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Abstract 

Over the last three decades, the broad adoption of the Internet triggered a shift toward a 
globally accessible and service-oriented application design. Hyper-scale services like e-
commerce, search, social networking, IoT, and big data have driven the industry 
towards hyper-optimizing supporting infrastructure and management technologies. The 
need for accelerated enterprise digital transformation and connected application 
development have established the cloud as the de-facto solution for new application 
development. 

I have been fortunate to be part of the Cloud industry for the last 15 years. From the 
emergence of the software-defined data center, virtualization of computing and network 
resources, multi-cloud orchestration, containers, and back hybrid cloud computing. The 
common theme across all of these technologies is the default implementation of 
centralized orchestration to manage and distribute resources to enable a wide range of 
scale requirements. As a director of Cloud Services at Google, I theorized that 
innovation and scale would grind to a halt if every policy change in the services 
network needed to be orchestrated and centrally coordinated. 

This thesis examines decentralized architectures for cloud resource management by 
applying the recent practical advancements in blockchain and consensus technology. 
The proposed architecture provides the foundation for a fully distributed configuration 
management system that stores the global configuration in a blockchain structure and is 
spread across all the nodes in the network.  

While there are dozens of blockchain platforms in existence. At the time of this writing, 
there is an ongoing transformation of the existing popular blockchain towards achieving 
the right balance between scalability, performance, and general-purpose utility. 
Layering, sharding, cross-chain smart contracts, and chain interoperability are some of 
the technical solutions still to be implemented broadly, making it difficult to predict the 
life expectancy of current blockchain platforms. 

For this research, we evaluated many general-purpose blockchains yet decided to 
implement a custom-built solution for two reasons. The first reason is the additional 
management and resource overhead of running a complete smart contract platform on 
each network node. The second but no less important reason is the complexity of 
implementing a cloud resource management Domain Specific Language using 
expensive to run smart contracts based on imperative languages. 

The solution researched is a custom-built chain. This architecture noticeably increases 
the system availability, including cases of network partitioning, without significantly 
impacting configuration consistency. 
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CHAPTER 1: INTRODUCTION 

Over the last three decades, the broad adoption of the Internet triggered a shift toward a 
globally accessible and service-oriented application design [1]. Hyper-scale services [2] 
like e-commerce, search, social networking, IoT, and big data have driven the industry 
towards hyper-optimization of supporting infrastructure and management technologies 
[3]. The need for accelerated enterprise digital transformation and connected application 
development have established the cloud as the de-facto solution for new application 
development [4].    
Today’s cloud systems support thousands of mission-critical applications composed of 
multiple distributed heterogeneous components [5]. Maintaining end-to-end operational 
integrity and quality requires careful scheduling of resources and capacity allocation [6].  

Contemporary cloud application and Edge computing [7] orchestration systems rely on 
controller/worker design patterns to allocate, distribute, and manage resources [8]. 
Standard solutions like Cloud Foundry [9], OpenShift [10], Apache Mesos [11], Docker 
Swarm [12], and Kubernetes [13] span across multiple zones at data centers, multiple 
global regions, and even telecommunication systems point of presence locations [14]. 
Current data center design is predicated on the assumption of centralized orchestration 
to manage and distribute resources [15][8] [16][17][18]. These systems usually operate 
across multiple zones in the data center or even various regions. Previous research has 
concluded that random network partitions cannot be avoided in these scenarios [19], 
leaving system designers to choose between consistency and availability, as defined by 
the CAP theorem [20]. 

Controller/worker architectures guarantee configuration consistency via the 
employment of redundant storage systems, in most cases coordinated via consensus 
algorithms such as Paxos or Raft. These algorithms ensure information consistency 
against network failures while decreasing availability as network regions increase [21]. 

In addition, intrinsic to the centralized architecture design is the requirement to 
implement strong security measures. It only requires the security compromise of the 
controller nodes in the system to take control of the entire network. It is common for 
system designers to isolate controller nodes from the application data plane [2] to 
restrict orchestrated application access to the control plane, further increasing the 
deployment complexity across network boundaries.  

This research will analyze decentralized architectures for resource management by 
applying the recent practical advancements in blockchain and consensus technology. 
The proposed blockchain-based decentralized architecture noticeably increases the 
system availability, including cases of network partitioning, without a significant impact 
on configuration consistency. 
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1.1. Datacenter Management Architecture 
Current data center management technologies rely on centralized architectures modeled 
using the controller/worker pattern. A controller entity receives one or more requests 
and then communicates with worker entities to execute them. 

The controller/worker (Figure 1) pattern allows systems designers to simplify the 
selection, parameterization, and scheduling of resources by operating under the 
assumption that a global state view of the system is available [22]. 

 

Figure 1 Controller Worker Architecture 

In this architecture, the controller and the worker are permanently running a loop to 
ensure the controller has an up-to-date view of the system and the worker receives the 
latest scheduled configuration. The ability of a worker node to perform its intended 
function requires a constant connection with a controller node. If such a link were to be 
interrupted, the controller could not assume that the node was still executing its last 
configuration. Conversely, the worker node cannot report or react to application runtime 
changes, including failures or the average load of the service. 

 

Figure 2 Redundant Controller Worker 
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As these systems' topology complexity and scale increase, many questions arise, such as 
latency, reliability, and load balancing [23]. In most cases, the controller as a single 
point of failure is replicated and strategically placed to minimize the impact of hardware 
failures. Replicated controllers (Figure 2) can be located across different hardware 
replicated zones in the data center or across multiple data centers altogether.  

System availability against machine failures is typically addressed through controller 
and worker redundancy. However, this topology introduces the possibility of network 
partitions, forcing system designers to make compromises between consistency & 
availability. Per the CAP Theorem [20], any distributed data store can only provide two 
of three guarantees: Consistency, Availability, and Partition Tolerance (Figure 3). 

 

Figure 3 CAP Theorem 

 

• Consistency is the property where the system's state is available to every node 

after receiving the most recent update. 

• Availability is the property in which every request is processed successfully 

without the guarantee that it contains the most recent update. 

• Partition tolerance is the system's ability to operate even when communication 

between nodes is interrupted continuously. 

 

Because system designers cannot prevent network failures, the compromise between 
consistency and availability is typically addressed by implementing consensus schemes 
such as the Paxos [24] and Raft algorithms [25]. Architectures based on these 
algorithms require that at least most control nodes are available and that worker nodes 
can connect to one of those nodes to ensure access to the most recent view of the 
system. If a controller network connection is interrupted, it can no longer perform its 
designated function. 

However, contemporary web applications are typically designed to satisfy the need for 
scale, availability, and globally distributed access. These applications are resilient 
against transient failures to ensure availability across fragile global environments. They 
do not require absolute consistency of the control plane data [26]. For example, web 
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applications are typically required to run without any interruption. It is impossible to 
globally coordinate the deployment of all services simultaneously while updating the 
code of the Web clients. Web applications are typically written to support interactions 
with multiple versions of the backend services to solve this problem. 

Instead of maximizing the consistency of the configuration of the control plane, those 
applications can benefit from increased availability of the underlying control system to 
ensure applications can react to local environmental changes, such as failures and load 
changes, even if the deployment does not reflect the most recent configuration or code. 
Additionally, such casual consistency needs to be able to disambiguate configuration 
divergences as it is impossible to predict how far a system might be disconnected from 
the centralized configuration store. This design would also introduce support scenarios 
where a local operator can perform a local change that eventually merges with the rest 
of the system configuration during network disconnection. 

1.2. State-of-the-art Management systems 

State-of-the-art application management technologies are focused on simplifying 
automation via intent-based declarative configuration, where state updates are 
propagated over time in what is known as the “eventual consistency” mechanism [27]. 
Finally, all nodes will reflect the most current configuration as scheduled by a central 
controller. 

Examples of controller/worker architecture systems include Cloud Foundry, OpenShift, 
Apache Mesos, Docker Swarm, and Kubernetes. As previously stated, the architecture 
of these systems prioritizes intent-record consistency while providing substantial 
availability through controller replication. 

Apache Mesos, Docker Swarm, and Kubernetes store configuration state in Etcd [28], a 
key-value store, using the Raft consensus algorithm to ensure consistency and partition 
resistance. Essentially, the controller returns the confirmation to the client only when a 
quorum of nodes acknowledges the request. Reads are linearizable, implying that once a 
write is completed, all later read operations should return the value of that write or the 
value of the last write. Alternatively, Cloud Foundry utilizes MySQL, a relational 
database that relies on the Paxos algorithm. However, in practical terms, the only 
difference between Paxos and Raft is the leader’s election mechanism [29]. 

For example, when a user submits an intent request, the desired configuration change is 
first stored in either Etcd or MySQL. Depending on the system, the transaction is then 
confirmed to the user, who reasonably expects the request to be distributed and 
committed. Once the configuration change is saved, the controller can execute the 
scheduling algorithm and communicate the changes to the affected worker nodes to 
achieve a consistent global state that matches the user's intentions. These mechanisms, 
in aggregate, provide intent-record state consistency that guarantees high statistical 
availability and good network partition resistance. 
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1.3. The case for decentralizing the control plane 

The case for decentralization of the control plane has been discussed using Conflict-free 
Replicated Data Types [30] and fragmenting large deployments into federations, 
requiring a distributed database that spans the entire system [31]. While these solutions 
increase scale and availability, coordination between the infrastructure providers is 
necessary to maintain the list of deployed locations. In addition, significant performance 
issues have been documented when using federation [32], resulting in performance 
degradation from even minor increases to latency (8.7x) and resource contention (12.0x) 
in comparison to centralized cluster architectures. 

Coordination systems based on blockchain technology have been explored to reduce the 
management cost of maintaining a centralized repository of federated systems [33]. 
Using Ethereum or similar general-purpose and permission-less blockchains has been 
deemed too costly and inefficient  [34]. 

Hierarchical control plane structures have also been studied to solve the problem of 
orchestrating Software-defined networking across vast deployments. Maintaining a 
global view of the system with solutions like FlowBroker, D-SDN, Tungsten, or 
Kandoo does not address challenges with information sharing across network partitions 
[35]. 

Additionally, federation requires establishing and managing trust relationships between 
the different clusters [36], requiring an additional level of governance [37][38] and trust 
initialization setup. To solve this problem, blockchain for IoT and Edge has been 
preliminarily studied via decision framework studies [39], showing the potential 
viability of using permissioned and private blockchains as a control plane for highly 
distributed environments.  

The feasibility of implementing blockchain technology control systems has been 
demonstrated using a multi-tier architecture to record and distribute configurations 
across multiple control nodes [40]. Existing implementations leverage smart contracts to 
substitute access control and preserve the sequence of change requests. However, 
deployment control is still delegated to a traditional controller/worker cluster 
architecture. While a fully distributed blockchain across all regions can yield similar 
results concerning global availability, it still depends on the availability of the local 
cluster controller to ensure all nodes can be operated. Therefore, it does not impact the 
CAP properties of the system or the security of the control nodes. 

Concerning blockchain performance, previous work has determined that the throughput 
characteristics of three-tier control systems utilizing a general-purpose blockchain as a 
record store yield good results [41]. This research evolves previous approaches by 
integrating control and work nodes into a single hybrid component and using Byzantine 
resistance consensus algorithms to coordinate the blockchain's agreement, termination, 
and validity. Existing blockchains implementation like Ethereum [42], Cardano [43], 
Solana[44], Hyperledger [45], or any other general-purpose blockchain with support for 
smart contracts can be used to manage and execute purpose-built smart contracts 
containing the logic of configuration disambiguation, scheduling, and access control. 
However, using existing blockchains will require a network of Oracles capable of 
performing active functions, including failure detection. In addition, to ensure the same 
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level of availability, it would require every node running the software to also operate as 
a general-purpose blockchain node alongside the required Oracles. We decided against 
this approach due to the runtime, management, and overhead. Although outside the 
scope of this research, we consider implementing the solution using general-purpose 
smart contract blockchains worth studying for Web3 applications that rely on both 
traditional stacks and smart contracts. 
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CHAPTER 2. SCIENTIFIC APPROACH 

2.1. Methodology 

For the development of this research, an incremental approach was chosen. Each phase 
begins by establishing research goals leading to the development of the design that 
allows the evaluation of the proposed objectives (Figure 4). 

  

 

Figure 4 Research Process 

The research process was carried out in an initial phase of gathering information and 
establishing the current condition of the cloud management space, including a thorough 
evaluation of the most common solutions and present challenges.  

The second research phase evaluated the current state of the art regarding 
decentralization of the control plane solution for cloud systems, software-defined 
networking solutions, and Internet of Things (IoT) environments. The analysis was not 
confined to blockchain solutions, yet the benefits showcased by modern blockchain 
research guided the decisions made for the designed solution.  

The third phase determined the solution's requirements, where different integration 
architectures were evaluated. A final phase in which the proposal is developed, 
presenting a proposed architecture and analysis of the solution. In the development of 
each phase, the progress and results obtained were disseminated. 

2.2. Information Gathering 

Information was collected by searching for articles in various databases, including IEEE 
Explore, Science Direct, Web of Science, ACM Digital Library, Springer, Google 
Scholar, and other sources of information. The search keywords were combinations of 
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the terms: Cloud Management, Internet of Things, Edge Computing, Blockchain, 
Consensus algorithm, Smart Contracts, Eventual Consistency, Replicated Shared 
Objects, Distributed Systems, Decentralized orchestration, Kubernetes, Conflict-free 
replicated datatypes, Federated cloud computing, and Cluster Computing. 

In total, 786 documents were found. These were filtered from the keywords and 
abstracts, thus determining those relevant to the investigation. The research documents 
used in the development of this work have been referenced. 

2.3. Selection of tools, development, and elaboration of the proposal 

After completing the analysis of multiple environments, Kubernetes was selected as the 
candidate to derive from towards implementing the goals of this research for the 
following reasons: 

 

1. Intent-based configuration model based on resources and stored in a 

machine-friendly format. 

2. The loosely coupled dependency resource model makes it possible to 

simplify the scheduling of resources through eventual consistency. 

3. Flexible architecture enabling direct communication with worker nodes 

replaces the controller's role with a distributed coordinator. 

4. Most adopted solutions with broad support for cloud application 

management patterns. 

5. Built-in support for most cloud platform APIs enables easy deployment on 

existing cloud environments. 

 

The selection of the decentralization mechanism to integrate control and work nodes 
into a single hybrid component and use consensus algorithms to implement 
coordination. In blockchain-centric systems, a natural pattern is decentralizing control 
and replacing authority with Byzantine-resistant consensus patterns. Applying this 
pattern to the cloud management space may seem unintuitive at first glance, yet this 
solution addresses the primary goals of this research. The utilization of blockchain 
technology at the core of the control plane provides the following benefits: 

 

1. Data is replicated across all nodes by default. Additional optimizations are 

possible by implementing lightweight nodes that utilize Merklized Abstract 

Syntax Tree (MAST) and Merkle proofs to validate configuration changes 

distributed through the system [46]. 
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2. Nodes are self-governing entities that operate when isolated from the cluster 

in cases of a network partition. Blockchain exhibits high availability [47] 

properties when assuming causal consistency of the system configuration 

[48].  

3. The diversity of consensus algorithms that enable system designers to 

choose and balance the properties of the system should be prioritized, 

including trust setup, security, and incentives [49]. 

4. Immutable configuration history [50]. Every change in the system is 

sequentially stored and cryptographically secured in the blockchain, 

enabling system operators to determine the system’s state at any point in 

time.  
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CHAPTER 3. RESEARCH OBJECTIVES 

3.1 Research Objectives 

The objective of this research (Figure 5) is to evaluate the implementation of a highly 
available and partition-resistance cloud management system using blockchain 
technology. This research also offers a vision for a solution that addresses the critical 
challenge by leveraging the capabilities following key technologies: 

 

• Blockchain: A distributed store that can efficiently record transactions between 

two parties in a verifiable and permanent way [51]. 

• Nakamoto Consensus: a set of rules that verifies the authenticity of a blockchain 

network. Also considered the solution to the Byzantine Generals Problem [52]. 

 

 

Figure 5 Research Objectives 

To date, little practical research has been performed to weaken the criteria for replica 
consistency to improve the partition tolerance, availability, and performance of cloud 
systems owing to the non-monotonic nature of the system configuration. Non-
monotonicity occurs when a new configuration value invalidates the previous 
configuration state [48]. However, because of the characteristics of the eventual system 
consistency described previously, we believe that a system of rules that disambiguates 
potentially conflicting configuration requests can provide acceptable levels of delayed 
consistency. For the most part, System operators prioritize their focus on the system's 
final state and, in most cases, can infer the consequences of intermediate states during 
configuration changes. Capturing transaction ordering rules into a cryptographic 
protocol and persisting results on a blockchain presents an opportunity to leverage 
mainstream consensus algorithms to solve the challenges presented by the CAP 
theorem. 
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Combining these technologies has made it possible to design Peer to Peer systems 
focusing on maximum availability while providing a verifiable recorded history of 
system state changes. In a world where distributed systems are becoming increasingly 
heterogeneous, decentralization could be construed as the solution for heterogeneous 
scalability. 

3.2. Dissemination of results 

We have used the following criteria to select the most suitable journal: 

1. The theme of the magazine. 

2. Impact factor and quartile in all its categories related to our area of knowledge. 

 

The impact factor report of the article used to present the doctoral work: 

Title: Blockchain-based Cloud Management Architecture for Maximum Availability. 

Research-specific objective accomplished: Analyze the impact on the availability of 
blockchain-based decentralized systems and compare them with the current centralized 
approach. 

Authors: Alberto Arias Maestro, Oscar Sanjuan Martinez, Ankur M. Teredesai and 
Vicente García-Díaz 

Journal: The International Journal of Interactive Multimedia and Artificial Intelligence 

Impact factor 4.936 (JCR 2021) 

 

3.3. Research Impact 

I have been fortunate to be part of the Cloud industry for the last 15 years. From the 
emergence of the software-defined data center, virtualization of computing and network 
resources, multi-cloud orchestration, containers, and back hybrid cloud computing. The 
common theme across all of these technologies is the default implementation of 
centralized orchestration to manage and distribute resources to enable a wide range of 
scale requirements.  

Table 1  shows the impact of the relevant research published and patented at the time of 
this writing. 

 



31 Chapter 3: Research Objectives 

 
Table 1 Impact Summary 

 

3.4. Patents 

 

Title Cited Year 

Adaptive autoscaling for 

virtualized applications. 

US Patent 9,817,699 

31 2017 

Computer relational database 

method and system having 

role-based access control. 

US Patent 10,430,430 

US Patent 9,058,353 

US Patent 9,852,206 

26 2019 

Asynchronous programming 

model for concurrent 

8 2014 
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workflow scenarios. 

Distributed event system for 

relational models. 

US Patent 9,384,361 

US Patent 9,195,707 

14 2016 

Workflow design for long-

running distributed operations 

using no SQL databases. 

US Patent App. 14/206,342 

4 2014 

Interface infrastructure for a 

continuation-based runtime. 

US Patent 9,916,136 

US Patent 9,354,847 

3 2018 
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CHAPTER 4. CLOUD SERVICES 

This proposal is structured into four sections. First, a Kubernetes overview is provided 
as the foundational orchestration system to be evolved towards decentralization. The 
second section covers the architecture of the hybrid controller/worker node and its 
connectivity to other nodes. The third section describes how the system state 
configuration is encoded into the blockchain structure, followed by global ordering 
rules that ensure transaction validity to be applied by participating nodes. 

4.1. Kubernetes concepts and architecture 

The best-known example of this architecture is Kubernetes. In Kubernetes, the system 
architecture prioritizes intent-record consistency while providing substantial availability 
through the replication of the controller [31]. 

Kubernetes stores configuration states in Etcd, a key-value store using the Raft 
consensus algorithm to ensure consistency and partition resistance. In essence, only 
when a quorum of nodes confirms the write the node returns a confirmation to the 
client. 

To preserve configuration consistency, operations are linearizable. Once a write 
completes, all later read operations should return the value of that write or the value of a 
subsequent write. Configuration history linearizability ensures that all operations that 
modify the configuration are sequential and have already considered any last changes 
made [53]. 

Like in most modern orchestration systems, Kubernetes utilizes a declarative 
configuration model to reduce the possibility of commutative order violations where the 
order of the configuration is reversed. Declarative configuration models aggregate 
applications' deployment configuration in one or several documents that represent the 
final state of the system instead of individual API calls to manipulate the state of the 
system. 

In Kubernetes, when a user submits a change request, the desired intent configuration is 
first communicated as a document containing resource definitions. Resource definitions 
are declarations of required resources, application binaries, network configurations, and 
deployment configurations (Figure 6).  

apiVersion: apps/v1 

kind: Deployment 

metadata: 

  name: nginx-deployment 

  labels: 

    app: nginx 
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spec: 

  replicas: 3 

  selector: 

    matchLabels: 

      app: nginx 

  template: 

    metadata: 

      labels: 

        app: nginx 

    spec: 

      containers: 

      - name: nginx 

        image: nginx:1.14.2 

        ports: 

        - containerPort: 80 

Figure 6 Example Nginx deployment 

 

The controller stores the deployment configurations and processes the requests 
determining the best allocation of resources across the system to reasonably satisfy the 
demand. The final deployment configuration is then communicated to the worker nodes, 
converging towards a consistent state that matches the user's intentions. 

 

Figure 7 Linearizable configuration example 
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Configuration dependencies are decoupled as much as possible to maximize the ability 
to change the system's configuration over time. There are two types of dependencies: 
containment and association. 

A containment relationship requires the contained resource to be created after the 
container object (Figure 7). For example, deployment must be contained within a 
namespace, and therefore, the creation order cannot be reversed. The consistency 
provided through the underlying ETCD instance ensures that the system does not have 
to make disambiguation decisions when two controller nodes try to update conflicting 
configuration changes. 

An association dependency is an indirect reference to another resource through labels 
defined during resource creation. This mechanism allows two resources to maintain a 
separate creation and maintenance lifecycle.  For example, a Service resource that 
exposes a container endpoint can be created before the container itself. This mechanism 
enables deployment patterns like blue-green and canary deployments [54]. In canary 
implementations (Figure 8), more than one application instance is deployed while the 
network traffic load is balanced. Canary deployments enable the gradual deployment 
and rollback of application versions. 

 

 

Figure 8 Canary Deployment 

Users can determine the system's state by requesting an up-to-date view of previously 
submitted resources. All resources have spec and status fields (Figure 9). The spec is the 
original resource specification where users declare the desired state. The status field can 
only be modified by the system and contains the actual known state of the object by the 
controller.  

 

kind: Pod 

... 

spec: 

  readinessGates: 

    - conditionType: "www.deployment.com/check" 

status: 
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  conditions: 

    - type: Ready                               

      status: "False" 

      lastProbeTime: null 

      lastTransitionTime: 2022-01-01T00:00:00Z 

    - type: "www.deployment.com/ check” 

      status: "False" 

      lastProbeTime: null 

      lastTransitionTime: 2022-01-01T00:00:00Z 

  containerStatuses: 

    - containerID: 88888888 

      ready: true 

... 

Figure 9 Pod status 

The result of this architecture is that Kubernetes provides intent-record state consistency 
guarantees with high statistical availability. User intent consistency is guaranteed by the 
underlying storage system (ETCD). However, while in most cases, the end state of the 
system is also consistent, the controller can only provide the last know state of the 
system or report the last time the status was communicated to the controller. If a 
Kubernetes node fails, the controller node will restart pods, detach the volumes, wait for 
the old volumes to detach, and reuse the volumes across a new node. Typically, these 
steps would take about 5 to 10 minutes. 

 

Figure 10 Kubernetes Architecture 
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To understand how the system state is represented and is essential to understand the 
following components (Figure 10) that will be further referenced across this research: 

 

• Cluster: A collection of nodes used by Kubernetes to run application workloads 

orchestrated by one or more replicated controller nodes. 

• Nodes:  A physical or virtual machine that provides computing, memory, 

storage, and networking resources to run applications. 

• Master: A node responsible for storing the global state of the system, scheduling 

resources, handling events, and enforcing security policies. 

• Pods: Represent a group of containers that are scheduled and deployed together. 

Applications are typically composed of several pods. 

• Labels: Key-value pairs that are used to reference and group managed resources. 

Labels are used to identify and represent the relationship between resources 

uniquely. 

• Label selector: Used to select resources across the system. 

• Annotations: Used to attach arbitrary metadata to resources. 

• Services: Used to publish and expose application network endpoints running on 

o a set of Pods determined by a selector. 

• Volume: Ephemeral storage accessible from within a pod. 

• ReplicationControllers: Manage a group of pods identified by a selector, 

ensuring that the intended number of pods is running. 

• ReplicaSet: This performs the same function as a replication controller but with 

additional capabilities to select the set of pods to manage. 

• StateFullSet: Like replication controllers with the distinction of specifying 

which nodes run which pods enable better control for state-full workloads. 

• Secrets: Store credentials or other sensitive information. 

• Namespace: A virtual partition of resources enabling the separation of resources 

across clusters. 

 

Kubernetes clusters have at least one controller node and as many worker nodes as 
necessary to host the intended applications required capacity (Figure 10). While it is 
possible to separate the different components of the control plane across multiple 
servers, most controller nodes host the following processes: 
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• API server: Exposes a REST API used to interact with the controller. 

• ETCD: Distributed data store used to persist the state and configuration of the 

cluster. 

• Controller manager: Used to manage and configure external services used by the 

cluster. Including load balancers, persistent volumes, name servers, etc. 

• Scheduler: Responsible for scheduling resources into nodes following the 

policies specified in the cluster configuration. 

 

Kubernetes worker nodes execute control place processes alongside user applications 
using containers to provide the necessary security isolation. Worker nodes require a 
direct connection to the controller node. The control plane network might be segregated 
using separate physical or virtual networking interfaces. Worker nodes have the 
following processes: 

 

• Kubelet: Communicates with controller and configures the node to run pods as 

scheduled by the controller node. Includes running containers, mounting nodes, 

reporting the node's state to the controller, etc. 

• Proxy: Manages the node's network configuration to meet the configured 

services' requirements. 

 

While Kubernetes has emerged as the primary choice for containerized applications, 
large deployments suffer from latency and availability issues reducing its suitability for 
highly distributed environments [55]. In addition, Kubernetes is highly sensitive to 
network partitioning, resulting in the reduced availability of applications running within 
the cluster [56]. In-depth studies towards providing models to increase the availability 
of applications running in Kubernetes clusters conclude that service outages can be 
significantly higher than expected under specific configurations [57]. Solutions have 
been evaluated to reduce the recovery time of applications within the cluster when a 
node fails [58]. However, those solutions do not address the situation when the control 
plane fails, or network connection interruptions make it impossible for a controller to 
communicate with worker nodes. This situation cannot be mitigated if the control and 
work functions are independent while requiring active communication.  
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CHAPTER 5. BYZANTINE RESISTANT 
ARCHITECTURE 

This research evolves previous approaches by integrating control and work nodes into a 
single hybrid component and using Byzantine resistance consensus algorithms to 
coordinate the blockchain's agreement, termination, and validity. This yields a peer-to-
peer architecture of compute nodes collectively converging into a state that matches the 
sequence of intents stored in the blockchain.  While the primary function of nodes is to 
host workloads, nodes maintain a full copy of the blockchain and participate in the 
consensus process both as block creators and validators. 

For this research, we will incorporate elements of the existing Kubernetes architecture. 
In particular, the Kubelet component provides the actuation of state configuration 
changes by communicating with the node operating system. In essence, workloads are 
hosted by deploying containers in Pods. Essential to the spirit of most cloud 
management systems, a node may be a virtual or physical machine, depending on the 
cluster. 

5.1. Node to node communication 

Nodes connect to other nodes using a P2P Gossip protocol (Figure 11). The initial 
discovery is made through dynamic DNS. Once a node can connect to other nodes, it 
will be able to receive the list of known nodes and blocks.  

 

Figure 11 Gossip Protocol 
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The number of nodes in the cluster might change during the life of the cluster. This 
mechanism allows nodes to discover the topology of the network without the need for a 
central catalog. To accelerate the discovery and prevent Eclipse attacks [59], nodes 
might be initialized with a list of permanent nodes maintained by the system 
administrator. Eclipse attacks occur when the first connection of a node to another node 
is to a compromised node that steers the node to a compromised chain (Figure 12). 

 

Figure 12 Eclipse Attack 

 

When a node receives a message that a new node has been added to the network it 
appends it to a list of known nodes. At this point, the new node has not been verified. 
To prevent nodes from consuming too many resources to maintain communication with 
the rest of the network, the node limits the number of active connections to the rest of 
the network. For example, in a cluster with 100 nodes limiting the number of 
connections to 5 will result in an acceptable delay in the communication across the 
network [60]. 

An additional security procedure includes selecting different nodes to connect to when 
the node is restarted, preventing further crashes if the reason for the restart is that 
another node exploited a bug that made the node crash. To minimize the risk of 
compromise, when a node processes the list of known nodes it uses feeler connections 
to detect peer node anomalies [61]. 

Finally, to prevent compromised nodes from flooding other nodes with randomized 
addresses, the number of addresses that a node can receive is rate limited [62]. In 
addition, working nodes would only broadcast addresses that have already been 
verified, therefore truncating the range of such attack. 

Nodes are also registered in the blockchains, if a node obtains a full copy of the 
blockchain it will be able to validate the list of nodes received with the configuration 
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stored in the blockchain. There might be additional security guarantees when adding a 
node to the network, depending on the consensus algorithm, like, certificate chain 
validation in Proof of Authority. Notice that it is possible to have nodes as part of the 
network but don't participate in the consensus algorithm yet communicate with other 
nodes and maintain a full copy of the blockchain. 

Nodes can also receive direct connections from users. Users submit new transactions 
and inspect the state of the node and the last known state of the chain by that node. 
Nodes connect to nodes via an RPC API, enabling them to interact with the cluster 
without the need to store a copy of the blockchain and participate in the P2P network. 

5.2. Node Architecure 

Unlike in Kubernetes masters, nodes are assigned the responsibility to communicate 
with external services, for example, updating a DNS entry or configuring a new load 
balancer. As such, the components of a hybrid node include: 

 

1) The peer manager is responsible for maintaining a list of known peers. It creates and 

maintains TCP connections and receives new network connections from other peers. 

The peer manager is responsible for communicating with other nodes via the P2P 

gossip protocol. 

  

2) The consensus manager is dedicated to applying consensus rules to maintain the 

longest valid chain known by the node by determining which blocks should be 

added to the chain or even discarding dead-end chains. The consensus manager is 

integrated very closely with the peer manager, such that it can adapt the node chain 

to new information, including blocks and alternative chains. In addition, a node, 

depending on the consensus algorithm, may be selected for mining a new block. The 

consensus manager is responsible for communicating the new block to the other 

peer nodes.  

 

3) The validator is responsible for analyzing the contents of a block and ensuring that 

all new transactions are valid. Transaction order, transaction inputs and outputs, 

locking script execution, and any other block rules are related to the consensus 

algorithm.  
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4) Pending changes comprise a list of known pending transactions. Each block 

maintains a list of the pending transactions. When a new block is received or 

minted, the transactions in the block are removed from the pending list. 

 

 

Figure 13 Hybrid Node architecture 

5) The block factory is responsible for mining a new block based on the inputs of the 

pending change list. It communicates with the consensus manager, ensuring that the 

block is valid by verifying with the validator. Any invalid transactions are reported 

until a block is correct and ready to be communicated. 

 

6) The scheduler is a component that watches for newly created resources with no 

assigned nodes. 

 

7) API is the front end of the contents of the state of the cluster and transaction 

management. Users connect to the node via an API to interact with the cluster 

without directly operating a node. 
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8) State Manager maintains the databases and indexes required to store and operate the 

cluster. 

 

9) Blocks are key-value pair databases indexing every block and transaction of the 

blockchain by its hash value. 

 

10) State is a document-oriented database with content resulting from executing all 

transactions in the blockchain. 

 

11) The controller manager is responsible for maintaining the configuration and state of 

the services external to the cluster. 

 

12) Kubelet is part of the Kubernetes architecture. It is responsible for connecting to the 

Docker runtime and ensuring that all pods and containers run according to the 

cluster state determined by the blockchain. 

5.3. Blockchain structure 
Transaction data is stored in blocks organized into a linear sequence over time. New 
transactions are added to blocks, and blocks are added at the blockchain's end (Figure 
14). Unlike traditional cryptocurrency blockchains, the structure of this chain does not 
keep track of a ledger, instead, processing the content of the blockchain results in a 
hierarchal tree of resources that represent the system state. 

 

Figure 14 Blockchain structure 
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Each block contains the hash of each transaction calculated by adding every transaction 
into a Merkle tree and storing the root as part of the block header. This mechanism 
allows rapid verification that a transaction is part of the block (Figure 15). For a user to 
verify whether Transaction 3 is in the blockchain, it only needs to compute the hashes 
of the Merkle tree and check the Root Hash of the block where the transaction is stored. 
Notice that the user does not need to calculate the hash of all the transactions in the 
block, only the hash of the sibling transaction within the tree. 

 

 

Figure 15 Transaction Merkle Tree 

In addition, every block includes the hash of the previous block's header. In essence, 
every time a block is added to the chain, the more complicated and more challenging it 
is to change or remove previous blocks as it would require calculating new hashes for 
every block after the one being modified. In practical terms, every transaction in the 
blockchain is irreversible and final. 

Even in the extreme case that the whole blockchain gets updated to masquerade a 
change, cluster operators only need to store the Merkle root hash of blocks periodically 
to be able to identify whether the blockchain has been tampered with. 

Because of the verification properties of Merkle trees, it is possible to implement 
lightweight nodes that do not perform all the functions of a full node. A lightweight 
node might delete the blocks of the chain (keeping the Merkle trees) after processing 
them and calculating the current configuration resource tree. When a new block arrives, 
it verifies the block and processes it, the node can still verify whether the transactions 
part of the new block was part of the original chain by just checking the Merkle tree. 

It is possible to implement further optimizations where a lightweight node only receives 
transactions that affect the status of the node. The lightweight node can still verify that 
does’ transactions belong to a block of the chain and update part of the resource tree. 

Future research will analyze the possibility of using this mechanism to create large 
federations of clusters with full nodes that orchestrate cross federation data and local 
nodes that only store the part of the chain that contains resource information relevant to 
the federation. 
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5.5. Block Structure 

Blocks are structured using the following format: 

 

Field Description Bytes 

 

Magic Number 

Unique fixed value used to identify the start 

of a new block. The value is always: 

0x15042011 

4 

 

Size 

Size of the block 4 

Header Version Block version 4 

Hash Previous 

Block 

SHA256 of the previous block header 32 

Hash Merkle 

Root 

SHA256 of the Merkle root of the Merkle 

tree of all the transactions in the block 

32 

Time Block timestamp 4 

Transaction Counter Positive integer with the number of 

transactions in the block 

4 

Transactions List of transactions Variable 

Difficulty Target* The proof-of-work algorithm difficulty 

target for this block 

4 

Nonce* A counter used for the proof-of-work 

algorithm 

4 

*Difficulty Target and Nonce are only used when proof of work is used as a consensus 
algorithm. 
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Transactions are stored within blocks using the following structure: 

 

Field Description Bytes 

Number of Inputs Positive integer with the number of 

inputs in the transactions 

2 

Inputs - For 

each Input 

Hash Previous 

Transaction 

SHA256 of previous transaction Variable 

Previous 

Output Index 

Index of the output of the previous 

transaction 

2 

Script Length Length of the script 4 

Script Script Contents Variable 

sequence_no normally 0xFFFFFFFF; irrelevant unless 

transaction's lock_time is > 0 

4 

Number of Outputs Positive integer with the number of 

outputs in the transactions 

2 

List of outputs 
  

Outputs - For 

each output 

Value Length Length of the value 4 

Value Transaction’s value content Variable 

Script Length Length of the script 4 

Script Script Contents Variable 

lock_time if non-zero and sequence numbers are 

< 0xFFFFFFFF: block height or 

timestamp when transaction is final 

4 
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5.6. Network Partitioning 

Network partitioning occurs when a group of nodes is isolated and cannot communicate 
with the remaining nodes in the network. This is a common scenario when those nodes 
are not in the same data center, or the data center is partitioned into two or more 
availability zones. Note that in the proposed architecture, when a network partition 
occurs, there is a risk that transactions submitted to the partition with the shortest chain 
will become invalid once the network connectivity is restored. The transactions are 
appended to the Pending Changes list (Figure 16). 

 

 

Figure 16 Chain resolution after Network Partition 

 

So far, we have discussed the core components and behaviors of the system. From the 
analysis conducted throughout this research, we can deduce that the system meets the 
following propositions: 

 

Proposition 1: Any node can accept a transaction. 

Proposition 2: A single node can add a block to the chain. 

Proposition 3: Nodes do not require connection to other nodes to accept transactions. 
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Proposition 4: A group of nodes (more than one node), where each node can connect to 
others, will generate a chain faster than a group with fewer nodes. 

Proposition 5: A node will always accept the longest chain available. 

 

Therefore, we can formulate the following three theorems by mathematical logic: 

Theorem: Maximum Availability: If a node is available, the system is available. 

 

Proof of Theorem 1. P1 ∨ P2 ∨ P3 ⟹	 T1. If any node can accept a transaction 
(Proposition 1), and a single node can add a block to the chain (Proposition 2), and 
nodes do not require the connection to other nodes to accept transactions (Proposition 
3), then if a node is available, the system is available.  

 

Theorem: Eventual Consistency: A transaction can only be considered irreversibly 
committed when it is part of a block that is in the longest chain and is part of the 
current chain for most of the nodes in the network. 

 

Proof of Theorem 2. P3 ∨ P4 ⟹T2. If nodes do not require the connection to other 
nodes to accept transactions (Proposition 3), and a group of nodes (more than one 
node), where each node can connect to others, will generate a chain faster than a group 
with fewer nodes (Proposition 4), then a transaction can only be considered irreversibly 
committed when it is part of a block that is in the longest chain, and it is part of the 
current chain for most of the nodes in the network.  

 

Theorem: Partition Primacy: A network partition with the majority of nodes 
generates the longest chain with irreversibly committed transactions. 

 

Proof of Theorem 3. P4 ∨ P5 ⟹T3. If a group of nodes (more than one node), where 
each node can connect to others, will generate a chain faster than a group with fewer 
nodes (Proposition 4), and a node will always accept the longest chain available 
(Proposition 5), then a network partition with the majority of nodes generates the 
longest chain with irreversibly committed transactions.  

5.7. Availability Examples 

Traditional Paxos/Raft-based systems are available if most replica nodes are available to 
achieve quorum and maintain the configuration store consistency (Table 2).  When there 
are three zones, both systems are reliable when one fault occurs. However, the 
differences are revealed when two Paxos/Raft replicas fail, preventing the system from 
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achieving a quorum and leading to system failure. Note that in this proposal (Table 3), 
only users who can access a partition with available nodes will be able to submit 
transactions.  

 

Zones/Replicas Replica Faults Partitions Paxos/Raft 

3 / 3 1 0 Available 

3 / 3 2 0 Fault 

3 / 3 0 2 Fault 

9 / 9 4 0 Available 

9 / 9 5 0 Fault 

9 / 9 0 3 Fault 

3 / 3 1 0 Available 

3 / 3 2 0 Fault 

Table 2 Availability examples of Paxos/Raft 

 

Additionally, as stated in the Partition Primacy and Eventual Consistency theorems, 
only nodes in the largest partition will be able to confirm transactions irreversibly. 

 

 

Zones/Replicas Replica Faults Partitions Proposed 

3 / 300 50 / 50 / 50 0 Available 

3 / 300 100 / 0 / 0 0 Available1 

3 / 300 100 / 100 / 100 0 Fault 

3 / 300 100 / 0 / 0 1 Available1 

3 / 300 50 / 50 / 50 1 Available2 

3 / 300 50 / 50 / 50 2 Available2 

3 / 300 50 / 50 / 50 3 Available2 
1  Not accessible from failed partitions. 

2 Transactions cannot be considered irreversible until restored 

Table 3 Availability examples of the proposed solution 
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In the Paxos/Raft system, when the number of zones is expanded to nine, and thus, the 
number of replicas, the statistical availability increases dramatically. However, in cases 
where multiple network partitions occur, the system can become unavailable because of 
the inability of replicas to talk to each other and thus prevent a quorum, even with no 
replica failures. As stated in the theorem of maximum availability, our proposal 
becomes unavailable only when all the nodes fail. 
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CHAPTER 6. CLUSTER MANAGEMENT  

6.1. Transaction Script language 
A script is a list of instructions recorded with each transaction that describes how the 
next transaction can modify the resource's state specified in the output. Every 
transaction except the first one in the blockchain consumes the output of a previous 
transaction (Figure 17). 

 

 

Figure 17 Transaction input-output 

 

Access restrictions are cryptographically secure. When a user submits a transaction to 
operate an existing resource or to create a new resource within the cluster, the user must 
satisfy the conditions specified by the input transactions referenced by the new 
transaction. For example, a new deployment references a namespace where the 
application resources will be created. The most common restriction is to provide proof 
of ownership of the private key used to create the previous resource by providing the 
following: 

 

• The public key matches the hash given in the script of the redeemed transaction 

output. 
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• An ECDSA signature over a hash of a simplified version of the transaction. 

Combined with the public key, it proves authorized users created the transaction. 

 

Scripting provides the flexibility to change the parameters of what's needed to operate 
resources. For example, the scripting system could be used to require two private keys, 
a combination of several keys, or even no keys at all. 

The script is a Forth-like [63], stack-based, reverse-polish, Turing incomplete language. 
Reverse polish notation is a system where the operators follow the operands. Operators 
include memory manipulation, math, loops, function calls, and everything you find in 
procedural programming languages. Some key facts about scripts: 

 

• Scripts do not have any loop. There are no opcodes that allow jumping to a 

previous part of the script. 

• Scripts always terminate. There are no opcodes that allow the script cannot be 

halted or paused for any reason. 

• Script memory access is stack-based. All input information available to the 

script is placed in the stack before execution. 

 

Because of these properties, the amount of computation required to execute a script is 
proportional to its size. This ensures that nodes cannot be stuck running a script 
indefinitely, an undecidable problem attributed to Turing-complete machines [64]. 

Scripts are typically presented in a human-readable format where instead of using 
hexadecimal representation, operand codes are shown as strings prefixed by “OP_”, and 
data arguments are presented in alphanumerical format.  The processing of these scripts 
is sequential and all data is stored in the stack, there are no variables. 

 

For example, the following opcodes push the numbers 1 to 3 onto the stack: 

 

OP_1 

OP_2 

OP_3 

 

Which, when stored in a transaction, will look like 0x515253. Where OP_1 
hexadecimal is 0x51, OP_2 is 0x52 and OP_3 is 0x_53. 
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Several opcodes are provided to push custom data. The previous example can also be 
written as push 1 bytes using the OP_PUSHDATA1: 

 

OP_PUSHDATA1 1 1 

OP_PUSHDATA1 1 2 

OP_PUSHDATA1 1 3 

 

Which, when stored in a transaction, will look like 0x 0x04C010104C010204C0103. 
The OP_PUSHDATA1 operand is represented as 0x4C followed by 1 byte for each 
argument. 

 

While scripts can be represented in multiple forms, however, scripts are not malleable. 
In other words, scripts must be preserved as submitted to the node as part of the 
transaction to ensure the signature does not change. When computing the hash of the 
transaction, strict format rules must be implemented to ensure that changes in the 
signature format, which still makes the content of the transaction valid, do not change 
the transaction's hash.  If this measure is not implemented, then an attacker can disrupt 
the cluster's operations by creating alternative versions of the same system operation, 
making it difficult for the user to understand why their original transaction is failing. 
The sequence of the events would be as follows: 

 

1. User submits transaction A 

2. Malicious node takes version A and modifies the format of the signature, 

therefore creating a new transaction B 

3. Both transactions are submitted to nodes to be added to the next block. Both 

transactions cannot be added because A would invalidate B or vice versa. 

4. If transaction A is added to the block, the attack failed 

5. If transaction B is added to the block, A becomes invalid. 

6. The user might assume A was added to the block, and any future transaction 

referencing A will fail. 

7. The user needs to research and find the existence of transaction B 

 

6.2. Script language Opcodes 
Opcodes can be categorized by types of operations like constant declaration, stack 
manipulation, control flow, encryption, etc. 
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The following opcodes are used to push constant data onto the stack: 

 

Opcode Hex Description 

OP_DATA_1 - 

OP_DATA_75 

0x01-

0x4b 

The next 1-75 bytes is data to be pushed onto the 

stack. 

OP_PUSHDATA1 0x4c The next byte contains the number of bytes to be 

pushed onto the stack. 

OP_PUSHDATA2 0x4d The following two bytes contain the number of 

bytes to be pushed onto the stack in little-endian 

order. 

OP_PUSHDATA4 0x4e The next four bytes contain the number of bytes to 

be pushed onto the stack in little-endian order. 

OP_1NEGATE 0x4f The number -1 is pushed onto the stack. 

OP_FALSE/OP_0 0x00 The number 0 is pushed onto the stack. Flow 

control operators interpret this value as False. 

OP_TRUE/OP_1 0x51 The number 1 is pushed onto the stack. Flow 

control operators interpret this value as True. 

OP_2 - OP-16 0x52-

0x60 

The number 2-16 is pushed onto the stack. 

 

The following opcodes are used to implement flow control logic as well as for scripts to 

stop execution: 
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Opcode Hex Description 

OP_IF 0x63 If the top stack value is OP_TRUE/OP_1 then the following 

statements are executed until OP_ENDIF or OP_ELSE  is found. 

OP_NOTIF 0x64 If the top stack value is OP_FALSE/OP_0 then the following 

statements are executed until OP_ENDIF or OP_ELSE is found. 

OP_ELSE 0x67 If the preceding OP_IF, OP_NOTIF or OP_ELSE was not executed 

then following statements are executed. Multiple OP_ELSE 

sections can be executed as a result. 

OP_ENDIF 0x68 Ends an if/else block. All blocks must end, or script execution 

fails. An OP_ENDIF without OP_IF earlier is also invalid. 

OP_VERIFY 0x69 Marks transaction as invalid if top stack value is not 

OP_TRUE/OP_1. The top stack value is removed. 

OP_RETURN 0x6a Marks transaction as invalid.  

 

The following opcodes are used to implement stack manipulation logic: 

 

Opcode Hex Description 

OP_TOALTSTACK 0x6b Puts the input onto the top of the alt stack. Removes it 

from the main stack. 

OP_FROMALTSTACK 0x6c Puts the input onto the top of the main stack. Removes 

it from the alt stack. 

OP_2DROP 0x6d Removes the top two stack items. 

OP2_DUP 0x6e Duplicates the top two stack items. 
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OP_3DUP 0x6f Duplicates the top three stack items. 

OP_2OVER 0x70 Copies the pair of items two spaces back in the stack to 

the front. 

OP_2ROT 0x71 The fifth and sixth items back are moved to the top of 

the stack. 

OP_2SWAP 0x72 Swaps the top two pairs of items. 

OP_IFDUP 0x73 If the top stack value is not OP_FALSE/OP_0, duplicate 

it. 

OP_DEPTH 0x74 Puts the number of stack items onto the stack. 

OP_DROP 0x75 Removes the top stack item. 

OP_DUP 0x76 Duplicates the top stack item. 

OP_NIP 0x77 Removes the second-to-top stack item. 

OP_OVER 0x78 Copies the second-to-top stack item to the top. 

OP_PICK 0x79 If the top of the stack is N. The item N position back in 

the stack is copied to the top. 

OP_ROLL 0x7a If the top of the stack is N. The item N back in the stack 

is moved to the top. 

OP_ROT 0x7b The 3rd item down the stack is moved to the top. 

OP_SWAP 0x7c The top two items on the stack are swapped. 

OP_TUCK 0x7d The item at the top of the stack is copied and inserted 

before the second-to-top item. 
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OP_SIZE 0x82 Pushes the string length of the top element of the stack 

(without popping it). 

 

The following opcodes are used to implement bitwise and arithmetic logic: 

 

Opcode Hex Description 

OP_EQUAL 0x87 Returns OP_TRUE/OP_1 if the inputs are 

exactly equal, OP_FALSE/OP_0 otherwise. 

OP_EQUALVERIFY 0x88 Same as OP_EQUAL, but runs OP_VERIFY 

afterward. 

OP_1ADD 0x8b 1 is added to the input. 

OP_1SUB 0x8c 1 is subtracted from the input. 

OP_NEGATE 0x8f The sign of the input is flipped. 

OP_ABS 0x90 The input is made positive. 

OP_NOT 0x91 If the input is 0 or 1, it is flipped. Otherwise, 

the output will be 0. 

OP_0NOTEQUAL 0x92 Returns 0 if the input is 0. 1 otherwise. 

OP_ADD 0x93 A and B are in the stack. A is added to B. 

OP_SUB 0x94 A and B are in the stack. B is subtracted from A. 

OP_BOOLAND 0x9a If both a and b are not 0, the output is 1. 

Otherwise, 0. 
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OP_BOOLOR 0x9b If a or b is not 0, the output is 1. Otherwise, 0. 

OP_NUMEQUAL 0x9c Returns 1 if the numbers are equal, 0 

otherwise. 

OP_NUMEQUALVERIFY 0x9d Same as OP_NUMEQUAL, but runs OP_VERIFY 

afterward. 

OP_NUMNOTEQUAL 0x9e Returns 1 if the numbers are not equal, 0 

otherwise. 

OP_LESSTHAN 0x9f Returns 1 if a is less than b, 0 otherwise. 

OP_GREATERTHAN 0xa0 Returns 1 if a is greater than b, 0 otherwise. 

OP_LESSTHANOREQUAL 0xa1 Returns 1 if a is less than or equal to b, 0 

otherwise. 

OP_GREATERTHANOREQUAL 0xa2 Returns 1 if a is greater than or equal to b, 0 

otherwise. 

OP_MIN 0xa3 Returns the smaller of a and b. 

OP_MAX 0xa4 Returns the larger of a and b. 

OP_WITHIN 0xa5 Returns 1 if x is within the specified range (left-

inclusive), 0 otherwise. 

 

The following opcodes are used to implement cryptographic operations: 

 

Opcode Hex Description 

OP_RIPEMD160 0xa6 The input is hashed using SHA-1. 
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OP_SHA1 0xa7 The input is hashed using SHA-1. 

OP_SHA256 0xa8 The input is hashed using SHA-256. 

OP_HASH160 0xa9 The input is hashed twice: first with SHA-256 

and then with RIPEMD-160. 

OP_HASH256 0xaa The input is hashed two times with SHA-256. 

OP_CODESEPARATOR 0xab All the signature checking words will only match 

signatures to the data after the most recently 

executed OP_CODESEPARATOR. 

OP_CHECKSIG 0xac The entire transaction's outputs, inputs, and 

script (from the most recently executed 

OP_CODESEPARATOR to the end) are hashed. 

The signature used by OP_CHECKSIG must be a 

valid signature for this hash and public key. If it 

is, 1 is returned, 0 otherwise. 

OP_CHECKSIGVERIFY 0xad Same as OP_CHECKSIG, but OP_VERIFY is 

executed afterward. 

OP_CHECKMULTISIG 0xae Compares the first signature against each public 

key until it finds an ECDSA match. Starting with 

the subsequent public key, it compares the 

second signature against each remaining public 

key until it finds an ECDSA match. The process is 

repeated until all signatures have been checked 

or not enough public keys remain to produce a 

successful result. All signatures need to match a 

public key. Because public keys are not checked 

again if they fail any signature comparison, 
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signatures must be placed in the scriptSig using 

the same order as their corresponding public 

keys were placed in the scriptPubKey or 

redeemScript. If all signatures are valid, 1 is 

returned, 0 otherwise. Due to a bug, one extra 

unused value is removed from the stack. 

OP_CHECKMULTISIGVERIFY 0xaf Same as OP_CHECKMULTISIG, but OP_VERIFY is 

executed afterward. 

 

The following opcodes are used to implement time management operations: 

 

Opcode Hex Description 

OP_CHECKLOCKTIMEVERIFY 0xa6 Marks transaction as invalid if the top stack 

item is greater than the transaction's LockTime 

field; otherwise, script evaluation continues as 

though an OP_NOP was executed. The 

transaction is also invalid if 1. the stack is 

empty, or 2. the top stack item is negative, or 3. 

the top stack item is greater than or equal to 

500000000 while the transaction's LockTime 

field is less than 500000000, or vice versa; or 4.  

OP_CHECKSEQUENCEVERIFY 
 

Marks transaction as invalid if the relative lock 

time of the input is not equal to or longer than 

the value of the top stack item 

 

To demonstrate how scripts are executed, this is a script example: 

 



63 Chapter 6: Cluster Management 

 

OP_DUP OP_HASH160 <hash_public_key> OP_EQUALVERIFY OP_CHECKSIG 

 

When encoded in hexadecimal, the transaction script will look as in Figure 18 when 
embedded into the block. 

 

Figure 18 Transaction Script Encoding 

The executing the script, the interpreter executes each of the instructions step-by-step. 
Figure 19 shows the contents of the stack at each step of the execution. This transaction 
execution will be considered valid as it ends with OP_TRUE on the stack. 

 

Step Stack state Script Description 

1 <script_signature> 

<public_key> 

OP_DUP 

OP_HASH160 

<hash_public_key> 

OP_EQUALVERIFY 

OP_CHECKSIG 

Initial state: scriptSig and scriptPubKey are 

combined. 

2 <script_signature> 

<public_key> 

<public_key> 

OP_DUP 

OP_HASH160 

<hash_public_key> 

OP_EQUALVERIFY 

OP_CHECKSIG 

Duplicates the top stack item. 

3 <script_signature> 

<public_key> 

<hash_public_key> 

OP_HASH160 

<hash_public_key> 

OP_EQUALVERIFY 

OP_CHECKSIG 

The input is hashed twice: first with SHA-

256 and then with RIPEMD-160. 

4 <script_signature> 

<public_key> 

<hash_public_key> 

<hash_public_key> 

<hash_public_key> 

OP_EQUALVERIFY 

OP_CHECKSIG 

<hash_public_key> is pushed onto the 

stack 
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5 <script_signature> 

<public_key> 

OP_EQUALVERIFY 

OP_CHECKSIG 

Continues if the two top elements of the 

stack are equal. Removes it from the 

stack.  

6 <1> OP_CHECKSIG The entire transaction's outputs, inputs, 

and script are hashed. The signature used 

by OP_CHECKSIG must be a valid signature 

for this hash and public key. Pushes 

OP_TRUE onto the stack. 

Figure 19 Step by Step script execution 

 

6.3. Blockchain Initialization 
Every network starts with at least one node. The first block of a network is referred to as 
the genesis block. It is the only block on the chain where the previous block hash is 
zero. Typically, the genesis block contains a single transaction that initializes the 
cluster. The creator of the first block signs establishes the cryptographic criteria to be 
met for subsequent transactions. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "0", 

           "txid": "0xFFFF", 

          "scriptSig": "Any text can go here" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "kind": "Cluster", 

              "apiVersion": "v1", 

              "metadata": { 

                  "name": "Demo" 

              } 
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          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_creator> 

OP_EQUALVERIFY 

OP_CHECKSIG" 

      } 

  ] 

} 

Figure 20 First cluster transaction 

 

In the example provided in Figure 20, the operator explicitly requires the following 
transaction, i.e., using this one as input, to provide the operator’s public key to be 
hashed and compared with the one embedded in the script (OP_EQUALVERIFY). This 
of course does not provide any security. For that, the script also requires the user to sign 
the transaction with the private (OP_CHECKSIG). Initially, the creator is the only one 
with access to the cluster's resources. 

The next step toward making this cluster functional is to add more worker nodes to the 
network. Any node can participate in the network, but only nodes part of the cluster can 
host applications. For example, a node might connect to the network via the gossip 
protocol but until a new transaction is added to the blockchain adding the node, the 
node would not be considered a candidate to host applications by the scheduler. Non-
cluster node examples include developer nodes that host applications on the cluster that 
can run a client application to validate and analyze the chain's current state. Other nodes 
can participate as validators to obtain a copy of the block to perform other functions 
such as security scanning, policy compliance, SLA, capacity planning, etc. 

Adding a node is considered a change to the cluster configuration. Any transaction that 
modifies the cluster requires the latest Cluster transaction as input. The example in 
Figure 21 is a transaction adding a node to the cluster. The input of the transaction 
references the output of the transaction that created the cluster or any subsequent 
transactions that updated the cluster resource. The transaction's output is the node 
definition following the Kubernetes resource format, which includes the DNS name of 
the node.  

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the lastest cluster transaction>", 
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          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Node", 

              "metadata": { 

                  "name": "my-first-node", 

                  "labels": { 

                      "name": "development" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 21 Transaction adding a node to the cluster 

 

Nodes can optionally have a locking script that enables delegation of the operations of 
the node configuration. The transaction's output utilizes the same protection mechanism 
used by the cluster transaction. Any future transactions referring to the output of the 
node creation transaction must provide proof that they hold the private key 
corresponding to the public key embedded within the script by signing the transaction 
with it.  

Once a transaction has been executed, it cannot be replayed. Nodes must check if the 
transaction has already been added to a previous block. Additional optimizations will be 
considered in the future to avoid the overhead of maintaining an index of all the 
transactions in the blockchain.  
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The example in Figure 21 requires that any future modifications to the node need either 
using the latest cluster transaction (parent container) or the latest transaction of the 
node. Figure 22 provides an example of a transaction to take the anode offline by 
updating the labels attached to the node. Once the transaction is added to the 
blockchain, future transactions must refer to the new transaction.  

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest node transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Node", 

              "metadata": { 

                  "name": "my-first-node", 

                  "labels": { 

                      "name": "offline" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 22 Transaction modifying an existing node 
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The transaction signature needs to be calculated using the public key of the admin of the 
node instead of the creator of the cluster. A node admin can also change the locking 
script to change the signature requirements for the node, including removing his 
permissions by removing the locking script with a subsequent transaction. 

6.4. Adding a namespace 

Namespaces provide a mechanism for isolating groups of resources like applications 
within a cluster. Namespaces require the latest cluster transaction as the input, including 
the signature that satisfies the locking script. 

Namespaces are used to separate resources across different environments—for example, 
development, staging, and production. Figure 23 includes an example of a transaction 
that creates a new “development” namespace using the Kubernetes resource format 
definition. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "default", 

                  "labels": { 

                      "name": "development" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 



69 Chapter 6: Cluster Management 

 

OP_HASH160 

<hash_public_key_from_creator> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 23 Transaction creating a new namespace 

 

As in the previous example with nodes, namespaces can optionally have a locking script 
that enables other operators to access the resources that would require the Namespace 
transaction as input.  It is also possible to use scripting capabilities to add complex 
access logic through the locking script. Figure 24 is an example of transactions that can 
be done by multiple administrators. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "default", 

                  "labels": { 

                      "name": "development" 

                  } 

              } 

          }, 

          "scriptPubKey": " 
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1 

<hash_public_key_owner_1> 

<hash_public_key_owner_2> 

<hash_public_key_owner_3> 

3 

CHECKMULTISIG" 

      } 

  ] 

} 

Figure 24 Namespace with multiple administrators 

 

6.5. Complex Locking Logic 

It is also possible to restrict within a transaction the conditions under which future 
transactions can access a resource. The following are examples of common 
administrative restrictions: 

 

6.5.1. Granting permissions to one or many users for five days 

5d 

OP_CHECKSEQUENCEVERIFY 

OP_VERIFY 

1 

<hash_public_key_owner_1> 

<hash_public_key_owner_2> 

<hash_public_key_owner_3> 

3 

OP_CHECKMULTISIG 

 

The 5d constant estimates the number of blocks that can be generated in five days. 
OP_CHECKSEQUENCEVERIFY checks whether the current block number is more 
than the block number of the input transaction plus the number on the stack, in this case, 
five days’ worth of blocks.  

 

6.5.2. Locking a resource for some time 

5d 

OP_CHECKSEQUENCEVERIFY 
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OP_DROP 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG 

 

6.5.3. Require multiple signatures. For example, 2 out of 3 operator users need to 
sign the transaction 

2 

<hash_public_key_owner_1> 

<hash_public_key_owner_2> 

<hash_public_key_owner_3> 

3 

OP_CHECKMULTISIG 

 

6.5.4. Require two signatures for some time. Then after that period, any 
modifications can be done with a single admin signing the transaction 

OP_IF 

  2 

  <hash_public_key_owner_1> 

  <hash_public_key_owner_2> 

  <hash_public_key_owner_3> 

  3 

  OP_CHECKMULTISIG 

OP_ELSE 

  5d 

  OP_CHECKSEQUENCEVERIFY 

  OP_DROP 

  1 

  <hash_public_key_owner_1> 

  <hash_public_key_owner_2> 

  <hash_public_key_owner_3> 

  3 

  OP_CHECKMULTISIG 

OP_ENDIF 
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The previous examples of locking logic apply to any type of resource, including nodes 
and clusters. This enables scenarios where specific resources have lesser operational 
requirements while others, like clusters, enforce more complex logical conditions. It 
would be common to require multiple signatures to perform any changes at the cluster 
level. 

6.6. Deleting Resources 
Resources can be deleted by specifying the latest output transaction that modified the 
resource as input. The output of a transaction that deletes a resource is null. It is also 
important to note that all descendants are deleted when deleting a parent resource. This 
means that nodes need to keep an index that maps resources to the last transaction that 
modified the resource. Figure 25 is an example of decoded transaction deleting a 
namespace. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

  ] 

} 

Figure 25 Delete resource transaction 

 

Clusters are the only resources that cannot be deleted, as this is the root of all 
transactions.  

6.7. Multiple transaction outputs 
A transaction can have multiple outputs. For example, creating or updating multiple 
namespaces within a single transaction is possible. Every output of the transaction has a 
locking script. Figure 26 is an example of a transaction with more than one output 
namespace resources.  Because each resource needs to be uniquely identified as an input 
of future transactions, creating multiple resources in the same output is not permitted. 
Future research will evaluate utilizing different indexing mechanisms for transaction 
outputs to provide a more compact representation for more than one resource. 
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{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "development-ns", 

                  "labels": { 

                      "name": "development" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_creator> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      }, 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "production-ns", 

                  "labels": { 

                      "name": "production" 
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                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_creator> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 26 Multiple output transaction 

 

When a transaction input refers to a transaction with multiple outputs, it is necessary to 
use the “vout” field for the correct output. Figure 27 shows a transaction deleting the 
production namespace created on the previous transaction. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the multiple ns transaction>", 

          "vout": 1, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ] 

} 

Figure 27 Deleting resources from multi-output transactions 

 

6.8. Permission hierarchy 

Access to resources is determined by the locking script used in its latest transaction that 
modified the resource or the locking script of any parent resources in that order. When 
evaluating whether a transaction should be allowed, the depth-last order in the hierarchy 
in Figure 28 is applied. 
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Figure 28 Resource hierarchy 

 

For example, a Pod transaction can include a locking script that references the hash of 
Alice’s key. Bob's key hash is included in the script transactions that locked the 
namespace where the Pod was created. Even if the new Pod transaction does not include 
Alice’s key hash, he can still modify the resource by using the transaction of the 
namespace as input to alter the Pod. 
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The process to evaluate of access control follows these steps: 

 

1. Check that the latest input transaction modified the output resource 

specified in the “vout” field. 

2. If the transaction's output is the object being modified, evaluate the locking 

script. If the locking script returns OP_TRUE, accept the transaction. 

3. If the transaction's output is another object, check whether the object is the 

parent of the object being modified. If it is the case, evaluate the locking 

script. If the locking script returns OP_TRUE, accept the transaction. 
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CHAPTER 7. BUILDING THE NETWORK 

7.1. Nodes joining the network 

Nodes connect to a network via the P2P gossip protocol. When a node is first initialized, 
it needs to be configured with one or more nodes from which it can discover the other 
nodes on the network. 

When a node starts up for the first time, it connects to the configured node address 
resolved by the DNS service. If the node connects to the network for the first time, it 
will not know the chain or other peers. After a successful connection, the node calls the 
GetPeers function on the other nodes to receive the list of known peers to be persisted in 
the peer's database.  

To participate in the network operations, a node must first download the network’s 
blockchain. By calling GetBlocks on the peer nodes, it will receive the longest known 
chain by its peers in the form of block headers. Once the list of blocks is parsed, it gets 
added to the list of pending blocks and proceeds to request those blocks across all 
known peers. 

By looking at the block headers, the node has enough information to validate the chain 
by looking at the hash of each block. It does not know, however, whether the 
transactions on the block are valid. 

After the node downloads the largest known chain, it parses the contents and builds the 
state database with the information by processing each block in order and validating the 
transactions. It also validates the list of available peers and updates it to ensure it only 
accepts proposed blocks from peer nodes part of the cluster during that process. 

While a node can only receive new proposed blocks in the form of block headers from 
other nodes in the cluster, it can download Blocks from any other node connected to the 
network. After a block is downloaded, it is validated through the Merkle tree hash 
stored in the block header. If a peer provides an invalid block, the peer is marked as 
blacklisted. 

Downloading the chain and building the state database is expensive as it requires 
validating every single transaction in the blockchain. A possible optimization is to 
provide a parameter that establishes a recent block hash as confirmed valid as part of the 
node's configuration, therefore eliminating the need to validate every single transaction 
in the block. Another possible optimization is including the hash of the configuration 
resource tree in every block, enabling a new node to download the tree from another 
node and validating the hash, further accelerating the initialization process. 

To prevent Sybil attacks, the node should only maintain a percentage of node 
connections to non-cluster nodes and transmit the list of black-listed nodes when other 
peers call GetPeers on the node. When a node gets added to the cluster through a 
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transaction, the node should add the node's address to the peer list. Incoming 
connections from nodes outside the network should be limited to ensure that non-cluster 
nodes use all network connections. 

 

Figure 29 Node network topology 

 

Non-cluster nodes are allowed to obtain a copy of the blockchain for different use cases: 
 

1. Development: A developer needs a copy of the blockchain to build and test 

transactions before submitting them to the cluster. Users submitting 

transactions need access to the blockchain to calculate signatures and hashes 

of resources being used from previous transactions. In addition, testing and 

locking scripts are critical operations as transactions in the cluster are 

irreversible. 

2. Analytics: Building systems that aid with the analytical operations of the 

cluster. For example, capacity planning, cluster utilization, efficiency, 

consensus performance, security analytics, etc.  

3. Watchtower: Watchtowers act as ‘watchdogs’ of the blockchain to identify 

and penalize malicious nodes. For example, monitoring blocks' contents and 

removing nodes generating blocks that do not contain transactions 
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broadcasted through the network, indicating the node might have been 

compromised.  

4. Oracles: Oracles are auxiliary input nodes that produce transactions that 

help with the operations and maintenance of the network, for example, by 

creating transactions that report the application's state. Oracle inputs are 

signed and support the construction of locking scripts. For instance, an 

Oracle can provide a transaction signature that unlocks a resource that needs 

to be updated to scale up resources. Oracles are helpful to gate-keep 

processes based on data, not just signatures. 

7.2. Submitting a transaction 

Users can submit transactions directly to nodes through the RPC API. When a node 
validates transactions as soon as they are received, including: 

 

1. The input transaction exists. 

2. The input resource is valid, including parsing the content and ensuring well-

formed. 

3. The input resource has a locking script. 

4. The transaction used to refer to the input resource is the latest transaction in 

the chain for that resource. 

5. The SigScript field satisfies the inputs of the locking script and, upon 

execution, returns OP_TRUE. 

6. The output resources are valid. 

7. The output script, if any, is valid. 

 

If all checks pass, the transactions are added to the Pending changes transaction list and 
communicated to all other nodes connected to that node. Notice that the transaction can 
still become invalid in the context of a new block due to another transaction invalidating 
it. 

7.3. Validating a transaction 
When a user submits a transaction, two possible mechanisms satisfy the validation 
requirements—direct or indirect resource access. 
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- Direct access transactions reference the latest transaction with the target object as 

output and index the correct output. It's the user's responsibility to identify the most 

recent transaction and produce a signature that meets the requirements of the locking 

script. 

 

- Indirect access transactions have as input the latest transaction of the parent 

resource. For example, creating a node refers to the output of the most recent cluster 

resource transaction. 

 

As previously stated, locking scripts are simple, stack-based, and processed from left to 
right as a series of sequential instructions. Data is pushed onto the stack, and opcodes 
are used to perform operations on the items on the stack. Only resources that have 
output scripts can be used in subsequent transaction inputs. 

7.4. Block Formation 
Validators check every transaction during the block forming process. A node is formed 
by ordering the pending transactions and encoding them into a single block. The 
selection of transactions to be included in a block is a critical aspect of the system's 
design and will be further analyzed in the following sections. Transaction order is 
performed through both Topological and Canonical Ordering. 

 

- Topological ordering by ordering transactions according to the position of 

the input resources in the permission hierarchy. In other words, placing 

transactions in the following order: first clusters, then nodes, namespaces, 

etc. Transactions with the same input are ordered using the same process 

but evaluating the outputs, placing null output first. For example, a 

transaction that creates a node is placed before a transaction that creates a 

namespace, as both would have the same input. 

 

- Canonical ordering occurs when two resources have equivalent inputs and 

outputs in the resource permission hierarchy. When this happens, those 

transactions are ordered by the transaction Id calculated as the SHA256 of 

the transaction data. For example, two transactions that create a node will 

be shorted by the transaction ID. 
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Topological ordering ensures that sequential transactions that depend on a previous 
transaction are evaluated in a way that maximizes transaction validity. For example, a 
pod cannot be created until the parent namespace is created. Null output ordering is 
essential for cases when a transaction that eliminates resources needs to be processed in 
the same block as a transaction that allocates new resources. 

Canonical ordering ensures that the output is unique and deterministic given the same 
set of transactions. In other words, given the same unordered transactions, the result 
after ordering would be the same regardless of who performs the ordering or when the 
operation is done. 
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CHAPTER 8. CONSENSUS ALGORITHMS 

8.1. Selecting a block creator  
Minting a block is the most critical operation in a blockchain. The following section 
will analyze different algorithms that can be used to ensure that blocks are minted, 
validated, and added to the blockchain throughout the network while minimizing the 
amount of trust required. In essence, these algorithms enable the capability to achieve 
consensus on which blocks to add to the chain based on rules that ensure fairness and 
security to all participants. 

The analysis we will perform include, when relevant, their characteristic behavior for 
the following properties: 

 

1. Partition resistance: The ability to operate and recover when network 

partitions occur for a short time or more extended periods. Including single 

network partitions, multiple network partitions, and network partitions with 

Byzantine Agents. In this section, we will also analyze the behavior of the 

network under different latency scenarios. 

2. Resource Consumption: The total amount of resources used to mint a new 

block and distribute it across the network and the total amount of resources 

required to tamper with a block in the chain at different depth levels 

3. Byzantine fault tolerance: What happens when an actor decides not to 

follow the rules and tamper with blocks of the chain or newly minted 

blocks. Including when the BFT notes are the minority and the majority. 

The analysis will include normal circumstances and network partition 

scenarios. 

4. Availability: What are the necessary conditions for a transaction to be 

submitted to the network and added to a block with a reasonable guarantee 

of not being rolled back. In other words, the transaction is statistically 

confirmed. 
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8.2. Consensus algorithms  

The following consensus algorithms will be evaluated as part of this research: 

 

1. Proof of work (PoW) is a consensus algorithm based on demonstrable 

computational effort across a fixed time window, forcing each party to 

upfront a total energy/computational cost proportional to their weight on the 

consensus effort. 

2. Proof of space (PoS) is a consensus algorithm based on demonstrable 

storage capacity requiring every participant to pre-compute and store an 

established function output. Participants must be able to prove knowledge of 

that output at any time, ensuring a commitment to integrity by upfronting 

the storage cost. 

3. Proof of Authority (PoA) is a consensus mechanism based on the proven 

identity of the participants. This algorithm requires establishing a level of 

trust across the participants. 

4. Proof-of-stake (PoS) is a consensus algorithm based on demonstrable funds 

at stake requiring all participants to deposit a monetary amount in an escrow 

account controlled by a cryptographic protocol. 

 

As part of the evaluation, we will consider the following security attacks: 

 

1. Distributed Denial of Service Attack: Overwhelming the system with 

transactions, for example, using compromised keys. 

2. Sybil Attack: Overwhelming the system with Byzantine validator nodes or 

compromised nodes submitting incorrect validations or block submissions. 

8.3. Proof of Work 

Proof of work (PoW) is a cryptographic proof in which one party proves to others that a 
certain amount of a specific computational effort has been expended. This section 
analyzes how adding PoW requirements to the consensus algorithm ensures a 
homogeneous selection of nodes generating blocks and secures the network by 
guaranteeing that any attacker compounds the computational requirements required to 
disrupt the process. 
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As the Application Specific Integrated Circuits (ASICS) and Field Programmable Gate 
Arrays (FPGA) are used for PoW computation for blockchain consensus operation, the 
decentralized nature of blockchain networks is being threatened. For simplicity, we will 
focus on SHA256 proof of work. The need for more complex solutions to protect the 
network from adversaries with hardware-accelerated devices should be noted. 

In PoW, every node competes in building a block by iterating through computing the 
block header's hash combined with a Nonce. Before a hash can be calculated, the block 
needs to be formed. In PoW consensus, there is a delay between when a transaction is 
submitted and when the transaction is added to the block. The race to build and hash the 
next block starts after a node has received a valid block, meaning all transactions in the 
block are correct, and the block's hash meets the target difficulty levels. 

8.4.1. Building new blocks 

Nodes gather pending transactions from the pending transaction pool to form new 
blocks. After ordering and validating them, transactions are hashed and organized into a 
Merkle tree. The tree's root is added to the block header, which will be hashed as part of 
the mining process. The node then can start iterating through hashing of the block 
header by adding the current value of the node Nonce and incrementing it in every 
iteration.  

 

Figure 30 Proof of Work consensus 
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The Nonce of the node is an integer value initialized when the node is created and 
maintained throughout the node's lifetime. Because Nonce is persisted and not reset on 
every block iteration, it ensures random distribution of Nonces across the network over 
time. For example, if two nodes with identical computing power were created 
simultaneously and started with the same Nonce value, network timing differences and 
finding hashes that meet the target requirement will diverge the Nonces of those nodes 
over time. 

8.4.2. Target difficulty 

The Target value is determined by the current network difficulty setting, which carries 
over across blocks. Nodes are tasked to find a 256-bit unsigned integer whose hash 
combined with the header must be equal to or below for that header to be a valid part of 
the blockchain. Because hashes are randomly distributed, the average time required to 
find a hash meeting the difficulty requirements is proportional to the network's 
computing power. 

In essence, the target is inversely proportional to the difficulty. The difficulty is encoded 
as a compact representation of a 256-bit number. The first byte of the 32-bit field 
represents an exponent, and the remaining 3 bytes encode a mantissa. 

 

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2!∗($%&'($()*+) 

 

At the genesis of the blockchain, the first difficulty target can be inferred by estimating 
the hashing performance of the first node and applying the following formula. 

 

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 =
𝑀𝑎𝑥𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑎𝑠ℎ𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑

𝐻𝑎𝑠ℎ𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 

 

The MaxTarget is the highest value of a 248-byte number. In this case: 

 

0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 

 

Because Bitcoin stores the target as a floating-point type, this is truncated: 

 

x00000000FFFF0000000000000000000000000000000000000000000000000000 

 

Which is the compact representation being 0x1D00FFFF. 
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TargetBlockTime is the desired number of seconds between blocks. This parameter will 
determine block latency and should be carefully selected. It should be high enough to 
minimize the chances of 2 or more nodes generating a block simultaneously yet low 
enough to meet operational latency requirements. 

As more nodes are added to the network, the difficulty level must be adjusted to ensure 
that the network produces blocks at the desired TargetBlockTime. Difficulty 
adjustments are calculated automatically according to the height of the block:  

 

𝑁𝑒𝑥𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ∗ 𝐵𝑙𝑜𝑐𝑘𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑

∑ (𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝( − 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(*-)
./'0123456)7$()8$9:'3
(;-

 

 

BlockAdjustmentPeriod is a network parameter that specifies the number of blocks 
between adjustments. Given that this is not a complex operation to calculate, the value 
can be estimated by taking into consideration the rate of change of total available 
hashing power, which should be targeted to be a percentage of the entire computing 
capability of the network to ensure that the threats to the consensus algorithm scale with 
the size of the network. 

8.4.3. Block collisions 

Two nodes may find a solution to the hash problem simultaneously or within a period 
where the broadcasting of the block happens simultaneously. Every node must follow 
the rules when receiving a valid block: 

 

1. If the block is the next one in the chain, add it to the chain. 

2. If the block number is higher than the next block in the chain, request any 

blocks that precede the received block and adopt the sub-chain. 

3. If blocks in the current chain collide with the sub-chain, discard those 

blocks and adopt the new chain. Transactions that were part of the sub-chain 

and are not found in the new chain are re-added to the pending transaction 

list. 

 

While it might be possible that the blockchain is forked temporarily by nodes adopting 
different versions of blocks, these rules ensure that the chain self-stabilizes by ensuring 
the survival of the longest chain generated by the chain with the largest group of nodes 
that adopted it. If the network is split exactly in half, network timings and performance 
invariance will ensure that one of the chains falls behind and deprecates. As illustrated 
in Figure 31 the same logic applies if the collision occurs between more than two nodes. 
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Figure 31 Resolving chain splitting. 

 

The total resource consumption of the consensus algorithm is the sum of all computing 
power not used by the network to execute applications. While searching for the next 
block hash is not considered productive work, it has several security benefits and 
incentives for the network owners to right-size the network to maintain an acceptable 
level of unproductive resource consumption. 

8.4.4. Byzantine Fault Tolerance 

PoW networks are Byzantine fault-tolerant to a certain extent. In case some network 
nodes are compromised, the consensus algorithm can still be effective if the attacker 
controls less than 51% of the hashing power. Those nodes can be instructed to ignore 
legitimate transactions and produce blocks with valid but irrelevant transactions. In 
addition, compromised nodes must not accept legitimate valid blocks for the attack to 
be effective. The security attack will stop the processing of legitimate transactions and 
prevent operations on the network, which can be potentially used to disrupt applications 
running in the cluster.  
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Figure 32 Blockchain 51% attack 

Suppose the attacker compromises less than 51% of the hashing power. In that case, it 
can still disrupt operations but not halt them. The network will still accept valid blocks 
generated by normal nodes, and compromised nodes will be forced to take the blocks to 
ensure they can follow the longest chain to broadcast empty blocks. 

Table 4 Hashing power attack ratios contain an example of the number of nodes that 
need to compromise the consensus process assuming 80% utilization of the network 
computing power for production workloads and 100 KH/s per node. Assuming 
Byzantine nodes utilize 100% of the compute power for hashing. 

 

Legitimate 

Nodes 

Compromised 

Nodes 

Hashing 

Power 

Compromised 

Hashing Power 

% Of 

Dummy 

Blocks 

% Of 

Legitimate 

Blocks 

100 0 2 MH/s 0 MH/s 0% 100% 

99 1 1.98 

MH/s 

100 KH/s 

5% 95% 
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95 5 1.9 MH/s 500 KH/s 21% 79% 

90 10 1.8 MH/s 1 MH/s 36% 64% 

85 15 1.5 MH/s 1.5 MH/s 50% 50% 

80 20 1.6 MH/s 2 MH/s 55% Discarded 

50 50 1.6 MH/s 5 MH/s 75% Discarded 

Table 4 Hashing power attack ratios 

 

In the Table 3 example, when the attacker compromises less than 15 nodes, it can slow 
down the operational network throughput by producing valid dummy blocks added to 
the chain as if they contain legitimate transactions. In this case, the attacker does not 
have enough hashing power to create blocks to maintain a chain of dummy blocks fast 
enough. Once the hashing power crosses the 51% threshold, the attacker can, on 
average, generate more blocks than the rest of the network, therefore, ensuring the 
dummy chain is the one that survives, and any other block is discarded. 

To restore partial control of the cluster, it is only necessary to restore enough nodes 
such that there are more legitimate nodes than compromised nodes. After system control 
is restored, all blocks generated by the byzantine nodes will still be part of the chain as 
those changes are irreversible. 

It is possible to implement heuristics for legitimate nodes to reject blocks generated by 
potentially compromised nodes. Those techniques are outside the scope of this research. 

8.4.5. Network Partitioning 

Network partitioning occurs when a group of isolated nodes cannot communicate with 
the rest of the network's nodes. This is a common scenario when those nodes are not in 
the same data center, or the data center is partitioned into two or more availability 
zones. 

When a network partition occurs, there is a risk that transactions submitted to the 
network partition with the shortest chain are lost once the network connectivity is 
restored. 
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Figure 33 Network Partition in PoW 

If Byzantine agents attack a network partition, each network partition will behave as if it 
was a unique cluster of nodes. In other words, if the byzantine agents in one network 
partition obtain more hashing power than the legitimate nodes, no new transactions will 
occur on that partition. Once the network partition is restored, the longest chain 
produced (the network partition with more hashing power) will spread across the 
cluster, and any other chains will be discarded. 

In the example below, the network is partitioned into two. Assuming the same 
constraints as before of 80% productive utilization of legitimate nodes, the partition 
with 18 nodes and a total of 1.8 MH/s will be able to maintain a longer chain. However, 
the network partition with only two nodes and one of them compromised will not be 
able to process any new transactions as the byzantine node will have the ability to hash 
at 100 KH/s vs. 20 KH/s of the legitimate node. In addition, any transaction between the 
time the partition occurs and the node is compromised will be discarded once the 
longest chain is adopted.  
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Figure 34 Restoring Network Partitions 

 

8.4.6 Block size considerations 

Block size, by default, can be up to 232 bytes or 4Gb. Assuming an average transaction of 
1024 bytes, the system will be limited to 4 million operations per block. It is important 
to note that changes that require more than 4GB of block space will be needed to be 
spread across multiple blocks. For example, a global configuration change to all 
resources in the cluster might require extending changes through numerous blocks. In 
addition, propagation of those transactions might not happen within the BlockPeriod 
time, therefore not reaching the node winning the hash lottery. 

 

The following formula defines the throughput of the system: 

 

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
2+<

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∗ 𝐵𝑙𝑜𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑑 

 

If the BlockPeriod is 60 seconds and the average transaction size is 1024 bytes, the total 
average throughput of the cluster is 69905 operations per second. 
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8.4.7. Other Attacks 

A Sybil attack is where an attacker tries to create as many nodes as possible to 
overwhelm the P2P network. Because nodes need to be explicitly added to the network, 
in other words, it is not a permission-less network, this type of attack is not possible. 
Nodes should connect to nodes that are not part of the cluster. 

Distributed Denial of Service Attack (DDoS) occurs when a key that provides access to 
resources in the cluster is compromised, therefore enabling the possibility of submitting 
valid transactions to overwhelm the P2P network. Several countermeasures can be 
implemented to mitigate the effects of these attacks: 

 

1. Transaction throttling: Establishing the maximum number of transactions 

that a node can emit or receive from another node or user. 

2. Resource type quotas: Establish a maximum number of operations per input 

resource type. 

3. Anomaly detection: Develop pattern matching algorithms that detect 

anomalous transaction operations.  

4. Multi-signature locks: Requiring multiple signatures for operations reduces 

the risks when a signature is compromised. 

5. Watchtowers: Require every transaction signed by a third party to ensure 

that the watchtower requirement is implemented for subsequent transactions 

and other external verifications to guarantee that only legitimate 

transactions are added to the network. 

6. Time-locked transactions: Only accept transactions that impose a time lock 

after several transactions per second on the same resource have been 

executed. 

 

One of the advantages of locking scripts is integrating with external systems via the 
encoding of complex logic and signature proofs. 

Other types of DDoS attacks are possible by, for example, overwhelming the TCP/IP 
layer and blocking the ability of a node to connect to other nodes. These attacks are out 
of the scope of this research. 

In large-scale distributed systems, Nonce distribution should be homogeneous due to 
the implicit randomness of the block generation process. In cases where a group of 
nodes colludes to take control over the network, it is beneficial for the attacker to 
sequence the Nonce hash calculation to minimize overlaps between attacking nodes. 
This manipulation of the Nonce could be detected by analyzing the Nonce distribution 
across the nodes. 
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An example of distribution manipulation happens when hash computing power is 
aggregated in mining pools. Figure 30 showcases the Nonce distribution of popular 
cryptocurrencies that utilize PoW and allows the aggregation of nodes via mining pools 
which sequence the Nonce being evaluated across all nodes part of the pool. 

 

 
Figure 35 Nonce distribution across blocks 

 

In cases where compromised nodes hashing power utilization is maximized, it would be 
possible to detect the increased hashing power of the network by detecting the 
accelerated production of both legitimate and dummy blocks. 

 

8.5. Proof of Space 
Proofs of Space (PoSpace) is very similar to proofs of work (PoW), except that instead 
of computation, storage is used to prove that the prover has reserved a certain amount of 
space. PoSpace is different from memory-hard functions in that the bottleneck is not in 
the number of memory access events but the amount of space required. If a prover does 
not reserve the claimed amount of space, it should be hard to pass the verification for 
security challenges. An adversary who stores a file of size significantly less than N bits 
should not be able to produce valid proof for a randomly selected challenge [65]. 
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Figure 36 Proof of Space consensus 

8.5.1. Building new blocks 

Using a proof of space system, every node can immediately compute a proof, so we 
somehow need to nominate a node that will produce the next block. A possible 
implementation is to order the hash of the proof. The node producing the lowest scalar 
value of the proof hash should be the next block of the chain. To finalize the block, one 
must augment the block with the output of a verifiable delay function that limits the 
network's speed to generate blocks. 

When a node is initialized, the PoSpace storage needs to be initialized. One of the 
advantages of this consensus protocol is that this is a single-time operation, reducing the 
total cost of resources to produce proofs. In addition, once the node is decommissioned, 
the storage space can be reclaimed. Figure 36 shows the process each node follows 
during the consensus mechanism. 

 

Legitimate Compromised % Of Dummy % Of Legitimate 
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Nodes Nodes Blocks Blocks 

100 0 0% 100% 

99 1 5% 1% 

90 10 90% 10% 

50 50 50% 50% 

49 41 100% Discarded 

Table 5 Proof of Space effect of compromised nodes 

 

It is important to note that the expensive node initialization makes this consensus 
protocol unsuitable for highly dynamic environments where nodes are created and 
destroyed upon the system’s load. For example, dynamic cloud environments vs. 
physical machines in a data center. 

8.5.2. Security considerations 

In addition, when nodes are compromised, unlike in PoW, the compromised node's 
capability to generate proofs stays constant. Therefore, for an attacker to halt the 
network's operations, it would require obtaining control of at least 51% of the nodes. 
Table 5 summarizes the effects that compromised nodes would have on the network. 

It is important to note that PoSpace is more resistant to compromised nodes for smaller 
clusters. For the control plane to be disrupted, a cluster with ten nodes would require at 
least six to be compromised. Most other considerations are identical to PoW. 

8.5.3. Lightweight clients 

It is possible to implement light nodes in PoSpace. For light nodes, a full node can 
create a smaller proof that can convince the light node that the weight of a chain is close 
to some value. This is called proof of weight. Naively, the light node could download 
every block in the chain and all the necessary proofs and verify them. However, this 
would require a lot of bandwidth and CPU. 

Conceptually similar to the mechanism used by Flyweight clients [66], a light node can 
validate through a hashing mechanism that the blockchain in the full node has been 
fully validated and is the longest consensed chain across the network. This enables the 
lightweight node to consume the system’s state database without participating in the 
consensus process. 
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8.6. Proof of Authority 
Proof of Authority (PoA) is a reputation-based consensus algorithm that introduces a 
practical and efficient solution for blockchain networks. The PoA consensus algorithm 
leverages the value of identities, meaning block validators are arbitrarily selected as 
trustworthy entities. The weight of the participants in the consensus algorithm is backed 
by trust.  

The identity of a node consists of an asymmetrical key pair. The keys of a node must be 
generated before the node can be added to the network, as the public key would be part 
of the resource. When a node is created, it initializes the key pair and stores it in a 
secure element, for example, a TPM module. 

Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international 
standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure 
hardware through integrated cryptographic keys. 

8.6.1. Adding a node to the network 

A node connects to the P2P network during the setup process without being part of the 
cluster by authenticating with a pre-created staging key. This key allows the node to 
download the blockchain from the network.  Once the node has a copy of the 
blockchain, the admin can request from the node the transaction required to add it to the 
cluster and submit the transaction by providing the locking script. Figure 37 shows an 
example of a node added to the network, including its public key hash. This enables the 
node to update any of its metadata. The node uses the staging key to sign the 
transaction. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Node", 

              "metadata": { 

                  "name": "new-node", 
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                   "pubKey": "<node_public_key>", 

                   "labels": { 

                      "name": "offline" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 37 Adding node with a public key. 

 

Once the node has been added to the cluster, all other nodes update their peer list with 
the node's name and the public key that will later be used to validate blocks from the 
node. 

8.6.2. Security concerns 

If the staging key is compromised, the attacker can create as many nodes as they want 
and block the consensus algorithm. The following are possible ways to mitigate the risk 
of an attacker getting hold of the keys: 

1. Create a staging key per node and make the keys single-time use. This 

process would limit the number of nodes the attacker can create to the 

number of keys they can get hold of.  

2. Limit the rate of nodes that can be added to the cluster. 

3. In on-demand environments, it is possible to pre-create all nodes and turn 

them off.  This can also reduce the time to synchronize the blockchain but 

using de-duplication technology and cloning disk containing the most recent 

blockchain. 

4. Reduce or temporarily eliminate the weight of the new nodes in the 

consensus algorithm. For example, nodes created in the last 24 hours cannot 

participate in the consensus algorithm. This introduces other possible 
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attacks for small clusters where only a portion of the cluster is old enough to 

join in the consensus, confining all consensus to a small list of nodes. 

 

8.6.3. Consensus algorithm 

Nodes on the network compete to produce the next block by signing a proposed block 
header and broadcasting the signature. The node will enter a contest to be selected to 
submit the next block.   

 

 

Figure 38 Proof of Authority consensus 
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The winner will be selected using a collusion-resistant Multiparty Computation Random 
Ordering algorithm [67]. Once all the nodes receive the results of the random ordering, 
the first one is to propose the node. If the first one fails to produce a valid block, then 
the second of the list gets a chance. The process continues until one of the nodes has a 
valid block. The Verifiable Delay Function is added to the sequence of producing the 
block to ensure blocks are generated at the predefined cadence. 

Other possible mechanisms to ensure a node's fair selection include using Verifiable 
Random Function [68] (VRF). VRFs require all nodes to share a secret key that can be 
further randomized with the last block's hash. Seeding the key with the block's hash 
reduces the possibility of a node pre-calculating which future nodes will be selected to 
generate the next block. 

The consensus has similar characteristics to the PoSpace consensus mechanism with the 
difference of being resistant to Out of Network attacks where supplemental compute or 
storage power enhances the capabilities of the adversary to produce blocks. 

The significant difference with PoA consensus is that adding nodes to the network 
needs to be orchestrated. The nodes cannot be added to the block before they are 
created, and the key pair is registered with the cluster. 

Alternatively, a root of trust can be created such that nodes can provide a certificate 
chain that automatically allows them to become part of the network if the node entries 
are pre-created in the cluster. The certificate root to generate those certificates becomes 
a single point of failure for the cluster. 

8.6.4. Security Considerations 

To further eliminate the possibility of forging blocks that produce a hash that can pre-
select the winning node, it is necessary to add the restriction that a node cannot be 
selected more than once for several blocks proportional to the size of the network. In 
addition, other heuristics can be added to the algorithm to ensure that a percentage of all 
the pending transactions must be added to the block for the other nodes to consider the 
block valid. 

All honest nodes will respond, and the computation can be complete. If any nodes do 
not respond in a specified time, a new round will be started, excluding the nodes that 
did not reply in the first round. Every time a node fails to respond, it will be blocked for 
a determined period, for example, 100 blocks. 

 

8.7. Proof of Stake 
Proof of Stake (PoS) protocols are a class of consensus mechanisms for blockchains that 
work by selecting validators in proportion to their quantity of holdings in the associated 
cryptocurrency. This consensus mechanism is particularly interesting for scenarios 
where the nodes are managed by parties that do not necessarily trust each by structuring 
financial compensation in a way that makes an attack less advantageous. If a node 
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misbehaves (offline, attacks the network, deflects from the protocol) in the network, the 
process of implementing the penalty is called slashing. 

For this research, we will focus on Bitcoin as the financial instrument used in the 
staking protocols. The cluster blockchain essentially becomes a layer two operation 
relying on the Bitcoin network to secure the funds at stake required to participate in the 
consensus algorithm [69]. 

To orchestrate the financial compensation in the following example, we used the Pay-
to-script (P2SH) capability of the Bitcoin network. A P2SH hash allows transactions to 
be sent to a script hash instead of a public key hash. To spend the amount sent via 
P2SH, the recipient must provide a script matching the script hash and corresponding 
signatures making the script evaluated return OP_TRUE. One of the characteristics of 
P2SH is that the script only needs to be made public when unlocking the funds. 

8.7.1 Adding nodes to the network 

To enable the protocol, every node needs to be identifiable by a node's public key. The 
public key uniquely identifies the specific node and is usually presented as a 
hexadecimal encoding. As in PoA, nodes generate a private root key when first 
initialized and stored in a secure element or TPM module.   

Nodes must submit a Bitcoin on-chain staking transaction that must be verifiable by 
every other node. The transaction contains the hash signature of a script that requires at 
least half of the node's signature to unlock the funds and locking period. Because only 
half of the nodes are required to sign the slashing penalty, the consensus mechanism can 
enforce it even if some nodes are offline. 

In addition, the node can recover the funds without any intervention from the cluster 
after a lockout period. The time specified on the script is the staking period during 
which the funds are not recoverable by the node. Figure 39 shows a stalking transaction 
script with a 5d lockout period. 

 

OP_IF 

  <N/2>  

    <hash_pubk_node_1> 

    <hash_pubk_node_2> 

… 

    <hash_pubk_node_N> 

  <N> OP_CHECKMULTISIG 

OP_ELSE 

  5d 

  OP_CHECKSEQUENCEVERIFY 

  OP_DROP 

  OP_DUP 
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  OP_HASH160 

  <hash_public_key_from_stalking_node> 

  OP_EQUALVERIFY 

  OP_CHECKSIG 

OP_ENDIF 

Figure 39 Staking transaction script 

The consensus involves two phases: 

 

1. Multiparty computation generates the ordered list of nodes selected to mint 

the next block. Alternatively, a Verifiable Random Function can be used as 

stated in Proof of Authority. 

2. Node production and validation. 
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Figure 40 Proof of Stake 

 

8.7.2 Consensus Algorithm 

The first phase of the consensus is identical to PoA, where a collusion-resistant 
multiparty computation is used to ensure a fair selection of candidates to generate the 
next block. Unlike in the cryptocurrency PoS protocols, all nodes have the same weight 
in the algorithm. Future research will evaluate the possibility of separating the functions 
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into minting nodes and validators.  After the node is selected, an additional penalty is 
calculated if the selected node does not produce the next valid block. All candidates 
must produce the block within a specified timeout. If the node fails to deliver the block, 
the next node on the multiparty computation is expected to create the next block. This 
time, the node will also produce a transaction where all nodes that participated in the 
multi-party computations, minus the nodes that failed to create the block, are 
compensated. When a node receives a block and a signature, it verifies that it has not 
received another block already if it has not, the node signs the transaction and sends it to 
the producer. 

 

 

Figure 41 Slashing transaction 

Figure 41and Figure 42 are examples of a Bitcoin transaction to be signed by nodes to 
be compensated for the delay in the consensus. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the staking transaction>", 

          "vout": 0, 

           "scriptSig": " 

<ECDSA Tx Signature Node 1> 

<ECDSA Tx Signature Node 2> 



105 Chapter 8: Consensus Algorithms 

 

<ECDSA Tx Signature Node 3> 

... 

<ECDSA Tx Signature Node N> 

OP_IF 

  <N/2>  

    <hash_pubk_node_1> 

    <hash_pubk_node_2> 

… 

    <hash_pubk_node_N> 

  <N> OP_CHECKMULTISIG 

OP_ELSE 

  5d 

  OP_CHECKSEQUENCEVERIFY 

  OP_DROP 

  OP_DUP 

  OP_HASH160 

  <hash_public_key_from_stalking_node> 

  OP_EQUALVERIFY 

  OP_CHECKSIG 

OP_ENDIF", 

           "scriptPubKey": " 

OP_HASH160 

<hash_public_key> 

OP_DUP" 

       } 

  ], 

  "vout": [ 

      { 

          "value": <(stack_amount-fees)/N + fees>, 

          "vout": 0, 

           "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_block_producing_node> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      }, 

       { 
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          "value": <(stack_amount-fees)/N>, 

          "vout": 1, 

           "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_node_1> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      }, 

 

... 

 

       { 

          "value": <(stack_amount-fees)/N>, 

          "vout": <N>, 

           "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_node_N> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

Figure 42 Redistribution transaction 

 

It is essential to notice that in this transaction, the redeem script contains the locking 
script itself instead of the hash, and the preceding signatures are needed to unlock it. 
While this would be an expensive operation, it should only happen when nodes fail to 
perform what they committed to do as part of the consensus. 

It is recommended to use Taproot further to increase the performance and privacy of the 
mechanism. Taproot enables the users to break down the unlocking script into multiple 
scripts and only reveal the one used to unlock the staked amount. The mechanism relies 
on Merkle trees. The hash corresponding to every script is added to the Merkle tree, and 
the tree's root is included in the transaction as part of the unlocking script. To unlock the 
transaction, the user only needs to provide one of the scripts, the hash and the Merkle 
tree instead of all the scripts, thus reducing the transaction size. 
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When a stake distribution event occurs, the node processing the transaction is 
responsible for paying the transaction fees reimbursed as part of the transaction. The 
node payment is calculated using the following formula: 

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑁𝑜𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡

=
𝑆𝑡𝑎𝑐𝑘𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡 − 𝐹𝑒𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑎𝑖𝑙𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 + 𝐹𝑒𝑒𝑠 

 

While the rest of the nodes have the following amount: 

 

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑁𝑜𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡 =
𝑆𝑡𝑎𝑐𝑘𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡 − 𝐹𝑒𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑎𝑖𝑙𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 

 

8.7.3. Security Considerations 

As in other consensus algorithms, DoS attacks require taking control over most nodes in 
the network. In contrast, attacks with less than the majority of nodes will be discouraged 
by losing the capital involved. Even in the case of launching a successful attack, the 
only thing the attacker can do is disrupt operations. In any case, attackers cannot change 
the contents of the blockchain and cannot forge blocks.  

While beyond the scope of this research, the usage of blockchain platforms that support 
Turing's complete smart contracts can provide further sophistication to the economic 
incentive structure and management of funds. A Decentralized Autonomous 
Organization (DAO) implemented by a smart contract can be used to provide 
coordination between parties in an automated and trustless environment. 



 

  



 

  

PART III: CONCLUSIONS AND 

FUTURE RESEARCH 



 

  



 

 

CHAPTER 9. CONCLUSIONS 

The proposed architecture provides the foundation for a fully distributed configuration 
management system that stores the global configuration in a blockchain structure and is 
distributed across all the nodes in the network. This architecture solution offers 
improved network-partitioning resistance and availability 

The system is available, providing a node is accessible to the user. However, the intent-
record consistency is compromised and replaced with casual consistency. In essence, a 
user querying a different node that received the change might obtain a response that 
does not include the most recent change, that is, until that change is broadcast through 
the network and adopted in a block that is part of the longest computed chain. This 
scenario, we believe, is an acceptable compromise toward autonomy and availability of 
the system. 

 

The benefits of this decentralized architecture can be summarized as follows: 

- Reduced management costs for small and medium deployments. 

- Cryptographic proofs replace access control. 

- Flexible policies based on a safe scripting language. 

- An immutable record of all operations. 

- Increased system availability. 

- Partition resistance. 

- Elimination of central point of failure. 

 

The disadvantages of the proposed system include: 

- The increased overhead of computing and storage requirements for each 

node. 

- Casual consistency might make it harder to predict the actual state of the 

system. 

- The Increased complexity of key management and lifecycle. 

- The complexity of encoding usage policies as a script. 

- Recovery of a security breach is more challenging to contain due to a lack 

of a single point of control. 
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9.1. Reduced management Costs 

Management costs are categorized as Operational and Capital costs. Operational costs 
represent the day-to-day costs of deploying and running the system. Capital costs 
represent the Hardware and Software initial required to run the system. When running in 
a cloud environment, all HW costs can be re-categorized as Operational costs. Table 6 
summarizes the cost differences for the different evaluated approaches. 

 

 Operational Capital 

Centralized Requires deployment of the 
controller node in addition to 
the worker nodes. 

 

Requires securing access control 
mechanism and typically set up 
zero trust security environment.  

Additional controller nodes and 
distributed storage management 
systems (Etcd, MySQL) 

 

Configuration is centralized and 
replicated per storage management 
node. 

 

Requires separate logging 
infrastructure to store operational 
history and events. 

Proof of Work Requires management of 
hashing hardware. 

 

Additional cost to run PoW 
algorithm across all worker 
nodes. 

Additional cost of hashing hardware. 

 

Configuration replicated across all 
nodes 

Proof of Storage Requires management of 
storage devices. 

Additional cost of storage devices. 

 

Configuration replicated across all 
nodes. 

Proof of Stake Requires management and 
custody of staked assets. 

Configuration replicated across all 
nodes. 

Proof of Authority Requires security and 
management of access control 
keys. 

Configuration replicated across all 
nodes. 
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Table 6 Summary of operational and capital costs 

For example, a system comprised of 100 worker nodes with 1600 vCPUs and 6000 Gb 
of RAM would require the investment captured in Table 7. The investment evaluation 
uses the price calculator of a public cloud provider to calculate the hardware costs and 
estimates a cost of 5 engineers for a centralized approach vs 3 for the proposed 
decentralized solutions. Notice as the size of the cluster increases the number of 
engineers increases at a slower rate, where at some point the cost of running a 
centralized system becomes cheaper.  

 

 Centralized PoW PoSpace PoStake PoA 

Controller 3x $600     

Database 3x $600     

Node 100x 

(16 vCPUS & 60Gb) 
$38000 $38000 $38000 $38000 $38000 

Node 100x with GPU 

(Nvidia T4) 
 $18000    

Storage 100x (1TB)   $10000   

Logging Node 3x $600     

Deployment and 
Maintenance 

($150K per engineer) 

$60000 $36000 $36000 $36000 $36000 

 $99800 $92000 $84000 $74000 $74000 

Table 7 Cost comparison 

 

For larger systems, there are other variables that will determine the management cost 
which would determine the total cost of ownership of the system. Examples of these 
variables are: 

 

- Geographical distribution of the cluster. Highly dispersed nodes would 

increase the complexity of the deployment and cost of replicating controller 

nodes. 

- The number of users consuming resources. 

- The number of different applications running in the cluster. 
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9.2. Access Control through cryptographic proofs 

In all centralized systems evaluated, access control is determined by Role-based Access 
Control (RBAC). In these systems, access is determined by the user’s role which 
implies a set of operations that can be performed against the system’s resources. Figure 
43 is an example of Role that allows access to the API to access “configmaps”. 

 

apiVersion: rbac.authorization.k8s.io/v1 

kind: Role 

metadata: 

  namespace: default 

  name: development-configmap-manager 

rules: 

- apiGroups: [""] 

  resources: ["configmaps"] 

  resourceNames: ["development-configmap"] 

  verbs: ["update", "get"] 

Figure 43 RBAC Security 

 

In effect, RBAC access controls provide a layer of security between the user and the 
system acting as a gatekeeper to the system resources. Any compromises to this layer 
will render all access control ineffective as there is no implicit access control at the 
protocol layer or declarative model. 

 

In the proposed model, the access control policies are encoded and publicly visible on 
the blockchain. Access control is built-in at the protocol layer and each node in the 
network cryptographically verifies any transaction. Distributed auditability makes 
attacks impossible as long as the nodes follow the protocol, and in any case, any 
violation can be independently verified and detected. In addition, a critical difference 
between RBAC and the proposed system is the script system that encodes complex 
policy logic, including cryptographically signed events, time controls, and multi-
signature controls. Table 8 shows a high-level comparison of the capabilities between 
RBAC and Locking Scripts. 

 RBAC Locking Script 

Groups Yes Yes, via Multisig 

Roles Yes Possible via external input 

Read/Write Yes Public Read, Write via Locking Script 
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Timeouts Possible 

through 

webhooks 

Yes 

External inputs Possible 

through 

webhooks 

Yes, via Oracles 

Cryptographic verification No Yes 

Multi-user access control No Yes, via Multisig 

Public Auditability No Yes 

Historical traceability External Logs Yes 

User controlled security No Yes, via custom scripts 

Table 8 RBAC vs Locking Scripts 

9.3. Blockchain Security 

Minting an additional block to the blockchain is perhaps the most critical operation to 
meet the desired consistency and performance requirements. In future research, we 
analyzed different algorithms that can potentially be used to ensure that blocks are 
minted, validated, and added to the blockchain throughout the network while 
minimizing the amount of trust required. In essence, these algorithms enable the 
capability to achieve consensus on which blocks to add to the chain based on rules that 
ensure fairness and security for all participants. 

 

To evaluate the suitability of the different algorithms for internet applications, we 
compare the different researched algorithms using three properties: 

 

1. Overhead: The capital and operational cost of running the consensus 

mechanism. 

2. Trust setup: The amount of required trust pre-established before 

participation in the consensus mechanism. 

3. Setup speed: The time required to add a node to the network. 
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 Overhead Trust Setup Setup Speed 

Proof Of Work High cost of 
Operation 

Low, protected by 
Hash Power 

Instant 

Proof Of Space High Capital Cost Low, protected by 
Proof of Space 
reserved 

Slow, depending on 
storage size 

Proof of Stake High Capital 
Reserves 

Low, protected by 
capital reserve 

Medium, wait for 
epoch 

Proof of Authority  High, pre-
established setup 

Instant 

Table 9 Consensus algorithm comparison 

Table 9 summarizes the properties of the different researched algorithms. Based on this 
analysis we can infer its suitability for the following different scenarios: 

 

1. Large Internet application: Applications serving users across the globe or 

multiple regions with variable load demands. 

2. Enterprise Cluster: Cluster shared by multiple applications with variable 

demand. 

3. Shared multi-organization: Cluster shared across multiple organizations with 

multiple applications and variable demand. 

4. Development Cluster: Cluster used by development organizations for testing 

and staging purposes. 

 

The evaluated algorithms are evaluated against these scenarios both On-Cloud and On-
Prem in Table 10 based on the properties summarized in Table 9. Consensus algorithms 
with high setup costs are less suitable for On-Cloud scenarios due to the on-demand 
nature of these environments. Conversely, those algorithms are well suited for On-Prem 
environments where the infrastructure is already in place independent of its utilization. 

 

 PoW PoSpace PoStake PoA 

Large Internet application On-Cloud Yes No No Yes 

Large Internet application On-Prem Yes Yes No Yes 

On-prem enterprise cluster Yes Yes No Yes 
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Multi-cloud enterprise cluster Yes No No Yes 

Shared multi-organization On-Cloud Yes No Yes No 

Shared multi-organization On-Prem Yes Yes Yes No 

Development Cluster No No No Yes 

Table 10 Consensus algorithm suitability 

Additionally, consensus algorithms that require pre-establish trust are well suited for 
highly coordinated organizations that can centralize the cluster operations. For 
organizations or multiple organizations without centralized trust, Proof-of-Stake 
algorithms prompt cooperation encouraging good behavior through monetary penalties. 



 

 

CHAPTER 10. FUTURE RESEARCH 

10.1. ZK-SNARKS 

“Zero-knowledge” (ZK) proofs allow one participant to prove a verifier that a statement 
is true, without revealing any information beyond the validity of the statement itself.  

ZK proofs can be used to limit the amount of information that the network of nodes 
needs to know in order to successfully coordinate and distribute applications across the 
cluster. Scheduling algorithms can operate over range values and the decryption key is 
only made available to qualified secured nodes. 

10.2. DAO Cluster Governance 

A decentralized autonomous organization offers cluster administrators a model for the 
collective management of the cluster resources. DAOs differ from traditional 
organizations managed by boards and committees enabling a decentralized model for 
sharing resources across clusters and organizations. 

10.3. Confidential computing 

Confidential computing uses hardware-integrated solutions to provide a level of 
assurance of data integrity, data confidentiality, and code integrity. Organizations can 
run sensitive applications and data on untrusted infrastructure, public clouds, and all 
other hosted environments. Together with the combination of the rest of the 
technologies covered in this research, it provides the foundation for the development of 
a Peer-to-Peer public cloud service provider. 
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BLOCKCHAIN-BASED SERVICE MONETIZATION 
FOR CLOUD SERVICES  

1.1. Introduction 

While many cryptocurrencies enable peer-to-peer payments without a trusted party [70], 
none provide mechanisms to allow payee-initiated or recurring payments using public 
permissionless blockchains with decentralized validators. It is also interesting to 
contrast that Software and Infrastructure as a service have come to rely exclusively on 
business models built on recurring payments and subscriptions [60]. In effect, the world 
of cloud services has not been able to enjoy the benefits of decentralized finance due to 
a mismatch of payment and contracting motions. 

At the core of the cloud subscription models is the drive to reinvent industries seeking 
to build personalized relationships with their consumers. A cloud service's success 
depends on an organization's ability to adapt and enable flexible consumption models 
that match the needs of its target market [71]. Fundamentally, service pricing needs to 
quantify the value provided to the consumer accurately. Furthermore, the price of a 
service is a delicate and ever-changing orchestration of the relationship with the 
consumer, who constantly re-considers the value provided by the service producer. 

For this research, we have classified pricing models into two broad categories: usage-
based and capability-based pricing models [72]. 

 

- Usage-based pricing models are well suited for services where a consumer 

can naturally identify a discrete, quantifiable property of a service that 

represents the value provided. For example, consumers of a data storage 

service can naturally determine the amount of data consumed as a 

correlated metric of the value provided. 

- Capability-based pricing models are well suited for services where the 

value provided is not directly proportional to quantifiable metrics 

associated with the service delivered. The service price is then segmented 

into desirable features for the different target consumers and either priced 

individually or bundled. 

 

Capability-based pricing models enable consumers to estimate costs before 
consumption. In contrast, usage-based pricing models typically require forecasting 
based on previous consumption and careful evaluation of evolving consumption 
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patterns. In addition, subscriptions typically involve complex commercial patterns, 
including term commitment discounts, promotions, prepayments, and sales and channel 
commissions, among many others. 

The current state of the art only scratches the surface of these complex commercial 
motions.  This work outlines an approach to enable commercial-grade subscription 
models on the Ethereum blockchain. We are publishing this research to outline 
protocols expressed as Ethereum smart contracts to extend state of the art for the 
negotiation and commitment phases. 

Previous attempts to implement recurring payments smart contracts over the Ethereum 
blockchain have been abandoned and have not been verified [73]. In addition, our 
approach provides an explicit separation between the administrative and settlement 
functions. 

The referenced solutions include smart contracts that standardize the interfaces used by 
consumers and producers to express their commercial relationships. This research does 
not cover off-chain solutions to enable the execution of payments or offer solutions to 
custodial issues. 

1.2. System Model and Methods 

The proposed solution builds on the standard ERC-721 [74] interface, issuing a Non-
Fungible Token (NFT) for each subscription. ERC-721 enables consumers to adopt 
existing NFT management technology, including crypto Wallets and interfaces to 
manage ownership, transfers, and approvals. 

 

interface ISubscription { 

    /// @dev This emits when the Subscription Contract is created 

    event ContractCreated( 

        address indexed _from, 

        uint256 indexed subscriptionId, 

        uint256 periodLength, 

        uint256 periodCount, 

        uint256 periodCost, 

        bytes data 

    ); 

     

    /// @dev This emits when the Subscription Contract is signed 

    event ContractSigned( 

        address indexed _from, 

        uint256 indexed _subscriptionId); 

 

    /// @dev This emits when a subscription is renewed 
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    event Renewed( 

        address indexed _from, 

        uint256 subscriptionId, 

        uint256 periodLength, 

        uint256 periodCount, 

        uint256 periodCost 

    ); 

 

    /// @dev This emits when the state of a Subscription is 

changed. 

    event StatusChanged( 

        address indexed _from, 

        uint256 indexed subscriptionId, 

        SubscriptionStatus status 

    ); 

 

    /// @notice Creates a new subscription contract and waits for 

the 

    ///  consumer to sign it 

    /// @param _subscriptionId to be used as NFT tokenId 

    /// @param _to Address of the consumer that is receiving the 

service 

    /// @param _serviceURI The service unique resource identifier 

    /// @param _periodLength The length of the subscription period 

in 

    ///  days 

    /// @param _periodCount The period number. If `periodCount` == 

0 the 

    ///  subscription is open ended 

    /// @param _periodCost The cost per period 

    /// @param _data Additional data with no specified format, sent 

in  

    ///  call to `_to` see ERC721TokenReceiver for reference 

    function createSubscriptionContract( 

        address _to, 

        uint256 _subscriptionId, 

        string memory _serviceURI, 

        uint256 _periodLength, 

        uint256 _periodCount, 
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        uint256 _periodCost, 

        bytes memory _data 

    ) external; 

     

    /// @notice The consumer signs the subscription and the NFT is 

    ///  transferred to the `_to` address using SafeTransferFrom 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription address or `msg.sender` does not match the 

`_to`  

    ///  address for this SubscriptionContract 

    function signSubscriptionContract(uint256 _subscriptionId) 

external; 

     

    /// @notice Returns the status of the subscription 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription 

    /// @return Status of the subscription unless throwing 

    function getSubscriptionStatus( 

        uint256 _subscriptionId 

    ) external view returns (SubscriptionStatus); 

    

    /// @notice Creates a new subscription contract using the terms 

of 

    ///  of the original subscription. The periodCount will include 

any 

    ///  number of periods left on the original subscription. The  

    ///  previous 

    ///  subscription status will change to RENEWED. 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription or is not in valid state 

    /// @param _newSubscriptionId to be used as NFT tokenId for the 

new 

    ///  Subscription 

    function renewSubscription( 

        uint256 _subscriptionId, 

        uint256 _newSubscriptionId) external; 
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    /// @notice Set the status of a subscription to `PAUSED`. 

Throws if 

    ///  subscription cannot be paused 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription. 

    function pauseSubscription(uint256 _subscriptionId) external; 

    /// @notice Set the status of a subscription to `PAUSED`. 

Throws if 

    ///  subscription cannot be resumed 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription. 

    function resumeSubscription(uint256 _subscriptionId) external; 

     

    /// @notice Set the status of a subscription to `TERMINATED`. 

Throws 

    ///  if subscription cannot be terminated 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription 

    function terminateSubscription(uint256 _subscriptionId) 

external; 

 

    /// @notice Set the status of a subscription to `CANCELLED`. 

Throws 

    ///  if subscription cannot be canceled 

    /// @param _subscriptionId Throws if `_subscriptionId` is not a 

valid 

    ///  Subscription 

    function cancelSubscription(uint256 _subscriptionId) external; 

} 

Figure 44 Subscription solidity interface 

 

Every Subscription Contract is identified by a unique ID represented as a non-Fungible 
token implementing the ERC-721 interface as presented in Figure 44 and available at 
https://github.com/thinkelastic/subcrypto. 
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The producer or intermediary creates a subscription. The NFT representing the 
Subscription will be owned by the address of the entity that created it. Once the 
subscription contract is instantiated, the state of the subscription is initialized as 
OFFERED and ready to be signed by the address provided during the creation. Essential 
to the spirit of NFTs, the token represents consumer authority over the subscription, and 
until it is signed, that authority is not transferred to the consumer. 

The producer waits until the consumer signs the contract. The signing also implies 
acceptance of the terms and conditions of the service, including any financial 
responsibility. It is worth pointing out that the financial burden of the contract does not 
transfer with the change of control of the NFT and stays with the consumer even if the 
NFT is assigned to another address. Once the contract is signed, the subscription 
contract NFT is transferred to the consumer, and the subscription status is changed to 
ACTIVE. Therefore, the subscription term starts the moment the consumer signs the 
subscription. 

As stated before, the consumer can use the ownership of this NFT as an assertion of 
ownership across other systems. The NFT can be transferred to other accounts, 
therefore, delegating the rights that the NFT ownership might entitle but not the 
financial liability incurred by accepting the original offer. 

The state machine in Figure 45 represents the valid state transitions of a subscription. 
Once the subscription is ACTIVE, the consumer might pause the subscription if the 
contract implementation allows it. Pausing a subscription does interrupt the service 
delivery, but it typically does not extend the term while the service is paused. 

 

Figure 45 Subscription state machine 

 

Some producers might extend the term length and provide rebates or alternative 
promotion mechanisms to give customers extra flexibility. In addition, a producer might 
pause a service, for example, to address a customer not meeting the terms of service. 
Pausing enables the service to be disabled, allowing the consumer or the producer to 
restore the service to its original functional state. A resumed subscription would revert 
to the ACTIVE state. 
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Function Caller Validation Valid States 

createSubscriptionContract Producer The person calling this function is 
automatically designed as a producer. 
The _to parameter designates the 
address of the consumer. 

N/A 

signSubscriptionContract Consumer Only the consumer is allowed to sign 
the contract. 

OFFERED 

getSubscriptionStatus Anybody 
 

Any state 

renewSubscription Consumer Only the consumer is allowed to 
renew the subscription. 

EXPIRED, 
ACTIVE 

pauseSubscription Consumer,
Producer 

 
ACTIVE 

resumeSubscription Consumer,
Producer 

 
PAUSED 

terminateSubscription Producer Only the producer can terminate the 
subscription. 

ACTIVE, 
PAUSED 

cancelSubscription Consumer Only the consumer is allowed to 
cancel the subscription.  

ACTIVE, 
PAUSED 

Table 11 Permissions and valid transitions 

 

Subscriptions that are either Active or Paused can be terminated by either the producer 
or the consumer. The smart contract implementation separates these two actions into 
two separate functions. Active or Expired subscriptions can be renewed. Renewals or 
modifications of a subscription are performed by issuing a new NFT that replaces the 
original contract. Other than the status of the NFT, the subscription data is immutable. 

The status of the subscription is stored as part of the contract state. When invoking 
getSubscriptionStatus, a check needs to be performed on whether the subscription has 
expired and updates the internal state accordingly. 

To ensure that only the involved parties interact with the contract, the implementation 
needs to keep track of both the consumer and the producer's identities. Each function 
would require verification that the subscription is in the right state and that caller is 
allowed to invoke the function. Table 11 Permissions and valid transitions  summarizes 
the high-level permission logic. 
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The owner of the token is the designated consumer of the subscription. Once the 
subscription has been signed, an ERC721 compatible token is transferred to the 
consumer.  

1.3. Results 

In this research, we have presented an implementation of a subscription model that 
demonstrates the capabilities of permissionless blockchains to remove the platform 
walls that surround modern e-Commerce systems, opening the infrastructure that 
supports producer-consumer relationships. This translates to the following benefits: 

 

1. Standardized system interface and logic transparency enabling higher 

productivity and trust across all parties. 

2. Blockchain architecture increases automation and productivity because all 

operations must be programmatic instead of manual. There are also no 

exceptions to the contract logic because system rules cannot be modified. 

3. Transparency, consumers, and producers have equal access to data. 

4. Privacy, producers, and consumers can optionally hide their transactions 

using Zero Proof networks, for example, the AZTEC Protocol [75]. 

5. Due to the system's openness and transparency, a new ecosystem can arise 

without the producer's permission. 

 

The most basic form of contractual negotiation is to commit to consuming services 
using the list price and the default terms offered by the producer. Most subscription 
options are Monthly, Annual, or Quarterly terms with a limited menu of options for 
consumers. However, negotiation and contracting needs vary depending on the nature of 
the service. 

Large-scale service producers typically offer subscription packages that rely on 
simplicity and consistency via single capability pricing or 2 to 3 bundled options for 
producers providing more than one service. The goal is to eliminate the friction of 
adoption and maximize the appeal to the maximum number of consumers. These 
services include cloud storage, streaming, and online gaming services. 

Service producers of commoditized services where little differentiation is possible and 
negligible platform effects tend to focus on pricing targeting customer commitment, 
including term discounts and signing up for automatic recurring payments and renewals. 
In some cases, prepayment for several years of the service. These services include 
internet providers, cell phone providers, VPNs, and security services. To facilitate the 
pricing structure of these services, focus on capabilities with usage-based overages to 
target the maximum number of users with attractive pricing while monetizing 
consumers beyond standard utilization patterns. 
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Service producers for specialized or domain-specific services' primary concern are to 
enable target consumers to try, evaluate and ramp up utilization. These services are the 
most heterogeneous in nature and typically require contractual flexibility and, in most 
cases, split commissions across parties responsible for the success of the contractual 
process. Most enterprise software services follow this pattern as the needs of large 
organizations is distinct enough, making it hard to identify commonalities. 

Over the last two decades, we have seen a new model of horizontal and vertical 
integration in the software distribution model due to the elimination of distribution costs 
enabled by the internet. 

 

- Platforms aim to gain a competitive advantage by delivering a complete 

vertical solution for an entire domain. The goal is to leverage the platform 

effects of providing related domain services by reducing consumption 

complexity and the operational surface. These services include AWS, 

Azure, Google Cloud, Adobe Cloud, and Office 365 [76].  

 

- Aggregators aim to gain a competitive advantage by gaining a horizontal 

monopoly on suppliers, distributors, and consumers/users. Gaining such 

market exclusivity allows them to provide better value at a reduced cost 

due to the economies of scale. These services include Netflix, Airbnb, and 

Uber [77]. 

 

Both platforms and aggregators seek to control all aspects of user interaction, including 
providing payment processing and credit cards to enhance the user experience and ease 
of use. Nowadays, service producers not part of a Platform or Aggregator are at a 
disadvantage. At the same time, consumers experience a reduced set of options and 
restricted functionality as they gravitate toward the ease of use of those platforms. 

Essential to the spirit of permissionless blockchains like Ethereum is the ability for any 
party to produce and consume capabilities like those found on platforms and 
aggregators as Smart Contracts. These mechanisms, in aggregate, can be reasonably 
expected to fulfill the lifecycle of commercial contracts like the ones previously 
discussed. 

Most producers rely on channel partners to distribute, sell, and support their products. 
Although online service producers seek a close feedback loop with consumers, factors 
including support and financial and regulatory requirements need the specialized 
capabilities of those partners. 

Traditional channel relationships are usually fraught with commercial issues, most of 
them derived from the lack of transparency of the commercial ledger. Examples are: 
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1. Exclusivity violations 

2. Price discrimination 

3. Vertical Non-Price Restraints 

4. Territorial and Customer Restrictions 

5. Tying 

6. Legal embargos 

7. Denial of service on moral grounds 

1.4. Conclusions 

This research has established the benefits of ledger transparency provided by smart 
contracts on permissionless blockchains. However, most businesses would consider 
their business information critically confidential. To address this issue, further research 
will be performed to evaluate Zero-knowledge proof protocols that enable the different 
parties to prove assertions that meet the transparency requirements without revealing 
confidential information [78]. For example, using the AZTEC protocol to facilitate 
private transactions on Ethereum. This allows the logic of transactions to be validated 
while keeping the values encrypted. 

As organizations conduct business utilizing blockchains as transaction ledgers, in 
aggregate, it can be reasonably expected for the value of those transactions to maintain a 
stable price relative to the monetary denomination of the rest of their business. 

The Maker Protocol enables those businesses to execute stable coin-denominated 
transactions. In some sense, this sounds ideal; however, it adds the additional 
complexity of having customers convert their cryptocurrency to a contracted stable coin, 
thus assuming the volatility risk [79]. For example, a consumer might commit to a 
transaction that requires a monthly payment of DAI tokens pegged against the dollar at 
a ratio of $1 = 1 DAI. If the consumer has his assets denominated in ETH, changes in 
the value of ETH can positively or negatively affect the total contract value for the 
consumer. 

The critical point is that consumers and producers can protect the transaction value of 
contracts executed through the blockchain utilizing DeFI protocols. Still, the way this is 
achieved is beyond the scope of this paper. 
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RESOURCE OPERATIONS 

2.1. Node 

2.1.1. Create Node 

To create a node, the user needs to reference the latest cluster transaction as input and a 
scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Node", 

              "metadata": { 

                  "name": "new-node", 

                   "pubKey": "<node_public_key>", 

                   "labels": { 

                      "name": "online" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 
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OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.1.2. Update Node 

To update a node, the user needs to reference the latest cluster or node transaction as 
input and a scriptSig value that satisfies the input transaction script. The value field 
must contain a fully updated Node document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest node transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Node", 

              "metadata": { 

                  "name": "new-node", 

                   "pubKey": "<node_public_key>", 

                   "labels": { 

                      "name": "offline" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 
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OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.1.3. Remove Node 

To delete a node, the user needs to reference the latest cluster or node transaction as 
input and a scriptSig value that satisfies the input transaction script. The value of the 
transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest node transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.2. Namespace 

2.2.1. Create Namespace 

To create a namespace, the user needs to reference the latest cluster transaction as input 
and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest cluster transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "development", 

                   "labels": { 

                      "name": "beta" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.2.2. Update Namespace 

To update a namespace, the user needs to reference the latest cluster or namespace 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value field must contain a fully updated Namespace document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Namespace", 

              "metadata": { 

                  "name": "development", 

                   "labels": { 

                      "name": "release-candidate" 

                  } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.2.3. Remove Namespace 

To delete a node, the user needs to reference the latest cluster or namespace transaction 
as input and a scriptSig value that satisfy the input transaction script. The value of the 
transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.3. Pod 

2.3.1. Create Pod 

To create a pod, the user needs to reference the latest namespace transaction as input 
and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Pod", 

              "metadata": { 

                  "name": "nginx", 

                  "labels": { 

                      "name": "development" 

                  } 

              }, 

              "spec": { 

                  "containers": { 

                 “name”: "nginx", 

                 “image”: "nginx", 

                 “ports”: { 

                      "containerPort": [ 80 ] 

                 } 

             } 

              } 

          }, 
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          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.3.2. Update Pod 

To update a pod, the user needs to reference the latest namespace or pod transaction as 
input and a scriptSig value that satisfy the input transaction script. The value field must 
contain a fully updated Pod document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest pod transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Pod", 

              "metadata": { 

                  "name": "nginx", 

 

                  "labels": { 

                      "name": "release-candidate" 

                  } 

              }, 

              "spec": { 
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                  "containers": { 

                 “name”: "nginx", 

                 “image”: "nginx", 

                 “ports”: { 

                      "containerPort": [ 8080 ] 

                 } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.3.3. Remove Pod 

To delete a pod, the user needs to reference the latest namespace or pod transaction as 
input and a scriptSig value that satisfy the input transaction script. The value of the 
transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest pod transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 
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OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.4. Service 

2.4.1. Create Service 

To create a service, the user needs to reference the latest namespace transaction as input 
and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Service", 

              "metadata": { 

                  "name": "nginx-service" 

              }, 

              "spec": { 

                  "selector": { 

                  “name”: “development” 

                  }, 

                  "ports": [ 

                      { 

                      “protocol”: "nginx", 

                      “port”: 80, 

                      "targetPort": 8080 

                 } 

             } 

              } 

          }, 
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          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.3.2. Update Service 

To update a service, the user needs to reference the latest namespace or service 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value field must contain a fully updated Service document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest service transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Service", 

              "metadata": { 

                  "name": "nginx", 

              }, 

              "spec": { 

                  "selector": { 

                  “name”: “release-candidate” 

                  }, 

                  "ports": [ 
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                      { 

                      “protocol”: "nginx", 

                      “port”: 8080, 

                      "targetPort": 8080 

                 } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.4.3. Remove Service 

To delete a service, the user needs to reference the latest namespace or service 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest service transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 



Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 160 
 

 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.5. Deployment 

2.5.1. Create Deployment 

To create a deployment, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Deployment", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “name”: “development” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “development” 

                          } 

                      }, 
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                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 80 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.5.2. Update Deployment 

To update a deployment, the user needs to reference the latest namespace or deployment 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value field must contain a fully updated Deployment document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest deployment 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 
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  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Deployment", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “name”: “release-candidate” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “release-candidate” 

                          } 

                      }, 

                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 8080 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 
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OP_CHECKSIG", 

      } 

  ] 

} 

 

2.5.3. Remove Deployment 

To delete a deployment, the user needs to reference the latest namespace or deployment 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest deployment 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.6. ReplicationController 

2.6.1. Create ReplicationController 

To create a ReplicationController, the user needs to reference the latest namespace 
transaction as input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "ReplicationController", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “name”: “development” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “development” 

                          } 

                      }, 
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                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 80 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.6.2. Update ReplicationController 

To update a ReplicationController, the user needs to reference the latest namespace or 
ReplicationController transaction as input and a scriptSig value that satisfy the input 
transaction script. The value field must contain a fully updated ReplicationController 
document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest ReplicationController 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 
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  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "ReplicationController", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “name”: “release-candidate” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “release-candidate” 

                          } 

                      }, 

                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 8080 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 
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OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.6.3. Remove ReplicationController 

To delete a ReplicationController, the user needs to reference the latest namespace or 
ReplicationController transaction as input and a scriptSig value that satisfy the input 
transaction script. The value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest ReplicationController 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.7. Job 
2.7.1. Create Job 

To create a Job, the user needs to reference the latest namespace transaction as input and 
a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Job", 

              "metadata": { 

                  "name": "my-job " 

              }, 

              "template": { 

                 “metadata”: { 

                      "spec": { 

                          "containers": { 

                        “name”: "job-container", 

                        “image”: "job-image", 

                        “command”: [ “job”, “-parameter=1” 

] 

                    } 

                      } 

             } 

              } 

          }, 
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          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.7.2. Suspend Job 

To suspend a Job, the user needs to reference the latest namespace or Job transaction as 
input and a scriptSig value that satisfy the input transaction script. The value field must 
contain a fully updated Job document 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest Job transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "Job", 

              "metadata": { 

                  "name": "my-job " 

              }, 

              "template": { 

                 “metadata”: { 

                      "spec": { 

                          "containers": { 

                        “name”: "job-container", 
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                        “image”: "job-image", 

                        “command”: [ “job”, “-parameter=1” 

] 

                    } 

                      } 

             } 

         }, 

              "status": { 

                  "conditions": { 

                       "status": “True”, 

                       "type": “Suspended” 

                   } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.8. CronJob 
2.8.1. Create CronJob 

To create a CronJob, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "CronJob", 

              "metadata": { 

                  "name": "my-cronjob" 

              }, 

              "spec": { 

                 “jobTemplate”: { 

                      “schedule”: “* * * * *”, 

                      "spec": { 

                          “template”: { 

                              "containers": { 

                            “name”: "job-container", 

                            “image”: "job-image", 

                            “command”: [ “job”, “-

parameter=1” ] 

                        } 

                    } 

                      } 
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             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.8.2. Delete CronJob 

To delete a CronJob, the user needs to reference the latest namespace or CronJob 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest CronJob transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 
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  ] 

} 
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2.9. ReplicaSet 
2.9.1. Create ReplicaSet 

To create a ReplicaSet, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "ReplicaSet", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “tier”: “front” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “development” 

                          } 

                      }, 
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                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 80 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.9.2. Update ReplicaSet 

To update a ReplicaSet, the user needs to reference the latest namespace or ReplicaSet 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value field must contain a fully updated ReplicaSet document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest ReplicaSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 



179 Appendix 2. Resource Operations 

 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "ReplicaSet", 

              "metadata": { 

                  "name": "nginx-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “tier”: “front-release-candidate” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “name”: “release-candidate” 

                          } 

                      }, 

                      "spec": { 

                          "containers": { 

                        “name”: "nginx", 

                        “image”: "nginx", 

                        “ports”: { 

                            "containerPort": [ 8080 ] 

                        } 

                    } 

                      } 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 
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OP_CHECKSIG", 

      } 

  ] 

} 

 

2.9.3. Remove ReplicaSet 

To delete a ReplicaSet, the user needs to reference the latest namespace or ReplicaSet 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      {  

          "txid": "<txid from the latest ReplicaSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.10. StatefulSet 
2.10.1. Create StatefulSet 

To create a StatefulSet, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "StatefulSet", 

              "metadata": { 

                  "name": "storage-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “tier”: “data” 

                      } 

                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “tier”: “storage” 

                          } 

                      }, 
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                      "spec": { 

                          "containers": { 

                        “name”: "db", 

                        “image”: "db", 

                        “ports”: { 

                            "containerPort": [ 80 ] 

                        }, 

                        “volumeMounts”: [ { 

                             "name": “db”, 

                             "mountPath": 

“/usr/share/data” 

                         } 

      ] 

                    } 

                      }, 

                      "volumeClaimTemplates": [ 

                         { 

                            "metadata": { 

                              "name": "db" 

                            }, 

                            "spec": { 

                              "accessModes": [ 

                                "ReadWrite" 

                              ], 

                              "storageClassName": "my-db-class", 

                              "resources": { 

                                "requests": { 

                                  "storage": "100Gi" 

                                } 

                              } 

                            } 

                          } 

                        ] 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 
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OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.10.2. Update StatefulSet 

To update a StatefulSet, the user needs to reference the latest namespace or StatefulSet 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value field must contain a fully updated StatefulSet document. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest StatefulSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

              "kind": "StatefulSet", 

              "metadata": { 

                  "name": "storage-deployment" 

              }, 

              "spec": { 

                  "replicas": 3, 

                  "selector": { 

                  “matchLabels”: { 

                      “tier”: “data” 

                      } 
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                  }, 

                  "template": { 

                      “metadata”: { 

                          “labels”: { 

                              “tier”: “storage” 

                          } 

                      }, 

                      "spec": { 

                          "containers": { 

                        “name”: "db", 

                        “image”: "db", 

                        “ports”: { 

                            "containerPort": [ 8080 ] 

                        }, 

                        “volumeMounts”: [ { 

                             "name": “db”, 

                             "mountPath": 

“/usr/share/data” 

                         } 

      ] 

                    } 

                      }, 

                      "volumeClaimTemplates": [ 

                         { 

                            "metadata": { 

                              "name": "db" 

                            }, 

                            "spec": { 

                              "accessModes": [ 

                                "ReadWrite" 

                              ], 

                              "storageClassName": "my-db-class", 

                              "resources": { 

                                "requests": { 

                                  "storage": "150Gi" 

                                } 

                              } 

                            } 
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                          } 

                        ] 

             } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.10.3. Remove StatefulSet 

To delete a StatefulSet, the user needs to reference the latest namespace or StatefulSet 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest StatefulSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 
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OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.11. DaemonSet 
2.11.1. Create DaemonSet 

To create a DaemonSet, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              { 

                "apiVersion": "apps/v1", 

                "kind": "DaemonSet", 

                "metadata": { 

                   "name": "elasticsearch", 

                   "namespace": "kube-system", 

                   "labels": { 

                     "k8s-app": "logging" 

                  } 

                }, 

                "spec": { 

                  "selector": { 

                    "matchLabels": { 

                      "name": " elasticsearch" 

                    } 

                  }, 

                  "template": { 

                    "metadata": { 
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                      "labels": { 

                        "name": " elasticsearch" 

                      } 

                    }, 

                    "spec": {  

                      "containers": [ 

                        { 

                          "name": "elasticsearch", 

                          "image": "fluentd:v2.5.2", 

                          "resources": { 

                            "limits": { 

                              "memory": "200Mi" 

                            }, 

                            "requests": { 

                              "cpu": "100m", 

                              "memory": "200Mi" 

                            } 

                          }, 

                          "volumeMounts": [ 

                            { 

                              "name": "varlog", 

                              "mountPath": "/var/log" 

                            }, 

                            { 

                              "name": "varlibcontainers", 

                              "mountPath": 

"/var/lib/containers", 

                              "readOnly": true 

                            } 

                          ] 

                        } 

                      ], 

                      "terminationGracePeriodSeconds": 30, 

                      "volumes": [ 

                        { 

                          "name": "varlog", 

                          "hostPath": { 

                            "path": "/var/log" 
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                          } 

                        }, 

                        { 

                          "name": "varlibdockercontainers", 

                          "hostPath": { 

                            "path": "/var/lib/docker/containers" 

                          } 

                        } 

                      ] 

                    } 

                  } 

                } 

              } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.11.2. Update DaemonSet 

To update a DaemonSet, the user needs to reference the latest namespace or 
DaemonSettransaction as input and a scriptSig value that satisfy the input transaction 
script. The value field must contain a fully updated DaemonSetdocument. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest DaemonSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 
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      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              { 

                "apiVersion": "apps/v1", 

                "kind": "DaemonSet", 

                "metadata": { 

                   "name": "elasticsearch", 

                   "namespace": "kube-system", 

                   "labels": { 

                     "k8s-app": "logging" 

                  } 

                }, 

                "spec": { 

                  "selector": { 

                    "matchLabels": { 

                      "name": " elasticsearch" 

                    } 

                  }, 

                  "template": { 

                    "metadata": { 

                      "labels": { 

                        "name": " elasticsearch" 

                      } 

                    }, 

                    "spec": {  

                      "containers": [ 

                        { 

                          "name": "elasticsearch", 

                          "image": "fluentd:v2.5.3", 

                          "resources": { 

                            "limits": { 

                              "memory": "250Mi" 

                            }, 

                            "requests": { 

                              "cpu": "100m", 
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                              "memory": "400Mi" 

                            } 

                          }, 

                          "volumeMounts": [ 

                            { 

                              "name": "varlog", 

                              "mountPath": "/var/log" 

                            }, 

                            { 

                              "name": "varlibcontainers", 

                              "mountPath": 

"/var/lib/containers", 

                              "readOnly": true 

                            } 

                          ] 

                        } 

                      ], 

                      "terminationGracePeriodSeconds": 30, 

                      "volumes": [ 

                        { 

                          "name": "varlog", 

                          "hostPath": { 

                            "path": "/var/log" 

                          } 

                        }, 

                        { 

                          "name": "varlibdockercontainers", 

                          "hostPath": { 

                            "path": "/var/lib/docker/containers" 

                          } 

                        } 

                      ] 

                    } 

                  } 

                } 

              } 

          }, 

          "scriptPubKey": " 
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OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.11.3. Remove DaemonSet 

To delete a DaemonSet, the user needs to reference the latest namespace or DaemonSet 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest DaemonSet 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.12. Secret 

2.12.1. Create Secret 

To create a Secret, the user needs to reference the latest namespace transaction as input 
and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

                "data": { 

                  "username": "dGhlc2lz", 

                  "password": "ZXhjZWxsZW50" 

                }, 

                "kind": "Secret", 

                "metadata": { 

                  "name": "mysecret", 

                  "namespace": "default", 

                  "resourceVersion": "1", 

                  "uid": "7c41dad2-fc54-11ec-b939-0242ac120002",          

                  "labels": { 

                        "name": " elasticsearch" 

                  } 

                }, 

                "type": "Opaque" 

              }   

          }, 
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          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.12.2. Update Secret 

To update a Secret, the user needs to reference the latest namespace or Secret as input 
and a scriptSig value that satisfy the input transaction script. The value field must 
contain a fully updated Secret. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest Secret transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

                "data": { 

                  "username": "dGhlc2lz", 

                  "password": "YXdlc29tZQ==" 

                }, 

                "kind": "Secret", 

                "metadata": { 

                  "name": "mysecret", 

                  "namespace": "default", 

                  "resourceVersion": "1", 
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                  "uid": "7c41dad2-fc54-11ec-b939-0242ac120002",          

                  "labels": { 

                        "name": " elasticsearch" 

                  } 

                }, 

                "type": "Opaque" 

              }   

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.12.3. Remove Secret 

To delete a Secret, the user needs to reference the latest namespace or Secret transaction 
as input and a scriptSig value that satisfy the input transaction script. The value of the 
transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest Secret transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 
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OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.13. ServiceAccounts 

2.13.1. Create ServiceAccount 

To create a ServiceAccount, the user needs to reference the latest namespace transaction 
as input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

              "apiVersion": "v1", 

               "kind": "ServiceAccount", 

               "metadata": { 

                  "name": "my-service-account", 

               }   

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.13.2. Remove ServiceAccount 

To delete a ServiceAccount, the user needs to reference the latest namespace or 
ServiceAccount transaction as input and a scriptSig value that satisfy the input 
transaction script. The value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest ServiceAccount 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.14. Ingress 

2.14.1. Create Ingress 

To create an Ingress, the user needs to reference the latest namespace transaction as 
input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

            "apiVersion": "v1", 

            "kind": "Ingress", 

            "metadata": { 

              "name": "minimal-ingress", 

              "annotations": { 

                "nginx.ingress.kubernetes.io/rewrite-target": 

"/" 

              } 

            }, 

            "spec": { 

              "ingressClassName": "nginx-example", 

              "rules": [ 

                { 

                  "http": { 

                    "paths": [ 

                      { 

                        "path": "/healthcheck-path", 

                        "pathType": "Prefix", 
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                        "backend": { 

                          "service": { 

                            "name": "test", 

                            "port": { 

                              "number": 80 

                            } 

                          } 

                        } 

                      } 

                    ] 

                  } 

                } 

              ] 

            } 

          }, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.14.2. Update Ingress 

To update an Ingress, the user needs to reference the latest namespace or Ingress as 
input and a scriptSig value that satisfy the input transaction script. The value field must 
contain a fully updated Ingress. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest Ingress transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 
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      } 

  ], 

  "vout": [ 

      { 

          "value": { 

            "apiVersion": "v1", 

            "kind": "Ingress", 

            "metadata": { 

              "name": "minimal-ingress", 

              "annotations": { 

                "nginx.ingress.kubernetes.io/rewrite-target": 

"/" 

              } 

            }, 

            "spec": { 

              "ingressClassName": "nginx-example", 

              "rules": [ 

                { 

                  "http": { 

                    "paths": [ 

                      { 

                        "path": "/healthcheck-path", 

                        "pathType": "Prefix", 

                        "backend": { 

                          "service": { 

                            "name": "test", 

                            "port": { 

                              "number": 8080 

                            } 

                          } 

                        } 

                      } 

                    ] 

                  } 

                } 

              ] 

            } 

          }, 
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          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.14.3. Remove Ingress 

To delete an Ingress, the user needs to reference the latest namespace or Ingress 
transaction as input and a scriptSig value that satisfy the input transaction script. The 
value of the transaction must be null. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest Ingress transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 
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2.15. NetworkPolicy 
2.15.1. Create NetworkPolicy 

To create a NetworkPolicy, the user needs to reference the latest namespace transaction 
as input and a scriptSig value that satisfies the input transaction script. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest namespace 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": { 

            "kind": "NetworkPolicy", 

            "metadata": { 

              "name": "test-network-policy", 

              "namespace": "default" 

            }, 

            "spec": { 

              "podSelector": { 

                "matchLabels": { 

                  "role": "db" 

                } 

              }, 

              "policyTypes": [ 

                "Ingress", 

                "Egress" 

              ], 

              "ingress": [ 

                { 

                  "from": [ 
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                    { 

                      "ipBlock": { 

                        "cidr": "172.17.0.0/16", 

                        "except": [ 

                          "172.17.1.0/24" 

                        ] 

                      } 

                    }, 

                    { 

                      "namespaceSelector": { 

                        "matchLabels": { 

                          "project": "myproject" 

                        } 

                      } 

                    }, 

                    { 

                      "podSelector": { 

                        "matchLabels": { 

                          "role": "frontend" 

                        } 

                      } 

                    } 

                  ], 

                  "ports": [ 

                    { 

                      "protocol": "TCP", 

                      "port": 6379 

                    } 

                  ] 

                } 

              ], 

              "egress": [ 

                { 

                  "to": [ 

                    { 

                      "ipBlock": { 

                        "cidr": "10.0.0.0/24" 

                      } 
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                    } 

                  ], 

                  "ports": [ 

                    { 

                      "protocol": "TCP", 

                      "port": 5978 

                    } 

                  ] 

                } 

              ] 

            } 

          }. 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 

2.15.2. Update NetworkPolicy 

To update a NetworkPolicy, the user needs to reference the latest namespace or 
NetworkPolicy as input and a scriptSig value that satisfy the input transaction script. 
The value field must contain a fully updated NetworkPolicy. 

 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest NetworkPolicy 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 
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  "vout": [ 

      { 

          "value": { 

            "kind": "NetworkPolicy", 

            "metadata": { 

              "name": "test-network-policy", 

              "namespace": "default" 

            }, 

            "spec": { 

              "podSelector": { 

                "matchLabels": { 

                  "role": "db" 

                } 

              }, 

              "policyTypes": [ 

                "Ingress", 

                "Egress" 

              ], 

              "ingress": [ 

                { 

                  "from": [ 

                    { 

                      "ipBlock": { 

                        "cidr": "172.17.0.0/16", 

                        "except": [ 

                          "172.17.1.0/24" 

                        ] 

                      } 

                    }, 

                    { 

                      "namespaceSelector": { 

                        "matchLabels": { 

                          "project": "myproject" 

                        } 

                      } 

                    }, 

                    { 

                      "podSelector": { 
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                        "matchLabels": { 

                          "role": "frontend-release-candidate" 

                        } 

                      } 

                    } 

                  ], 

                  "ports": [ 

                    { 

                      "protocol": "TCP", 

                      "port": 6379 

                    } 

                  ] 

                } 

              ], 

              "egress": [ 

                { 

                  "to": [ 

                    { 

                      "ipBlock": { 

                        "cidr": "10.0.0.0/24" 

                      } 

                    } 

                  ], 

                  "ports": [ 

                    { 

                      "protocol": "TCP", 

                      "port": 5978 

                    } 

                  ] 

                } 

              ] 

            } 

          }. 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 
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OP_CHECKSIG", 

      } 

  ] 

} 

 

2.15.3. Remove NetworkPolicy 

To delete a NetworkPolicy, the user needs to reference the latest namespace or 
NetworkPolicy transaction as input and a scriptSig value that satisfy the input 
transaction script. The value of the transaction must be null. 

{ 

  "version": 1, 

  "vin": [ 

      { 

          "txid": "<txid from the latest NetworkPolicy 

transaction>", 

          "vout": 0, 

          "scriptSig": "<ECDSA Tx Signature><PublicKey>" 

      } 

  ], 

  "vout": [ 

      { 

          "value": null, 

          "scriptPubKey": " 

OP_DUP 

OP_HASH160 

<hash_public_key_from_admin> 

OP_EQUALVERIFY 

OP_CHECKSIG", 

      } 

  ] 

} 

 




