω). If not otherwise stated, Darboux coordinates on (N × P , τ , ω) will be as-
sumed to be of the form {t, q1, . . . , qn, p1, . . . , pn}, where t is the pull-back to N × P of a primitive function of τN , while 
q1, . . . , qn, p1, . . . , pn are the pull-backs to M of some Darboux coordinates for ωP on P . For simplicity, it is common in the 
literature to denote the pull-backs of functions on N and P to M = N × P in the same manner as the initial variables in N
and P . Although this is a slight abuse of notation, it does not lead to any misunderstanding and simplifies the presentation 
of results.

If M =R × T∗ Q , τR = dt , ωT∗ Q = dqi ∧ dpi , then equations (2.3) lead to

dqi

dt
= ∂ f

∂ pi
(t,q, p) ,

dpi

dt
= − ∂ f

∂qi
(t,q, p) , i = 1, . . . ,n . (2.4)

Hence, (2.4) retrieves the Hamilton equations for a t-dependent Hamiltonian system on T∗ Q (see [1,26,27]).

Proposition 2.4. The gradient vector field of f ∈ C ∞(M) relative to (M, τ , ω) reads ∇ f = X f + (R f )R. Moreover, if R f is a locally 
constant function, then [R, X f ] = 0.

Every cosymplectic manifold (M, τ , ω) yields a Poisson bracket {·, ·}τ ,ω : C ∞(M) × C ∞(M) → C ∞(M) given by

{ f , g}τ ,ω = ω(∇ f ,∇g) = ω(X f , Xg) , ∀ f , g ∈ C ∞(M) ,

where the last equality results from Proposition 2.4 and ιR ω = 0. It can be proved that

X{ f ,g}τ ,ω = −[X f , Xg] , ∀ f , g ∈ C ∞(M) .

Then, the space of Hamiltonian vector fields relative to a cosymplectic manifold (M, τ , ω), let us say Ham(M, τ , ω), is a Lie 
algebra relative to the commutator of vector fields. Since C ∞(M) is, in particular, a Lie algebra relative to {·, ·}τ ,ω , there 
exists a Lie algebra homomorphism f ∈ C ∞(M) �→ −X f ∈ Ham(M, τ , ω).

3. Cosymplectic Marsden–Weinstein reduction

This section aims to introduce the notions and results needed to present the cosymplectic Marsden–Weinstein reduction 
[2,27] and to analyse its relation with the standard symplectic Marsden–Weinstein one. The ideas given in this section will 
be generalised in forthcoming sections, with the help of other new techniques, to devise a k-polycosymplectic reduction 
theory. Moreover, we here slightly generalise known facts on the relation of the cosymplectic and the symplectic Marsden–
Weinstein reductions by removing unnecessary technical conditions used in the previous literature [18].

3.1. Momentum maps and cosymplectic reductions

Definition 3.1. A cosymplectic Lie group action relative to (M, τ , ω) is a Lie group action � : G × M → M such that, for every 
g ∈ G , the map �g : x ∈ M �→ �(g, x) ∈ M is a cosymplectomorphism.

As M is assumed to be connected, � : G × M → M is a cosymplectic Lie group action for (M, τ , ω) if, and only if,

LξM τ = 0 , LξM ω = 0 , ∀ξ ∈ g ,

where ξM is the fundamental vector field of � related to ξ ∈ g, namely

ξM(x) = d

ds

∣∣∣∣
s=0

�(exp(sξ), x) , ∀x ∈ M .

Since dτ = 0, the condition LξM τ = 0 implies that ιξM τ takes a constant, not necessarily zero, value on M . This apparently 
minor detail has relevant applications in the reduction of cosymplectic manifolds to symplectic manifolds and their applica-
tions to circular restricted three-body problems (cf. [2,27]). As shown in Section 8, the fact that ιξM τ may not be zero will 
play a relevant role in the description of radically new types of Marsden–Weinstein reductions.

Definition 3.2. Consider a cosymplectic Lie group action � : G × M → M relative to (M, τ , ω) such that ιξM τ = 0 for every 
ξ ∈ g. A cosymplectic momentum map for the Lie group action � is a map J� : M → g∗ such that

ιξM ω = d〈J�, ξ〉 = d Jξ , R Jξ = 0 , ∀ξ ∈ g .
6
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Instead of the term “cosymplectic momentum map”, we will frequently use the term “momentum map” when it is clear 
from the context what we mean. The condition R Jξ = 0, for every ξ ∈ g, is required to apply the cosymplectic reduction 
theorem to be introduced afterwards in this section. This condition is not too restrictive, as many relevant non-autonomous 
Hamiltonian systems satisfy it [27]. It is worth noting that only cosymplectic Lie group actions whose fundamental vector 
fields are Hamiltonian admit cosymplectic momentum maps.

Before continuing our exposition on cosymplectic geometry, it is appropriate to recall that every Lie group action � :
G × M → M amounts to a Lie group whose elements are the diffeomorphisms �g : M � m �→ �(g, m) ∈ M for every g ∈ G . 
Moreover, every Lie group G acts on itself by inner automorphisms, namely G gives rise to a Lie group action I : (g, h) ∈
G × G �→ I g(h) = ghg−1 ∈ G , whose mappings I g : h ∈ G �→ I(g, h) ∈ G , with g ∈ G , are called inner automorphisms. This leads 
to the adjoint action of G on its Lie algebra g, which takes the form Ad : (g, v) ∈ G × g �→ Adg(v) = Te I g(v) ∈ g. In turn, the 
adjoint action gives rise to the co-adjoint action Ad∗ : (g, ϑ) ∈ G × g∗ �→ Ad∗

g−1 ϑ = ϑ ◦ Adg−1 ∈ g∗ . It is worth stressing that, 
according to our notation, (Ad∗)g = Ad∗

g−1 .
Hereafter, a cosymplectic manifold (M, τ , ω) will be sometimes denoted by Mω

τ to shorten the notation.

Definition 3.3. The triple (Mω
τ , h, J�) is called a G-invariant cosymplectic Hamiltonian system relative to (M, ω, τ ) when � is a 

cosymplectic Lie group action such that �∗
gh = h for every g ∈ G , and J� : M → g∗ is a cosymplectic momentum map related 

to �. An Ad∗-equivariant G-invariant cosymplectic Hamiltonian system is a G-invariant cosymplectic Hamiltonian system with 
an Ad∗-equivariant momentum map, namely J� ◦ �g = Ad∗

g−1 ◦ J� for every g ∈ G .

The following technical result, which is well-known [1], will be of interest.

Lemma 3.4. If � : G × M → M is a Lie group action, then 
(
Adg∗ ξ

)
M = �g∗ξM for every g ∈ G and ξ ∈ g.

In Marsden–Weinstein reductions, the role played by the co-adjoint action can be substituted by means of a new action 
on g∗ (see [27,59]), whose form is justified by means of the following propositions and results.

Proposition 3.5. Let (Mω
τ , h, J�) be a G-invariant cosymplectic Hamiltonian system. Define the functions ψg,ξ ∈ C ∞(M) of the form

ψg,ξ = Jξ ◦ �g − JAdg−1 ξ , ∀g ∈ G, ∀ξ ∈ g .

Then, ψg,ξ is constant on M for every g ∈ G and ξ ∈ g. Moreover, the mapping σ : G � g �→ σ(g) ∈ g∗ determined by 〈σ(g), ξ〉 = ψg,ξ

satisfies

σ(gh) = σ(g) + Adg−1 σ(h) , (3.1)

and

σ(g) = J�(�g(x)) − Ad∗
g−1 J�(x) , ∀g,h ∈ G , ∀x ∈ M ,

where Ad∗
g−1 ϑ = ϑ ◦ Adg−1 for all g ∈ G and ϑ ∈ g∗ .

The mapping σ defined in Proposition 3.5 is called the co-adjoint cocycle associated with the cosymplectic momentum 
map J� on M . It steams from Proposition 3.5 that J� is Ad∗-equivariant if and only if σ = 0. Hence, σ measures the lack of 
Ad∗-equivariance of its associated momentum map. A map σ : G → g∗ is a coboundary, if there exists μ ∈ g∗ such that

σ(g) = μ − Ad∗
g−1 μ, ∀g ∈ G.

Every coboundary satisfies the relation (3.1), which motivates that it is also called a co-adjoint cocycle. The space of 
co-adjoint cocycles on a Lie group G admits an equivalence relation, whose equivalence classes, the so-called cohomology 
classes, are determined by setting that two co-adjoint cocycles are related if their difference is a coboundary. The following 
proposition shows that a cosymplectic Lie group action admitting a cosymplectic momentum map with associated co-adjoint 
cocycle σ is such that it gives rise to cohomology class [σ ] that is independent of the chosen associated cosymplectic 
momentum map.

Proposition 3.6. Let � : G × M → M be a cosymplectic action. If J�1 and J�2 are two momentum maps with co-adjoint cocycles σ1
and σ2 , respectively, then [σ1] = [σ2].

If a momentum map J� : M → g∗ associated with a Lie group action � : G × M → M is equivariant with respect to a 
Lie group action � : G × g∗ → g∗ , then it is said that J� is �-equivariant. That is why the following proposition can be 
summarised by saying that J� is �-equivariant for the so-called affine Lie group action � : G × g∗ → g∗ to be defined by J� .
7
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Proposition 3.7. Let J� : M → g∗ be a momentum map associated with a cosymplectic Lie group action � : G × M → M with co-
adjoint cocycle σ . Then,

(1) the map � : G × g∗ � (g, μ) �→ �g = Ad∗
g−1 μ + σ(g) ∈ g∗ is a Lie group action,

(2) the cosymplectic momentum map J� is equivariant with respect to �, in other words, every g ∈ G gives rise to a commutative 
diagram

M M

g∗ g∗.

�g

J� J�

�g

Theorem 3.8. Let � : G × M → M be a cosymplectic Lie group action with a cosymplectic momentum map J� : M → g∗ and let 
σ : G → g∗ be the co-adjoint cocycle associated with J�. Define

σν : G � g �−→ 〈σ(g), ν〉 ∈R , � : g× g � (ξ1, ξ2) �−→ Teσξ2(ξ1) ∈R , ∀ν ∈ g .

Then,

(1) the map � is a skew-symmetric bilinear form on g satisfying that

�(ξ, [ζ, ν]) + �(ν, [ξ, ζ ]) + �(ζ, [ν, ξ ]) = 0 , ∀ξ, ζ, ν ∈ g ,

(2) �(ξ, ν) = { Jν, Jξ }τ ,ω − J [ν,ξ ] for all ξ, ν ∈ g.

Recall that if J� is an Ad∗-equivariant momentum map, then its associated co-adjoint cocycle satisfies σ(g) = 0 for every 
g ∈ G . Thus, �(ξ, η) = 0 for all ξ, η ∈ g and the following corollary becomes an immediate consequence of Theorem 3.8.

Corollary 3.9. If J� : M → g∗ is an Ad∗-equivariant momentum map relative to (M, τ , ω), then

{ Jξ , Jη}τ ,ω = J [ξ,η] , ∀ξ,η ∈ g .

In other words, λ : ξ ∈ g �→ Jξ ∈ C ∞(M) is a Lie algebra homomorphism.

Let us give some technical definitions that are useful to remove certain conditions appearing in many Marsden–Weinstein 
reduction theories [51].

Recall that a weakly regular value of J� : M → g∗ is a point μ ∈ g∗ such that J�−1(μ) is a submanifold in M and 
Tx(J�−1(μ)) = ker TxJ� for every x ∈ J�−1(μ) (see [2]). It is hereafter assumed that μ ∈ g∗ is a weakly regular value 
of J� . Additionally, we also assume that the isotropy subgroup G�

μ of μ ∈ g∗ relative to the affine Lie group action 
� : G × g∗ → g∗ acts via � on J�−1(μ) in a quotientable manner, namely J�−1(μ)/G�

μ is a manifold and the projection 
πμ : J�−1(μ) → J�−1(μ)/G�

μ is a submersion. To guarantee that J�−1(μ)/G�
μ is a manifold, one may require G�

μ to act 
freely and properly on J�−1(μ) (see [1,2,27] for details).

Let us enunciate, without proofs, the generalisation to the cosymplectic realm of the standard symplectic Marsden–
Weinstein reduction (see [2,27] for details).

Lemma 3.10. Let μ ∈ g∗ be a weak regular value of a momentum map J� : M → g∗ associated with a cosymplectic Lie group action 
� : G × M → M relative to (M, τ , ω) and let G�

μ be the isotropy group at μ ∈ g∗ of the action � : G × g∗ → g∗ relative to the 
co-adjoint cocycle σ : G → g∗ of J� . Then, for every x ∈ J�−1(μ), one has

(1) Tx(G�
μx) = Tx(Gx) ∩ Tx(J�−1(μ)),

(2) Tx(J�−1(μ)) = Tx(Gx)⊥ω ,

(3)
(
TxJ�−1(μ)

)⊥ω = Tx(Gx) ⊕ 〈Rx〉.

Theorem 3.11. Let � : G × M → M be a cosymplectic Lie group action relative to the cosymplectic manifold (M, τ , ω) and associated 
with a cosymplectic momentum map J� : M → g∗ . Assume that μ ∈ g∗ is a weakly regular value of J� and let J�−1(μ) be quotientable 
with respect to the action of G�

μ induced by �. Let jμ : J�−1(μ) ↪→ M be the natural immersion and let πμ : J�−1(μ) → M�
μ =

J�−1(μ)/G�
μ be the canonical projection. Then, there exists a unique cosymplectic manifold (M�

μ, τμ, ωμ) such that

j∗
μτ = π∗

μτμ , j∗
μω = π∗

μωμ .
8
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3.2. Cosymplectic and symplectic Marsden–Weinstein reductions

Let us recall how the cosymplectic Marsden–Weinstein reduction can be reformulated by using the classical Marsden–
Weinstein reduction theorem (see [18] for details). To start with, the following lemma ensures that every cosymplectic 
manifold naturally gives rise to a symplectic form on a manifold of a larger dimension (see [27] for details). This idea will be 
generalised in the following sections to devise a k-polycosymplectic Marsden–Weinstein reduction from a k-polysymplectic 
one.

Lemma 3.12. Let ω′ ∈ �2(M), τ ′ ∈ �1(M) and consider the canonical projection pr : R × M → M. Let u be the pull-back to R × M
of the natural coordinate in R relative to the projection πR :R × M →R. Then, (M, τ ′, ω′) is a cosymplectic manifold if and only if 
(R × M, ω̃′ = pr∗ω′ + du ∧ pr∗τ ′) is a symplectic manifold. Moreover, pr is a Poisson morphism, i.e.

{ f1, f2}τ ,ω ◦ pr = { f1 ◦ pr, f2 ◦ pr}ω̃′ , ∀ f1, f2 ∈ C ∞(R× M) .

Let � : G × M → M be a cosymplectic Lie group action with an associated cosymplectic momentum map J� : M → g∗
relative to (M, τ , ω). Then, � and J� can be extended to R × M in the following ways, respectively,

�̃ : (g, u, x) ∈ G ×R× M �→ (u,�g(x)) ∈R× M

and

J�̃ : (u, x) ∈ R× M �→ J�(x) ∈ g∗ .

The fundamental vector fields ξM , with ξ ∈ g, related to �, can be understood as vector fields on R × M via the isomor-
phisms T(u,x)(R × M) � TuR × TxM for every (u, x) ∈ R × M . In this manner, they are locally Hamiltonian relative to ω̃ if 
and only if d(R Jξ ) = 0 (see [27]). Hence, the condition R Jξ = 0 ensures that �̃ admits a momentum map J�̃ relative to the 
symplectic manifold (R × M, ̃ω), namely ιξR×M ω̃ = d〈J�̃, ξ〉. Moreover, if J� is �-equivariant with respect to �, then J�̃ is 
also �-equivariant with respect to �̃. Further, since J�̃−1(μ) �R × J�−1(μ) for every μ ∈ g∗ and pr◦ �̃g = �g ◦pr for every 
g ∈ G , i.e. �̃ does not change the first component of R × M , then J�̃−1(μ) is quotientable by G�

μ if and only if J�−1(μ) is 
so. Moreover, μ ∈ g∗ is a (resp. weak) regular value of J� if and only if μ is a (resp. weak) regular value of J�̃ . Therefore, we 
can apply the Marsden–Weinstein reduction theorem to the symplectic manifold (R × M, ̃ω) to obtain a reduced symplectic 
manifold M̃�

μ = J�̃−1(μ)/G�
μ endowed with the reduced symplectic form, ω̃μ , determined univocally by the condition

j̃ ∗
μ ω̃ = π̃∗

μω̃μ ,

where j̃μ : J�̃−1(μ) ↪→ R × M is the natural immersion and π̃μ : J�̃−1(μ) → J�̃−1(μ)/G�
μ is the canonical projection 

[1]. Note that M̃�
μ � (R × J�−1(μ))/G�

μ � R × M�
μ , where M�

μ = J�−1(μ)/G�
μ . Then, a reduced cosymplectic manifold 

(M�
μ, τμ, ωμ) can be retrieved from ω̃μ in the following way

τμ = ι∗u
(
ι∂/∂u ω̃μ

)
, ωμ = ι∗uω̃μ ,

where ιu : M�
μ � [x] �→ (u, [x]) ∈R × M�

μ and [x] stands for the orbit of x ∈ J�−1(μ) relative to G�
μ . In particular,

dωμ = dι∗uω̃μ = ι∗udω̃μ = 0 , dτμ = dι∗u
(
ι∂/∂u ω̃μ

) = ι∗u
(
L∂/∂uω̃μ

) = 0 ,

where the last equality holds since L∂/∂uω̃μ = 0. Moreover, if X ∈X(M�
μ), then ιu∗ X takes values in ker du. If, additionally, 

ιX ωμ = 0 and ιX τμ = 0, then ιιu∗ X ω̃μ = 0 and X = 0 because ω̃μ is symplectic. Hence, kerωμ ∩ kerτμ = 0. A Reeb vector 
field R on M gives rise to a unique vector field R̃ on R × M projecting onto M via pr and taking values in ker du. Since 
R̃ is tangent to J�̃−1(μ) and projectable onto a vector field R̃μ on M̃�

μ , one has that ιRμτμ = ιR̃μ
ι∂/∂uω̃μ = ιR ι∂/∂uω = 1. 

Hence, τμ is different from zero, and (M�
μ, τμ, ωμ) becomes a cosymplectic manifold. It can be shown that (M�

μ, τμ, ωμ)

does not depend on the particular map ιu . Indeed, this fact can be considered as a particular consequence of the proof of 
Theorem 6.13.

The above approach shows that the cosymplectic Marsden–Weinstein reduction can be obtained through a symplectic 
reduction on R × M of a particular type. Note that instead of T =R, one can also consider T =S1 endowed with dθ , where 
θ is a locally defined angular coordinate on S1 giving rise to a global closed differential one-form. The above procedure is 
analogous in this latter case.

What has not been stressed so far in the literature is that the above discussion also implies that cosymplectic geometry 
can be understood as a type of symplectic geometry in a larger manifold. Although this can be of interest, it is known that 
the extension of mathematical entities on a cosymplectic manifold to a symplectic one of a larger dimension may change 
the properties of such entities in such a way that their study may be more complicated. This may happen, for instance, in 
the study of energy-momentum methods [27].
9
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4. Fundamentals on geometric field theory

Let us review the geometric fundamentals needed to develop our further geometric formulation for Hamiltonian field 
theories (see [3,23,35,37,50,51,57] for details on k-polysymplectic and k-polycosymplectic formalisms). We hereafter assume 
that Rk has a fixed basis {e1, . . . , ek} giving rise to a dual basis {e1, . . . , ek} in Rk∗ .

4.1. k–Polysymplectic and k–symplectic manifolds

This section surveys the theory of k-polysymplectic, polysymplectic, k-symplectic structures, and related concepts that 
appear in the literature and the terminology to be employed in this work. This introduces the definitions to be used and 
allows one to understand the relations between the results of our work and other previous ones. This description is quite 
relevant as the terminology appearing in the literature is not unified and the same term can refer to different not equivalent 
geometric concepts. Some examples of this can be found in the foundational works by Günther [37] and Awane [3].

Definition 4.1. A k-polysymplectic form on M is a closed non-degenerate Rk-valued differential two-form

ω = ωα ⊗ eα ∈ �2(M,Rk) .

The pair (M, ω) is called a k-polysymplectic manifold.

k-Polysymplectic manifolds are called, for simplicity, polysymplectic manifolds in the literature (see [51] for instance). 
Nevertheless, the latter term refers to a different notion that is shown below. That is why we will not simplify the term 
‘k-polysymplectic manifold’ and other related ones in our work so as to avoid misunderstandings. It is worth noting that M
has a k-polysymplectic form ω if, and only if, there exists a family of k closed two-forms ω1, . . . , ωk ∈ �2(M) such that

kerω = ker(ωα ⊗ eα) =
k⋂

α=1

kerωα = 0 .

Hereafter, Rk-valued differential forms will be written in bold. Now, we can define polysymplectic manifolds as follows.

Definition 4.2. Let M be an n(k + 1)-dimensional manifold. Then,

• A polysymplectic structure on M is a differential two-form taking values in Rk given by ω = ωα ⊗ eα ∈ �2(M, Rk) for 
certain ω1, . . . , ωk ∈ �2(M) such that

kerω =
k⋂

α=1

kerωα = 0 .

In this case, (M, ω) is called a polysymplectic manifold.
• A k-symplectic structure on M is a pair (ω, V ), where (M, ω) is a polysymplectic manifold and V ⊂ TM is an integrable 

distribution on M of rank nk such that

ω|V ×V = 0 .

In this case, (M, ω, V ) is a k-symplectic manifold. We call V a polarisation of the k-symplectic manifold.

If the two-form ω is exact, namely ω = dθ for some θ ∈ �1(M, Rk), in any of the above-mentioned concepts introduced in 
Definition 4.2, then such concepts are said to be exact.

The previous k-symplectic manifold notion coincides with the one given by A. Awane [3,4]. In addition, it is locally 
equivalent to the concepts of standard polysymplectic structure of C. Günther [37] (they are globally equivalent provided there 
exist compatible Darboux charts1) and globally equivalent to the integrable p-almost cotangent structure introduced by M. de 
León et al. [20,21]. In the case of k = 1, Awane’s definition reduces to the notion of polarised symplectic manifold, namely a 
symplectic manifold with a Lagrangian distribution [19].

Günther calls polysymplectic manifolds the differential geometric structures obtained from our k-symplectic definition 
by removing the existence of the distribution V . Meanwhile, a standard polysymplectic manifold in Günther’s paper [37]
is a polysymplectic manifold admitting local Darboux coordinates, which is equivalent to our definition of a k-symplectic 

1 Note that it is not clear what Günther means by an atlas of canonical charts, namely which is the equivalence between different pairs of Darboux 
charts.
10
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manifold. Note that the condition concerning the polarisation V in the definition of a k-symplectic structure is necessary to 
ensure the existence of an atlas of compatible Darboux-type coordinates (see [3,36] and [61, p. 57]) and vice versa.

It is very important to remark that the polysymplectic reduction in [51] does not rely on any relationship between the 
dimension of the manifold and the number k of the k-polysymplectic form ω on it. It is also relevant to stress that the 
polysymplectic manifold term in [51] is just a simplification of the term k-polysymplectic manifold, which is defined in 
our work. Finally, Definition 4.2 leads to a linear analogue definition by assuming ω to be restricted to a point x ∈ M . This 
allows us to define k-polysymplectic structures on linear spaces, k-polysymplectic spaces, and so on. In such cases, one assumes 
ω ∈ �2 E∗ ⊗Rk , where E is a vector space and �2 E∗ stands for the space of two-covectors on E while V is substituted by 
a linear subspace W ⊂ E .

Example 4.3 (Canonical model for k-symplectic manifolds). Let Q be an n-dimensional manifold and consider the Whitney sum

k⊕
T∗ Q = T∗ Q ⊕Q

(k)· · · ⊕Q T∗ Q ,

with natural projections πα : ⊕k T∗ Q → T∗ Q , from the α-th component of 
⊕k T∗ Q onto T∗ Q , with α = 1, . . . , k, and 

πQ : ⊕k T∗ Q → Q . A coordinate system {qi} in Q induces a natural coordinate system {qi, pα
i } in 

⊕k T∗ Q , where α
ranges from 1 to k. Consider the canonical forms in the cotangent bundle T∗ Q of Q given by θ ∈ �1(T∗ Q ) and ω = −dθ ∈
�2(T∗ Q ). Hence, the Whitney sum 

⊕k T∗ Q has the canonical forms taking values in Rk given by

θk = (πα)∗θ ⊗ eα , ωk = −dθk ,

which, in natural coordinates {qi, pα
i } in 

⊕k T∗ Q , read

θk = pα
i dqi ⊗ eα , ωk = dqi ∧ dpα

i ⊗ eα .

Taking all this into account, the triple (
⊕k T∗ Q , ωk, Vk), with Vk = ker TπQ , is a k-symplectic manifold. Notice that the 

natural coordinates {qi, pα
i } in 

⊕k T∗ Q are the canonical example of k-symplectic Darboux coordinates.

Given a k-symplectic manifold (M, ω, V ), the vector bundle morphism

� : (v1, . . . , vk) ∈
k⊕

TM �−→ ιvα 〈ω, eα〉 ∈ T∗M ,

induces a morphism of C ∞(M)-modules � : Xk(M) → �1(M). The morphism � is surjective because the annihilator of its 
image belongs to 

⋂k
α=1 kerωα = kerω = 0.

4.2. k–Polycosymplectic and k–cosymplectic manifolds

Non-autonomous field theories can be modelled by means of the so-called k-polycosymplectic [50] and k-cosymplectic 
[23] geometries. Let us introduce the basic definitions related to these geometric theories.

Definition 4.4. A k-polycosymplectic structure on M is a pair (τ , ω), where τ ∈ �1(M, Rk) and ω ∈ �2(M, Rk) are closed 
differential one- and two-forms taking values in Rk such that

rank kerω = rank

(
k⋂

α=1

kerωα

)
= k , kerω ∩ kerτ =

k⋂
α=1

(kerτα ∩ kerωα) = 0 .

In this case, (M, τ , ω) is called a k-polycosymplectic manifold. If, in addition, dim M = k + n(k + 1) for a certain n ∈ N , it is 
said that (M, τ , ω) is a polycosymplectic manifold and (τ , ω) is a polycosymplectic structure.

Definition 4.5. A k-cosymplectic structure on M is a family (τ , ω, V ), where (τ , ω) is a polycosymplectic structure on M and 
V ⊂ TM is a distribution of rank nk on M such that

τ |V = 0 and ω|V ×V = 0 .

Then, (M, τ , ω, V ) is k-cosymplectic manifold.

If ω is exact, namely ω = dθ for some θ ∈ �1(M, Rk), the polycosymplectic (resp. k-polycosymplectic or k-cosymplectic) 
structure is said to be exact. If not otherwise stated, we will assume that the indices α, β range from 1 to k. Throughout 
the paper, Mω

τ will be sometimes used to denote a k-polycosymplectic manifold (M, τ , ω). This will allow for shortening 
11
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the notation. Note that Definition 4.4 and Definition 4.5 can be immediately modified to define a linear analogue, namely 
by assuming τ ∈ E∗ ⊗Rk and ω ∈ �k E∗ ⊗Rk for a linear space E and �k E∗ being the space of k-covectors of E .

For clarity, it is convenient to prove the following result. Moreover, this will be necessary to relate our k-polycosymplectic 
manifolds to a certain type of k-polysymplectic manifolds.

Proposition 4.6. Let (M, τ , ω) be a k-polycosymplectic manifold. There exists a unique family of vector fields R1, . . . , Rk on M, called 
Reeb vector fields, such that

ιRα τ = eα , ιRα ω = 0 , α = 1, . . . ,k . (4.1)

Proof. By Definition 4.4, one has kerτ ∩ kerω = 0, which means that, if τ = τα ⊗ eα , then τ 1 ∧ . . . ∧ τ k does not vanish on 
D = kerω. The distribution D has rank k by the definition of a k-polycosymplectic manifold. Therefore, τ 1

x |Dx , . . . , τ k
x |Dx are 

linearly independent at every x ∈ M and the restrictions of τ 1, . . . , τ k to D admit a unique dual basis R1, . . . , Rk of vector 
fields on M taking values in D . Then, the vector fields R1, . . . , Rk satisfy the conditions (4.1). �
4.3. k–Vector fields and integral sections

The notion of a k-vector field is of great use in the geometric study of partial differential equations [51]. In particular, 
the dynamics of the so-called k-polycosymplectic Hamiltonian systems are determined by k-vector fields. Moreover, the 
reduction of a k-polycosymplectic Hamiltonian system is accomplished by reducing an associated Hamiltonian k-vector 
field. Let us present some relevant details.

Consider the Whitney sum of k copies of the tangent bundle to M , namely 
⊕k TM = TM ⊕M

(k)· · · ⊕M TM , and the natural 
projections

prα :
k⊕

TM → TM , pr1
M :

k⊕
TM → M, α = 1, . . . ,k.

Definition 4.7. A k-vector field on a manifold M is a section X : M → ⊕k TM of pr1
M . The space of k-vector fields on M is 

denoted by Xk(M).

⊕k TM

M TM

prα

Xα

X

Taking into account the commutative diagrams above, which are concerned with α = 1, . . . , k, a k-vector field X ∈Xk(M)

amounts to k vector fields X1, . . . , Xk ∈ X(M) such that Xα = prα ◦ X with α = 1, . . . , k. With this in mind, it makes sense 
to denote X = (X1, . . . , Xk). A k-vector field X = (X1, . . . , Xk) induces a decomposable contravariant skew-symmetric tensor 
field, X1 ∧ · · · ∧ Xk , which is a section of the bundle 

∧k TM → M . This also induces a (generalised) distribution on M
spanned by the vector fields X1, . . . , Xk on M .

Definition 4.8. Given a map φ : U ⊂Rk → M , its first prolongation to 
⊕k TM is the map φ′ : U ⊂Rk → ⊕k TM defined by

φ′(s) =
(

φ(s);Tφ

(
∂

∂s1

∣∣∣∣
s

)
, . . . ,Tφ

(
∂

∂sk

∣∣∣∣
s

))
= (φ(s);φ′

1(s), . . . , φ′
k(s)) ,

where s = (s1, . . . , sk) and {s1, . . . , sk} are the canonical coordinates of Rk .

Analogously to the case of integral curves of vector fields, one can define integral sections of a k-vector field as follows.

Definition 4.9. Let X = (X1, . . . , Xk) ∈ Xk(M) be a k-vector field. An integral section of X is a map φ : U ⊂Rk → M such that

φ′ = X ◦ φ ,

that is, Tφ ◦ ∂
∂sα = Xα ◦ φ for α = 1, . . . , k. A k-vector field X ∈ Xk(M) is integrable if every point of M is in the image of an 

integral section of X.
12



J. de Lucas, X. Rivas, S. Vilariño et al. Journal of Geometry and Physics 191 (2023) 104899
Consider a k-vector field X = (X1, . . . , Xk) on M with a local expression

Xα = Xi
α

∂

∂xi
, α = 1, . . . ,k ,

where i ranges from 1 to dim M . Then, φ : s ∈ U ⊂Rk �→ φ(s) ∈ M is an integral section of X if, and only if, φ is a solution 
of the system of partial differential equations

∂φi

∂sα
= Xi

α(φ) , i = 1, . . . ,dim M, α = 1, . . . ,k .

Let X = (X1, . . . , Xk) be a k-vector field on M . Then, X is integrable if, and only if, [Xα, Xβ ] = 0 for α, β = 1, . . . , k. 
These are precisely the necessary and sufficient conditions for the integrability of the above systems of partial differential 
equations in normal form, namely the partial derivatives of the coordinates φ at a point of M can be written as functions of 
the value of φ at that point [44].

4.4. Non-autonomous field theory

Given an Rk-valued differential �-form θ = θα ⊗ eα ∈ ��(M, Rk), the contraction of θ with a vector field X ∈ X(M) is 
defined as

ιX θ = (ιX θα) ⊗ eα ∈ ��−1(M,Rk) .

For a k-vector field X = (X1, . . . , Xk) ∈Xk(M), its contraction with θ reads

ιX θ = ιXα θα ∈ ��−1(M) .

The exterior product of two Rk-valued differential forms ϑ = ϑα ⊗ eα ∈ ��1 (M, Rk) and μ = μα ⊗ eα ∈ ��2 (M, Rk) is 
defined as follows

ϑ �μ =
k∑

α=1

(ϑα ∧ μα) ⊗ eα ∈ ��1+�2(M,Rk) .

The above definitions will be very useful to simplify the notation of our further theory. Note that a point-wise analogue 
of the above definitions can be defined mutatis mutandis. In particular, the latter conveys implicitly some definitions for the 
contraction of elements of E or E ⊗Rk with E∗ ⊗Rk for a vector space E .

Definition 4.10. Let (M, τ , ω) be a k-polycosymplectic manifold and let h ∈ C ∞(M). Then, (M, τ , ω, h) is called a k-
polycosymplectic Hamiltonian system. A k-vector field on M , let us say X = (X1, . . . , Xk) ∈ Xk(M), is a k-polycosymplectic 
Hamiltonian k-vector field if it is a solution to the system of equations{

ιX ω = dh − (Rαh)τα ,

ιXβ τ = eβ ,
β = 1, . . . ,k. (4.2)

The function h is the Hamiltonian function of X. Hereafter, Xk
ham(M, τ , ω) stands for the space of k-polycosymplectic Hamil-

tonian k-vector fields on M .

If the k-polycosymplectic manifold is understood from the context, we will simply write Xk(M) for its space of 
Hamiltonian k-polycosymplectic vector fields on M . It is worth noting that every function f ∈ C ∞(M) admits different 
k-polycosymplectic Hamiltonian k-vector fields. If k = 1, Definition 4.10 retrieves the notion of a cosymplectic Hamiltonian 
system.

Suppose that, around a point x ∈ M , we have Darboux coordinates {tα, qi, pα
i } and consider now a k-vector field X =

(X1, . . . , Xk) ∈Xk(M) given locally by

Xα = (Xα)β
∂

∂tβ
+ (Xα)i ∂

∂qi
+ (Xα)

β

i

∂

∂ pβ

i

.

If X is a k-polycosymplectic Hamiltonian vector field, conditions (4.2) give

(Xα)β = δ
β
α ,

∂h

∂ pβ
= (Xβ)i ,

∂h

∂qi
= −

k∑
(Xα)αi .
i α=1

13
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This shows that every h ∈ C ∞(M) may have different k-polycosymplectic Hamiltonian k-vector fields. Let ψ : Rk → M be 
an integral section with local expression

ψ(s) = (tα(s),qi(s), pα
i (s)) , s ∈ Rk ,

of a k-polycosymplectic Hamiltonian k-vector field X. In this case, ψ satisfies the systems of partial differential equations

∂tβ

∂sα
= δ

β
α ,

∂qi

∂sα
= ∂h

∂ pα
i

,

k∑
α=1

∂ pα
i

∂sα
= − ∂h

∂qi
. (4.3)

Example 4.11 (The vibrating membrane with external force). Consider a horizontal vibrating membrane with coordinates {x, y}
subjected to a time-dependent external force given by a function f (t, x, y). The phase space of this system is M = R3 ×⊕3 T∗R and it admits global Darboux coordinates {t, x, y, ζ, pt , px, p y}, where u stands for the distance of every point 
in the membrane with respect to its equilibrium position, and pt , px, p y are the corresponding momenta. This system is 
described by the Hamiltonian function h ∈ C ∞(M) given by

h(t, x, y, ζ, pt, px, p y) = 1

2
(pt)2 − 1

2c2
(px)2 − 1

2c2
(p y)2 − ζ f (t, x, y) ,

where c ∈ R is a constant related to the physical features of the membrane, which takes into account its properties and 
tension. In this case, equations (4.3) for a section

ψ : (t, x, y) ∈R3 �→ (t, x, y, ζ(t, x, y), pt(t, x, y), px(t, x, y), p y(t, x, y)) ∈R3 × ⊕3
α=1 T∗R

yield

∂ pt

∂t
+ ∂ px

∂x
+ ∂ p y

∂ y
= f (t, x, y) ,

∂ζ

∂t
= pt ,

∂ζ

∂x
= − 1

c2
px ,

∂ζ

∂ y
= − 1

c2
p y .

Note that the use of {t, x, y} as the coordinates of the domain of an integral section of Xh̃ is a slight abuse of notation 
that is nevertheless common in the literature [61] and it will be hereafter employed in this work. Combining the previous 
equations, we obtain the equation of a forced vibrating membrane, namely

∂2ζ

∂t2
− 1

c2

(
∂2ζ

∂x2
+ ∂2ζ

∂ y2

)
= f (t, x, y) .

To describe this system in polar coordinates, we can consider the Hamiltonian function

h̃(t, r, θ, ζ, pt, pr, pθ ) = 1

2r

(
(pt)2 − 1

c2
(pr)2 − r2

c2
(pθ )2

)
− rζ f (t, r, θ) ,

and now equations (4.3) for a section

ψ : (t, r, θ) ∈ R3 �→ (t, r, θ, ζ(t, r, θ), pt(t, r, θ), px(t, r, θ), p y(t, r, θ)) ∈R3 × ⊕3
α=1 T∗R

become

∂ pt

∂t
+ ∂ pr

∂r
+ ∂ pθ

∂θ
= r f (t, r, θ) ,

∂ζ

∂t
= 1

r
pt ,

∂ζ

∂r
= − 1

rc2
pr ,

∂ζ

∂θ
= − r

c2
pθ .

Combining these equations, the equation of a forced vibrating membrane in polar coordinates reads

∂2ζ

∂t2
− c2

(
∂2ζ

∂r2
+ 1

r

∂ζ

∂r
+ 1

r2

∂2ζ

∂θ2

)
= f (t, r, θ) .

5. k–Polysymplectic Marsden–Weinstein reduction without Ad∗–equivariance

This section introduces the notion of a momentum map for k-polysymplectic manifolds. In particular, we present Ad∗k-
equivariant k-polysymplectic momentum maps, which are well-known in Section 5.1. A theory of affine Lie group actions 
for k-polysymplectic manifolds, which seems to be new, will be devised in Section 5.2. We will show that Ad∗k-equivariance 
is not required to achieve a k-polysymplectic Marsden–Weinstein reduction in Section 5.3.
14
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5.1. k–Polysymplectic momentum maps

The following definition introduces a fundamental class of Lie group actions preserving a k-polysymplectic form. As 
shown later, these actions play a crucial role in the Marsden–Weinstein k-polysymplectic reduction theory.

Definition 5.1. An action � : G × P → P of a Lie group G on a k-polysymplectic manifold (P , ω) is said to be a k-
polysymplectic Lie group action if �∗

gω = ω for each g ∈ G .

Definition 5.2. A k-polysymplectic momentum map for a Lie group action � : G ×P → P relative to a k-polysymplectic manifold 
(P , ω) is a map J� : P → (g∗)k such that

ιξP ω = (ιξP ω
α) ⊗ eα = d

〈
J�, ξ

〉
, ∀ξ ∈ g. (5.1)

Note that equation (5.1) implies that J� : P → (g∗)k satisfies

ιξ P
ω = d

〈
J�, ξ

〉
, ∀ξ ∈ gk, (5.2)

where ξ P is the k-vector field on P whose k vector field components are the fundamental vector fields of � related to the 

k-components of ξ ∈ gk . If we write ξ = (0, . . . , 
(α)

ξ , . . . , 0) ∈ gk for any ξ ∈ g and α = 1, . . . , k and impose (5.2) to hold for 
a basis {ξ1, . . . , ξr} for g, we obtain kr conditions, which uniquely fix the value of the kr coordinates of J� . Conversely, the 
equation (5.1) evaluated on the previous basis of g imposes r conditions for each one of the k components of J� , giving rise 
to kr conditions.

The following definition is well-known and widely used in the literature [51], but we changed the notation of Coadk to 
Ad∗k to shorten it. Nevertheless, we will see later that the Ad∗k-equivariance condition is not necessary.

Definition 5.3. A k-polysymplectic momentum map J� : P → (g∗)k is Ad∗k-equivariant if

J� ◦ �g = Ad∗k
g−1 ◦ J� , ∀g ∈ G ,

where Ad∗k
g−1 = Ad∗

g−1 ⊗ (k)· · · ⊗ Ad∗
g−1 and

Ad∗k : G × (g∗)k −→ (g∗)k

(g,μ) �−→ Ad∗k
g−1 μ .

In other words, for every g ∈ G , the following diagram commutes

P (g∗)k

P (g∗)k.

J�

�g Ad∗k
g−1

J�

To simplify the notation, let us introduce the following definition.

Definition 5.4. The four-tuple (P , ω, h, J�) is called a G-invariant k-polysymplectic Hamiltonian system if it consists of a k-
polysymplectic manifold (P , ω), a k-polysymplectic Lie group action � : G × P → P such that �∗

gh = h for every g ∈ G , and 
a k-polysymplectic momentum map J� related to �. An Ad∗k-equivariant G-invariant k-polysymplectic Hamiltonian system is 
a G-invariant k-polysymplectic Hamiltonian system whose k-polysymplectic momentum map is Ad∗k-equivariant.

5.2. General k–polysymplectic momentum maps

This section develops the theory of k-polysymplectic momentum maps that are not necessarily Ad∗k-equivariant. In par-
ticular, we demonstrate that every k-polysymplectic momentum map J� : P → (g∗)k admits a Lie group action on (g∗)k

such that J� is equivariant with respect to such a Lie group action. The hereafter introduced techniques are more complex 
technically, but analogous, to the ones used in [59,67], where the Ad∗k-equivariant momentum map methods on symplec-
tic manifolds were extended by removing the Ad∗k-equivariance condition. Recall that all manifolds are assumed to be 
connected unless otherwise stated.
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Proposition 5.5. Let (P , ω, h, J�) be a G-invariant k-polysymplectic Hamiltonian system and let us define the functions on P given 
by

ψ g,ξ : P � x �−→ J�ξ (�g(x)) − J�
Adk

g−1 ξ
(x) ∈R , ∀g ∈ G , ∀ξ ∈ gk .

Then, ψ g,ξ is constant on P for every g ∈ G and ξ ∈ gk. Moreover, the function σ : G � g �→ σ (g) ∈ (g∗)k univocally determined by 
the condition 〈σ (g), ξ 〉 = ψ g,ξ satisfies

σ (g1 g2) = σ (g1) + Ad∗k
g−1

1
σ (g2) , ∀g1, g2 ∈ G .

Proof. Note that

dψ g,ξ = d(J�ξ ◦ �g) − dJ�
Adk

g−1
ξ
= �∗

g(ιξ P
ω) − ι

(Adk
g−1 ξ)P

ω

= ι�g−1∗ξ P
�∗

gω − ι�g−1∗ξ P
ω = ι�g−1∗ξ P

ω − ι�g−1∗ξ P
ω = 0 ,

where we have used that � is a k-polysymplectic Lie group action and the well-known fact that (Adg ξ)P = �g∗ξP for every 
g ∈ G and each ξ ∈ g (see [1]). Hence, (Adk

g−1 ξ)P = �g−1∗ξ P for every ξ ∈ gk . Therefore, ψ g,ξ is constant on P for all g ∈ G

and any ξ ∈ gk .
Let us rewrite ψ g,ξ as follows

ψ g,ξ = J�ξ ◦ �g − J�
Adk

g−1 ξ
= 〈

J� ◦ �g, ξ
〉 − 〈

J�,Adk
g−1 ξ

〉
= 〈

J� ◦ �g, ξ
〉 − 〈

Ad∗k
g−1 J�, ξ

〉
=

〈
J� ◦ �g − Ad∗k

g−1 J�, ξ
〉
,

where Adk
g−1 : gk → gk is the transpose to Ad∗k

g−1 . Hence,

σ : G � g �−→ J� ◦ �g − Ad∗k
g−1 J� = σ (g) ∈ (g∗)k .

Thus, σ (g) is constant on P for every g ∈ G and 〈σ (g), ξ 〉 = ψ g,ξ , for every g ∈ G and ξ ∈ gk . Then,

σ (g1 g2) =
(

J� ◦ �g1 g2 − Ad∗k
(g1 g2)−1 J�

)
=

(
J� ◦ �g1 ◦ �g2 − Ad∗k

g1
−1 Ad∗k

g2
−1 J�

)
=

(
J� ◦ �g1 ◦ �g2 − Ad∗k

g1
−1(J� ◦ �g2) + Ad∗k

g−1
1

(J� ◦ �g2) − Ad∗k
g1

−1 Ad∗k
g2

−1 J�
)

=
(

J� ◦ �g1 −Ad∗k
g1

−1 J�+Ad∗k
g1

−1(J� ◦ �g2 −Ad∗k
g2

−1 J�)
)

= σ (g1)+Ad∗k
g1

−1 σ (g2)

for any g1, g2 ∈ G . �
The map σ : G → (g∗)k of the form

σ (g) = J� ◦ �g − Ad∗k
g−1 J�, g ∈ G,

is called the co-adjoint cocycle associated with the k-polysymplectic momentum map J� on P . A map σ : G → (g∗)k is a 
coboundary if there exists μ ∈ (g∗)k such that

σ (g) = μ − Ad∗k
g−1 μ, ∀g ∈ G.

If J� is an Ad∗k-equivariant k-polysymplectic momentum map, then σ = 0.
The next proposition shows that every k-polysymplectic Lie group action admitting a k-polysymplectic momentum map 

induces a well-defined cohomology class [σ ], namely [σ ] is the same for every k-polysymplectic momentum map induced 
by the initial k-polysymplectic Lie group action. The proof is analogous to the one of the equivalent proposition on sym-
plectic manifolds [59,67].

Proposition 5.6. Let � : G × P → P be a k-polysymplectic Lie group action. If J1� and J2� are two associated k-polysymplectic 
momentum maps with co-adjoint cocycles σ 1 and σ 2 , respectively, then [σ 1] = [σ 2].

Proposition 5.7. Let J� : P → (g∗)k be a k-polysymplectic momentum map associated with a k-polysymplectic Lie group action 
� : G × P → P with co-adjoint cocycle σ . Then,
16
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(1) the map

� : G × (g∗)k � (g,μ) �→ σ (g) + Ad∗k
g−1 μ = �g(μ) ∈ (g∗)k,

is a Lie group action of G on (g∗)k,
(2) the k-polysymplectic momentum map J� is equivariant with respect to �, in other words, for every g ∈ G, one has a commutative 

diagram

P (g∗)k

P (g∗)k.

J�

�g �g

J�

Proof. First, since σ (e) = 0, one has

�(e,μ) = μ + σ (e) = μ .

Thus, �(e, μ) = μ. Moreover, by Proposition 5.5, one gets

�(g1,�(g2,μ)) = Ad∗k
g−1

1
(Ad∗k

g−1
2

μ + σ (g2)) + σ (g1) = Ad∗k
g−1

1
Ad∗k

g−1
2

μ + Ad∗k
g−1

1
σ (g2) + σ (g1)

= Ad∗k
(g1 g2)−1 μ + Ad∗k

g−1
1

σ (g2) + σ (g1) = Ad∗k
(g1 g2)−1 μ + σ (g1 g2) = �(g1 g2,μ) ,

for every g1, g2 ∈ G and μ ∈ (g∗)k . Hence, � is a Lie group action of G on (g∗)k . Second, by definition of � and σ , one has

�g ◦ J� = Ad∗k
g−1 J� + σ (g) = J� ◦ �g , ∀g ∈ G ,

which shows that J� is �-equivariant. �
Proposition 5.7 ensures that a general k-polysymplectic momentum map J� gives rise to an equivariant k-polysymplectic 

momentum map relative to a new action � : G × (g∗)k → (g∗)k , called a k-polysymplectic affine Lie group action.
It should be noted that an affine Lie group action can also be expressed by writing �(g, μ) = (�1

gμ
1, . . . , �k

gμ
k) ∈

(g∗)k , where the mappings �1, . . . , �k take the form �α : G × g∗ � (g, ϑ) �→ Ad∗
g−1 ϑ + σα(g) = �α

g (ϑ) ∈ g∗ and σ (g) =
(σ 1(g), . . . , σ k(g)), where σα(g) = J�α ◦ �g − Ad∗

g−1 J�α for α = 1, . . . , k.

5.3. k–Polysymplectic Marsden–Weinstein reduction

This section aims to extend the k-polysymplectic reduction to the case when the associated k-polysymplectic momentum 
map J� is not necessarily Ad∗k-equivariant. Recall that, at the end of Section 5.2, we proved that every k-polysymplectic 
momentum map J� gives rise to a k-polysymplectic affine Lie group action � : G × (g∗)k → (g∗)k making J� to be �-
equivariant. Moreover, the isotropy group, G�

μ , of μ ∈ (g∗)k relative to � may be different from the isotropy group of μ
with respect to Ad∗k since the action of both on (g∗)k is not necessarily the same (cf. [59, Theorem 6.1.1]). This observation 
is crucial to generalise the k-polysymplectic Marsden–Weinstein reduction theorem [51] to general not necessarily Ad∗k-
equivariant k-polysymplectic momentum maps. We here provide the generalisation to this new realm of the theorems 
presented in [51]. Additionally, we introduce the quotients of k-polysymplectic manifolds related to general k-polysymplectic 
momentum maps, which will inherit, under mild conditions, a k-polysymplectic manifold (see [51] for details).

Let (E, ω) be a k-polysymplectic vector space and let W be a linear subspace of E . Then, the k-polysymplectic orthogonal 
complement of W relative to (E, ω) is the linear subspace defined by

W ⊥,k = {v ∈ E | ιw ιv ω = 0 ,∀w ∈ W } .

The following results are a slight generalisation of some known findings in k-polysymplectic geometry devised in [51]
so as to cover the case when k-polysymplectic momentum maps J� does not need to be Ad∗-equivariant. In fact, the whole 
work [51] can be rewritten by using k-polysymplectic affine Lie group actions instead of coadjoint actions. The changes to 
be performed are based merely on substituting Gμα by G�α

μα , gμα by g�α

μα , Gμ by G�
μ , as well as others minor amendments 

of the sort. Although changes to perform are simple, verifying where corrections have to be done represents a long work.
Let us start with our slight generalisation of a standard result in k-polysymplectic Marsden–Weinstein reduction theory.

Lemma 5.8. Let (P , ω, h, J�) be a G-invariant k-polysymplectic Hamiltonian system and let μ ∈ (g∗)k be a weak regular value of a 
k-polysymplectic momentum map J� : P → (g∗)k. Then, for every p ∈ J�−1(μ), one has
17
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(1) Tp(G�
μ p) = Tp(Gp) ∩ Tp

(
J�−1(μ)

)
,

(2) Tp(J�−1(μ)) = Tp(Gp)⊥,k.

Proof. Let ξP (p) ∈ Tp(Gp) for some ξ ∈ g. Then, ξP (p) ∈ Tp(G�
μ p) if, and only if, ξP (p) ∈ Tp

(
J�−1(μ)

)
, or equivalently ξ ∈ g�

μ

if, and only if, ξP (p) ∈ Tp
(
J�−1(μ)

)
, where g�

μ is the Lie algebra of G�
μ .

The proof of (2) follows essentially the same as in [51]. �
Let us provide a non-necessarily Ad∗k-equivariant counterpart of some relevant technical results in [51], namely Lemmas 

3.15 and 3.16, leading to the k-polysymplectic Marsden–Weinstein reduction theory.

Lemma 5.9. The linear map

π̃α
p : Tp(J�−1(μ))

Tp(G�
μ p)

−→
(

Tp J�α
kerωα

p

)
{Tpπμ(ξP )p : ξ ∈ g�α

μα } , p ∈ J�−1(μ) ⊂ P ,

for some α belonging to {1, . . . , k} is an epimorphism if, and only if,

ker TpJ�α = Tp(J�−1(μ)) + kerωα
p + Tp(G�α

μα p).

Meanwhile 
⋂k

α=1 ker π̃α
p = 0 if, and only if,

Tp(G�
μ p) =

k⋂
α=1

(
kerωα

p + Tp(G�α

μα p)
)

∩ Tp(J�−1(μ)) .

The following theorems present and describe the main results of our slightly generalised k-polysymplectic Marsden–
Weinstein reduction theory. It is extremely important to stress that there is no restriction on the dimension of P for the 
following Theorem 5.10 and Theorem 5.11 to hold.

Theorem 5.10 (The k-polysymplectic Marsden–Weinstein reduction theorem). Consider a G-invariant k-polysymplectic Hamiltonian 
system (P , ω, h, J�). Assume that μ ∈ (g∗)k is a weak regular value of J� and G�

μ acts in a quotientable manner on J�−1(μ). Let G�α

μα

denote the isotropy group at μα of the Lie group action �α : (g, ϑ) ∈ G × g∗ �→ �α(g, ϑ) ∈ g∗ for α = 1, . . . , k. Moreover, let the 
following conditions hold

ker(TpJ�α ) = Tp(J�−1(μ)) + kerωα
p + Tp(G�α

μα p) , (5.3)

Tp(G�
μ p) =

k⋂
α=1

(
kerωα

p + Tp(G�α

μα p)
)

∩ Tp(J�−1(μ)) , (5.4)

for every p ∈ J�−1(μ) and all α = 1, . . . , k. Then, (J�−1(μ)/G�
μ, ωμ) is a k-polysymplectic manifold, where ωμ is univocally deter-

mined by

π∗
μωμ = j∗

μω ,

while jμ : J�−1(μ) ↪→ P is the natural immersion and πμ : J�−1(μ) → J�−1(μ)/G�
μ is the canonical projection.

Note that the above theorem introduces a few improvements relative to the k-polysymplectic Marsden–Weinstein 
reduction theorem in [51]. For instance, the Ad∗-equivariance of J� is removed, which is achieved by introducing a k-
polysymplectic affine Lie group action �.

The theorem below shows when a class of k-polysymplectic Hamiltonian system (P , ω, h, J�) induces a k-polysymplectic 
Hamiltonian system on the reduced manifold J�−1(μ)/G�

μ obtained via Theorem 5.10.

Theorem 5.11. Let the assumptions of Theorem 5.10 be satisfied. Let h ∈ C ∞(P ) be a G-invariant Hamiltonian function relative to �
and let Xh = (Xh

1, . . . , Xh
k ) be a k-vector field associated with h. Assume that �g∗Xh = Xh for every g ∈ G and Xh is tangent to J�−1(μ). 

Then, the flows F α
t of Xh

α leave J�−1(μ) invariant and they induce a unique flow Fα
t on J�−1(μ)/G�

μ satisfying πμ ◦ F α
t = Fα

t ◦ πμ

for every α = 1, . . . , k.

The proof of Theorem 5.11, based on Theorem 5.10, is essentially the same as in [51]. It is worth noting that Xh does 
not need to be invariant relative to the action of G even when its HDW equations are so. This will be illustrated in the 
examples of Section 7.
18



J. de Lucas, X. Rivas, S. Vilariño et al. Journal of Geometry and Physics 191 (2023) 104899
6. A k–polycosymplectic Marsden–Weinstein reduction

This section contains some of the main results of the paper: the development of a new k-polycosymplectic Marsden–
Weinstein reduction that does not depend on the Ad∗k-equivariance of the employed k-polycosymplectic momentum map. 
As a byproduct, k-polycosymplectic geometry is considered as a particular case of k-polysymplectic geometry. Despite the 
relevance of the latter result, it is worth noting that this is done by showing that a k-polycosymplectic structure gives rise 
to a k-polysymplectic structure on a manifold of larger dimension, which may introduce additional complications to study 
problems in the initial k-polycosymplectic manifold and may need to be addressed (see [27] for a more detailed comment 
of this fact in the cosymplectic case). In a few words, while k-polycosymplectic structures may be equivalent to some k-
polysymplectic structures on manifolds of higher-dimension, the corresponding Hamiltonian k-polycosymplectic systems are 
not “geometrically equivalent” to the associated Hamiltonian k-polysymplectic ones on manifolds of a higher-dimension.

6.1. k–Polycosymplectic momentum maps

Let us develop a k-polycosymplectic momentum map notion by extending the ideas employed to define cosymplectic 
momentum maps to the k-polycosymplectic realm. The definition of a k-polycosymplectic Ad∗k-equivariant momentum 
map is also provided.

Every k-polycosymplectic structure on a manifold M gives rise to two closed differential forms ω ∈ �2(M, Rk) and 
τ ∈ �1(M, Rk) given by

ω = ωα ⊗ eα, τ = τα ⊗ eα,

for a canonical basis {e1, . . . , ek} in Rk and some differential two- and one-forms on M given by ωα and τα for α = 1, . . . , k, 
respectively. The standard differential calculus for differential forms can be naturally extended to differential forms taking 
values in Rk [43].

Definition 6.1. A Lie group action � : G × M → M is said to be a k-polycosymplectic Lie group action relative to the k-
polycosymplectic manifold (M, τ , ω) if, for each g ∈ G , the diffeomorphism �g : M → M satisfies �∗

gω = ω and �∗
gτ = τ .

Definition 6.2. A k-polycosymplectic momentum map for a Lie group action � : G ×M → M relative to a k-polycosymplectic 
manifold (M, τ , ω) such that ξM takes values in kerτ for every ξ ∈ g, is a map J� : M → (g∗)k satisfying that

ιξM ω = d
〈
J�, ξ

〉 = d J�
ξ , ιξM τ = 0 , LRα J�

ξ = 0 , ∀ξ ∈ g , α = 1, . . . ,k . (6.1)

Note that J�
ξ in the above definition is to be considered, for any fixed ξ ∈ g, as a function on M taking values in Rk . 

According to Definition 5.2, we can express the first and the second conditions in (6.1) in the following manner

ιξ M
ω = d

〈
J�, ξ

〉
and ιξ M

τ = 0, ∀ξ ∈ gk,

where ξ = (0, . . . , 
(α)

ξ , . . . , 0) ∈ gk for any ξ ∈ g and α = 1, . . . , k. The Reeb vector fields R1, . . . , Rk corresponding to (M, τ , ω)

are tangent to the level sets of J� . However, R1, . . . , Rk are not tangent to the orbits of � since τ is required to vanish when 
restricted to the tangent space to the orbits of �.

The following Ad∗k-equivariance definition is well-known and widely used in the literature. Nevertheless, we will here-
after show that it is not necessary.

Definition 6.3. A k-polycosymplectic momentum map J� : M → (g∗)k is Ad∗k-equivariant if it satisfies

J� ◦ �g = Ad∗k
g−1 ◦ J�, ∀g ∈ G ,

where

Ad∗k : G × (g∗)k −→ (g∗)k

(g,μ) �−→
k−times︷ ︸︸ ︷

(Ad∗
g−1 ⊗· · · ⊗ Ad∗

g−1) (μ).

In other words, for every g ∈ G , the following diagram commutes

M (g∗)k

M (g∗)k

J�

�g Ad∗k
g−1

J�
19
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Note that k-polycosymplectic Lie group actions are the analogue in k-polycosymplectic geometry to k-polysymplectic Lie 
group actions.

Let us introduce the following definition.

Definition 6.4. The four-tuple (Mω
τ , h, J�) is called a G-invariant k-polycosymplectic Hamiltonian system if it consists of a 

k-polycosymplectic manifold (M, τ , ω), a k-polycosymplectic Lie group action � : G × M → M such that �∗
gh = h for ev-

ery g ∈ G , and the k-polycosymplectic momentum map J� related to �. An Ad∗k-equivariant G-invariant k-polycosymplectic 
Hamiltonian system is a G-invariant k-polycosymplectic Hamiltonian whose k-polycosymplectic momentum map is Ad∗k-
equivariant.

6.2. General k–polycosymplectic momentum maps

Let us prove in this section that the Ad∗k-equivariance condition for a k-polycosymplectic momentum map J� can be 
substituted by a new type of equivariance. More exactly, we show that a k-polycosymplectic momentum map J� is �-
equivariant relative to a hereafter constructed affine Lie group action on (g∗)k . The proofs of the following results that are 
essentially the same as in the k-polysymplectic case will be hereafter omitted. Additionally, the techniques introduced in this 
section are analogous to the procedures used in [27], where momentum maps on symplectic manifolds were generalised to 
cosymplectic manifolds, but much more technically involved.

Proposition 6.5. Let (Mω
τ , h, J�) be a G-invariant k-polycosymplectic Hamiltonian system. Define the functions on M of the form

ψ g,ξ = J�ξ ◦ �g − J�
Adk

g−1 ξ
: M → R , ∀g ∈ G , ∀ξ ∈ gk .

Then, each ψ g,ξ is constant on M for every g ∈ G and ξ ∈ gk. Moreover, the map σ : G � g �→ σ (g) ∈ (g∗)k such that 〈σ (g), ξ 〉 = ψ g,ξ

satisfies

σ (g1 g2) = σ (g1) + Ad∗k
g−1

1
σ (g2) , ∀g1, g2 ∈ G .

The proof of Proposition 6.5 is essentially the same as the proof of Proposition 5.5 and it will be therefore omitted.
Note that the map σ in Proposition 6.5 can be brought into the form

σ (g) = J� ◦ �g − Ad∗k
g−1 J� = (σ 1(g), . . . , σ k(g)) ∈ (g∗)k ,

where σα(g) = J�α ◦ �g − Ad∗
g−1 J�α for each α = 1, . . . , k. The map σ is called the co-adjoint cocycle associated with J� . It is 

worth stressing that J� is an Ad∗k-equivariant k-polycosymplectic momentum map if, and only if, σ = 0. Moreover, every k-
polycosymplectic Lie group action admitting a k-polycosymplectic momentum map also induces a well-defined cohomology 
class [σ ].

Let us introduce an analogue to Proposition 5.7 to show that a k-polycosymplectic momentum map J� gives rise to a 
so-called affine Lie group action � of G on (g∗)k satisfying J� ◦ �g = �g ◦ J� for every g ∈ G .

Proposition 6.6. Let J� be a momentum map for the k-polycosymplectic Lie group action � with an associated co-adjoint cocycle σ . 
Then,

(1) the map

� : G × (g∗)k � (g,μ) �−→ Ad∗k
g−1 μ + σ (g) = �gμ ∈ (g∗)k ,

is a Lie group action of G on (g∗)k,
(2) the k-polycosymplectic momentum map J� is equivariant with respect to �, in other words, every g ∈ G gives rise to a commuta-

tive diagram

M (g∗)k

M (g∗)k

J�

�g �g

J�

Again, the proof of this proposition is the same as in the k-polysymplectic case, i.e. like in Proposition 6.6.
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Note that � can be rewritten in the following way

�(g,μ1, . . . ,μk) = (Ad∗
g−1(μ

1) + σ 1(g), . . . ,Ad∗
g−1(μ

k) + σ k(g))

= (�1(g,μ1), . . . ,�k(g,μk)) ∈ (g∗)k ,

which gives rise to defining k Lie group actions

�α : (g,ϑ) ∈ G × g∗ �→ Ad∗
g−1(ϑ) + σα(g) ∈ g∗ , α = 1, . . . ,k .

6.3. k–Polycosymplectic Marsden–Weinstein reduction theorem

This section presents a k-polycosymplectic Marsden–Weinstein reduction procedure by means of a particular type 
of k-polysymplectic Marsden–Weinstein reduction. Similarly to the cosymplectic case in Section 3.2, one can extend a 
k-polycosymplectic manifold to a k-polysymplectic manifold of a special sort: a so-called fibred one. Moreover, the k-
polycosymplectic momentum map J� : M → (g∗)k related to a Lie group action � : G × M → M gives rise to an extended 
momentum map of an extended Lie group action defined on a manifold Rk × M endowed with a k-polysymplectic fi-
bred structure. Then, the k-polycosymplectic Marsden–Weinstein reduction boils down to a Marsden–Weinstein reduction, 
devised in [51], of a k-polysymplectic fibred structure on Rk × M .

Theorem 6.7 illustrates how a k-polycosymplectic manifold (M, τ , ω) gives rise to a k-polysymplectic fibred manifold 
(Rk × M, ̃ω) with the so-called k-polysymplectic Reeb vector fields and vice versa. We will show that the k-polysymplectic 
fibred manifold admits a global symmetry.

Theorem 6.7. Let ω ∈ �2(M, Rk), τ ∈ �1(M, Rk), and let prM : Rk × M → M be the canonical projection onto M. Let 
u = (u1, . . . , uk) be a natural global coordinate system in Rk. Then, (M, τ , ω) is a k-polycosymplectic manifold if, and only if, 
(Rk × M, pr∗Mω + du � pr∗Mτ = ω̃) is a k-polysymplectic manifold, where du = duα ⊗ eα , admitting some vector fields ̃R1, . . . , ̃Rk

on Rk × M, so-called k-polysymplectic Reeb vector fields, such that ιR̃α
ω̃β = −δ

β
αduα and ̃Rαuβ = 0 for α, β = 1, . . . , k.

Proof. First, note that ω̃ decomposes into k components, which, in view of the proof of Lemma 3.12, yields that ω̃ is closed 
if, and only if, ω and τ are closed.

Second, let us show that if (M, τ , ω) is a k-polycosymplectic manifold, then ω̃ is non-degenerate and it possesses k-
polysymplectic Reeb vector fields.

By Proposition 4.6, there exists a family of Reeb vector fields R1, . . . , Rk on M for (M, τ , ω) that can be lifted, in 
a unique manner, to vector fields R̃1, . . . , ̃Rk ∈ X(Rk × M) so that R̃βuα = 0 for α, β = 1, . . . , k and they project onto 
R1, . . . , Rk via prM . By construction of ω̃, it follows that R̃1, . . . , ̃Rk satisfy ιR̃α

ω̃β = −δ
β̂
αduβ̂ for α, β = 1, . . . , k and they 

become k-polysymplectic Reeb vector fields for ω̃.
Assume that X ∈ X(Rk × M) takes values in ker(pr∗Mω + du � pr∗Mτ ). Then,

ι∂/∂uα ιX ω̃ = 0 =⇒ ιX pr∗Mτα = 0 , α = 1, . . . ,k .

Hence, X takes values in ker pr∗Mτ . Then,

ιR̃α
ιX ω̃ = 0 =⇒ Xuα = 0 , α = 1, . . . ,k .

Therefore,

ιX pr∗Mω = 0

and X = 0 since ker du ∩ ker pr∗Mτ ∩ ker pr∗Mω = 0. Hence, ω̃ is non-degenerate.
Third, and the other way around, if (Rk × M, ̃ω) is a k-polysymplectic manifold with k-polysymplectic Reeb vector fields 

and X takes values in kerω ∩ kerτ , one can lift X to a vector field X̃ on Rk × M in a unique way so that prM∗ X̃ = X and 
ι X̃ du = 0. It follows that ι X̃ ω̃ = 0 and X̃ = 0 since ω̃ is assumed to be non-degenerate. Hence, X = 0, which shows that 
kerω ∩ kerτ = 0.

Let us prove that the k-polysymplectic Reeb vector fields R̃1, . . . , ̃Rk project onto vector fields on M spanning a distri-
bution of rank k equal to the kernel of ω. Note that ιR̃α

ω̃β = −δ
β

α̂duα̂ for α, β = 1, . . . , k. Since ω̃ is a k-polysymplectic 
form and invariant relative to the Lie derivatives with respect to ∂/∂u1, . . . , ∂/∂uk , it follows from the definition R̃1, . . . , ̃Rk

that L∂/∂uα ιR̃β
ω̃ = 0 and then ι[∂/∂uα,R̃β ]ω̃ = 0 for every α, β = 1, . . . , k. Hence, R̃1, . . . , ̃Rk project onto M . Then, for every 

α, β = 1, . . . , k, one has that

ιR̃α
ω̃β = ιR̃α

pr∗Mωβ + (ιR̃α
duβ̂ )pr∗Mτ β̂ − (ιR̃α

pr∗Mτ β̂)duβ̂ = −duα̂δ
β

α̂ ,

where we stress that there is no sum over the possible values of β or α as indicated by the hatted indexes. Hence, again 
without summing over β ,
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ι
∂/∂sβ̂ ιR̃α

ω̃β̂ = −ιR̃α
pr∗Mτβ = −δα

β =⇒ 〈τβ,prM∗ R̃α〉 = δα
β , ∀α,β = 1, . . . ,k , (6.2)

and

ιR̃α
pr∗Mω = 0 .

The condition (6.2) yields that the vector fields prM∗ R̃α = Rα with α = 1, . . . , k, span a distribution on M of rank k taking 
values in kerω. The rank of D = kerω cannot be larger than k. Otherwise, there would exist a non-zero tangent vector 
vx ∈ kerω ∩ kerτ since the annihilator of 〈τ 1|D , . . . , τ k|D〉 in D would be non-zero and we have already proved that 
kerω ∩ kerτ = 0.

The first, second, and third points proved above give the searched equivalence between a k-polycosymplectic manifold 
(M, τ , ω) and a k-polysymplectic manifold (Rk × M, ̃ω) having k-polysymplectic Reeb vector fields. �
Definition 6.8. The k-polysymplectic manifolds satisfying the hypotheses of Theorem 6.7 are called k-polysymplectic fibred 
manifolds. In particular, (Rk × M, pr∗Mω + du �pr∗Mτ = ω̃) is called the k-polysymplectic fibred manifold associated with the 
k-polycosymplectic manifold (M, τ , ω).

Remark 6.9. The condition on the existence of the k-polysymplectic Reeb vector fields R̃α in Theorem 6.7 is essential to 
ensure that a k-polysymplectic structure on Rk × M gives rise to a k-polycosymplectic one on M . Consider for instance the 
manifold M =R4 with natural linear coordinates {x, y, w, v} and the closed differential forms in M given by

τ 1 = dy , τ 2 = dx , ω1 = dx ∧ dw , ω2 = dy ∧ dv .

These give rise to τ = τ 1 ⊗ e1 + τ 2 ⊗ e2 and ω = ω1 ⊗ e1 + ω2 ⊗ e2. We can construct the closed differential forms 
ω̃1, ̃ω2 ∈ �2(R2 × M) given by

ω̃1 = ω1 + du1 ∧ τ 1 = dx ∧ dw + du1 ∧ dy ,

ω̃2 = ω2 + du2 ∧ τ 2 = dy ∧ dv + du2 ∧ dx ,

which in turn give rise to the R2-valued differential form ω̃ = ω̃1 ⊗ e1 + ω̃2 ⊗ e2 ∈ �2(R2 × M, R2). Since ker ω̃1 =〈
∂/∂u2, ∂/∂v

〉
and ker ω̃2 = 〈

∂/∂u1, ∂/∂ w
〉
, it is clear that

ker ω̃ = ker
(
ω̃1 ⊗ e1 + ω̃2 ⊗ e2

)
= ker ω̃1 ∩ ker ω̃2 = 0 ,

and hence (R2 × M, ̃ω) is a two-polysymplectic manifold. A simple computation shows that ω̃ has no two-polysymplectic 
Reeb vector fields. Now, although

kerτ ∩ kerω = kerτ 1 ∩ kerτ 2 ∩ kerω1 ∩ kerω2 = 0 ,

the rank of kerω1 ∩ kerω2 is not 2, and thus (τ , ω) cannot be a two-polycosymplectic structure on M .

Let (Mω
τ , h, J�) be a G-invariant k-polycosymplectic Hamiltonian system. Then, a Lie group action � : G × M → M with 

an associated k-polycosymplectic momentum map J� : M → (g∗)k extends to Rk × M in the following way

�̃ : G ×Rk × M � (g, u, x) �−→ (u,�(g, x)) ∈Rk × M , (6.3)

and a mapping

J�̃ : Rk × M � (u, x) �−→ J�(x) ∈ (g∗)k , (6.4)

for every (u, x) ∈ Rk × M and every g ∈ G . Note that J�̃ is a k-polysymplectic momentum map for �̃ relative to the k-
polysymplectic manifold (Rk × M, ̃ω) by extending the k-polycosymplectic manifold (M, τ , ω). Let us provide Lemmas 6.10
and 6.11 whose proofs are a straightforward consequence of previous facts and the relation prRk ◦ �̃g = prRk , where 
prRk :Rk × M →Rk , is the natural projection onto Rk , for every g ∈ G .

Lemma 6.10. Assume that the hypotheses of Theorem 5.10 remain valid. If (Rk × M, ̃ω) is a k-polysymplectic manifold, then

J�̃−1(μ) � Rk × prM

(
J�̃−1(μ)

) � Rk × J�−1(μ) , J�̃−1(μ)/G�
μ � Rk ×

(
J�−1(μ)/G�

μ

)
for every μ ∈ (g∗)k, where the quotients J�̃−1(μ)/G�

μ and J�−1(μ)/G�
μ are relative to the actions of G�

μ on J�̃−1(μ) and J�−1(μ), 
respectively.
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Lemma 6.11. A k-polycosymplectic momentum map J� : M → (g∗)k is �-equivariant with respect to a Lie group action � : G × M →
M if and only if the associated k-polysymplectic momentum map J�̃ :Rk × M → (g∗)k is �-equivariant relative to ̃� : G ×Rk × M →
Rk × M. Additionally, μ ∈ (g∗)k is a (resp. weak) regular value of J� if and only if μ is a (resp. weak) regular value of J�̃ . Moreover, 
J�̃−1(μ) =Rk × J�−1(μ) and J�̃−1(μ) is quotientable by G�

μ if and only if J�−1(μ) is so.

The k-polysymplectic Marsden–Weinstein reduction Theorem 5.10 provides the conditions (5.3) and (5.4) to ensure the 
existence of a k-polysymplectic structure on J�̃−1(μ)/G�

μ . Note that Lemmas 6.11, 6.12, and 6.10 allow us to see that 
the k-polysymplectic fibred manifold induced by a k-polycosymplectic one has some required conditions to perform a k-
polysymplectic reduction. Moreover, the k-polysymplectic Reeb vector fields on Rk × M are tangent to J�̃−1(μ), because 
R1, . . . , Rk are tangent to J�−1(μ) and project onto the quotient manifold as they are invariant relative to the action of �̃. 
Note that Theorem 6.13 analyses the previous result and ensures that the reduced k-polysymplectic form, which is defined 
on a manifold of the form J�̃−1(μ)/G�

μ � Rk × M�
μ , is fibred and so related to a k-polycosymplectic form on M�

μ . This 
finishes the development of a k-polycosymplectic reduction manifold theory. The reduction of Hamiltonian systems will be 
dealt with after this.

Lemma 6.12. Let (M, τ , ω) be a k-polycosymplectic manifold and let (Rk × M, ̃ω) be its associated k-polysymplectic fibred manifold. 
If

Tx(G�
μx) =

k⋂
α=1

(
(kerωα

x ∩ kerτα
x ) + Tx(G�α

μα x)
)

∩ TxJ�−1(μ) (6.5)

and

ker TxJ�α = kerωα
x ∩ kerτα

x + TxJ�−1(μ) + Tx(G�α

μα x) (6.6)

for every x ∈ J�−1(μ), then expressions (5.3) and (5.4) concerning the extensions J�̃ and ̃� to Rk × M of J� and �, namely

ker(TpJ�̃α ) = Tp(J�̃−1(μ)) + ker ω̃α
p + Tp(G�α

μα p)

and

Tp(G�
μ p) =

k⋂
α=1

(
ker ω̃α

p + Tp(G�α

μα p)
)

∩ Tp(J�̃−1(μ)) ,

for every p = (u, x) ∈ J�̃−1(μ) and all α = 1, . . . , k, are satisfied.

Proof. Given the canonical projection prM : Rk × M → M and the natural isomorphisms T(u,x)(Rk × M) � TuRk ⊕ TxM for 
every (u, x) ∈Rk × M , it follows that, for α = 1, . . . , k, one has that

(ker pr∗Mωα)(u,x) = TuR
k ⊕ kerωα

x , (ker pr∗Mτα)(u,x) = TuR
k ⊕ kerτα

x ,

(ker duα)(u,x) = Aα
u ⊕ TxM ,

(6.7)

where Aα
u = TuRk ∩ (ker duα)(u,x) and kerωx, kerτ x ⊂ TxM for every (u, x) ∈ Rk × M . The contraction of ω̃α with ∂/∂uα

and the extended Reeb vector fields R̃1, . . . , ̃Rk on Rk × M give, along with (6.7), that

(ker ω̃α)(u,x) = (ker pr∗Mωα ∩ ker duα ∩ ker pr∗Mτα)(u,x)

=
(

TuR
k ⊕ kerωα

x

)
∩ (

Aα
u ⊕ TxM

) ∩
(

TuR
k ⊕ kerτα

x

)
= Aα

u ⊕ (
kerωα

x ∩ kerτα
x

)
, (6.8)

for every (u, x) ∈Rk × M . Moreover, it follows from the extension formulas (6.3) and (6.4) that L ∂
∂uα

J�̃ = 0 and ιξRk×M
du =

0 hold for every ξ ∈ g and α = 1, . . . , k. Hence,

T(u,x)(G�
μ(u, x)) = Tx(G�

μx) , T(u,x)J
�̃−1(μ) = TuR

k ⊕ Tx(J�−1(μ)) ,

T(u,x)(G�α

μα (u, x)) = Tx(G�α

μα x) , ker(T(u,x)J
�̃
α ) = TuR

k ⊕ ker TxJ�α ,
(6.9)

for α = 1, . . . , k and arbitrary u ∈Rk and points x ∈ J�
−1

(μ). Then, condition (5.4) for our k-polysymplectic fibred manifold 
can be written as follows
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Tx(G�
μx) = T(u,x)

(
G�

μ(u, x)
)

=
k⋂

α=1

(
(ker ω̃α)(u,x) + Tx

(
G�α

μα x
))

∩ T(u,x)J
�̃−1(μ)

=
k⋂

α=1

(
Aα

u ⊕ (
kerωα

x ∩ kerτα
x

) + Tx(G�α

μα x)
)

∩
(

TuR
k ⊕ TxJ�−1(μ)

)

=
k⋂

α=1

[
(kerωα

x ⊕ kerτα
x ) + Tx(G�α

μα x)
]
∩ TxJ�−1(μ) , (6.10)

and (5.3) amounts to

TuR
k ⊕ ker TxJ�α = ker T(u,x)J

�̃
α = T(u,x)(J�̃−1(μ)) + ker ω̃α

(u,x) + T(u,x)

(
G�α

μα (u, x)
)

= TuR
k ⊕ TxJ�−1(μ) + Aα

u ⊕ (
kerωα

x ∩ kerτα
x

) + Tx

(
G�α

μα x
)

= TuR
k ⊕

(
kerωα

x ∩ kerτα
x + TxJ�−1(μ) + Tx(G�α

μα x)
)

, (6.11)

where we have used (6.7), (6.8), and (6.9), for every (u, x) ∈ Rk × J�−1(μ), every μ ∈ (g∗)k , and α = 1, . . . , k. Thus, (6.10)
and (6.11) amount to the conditions (6.5) and (6.6). This finishes the proof. �

Note that, in view of Lemma 6.12, if (6.5) and (6.6) hold, Theorem 5.10 yields that a k-polycosymplectic manifold 
(M, τ , ω) ensures that its associated k-polysymplectic fibred manifold (Rk × M, ̃ω) gives rise to an induced reduced 
k-polysymplectic manifold (J�̃−1(μ)/G�

μ, ̃ωμ). It is left to prove that this latter one amounts via Theorem 6.7 to a k-

polycosymplectic Marsden–Weinstein reduction (J�−1(μ)/G�
μ, τμ, ωμ) of our initial k-polycosymplectic manifold (M, τ , ω).

Theorem 6.13. Let (M, τ , ω) be a k-polycosymplectic manifold and let J� : M → (g∗)k be a k-polycosymplectic momentum map 
associated with a k-polycosymplectic Lie group action � : G × M → M. Let μ ∈ (g∗)k be a weak regular value of J� and let J�−1(μ)

be quotientable by G�
μ . Moreover, assume that

Tx(G�
μx) =

k⋂
α=1

(
kerωα

x ∩ kerτα
x + Tx(G�α

μα x)
)

∩ TxJ�−1(μ) , (6.12)

and

ker TxJ�α = kerωα
x ∩ kerτα

x + TxJ�−1(μ) + Tx(G�α
μα x) , (6.13)

for every x ∈ J�−1(μ) and α = 1, . . . , k. Then, (J�−1(μ)/G�
μ, τμ, ωμ) is a k-polycosymplectic manifold such that τμ and ωμ are 

defined univocally by

π∗
μτμ = j∗

μτ , π∗
μωμ = j∗

μω ,

where jμ : J�−1(μ) ↪→ M is the natural immersion and πμ : J�−1(μ) → J�−1(μ)/G�
μ is the canonical projection.

Proof. Consider, as standard, the k-polysymplectic manifold (Rk × M, ̃ω), the extended action �̃ : G ×Rk × M → Rk × M
and its associated k-polysymplectic momentum map J�̃ : Rk × M → (g∗)k . We write {u1, . . . , uk} for a standard coordinate 
system on Rk that gives rise, in the standard way, to k coordinates on Rk × M that will be denoted in the same manner. 
According to Lemma 6.11, if μ is a weak regular value for J�̃ , then μ is also a weak regular value for J� . Additionally, 
J�̃−1(μ) is quotientable by the restriction of �̃ to G�

μ if and only if J�−1(μ) is so relative to the restriction of the Lie group 
action � to G�

μ .
Lemma 6.12 ensures that the conditions (6.12) and (6.13) imply that the conditions (5.3) and (5.4) for the k-

polysymplectic Marsden–Weinstein reduction on J�̃−1(μ) hold. Hence, it is possible to accomplish a k-polysymplectic 
Marsden–Weinstein reduction on Rk × J�−1(μ). Let us now prove that the resulting reduced k-polysymplectic manifold 
is a fibred one.

The k-polysymplectic manifold (Rk × M, ̃ω) admits, by the assumptions of the present theorem and Theorem 6.7, some 
k-polysymplectic Reeb vector fields R̃1, . . . , ̃Rk that are tangent to J�̃−1(μ) because the Reeb vector fields R1, . . . , Rk for 
(M, τ , ω) are tangent to J�−1(μ) and prM∗ R̃α = Rα for α = 1, . . . , k. The Reeb vector fields R1, . . . , Rk are invariant under 
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the action of G�
μ via �. Therefore, the extensions R̃1, . . . , ̃Rk , which also satisfy R̃αuβ = 0 for α, β = 1, . . . , k, are also invari-

ant relative to the action of G�
μ via �̃. Then, the projections of the restrictions of R̃1, . . . , ̃Rk to J�−1(μ) onto J�−1(μ)/G�

μ

are k-polysymplectic Reeb vector fields R̃1μ, . . . , ̃Rkμ on the reduced k-polysymplectic manifold (J�̃−1(μ)/G�
μ, ̃ωμ).

Furthermore, the vector fields ∂/∂u1, . . . , ∂/∂uk project onto J�̃−1(μ)/G�
μ , which is diffeomorphic to Rk × (J�−1(μ)/G�

μ)

by Lemma 6.10, and their projections are linearly independent. In fact, the contractions ι∂/∂uβ ιR̃α
ω̃ are projectable from 

J�̃−1(μ) onto J�̃−1(μ)/G�
μ and proportional, up to a non-zero constant, to δβ

α .

Now, let us show how the reduced k-polysymplectic manifold 
(

M̃�
μ = J�̃−1(μ)/G�

μ, ω̃μ

)
gives rise to a k-polycosymplec-

tic structure on M�
μ = J�−1(μ)/G�

μ . Consider the embedding ιu : x ∈ J�−1(μ) � x �→ (u, x) ∈ Rk × J�−1(μ) for any u ∈ Rk . 
Using Lemma 6.10, we can define a reduced k-polycosymplectic structure on M�

μ via ω̃μ as follows

ωμ = ι∗u ω̃μ , τμ =
k∑

α=1

ι∗u
(
ι ∂

∂uα
ω̃μ

)
. (6.14)

Since ω̃μ is closed and L∂/∂uα ω̃μ = 0 for α = 1, . . . , k, it follows that ωμ and τμ are closed forms. Let prM�
μ

:Rk × M�
μ �→

M�
μ and π̃μ : J�̃−1(μ) → M̃�

μ be the canonical projections. Then, the reduced k-polysymplectic form can be expressed as 
ω̃μ = pr∗

M�
μ
ωμ + du � pr∗

M�
μ
τμ . Indeed, this expression satisfies previous relations with ωμ and τμ , and, more importantly,

π̃∗
μ(pr∗

M�
μ
ωμ + du � pr∗

M�
μ
τμ) = j̃∗

μω̃ , (6.15)

which determines univocally the k-polycosymplectic reduced structure on M�
μ . To prove (6.15), note that both sides vanish 

on pairs of tangent vectors belonging to TuRk understood as a subspace of T(u,x)J�̃−1(μ) � TuRk ⊕ Tx(J�−1(μ)). Moreover, 
due to the first expression in (6.14) both sides of equality (6.15) take the same values on pairs of tangent vectors of the 
space TxJ�−1(μ). Finally, given two tangent vectors belonging to TuRk and TxJ�−1(μ), respectively, a short calculation 
shows that both sides also match, which, along with previous facts, yield that (6.15) holds.

Since (Rk × J�−1(μ)/G�
μ, pr∗

M�
μ
ωμ + du � pr∗

M�
μ
τμ) is a k-polysymplectic manifold by Theorem 5.10 and it admits 

k-polysymplectic Reeb vector fields, then (M̃�
μ , ̃ωμ) is a k-polysymplectic fibred manifold and Theorem 6.7 gives that 

(M�
μ , τμ, ωμ) is a k-polycosymplectic manifold.
Let us prove that

j∗
μω = π∗

μωμ , j∗
μτ = π∗

μτμ . (6.16)

It stems from (6.15) that

π̃∗
μ

(
pr∗

M�
μ
ωμ + du � pr∗

M�
μ
τμ

)
= j̃∗

μ

(
pr∗Mω + du � pr∗Mτ

)
,

which amounts to

(prM�
μ

◦ π̃μ)∗ωμ + du � (prM�
μ

◦ π̃μ)∗τμ = (prM ◦ j̃μ)∗ω + du � (prM ◦ j̃μ)∗τ . (6.17)

Composing on both sides of the last equality by ι∗u , one gets

(prM�
μ

◦ π̃μ ◦ ιu)∗ωμ = (prM ◦ j̃μ ◦ ιu)∗ω

and since jμ = prM ◦ j̃μ ◦ ιu and prM�
μ

◦ π̃μ ◦ ιu = πμ , one has that

π∗
μωμ = j∗

μω,

which proves the first equality in (6.16). Composing (6.17) with ∂/∂u1, . . . , ∂/∂uk and repeating the above procedure, we 
get the second equality in (6.16). �
Theorem 6.14. Let the assumptions of Theorem 5.10 be satisfied. Let Xh = (Xh

1, . . . , Xh
k ) be a k-polycosymplectic Hamiltonian k-vector 

field associated with a G-invariant function h ∈ C ∞(M) relative to the Lie group action �. Assume that �g∗Xh = Xh for every g ∈ G
and Xh is tangent to J�−1(μ). Then, for every α = 1, . . . , k, the diffeomorphisms F α

s of the flow of Xh
α leave J�−1(μ) invariant and 

induce unique diffeomorphisms K α
s on J�−1(μ)/G�

μ satisfying πμ ◦ F α
s = K α

s ◦ πμ .

Proof. Given the assumption that a k-polycosymplectic Hamiltonian k-vector field Xh is tangent to J�−1(μ), it follows that 
each integral curve F α

s of Xh
α with initial condition within J�−1(μ) is contained in J�−1(μ) for all the values of its parameter 
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s ∈ R and α = 1, . . . , k. Since �g∗Xh = Xh for every g ∈ G , one has that LξM Xh
α = 0 for α = 1, . . . , k. This yields a reduced 

k-vector field Y = (Y1, . . . , Yk) defined on the quotient manifold J�−1(μ)/G�
μ , such that πμ ◦ F α

s = K α
s ◦πμ , where K α

s is the 
flow of Yα , for α = 1, . . . , k. Furthermore, the G-invariance of h ∈ C ∞(M) yields that there exists a reduced Hamiltonian 
function hμ ∈ C ∞(J�−1(μ)/G�

μ) such that π∗
μhμ = j∗

μh.
Next, let us verify that Y is a reduced k-polycosymplectic Hamiltonian k-vector field associated with hμ . Indeed, the Reeb 

vector fields R1, . . . , Rk are tangent to J�−1(μ) and give rise to linearly independent vector fields RJ�

1 , . . . , RJ�

k on J�−1(μ). 
Due to this fact and Theorem 6.13, it follows that

dπ∗
μhμ = dj∗

μh = j∗
μ(ιXh ω + (Rαh)τα) = ιXh j∗

μω + (RJ�
α j∗

μh)j∗
μτα)

= ιXh π∗
μωμ + (RJ�

α π∗
μhμ)π∗

μτα
μ ) = π∗

μ(ιY ωμ + (Rαμhμ)τα
μ ),

where we denoted by Xh both a k-polycosymplectic Hamiltonian k-vector field on M and its restriction to J�−1(μ). More-
over,

π∗
μ(ιYα τ

β
μ) = ιXh

α
(π∗

μτ
β
μ) = j∗

μ(ιXh
α
τ β) = δ

β
α.

Therefore, Y is a reduced k-polycosymplectic Hamiltonian k-vector field such that πμ∗Xh = Y and πμ ◦ F α
s = K α

s ◦ πμ holds 
for α = 1, . . . , k and s ∈R. �

Additionally, Theorem 6.14 could be established via k-polysymplectic reduction, i.e. Theorem 5.10, by extending the 
Hamiltonian function h ∈ C ∞(M) to Rk × M . Let us study this in some detail.

Consider the extended Hamiltonian function ̃h ∈ C ∞(Rk × M) given by

h̃(u, x) = h(x) −
k∑

α=1

uα , ∀x ∈ M , ∀u = (u1, . . . , uk) ∈Rk .

Recall that a k-polycosymplectic Hamiltonian k-vector field Xh associated with h satisfies the following equations

ιXh ω = dh − (Rβh)τ β , ιXα
h
τ = eα , α = 1, . . . ,k .

Then, our aim is to extend Xh to a k-polysymplectic Hamiltonian k-vector field Xh̃ associated with ̃h. It can be verified that 
Xh̃ of the form

Xh̃ = Xh + (Rαh)
∂

∂uα
,

satisfies the required conditions for a k-polysymplectic Hamiltonian k-vector field on Rk × M relative to ω̃, namely

ιXh̃ ω̃ = ιXh ω + (Rβh)τ β −
k∑

α=1

(ιXα
h
τα)duα = dh −

k∑
α=1

duα = d̃h ,

where we have used the natural isomorphism T(u,x)(Rk × M) � TuRk × TxM for every (u, x) ∈ Rk × M . Therefore, Xh̃ is a 
k-polysymplectic Hamiltonian k-vector field on Rk × M related to ̃h ∈ C ∞(Rk × M) with respect to ω̃. From Theorem 5.11
and Lemma 6.11, it follows that the reduced k-polysymplectic Hamiltonian k-vector field Xh

μ has the following form

Xh̃
μ = Xh

μ + (Rαμ hμ)
∂

∂uα
.

Consequently, Xh̃
μ projects onto J�−1(μ)/G�

μ and its projection is Xh
μ . It is immediate that the latter gives the desired 

reduction.

7. Examples

7.1. The product of cosymplectic manifolds

This section presents an illustrative example of the k-polycosymplectic reduction of a product of k cosymplectic mani-
folds. For simplicity, we will assume some technical conditions.

Let M =×k
α=1 Mα for some k cosymplectic manifolds (Mα, τα

M , ωα
M) for α = 1, . . . , k. If prα : M → Mα is the canonical 

projection onto the α-component, (M, 
∑k

α=1 pr∗ατα ⊗ eα, 
∑k

α=1 pr∗αωα ⊗ eα) is a k-polycosymplectic manifold. Moreover, 
M M
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assume that a Lie group action �α : Gα × Mα → Mα admits a cosymplectic momentum map J�
α : Mα → g∗

α for each 
α = 1, . . . , k and each �α acts in a quotientable manner on the level sets given by regular values of J�α

.
Then, define the Lie group action of G = G1 × . . . × Gk on M as

� : G × M � (g1, . . . , gk, x1, . . . , xk) �−→ (�1
g1

(x1), . . . ,�
k
gk

(xk)) ∈ M .

Moreover, let g = g1 × . . . × gk be the Lie algebra of G . Then, we have the k-polycosymplectic momentum map

J : M � (x1, . . . , xk) �−→ (J�1(x1), . . . , J�k (xk)) ∈ g∗,

where g∗ = g∗
1 × . . .× g∗

k is dual space to g. Suppose, that μα ∈ g∗
α is a regular value of J�α : Mα → g∗

α for each α = 1, . . . , k. 
Hence, μ = (μ1, . . . , μk) ∈ (g∗)k is a regular value of J. Then, � acts in a quotientable on the associated level sets of J.

Therefore, if x = (x1, . . . , xk) ∈ J−1(μ), it follows that

ker TxJα = Tx1 M1 ⊕ . . . ⊕ ker Txα J�α ⊕ . . . ⊕ Txk Mk,

Tx
(
J−1(μ)

) = ker Tx1 J�1 ⊕ . . . ⊕ ker Txk J�k ,

kerωα
x ∩ kerτα

x = Tx1 M1 ⊕ . . . ⊕ Txα−1 Mα−1 ⊕ {0} ⊕ Txα+1 Mα+1 ⊕ . . . ⊕ Txk Mk ,

Tx

(
G�α

μα x
)

= Tx1 (G1x1) ⊕ . . . ⊕ Txα

(
G�α

αμα xα

)
⊕ . . . ⊕ Txk (Gkxk) ,

Tx

(
G�

μx
)

= Tx1

(
G�1

1μ1 x1

)
⊕ . . . ⊕ Txk

(
G�k

kμk xk

)
.

Then,

ker TxJα = Tx
(
J−1(μ)

) + kerωα
x ∩ kerτα

x ,

Tx

(
G�

μx
)

=
k⋂

β=1

(
kerωβ

x ∩ kerτβ
x + Tx

(
G�β

μβ x
))

,

for α = 1, . . . , k and every regular μ ∈ (g∗)k and x ∈ J−1(μ). Recall that, by Theorem 5.10, these equations guarantee that 
the reduced space J−1(μ)/G�

μ can be endowed with a k-polycosymplectic structure, while

J−1(μ)/G�
μ � J�1−1(μ1)/G�1

1μ1 × . . . × J�k−1(μk)/G�k

kμk .

7.2. Two coupled vibrating strings

Consider the manifold M =R2 ×⊕2 T∗R2 with adapted coordinates {t, x; q1, q2, pt
1, p

x
1, p

t
2, p

x
2} and the standard associ-

ated two-polycosymplectic structure

τ = dt ⊗ e1 + dx ⊗ e2, ω = (dq1 ∧ dpt
1 + dq2 ∧ dpt

2) ⊗ e1 + (dq1 ∧ dpx
1 + dq2 ∧ dpx

2) ⊗ e2.

Consider the Hamiltonian function h ∈ C ∞(M) given by

h(t, x,q1,q2, pt
1, pt

2, px
1, px

2) = 1

2

(
(pt

1)
2 + (pt

2)
2 − (px

1)
2 − (px

2)
2
)

+ C(t, x,q1 − q2) ,

where C(t, x, q1 − q2) is a coupling function between the two strings. This system admits a Lie symmetry given by

ξM = ∂

∂q1 + ∂

∂q2

associated with the Lie group action � :R × M → M acting by translations along the q1 + q2 direction, namely

� : (λ; t, x,q1,q2, pt
1, pt

2, px
1, px

2) � R× M �→ (t, x,q1 + λ,q2 + λ, pt
1, pt

2, px
1, px

2) ∈ M.

The Lie group action � gives rise to a two-polycosymplectic momentum map J� given by

J� : (t, x,q1,q2, pt
1, pt

2, px
1, px

2) ∈R2 × ⊕2 T∗R2 �→ (pt
1 + pt

2, px
1 + px

2) =: (μ1,μ2) = μ ∈ (R∗)2.

Consequently, the level set of the two-polycosymplectic momentum map J� is as follows

J�−1(μ) = {(t, x,q1,q2, pt ,μ1 − pt , px ,μ2 − px) ∈ M : (t, x,q1,q2, pt , px) ∈ R6}.
1 1 1 1 1 1
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It is immediate that μ = (μ1, μ2) is a weak regular value of J� and J� is Ad∗2-equivariant. Note that J�−1(μ) � R6 and 
R = Gμ = Gμα for α = 1, 2. Then,

Tm
(
Gμm

) = Tm
(
Gμαm

) =
〈

∂

∂q1 + ∂

∂q2

〉
m

,

(kerω1 ∩ kerτ 1)m =
〈

∂

∂x
,

∂

∂ px
1
,

∂

∂ px
2

〉
m

, (kerω2 ∩ kerτ 2)m =
〈

∂

∂t
,

∂

∂ pt
1

,
∂

∂ pt
2

〉
m

,

TmJ�−1(μ) =
〈

∂

∂t
,

∂

∂x
,

∂

∂q1 ,
∂

∂q2
,

∂

∂ pt
1

− ∂

∂ pt
2

,
∂

∂ px
1

− ∂

∂ px
2

〉
m

,

ker TmJ�1 =
〈

∂

∂t
,

∂

∂x
,

∂

∂q1 ,
∂

∂q2
,

∂

∂ px
1
,

∂

∂ pt
1

− ∂

∂ pt
2

,
∂

∂ px
2

〉
m

,

ker TmJ�2 =
〈

∂

∂t
,

∂

∂x
,

∂

∂q1 ,
∂

∂q2
,

∂

∂ px
1

− ∂

∂ px
2
,

∂

∂ pt
1

,
∂

∂ pt
2

〉
m

and, indeed, the conditions (6.12) and (6.13) hold.
Recall that the dynamics on M is given by a two-polycosymplectic Hamiltonian two-vector field. Therefore, let us con-

sider a general two-vector field Xh = (Xh
1, Xh

2) ∈ X2(M) with local expression

Xh
α = At

α

∂

∂t
+ Ax

α

∂

∂x
+ B1

α

∂

∂q1 + B2
α

∂

∂q2
+ Ct

α1
∂

∂ pt
1

+ C x
α1

∂

∂ px
1

+ Ct
α2

∂

∂ pt
2

+ C x
α2

∂

∂ px
2

.

Imposing the two-polycosymplectic Hamiltonian equations (4.2), the previous two-polycosymplectic Hamiltonian two-vector 
field Xh = (Xh

1, Xh
2) must be of the form

Xh
1 = ∂

∂t
+ pt

1
∂

∂q1 + pt
2

∂

∂q2
+ Ct

11
∂

∂ pt
1

+ C x
11

∂

∂ px
1

+ Ct
12

∂

∂ pt
2

+ C x
12

∂

∂ px
2

,

Xh
2 = ∂

∂x
− px

1
∂

∂q1 − px
2

∂

∂q2
+ Ct

21
∂

∂ pt
1

−
(

Ct
11 + ∂C

∂q

)
∂

∂ px
1

+ Ct
22

∂

∂ pt
2

+
(

∂C

∂q
− Ct

12

)
∂

∂ px
2

,

where q = q1 − q2 and Ct
11, C

x
11, C

t
12, C

x
12, C

t
21, C

t
22 ∈ C ∞(M) are, in principle, arbitrary functions.

Its integral sections, with t, x being the coordinates in its domain, satisfy

Ct
11 = ∂ pt

1

∂t
, C x

11 = ∂ px
1

∂t
, C x

12 = ∂ px
2

∂t
, Ct

21 = ∂ pt
1

∂x
, Ct

22 = ∂ pt
2

∂x
,

−Ct
11 − ∂C

∂q
= ∂ px

1

∂x
,

∂C

∂q
− Ct

12 = ∂ px
2

∂x
.

This system of PDEs is integrable when [Xh
1 , Xh

2] = 0, for instance, if C = qF (x) + F̂ (t, x) for arbitrary functions F̂ (t, x), 
F (x), while Ct

11, C
x
11, C

t
12, C

x
12, C

t
21, C

t
22 vanish. Then, to apply Theorem 6.14, we require Xh to be tangent to J�−1(μ) and 

LξM Xα = 0 for α = 1, 2. Thus, Ct
12 + Ct

11 = 0, C x
11 + C x

12 = 0, and Ct
21 + Ct

22 = 0 and Ct
i j, C

x
i j must be first-integrals of ξM

for i, j = 1, 2. A two-polycosymplectic Hamiltonian two-vector field gives rise to the following Hamilton–De Donder–Weyl 
equations

∂q1

∂t
= pt

1 ,
∂q1

∂x
= −px

1 ,
∂q2

∂t
= pt

2 ,
∂q2

∂x
= −px

2 ,

∂ pt
1

∂t
+ ∂ px

1

∂x
= −∂C

∂q
,

∂ pt
2

∂t
+ ∂ px

2

∂x
= ∂C

∂q
.

Since G = R acts on J�−1(μ) by translations along the q1 + q2 direction, the Lie group action � is free and proper. 
Therefore, J�−1(μ)/Gμ is a smooth manifold and

J�−1(μ)/Gμ � R2 × T∗R2/R �R2 ×R2/R×R� R2 ×R×R2.

Then, on the reduced manifold J�−1(μ)/R, the reduced two-polycosymplectic structure reads

τμ = dt ⊗ e1 + dx ⊗ e2 , ωμ = dq ∧ dpt
1 ⊗ e1 + dq ∧ dpx

1 ⊗ e2 .

Indeed, it becomes a two-cosymplectic structure since
28
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kerωμ =
〈

∂

∂t
,

∂

∂x

〉
, kerτμ ∩ kerωμ = 0 .

The reduced dynamics on J�−1(μ)/R is given by the reduced two-polycosymplectic Hamiltonian two-vector field Xhμ =
(X

hμ

1 , Xhμ

2 ) of the form

X
hμ

1 = ∂

∂t
+ pt ∂

∂q
+ 2Ct

11
∂

∂ pt
+ 2C x

11
∂

∂ px
,

X
hμ

2 = ∂

∂x
− px ∂

∂q
− 2Ct

22
∂

∂ pt
− 2

(
Ct

11 + ∂C

∂q

)
∂

∂ px
,

where hμ = 1
4

(
(pt)2 + (px)2 + (μ1)2 − (μ2)2

) + C(t, x, q) is the reduced Hamiltonian function, where pt = pt
1 − pt

2 and 
px = px

1 − px
2. A reduced two-polycosymplectic Hamiltonian two-vector field induces the following Hamilton–De Donder–

Weyl equations

∂q

∂x
= −px ,

∂q

∂t
= pt ,

∂ pt

∂t
+ ∂ px

∂x
= −2

∂C

∂q
.

Let us generalise some of the ideas of the previous example. The starting point is the following proposition, whose proof 
is an immediate extension to the k-polycosymplectic realm of results in symplectic geometry.

Proposition 7.1. Let � : G × Q → Q be a Lie group action. There exists a Lie group action �̃ : G × Rk × ⊕k
α=1 T∗ Q → Rk ×⊕k

α=1 T∗ Q of the form

�̃(g, x,q, pα) = (x,�(g,q), (T�(g,q)�g−1)
∗ pα) ∈ Rk ×

k⊕
α=1

T∗ Q .

This Lie group action is k-polycosymplectic relative to the canonical k-polycosymplectic structure on Rk ×⊕k
α=1 T∗ Q with the unique 

momentum map J�̃ :Rk × ⊕k
α=1 T∗ Q → (g∗)k such that

〈J�̃(x,q, pα), ξ 〉 = ιξ M
p(q) , ∀ξ ∈ gk , ∀(x,q, pα) ∈Rk ×

k⊕
α=1

T∗ Q .

Moreover, J�̃ is Ad∗k-equivariant.

Proposition 7.1 implies that one may accomplish a k-polycosymplectic reduction relative to the level sets of J�̃ , provided 
our technical conditions, e.g. (6.12) and (6.13), are satisfied. In fact, the reduction procedure accomplished in the example 
of this section is nothing but a particular case of this construction for a Lie group symmetry. It is relevant to stress that 
this procedure does not allow for a reduction involving the variables of Rk . Physically, this reduction involves the variables 
of 

⊕k
α=1 T∗ Q , namely the so-called fields and their momenta. Meanwhile, the variables in Rk , which are physically related 

to space-times and other manifolds where the problem under study occurs, cannot be reduced. To do so, we will develop a 
new method described in the next section.

8. A k–cosymplectic to 	–polycosymplectic reduction

This section performs a Marsden–Weinstein reduction from a k-cosymplectic to an �-cosymplectic manifold. Moreover, 
our procedure may allow, under certain conditions, for the further successive application of the techniques developed in 
previous sections to obtain a smaller �-polycosymplectic manifold. To simplify our presentation and avoid explaining trivial 
results, we hereafter assume � < k. In physics, this permits us to develop Marsden–Weinstein reduction techniques for 
field theories involving the elimination of space-time variables, which is not possible via the approaches described in the 
previous sections since the fundamental vector fields of the involved k-polycosymplectic Lie group action took values in 
kerτ . It is worth noting that the reductions developed in this section represent a rather pioneering and non-standard 
approach in the literature, which is frequently based on other methods, e.g. principal bundles and Lie group actions not 
involving the reduction of base manifolds [14,15]. Moreover, we will hereafter give conditions allowing for the reduction 
of the HDW equations on a k-cosymplectic manifold to the ones in the reduced �-cosymplectic manifold and its potential 
further �-polycosymplectic reductions.

This section is restricted to the study of a canonical k-cosymplectic manifold (Mk =Rk × ⊕k
α=1 T∗ Q , τ k, ωk) with its 

natural polarisation Vk . It is worth noting that, in virtue of the Darboux’s theorem for k-cosymplectic manifolds [23], every 
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k-cosymplectic manifold is locally diffeomorphic to (Mk, τ k, ωk). Hence, our results apply, locally, to every k-cosymplectic 
manifold. Let us start by accomplishing a k-cosymplectic to �-cosymplectic Marsden–Weinstein manifold reduction. As be-
fore, {e1, . . . , ek} is a basis for Rk , while τ k = τα ⊗ eα ∈ �1(Mk, Rk) and ωk = ωα ⊗ eα ∈ �2(Mk, Rk). Recall that the sum 
over repeated crossed indexes of a particular type will be over its standard range, e.g. α ranges from 1 to k, unless a 
summation symbol indicating otherwise is used. It is worth stressing that all results to be hereafter described are local.

Theorem 8.1. Let (Mk, τ k, ωk, Vk) be a canonical k-cosymplectic manifold, let � : G × Mk → Mk be an associated k-cosymplectic Lie 
group action, and let {τ 1, . . . , τ �} be a basis of the linear subspace (over the real numbers) of 〈τ 1, . . . , τ k〉 vanishing on the space W of 
fundamental vector fields of �. Assuming, without loss of generality, that the last k − � differential one-forms in the basis {τ 1, . . . , τ k}
are linearly independent as linear forms on W , we set τβ = cβ

α τα for certain unique constants cβ
α with α = 1, . . . , k and β = 1, . . . , �. 

We define τ = ∑�
β=1 cβ

α τα ⊗ eβ and ω = ∑�
β=1 cβ

α ωα ⊗ eβ . If the map

π : (x̄1, . . . , x̄k,q, p̄1, . . . , p̄k) ∈Rk ×
k⊕

α=1

T∗ Q �−→ (x̄1, . . . , x̄�,q, p̄1, . . . , p̄�) ∈R� ×
�⊕

α=1

T∗ Q

is the canonical projection, then (M� =R� × ⊕�
α=1 T∗ Q , τ �, ω�) is an �-cosymplectic manifold with

π∗ω� = ω , π∗τ � = τ .

Furthermore, there exists a Lie group action �� : G × M� → M� that is equivariant relative to π .

Proof. Let {xα, y j, pα
j } denote locally adapted coordinates to (Mk, τ k, ωk), namely

ωk = dy j ∧ dpα
j ⊗ eα , τ k = dxα ⊗ eα , Vk =

〈
∂

∂ pα
j

〉
α=1,...,k, j=1,...,dim Q

.

Since �∗
gωk = ωk for every g ∈ G , then kerωk = 〈

∂/∂x1, . . . , ∂/∂xk
〉

is G-invariant with respect to the lifted Lie group action 
of � to TMk . Furthermore, as �∗

gτ k = τ k for every g ∈ G , there exists a local linear Lie group action �k : G × Rk → Rk

whose space of orbits, around a point of Rk , is a quotient space, Rk/E , for a certain linear subspace E ⊂Rk . Hence, Rk/E
has a natural structure of �-dimensional linear space.

Since τ k is closed and LξMk
τ k = 0 for every ξ ∈ g, it follows that ιξMk

τ k is constant for each ξ ∈ g. Therefore, 
W = 〈τ 1, . . . , τ k〉 can be considered as a linear subspace of the dual, W ∗ , to the linear (over the reals) space W of funda-
mental vector fields of the Lie group action �. Hence, there exists a linear subspace A ⊂ W consisting of the elements of 
W vanishing on W . Let {τ 1, . . . , τ �} be a basis of A. Then, we can define τ β = cβ

α τα and ωβ = cβ
αωα for some unique con-

stants cβ
α , where α = 1, . . . , k and β = 1, . . . , �. Note that τ ∈ �1(Rk ×⊕k

α=1 T∗ Q , R�) and ω ∈ �2(Rk ×⊕k
α=1 T∗ Q , R�). It 

follows that τ and ω are closed, since τ k and ωk are closed and the coefficients cβ
α , with α = 1, . . . , k and β = 1, . . . �, 

are constants. There exist new local adapted coordinates to Mk obtained linearly from the previous ones, let us say 
{x̄α = Aα

β xβ, y j, p̄α
j = Aα

β pβ

j } for a certain constant (k × k)-matrix Aα
β , such that

ω =
�∑

β=1

dy j ∧ dp̄β

j ⊗ eβ , τ =
�∑

β=1

dx̄β ⊗ eβ .

Note that kerτ ∩ kerω is an integrable regular distribution on Mk given by

kerτ ∩ kerω =
〈

∂

∂ p̄α
j

,
∂

∂ x̄α

〉
α = � + 1, . . . ,k,

j = 1, . . . ,dim Q

.

The pair (τ , ω) is not a k-cosymplectic structure on Mk , but a k-precosymplectic one (see [35] for details).
The space Tx Mk/ 

(
kerτ ∩ kerω

)
x is diffeomorphic to Tπ(x)M� for x ∈ Mk , where M� = R� × ⊕�

α=1 T∗ Q . Since τ and 
ω vanish on the fundamental vector fields kerω ∩ kerτ and are closed, they are projectable via the canonical projection 
π : Mk → M� onto M� giving rise to an �-cosymplectic manifold (M�, τ �, ω�), where τ � and ω� are the only differential 
forms on M� taking values in R� so that

π∗τ � = τ , π∗ω� = ω .

Let ξ be any element of g. Moreover, ιξMk
τ = 0 and every ξ ∈ g. Then, for every vector field X on Mk taking values in 

kerτ ∩ kerω, one has

ι[ξM ,X]ω = LξM ιXω − ιXLξM ω = 0

k k k
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and, similarly, ι[ξMk
,X]τ = 0. This implies that the fundamental vector fields of � project onto M� and give rise to a new Lie 

group action �� : G × M� → M� equivariant to � relative to the canonical projection π : Mk → M� . �
The previous procedure can potentially be continued by using an �-polycosymplectic momentum map J� to perform an 

�-polycosymplectic Marsden–Weinstein reduction according to the results of previous sections. Note that the fundamental 
vector fields of �� leave invariant ω� , which means that, for each ξ ∈ g, we have ιξM�

ω� = dhξ for a certain hξ and 
by construction ιξM�

τ � = 0. Nevertheless, we have to impose that R�αhξ = 0 for α = 1, . . . , �. Note that the latter is not 
satisfied in general: the initial � is just k-cosymplectic and it is not ensured that it admits a k-cosymplectic momentum 
map.

We shall now demonstrate how Theorem 8.1 induces some dynamics on the reduced space M� from one in Mk satisfying 
certain conditions. Recall that, in the reductions of k-cosymplectic structures treated in this section, the last coordinates of 
τ will be considered, without loss of generality, to be linearly independent as linear mappings on the fundamental vector 
fields of �.

Before continuing, let us set and recall some notation used and to be employed.

Original k-cosymplectic manifold and Hamiltonian k-cosymplectic k-vector field.
(
(Mk,τ k,ωk), Xh

)

New k-cosymplectic manifold and Hamiltonian k-vector field obtained by making 
linear combinations of the components in Rk of ω and τ to ensure that the first 
� components of τ̂ vanish on the fundamental vector fields of a k-cosymplectic Lie 
group action.

(
(Mk, τ̂ , ω̂), X̂

h)

An �-precosymplectic manifold and its k-vector field obtained by cutting the last 
k − � components of the previous k-cosymplectic manifold and k-cosymplectic 
Hamiltonian k-vector field.

(
(Mk,τ ,ω), X

h)

Projected �-cosymplectic manifold and its �-cosymplectic Hamiltonian �-vector 
field.

(
(M�,τ �,ω�), Xh�

)
π

Theorem 8.2. Let (Mk, τ k, ωk, Vk) be a k-cosymplectic manifold and let � : G × Mk → Mk be an associated k-cosymplectic Lie group 
action. Assume that h ∈ C ∞(Mk) and Xh is an associated k-cosymplectic Hamiltonian k-vector field that is invariant relative to �. Let 
us consider that h is also invariant relative to the vector fields taking values in kerτ ∩ TRk while the Lie bracket of any component of 
Xh with any vector field taking values in kerτ ∩ kerω takes values in the kernel of Tπ . Let us suppose that 

∑k
α=�+1[ X̂h

α]αi = 0 for 
i = 1, . . . , dim Q . Then, there exists a function h� ∈ C ∞(M�) such that Xh� is the projection of ( X̂h

1, . . . , ̂Xh
� ) onto M� and π∗h� = h on 

a submanifold of constant values of the momenta pα
i with α = � +1, . . . , k and i = 1, . . . , dim Q . The �-vector field Xh� is Hamiltonian 

relative to (M�, τ �, ω�) and the solutions for the HDW equations of h� are solutions of the original HDW equations for constant 
associated momenta with α = � + 1, . . . , k for τ , ω.

Proof. Let ̂cβ
α be the matrix of the change of bases mapping {τ 1, . . . , τ k} into the new basis

τ̂ 1 = τ̄ 1, . . . , τ̂ � = τ̄ �, τ̂ �+1 = τ �+1, . . . , τ̂ k = τ k ,

and let ̂dβ
α be the inverse matrix, namely τα = d̂α

β τ̂ β , for α, β = 1, . . . , k. Define a new Hamiltonian k-cosymplectic k-vector 
field X̂h on Mk relative to (Mk, ̂τ = ĉβ

ατα ⊗ eβ, ̂ω = ĉβ
αωα ⊗ eβ) of the form

X̂h
α = d̂β

α Xh
β , α,β = 1, . . . ,k .

Since ̂cβ
α is such that ̂cβ

α = δ
β
α for β = � + 1, . . . , k and α = 1, . . . , k by construction of τ̂ , then ̂dβ

α = δ
β
α for β = � + 1, . . . , k

and α = 1, . . . , k. The relations between the new canonical coordinates in Rk × ⊕k
α=1 T∗ Q and the previous ones are given 

by

x̂β = ĉβ
αxα , p̂β

i = ĉβ
α pα

i , α,β = 1, . . . ,k , i = 1, . . . ,dim Q ,

while q1, . . . , qdim Q are the same in the new and the old coordinate systems.
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If R̂α = d̂β
α Rβ , it follows that

ι X̂h
α
ω̂α = dh − (R̂αh)τ̂ α, ι X̂h

α
τ̂ β = δ

β
α. (8.1)

It is worth noting that if ψ : s = (s1, . . . , sk) ∈ Rk �→ (xα(s), qi(s), pα
i (s)) ∈ Rk × ⊕k

α=1 T∗ Q is a solution to the HDW 
equations of the original Xh , then the same ψ is a solution for the HDW equations for X̂h in the new coordinates ψ : ŝ =
(̂s1, . . . , ̂sk) ∈Rk �→ (̂xα(̂s), qi (̂s), ̂pα

i (̂s)) ∈Rk × ⊕k
α=1 T∗ Q with ̂sβ = ĉβ

αsα for α, β = 1, . . . , k, namely

∂ x̂β

∂̂sα
= δ

β
α ,

∂qi

∂̂sα
= ∂h

∂ p̂α
i

,

k∑
α=1

∂ p̂α
i

∂̂sα
= − ∂h

∂qi
, α,β = 1, . . . ,k , i = 1, . . . ,dim Q . (8.2)

Then, let us show there is a new �-vector field Xh
on Rk × ⊕k

α=1 T∗ Q related to (Rk × ⊕k
α=1 T∗ Q , τ , ω) of the form

X
h =

�∑
α=1

X̂h
α ⊗ eα ,

satisfying

ι
X

hω = d�h −
�∑

α=1

(Rαh)τ̄ α , Rα = R̂α , α = 1, . . . , � ,

where d� is the differential taking into account all canonical coordinates apart from x̂α and p̂α
i for α = � + 1, . . . , k and 

i = 1, . . . , dim Q . If follows from (8.1) that

�∑
β=1

ι
X

h
β

ωβ +
k∑

β=�+1

∂h

∂ p̂β

i

dp̂β

i −
k∑

β=�+1

[ X̂h
β ]βi dqi = ∂h

∂qi
dqi +

�∑
α=1

∂h

∂ p̂α
i

dp̂α
i +

k∑
α=�+1

∂h

∂ p̂α
i

dp̂α
i .

If we assume 
∑k

β=�+1[ X̂h
β ]βi = 0 for i = 1, . . . dim Q , then

�∑
β=1

ι
X

h
β

ωβ = ∂h

∂qi
dqi +

�∑
α=1

∂h

∂ p̂α
i

dp̂α
i = d�h −

�∑
α=1

(Rαh)τα . (8.3)

In particular, the previous expression holds on the submanifold Sλ for ̂pα
i = λα

i for certain constants λα
i , with α = � +1, . . . , k

and i = 1, . . . , dim Q . Note that the projection of this submanifold relative to π : Mk → M� is surjective and open. By the 
given assumptions, the restriction of h to Sλ is projectable onto a function h� on M� . Since the Lie bracket of Xh with 
any vector field in kerτ ∩ kerω belongs to the kernel of Tπ , it follows that the same applies to X̂h and (X

h
1, . . . , X

h
�) is 

projectable onto M� , which implies that the Lie derivatives of the X
h
1, . . . , X

h
� with ∂/∂ x̄�+1, . . . , ∂/∂ x̄k and their associated 

momenta belong to the kernel of Tπ . And then, (8.3) projects onto M� . Moreover, ιXα
τ β = δ

β
α for α, β = 1, . . . , �. These 

facts show that the projection of (X
h
1, . . . , X

h
�) is Hamiltonian relative to the induced �-cosymplectic manifold (M�, τ �, ω�). 

The new local canonical variables are given by

x̄α = x̂α , p̄α
i = p̂α

i i = 1, . . . ,dim Q , α = 1, . . . , � .

It is recommendable to take a look at the HDW equations for the �-cosymplectic structure. They take the form

∂ x̄β

∂ s̄α
= δ

β
α ,

∂qi

∂sα
= ∂h�

∂ p̄α
i

,

�∑
α=1

∂ p̄α
i

∂ s̄α
= −∂h�

∂qi
, α,β = 1, . . . , � , i = 1, . . . ,dim Q .

These are indeed the equations for the solutions to (8.2) with constant p̄α
i with α = � + 1, . . . , k and such that h does not 

depend on x̄�+1, . . . , ̄xk . Hence, this allows us to reduce our problem. �
It is worth noting that if the fundamental vector fields of � are tangent to the manifolds Sλ , then the function h� will 

be again invariant relative to � and a standard �-polycosymplectic reduction will be available if the reduction of � satisfies 
certain additional conditions, e.g. that the reduction will have a momentum map.

Note that Theorem 8.2 gives some conditions ensuring that the k-cosymplectic Hamiltonian k-vector field X̂h can be 
projected onto M� . These conditions are not the most general ones for the above theorem to hold. For instance, one can 
assume that only the first � components of X̂h are projectable.
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Let us apply our techniques to a vibrating membrane having an exterior force that depends only on the radial distance. 
Let us recall that this system is determined by the Hamiltonian function ̃h ∈ C ∞(R3 × ⊕3

α=1 T∗R) given by

h̃(t, r, θ, ζ, pt, pr, pθ ) = 1

2r

(
(pt)2 − 1

c2
(pr)2 − r2

c2
(pθ )2

)
− rζ f (r) ,

and the canonical three-cosymplectic structure on R3 × ⊕3
α=1 T∗R given by

τ = dt ⊗ e1 + dr ⊗ e2 + dθ ⊗ e3 , ω = dζ ∧ dpt ⊗ e1 + dζ ∧ dpr ⊗ e2 + dζ ∧ dpθ ⊗ e3 .

A section

ψ : (t, r, θ) ∈ R3 �→ (t, r, θ, ζ(t, r, θ), pt(t, r, θ), px(t, r, θ), p y(t, r, θ)) ∈R3 × ⊕3
α=1 T∗R=: M v

3 ,

becomes a solution of the HDW equations of the three-cosymplectic Hamiltonian three-vector field Xh̃ = (Xh̃
1, Xh̃

2, Xh̃
3) on 

M v
3 given by

Xh̃
1 = ∂

∂t
+ pt

r

∂

∂ζ
, Xh̃

2 = ∂

∂r
− pr

c2r

∂

∂ζ
+ r f (r)

∂

∂ pr
, Xh̃

3 = ∂

∂θ
− rpθ

c2

∂

∂ζ

if

∂ pt

∂t
+ ∂ pr

∂r
+ ∂ pθ

∂θ
= r f (r) ,

∂ζ

∂t
= 1

r
pt ,

∂ζ

∂r
= − 1

rc2
pr ,

∂ζ

∂θ
= − r

c2
pθ .

Combining these equations, one obtains the well-known equation

∂2ζ

∂t2
− c2

(
∂2ζ

∂r2
+ 1

r

∂ζ

∂r
+ 1

r2

∂2ζ

∂θ2

)
= f (r) ,

of a forced vibrating membrane in polar coordinates. Let us assume a reduction of the space-time appearing in this problem.
The Lie group action

� : R2 × M v
3 � (λ1, λ2; t, r, θ, ζ, pt, pr, pθ ) �→ (t + λ1, r, (θ + λ2) mod 2π,ζ, pt, pr, pθ ) ∈ M v

3 ,

describes symmetries of h̃ and it is also three-cosymplectic Lie group action, namely, it leaves invariant τ , ω, and their 
polarisation V . Then, the restriction of � to R3 reads

�3 :R2 ×R3 � (λ1, λ2; t, r, θ) �→ (λ1 + t, r, (θ + λ2) mod 2π) ∈ R3 ,

and its space of orbits is diffeomorphic to R. Recall that the existence of such a Lie group action was proved in the proof 
of Theorem 8.2. In fact, its space of fundamental vector fields is

D =
〈

∂

∂t
,

∂

∂θ

〉
and the one-forms of 〈dr, dt, dθ〉 vanishing on it are 〈dr〉. Hence, we have

τ = dr, ω = dζ ∧ dpr .

Note that X̂h̃ = (Xh̃
2, X

h̃
1, X

h̃
3) and the HDW equations for X̂h̃ are the same as before (up to a reparametrization of the indexes 

of the variables in R3). Consider the submanifold Sλ in R3 × ⊕3
α=1 T∗R given by

pt = λt, pθ = λθ , λ = (λt, λθ ) ∈R2,

for two constants λt , λθ ∈R, which projects onto R6 diffeomorphically. Note that there exists a function

k(r, ζ, pr) = 1

2r

(
λ2

t − 1

c2
(pr)2 − r2

c2
λ2

θ

)
− rζ f (r) ,

whose pull-back to R3 × ⊕3
α=1 T∗R matches the value of ̃h on Sλ .

Note that D , namely the distribution spanned by the fundamental vector fields of �, and ker τ ∩ kerω = 〈∂/∂t, ∂/∂θ, ∂/

∂ pt , ∂/∂ pθ 〉 is an integrable distribution. Moreover, ̃h is a first-integral of the vector fields of kerτ ∩ TRk . Additionally, one 
has that Xh̃2 + Xh̃3 = X̂ h̃2 + X̂ h̃ = 0.
2 3 2 3
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Then, one obtains that the space of leaves of �3 is diffeomorphic to R × T∗R and one has a projection

π : (t, r, θ, ζ, pt, pr, pθ ) ∈ R3 ×
3⊕

α=1

T∗R �−→ (r, ζ, pr) ∈R× T∗R.

The Lie brackets of each of the components of Xh with vector fields of kerτ ∩ kerω also belong to the kernel of Tπ and 
one obtains an induced 1-cosymplectic structure

(R× T∗R,dr,dζ ∧ dpr).

In fact, this is the canonical cosymplectic structure in the reduced manifold. Then, the three-vector fields

Xh̃
1 = ∂

∂t
+ λt

r

∂

∂ζ
, Xh̃

2 = ∂

∂r
− pr

c2r

∂

∂ζ
+ r f (r)

∂

∂ pr
, Xh̃

3 = ∂

∂θ
− rλθ

c2

∂

∂ζ

project onto the quotient. The final HDW equations are

∂ pr

∂r
= r f (r) ,

∂ζ

∂r
= − pr

rc2
.

Combining these equations, the equation of a forced vibrating membrane in polar coordinates reads

c2
(

∂2ζ

∂r2
+ 1

r

∂ζ

∂r

)
= − f (r) .

These are the HDW equations obtained by assuming pθ and pt to be constant in the initial HDW equations.

9. Conclusions and outlook

We have found that k-polycosymplectic manifolds are equivalent to k-polysymplectic manifolds of a particular type: 
the here defined and analysed k-polysymplectic fibred manifolds. This relation is very interesting for studying geometric 
properties and developing techniques to study polycosymplectic manifolds via polysymplectic geometry as it shows that 
polycosymplectic geometry is a particular case of polysymplectic geometry. Despite that, the relation may have limited 
interest in the study of their associated Hamiltonian systems. In particular, the equivalence relates manifolds of a different 
dimension, which may turn a problem related to a Hamiltonian system in a k-polycosymplectic manifold into a harder one 
in an associated k-polysymplectic fibred one of larger dimension. Notwithstanding, more research is necessary to determine 
how far this equivalence can be effectively used to study dynamical systems (see [27] for similar investigations concerning 
symplectic and cosymplectic Hamiltonian systems and geometries).

As a most relevant result, we have developed a k-polycosymplectic Marsden–Weinstein reduction procedure by proving 
that it can be understood as a k-polysymplectic Marsden–Weinstein reduction. This seems to close a problem that has been 
open for more than a decade now. Moreover, the k-polysymplectic reduction has been improved in several manners, e.g. 
by skipping the standard Ad-invariance of the momentum maps, and studied in particular cases, e.g. for k-polysymplectic 
fibred manifolds. Our k-polycosymplectic reduction has also been applied to physical problems. Although our work provides 
a k-polycosymplectic reduction by means of an improved k-polysymplectic reduction, it is still interesting to perform a 
k-polysymplectic reduction process without relying on a k-polysymplectic structure.

An interesting approach to k-polycosymplectic Marsden–Weinstein reductions, with other extension to k-polysymplectic 
manifolds than ours, was published as a preprint in arXiv [30] a month after the first preprint version of our work (see arXiv:
2302 .09037). So far, [30] seems to have not been published in any journal. Our work and [30] are rather complementary, 
having different advantages. The results in [30] are less general than ours in the sense that, for instance, they do not include 
our reductions in terms the space-time variables and we consider more general momentum maps. Notwithstanding, [30]
noticed that the conditions for the k-polysymplectic reduction in [49] can be simplified by using [6], which can easily be 
included in our approach. The extension in [30] to k-polysymplectic manifolds seems to have some nice properties too, but 
it is not strictly necessary for the reduction. We hope to investigate and to merge the best ideas of our work and [30] in 
the future.

Finally, we have developed a k-cosymplectic to �-cosymplectic manifold reduction as well as a related reduction for 
the HDW equations induced by a certain Hamiltonian function of the initial k-cosymplectic manifold. Our theory has been 
illustrated by a vibrating membrane. It is worth noting that, as far as we know, this is the first geometric reduction theory 
of k-cosymplectic manifolds that is able to reduce the base manifold of a field theory. In forthcoming works, we aim to 
look for new applications of our theory. Our results have many potential applications, but it demands many technical, 
but practical conditions. We aim to develop a more elegant and less technical description of our k-cosymplectic to �-
cosymplectic reduction for the HDW equations given in Theorem 8.2. Moreover, Theorem 8.2 can be generalised by assuming 
different conditions on the projectability of X̂h or the components thereof. One of the ideas is to write conditions on 
a restriction of the initial k-vector field X̂h or its components to Sλ or another submanifold. We expect to study these 
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problems in detail in the future. Moreover, we aim to investigate the reconstruction process, i.e. to analyse how the solutions 
of the reduced �-cosymplectic Hamiltonian problem on M� are related to the initial HDW equations on Mk .

Our main goal in the near future is to develop the Marsden–Weinstein multisymplectic reduction. In this sense, this paper 
is a good starting point since there are previous studies [60] that allow us to relate k-polysymplectic and k-polycosymplectic 
structures to multisymplectic structures in related manifolds. Therefore, the results of this paper are a key point to approach 
the multisymplectic reduction.
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