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Abstract: In this paper, the term “applicability domain” refers to the range of chemical compounds 

for which the statistical quantitative structure-activity relationship (QSAR) model can accurately 

predict their toxicity. This is a crucial concept in the development and practical use of these models. 

First, a multidisciplinary review is provided regarding the theory and practice of applicability domains 

in the context of toxicity problems using the classical QSAR model. Then, the advantages and 

improved performance of neural networks (NNs), which are the most promising machine learning 

algorithms, are reviewed. Within the domain of medicinal chemistry, nine different methods using NNs 

for toxicity prediction were compared utilizing 29 alternative artificial intelligence (AI) techniques. 

Similarly, seven NN-based toxicity prediction methodologies were compared to six other AI 

techniques within the realm of food safety, 11 NN-based methodologies were compared to 16 different 

AI approaches in the environmental sciences category and four specific NN-based toxicity prediction 

methodologies were compared to nine alternative AI techniques in the field of industrial hygiene. 

Within the reviewed approaches, given known toxic compound descriptors and behaviors, we observed 

a difficulty in being able to extrapolate and predict the effects with untested chemical compounds. 

Different methods can be used for unsupervised clustering, such as distance-based approaches and 

consensus-based decision methods. Additionally, the importance of model validation has been 

highlighted within a regulatory context according to the Organization for Economic Co-operation and 

Development (OECD) principles, to predict the toxicity of potential new drugs in medicinal chemistry, 

to determine the limits of detection for harmful substances in food to predict the toxicity limits of 

chemicals in the environment, and to predict the exposure limits to harmful substances in the workplace. 

Despite its importance, a thorough application of toxicity models is still restricted in the field of 

medicinal chemistry and is virtually overlooked in other scientific domains. Consequently, only a small 
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proportion of the toxicity studies conducted in medicinal chemistry consider the applicability domain 

in their mathematical models, thereby limiting their predictive power to untested drugs. Conversely, 

the applicability of these models is crucial; however, this has not been sufficiently assessed in toxicity 

prediction or in other related areas such as food science, environmental science, and industrial hygiene. 

Thus, this review sheds light on the prevalent use of Neural Networks in toxicity prediction, thereby 

serving as a valuable resource for researchers and practitioners across these multifaceted domains that 

could be extended to other fields in future research. 

Keywords: applicability domain; OECD principles; quantitative structure-activity relationship 

(QSAR); toxicity; machine learning 

Mathematics Subject Classification: 68T07 

 

1. Introduction 

Chemical toxicity is a matter of growing concern due to the harmful effects that millions of the 

chemical agents used by industry can have regarding human health and the environment. It can be 

tested through a variety of criteria (chronic, acute, specific to a certain organ such as eye or skin 

corrosion/irritation or sensitization, as well as potential carcinogen or genotoxic, etc.), and is measured 

by several quantitative and qualitative criteria (LD50, low, moderate or high toxicity, to name a few). 

To minimize any potential damage, new chemicals within the industry must be approved by the 

authorities prior to production and commercialization, and is subjected to a prior behavioral analysis 

in contact with humans, animals, and the environment [1–4]. 

Traditional toxicity tests require the application of chemicals in animals, usually rodents. However, 

animal experimentation is becoming increasingly controversial due to ethical and practical issues [5,6]. 

Therefore, there has been a recent trend towards the substitution of animal (in vivo) tests with in vitro 

laboratory models and computational (in silico) methodologies [7]. Thus, alternatives to animal 

experimentation are required according to the following 3R principles: 1) replacement, which is the 

development of alternative methods to the use of experimental animals; 2) reduction, which is the 

minimization of animal testing if total substitution is not possible; and 3) refinement, which is providing 

all possible welfare measures during animal life. Against this backdrop, in silico methodologies have 

taken an important role in the estimation of the toxicological properties of chemical compounds. 

Currently, the main in silico toxicity prediction methodologies are defined in Table 1 [8]. 

The science behind the relationships between theoretical molecular representations through 

descriptors and molecular experimental properties is an interdisciplinary research area [9]. The 

Organization for Economic Co-operation and Development (OECD) guidelines, established with the 

assistance of thousands of experts from OECD member countries, comprise internationally accepted 

standard methods for safety testing and the assessment of chemicals (pesticides, personal care products, 

industrial chemicals, etc.), alongside guiding decision-making processes for emergency responses. 

Regarding the replacement of animal experimentation with computational methodologies for the 

assessment of chemical compounds, the OECD is at the forefront in the publication of beneficial 

practice guidelines. They have developed five principles for the use of computational techniques in a 

regulatory context, which are an internationally accepted reference, known as the “OECD Principles for 

the Validation, for Regulation Purposes, of (Quantitative) Structure-Activity Relationship Models” [10]. 

Specifically, these principles are as follows: (a) a defined endpoint; (b) an unambiguous algorithm; (c) 
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a defined applicability domain (AD); (d) appropriate measures of suitability vis-à-vis fit, robustness; 

and (e) predictivity, which is a mechanistic interpretation, if possible. 

Table 1. Main in silico toxicity prediction methods. 

Methodology Characteristics Advantages Limitations 

Statistical based Chemical structures and toxicity 

responses are known. They are 

correlated using Quantitative 

Structure-Activity Relationship 

(QSAR) models 

Predicts a response to new 

structures 

There must be 

database of the 

similar chemical 

structure 

Expert rules or 

alerts 

Structural rules created by 

experts based on their expertise 

Predicts the potential toxicity of a 

new molecule when a particular 

potentially toxic substructure is 

included 

This must be expert 

rule-based or have 

alerts about 

substructures 

Read-across or 

semi-manual 

approaches 

Predictions from historical data 

by identifying specific structural 

categories and analogues based 

on mechanism. 

Acceptable predictions Semi-manual 

application 

Other approaches Use of quantum descriptors: 

EHOMO - ELUMO differences 

Acceptable predictions Need for expertise in 

quantum chemistry 

Additionally, three significant guiding principles assist the Quantitative Structure Activity 

Relationship (QSAR) model development for toxicity predictions: 1) simplicity, which is keeping the 

models as simple as possible by using the fewest and simplest descriptors conceivable, avoiding 

overtraining, supporting interpretation and ensuring the broadest model’s domain; 2) transparency, 

which is providing the structural basis for the prediction, the descriptor weighting, and the indication 

of biological significance, and 3) utility, which is providing information to support a hazard or risk 

assessment such as classification, specific toxicity, or dosage for the toxic effects to appear. 

Specifically, in recent years, the European Union (EU) has been making important strides towards 

REACH/3R principles, fostering the use of computational and statistical QSAR methodologies for the 

prediction of chemical toxicity properties, which are critical for regulatory aspects in many industries 

such as the pharmaceutical, food and environmental sectors and for industrial hygiene promotion. 

General principles considered by the OECD have been formally declared fundamental tools in 

estimating data on chemicals using QSARs models [11]. Additionally, the Chemical Policy of the 

European Commission, known as REACH [12], obliges the registrant to include information from 

alternative sources (e.g., from in silico studies), which can, in certain cases, replace animal tests [13] 

if reliable estimates from validated in silico models can be produced. Consequently, model validation 

is a subject of recent considerable debate in the scientific and regulatory communities [9]. 

2. Background and applicability domain 

Historically, a series of statistical techniques have been developed aiming to predict the effects 

chemical products. These techniques study the active effect of a chemical and thus have been grouped 

under the name QSAR. In real terms, depending on the endpoint (that is, the biological activity 
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predicted), these techniques have received more specific names such as Quantitative Structure Toxicity 

Relationship (QSTR), Quantitative Structure Property Relationship (QSPR), which aims to find the 

toxicity/properties of a chemical, Quantitative Structure-Metabolism Relationship (QSMR), and 

Quantitative Structure-Reactivity Relationship (QSRR), to name a few. For the aims of this research, 

the Quantitative Structure Toxicity Relationship is especially relevant. QSAR approaches rely on a 

basic chemical principle, stating that the biological activities of compounds are associated with the 

arrangement of their atoms (encoded in terms of a series of parameters called molecular descriptors), 

and therefore, structurally related molecules should possess somewhat similar biological activities [14].  

Traditionally, QSAR has emerged from the analysis of correlations of similar compounds, aiming 

to identify activity/toxicity of an untested compound. In this analysis, the so-called descriptors are the 

chemical attributes [15]. Usually, these descriptors are compiled in tables as quantitative values. Ideally, 

the descriptor should be relevant to a broad class of compounds and must correlate with the human 

body response. The term features is frequently used in the literature to refer to the subset of descriptors 

that allow the response to be predicted. Frequently, these features are chosen by experts based on their 

previous experience. The endpoints (i.e., the responses) obtained from the descriptors are 

mathematically expressed as a function of the descriptors, whereby: 

Biological response or activity = f (molecular descriptors). 

According to the dimensions of the descriptors involved, models are referred to as 1D, 2D, 3D, 

4D, and so forth. The idea of correlation evolved to the use of regressions models, which, depending 

on the dose, allows for the inclusion of toxicity. In regression models, the predictors are usually 

quantitative, and the response is the toxicity of tested or untested chemicals. 

QSAR models can be grouped as correlation-linear and non-linear, among other possible forms 

of classification. The classical QSAR methods have evolved to include machine learning (ML) 

techniques, which entails superior extrapolation capabilities. ML techniques can be divided into the 

following: i) regression based methods, where multiple linear regression (MLR) methods allow for a 

correlation between the independent (molecular descriptors) and dependent variables or endpoints 

(biological or physiochemical properties); ii) clustering based methods, in which data is placed into 

ad-hoc groups according to metrics such as similarity or Euclidean distance for clustering (maximizing 

similarity and dissimilarity within groups), and iii) classification methods, where data is assigned to a 

pre-defined set of categories, usually with ML techniques, such as the use of NNs, which mimic the 

behavior of biological neurons through the use of an input layer, several hidden layers and an output 

layer, support vector machine (SVM) or gene expression programming (GEP) and, more recently, 

convolutional neural networks (CNN) and transformer-based models (TBM), to name a few [14]. 

Thus, the application of in silico tools to predict toxicity and making pre-tests for their regulatory 

acceptance as part of product development has increased exponentially in recent years thanks to 

enhancements in model performance and simplicity, with the number of guidelines growing in order 

to support interpretations and to gain acceptance [8]. In this context, new ML prediction tools have 

been a disruptive tool that is being extensively applied to the problem of chemical toxicity with 

regulatory purposes. This subject has been reviewed in greater depth in [7]. 

AI encompasses a vast set of computational techniques capable of simulating the human process 

of thinking [16,17]. One prominent AI technique is ML, which allows for the construction of systems 

that can learn from the data and can be trained to predict a wide range of different outcomes. Among 

the ML approaches, NNs stand out as one of the most promising methods. In a typical configuration, 
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a NN starts with a random set of parameters and receives a large set of examples as an input. As the 

NN processes each sample, the parameters are adjusted so that they adapt their output to what is 

expected. At the end of the process, the NN performs either prediction classification or decision-

making of unseen data with great accuracy. 

Depending on the nature of the learning method, NNs can be divided into supervised, 

unsupervised and reinforcement learning. In supervised learning, each sample needs to be properly 

tagged prior to the training process. Thus, the system is fed with the sample (without the tag) and then 

provides an estimated tag as an output. A comparison between the expected and the estimated tags 

serves as feedback for the system, which iteratively adjusts its parameters until all the samples have 

each been processed several times (i.e., several epochs). At the end of this training process, the system 

is able to assign tags to samples that do not appear in the training set. On the contrary, unsupervised 

learning does not require postulated tagged datasets. These types of systems are useful to identify 

features of a dataset, and they are good approaches for clustering tasks, for detecting characteristics 

that tend to appear grouped in a dataset (i.e., underlying patterns), and for anomaly detection. Finally, 

in reinforcement learning, the goal of the system is to streamline cost-functions, which are calculated 

at each interaction with the environment. When a properly defined cost-function and a large enough 

number of iterations are in place, the system learns (and applies) behavioral aspects that minimizes 

costs. This technique is mainly used in robotics, where the robot needs to learn the best performing 

sequence of actions for a given task, without the need for a human to provide any previous instruction. 

NNs base their operation on the connection between the so-called neurons, which are tiny 

processing units that typically receive a set of inputs and return a weighted sum of the inputs as an output. 

Those weights are the aforementioned parameters, which are randomly initialized and iteratively modify 

the weights of the network, with the network being structured in layers of neurons. When the number of 

layers is greater than two, the network is called a deep neural network (DNN), thus leading to the concept 

of deep learning (DL). Some examples of this type of learning are CNNs, which are primarily used for 

image processing or transformer-based networks, which are designed for textual input. One relevant 

characteristic of DNNs is that they do not need feature extraction as a preprocessing step for the input, 

that is, they can process an image pixel by pixel (or a voice from the very raw signal), while non-DL 

systems require a feature extraction process that translates the input into a numerical vector. This enables 

ML methods with input types where feature extraction is difficult to achieve. 

DL methods are first-rate grading systems, since they can analyze a complex input and produce a 

simple classification output. In a reverse way, NNs can be trained to generate the complex values that 

would generate a given classification. In other words, they can devise images (or any type of signal). 

This is the goal of generative adversarial networks (GANs), which is a type of system that has been 

used to generate new molecular structures [18]. In brief, NNs learn from data through information 

abstraction in layers with non-linear processing units, such as DNNs. Thus, DL has been successfully 

transferred to in silico toxicology, allowing for reliable chemical toxicity predictions. These include 

deep convolutional neural networks (DCNNs) and transformer-based networks, to name but a few. 

Nowadays, ML-based computational in-silico toxicology has many advantages, not just because of 

ethical aspects, but also for frequently providing more reliable results than in vivo tests. Therefore, 

QSAR models have evolved with the arrival of ML and DL, and nowadays, they are intensively used 

for the prediction of toxicity endpoints for regulatory purposes [19]. 

Morger et al. (2021) [20] unveiled a study assessing the calibration of ML models for toxicity 

prediction, using the freely available Tox21 datasets. Conformal prediction (CP) was used to assess 
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the calibration of the models and to diagnose data drifts and other issues related to model calibration. 

While internally valid models could be trained using cross-validation on Tox21Train, predictions on 

the external Tox21Score data resulted in higher error rates than expected, concluding that conformal 

prediction could be used to diagnose data drifts and other issues related to model calibration. The 

applicability domain of the models used in this work was determined through traditional metrics.  

Norinder (2022) [21] discussed the use of molecular structure property modelling as a tool for 

predicting compounds with desired properties, comparing a traditional physico-chemical descriptor 

and ML-based approaches with DL architectures, showing that for the binary Collaborative Acute 

Toxicity Modeling Suite (CATMoS) non-toxic dataset, all methods performed equally well; 

alternatively, for the binary CATMoS very-toxic dataset, the neural framework for molecular property 

prediction based on Bidirectional Encoder Representations from Transformers (Mol-BERT model) 

performed somewhat better compared to the rest, concluding that descriptor-free, Simplified Molecular 

Input Line Entry Specification (SMILES)-based, deep learning BERT architectures seem capable of 

producing well-balanced predictive models with defined applicability domains. Thus, through an 

intermediate Random Forest/auto encoder representation to deep learning BERT/molecular-graph-

based approaches, the study, alongside results from the traditionally used Random Forest/physico-

chemical descriptor approach, was capable of producing models with a defined applicability domain. 

Nascimben & Rimondini (2023) [22] presented a study on the application of spiking neural 

networks (SNNs), which are a type of energy-efficient biologically inspired ML algorithms, for virtual 

screening of molecule databases targeting toxicity. Using structural information derived from 

molecular fingerprints applied to several public-domain toxicological datasets, including TOXCAST, 

Tox21, BBBP, SIDER, and Clintox, their work showed that SNNs obtained remarkable performance 

compared to previous models, advantageously and directly handling molecular fingerprints as binary 

inputs. Thus, the authors explored the potential use of neuromorphic computation solutions as an 

alternative to tackle the von Neumann bottleneck problem, suggesting that technological progress in 

neuromorphic computing could provide further applications to ‘chemoinformatics’, employing 

systems that reflect the mechanisms of brain activity, which is more understandable than standard 

“black box” approaches derived from NNs. The models’ applicability domain used in this work was 

not explicitly stated. The first principle of the OECD guidelines, which is the need to designate “a 

defined endpoint”, is related to the need to describe the goal of the study. Thus, toxicity endpoints to 

be predicted require special consideration. First, endpoints must be toxicologically relevant. Similarly, 

there should be enough structural and biological information to create and select a related dataset, 

which must be later cleaned, pre-processed, reduced and projected (i.e., explored to select the most 

relevant descriptors by data reduction methods), while a mechanistic interpretation must similarly be 

provided. The endpoints that represent good candidates for predictive models according to regulatory 

agencies have been summarized above (e.g., acute oral, dermal or inhalation toxicities, skin 

sensitization, repeated dose 28-day oral toxicity study in rodents, developmental neurotoxicity, 

carcinogenicity studies, chronic toxicity studies, genetic toxicology, to name a few). 

Recently, Jingshan et al. (2021) [23] proposed a representative feature selection (RFS) method to 

select representative molecular descriptors for QSAR modelling by calculating the Euclidean distances 

and Pearson correlation coefficients, revealing that RFS effectively selects representative features from 

the feature space with information redundancy, thereby enhancing the performances of the QSAR 

model. The applicability domain of the QSAR model was determined using a distance-based approach, 

concluding that RFS with a proper clustering algorithm can effectively and automatically build a 
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multiple dimensional feature space for subsequent QSAR modeling. ML methodologies used in this 

work were the gradient boosting decision tree (GBDT) classifier, which is a classic ensemble learning 

algorithm that integrates multiple decision trees (DTs) to improve the prediction performance. 

Additionally, the authors used six clustering algorithms for the preliminary screening of molecular 

descriptors before performing the RFS method, including affinity propagation (AP), balanced iterative 

reducing and clustering using hierarchies (BIRCH), density-based spatial clustering of applications 

with noise (DBSCAN), k-means, mean shift, and ordering points to identify the clustering structure 

(OPTICS). The applicability domain of the QSAR model was determined through a distance-based 

approach to judge the reliability of the prediction for new molecules. 

The second principle of the OECD guidelines, which is related to the statement of the hypothesis 

in the selection of the model and the confidence and consensus among models, is the need to “define 

the applicability domain”, which is the purpose of discussion in this work. Thus, the response and 

chemical structures for which the model is capable to obtain predictions with a certain reliability is 

known as the applicability domain, which should be capable of answering if a model is adequate to be 

applied to a chemical compound, though with a variety of possible methods such as those based on 

distances within the domains. It is unreasonable to expect a model to predict toxicity in any chemical, 

thereby deciding whether a model is suitable is a process of clustering compounds by similarity. Each 

application model is built using a training set with the descriptors and response. These models can be 

used to predict untested chemicals or to develop wholly new chemicals.  

Considering that there is no unique way to define the applicability domain, methods for its 

estimation will be briefly reviewed hereafter, though this is not exactly the main topic of discussion. 

Moreover, the onus will be on how they are being applied in practice, if they are indeed, and scientific 

publications related to the development of toxicity prediction ML-based models in different areas, 

namely medicinal, food and environmental chemistry, and industrial hygiene. Even though proposals 

of harmonization are progressively more widespread [10], there is still a lack of consensus regarding 

how to define the applicability domain. Other OECD basics such as the need for an unambiguous 

algorithm, the appropriate measures of goodness of fit, robustness, and predictivity, as well as the 

mechanistic interpretation, are out of the scope of this review and are further discussed in depth in [9].  

Logically, there is a difficulty in extrapolating other chemicals. The idea of the applicability 

domain comes from the statistical QSAR models and is related to the quality of predictions and the 

prevention of spurious extrapolations of results of the model. For this purpose, two general strategies 

have been proposed involving the statistical analysis of the training, adhering to the assumption that 

interpolated prediction results are more reliable than extrapolated, and the evaluation based on the 

similarity/diversity of the model descriptors space, considering the compound with respect to the 

training set and assuming that predictions should be more reliable if the problem compound is more 

similar to the ones in the training set, which is basically another means of extrapolation. 

Specifically, the main strategies to find the applicability domain in QSAR models are the extent 

of extrapolation, the effective prediction domain, error estimation and residual standard deviation, and 

the similarity distance [24]. The extrapolation method’s scope is based on the degree of extrapolation 

from the model when interpreting the descriptors of a problem compound, on relation to a maximum 

extrapolation that is defined as the reliability limit, to the extent that the prediction is considered 

unreliable if the response is the result of the significant extrapolation of the model. On the other hand, 

an effective prediction domain is a methodology applied to regression-like models, which is especially 

useful for those models with significantly correlated descriptors, according to which the estimations 
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of the regression model should be considered reliable only inside or near the periphery of the effective 

prediction domain (EPD). Moreover, the residual standard deviation approach can be used to evaluate 

the applicability domain trough the calculation of the residual standard deviation (RSD) of the 

descriptor values produced for a test compound. On the contrary, similarity distance methods 

determine the applicability domain as a function of the chemical similarity in such a way that major 

similarity distances generally mean that the query compounds are overly different to the training set 

compounds for reliable predictions to be performed. In this case, numerical approaches can be taken, 

such as calculating the Euclidian distance (i.e., geometric distance), which assumes that the model 

space is spherically distributed, or the Mahalanobis distance (i.e., probability distance), which accepts 

that the shape of the model space is more like an “ellipsoid” [25]. 

Thus, the most widely used idea in addressing the applicability domain issue is that of similarity, 

assessing how similar the new surveyed problem compound is to the population of currently 

available training compounds. Even though the concept of an applicability domain arose at the 

beginning of the development of QSAR models, there are still many studies which either confuse or 

ignore this concept [26]. 

The methodology adopted for conducting the literature review aimed to identify and analyze 

relevant research articles related to the AD, application of computational models based on AI and NNs 

in the field of toxicity prediction. The review primarily focused on the specialties of medicinal 

chemistry, environmental science, industrial hygiene, and food safety. The following steps were 

followed to perform the literature review: 

1. Keyword Search Strategy: A systematic search was initiated using a set of specific keyword 

combinations. The initial search utilized the terms "toxicity prediction" AND the specialties 

"medicinal chemistry," "environment," "industrial hygiene," and "food". Additional searches 

were performed using the terms "applicability domain" AND the same set of specialties. The 

keywords "artificial intelligence" AND "toxicity prediction" were also used to retrieve 

relevant literature. Similarly, the combination "neural networks" AND "toxicity prediction" 

was used to complement the literature retrieval. 

2. Primary Search and Filtering: The primary search yielded a collection of research articles that 

was further refined. Publications within the last 15 years were considered for inclusion in the 

review. The focus was placed on articles discussing "computational models based on AI" and 

"computational models based on neural networks" applied to toxicity prediction, in which 

information was provided about the applicability domain of the models. The results were 

categorized based on the following specialties: medicinal chemistry, environment, industrial 

hygiene, and food safety. 

3. Secondary Searches: The articles obtained from the primary search were subjected to 

secondary searches. Relevant references cited within the selected articles were reviewed to 

ensure a comprehensive coverage of the topic. Moreover, articles that cited the initially 

selected papers were examined to capture the latest developments in the field. 

4. Inclusion and Exclusion Criteria: The inclusion criteria for medicinal chemistry were papers 

explicitly mentioning the method for determining the model applicability domain or the 

applicability of the model to specific substances or substance groups. In the case of food safety, 

articles were included if they provided information on the applicability of the constructed 

models to specific substances, substance groups, or individual foods. For environmental 

sciences, articles mentioning the method for determining the model applicability domain or 
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the applicability of the model to specific substances or substance groups were considered. 

Industrial hygiene articles were included if they provided information on the applicability of 

AI and NN models to specific substances, substance groups, or specific areas within 

occupational hygiene. 

5. Review of Collections/Book Chapters: To supplement the review, important collections and 

book chapters pertaining to the field were consulted to provide a broader perspective and 

context for the literature review process. No previous bibliographic reviews focusing on the 

specific topic of this review were found, that is, the application of techniques to determine the 

domains of applicability of the computational methods based on AI and NNs used in the 

determination of toxicity in a multidisciplinary context. 

6. Data Extraction: Data from the selected articles were extracted and organized based on the 

specialties of interest. 

The final selection of relevant articles was made based on the comprehensive analysis of their 

content with respect to the applicability of computational models in toxicity prediction in the 

specialties specified. This methodology ensured a rigorous and systematic approach to identifying and 

analyzing the most pertinent research articles in the field. 

3. Applicability domain in medicinal chemistry 

Hereinafter, the most significant results are presented from the review of a representative sample 

of papers published around toxicity prediction through QSAR methods applied in different 

computational medicinal chemistry studies. Thus, in this section, 70 relevant papers were reviewed 

covering the years from 2010 to 2023, of which approximately half of them made an explicit mention 

of the applicability domain; however, only a few reported an explicit methodology for the calculation. 

Only those deemed relevant will be discussed (see also Table 2). 

Merely 10% of the new molecules developed as potential medicines that are tested in Phase 1 are 

finally approved by the FDA, mainly due to unacceptable preclinical toxicities [7]. Considering that 

toxicity predictions based on animal models fail in a very high percentage of cases when extrapolated 

to humans, thereby making traditional toxicological safety studies controversial, a major potential has 

been unearthed in the use of in silico models based on ML techniques to foresee the toxicological 

properties of new molecules. 

More specifically, drug-induced liver injury (DILI) is the leading cause of post-marketing 

withdrawals of approved drugs, owing to reasons such as hepatotoxicity or liver necrosis, to name a 

few. To avoid discrepancies between in vitro and in vivo results, several models have been developed 

based on ML-computational approaches. Kotsampasakou & Ecker (2017) [27] applied a k-nearest 

neighbors’ strategy to predict cholestasis by means of a set of 93 two-dimensional (2D) 

physicochemical descriptors, thereby predicting several selected hepatic transporters' inhibition. The 

AD of the models was verified on the basis of the Euclidean distances on the KNIME software with 

the Enalos nodes, though the exact number of reliable predictions was not provided since the inhibition 

model was generated with confidential training data. Additionally, Minerali et al. (2020) [28] generated 

and compared ML algorithms to predict DILI with the Assay Central software [29], thereby obtaining 

a Bayesian probability-like and applicability score for individual chemicals in which the applicability 

of the model could be inferred. Moreover, Mora et al. (2020) [30] developed and distributed a freely 

available software package based on ML models [31] for DILI prediction, thereby obtaining a broad 
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applicability domain with a coverage of 98% for the molecules in two test sets and five external test 

sets. The AD analysis was carried out with a consensus-based decision from five different approaches 

within the Ambit Discovery software (city-block, Euclidean, Mahalanobis, range, and density). If the 

prediction for the target molecule lies outside of the bounds in at least three of the AD methods 

(consensus-3), then it is considered unreliable. Additionally, they analyzed the AD on an external dataset 

to determine the reliability of the predictions with five different AD methods (PCARange, Euclidean 

distance, city-block distance, Mahalanobis distance, and probability density). 

Wu et al. (2019) [32] combined several ML methods (NN, SVM, RF and kNN) to study 

hepatotoxicity cases inspired by traditional Chinese medicine, reporting an AD covering 90.6% of 

the traditional Chinese medicine systems pharmacology database of compounds (TCMSP). However, 

they did not provide information on the methodology utilized to calculate the AD. Moreover, Hussain 

et al. (2020) [33] developed multiple feature models combining in vivo and ML methodologies to 

predict hepatocyte toxicity in humans. Even though they reported the use of a diverse set of 

xenobiotics to ensure the model’s wider applicability, no specific method for the determination of 

the AD was provided. 

On the other hand, skin sensitization is a significant endpoint in the field of drug discovery and 

cosmetics, as it is one of the most frequent forms of human immune toxicity. Thus, Peiwen Di et al. 

(2019) [34] developed and compared a variety of ML models [35] determining the ADs to rationalize 

the results. ADs were assessed using the Enalos Domain-Similarity node, which is a freely available 

software available via the KNIME Community [36] and the website of NovaMechanics [37], based on 

the Euclidean distances among training compounds and test compounds. APD values and Euclidean 

distances were calculated for the most suitable models, considering the compound within the 

applicability domain when the Euclidean distance was lower than APD value, thereby demonstrating 

the wide applicability domains of models. 

Furthermore, considering that the main adverse drug reaction (ADR) known is cardiotoxicity 

caused by the blockade of the hERG potassium channel, Ogura et al. (2019) [38] applied ML 

techniques to predict hERG inhibition by integrating multiple databases with nearly 300,000 total 

compounds. The applicability domain of the prediction model was assessed based on the molecular 

similarity between the training set and test set compounds, which was also based on the molecular 

similarity to the training compounds. Thus, the relationship between the structural similarity and the 

prediction accuracy was assessed, assuming that the prediction of a compound, similar to those in the 

training set, could be reliable. Authors argued that a similarity-based approach was applied for the 

analysis of the applicability domain instead of a probabilistic approach, since the data distribution was 

too high-dimensional and sparse to estimate the data distribution. Compounds with a high similarity 

to the training set showed an increased prediction accuracy, whilst a decrease of sensitivity and an 

increase in false negative compounds was found in general for the compounds featuring lower 

similarities. The model was released publicly alongside the integrated database [39].  

Considering the increasing importance of carcinogenesis in drug discovery, Fjodorova et al. (2010) 

[40] implemented a methodology based on counter propagation neural networks (CPNN) to develop 

models for the prediction of carcinogenic potency according to specific requirements of chemical 

regulatory agencies. A tool for the general evaluation of the AD was implemented based on the 

descriptor range in the dataset, assuming that the predicted values for chemicals outside the descriptor 

range would be less reliable. Considering that the chemical space characterized by the descriptor range 

did not reflect the density of compounds distribution, and to avoid erroneous interpretations when the 



27868 

AIMS Mathematics Volume 8, Issue 11, 27858–27900. 

target chemical is in a poorly represented area in the training set, as the AD was based on the chemical 

descriptors alone, the authors developed a tool for a further AD assessment. This was grounded on a 

similarity score of the six most similar chemicals in the training set, which was worthwhile for 

appraising whether these compounds are truly representative for the unknown compound, and thereby 

offering a visualization to be independently used to evaluate the compounds. These models can be 

accessed through a java-based web application “CAESAR Application”.  

Additionally, Singh et al. (2013) [41] designed a probabilistic neural network (PNN) prediction 

model with five descriptors of more than 800 items of structural data to anticipate the carcinogenicity 

of diverse chemicals, taking into account the AD, represented as an optimum prediction space that is 

a function of the ranges of molecular descriptors in the training set compounds (descriptor space of the 

training set), using statistically based method, and assuming the data distribution to be normal. The 

interpolation region was defined by a two-dimensional descriptor space demarcated a rectangle in one 

plane, which is the interval between the minimum and maximum values of the training dataset. 

Moreover, Zhang et al. (2017) [42] developed a method based on ensemble support vector 

machine and random forest for the prediction of carcinogenicity that was implemented on an online 

web server (CarcinoPred-EL [43]) together with a user-friendly version called CarcinoPred-EL [43]. 

Authors claimed a broader AD of their model compared to the state of the art, though no explicit 

method for its calculation was provided. 

Additionally, Guan et al. (2018) [44] developed a variety of ML algorithms for the prediction of 

carcinogenic properties, comparing the applicability domain of each chemical dataset against an 

independent external validation dataset comprised of pharmaceutical chemicals, visualizing the 

applicability domain by the PCA of seven physicochemical properties (descriptors), thus allowing for 

the visual representation and comparison of the number and types of molecules included in the datasets. 

However, weighting each prediction by an exact measure of the applicability domain remains the realm 

of future works.  

On the other hand, Bloomingdale and Mager (2019) [45] developed ML models for the prediction 

of chemotherapy-induced peripheral neuropathy, determining the applicability domain by means of 

the software package ADMET Predictor™. 

The cytotoxic effect of chemical substances is an important endpoint that has been traditionally 

obtained by means of the application of expensive and arduous in vivo models to predict drug 

pharmacology and toxicity. Consequently, ML methods are being developed by different researchers 

for their use in the web servers ProTox-II [46] and admetSAR [47–51]. Six physicochemical and 

topological properties (descriptors) were used to define the applicability domain, thus analyzing the 

distribution of these properties in all the training sets of the predictive models [50]. This was performed 

in such a manner that compounds with either the molecular weight or the AlogP higher than 99% or 

lower than 99% of the training set, which would be regarded as warning signs, as well as outside the 

domain if higher than the maximum of the training set. For the other four descriptors, only compounds 

out of upper bounds were tagged. 

Moreover, Webel et al. (2020) [52] predicted cytotoxicity using a DL approach trained with a 

dataset of over 34,000 compounds, implementing a Deep Taylor Decomposition method to identify 

the substructures responsible of the cytotoxic effects, as well as making use of cytotoxicity maps for a 

visual structural interpretation of the relevance of these substructures, as a novel attempt to identify 

the applicability domain with the aim to avoid the black box issue and obtain a deeper mechanistic 

understanding of the model.  
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Considering that convulsive seizures or epilepsy is a troublesome area when predicting 

toxicological endpoints in the preclinical safety assessment of drugs developments, Antanasijević et 

al. (2017) [53] developed a groundbreaking modular NN approach to predict the anticonvulsant 

activity of succinimides, analyzing the AD of the model through the previously proposed simple 

statistical approach based on the theory of the standardization by Roy et al. (2015) [54]. 

Taking the importance of the Hemolytic toxicity into account as an endpoint for small molecules, 

Zheng et al. (2020a,b) [55,56] built ML-based models from a manually collected hemolytic toxicity 

dataset of more than 800 small molecules, providing a software package (e-Hemolytic-Regression) 

with automatic verification of AD to the input molecule, with an average-similarity > 0.15, 

0<MW<1500, and 0<cLogP<10). 

Additionally, Plisson, Ramírez-Sánchez and Martínez-Hernández (2020) [57] developed ML 

models capable of predicting the hemolytic activity of antimicrobial peptides (AMPs), comparing 14 

algorithms including decision tree (CART), random forest (RF), gradient boosting (GBC), adaptive 

boosting (AB), logistic regression (LOGREG), support-vector machine (SVM) and K-nearest 

neighbors (KNN) classifiers, and assessing nine outlier detection (OD) methods to define the 

applicability domains through the Mahalanobis distance (MD) that allowed for the reduction of 

multidimensional datasets (i.e., 56 descriptors) into a single dimension. 

Conversely, Feng et al. (2021) [58] predicted the reproductive toxicity of chemicals using 

ensemble learning methods and molecular fingerprints in a study that was conducted by a team of 

researchers from various institutions in China and Israel; they developed ensemble learning models 

to predict the reproductive toxicity of compounds using support vector machine, random forest, and 

extreme gradient boosting methods and 9 molecular fingerprints calculated for a dataset containing 

1,823 chemicals. The best prediction performance was achieved by the Ensemble-Top12 model, with 

an accuracy rate of 86.3%, sensitivity at 82.0%, specificity at 90.2%, and an area under the receiver 

operating characteristic curve of 0.937 in 5-fold cross-validation. The AD of the standout model (i.e., 

Ensemble-Top12) was defined by calculating the Tanimoto distance of the training set based on 

AD2D, EState, KR, MACCS, Pubchem, and FP4 fingerprints, thus identifying outliers and 

compounds residing outside the AD. Moreover, the effect of different Tanimoto distance values on 

the model performance was evaluated to identify a suitable distance threshold, thereby balancing the 

model’s predictability with a Tanimoto distance of 0.3 recommended as the AD threshold. 

Additionally, several fingerprint features related to the chemical reproductive toxicity were 

identified. Using the Ensemble-Top12 model could offer an advantage in predicting reproductive 

toxicity in early drug development phases. 

Furthermore, Zhao et al. (2021) [59] developed binary classification models to predict the 

mitochondrial toxicity of chemicals, collecting 3,407 chemicals associated with mitochondrial 

toxicity from literature and databases and using nine molecular fingerprints and five ML methods to 

construct 45 prediction models. Then, the models were assessed using a 10-fold cross validation and 

a test set, and their applicability domain was defined using the Euclidean distance method. Seven 

structural alerts related to mitochondrial toxicity were identified, providing valuable assistance to 

pharmaceutical chemists in the early stages of drug design, as well as contributing to the assessment 

of mitochondrial toxicity of environmental chemicals. The ML algorithms used to build the 

mitochondrial toxicity prediction models were KNN, LR, RF, SVM, and XGB. The applicability 

domain of the prediction models was defined using the Euclidean distance method, employing 

appropriate K and Z values ranging from 3 to 6 for K and ranging from 0.6 to 0.9 for Z, optimally 3 
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and 0.7, respectively. 

Considering the influence of plasma protein binding (PPB) in drug efficacy and toxicity, Yuan et 

al. (2020) [60] devised several ML-based QSAR models to predict PPB, defining the AD of the models 

by comparing the Euclidean distance between the problem compound and its adjacent neighbor in the 

training set.  

Likewise, Chou & Lin (2023) [61] reviewed the emerging paradigm for integrating 

physiologically based pharmacokinetic (PBPK) modeling with ML, including obtaining time-

concentration PK data and/or ADME parameters from publicly available databases, developing ML-

based approaches to predict ADME parameters, and incorporating the ML models into PBPK models 

to predict PK summary statistics. Additionally, the neural network architecture called "neural ordinary 

differential equation (Neural-ODE)" was discussed, with improved predictive capabilities compared 

to other ML methods, concluding the high potential of ML approaches to facilitate the efficient 

development of sturdy PBPK models for a sizable number of chemicals, even though the applicability 

domain of the models or the techniques used for its determination were not specifically stated. 

Bearing in mind the significance of neurotoxicity as a major cause of drug withdrawal, 

Changsheng Jiang et al. (2020) [62] used eight ML algorithms to predict chemical neurotoxicity, and 

thus obtained the applicability domain of the models by calculating the standard deviation distance 

(SDD) and leverage distance of the training set. Similarly, they employed a Williams’ plot to display 

the distribution in two dimensions, with the aim of visually describing the scope of the AD. Moreover, 

the effect of each compound on the model was evaluated using Cook’s distance. All AD analyses were 

performed through Python scripts. 

If alterations in the normal functioning of estrogen and androgen receptors (ER and AR) may 

cause endocrine disruption and lead to adverse effects on health, Cui et al. (2019) [63] developed a 

series of ML models to predict drug-induced rhabdomyolysis (DIR), thereby identifying structural 

alerts responsible for DIR and providing the best model [64]. The AD was appraised based on the 

concept of distance-to-model (DM).  

Additionally, Lagares et al. (2019) [65] used a CPNN based on 2D molecular descriptors to 

develop a model capable of predicting the probability of a compound to interact with P-gp, which is 

important in a toxicological assessment during drug discovery. The AD was analyzed using the ED 

between molecules and the central neuron of the NN, which represents the interval between a central 

node (ci) in the Kohonen layer and an input pattern (X). 
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Table 2. Applicability domain in AI methodologies in toxicology and medicinal chemistry. 

Computational 

methodology 
Aim Algorithm applied for the AD evaluation.  Key considerations Literature 

k-NN Predicting Drug-Induced liver injury 

(DILI). 
Euclidean distances from KNIME with the 

Enalos nodes.  
Concise data on applicability domain not reported 

due to confidentiality issues 

[27] 

k-NN, SVC, DT, DL, and 

BA. 
Predicting Drug-Induced Liver Injury 

(DILI) 
Bayesian probability-like and applicability 

score 
Assay CentralTM software package [28] 

k-NN, MLP, RF, SVM, LR, 

CT, FLDA, Bnet, NB, and 

RF. 

 

Predicting Drug-Induced Liver Injury 

(DILI) 
Consensus-based decision. Five different 

approaches. If the problem molecule lies 

outside of the bounds in at least three of the 

AD methods (consensus-3), it is considered 

unreliable.  

Freely available software package used. 

AD methods taken from the Ambit Discovery 

software. 

[30] 

NN, SVM, RF, and k-NN. Hepatotoxicity prediction Not provided Applicability Domain covering 90.6% of the 

TCMSP. 
[32] 

SVM. Hepatotoxicity prediction Not provided Diverse set of xenobiotics used to ensure the 

wider applicability of the model. 
[33] 

SVM, NB, DT, GB, RF, TE, 

PNN, MLP, and FR. 
Skin sensitization Euclidean distances Applicability Domains assessed with Enalos 

Domain - Similarity node, freely available 

software. 

[34] 

SVM. Cardiotoxicity Similarity-based approach Publicly released model 

(http://drugdesign.riken.jp/hERGdb). 
[38] 

CP NN. Carcinogenesis Distance to the descriptor range in the 

dataset, and similarity score with the six 

most similar chemicals in the training set. 

Java-based web application “CAESAR 

Application”. 
[40] 

PNN. Carcinogenesis Distance to the descriptor space of the 

training set.  
Distance calculated with statistically based 

methods, assuming a normal data distribution. 
[41] 

SVM, and RF. Carcinogenesis Not provided CarcinoPred-EL, 

http://112.126.70.33/toxicity/CarcinoPred-

EL/about.html). 

[42] 

Adaboost, k-NN, DT, MLP, 

and RF. 
Carcinogenic properties Principal Components Analysis of seven 

descriptors 
Exact measure of the applicability domain stays 

as future work. 
[44] 

NN. Prediction of Chemotherapy-Induced 

Peripheral Neuropathy 
Not provided Software package ADMET Predictor to estimate 

the AD. 
[45] 

RF, SVM, NB and, k-NN.  Cytotoxic effect of chemical 

substances 
Similarity-based approach Implemented in web servers ProTox-II 

(http://tox.charite.de/protox_II/) and admetSAR 

(http://lmmd.ecust.edu.cn/admetsar1) and 

(http://lmmd.ecust.edu.cn/admetsar2/) 

[47–51] 

DL. Cytotoxic effect of chemical 

substances 
Deep Taylor Decomposition method to 

identify cytotoxic substructures.  
Cytotoxicity maps used for a visual structural 

interpretation 
[52] 

Continued on next page 
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Computational 

methodology 

Aim Algorithm applied for the AD evaluation.  Key considerations Literature 

NN. Anticonvulsant activity of 

succinimides 
Statistical approach based on the theory of 

standardization  
Based on the approach previously proposed by 

Roy et al. (2015) [54] 
[53] 

k-NN, SVM, RF, GBM, and 

ECFP. 
Hemolytic toxicity Similarity-based approach Software package (e-Hemolytic-Regression) with 

automatic checking of applicability domain (AD) 

to the input molecule 

[55,56] 

DT, RF, GBC, AB, LR, 

SVM, and k-NN. 
Hemolytic activity of antimicrobial 

peptides (AMPs) 
Outlier detection (OD) methods to define 

the applicability domains through the 

Mahalanobis distance (MD) 

Scripts available at: 

https://github.com/plissonf/ML-guided-discovery-

and-design-of-non-hemolytic-peptides 

[57] 

k-NN, SVR, RF, BT, 

and GB. 
Plasma protein binding (PPB) Euclidean distance between problem 

compound and its adjacent neighbor in the 

training set 

AD threshold of DT with a constant value of Z 

within 0.5-3.0.  
[60] 

BGR, 

ETR, GPR, k- NN, MLP, 

Nu-SVR, RF, and SVR. 

Neurotoxicity Standard deviation distance (SDD) and 

leverage distance of the training set.  
Williams’ plot used to visually describe the AD.   [62] 

ASNN, SVM, LR, PLS, RF, 

and DNN. 
Drug‐induced rhabdomyolysis (DIR) Distance to model (DM) Best model provided: 

(https://ochem.eu/model/32214665) 
[63] 

CP NN. Predicting the probability of a 

compound to interact with P-gp 
Euclidean Distance (ED) between 

molecules and the central neuron of the 

neural network. 

Comparing the Training Set (TR) and the Test Set 

(TE) chemical coverage versus false predicted 

chemical space. 

[65] 

SVM, RF, and EGB Reproductive toxicity Tanimoto distance of the training set. Tanimoto distance of 0.3 recommended as the AD 

threshold. 
[58] 

KNN, LR, RF, SVM, and 

XGB. 
Mitochondrial toxicity of chemicals Euclidean distance method. Ranging from 3 to 6 for K and from 0.6 to 0.9 for 

Z, optimally 3 and 0.7 respectively. 
[59] 

Neural-ODE. Physiologically Based 

Pharmacokinetic (PBPK) modeling. 

Not provided Publicly available databases used to predict PK 

summary statistics. 

[61] 

Abbreviations: Adaptive Boosting (AB), Neural Networks (NN), Associative Neural Networks (ASNN), Bayesian Algorithms (BA), Bagging Regressor (BGR), Bayes Network (Bnet), Extra-

Trees Regressor (ETR), Boost Tree (BT), Classification Tree (CT), Counter Propagation (CP NN), Decision Tree (DT), Deep Learning (DL), Deep Neural Network (DNN), Extended-Connectivity 

Fingerprint (ECFP), Extreme Gradient Boosting (XGB), Fast Stagewise Multivariate Linear Regression (FSMLR), Fisher’s Linear Discriminant Analysis (FLDA), Fuzzy Rules (FR), Gaussian 

Process Regression (GPR), Gradient Boosting (GB), k-Nearest Neighbor (k-NN), Logistic Regression (LR), Multilayer Perceptron (MLP), Naïve Bayes (NB), Neural Network (NN), Neural 

Ordinary Differential Equation (Neural-ODE) Nu-Support Vector Regression (Nu-SVR), Probabilistic Neural Network (PNN), Random Forest (RF), Support Vector Classification (SVC), Support 

Vector Machine (SVM), Support Vector Regression (SVR), Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), Tree Ensemble (TE), Multiple Linear Regression Analysis 

(LRA), Partial Least Squares (PLS). 
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4. Applicability domain in food safety 

Food security is when the entire population always has access to sufficient, safe and nutritious 

food that meets their dietary needs and taste preferences for an active and healthy life [66]. However, 

there are currently many known harmful substances of natural and anthropogenic origin that can cause 

harm once inserted into the agri-food chain, including pharmacological and phytosanitary residues, 

environmental contaminants, harmful and unhealthy substances derived from food processing or from 

materials in contact with food, additives and banned food substances, among others [67]. 

Classical analytical techniques based on high performance liquid chromatography (HPLC) and 

either gas chromatography (GC) or UV-Vis spectrophotometry have evolved over the last decade 

towards the use of new non-destructive methods such as spectroscopic technologies, including 

hyperspectral imaging [68], fluorescence spectroscopy [69], near-infrared spectroscopy, Fourier 

transform infrared and Raman spectroscopy, biosensors [70], electronic nose [71] and electronic 

tongue [72]. These techniques are used in combination with various ML algorithms (see Table 3). 

Histamine analysis in tuna can be performed using thin-layer chromatography (TLC) with 

surface-enhanced ultrasensitive Raman scattering (SERS), which was supported by ML methods that 

improve the reliability and reproducibility of identifications [73]. Thus, TLC-SERS combined with 

ML analysis is postulated as a reliable, sensitive and accurate technique for in situ detection and 

quantification of seafood allergens and avoidance of histamine poisoning. The model performance was 

evaluated for the training and test datasets and compared based on four criteria: the correlation 

coefficient squared (R2), the root mean square error of cross-validation (RMSECV), the root mean 

square error of prediction (RMSEP) and the ratio of prediction deviation (RPD). The TLC-SERS 

quantitative detection method of Tan et al., (2019) [73] was used to disclose histamine at a detection 

level up to 10 ppm, which was limited to a tuna matrix with rapid, cost-effective and quantitative in 

situ detection. In general, histamine detection could be extrapolated to seafood; however, this 

application domain has yet to be validated. 

The formation of acrylamide during the baking of cookies can be prevented by monitoring quality 

parameters such as oven temperature, humidity and browning index by means of several analytical 

techniques such as IR spectroscopy and colorimetry using ML based nonlinear polynomial (PLN) and 

NNs models in the forward and inverse phases [74]. The cookie baking’s modelling process has been 

performed on conventional domestic ovens, though the specially designed NNs models could be 

embedded to the automatized industrial ovens. 

On the other hand, the acrylamide content in cookies can be performed using a PCA and least 

squares support vector machine (LS-SVM) combined with fractal color for classification and results 

predictions [75]. Therefore, the method has been validated to quantify acrylamide in cookies through 

their color for a single recipe. In principle, the same method could be extended to cookies made with 

different recipes or processing methods. Similarly, the detection of acrylamide in images of French 

fries can be performed by automatic image processing and support vector machine classification [76]. 

The results of the study indicate that it can be an effective, non-destructive and sensitivity technique 

for use in food quality control of foodstuffs. The identification of acrylamide was carried out on either 

fried or baked potatoes, with a methodology that achieved an accuracy of 98.33%. However, the type 

of potatoes used and the possible interference with the original color were not specified. 

Pesticide residues are a significant factor in food safety. A machine-vision-based method was 

combined with hyperspectral imaging and supported with CNNs to detect a variety of pesticides in 

apples [77]. Post-harvest samples of Fushi apples were collected as the study material. Specifically, 

four pesticides (chlorpyrifos, carbendazim, and two mixed pesticides) and one inactive control of the 
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same concentration of chlorpyrifos (100 ppm) were used. Although the method features the advantages 

of low time cost and high robustness, it can lead to problems when two hyperspectral images are in 

the same band and have similar appearances. In these cases, the network is prone to detection errors, 

thus highlighting a limitation of the application domain. 

Aflatoxin is a virulent and strong type of carcinogenic substance and is widely found in peanuts, 

maize and their agricultural products. Hyperspectral imaging supported with convolutional neural 

networks showed a high and improved accuracy compared to traditional models to detect aflatoxin in 

peanuts [68]. In this case, the overall recognition rate obtained scores more than 95% in aflatoxin 

contaminated peanuts. The methodology could be extended for use in sorting machines.  

Furthermore, a visible-near infrared hyperspectral image of lettuce with DL algorithms allowed 

for improved lead and cadmium content prediction, thus achieving a reasonable performance [78]. On 

this occasion, Italian annual lettuces grown at the University of Jiangsu, China, were selected, in which 

the samples had been grown without soil. However, the study was limited to two heavy metals (Cd 

and Pb) and a single type of lettuce variety. The researchers propose that the methodology could be 

sensitive to other varieties of lettuce, locations, and other agronomic factors. Another methodology for 

predicting Pb, Cd, and Hg residues in fish (Carassius carassius) samples in a market in China 

(Zhenjiang) has been reported using a low-cost and simple optical electronic system coupled with ML 

approaches [72]. This work displays the ability to simultaneously and quantitatively predict heavy 

metal residues in fish and could potentially be applied to other fish products. 

Recently, a portable nano-biosensor system integrating SVM algorithms provided good results 

with an on-site and sensitive detection of several antibiotic residues in cow milk [70]. The nano-

biosensors were constructed with gold nanoparticles highly selective for four widely used antibiotics 

in the field of veterinary medicine: Kanamycin, Ampicillin, Oxytetracycline and Sulfadimethoxine. 

Overall, this technology offers a combination of portability and sensitivity, thus making it suitable for 

on-site analysis for daily farm screening. It could be selectively developed against other antibiotics by 

modifying the specific recognition points of nano-biosensor. 

A rapid on-line detection method was demonstrated for beverage preservatives based on X-ray 

absorption spectroscopies (XAS), complemented with DNN and SVM classifiers for data classification 

and prediction [79]. Benzoic acid, potassium sorbate, sodium dehydrogenate and propyl p-

hydroxybenzoate were analyzed at standard concentrations; samples with the preservative content of 

the beverage exceeded the standard, thereby achieving rapid on-line detection of preservative content 

in beverages. The proposed method could be extended to other preservatives in market beverages. 

Analogously, ML methods have been applied to terahertz (THz) spectroscopy techniques to measure 

benzoic acid in wheat flour, with a high correlation coefficient [80]. In this context, the authors limit 

the results to the accurate detection and quantification of benzoic acid in wheat flour, without providing 

data on other additives or the extrapolation of the method to other food matrices. Similarly, benzoic 

acid and chitosan as food additives in fruit juices can be detected by electronic nose using 

chemometrics [71]. For quantitative monitoring, SVM, RF, extreme learning machine (ELM) and 

partial least squares regression (PLSR) were applied to establish regression models between E-nose 

signals. The methodology has been validated on Satsuma mandarins. The fruit was pressed to extract 

the juice and filtered to remove solid particles. 
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Table 3. Applicability domain in AI methodologies in foods. 

Foodstuff Origin in Food Identification technique Algorithm applied Applicability domain Potential to Literature 
Tuna Histamine Thin layer chromatography 

(TLC)-ultra-sensitive 

surface enhanced Raman 

scattering (SERS) 

Principal component 

analysis-support vector 

regression (PCA-SVR 

algorithm) 

Tuna Seafood [73] 

Cookies Acrylamide, in fried, 

baked or roasted food 
Infrared moisture analyzer 

at 130ºC (moisture 

content); K-type 

thermocouple 

(temperature); CIE L*, a*, 

and b* color values by 

colorimeter (browning 

index) 

neural network (NN)  Baking cookies in domestic 

conventional oven 
Industrial and domestic 

food baking processes 
[74] 

Biscuits Acrylamide, in fried, 

baked or roasted food 
Image acquisition and 

measure of Fractal color 

and the traditional L*a*b*, 

RGB (red, green blue), 

CMYK (cyan, magenta, 

yellow, black) color 

models 

Least squares- support 

vector machine (LS-

SVM) 

Baking cookies Biscuit baking in other 

formulations 
[75] 

Potato chips Acrylamide, in fried, 

baked or roasted food 
Image processing Continuous wavelets 

transform (CWT) with 

Morlet wavelet/leave one 

out cross validation-

based Support Vector 

Machine classification 

(SVM) 

Fried or baked potato. No 

variety of potato been specified 
Any type of potato. [76] 

Apple Pesticides,  Hyperspectral imaging 

(Otsu segmentation 

algorithm) 

Convolutional neural 

network (CNN, AlexNet) 
Chlorpyrifos, carbendazim and 

mixture of these pesticides 
Other pesticides with 

characteristic 

hyperspectral imagen  

[77] 

Peanut Aflatoxins Hyperspectral imaging 

system (Reshape image by 

pixel-level) 

Convolutional neural 

network (CNN) 
Aflatoxin in peanuts.  Aflatoxin in peanut in 

industrial sorting 

machines. 

[68] 

Lettuce Heavy metals Hyperspectral imaging 

technology 
Wavelet transform-stack 

convolution auto-encoder 

(WT-SCAE)/support 

vector machine 

regression (SVR) 

Cd and Pb in a variety of lettuce  

 

Heavy metals in 

vegetables and fruit 
[78] 

Continued on next page 
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Foodstuff Origin in Food Identification technique Algorithm applied Applicability domain Potential to Literature 
Fish Heavy metals Electronic tongue system  Extreme learning 

machine (ELM) 
Pb, Cd and Hg in fish Other fish products [72] 

Raw milk Antibiotics Nano biosensors Support vector machine 

(SVM)  
Four antibiotics in raw milk; 

Kanamycin, Ampicillin, 

Oxytetracycline, 

sulfadimethoxine  

Others selectively 

antibiotics 
[70] 

Beverages Additives X-ray absorption spectrum 

(XAS) 
Deep neural network 

(DNN) and Support 

vector machine (SVM) 

Benzoic acid, potassium 

sorbate, sodium dehydrogenate 

and propyl phydroxybenzoate. 

Other additives [79] 

Wheat flour Additives Terahertz spectroscopy Least squares-support 

vector machine (LS-

SVM) 

Benzoic acid in wheat flour Other flours [80] 

Fruit juices Additives Electronic nose (e-nose) Random Forest (RF) and 

extreme learning 

machine (ELM) 

Benzoic acid and chitosan in 

citrus juices 
Food additives in juices 

or other types of food 

productions 

[71] 

Abbreviations: CMYK, cyan, magenta, yellow, black; CWT, continuous wavelet transform; DNN, deep neural network; ELM, extreme learning machine; LSSVM, least squares-support 

vector machine; PCA-SVR, principal component analysis-support vector regression; RGB, red, green, blue; SERS, surface enhanced Raman scattering; SVM, support vector machine; 

SVR, support vector machine regression; TLC, thin layer chromatography; WT-SCAE, wavelet transform-stack convolution auto-encoder; XAS, X-ray absorption spectrum. 
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5. Applicability domain in field of toxicity in environmental sciences 

As previously mentioned, computational toxicity models should only be used to make predictions 

within the domain by interpolation [81]. Regarding environmental sciences, sizable bibliographical 

documentation is comparable to the applications of ML, only recently highlighting the necessity to 

determine and specify the applicability domain, as to stress the limits in the models developed and 

provide added value to them. 

Yu & Zeng (2022) [82] carried out a study on the classification of pesticide aquatic toxicity 

affecting fish using a random forest algorithm-based model by means of eight molecular descriptors 

to develop a QSAR model for 1,106 toxicity datapoints of organic pesticides to various fish species. 

The optimal RF model was found to have high prediction accuracies for both training and test sets, 

suggesting it could be useful in predicting the toxicity of pesticides to fish. However, they did not 

provide specific information about the applicability domain of the models used in this work.  

Li et al. (2023) [83] presented a study on the ecotoxicological QSAR modelling of the acute 

toxicity of fused and non-fused polycyclic aromatic hydrocarbons (FNFPAHs) against two aquatic 

organisms using a genetic algorithm (GA) plus multiple linear regression (MLR) approach to establish 

QSAR models of the two aquatic toxicity endpoints: Daphnia magna (48 h LC50) and Oncorhynchus 

mykiss (96 h LC50). The AD of the QSAR models used in this work was determined through leverage 

and standardization methods. The leverage method was applied to verify the presence of structural 

outliers, while the standardization method was used to identify response outliers for compounds having 

standardized residuals greater than three standard deviation units for cross-validation, showing that all 

test compounds fell within the AD, thus implying that the prediction for Daphnia magna acute toxicity 

can be reliably interpolated.  

Lavado et al. (2021) [84] unveiled new QSAR models to predict acute toxicity affecting shrimp 

T. platyurus, using publicly available data, developed using two different techniques, partial least 

squares and gradient boosting machine, providing promising results in the identification of some 

descriptors with an important impact on aquatic toxicity affecting T. platyurus. Additionally, they 

provided a mechanistic interpretation of the results, which may be useful for experts and regulators. 

Two different ML approaches were used in this work: partial least squares and gradient boosting 

machine. Two approaches were used to determine the applicability domain of the QSAR models: a 

standardization approach and a leverage technique, suggesting that carboxin and chlorpropham were 

outside the AD of the models. In the standardization approach, after standardizing the descriptors in 

the training set, 99.7% of the samples remained in the range of μ ±3σ, which was the space where most 

of the training set compounds belong. Any compound outside this region is dissimilar to the rest of the 

compounds and was considered outside the AD. The second approach was based on calculation of the 

leverage (h) for each chemical and defined a threshold that acted as an upper bound limit. Test 

compounds with leverage values h >3p/n, where p is the number of descriptors and n is the number of 

molecules, were chemically different from training set compounds.  

Sun et al. (2021) [85] developed QSAR models of acute oral toxicity of Polycyclic Aromatic 

Hydrocarbons (PAHs) to rats using simple 2D descriptors and interspecies toxicity modelling with 

mice by GA and MLR following the strict validation principles of QSAR modelling recommended by 

OECD. The most reliable QSAR model comprised eight simple 2D descriptors with a definite 

physicochemical meaning; moreover, the authors established, validated, and employed interspecies 

toxicity (iST) models between rat and mouse to fill gaps in the data. Their developed models should 

be applicable to new PAHs falling within the AD of the models for rapid acute oral toxicity prediction. 

The applicability domain of the models used in this work was determined using the leverage 
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approach combined with the standardized residuals of response variable and analyzed the AD using 

the PCA method. 

Banjare, Singh & Roy (2021) [86] developed predictive classification based QSTR models for 

toxicity studies into diverse pesticides on multiple avian species, with coverage of a large dataset (516) 

of diverse pesticides found in three avian species. Models were developed using linear discriminant 

analysis method with genetic algorithm for feature selection from 2D descriptors. The mechanistic 

interpretation suggested that presence of phosphate, halogens (Cl, Br), ether linkage, and NCOO 

influence the avian toxicity. Model reliability was verified via the application of the standardization 

approach of the AD. The developed models provided a priori toxic and non-toxic classification for 

unknown pesticides (inside AD), with a particular emphasis on organophosphate pesticides. Plus, the 

interspecies toxicity correlation and predictions encouraged for their further applicability for the 

fulfilment of data gaps in vital missing species. ML methodologies used were specifically a linear 

discriminant analysis (LDA) and a genetic algorithm for feature selection from 2D descriptors. The 

models’ applicability domain was determined through the standardization approach, revealing that a 

significant percentage of compounds were inside the AD for each model. This method calculates the 

standardized descriptor values for each compound and determines if they fall within a predefined range. 

If the standardized descriptor values fall outside this range, the compound is considered an outlier or 

outside the AD. Moreover, the structural analysis of outside AD compounds indicated that mostly 

outside AD compounds were cyan, thiophosphate, amide, and long chain of hydrocarbon for aquatic 

avian species, while amide, phosphoramide, hydrophosphoric acid, and thiourea type of compounds 

were outside the AD for terrestrial avian species. 

Samanipour et al. (2022) [87] connected molecular descriptors to toxicity by means of a QSAR 

regression model and a direct classification model to predict acute fish toxicity. A random forest QSAR 

regression model was developed, optimized, validated, and tested using the curated descriptors as 

independent variables and the experimentally defined LC50 values as dependent variables. Authors 

compared the model-based AD and the training set AD to avoid extrapolation. The AD assessment 

was performed by calculating the leverage of each chemical compared to the training set.  

Banjare et al. (2023) [88] published a study on the aquatic toxicity prediction of diverse pesticides 

on two algal species using a QSTR modeling approach, with the aim of identifying the toxic nature of 

diverse pesticides on the aquatic compartment. The QSTR models were developed by MLRs, and the 

GA was used for variable selection. Thus, the developed GA-MLR models were found to be 

statistically robust and reliable. The mechanistic interpretation showed that certain chemical fragments 

influenced pesticides’ toxicity towards the algal species. Additionally, the developed models were 

applied to pesticides without an experimental value to assess the cumulative toxicity of pesticides on 

the aquatic environment using a PCA. The leverage approach and the prediction indicator were used 

to determine the AD. 

Hao et al. (2022) [89] developed binary and multi-classification models using ML algorithms to 

predict the acute oral toxicity of nitroaromatic compounds (NACs) in rats, based on a comprehensive 

dataset containing 371 NACs with experimental median lethal dose values against rat (LD50) 

determined through oral exposure. Thus, seven ML algorithms were used to develop the models, 

including LR, RF, KNN, Naïve Bayes (NB), SVM, NN, and DT, and the ADs of the models were 

determined using a distance-based similarity approach, defining the distance threshold AD as a 

function of the mean Euclidean distance of each compound to its nearest neighborhood within the 

modelling set; therefore, the predicted result was considered unreliable if the mean distance between 

a query molecule and its three nearest training neighbors was greater than the domain threshold. 

Developed models had a strong internal robustness and good external prediction power. Structural 
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alerts closely associated with oral acute toxicity were identified using information gain and 

substructure frequency analysis. Additionally, the study proved that the toxicity of NACs could be 

reduced via structural modification, which entails implications for the design of “green and safe” 

NACs in industrial production, thus facilitating an environmental risk assessment and the design of 

green and safe chemicals. 

Xu et al. (2022) [90] presented a study on the prediction of chemical aquatic toxicity using ML 

and DL approaches, constructing predictive models for four fish species, including bluegill sunfish, 

rainbow trout, fathead minnow, and sheepshead minnow, as well as global models with all four fish 

data. Approximately 1,874 compounds and their labels were collected from the knowledgebase of 

chemical environmental toxicity data on aquatic and terrestrial species ECOTOX, and literature. 

Conventional ML methods, DL architecture, and a graph convolutional network (GCN) were used to 

build predictive models. The classification accuracy of the best local model for each fish species was 

higher than 0.83. For the global models, two strategies including consistency prediction and probability 

threshold were adopted to improve the predictive capability but limit the AD. Thus, for 63% of 

compounds in domain, the accuracy was in the region of 0.97. The single-task GCN method was found 

to show specific advantages in performance compared to the other methods, whilst multitask GCN 

showed no advantages over the conventional ML methods. The conventional ML methods used 

included SVM, RF, KNN, and NN. The applicability domain of the global models was determined by 

using a probability threshold strategy, thus defining predictions that had probabilities higher than the 

threshold to be toxic or nontoxic; others were labelled as inconclusive using the coverage rate (CR) to 

evaluate the applicability of the models. 

Tinkov, Grigorev & Grigoreva (2021) [91] presented a QSAR analysis of the acute toxicity of 

avermectins, antiparasitic agents used in medicine, veterinary medicine, and agriculture, towards 

Tetrahymena pyriformis, with adherence to OECD principles. The models were developed using 

various molecular descriptors and ML methods, specifically least squares-SVM and transformer CNNs. 

The applicability domain was determined using the ‘distance to model’ concept, particularly the 

‘CONSENSUS-STD’ approach. Additionally, a structural interpretation of the QSAR model was 

performed, thus revealing significant molecular transformations that increase and decrease the acute 

toxicity of organic compounds, providing valuable information on the ecotoxicological characteristics 

of individual avermectins. 

Zhu, Chen & Tao (2023) [92] carried out a comprehensive assessment of 39 QSPR models 

developed to predict aqueous solubility using multiple ML algorithms and descriptor screening 

methods using the CRITIC-TOPSIS method for the first time in the environmental model field. The 

XGB model based on SRM was selected as the optimal pathway for predicting aqueous solubility. The 

applicability domain of the models was determined using Williams plots, employed to set the boundary 

values to define outliers, thereby indicating chemicals that displayed a vastly different structure in 

comparison with other chemicals if the leverage value (h) was greater than the warning value (h*), 

regarding as an outlier when the absolute standardized residuals (δ) value of data was >3. 

Xu et al. (2021) [93] developed binary classification models for predicting acute contact toxicity 

on honeybees using ML methods, collecting data on honeybees’ acute contact toxicity from three 

publicly available databases and using six ML methods combined with nine molecular fingerprints to 

establish 54 binary classification models that were validated using a 10-fold cross-validation and 

external validation. ML methods used in this work were the NN, C4.5 DT, KNN, NB, RF and SVM. 

The best model, which combined the SVM algorithm with the CDK extended fingerprint, obtained an 

AUC value of 0.924 and a CA value of 0.904 for a test set containing 136 pesticides. The applicability 

domain of the models was analyzed, excluding certain extreme compounds. Additionally, nine 
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structural alerts were identified by information gain and substructure frequency analysis, thereby 

preventing the potential toxicity of test chemicals. A specific applicability domain based on similarity 

was employed to avoid the prediction for new compounds with substantially different structures from 

those in the training set. Thus, the distance between a new molecule and its KNNs in the training set were 

compared based on a threshold of AD in such a manner that if the distance from at least one of KNNs in 

the training set exceeded the calculated threshold, this would be considered as an outlier. 

The most representative studies in which prediction models have been used are the following: 

SVC and SVR models were applied to the surface water quality data (1995–2010) to optimize the 

monitoring program. The results showed that the nonlinear models performed better than the 

corresponding linear methods of classification and regression modeling [94]. Another research 

developed a global modeling tool capable of categorizing structurally diverse chemicals in several 

toxicity classes to predict their acute toxicity in fathead minnow using a set of selected molecular 

descriptors; the results showed good predictive levels and can be used as tools for predicting 

toxicities [94]. A study of 24 linear and ML models for the prediction of bioconcentration in fish was 

presented and important factors influencing accumulation were identified [68]. A study was carried 

out to view the performance of different bentonite lining materials on the removal efficiency of Cu (II) 

and Zn (II) from industrial leachates and an NN was used to show the significant levels of the coating 

materials analyzed in the removal efficiency [73]. A study developed an intelligent expert system 

(based on a feedback neural network trained through an extreme ML algorithm) to predict the content 

of pharmaceuticals in lettuce tissues irrigated with wastewater treatment plants (WWTP) reclaimed 

water with the results showing that the intelligent expert system was reliable [74]. A combination of 

five ML methods along with seven types of fingerprints and a set of molecular descriptors were devised; 

the results of this study provided critical information and useful tools for chemical estimation in 

environmental risk assessment. [79]. Cellular automata coupled with a neural network (CA-NN) were 

established to calculate the atmospheric dispersion of methane (CH4) [95]. In another study, Gaussian-

MLA models were applied to predict the dispersion of polluting gases whose results showed that it is a 

good model in the issue of identifying emission source parameters [85]. 

Other studies in the field of toxicity in environmental sciences have been considered, such as 

those that can be seen in Table 4, which shows a review of the main ML-based methodologies applied 

to environmental sciences and their AD and detected limitations. 
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Table 4. Applicability domain in ML methodologies applied to the field of toxicity in environmental sciences. 

Environmental field Study focus Environmental issues Algorithm applied Applicability Domain 

(explicit/implicit) 

Models’ limitations  Literature 

Water Pesticide toxicity Pesticide aquatic toxicity to 

fish 

RF Not provided AD not provided [82] 

Water Toxicity of fused and non-

fused polycyclic aromatic 

hydrocarbons. 

Acute toxicity of fused and 

non-fused polycyclic 

aromatic hydrocarbons 

(FNFPAHs) against aquatic 

organisms 

GA plus MLR Leverage and standardization 

methods. 

Aquatic toxicity endpoints: 

Daphnia magna (48 h LC50) 

and Oncorhynchus mykiss 

(96 h LC50) 

[83] 

Water Acute Aquatic toxicity Acute Aquatic toxicity 

towards T. platyurus. 

PLS and GB Standardization approach and 

leverage technique. 

Carboxin and chlorpropham 

were outside the AD of the 

models 

[84] 

 

Polycyclic Aromatic 

Hydrocarbons (PAHs) 

Acute oral toxicity Acute oral toxicity of 

Polycyclic Aromatic 

Hydrocarbons to rats. 

GA and MLR. Leverage approach combined 

with the standardized 

residuals of response variable, 

and PCA method. 

Applicable to new PAHs 

falling within the 

applicability domain (AD) 

[85]  

Pesticides pesticides on avian 

species 

Presence of phosphate, 

halogens (Cl, Br), ether 

linkage, and NCOO influence 

the avian toxicity. 

LDA with GA. Standardization approach Mostly outside AD were 

cyano, thiophosphate, 

amide, and long chain of 

hydrocarbon for aquatic 

avian species, while amide, 

phosphoramide, 

hydrophosphoric acid, and 

thiourea type of compounds 

were outside the AD for 

terrestrial avian species 

[86] 

Water Fish toxicity Intrinsic acute Fish Toxicity 

of Chemicals 

RF Leverage of each chemical 

compared to the training set. 

LC50 values [87] 

Water Toxicity of pesticides on 

the aquatic compartment. 

Aquatic toxicity prediction of 

diverse pesticides on two 

algal species 

MLRs and GA Leverage approach and 

prediction reliability 

indicator. 

Certain chemical fragments 

that influence the toxicity of 

pesticides towards the algal 

species 

[88] 

Nitroaromatic compounds 

(NACs). 

Acute oral toxicity Acute oral toxicity of 

nitroaromatic compound 

(NACs) in rats 

LR, RF, kNN, NB, 

SVM, NNs and DT. 

Distance-based similarity 

approach. Distance threshold 

AD as a function of the mean 

Euclidean distance of each 

compound to its nearest 

neighborhood within the 

modeling set. 

Predicted result unreliable if 

the mean distance between a 

query molecule and its three 

nearest training neighbors 

was greater than the domain 

threshold. 

[89] 

Continued on next page 
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Environmental field Study focus Environmental issues Algorithm applied Applicability Domain 

(explicit/implicit) 

Models’ limitations  Literature 

Water Aquatic toxicity Chemical aquatic toxicity to 

fish species 

SVM, RF, kNN, NN 

and, GCN. 

Probability threshold strategy Four fish species, including 

bluegill sunfish, rainbow 

trout, fathead minnow, and 

sheepshead minnow. 

[90] 

 

Water Acute toxicity of 

avermectins 

Ecotoxicological 

characteristics of individual 

avermectins towards 

Tetrahymena pyriformis. 

SVM and CNN.  Distance to model. Consensus 

approach. 

Avermectins [91] 

Water Ecological risk and 

toxicity of organic 

pollutants by means of 

hydrophobicity of 

compounds 

Transportation of 

Contaminant molecules in the 

environment and the 

absorption capacity of 

organisms 

XGB based on SRM Williams plots Aqueous solubility 

[92] 

 

Toxicity of pesticides Acute contact toxicity on 

honeybees 
Ecological risk assessment of  

pesticides 

NN, DT, KNN, NB, 

RF and SVM. 

Similarity distance. Structurally diverse 

pesticides, excluding some 

extreme molecules.  

[93] 

Water Water quality Predicting the biochemical 

oxygen demand (BOD) 

SVC Dataset of 1500 water 

samples from 10 different 

locations monitored for 15 

years 

 [94] 

Water Fathead minnow Categorizing chemicals into 

toxicity classes 

MLPN, RBFN, PNNs, 

GRNNs 

In this study, a total of 573 

compounds were selected. 

Linear modeling-based 

structure-activity 

relationships of the 

chemicals may have 

complex non-linear 

dependence. 

[96] 

Water Gammarus pulex Prediction of chemical 

bioconcentration in a 

freshwater invertebrate 

GRNNs The data used here was a sub-

selection with only one C. 

carpio fish species (n = 352) 

for modeling purposes. 

Limitations of predictive 

performance may stem from 

the raw data. 

[97] 

Water Fathead minnow Prediction of the acute 

toxicity of the compounds to 

fathead minnow. 

SVM, NN. Most of the selected 

descriptors take the atomic 

properties as the weighting. 

The model should only be 

used to make predictions by 

interpolation not 

extrapolation. 

[98] 

Soil Lead and its compounds Evaluating the heavy metal 

biosorption process 

NN. Lead working standard 

solutions were prepared for 

use in the experiments by 

dilution. 

The main limitation of RSM 

assumes only nonlinear 

quadratic correlation. 

[99] 

Continued on next page 
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Environmental field Study focus Environmental issues Algorithm applied Applicability Domain 

(explicit/implicit) 

Models’ limitations  Literature 

Soil Zn (II) ions Predicting the percentage of 

adsorption efficiency for the 

removal of Zn (II) ions from the 

leachate by the hazelnut shell 

NN The performance of the 

proposed NNs modeling 

technique was compared to full 

factor experimental design. 

The input variables are 

calculated as the initial pH of 

8 and temperature of 40 ◦C. 

[100] 

Soil Heavy metals (Cu, Mn 

and Ni) 

Predicting the accumulation 

and transformation of heavy 

metals in the subarctic soil. 

GRNNs, MLPN. The samples were randomly 

split into training and test 

datasets. 

Deterministic methods are 

impossible in principle. 

[101] 

Soil Cu (II) and Zn (II) Predicting the removal 

efficiency of Cu (II) and Zn 

(II) from bentonite, bentonite 

mixtures, natural zeolite, 

expanded vermiculite and 

pumice. 

NN. The proposed NN uses only 

the removal of Cu(II) and 

Zn(II). 

Training procedures for NNs 

require long computer runs. 

[102] 

Soil Lettuce crops Predicting the concentration 

of carbamazepine and 

diclofenac in lettuces irrigated 

with reclaimed water. 

ELM. For this experiment the ELM 

technique implements a linear 

Kernel. 

Further studies are required 

to investigate uptake in other 

types of crops. 

[103] 

Soil Pesticides Predicting the soil adsorption 

coefficient in pesticides. 

GBDT. Applicability domain was 

characterized by Euclidean 

distance. 

The prediction accuracy was 

higher than those obtained in 

previous studies except for 

the model by Huuskonen. 

[104] 

Soil Polycyclic aromatic 

hydrocarbons (PAHs) 

Predicting the formation of 

PAHs in sediments of the 

Caspian Sea 

NN. The leverage points, which 

are located between 

the standardized residual 

values ±3, are in the 

applicability domain. 

The GRNN neural network 

has an error greater than 

the MLP neural network in 

the different permutations. 

[105] 

Soil Polycyclic aromatic 

hydrocarbons (PAHs) 

Predicting the potential 

toxicity of PAHs in soils 

located in south Nigeria. 

NN. The dataset was divided into 

three for the purposes of 

training, validation and 

testing. 

This study did not entirely 

consider all influencing 

factors responsible for soil 

toxicity. 

[106] 

Soil Polycyclic aromatic 

hydrocarbons (PAHs) 

Predicting temporal 

bioavailability changes of 

PAHs in contaminated, 

compost-modified soils 

MLPN, RBF, SVR, 

M5P, M5R.  

Empirical data from an 

experiment was used to 

predict temporal changes of 

PAH bioavailability. 

The influence of compost on 

the bioavailability depended 

on the soil and compost type. 

[107] 

Wildlife Apis mellifera The presence of chemical 

contaminants in bees was 

investigated. 

SVM, kNN, NB, DT, 

RF. 

251 organic compounds from 

previous works were 

extracted. 

nHBD and LogS indicated a 

negative correlation 

coefficients with HBT. 

[108] 

Continued on next page 
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Environmental field Study focus Environmental issues Algorithm applied Applicability Domain 

(explicit/implicit) 

Models’ limitations  Literature 

Wildlife Bumblebees The presence of pesticides 

associated with the health of 

bumblebees in the northern 

United States was evaluated. 

MLMM.  A large USA bumblebee 

dataset was used. 

Caution is needed against 

overinterpreting patterns of 

correlation between 

pathogens and bee declines. 

[109] 

Atmosphere CH4 An atmospheric dispersion 

model was developed to 

calculate the atmospheric 

dispersion of methane in 

atmosphere. 

NN. A total of 95 simulations were 

used in the application of the 

cellular automaton. 

Parameters defined by 

experiments and the 

Gaussian model are needed. 

[95] 

Atmosphere Particulate matter (PM) Forecasting future air 

pollution for several days in 

different areas of Seoul 

DL. Some weather data collected 

from January 1, 2015 to 

December 31, 2018. 

RNN-based models require a 

lot of training time and 

computational resources. 

[110] 

Atmosphere Air pollutants Studying the transport and 

dispersion of polluting 

particles into the atmosphere. 

AQ20.  A classification algorithm was 

used to find common patterns 

in weather data from the 

National Centers for 

Environmental Prediction. 

A large number of 

simulations are needed. 

[111] 

Atmosphere Atmospheric emissions This study collected 

geolocated information from 

residential wood burning to 

study the spatial distribution 

of atmospheric emissions. 

CNN. A keyword dataset consisting 

of 94 keywords covering a 

wide range of heating systems 

was established.  

Some limitations were 

identified for the input data.  

[112] 

Atmosphere Dispersion of gases Predicting the dispersion of 

pollutant gases 

GMLNM. In this model, 2832 training 

datasets and 3147 test sets 

were considered. 

This built model may not be 

valid for all situations. 

[113] 

Atmosphere Fine particles (Diameter 

<2.5 μm, PM2.5) 

Predicting the spatial-

temporal distributions of 

continuous daily PM2.5 

concentrations in China 

GW-GBM. PM2.5 monitoring data was 

obtained for 1015 sites from 

267 cities. 

There were 479 missing 

values, meaning it was 

necessary to interpolate the 

estimated PM2.5 values. 

[114] 

Abbreviations: AQ20 algorithm (AQ20), neural network (NN), C4.5 decision tree (DT), Convolutional neural network (CNN), Deep Learning (DL), Extreme learning machine neural 

network (ELM), Gaussian-ML network model (GMLNM), Genetic Algorithm (GA), Generalized regression neural networks (GRNNs), Geographically-Weighted Gradient Boosting 

Machine (GW-GBM), Gradient boosting decision tree (GBDT), K-nearest neighbor (kNN), Linear Discriminant Analysis (LDA), M5 model tree (M5P), M5 rule (M5R), ML multi-

variable model (MLMM), Multiple Linear Regressions (MLRs), Multilayer perceptron network (MLPN), Naive Bayes (NB), Partial Least Squares (PLS), Probabilistic neural networks 

(PNNs), Radial basis function (RBF), Radial basis function network (RBFN), Random forest (RF), Regression neural networks (GRNN), Support vector machines (SVM), Support 

vector regression (SVR). 
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6. Applicability domain in industrial Hygiene 

Regarding toxicity in the context of industrial hygiene, an intense bibliographic review shows 

that, as far as current knowledge allows, no study into ML-based methodologies in this field where 

ADs were specifically and clearly defined has been discovered. While it is true that the use of ML in 

this sector is relatively novel, this definition and its limits into their approaches will be of interest in 

future studies, which will provide a certain value with regard to the usability of these models. Coelho 

et al. [115] used NNs to perform an improved risk assessment of occupational exposure to pesticides, 

integrating variables as individual susceptibility, physicochemical properties or type of exposure, 

achieving more than 90% precision in the evaluation of 142 pesticides in this study. Nevertheless, there 

is no clear definition in place on a certain AD since the model does not consider the biotransformation 

pathways, routes of exposure, contact time and individual susceptibility of the compounds. 

Mansouri, et al. (2021)[116] developed the Collaborative Acute Toxicity Modeling Suite 

(CATMoS), which is a consensus model developed by an international collaboration of 35 research 

groups to predict acute oral toxicity, with the aim of predicting the latter based on five different 

endpoints: Lethal Dose 50 (LD50), U.S. Environmental Protection Agency hazard categories, Globally 

Harmonized System for Classification and Labeling hazard categories, highly toxic chemicals, and 

nontoxic chemicals. With this aim, an acute oral toxicity data inventory for 11,992 chemicals was 

compiled and made available to the participating groups, who submitted a total of 139 predictive 

models. A variety of modeling approaches were used, including ML techniques such as NNs, SVM, 

RF, KNN, DT, and NB. The applicability domain of the models used in CATMoS was assessed and 

combined into consensus predictions based on a weight-of-evidence approach, therefore predictions 

were only considered for chemicals that fell within the AD of each individual model.  

Acosta-Jiménez et al. (2022) [117] devised a QSTR model for predicting the toxicity of carbamate 

compounds, developed using a set of 178 carbamate derivatives whose toxicities in rats through oral 

administration had been evaluated, and thoroughly validated the model using either tested or untested 

compounds falling within the applicability domain of the model. A genetic algorithm was applied over 

selected reliable molecular descriptors to obtain a model with 10 descriptors. Additionally, several 

regression approaches such as Ridge, Lasso, Backward-Forward selection, XGBoost and SVR were 

tested with the score R2 in a range of 0.67 to 0.88. A Williams plot was utilized to view the model’s 

AD and prove the relationship between standardized residuals and leverage values, revealing the 

robustness of the AD for the current QSAR models. 

Kotzabasaki et al. (2021) [118] develop predictive nanoinformatics models for accurately 

predicting the genotoxicity of different types of multi-walled carbon nanotubes (MWCNTs), using a 

combination of unsupervised and supervised ML techniques, including PCA, SVM, RF, LR, and NB, 

as well as Bayesian optimization. The recursive feature elimination (RFE) method was applied to select 

the standout variables, showing that an RF model using only three features - “Length”, “Zeta average”, 

and “Purity” - was the most efficient for predicting the genotoxicity of MWCNTs, which exhibited an 

80% accuracy on an external validation and high classification probabilities. The AD of the models 

was determined using the Leverage method. The thresholds were estimated for both the LR and RF 

models, and all test environment MWCNTs were found to be within the DOA of the model. 

Wehr et al. (2022) [119] presented the development of a QSAR model called RespiraTox, aiming 

to predict human respiratory irritants and reduce reliance on animal testing established using molecular 

physicochemical and structural information following the OECD QSAR principles. The curated 

project database was comprised of 1,997 organic substances, with 1,553 being classified as irritating 

and 444 as non-irritating. Several ML methodologies were used in this work, including LR, RFs and 
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Gradient Boosted Decision Trees (GBTs), to determine the best classification method for predicting 

human respiratory irritants using the developed QSAR model, showing that the best classification was 

obtained by GBTs. The applicability domain for the QSAR model used in this work was determined 

using the Euclidean distance of a test compound to compounds within the training set, calculated using 

molecular descriptors. The default cutoff value of 0.5 for Z was taken. Alongside the classification and 

information on the AD, the web-based tool provides a list of structurally similar analogues together 

with their experimental data to facilitate expert review for read-across purposes. This study displays 

certain limitations, as the one related to the classification of compounds in this dataset which might 

depend on data annotation richness. A further limitation is that for non-irritating compounds, the 

concordance between the different sources is 100% due to the applied worst-case approach.  

In turn, Zendehdel et al. [120] used NNs (MATLAB software) to determine the oxidative stress 

of factory workers exposed to hexavalent chromium with interesting results because their multivariate 

modeling can be used as an effective prediction of biochemical toxicity in the group of workers 

included in the study. Remarkably, it is limited to the group of workers studied that could be considered 

the AD. There is no data regarding female workers or other members of humanity. Therefore, the 

potential extrapolation of this model would be an approach worth contemplating in the future.  

Vis-à-vis the level of exposure, Black et al. [121] predicted general or intermittent benzene 

exposures in tanker truck drivers using a NN based on either job-specific modules or questionnaires. 

Nevertheless, the AD was not well defined. Thus, although the study showed an optimistic supplement 

of the human assessor’s opinions, the fact that there was no definition in terms of the range of age, 

gender and races of these drivers, tends to limit any realistic applicability for this model.  

Regarding chemical exposure, Johnston et al. [122] used ML-based methodologies under the 

Estimation and Assessment of Substance Exposure (EASE) program to predict the exposure to 

chloroprene and toluene of a group of workers in a polychloroprene manufacturing plant. This 

approach does not show a clear applicability domain. However, the authors have indicated that the 

detection limit of the technique was 0.003 ppm in both cases, thereby avoiding the estimations to lower 

exposure concentrations. Aside from this, EASE features a highly generalized nature and needs to be 

adapted to the complexity of real exposure situations limits, thus defining clear aspects concerning to 

actual tasks, time, and process streams composition.  

On the contrary, Li et al. [123] defined an applicability domain for their study. In this way, an 

accurate prediction for respiratory occupational exposure to manganese dioxide using linear regression 

and NNs through a backpropagation algorithm was made. The authors clearly described six exposure 

influence factors to define the study’s limits: intensity (none-high), frequency (0.1-0.9%), exposure 

circumstance (indoor-outdoor), distance between exposure source and measure site (0-50 m), time 

(1978-2007) and sites (different places on the plant). This well-defined applicability domain provided 

a greater prediction accuracy and reproducibility for the NN predictions, with the unique limitation 

that individual respiratory exposure was not contemplated. Nevertheless, personal sampling would not 

be admissible in routine surveillance for evident practical reasons. Additionally, Sottas et al. [124] used 

NNs to advance the level of occupational exposure to a variety of air pollutants. The authors correctly 

defined its AD for the following pollutants: isopropanol, dimethyl, ethyl amine, acetonitrile, chromium, 

tetrachloroethylene, ethyl alcohol, respirable dust, inhalable dust, total dust, benzene, lead, 

formaldehyde, oil mist, liquid petrolatum and n-heptane. However, not enough information was 

provided about used emulsions made with detergents and mixed pollutants. To have a complete AD, it 

would be interesting to define which detergents, pollutants and concentrations of each were used, as 

well as the fact to consider the biotransformation pathways, routes of exposure and individual 

susceptibility of the workers in the model. 
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Moayed and Shell [125,126] facilitated the interpretation of the relationships between the level 

of exposure and the effect provoked through a comparative study between the results offered by linear 

regression and NNs using questionnaires as input sources. This study stablished a wide range of 

parameters for its AD. They used data from males, with an average height of 179.8 ± 6.49 cm and 

weight of 87.42 ± 15.97 kg, smokers and non-smokers, any age group, any work experience, and any 

profession. Nevertheless, there was insufficient data for females and other ethnics groups different to 

Caucasian, meaning it is not possible to ensure the accurate of these models in these cases. 

Insomuch as nanotubes toxicity, Gernand and Casman [127] used ML algorithms such as RF to 

study the toxicity of carbon nanotubes (CNT) and nanoparticles of various metal oxides (TiO2, SiO2, 

ZnO, MgO), thereby predicting toxicological properties of these new nanomaterials in a reliable way. 

Through this approach, an AD was implicitly defined, as the study included doses for CNT from 2 to 

8,890 µg/kg, TiO2 from 35 to 90,000 µg/kg, and SiO2, ZnO and MgO from 1,000 to 5,000 µg/kg. 

However, lengths and diameters of these nanoparticles and the effect of impurities were not 

contemplated in the model. These parameters are especially relevant for CNT toxicity and therefore, 

their inclusion in future studies as well as their applicability domain would be beneficial.  

Other authors, namely Concu et al. [128], Luan et. Al. [129], and Kleandrova et. Al. [130,131], 

achieved a simultaneous prediction of general toxicity profiles of nanoparticles (NP) under diverse 

experimental conditions using a unified QSAR/QSTR-perturbation model based on NNs, with an 

accuracy higher than 97% in both the training and validation sets. In this scenario, the AD might cover 

a wide range of parameters contemplated in the study (different chemical compositions, size, or shape 

of NP) with highly promising results, though there was no clear characterization on these approaches 

regarding the exact range of size or shape of NP that could be used to obtain a good prediction of 

toxicity. In a similar manner, Ramchandran and Gernand [132] used a wide AD of metal oxide NP with 

different shapes and sizes as an entry of a genetic algorithms to classify the toxicity of various metal 

oxide NP into different groups, based on their dose-response, thereby predicting patterns that explain 

their toxic behavior. Thus, they concluded that a simple relationship between the potency and physical-

chemical characteristics of NP did not exist. Therefore, more physical and chemical properties of these 

NP must be studied for more grounded conclusions. 
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Table 5. Applicability domain in ML methodologies applied to the field of toxicity in industrial hygiene. 

Toxic compounds Origin in Industrial 

Hygiene 

Identification technique Algorithm applied Applicability Domain 

(explicit/implicit) 

Limitations of the 

models 

Literature 

Pesticides Occupational exposure to 

pesticides 

Acute and chronic toxicity 

by means of oral, dermal, 

ocular and inhalation 

through dietary, 

recreational and/or 

occupational exposure. 

NNs Not provided, so limited to the 

pesticides under study. 

The model does consider 

biotransformation 

pathways, contact time 

and individual 

susceptibility. 

[115] 

11,992 chemicals were 

taken into account. 

Acute oral toxicity, with 

five different endpoints 

including Lethal Dose 50 

(LD50). 

Lethal Dose 50 (LD50), 

U.S. Environmental 

Protection Agency hazard 

categories, Globally 

Harmonized System for 

Classification and 

Labeling hazard 

categories, very toxic 

chemicals, and nontoxic 

chemicals 

NN, SVM, RF, kNN, DT, 

NB. 

Consensus predictions based on a 

weight-of-evidence approach,  

Predictions were only 

considered for chemicals 

that fell within the AD of 

each individual model 

[116] 

 

Carbamate compounds Oral toxicity. Oral toxicity in rats. Regression approaches 

such as Ridge, Lasso, 

Backward-Forward 

selection, XGBoost and 

Support Vector regression 

(SVR) 

Williams plot Limited to one specific 

class of organic 

compounds 

[117]  

Multi-walled carbon 

nanotubes (MWCNTs) 

Genotoxicity Genotoxicity was selected 

as the hazard endpoint. 

PCA, SVM, RF, LR, NB. Leverage method Thresholds were estimated 

for both the LR and RF 

models. 

[118]  

RespiraTox - 

Development of a 

QSAR m Human 

respiratory irritants 

Sensory irritation 

mediated by the 

interaction with sensory 

neurons, and direct tissue 

irritation. 

Inhalation studies with 

acute and  

repeated exposure 

LR, RFs, and GBTs. Euclidean distance Classification of 

compounds in this dataset 

might depend on data 

annotation richness and. 

for non-irritating 

compounds, the 

concordance between the 

different sources is 100%, 

due to the applied worst-

case approach. 

[119] 

Continued on next page 
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Toxic compounds Origin in Industrial 

Hygiene 

Identification technique Algorithm applied Applicability Domain 

(explicit/implicit) 

Limitations of the 

models 

Literature 

Pesticides  Agriculture  Back propagation 

algorithm 

142 different compounds 

recorded on the National 

Pesticide Information Center 

The model is generic and 

does not consider the 

biotransformation 

pathways,  

routes of exposure, contact 

time and individual 

susceptibility 

[115] 

Hexavalent chromium Chromium 

compound manufacturing, 

chrome electroplating, and 

leather 

tanning, and welding 

Ferricreducing 

ability of plasma (FRAP), 

thiol (SH) content and 

lipid peroxidation of 

plasma 

Feed-forward back 

propagation algorithm 

Males from Tehran, age 35±9.6 

years, work history between 1 to 

10 years.  

There are no studies about 

females and another 

human races 

[120] 

Benzene Fuel transport drivers Job-specific modules or 

questionnaires 

Back-propagation 

algorithm 

Tanker truck drivers There is no definition of 

age, gender, and races of 

these drivers 

[121] 

Toluene and 

chloroprene 

Polychloroprene 

manufacturing plant 

Gas chromatography EASE (Estimation and 

Assessment of Substance 

Exposure) 

Air samples with more than 

0.003 ppm of Toluene or 

chloroprene 

EASE must be adapted to 

the complexity of real 

exposure situations limits 

defining in more detail 

parameters concerning to 

actual tasks, time, and 

process streams 

composition.  

[122] 

Manganese dioxide Surface mine 

site, Mn concentrator 

plant, Mn powder plant, 

metallurgical 

plant, and electrolytic 

manganese dioxide 

plant 

Records of airborne 

manganese dioxide 

Back-propagation 

algorithm 

Six exposure influence factors: 

intensity (none-high), frequency 

(0.1-0.9%), exposure 

circumstance (indoor-outdoor), 

distance between exposure 

source and measure site (0-50m), 

time (1978-2007) and sites 

(different places on the plant) 

Reflects the conditions of 

the workers’ inhalation 

zone, but not individual 

respiratory exposure. 

[123] 

Continued on next page 
 



27890 

AIMS Mathematics Volume 8, Issue 11, 27858–27900. 

Toxic compounds Origin in Industrial 

Hygiene 

Identification technique Algorithm applied Applicability Domain 

(explicit/implicit) 

Limitations of the 

models 

Literature 

18 airborne pollutants  

 

Different companies.  Bayesian model Isopropanol, dimethyl 

ethyl amine, acetonitrile, 

chromium, tetrachloroethylene, 

ethyl alcohol, respirable dust, 

inhalable 

dust, total dust, benzene, lead, 

formaldehyde, oil mist, liquid 

petrolatum, n-heptane and three 

emulsions and detergents with 

mixed pollutants 

There is not definition 

about used emulsions and 

detergents with mixed 

pollutants. Bayesian 

model does not consider 

the biotransformation 

pathways,  

routes of exposure and 

individual susceptibility of 

the workers.  

[124] 

Non-described  Construction workers Work Compatibility 

questionnaire 

Feedforward 

backpropagation 

algorithm 

Males, average height 179.8 ± 

6.49 cm and weight 87.42 ±1 

5.97 kg, smokers and non-

smokers, any age, any work 

experience, and any job. 

There is not enough data 

for females and other 

ethnics groups different to 

Caucasian  

[125,126] 

Carbon nanotube 

(CNT) and metal 

oxide nanoparticles 

Design new nanoparticles Data from reported 

quantitative toxicity 

measures 

Random forests CNT from 2 to 8890 µg/kg, TiO2 

from 35 to 90000 µg/kg, and 

SiO2, ZnO and MgO from 1000 

to 5000 µg/kg 

Lengths, diameters, and 

impurities of CNT are not 

contemplated 

[127] 

Nanoparticles (NP) A variety of experimental 

conditions 

Compilation from 

literature of 260 differing 

NPs and 31 chemical 

compositions 

 

QSTR/QSAR-

perturbation model based 

on NNs 

Solely metal-based to metallic 

oxide NPs, including silica-based 

NPs 

Size and shapes of NP 

were not specified 

[128–131] 

 

Metal oxide 

nanoparticles 

Design new nanoparticles Data from different peer-

reviewed 

journal articles 

Genetic algorithm Metal oxide nanoparticles 

(Titanium, Silica, Iron, Zinc, 

Cerium, Nickel, Cooper, 

Aluminium, Magnesium, Cobalt) 

from 4 to 63000nm size and 11 to 

105 m2/g specific surface 

More physical and 

chemical properties must 

be studied 

[132] 

Abbreviations: Back propagation algorithm (BPA), Bayesian model (BM), Estimation and Assessment of Substance Exposure (EASE), Feed-forward back propagation algorithm 

(FFBPA), Gradient Boosted Decision Trees (GBTs), Genetic algorithm (GA), Logistic Regression (LR), Naïve Bayes (NB), Neural Networks (NNs), Principal Component Analysis 

(PCA), QSTR/QSAR-perturbation model based on NNs (QSTR-NN), Support Vectors Machine (SVM), Random forest (RF). 
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7. Conclusions and future work 

This paper provides a new sight for investigating the use of QSAR models and modern NNs, 

along with a multidisciplinary review of the applicability domains of ML for toxicity prediction of 

chemical compounds. This approach can be used in various sectors, including medicinal chemistry, 

food science, environmental science, and industrial hygiene, to predict the toxicity of potential new 

drugs, to determine the limits of detection for harmful substances in food, to predict the toxicity limits 

of chemicals in the environment, and to establish exposure limits to harmful substances in the 

workplace, respectively. ML techniques, particularly NNs, are important in the development of 

predictive models of toxicity, which are capable of learning the relationship between input data (such 

as chemical descriptors) and output data (such as toxicity values) to predict the toxicity of new 

chemicals based on their descriptors. The most promising ML algorithms used to predict chemical 

toxicity properties include NNs, SVM, RF, KNN, and DL methods such as DCNNs and TBN. These 

techniques have shown great potential in predicting toxicity endpoints for regulatory purposes. 

Specifically, NNs are one of the most promising ML algorithms used to predict chemical toxicity 

properties. The most frequently used strategies to extrapolate untested chemical compounds are the 

extent of extrapolation, the effective prediction domain, the error estimation and residual standard 

deviation, and the similarity distance [24] 

The development of computational models to predict toxicity indicating their range of 

applicability is of great interest, according to OECD, which has developed five principles for the use 

of computational techniques in a regulatory context, and these are internationally accepted standards 

for safety testing and assessment of chemicals. Thus, one of these principles is the need to define the 

AD, which refers to the range of chemical compounds for which a QSAR model can accurately predict 

toxicity. Therefore, this is a crucial concept in the development and practical use of computational 

models for toxicity prediction. By defining the AD, the reliability of the model can be ensured and 

spurious extrapolations can be prevented. The OECD guidelines are at the forefront of the publication 

of good practice guidelines for the replacement of animal experimentation by computational 

methodologies for the assessment of chemical compounds. Taking this into account, these techniques 

have the potential to provide more reliable results than traditional in vivo tests and can help minimize 

potential damage by predicting the toxicological properties of new chemicals before they are approved 

for production and commercialization. Here, we highlight the importance of defining the AD of a 

model through the different methods available. Some of the unsupervised methods include distance-

based approaches, consensus-based decision methods, and the statistical analysis of the training set. 

For example, distance-based approaches calculate the distance between the problem compound and 

the training set compounds to determine whether the prediction is reliable, whilst consensus-based 

decision methods use multiple approaches to determine the applicability domain and to reach a 

consensus. Our statistical analysis of the results concludes that the interpolated prediction results are 

more reliable than extrapolated ones and can be used to define the requirements for determining an 

AD. Thus, the importance of model validation in a regulatory context according to the OECD 

principles is emphasized. Some limitations of this review include its limited scope. Thus, the study 

does not encompass some areas of potential interest such as the petrochemical industry, with distinct 

challenges and applications for toxicity prediction. Additionally, there are some extrapolation 

challenges; similar to the various AI techniques reviewed, the study identifies difficulties in accurately 

extrapolating toxicity predictions to untested chemical compounds. Moreover, the emphasis on 

medicinal chemistry and environmental science leaves other scientific domains like food science, and 

industrial hygiene with comparatively limited exploration of toxicity models. Additionally, it has been 
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discovered that there is an underutilization of Applicability Domains. Concretely, while stressing the 

importance of AD, the paper highlights that practical adoption remains restricted in medicinal 

chemistry and other scientific areas, limiting the predictive power of models. Finally, there are some 

validation and regulatory issues due to limited model validation and adherence to OECD principles, 

as the study does not explore in depth how these principles might differ across industries, potentially 

affecting model application and generalization. These limitations underscore the need for further 

research to address extrapolation challenges, assess applicability domains across various industries, 

and enhance the practical implementation of toxicity models while considering industry-specific 

nuances. In summary, this paper provides valuable insights into the theory and practice of AD in the 

context of toxicity problems and highlights the need for further research and development in this area. 
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