

UNIVERSIDAD INTERNACIONAL
DE LA RIOJA

PROGRAMA DE DOCTORADO EN

CIENCIAS DE LA COMPUTACIÓN

TESIS DOCTORAL

Towards Decentralized Service Orchestration for
Heterogeneous Cloud Services

Memoria presentada
por

Alberto Arias Maestro
para optar al grado de Doctor

por la Universidad Internacional de La Rioja

Dirigida por los Doctores:

Oscar Sanjuan Martinez
 e

Vicente Garcia Diaz

Logroño, 2022

Acknowledgments

First and foremost, I want to thank my parents for their love and support throughout my
life. Thank you both for making it all possible for me. Your hard work allowed me to
chase after my dreams.

None of this work would have been possible without the collaboration and
unconditional support, time, and words of encouragement and motivation from the
many people I had the fortune to work with over the last 15 years. that I have been
involved in this area of research.

I want to thank the supervising team for this thesis, Oscar Sanjuan Martinez, and
Vincente Garcia Diaz. From the very beginning of this journey, Oscar was consistently
an inspiration, guide, and facilitator. Vicente has been guiding, supporting, and
encouraging me through each step of the way.

I also want to thank Ankur Teredasai for his encouragement and support throughout the
evaluation and diffusion of results.

Lastly, thank you to my family for their unconditional support. My wife Josephine for
always believing in me, and my twin daughters for sharing their wondrous curiosity.

Abstract

Over the last three decades, the broad adoption of the Internet triggered a shift toward a
globally accessible and service-oriented application design. Hyper-scale services like e-
commerce, search, social networking, IoT, and big data have driven the industry
towards hyper-optimizing supporting infrastructure and management technologies. The
need for accelerated enterprise digital transformation and connected application
development have established the cloud as the de-facto solution for new application
development.

I have been fortunate to be part of the Cloud industry for the last 15 years. From the
emergence of the software-defined data center, virtualization of computing and network
resources, multi-cloud orchestration, containers, and back hybrid cloud computing. The
common theme across all of these technologies is the default implementation of
centralized orchestration to manage and distribute resources to enable a wide range of
scale requirements. As a director of Cloud Services at Google, I theorized that
innovation and scale would grind to a halt if every policy change in the services
network needed to be orchestrated and centrally coordinated.

This thesis examines decentralized architectures for cloud resource management by
applying the recent practical advancements in blockchain and consensus technology.
The proposed architecture provides the foundation for a fully distributed configuration
management system that stores the global configuration in a blockchain structure and is
spread across all the nodes in the network.

While there are dozens of blockchain platforms in existence. At the time of this writing,
there is an ongoing transformation of the existing popular blockchain towards achieving
the right balance between scalability, performance, and general-purpose utility.
Layering, sharding, cross-chain smart contracts, and chain interoperability are some of
the technical solutions still to be implemented broadly, making it difficult to predict the
life expectancy of current blockchain platforms.

For this research, we evaluated many general-purpose blockchains yet decided to
implement a custom-built solution for two reasons. The first reason is the additional
management and resource overhead of running a complete smart contract platform on
each network node. The second but no less important reason is the complexity of
implementing a cloud resource management Domain Specific Language using
expensive to run smart contracts based on imperative languages.

The solution researched is a custom-built chain. This architecture noticeably increases
the system availability, including cases of network partitioning, without significantly
impacting configuration consistency.

Keywords

Cloud Computing, Infrastructure as a Service, Containers, Orchestration, Distributed
Systems, Domain Specific Language, Blockchain, Consensus Algorithms, Smart
Contracts,

 ix

TABLE OF CONTENTS

Part I: Research Scope and Objectives ... 17

Chapter 1: Introduction .. 19

1.1. Datacenter Management Architecture ... 20
1.2. State-of-the-art Management systems ... 22
1.3. The case for decentralizing the control plane ... 23

Chapter 2. Scientific Approach ... 25

2.1. Methodology ... 25
2.2. Information Gathering .. 25
2.3. Selection of tools, development, and elaboration of the proposal 26

Chapter 3. Research Objectives .. 29

3.1 Research Objectives ... 29
3.2. Dissemination of results .. 30
3.3. Research Impact .. 30
3.4. Patents .. 31

Part II. Design Proposal ... 33

Chapter 4. Cloud Services ... 35

4.1. Kubernetes concepts and architecture ... 35

Chapter 5. Byzantine resistant architecture .. 41

5.1. Node to node communication .. 41
5.2. Node Architecure .. 43
5.3. Blockchain structure .. 45
5.5. Block Structure .. 47
5.6. Network Partitioning ... 49
5.7. Availability Examples ... 50

Chapter 6. Cluster Management ... 53

6.1. Transaction Script language .. 53
6.2. Script language Opcodes ... 55
6.3. Blockchain Initialization ... 64
6.4. Adding a namespace ... 68

x Table of Contents

6.5. Complex Locking Logic ... 70
6.6. Deleting Resources .. 72
6.7. Multiple transaction outputs ... 72
6.8. Permission hierarchy ... 74

Chapter 7. Building the network ... 77

7.1. Nodes joining the network .. 77
7.2. Submitting a transaction ... 79
7.3. Validating a transaction ... 79
7.4. Block Formation .. 80

Chapter 8. Consensus Algorithms ... 83

8.1. Selecting a block creator ... 83
8.2. Consensus algorithms ... 84
8.3. Proof of Work .. 84
8.5. Proof of Space ... 94
8.6. Proof of Authority ... 97
8.7. Proof of Stake .. 100

Part III: Conclusions and Future Research .. 109

Chapter 9. Conclusions ... 111

9.1. Reduced management Costs ... 112
9.2. Access Control through cryptographic proofs ... 115
9.3. Blockchain Security ... 116

Chapter 10. Future Research .. 119

10.1. ZK-SNARKS ... 119
10.2. DAO Cluster Governance ... 119
10.3. Confidential computing ... 119

BIBLIOGRAPHY .. 121

References ... 123

Appendix 1. Service Monetization ... 131

Blockchain-based service monetization for Cloud services 133

1.1. Introduction ... 133
1.2. System Model and Methods ... 134
1.3. Results ... 140
1.4. Conclusions ... 142

 xi

Appendix 2: Resource Operations .. 143

Resource Operations .. 145

2.1. Node .. 145
2.2. Namespace .. 149
2.3. Pod .. 153
2.4. Service ... 157
2.5. Deployment ... 161
2.6. ReplicationController .. 165
2.7. Job ... 169
2.8. CronJob .. 173
2.9. ReplicaSet .. 177
2.10. StatefulSet ... 181
2.11. DaemonSet .. 187
2.12. Secret .. 193
2.13. ServiceAccounts .. 197
2.14. Ingress ... 199
2.15. NetworkPolicy ... 203

 xii

 xiii

TABLE INDEX

Table 1 Availability examples of Paxos/Raft ... 51

Table 2 Availability examples of the proposed solution ... 51

Table 3 Hashing power attack ratios ... 90

Table 4 Proof of Space effect of compromised nodes .. 96

Table 5 Summary of operational and capital costs ... 113

Table 6 Cost comparison ... 113

Table 7 RBAC vs Locking Scripts .. 116

Table 8 Consensus algorithm comparison .. 117

Table 9 Consensus algorithm suitability .. 118

 xv

FIGURE INDEX

Figure 1 Controller Worker Architecture .. 20

Figure 2 Redundant Controller Worker ... 20

Figure 3 CAP Theorem ... 21

Figure 4 Research Process ... 25

Figure 5 Research Objectives .. 29

Figure 6 Example Nginx deployment .. 36

Figure 7 Linearizable configuration example .. 36

Figure 8 Canary Deployment ... 37

Figure 9 Pod status .. 38

Figure 10 Kubernetes Architecture ... 38

Figure 11 Gossip Protocol ... 41

Figure 12 Eclipse Attack .. 42

Figure 13 Hybrid Node architecture .. 44

Figure 14 Blockchain structure .. 45

Figure 15 Transaction Merkle Tree ... 46

Figure 16 Chain resolution after Network Partition .. 49

Figure 17 Transaction input-output .. 53

Figure 18 Transaction Script Encoding .. 63

Figure 19 Step by Step script execution .. 64

Figure 20 First cluster transaction ... 65

Figure 21 Transaction adding a node to the cluster .. 66

Figure 22 Transaction modifying an existing node ... 67

Figure 23 Transaction creating a new namespace .. 69

Figure 24 Namespace with multiple administrators ... 70

Figure 25 Delete resource transaction .. 72

Figure 26 Multiple output transaction .. 74

Figure 27 Deleting resources from multi-output transactions 74

Figure 28 Resource hierarchy .. 75

Figure 29 Node network topology .. 78

xvi Figure Index

Figure 30 Proof of Work consensus .. 85

Figure 31 Resolving chain splitting. ... 88

Figure 32 Blockchain 51% attack ... 89

Figure 33 Network Partition in PoW ... 91

Figure 34 Restoring Network Partitions .. 92

Figure 35 Nonce distribution across blocks .. 94

Figure 36 Proof of Space consensus .. 95

Figure 37 Adding node with a public key. ... 98

Figure 38 Proof of Authority consensus .. 99

Figure 39 Staking transaction script .. 102

Figure 40 Proof of Stake .. 103

Figure 41 Slashing transaction .. 104

Figure 42 Redistribution transaction .. 106

Figure 43 RBAC Security .. 115

PART I: RESEARCH SCOPE AND

OBJECTIVES

 19

CHAPTER 1: INTRODUCTION

Over the last three decades, the broad adoption of the Internet triggered a shift toward a
globally accessible and service-oriented application design [1]. Hyper-scale services [2]
like e-commerce, search, social networking, IoT, and big data have driven the industry
towards hyper-optimization of supporting infrastructure and management technologies
[3]. The need for accelerated enterprise digital transformation and connected application
development have established the cloud as the de-facto solution for new application
development [4].
Today’s cloud systems support thousands of mission-critical applications composed of
multiple distributed heterogeneous components [5]. Maintaining end-to-end operational
integrity and quality requires careful scheduling of resources and capacity allocation [6].

Contemporary cloud application and Edge computing [7] orchestration systems rely on
controller/worker design patterns to allocate, distribute, and manage resources [8].
Standard solutions like Cloud Foundry [9], OpenShift [10], Apache Mesos [11], Docker
Swarm [12], and Kubernetes [13] span across multiple zones at data centers, multiple
global regions, and even telecommunication systems point of presence locations [14].
Current data center design is predicated on the assumption of centralized orchestration
to manage and distribute resources [15][8] [16][17][18]. These systems usually operate
across multiple zones in the data center or even various regions. Previous research has
concluded that random network partitions cannot be avoided in these scenarios [19],
leaving system designers to choose between consistency and availability, as defined by
the CAP theorem [20].

Controller/worker architectures guarantee configuration consistency via the
employment of redundant storage systems, in most cases coordinated via consensus
algorithms such as Paxos or Raft. These algorithms ensure information consistency
against network failures while decreasing availability as network regions increase [21].

In addition, intrinsic to the centralized architecture design is the requirement to
implement strong security measures. It only requires the security compromise of the
controller nodes in the system to take control of the entire network. It is common for
system designers to isolate controller nodes from the application data plane [2] to
restrict orchestrated application access to the control plane, further increasing the
deployment complexity across network boundaries.

This research will analyze decentralized architectures for resource management by
applying the recent practical advancements in blockchain and consensus technology.
The proposed blockchain-based decentralized architecture noticeably increases the
system availability, including cases of network partitioning, without a significant impact
on configuration consistency.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 20

1.1. Datacenter Management Architecture
Current data center management technologies rely on centralized architectures modeled
using the controller/worker pattern. A controller entity receives one or more requests
and then communicates with worker entities to execute them.

The controller/worker (Figure 1) pattern allows systems designers to simplify the
selection, parameterization, and scheduling of resources by operating under the
assumption that a global state view of the system is available [22].

Figure 1 Controller Worker Architecture

In this architecture, the controller and the worker are permanently running a loop to
ensure the controller has an up-to-date view of the system and the worker receives the
latest scheduled configuration. The ability of a worker node to perform its intended
function requires a constant connection with a controller node. If such a link were to be
interrupted, the controller could not assume that the node was still executing its last
configuration. Conversely, the worker node cannot report or react to application runtime
changes, including failures or the average load of the service.

Figure 2 Redundant Controller Worker

21 Chapter 1: Introduction

As these systems' topology complexity and scale increase, many questions arise, such as
latency, reliability, and load balancing [23]. In most cases, the controller as a single
point of failure is replicated and strategically placed to minimize the impact of hardware
failures. Replicated controllers (Figure 2) can be located across different hardware
replicated zones in the data center or across multiple data centers altogether.

System availability against machine failures is typically addressed through controller
and worker redundancy. However, this topology introduces the possibility of network
partitions, forcing system designers to make compromises between consistency &
availability. Per the CAP Theorem [20], any distributed data store can only provide two
of three guarantees: Consistency, Availability, and Partition Tolerance (Figure 3).

Figure 3 CAP Theorem

• Consistency is the property where the system's state is available to every node

after receiving the most recent update.

• Availability is the property in which every request is processed successfully

without the guarantee that it contains the most recent update.

• Partition tolerance is the system's ability to operate even when communication

between nodes is interrupted continuously.

Because system designers cannot prevent network failures, the compromise between
consistency and availability is typically addressed by implementing consensus schemes
such as the Paxos [24] and Raft algorithms [25]. Architectures based on these
algorithms require that at least most control nodes are available and that worker nodes
can connect to one of those nodes to ensure access to the most recent view of the
system. If a controller network connection is interrupted, it can no longer perform its
designated function.

However, contemporary web applications are typically designed to satisfy the need for
scale, availability, and globally distributed access. These applications are resilient
against transient failures to ensure availability across fragile global environments. They
do not require absolute consistency of the control plane data [26]. For example, web

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 22

applications are typically required to run without any interruption. It is impossible to
globally coordinate the deployment of all services simultaneously while updating the
code of the Web clients. Web applications are typically written to support interactions
with multiple versions of the backend services to solve this problem.

Instead of maximizing the consistency of the configuration of the control plane, those
applications can benefit from increased availability of the underlying control system to
ensure applications can react to local environmental changes, such as failures and load
changes, even if the deployment does not reflect the most recent configuration or code.
Additionally, such casual consistency needs to be able to disambiguate configuration
divergences as it is impossible to predict how far a system might be disconnected from
the centralized configuration store. This design would also introduce support scenarios
where a local operator can perform a local change that eventually merges with the rest
of the system configuration during network disconnection.

1.2. State-of-the-art Management systems

State-of-the-art application management technologies are focused on simplifying
automation via intent-based declarative configuration, where state updates are
propagated over time in what is known as the “eventual consistency” mechanism [27].
Finally, all nodes will reflect the most current configuration as scheduled by a central
controller.

Examples of controller/worker architecture systems include Cloud Foundry, OpenShift,
Apache Mesos, Docker Swarm, and Kubernetes. As previously stated, the architecture
of these systems prioritizes intent-record consistency while providing substantial
availability through controller replication.

Apache Mesos, Docker Swarm, and Kubernetes store configuration state in Etcd [28], a
key-value store, using the Raft consensus algorithm to ensure consistency and partition
resistance. Essentially, the controller returns the confirmation to the client only when a
quorum of nodes acknowledges the request. Reads are linearizable, implying that once a
write is completed, all later read operations should return the value of that write or the
value of the last write. Alternatively, Cloud Foundry utilizes MySQL, a relational
database that relies on the Paxos algorithm. However, in practical terms, the only
difference between Paxos and Raft is the leader’s election mechanism [29].

For example, when a user submits an intent request, the desired configuration change is
first stored in either Etcd or MySQL. Depending on the system, the transaction is then
confirmed to the user, who reasonably expects the request to be distributed and
committed. Once the configuration change is saved, the controller can execute the
scheduling algorithm and communicate the changes to the affected worker nodes to
achieve a consistent global state that matches the user's intentions. These mechanisms,
in aggregate, provide intent-record state consistency that guarantees high statistical
availability and good network partition resistance.

23 Chapter 1: Introduction

1.3. The case for decentralizing the control plane

The case for decentralization of the control plane has been discussed using Conflict-free
Replicated Data Types [30] and fragmenting large deployments into federations,
requiring a distributed database that spans the entire system [31]. While these solutions
increase scale and availability, coordination between the infrastructure providers is
necessary to maintain the list of deployed locations. In addition, significant performance
issues have been documented when using federation [32], resulting in performance
degradation from even minor increases to latency (8.7x) and resource contention (12.0x)
in comparison to centralized cluster architectures.

Coordination systems based on blockchain technology have been explored to reduce the
management cost of maintaining a centralized repository of federated systems [33].
Using Ethereum or similar general-purpose and permission-less blockchains has been
deemed too costly and inefficient [34].

Hierarchical control plane structures have also been studied to solve the problem of
orchestrating Software-defined networking across vast deployments. Maintaining a
global view of the system with solutions like FlowBroker, D-SDN, Tungsten, or
Kandoo does not address challenges with information sharing across network partitions
[35].

Additionally, federation requires establishing and managing trust relationships between
the different clusters [36], requiring an additional level of governance [37][38] and trust
initialization setup. To solve this problem, blockchain for IoT and Edge has been
preliminarily studied via decision framework studies [39], showing the potential
viability of using permissioned and private blockchains as a control plane for highly
distributed environments.

The feasibility of implementing blockchain technology control systems has been
demonstrated using a multi-tier architecture to record and distribute configurations
across multiple control nodes [40]. Existing implementations leverage smart contracts to
substitute access control and preserve the sequence of change requests. However,
deployment control is still delegated to a traditional controller/worker cluster
architecture. While a fully distributed blockchain across all regions can yield similar
results concerning global availability, it still depends on the availability of the local
cluster controller to ensure all nodes can be operated. Therefore, it does not impact the
CAP properties of the system or the security of the control nodes.

Concerning blockchain performance, previous work has determined that the throughput
characteristics of three-tier control systems utilizing a general-purpose blockchain as a
record store yield good results [41]. This research evolves previous approaches by
integrating control and work nodes into a single hybrid component and using Byzantine
resistance consensus algorithms to coordinate the blockchain's agreement, termination,
and validity. Existing blockchains implementation like Ethereum [42], Cardano [43],
Solana[44], Hyperledger [45], or any other general-purpose blockchain with support for
smart contracts can be used to manage and execute purpose-built smart contracts
containing the logic of configuration disambiguation, scheduling, and access control.
However, using existing blockchains will require a network of Oracles capable of
performing active functions, including failure detection. In addition, to ensure the same

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 24

level of availability, it would require every node running the software to also operate as
a general-purpose blockchain node alongside the required Oracles. We decided against
this approach due to the runtime, management, and overhead. Although outside the
scope of this research, we consider implementing the solution using general-purpose
smart contract blockchains worth studying for Web3 applications that rely on both
traditional stacks and smart contracts.

 25

CHAPTER 2. SCIENTIFIC APPROACH

2.1. Methodology

For the development of this research, an incremental approach was chosen. Each phase
begins by establishing research goals leading to the development of the design that
allows the evaluation of the proposed objectives (Figure 4).

Figure 4 Research Process

The research process was carried out in an initial phase of gathering information and
establishing the current condition of the cloud management space, including a thorough
evaluation of the most common solutions and present challenges.

The second research phase evaluated the current state of the art regarding
decentralization of the control plane solution for cloud systems, software-defined
networking solutions, and Internet of Things (IoT) environments. The analysis was not
confined to blockchain solutions, yet the benefits showcased by modern blockchain
research guided the decisions made for the designed solution.

The third phase determined the solution's requirements, where different integration
architectures were evaluated. A final phase in which the proposal is developed,
presenting a proposed architecture and analysis of the solution. In the development of
each phase, the progress and results obtained were disseminated.

2.2. Information Gathering

Information was collected by searching for articles in various databases, including IEEE
Explore, Science Direct, Web of Science, ACM Digital Library, Springer, Google
Scholar, and other sources of information. The search keywords were combinations of

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 26

the terms: Cloud Management, Internet of Things, Edge Computing, Blockchain,
Consensus algorithm, Smart Contracts, Eventual Consistency, Replicated Shared
Objects, Distributed Systems, Decentralized orchestration, Kubernetes, Conflict-free
replicated datatypes, Federated cloud computing, and Cluster Computing.

In total, 786 documents were found. These were filtered from the keywords and
abstracts, thus determining those relevant to the investigation. The research documents
used in the development of this work have been referenced.

2.3. Selection of tools, development, and elaboration of the proposal

After completing the analysis of multiple environments, Kubernetes was selected as the
candidate to derive from towards implementing the goals of this research for the
following reasons:

1. Intent-based configuration model based on resources and stored in a

machine-friendly format.

2. The loosely coupled dependency resource model makes it possible to

simplify the scheduling of resources through eventual consistency.

3. Flexible architecture enabling direct communication with worker nodes

replaces the controller's role with a distributed coordinator.

4. Most adopted solutions with broad support for cloud application

management patterns.

5. Built-in support for most cloud platform APIs enables easy deployment on

existing cloud environments.

The selection of the decentralization mechanism to integrate control and work nodes
into a single hybrid component and use consensus algorithms to implement
coordination. In blockchain-centric systems, a natural pattern is decentralizing control
and replacing authority with Byzantine-resistant consensus patterns. Applying this
pattern to the cloud management space may seem unintuitive at first glance, yet this
solution addresses the primary goals of this research. The utilization of blockchain
technology at the core of the control plane provides the following benefits:

1. Data is replicated across all nodes by default. Additional optimizations are

possible by implementing lightweight nodes that utilize Merklized Abstract

Syntax Tree (MAST) and Merkle proofs to validate configuration changes

distributed through the system [46].

27 Chapter 2: Scientific Approach

2. Nodes are self-governing entities that operate when isolated from the cluster

in cases of a network partition. Blockchain exhibits high availability [47]

properties when assuming causal consistency of the system configuration

[48].

3. The diversity of consensus algorithms that enable system designers to

choose and balance the properties of the system should be prioritized,

including trust setup, security, and incentives [49].

4. Immutable configuration history [50]. Every change in the system is

sequentially stored and cryptographically secured in the blockchain,

enabling system operators to determine the system’s state at any point in

time.

 28

 29

CHAPTER 3. RESEARCH OBJECTIVES

3.1 Research Objectives

The objective of this research (Figure 5) is to evaluate the implementation of a highly
available and partition-resistance cloud management system using blockchain
technology. This research also offers a vision for a solution that addresses the critical
challenge by leveraging the capabilities following key technologies:

• Blockchain: A distributed store that can efficiently record transactions between

two parties in a verifiable and permanent way [51].

• Nakamoto Consensus: a set of rules that verifies the authenticity of a blockchain

network. Also considered the solution to the Byzantine Generals Problem [52].

Figure 5 Research Objectives

To date, little practical research has been performed to weaken the criteria for replica
consistency to improve the partition tolerance, availability, and performance of cloud
systems owing to the non-monotonic nature of the system configuration. Non-
monotonicity occurs when a new configuration value invalidates the previous
configuration state [48]. However, because of the characteristics of the eventual system
consistency described previously, we believe that a system of rules that disambiguates
potentially conflicting configuration requests can provide acceptable levels of delayed
consistency. For the most part, System operators prioritize their focus on the system's
final state and, in most cases, can infer the consequences of intermediate states during
configuration changes. Capturing transaction ordering rules into a cryptographic
protocol and persisting results on a blockchain presents an opportunity to leverage
mainstream consensus algorithms to solve the challenges presented by the CAP
theorem.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 30

Combining these technologies has made it possible to design Peer to Peer systems
focusing on maximum availability while providing a verifiable recorded history of
system state changes. In a world where distributed systems are becoming increasingly
heterogeneous, decentralization could be construed as the solution for heterogeneous
scalability.

3.2. Dissemination of results

We have used the following criteria to select the most suitable journal:

1. The theme of the magazine.

2. Impact factor and quartile in all its categories related to our area of knowledge.

The impact factor report of the article used to present the doctoral work:

Title: Blockchain-based Cloud Management Architecture for Maximum Availability.

Research-specific objective accomplished: Analyze the impact on the availability of
blockchain-based decentralized systems and compare them with the current centralized
approach.

Authors: Alberto Arias Maestro, Oscar Sanjuan Martinez, Ankur M. Teredesai and
Vicente García-Díaz

Journal: The International Journal of Interactive Multimedia and Artificial Intelligence

Impact factor 4.936 (JCR 2021)

3.3. Research Impact

I have been fortunate to be part of the Cloud industry for the last 15 years. From the
emergence of the software-defined data center, virtualization of computing and network
resources, multi-cloud orchestration, containers, and back hybrid cloud computing. The
common theme across all of these technologies is the default implementation of
centralized orchestration to manage and distribute resources to enable a wide range of
scale requirements.

Table 1 shows the impact of the relevant research published and patented at the time of
this writing.

31 Chapter 3: Research Objectives

Table 1 Impact Summary

3.4. Patents

Title Cited Year

Adaptive autoscaling for

virtualized applications.

US Patent 9,817,699

31 2017

Computer relational database

method and system having

role-based access control.

US Patent 10,430,430

US Patent 9,058,353

US Patent 9,852,206

26 2019

Asynchronous programming

model for concurrent

8 2014

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 32

workflow scenarios.

Distributed event system for

relational models.

US Patent 9,384,361

US Patent 9,195,707

14 2016

Workflow design for long-

running distributed operations

using no SQL databases.

US Patent App. 14/206,342

4 2014

Interface infrastructure for a

continuation-based runtime.

US Patent 9,916,136

US Patent 9,354,847

3 2018

 33

PART II. DESIGN PROPOSAL

 34

 35

CHAPTER 4. CLOUD SERVICES

This proposal is structured into four sections. First, a Kubernetes overview is provided
as the foundational orchestration system to be evolved towards decentralization. The
second section covers the architecture of the hybrid controller/worker node and its
connectivity to other nodes. The third section describes how the system state
configuration is encoded into the blockchain structure, followed by global ordering
rules that ensure transaction validity to be applied by participating nodes.

4.1. Kubernetes concepts and architecture

The best-known example of this architecture is Kubernetes. In Kubernetes, the system
architecture prioritizes intent-record consistency while providing substantial availability
through the replication of the controller [31].

Kubernetes stores configuration states in Etcd, a key-value store using the Raft
consensus algorithm to ensure consistency and partition resistance. In essence, only
when a quorum of nodes confirms the write the node returns a confirmation to the
client.

To preserve configuration consistency, operations are linearizable. Once a write
completes, all later read operations should return the value of that write or the value of a
subsequent write. Configuration history linearizability ensures that all operations that
modify the configuration are sequential and have already considered any last changes
made [53].

Like in most modern orchestration systems, Kubernetes utilizes a declarative
configuration model to reduce the possibility of commutative order violations where the
order of the configuration is reversed. Declarative configuration models aggregate
applications' deployment configuration in one or several documents that represent the
final state of the system instead of individual API calls to manipulate the state of the
system.

In Kubernetes, when a user submits a change request, the desired intent configuration is
first communicated as a document containing resource definitions. Resource definitions
are declarations of required resources, application binaries, network configurations, and
deployment configurations (Figure 6).

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

 labels:

 app: nginx

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 36

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

Figure 6 Example Nginx deployment

The controller stores the deployment configurations and processes the requests
determining the best allocation of resources across the system to reasonably satisfy the
demand. The final deployment configuration is then communicated to the worker nodes,
converging towards a consistent state that matches the user's intentions.

Figure 7 Linearizable configuration example

37 Chapter 4: Cloud Services

Configuration dependencies are decoupled as much as possible to maximize the ability
to change the system's configuration over time. There are two types of dependencies:
containment and association.

A containment relationship requires the contained resource to be created after the
container object (Figure 7). For example, deployment must be contained within a
namespace, and therefore, the creation order cannot be reversed. The consistency
provided through the underlying ETCD instance ensures that the system does not have
to make disambiguation decisions when two controller nodes try to update conflicting
configuration changes.

An association dependency is an indirect reference to another resource through labels
defined during resource creation. This mechanism allows two resources to maintain a
separate creation and maintenance lifecycle. For example, a Service resource that
exposes a container endpoint can be created before the container itself. This mechanism
enables deployment patterns like blue-green and canary deployments [54]. In canary
implementations (Figure 8), more than one application instance is deployed while the
network traffic load is balanced. Canary deployments enable the gradual deployment
and rollback of application versions.

Figure 8 Canary Deployment

Users can determine the system's state by requesting an up-to-date view of previously
submitted resources. All resources have spec and status fields (Figure 9). The spec is the
original resource specification where users declare the desired state. The status field can
only be modified by the system and contains the actual known state of the object by the
controller.

kind: Pod

...

spec:

 readinessGates:

 - conditionType: "www.deployment.com/check"

status:

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 38

 conditions:

 - type: Ready

 status: "False"

 lastProbeTime: null

 lastTransitionTime: 2022-01-01T00:00:00Z

 - type: "www.deployment.com/ check”

 status: "False"

 lastProbeTime: null

 lastTransitionTime: 2022-01-01T00:00:00Z

 containerStatuses:

 - containerID: 88888888

 ready: true

...

Figure 9 Pod status

The result of this architecture is that Kubernetes provides intent-record state consistency
guarantees with high statistical availability. User intent consistency is guaranteed by the
underlying storage system (ETCD). However, while in most cases, the end state of the
system is also consistent, the controller can only provide the last know state of the
system or report the last time the status was communicated to the controller. If a
Kubernetes node fails, the controller node will restart pods, detach the volumes, wait for
the old volumes to detach, and reuse the volumes across a new node. Typically, these
steps would take about 5 to 10 minutes.

Figure 10 Kubernetes Architecture

39 Chapter 4: Cloud Services

To understand how the system state is represented and is essential to understand the
following components (Figure 10) that will be further referenced across this research:

• Cluster: A collection of nodes used by Kubernetes to run application workloads

orchestrated by one or more replicated controller nodes.

• Nodes: A physical or virtual machine that provides computing, memory,

storage, and networking resources to run applications.

• Master: A node responsible for storing the global state of the system, scheduling

resources, handling events, and enforcing security policies.

• Pods: Represent a group of containers that are scheduled and deployed together.

Applications are typically composed of several pods.

• Labels: Key-value pairs that are used to reference and group managed resources.

Labels are used to identify and represent the relationship between resources

uniquely.

• Label selector: Used to select resources across the system.

• Annotations: Used to attach arbitrary metadata to resources.

• Services: Used to publish and expose application network endpoints running on

o a set of Pods determined by a selector.

• Volume: Ephemeral storage accessible from within a pod.

• ReplicationControllers: Manage a group of pods identified by a selector,

ensuring that the intended number of pods is running.

• ReplicaSet: This performs the same function as a replication controller but with

additional capabilities to select the set of pods to manage.

• StateFullSet: Like replication controllers with the distinction of specifying

which nodes run which pods enable better control for state-full workloads.

• Secrets: Store credentials or other sensitive information.

• Namespace: A virtual partition of resources enabling the separation of resources

across clusters.

Kubernetes clusters have at least one controller node and as many worker nodes as
necessary to host the intended applications required capacity (Figure 10). While it is
possible to separate the different components of the control plane across multiple
servers, most controller nodes host the following processes:

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 40

• API server: Exposes a REST API used to interact with the controller.

• ETCD: Distributed data store used to persist the state and configuration of the

cluster.

• Controller manager: Used to manage and configure external services used by the

cluster. Including load balancers, persistent volumes, name servers, etc.

• Scheduler: Responsible for scheduling resources into nodes following the

policies specified in the cluster configuration.

Kubernetes worker nodes execute control place processes alongside user applications
using containers to provide the necessary security isolation. Worker nodes require a
direct connection to the controller node. The control plane network might be segregated
using separate physical or virtual networking interfaces. Worker nodes have the
following processes:

• Kubelet: Communicates with controller and configures the node to run pods as

scheduled by the controller node. Includes running containers, mounting nodes,

reporting the node's state to the controller, etc.

• Proxy: Manages the node's network configuration to meet the configured

services' requirements.

While Kubernetes has emerged as the primary choice for containerized applications,
large deployments suffer from latency and availability issues reducing its suitability for
highly distributed environments [55]. In addition, Kubernetes is highly sensitive to
network partitioning, resulting in the reduced availability of applications running within
the cluster [56]. In-depth studies towards providing models to increase the availability
of applications running in Kubernetes clusters conclude that service outages can be
significantly higher than expected under specific configurations [57]. Solutions have
been evaluated to reduce the recovery time of applications within the cluster when a
node fails [58]. However, those solutions do not address the situation when the control
plane fails, or network connection interruptions make it impossible for a controller to
communicate with worker nodes. This situation cannot be mitigated if the control and
work functions are independent while requiring active communication.

 41

CHAPTER 5. BYZANTINE RESISTANT
ARCHITECTURE

This research evolves previous approaches by integrating control and work nodes into a
single hybrid component and using Byzantine resistance consensus algorithms to
coordinate the blockchain's agreement, termination, and validity. This yields a peer-to-
peer architecture of compute nodes collectively converging into a state that matches the
sequence of intents stored in the blockchain. While the primary function of nodes is to
host workloads, nodes maintain a full copy of the blockchain and participate in the
consensus process both as block creators and validators.

For this research, we will incorporate elements of the existing Kubernetes architecture.
In particular, the Kubelet component provides the actuation of state configuration
changes by communicating with the node operating system. In essence, workloads are
hosted by deploying containers in Pods. Essential to the spirit of most cloud
management systems, a node may be a virtual or physical machine, depending on the
cluster.

5.1. Node to node communication

Nodes connect to other nodes using a P2P Gossip protocol (Figure 11). The initial
discovery is made through dynamic DNS. Once a node can connect to other nodes, it
will be able to receive the list of known nodes and blocks.

Figure 11 Gossip Protocol

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 42

The number of nodes in the cluster might change during the life of the cluster. This
mechanism allows nodes to discover the topology of the network without the need for a
central catalog. To accelerate the discovery and prevent Eclipse attacks [59], nodes
might be initialized with a list of permanent nodes maintained by the system
administrator. Eclipse attacks occur when the first connection of a node to another node
is to a compromised node that steers the node to a compromised chain (Figure 12).

Figure 12 Eclipse Attack

When a node receives a message that a new node has been added to the network it
appends it to a list of known nodes. At this point, the new node has not been verified.
To prevent nodes from consuming too many resources to maintain communication with
the rest of the network, the node limits the number of active connections to the rest of
the network. For example, in a cluster with 100 nodes limiting the number of
connections to 5 will result in an acceptable delay in the communication across the
network [60].

An additional security procedure includes selecting different nodes to connect to when
the node is restarted, preventing further crashes if the reason for the restart is that
another node exploited a bug that made the node crash. To minimize the risk of
compromise, when a node processes the list of known nodes it uses feeler connections
to detect peer node anomalies [61].

Finally, to prevent compromised nodes from flooding other nodes with randomized
addresses, the number of addresses that a node can receive is rate limited [62]. In
addition, working nodes would only broadcast addresses that have already been
verified, therefore truncating the range of such attack.

Nodes are also registered in the blockchains, if a node obtains a full copy of the
blockchain it will be able to validate the list of nodes received with the configuration

43 Chapter 5: Byzantine Resistant Archicture

stored in the blockchain. There might be additional security guarantees when adding a
node to the network, depending on the consensus algorithm, like, certificate chain
validation in Proof of Authority. Notice that it is possible to have nodes as part of the
network but don't participate in the consensus algorithm yet communicate with other
nodes and maintain a full copy of the blockchain.

Nodes can also receive direct connections from users. Users submit new transactions
and inspect the state of the node and the last known state of the chain by that node.
Nodes connect to nodes via an RPC API, enabling them to interact with the cluster
without the need to store a copy of the blockchain and participate in the P2P network.

5.2. Node Architecure

Unlike in Kubernetes masters, nodes are assigned the responsibility to communicate
with external services, for example, updating a DNS entry or configuring a new load
balancer. As such, the components of a hybrid node include:

1) The peer manager is responsible for maintaining a list of known peers. It creates and

maintains TCP connections and receives new network connections from other peers.

The peer manager is responsible for communicating with other nodes via the P2P

gossip protocol.

2) The consensus manager is dedicated to applying consensus rules to maintain the

longest valid chain known by the node by determining which blocks should be

added to the chain or even discarding dead-end chains. The consensus manager is

integrated very closely with the peer manager, such that it can adapt the node chain

to new information, including blocks and alternative chains. In addition, a node,

depending on the consensus algorithm, may be selected for mining a new block. The

consensus manager is responsible for communicating the new block to the other

peer nodes.

3) The validator is responsible for analyzing the contents of a block and ensuring that

all new transactions are valid. Transaction order, transaction inputs and outputs,

locking script execution, and any other block rules are related to the consensus

algorithm.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 44

4) Pending changes comprise a list of known pending transactions. Each block

maintains a list of the pending transactions. When a new block is received or

minted, the transactions in the block are removed from the pending list.

Figure 13 Hybrid Node architecture

5) The block factory is responsible for mining a new block based on the inputs of the

pending change list. It communicates with the consensus manager, ensuring that the

block is valid by verifying with the validator. Any invalid transactions are reported

until a block is correct and ready to be communicated.

6) The scheduler is a component that watches for newly created resources with no

assigned nodes.

7) API is the front end of the contents of the state of the cluster and transaction

management. Users connect to the node via an API to interact with the cluster

without directly operating a node.

45 Chapter 5: Byzantine Resistant Archicture

8) State Manager maintains the databases and indexes required to store and operate the

cluster.

9) Blocks are key-value pair databases indexing every block and transaction of the

blockchain by its hash value.

10) State is a document-oriented database with content resulting from executing all

transactions in the blockchain.

11) The controller manager is responsible for maintaining the configuration and state of

the services external to the cluster.

12) Kubelet is part of the Kubernetes architecture. It is responsible for connecting to the

Docker runtime and ensuring that all pods and containers run according to the

cluster state determined by the blockchain.

5.3. Blockchain structure
Transaction data is stored in blocks organized into a linear sequence over time. New
transactions are added to blocks, and blocks are added at the blockchain's end (Figure
14). Unlike traditional cryptocurrency blockchains, the structure of this chain does not
keep track of a ledger, instead, processing the content of the blockchain results in a
hierarchal tree of resources that represent the system state.

Figure 14 Blockchain structure

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 46

Each block contains the hash of each transaction calculated by adding every transaction
into a Merkle tree and storing the root as part of the block header. This mechanism
allows rapid verification that a transaction is part of the block (Figure 15). For a user to
verify whether Transaction 3 is in the blockchain, it only needs to compute the hashes
of the Merkle tree and check the Root Hash of the block where the transaction is stored.
Notice that the user does not need to calculate the hash of all the transactions in the
block, only the hash of the sibling transaction within the tree.

Figure 15 Transaction Merkle Tree

In addition, every block includes the hash of the previous block's header. In essence,
every time a block is added to the chain, the more complicated and more challenging it
is to change or remove previous blocks as it would require calculating new hashes for
every block after the one being modified. In practical terms, every transaction in the
blockchain is irreversible and final.

Even in the extreme case that the whole blockchain gets updated to masquerade a
change, cluster operators only need to store the Merkle root hash of blocks periodically
to be able to identify whether the blockchain has been tampered with.

Because of the verification properties of Merkle trees, it is possible to implement
lightweight nodes that do not perform all the functions of a full node. A lightweight
node might delete the blocks of the chain (keeping the Merkle trees) after processing
them and calculating the current configuration resource tree. When a new block arrives,
it verifies the block and processes it, the node can still verify whether the transactions
part of the new block was part of the original chain by just checking the Merkle tree.

It is possible to implement further optimizations where a lightweight node only receives
transactions that affect the status of the node. The lightweight node can still verify that
does’ transactions belong to a block of the chain and update part of the resource tree.

Future research will analyze the possibility of using this mechanism to create large
federations of clusters with full nodes that orchestrate cross federation data and local
nodes that only store the part of the chain that contains resource information relevant to
the federation.

47 Chapter 5: Byzantine Resistant Archicture

5.5. Block Structure

Blocks are structured using the following format:

Field Description Bytes

Magic Number

Unique fixed value used to identify the start

of a new block. The value is always:

0x15042011

4

Size

Size of the block 4

Header Version Block version 4

Hash Previous

Block

SHA256 of the previous block header 32

Hash Merkle

Root

SHA256 of the Merkle root of the Merkle

tree of all the transactions in the block

32

Time Block timestamp 4

Transaction Counter Positive integer with the number of

transactions in the block

4

Transactions List of transactions Variable

Difficulty Target* The proof-of-work algorithm difficulty

target for this block

4

Nonce* A counter used for the proof-of-work

algorithm

4

*Difficulty Target and Nonce are only used when proof of work is used as a consensus
algorithm.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 48

Transactions are stored within blocks using the following structure:

Field Description Bytes

Number of Inputs Positive integer with the number of

inputs in the transactions

2

Inputs - For

each Input

Hash Previous

Transaction

SHA256 of previous transaction Variable

Previous

Output Index

Index of the output of the previous

transaction

2

Script Length Length of the script 4

Script Script Contents Variable

sequence_no normally 0xFFFFFFFF; irrelevant unless

transaction's lock_time is > 0

4

Number of Outputs Positive integer with the number of

outputs in the transactions

2

List of outputs

Outputs - For

each output

Value Length Length of the value 4

Value Transaction’s value content Variable

Script Length Length of the script 4

Script Script Contents Variable

lock_time if non-zero and sequence numbers are

< 0xFFFFFFFF: block height or

timestamp when transaction is final

4

49 Chapter 5: Byzantine Resistant Archicture

5.6. Network Partitioning

Network partitioning occurs when a group of nodes is isolated and cannot communicate
with the remaining nodes in the network. This is a common scenario when those nodes
are not in the same data center, or the data center is partitioned into two or more
availability zones. Note that in the proposed architecture, when a network partition
occurs, there is a risk that transactions submitted to the partition with the shortest chain
will become invalid once the network connectivity is restored. The transactions are
appended to the Pending Changes list (Figure 16).

Figure 16 Chain resolution after Network Partition

So far, we have discussed the core components and behaviors of the system. From the
analysis conducted throughout this research, we can deduce that the system meets the
following propositions:

Proposition 1: Any node can accept a transaction.

Proposition 2: A single node can add a block to the chain.

Proposition 3: Nodes do not require connection to other nodes to accept transactions.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 50

Proposition 4: A group of nodes (more than one node), where each node can connect to
others, will generate a chain faster than a group with fewer nodes.

Proposition 5: A node will always accept the longest chain available.

Therefore, we can formulate the following three theorems by mathematical logic:

Theorem: Maximum Availability: If a node is available, the system is available.

Proof of Theorem 1. P1 ∨ P2 ∨ P3 ⟹	 T1. If any node can accept a transaction
(Proposition 1), and a single node can add a block to the chain (Proposition 2), and
nodes do not require the connection to other nodes to accept transactions (Proposition
3), then if a node is available, the system is available.

Theorem: Eventual Consistency: A transaction can only be considered irreversibly
committed when it is part of a block that is in the longest chain and is part of the
current chain for most of the nodes in the network.

Proof of Theorem 2. P3 ∨ P4 ⟹T2. If nodes do not require the connection to other
nodes to accept transactions (Proposition 3), and a group of nodes (more than one
node), where each node can connect to others, will generate a chain faster than a group
with fewer nodes (Proposition 4), then a transaction can only be considered irreversibly
committed when it is part of a block that is in the longest chain, and it is part of the
current chain for most of the nodes in the network.

Theorem: Partition Primacy: A network partition with the majority of nodes
generates the longest chain with irreversibly committed transactions.

Proof of Theorem 3. P4 ∨ P5 ⟹T3. If a group of nodes (more than one node), where
each node can connect to others, will generate a chain faster than a group with fewer
nodes (Proposition 4), and a node will always accept the longest chain available
(Proposition 5), then a network partition with the majority of nodes generates the
longest chain with irreversibly committed transactions.

5.7. Availability Examples

Traditional Paxos/Raft-based systems are available if most replica nodes are available to
achieve quorum and maintain the configuration store consistency (Table 2). When there
are three zones, both systems are reliable when one fault occurs. However, the
differences are revealed when two Paxos/Raft replicas fail, preventing the system from

51 Chapter 5: Byzantine Resistant Archicture

achieving a quorum and leading to system failure. Note that in this proposal (Table 3),
only users who can access a partition with available nodes will be able to submit
transactions.

Zones/Replicas Replica Faults Partitions Paxos/Raft

3 / 3 1 0 Available

3 / 3 2 0 Fault

3 / 3 0 2 Fault

9 / 9 4 0 Available

9 / 9 5 0 Fault

9 / 9 0 3 Fault

3 / 3 1 0 Available

3 / 3 2 0 Fault

Table 2 Availability examples of Paxos/Raft

Additionally, as stated in the Partition Primacy and Eventual Consistency theorems,
only nodes in the largest partition will be able to confirm transactions irreversibly.

Zones/Replicas Replica Faults Partitions Proposed

3 / 300 50 / 50 / 50 0 Available

3 / 300 100 / 0 / 0 0 Available1

3 / 300 100 / 100 / 100 0 Fault

3 / 300 100 / 0 / 0 1 Available1

3 / 300 50 / 50 / 50 1 Available2

3 / 300 50 / 50 / 50 2 Available2

3 / 300 50 / 50 / 50 3 Available2
1 Not accessible from failed partitions.

2 Transactions cannot be considered irreversible until restored

Table 3 Availability examples of the proposed solution

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 52

In the Paxos/Raft system, when the number of zones is expanded to nine, and thus, the
number of replicas, the statistical availability increases dramatically. However, in cases
where multiple network partitions occur, the system can become unavailable because of
the inability of replicas to talk to each other and thus prevent a quorum, even with no
replica failures. As stated in the theorem of maximum availability, our proposal
becomes unavailable only when all the nodes fail.

 53

CHAPTER 6. CLUSTER MANAGEMENT

6.1. Transaction Script language
A script is a list of instructions recorded with each transaction that describes how the
next transaction can modify the resource's state specified in the output. Every
transaction except the first one in the blockchain consumes the output of a previous
transaction (Figure 17).

Figure 17 Transaction input-output

Access restrictions are cryptographically secure. When a user submits a transaction to
operate an existing resource or to create a new resource within the cluster, the user must
satisfy the conditions specified by the input transactions referenced by the new
transaction. For example, a new deployment references a namespace where the
application resources will be created. The most common restriction is to provide proof
of ownership of the private key used to create the previous resource by providing the
following:

• The public key matches the hash given in the script of the redeemed transaction

output.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 54

• An ECDSA signature over a hash of a simplified version of the transaction.

Combined with the public key, it proves authorized users created the transaction.

Scripting provides the flexibility to change the parameters of what's needed to operate
resources. For example, the scripting system could be used to require two private keys,
a combination of several keys, or even no keys at all.

The script is a Forth-like [63], stack-based, reverse-polish, Turing incomplete language.
Reverse polish notation is a system where the operators follow the operands. Operators
include memory manipulation, math, loops, function calls, and everything you find in
procedural programming languages. Some key facts about scripts:

• Scripts do not have any loop. There are no opcodes that allow jumping to a

previous part of the script.

• Scripts always terminate. There are no opcodes that allow the script cannot be

halted or paused for any reason.

• Script memory access is stack-based. All input information available to the

script is placed in the stack before execution.

Because of these properties, the amount of computation required to execute a script is
proportional to its size. This ensures that nodes cannot be stuck running a script
indefinitely, an undecidable problem attributed to Turing-complete machines [64].

Scripts are typically presented in a human-readable format where instead of using
hexadecimal representation, operand codes are shown as strings prefixed by “OP_”, and
data arguments are presented in alphanumerical format. The processing of these scripts
is sequential and all data is stored in the stack, there are no variables.

For example, the following opcodes push the numbers 1 to 3 onto the stack:

OP_1

OP_2

OP_3

Which, when stored in a transaction, will look like 0x515253. Where OP_1
hexadecimal is 0x51, OP_2 is 0x52 and OP_3 is 0x_53.

55 Chapter 6: Cluster Management

Several opcodes are provided to push custom data. The previous example can also be
written as push 1 bytes using the OP_PUSHDATA1:

OP_PUSHDATA1 1 1

OP_PUSHDATA1 1 2

OP_PUSHDATA1 1 3

Which, when stored in a transaction, will look like 0x 0x04C010104C010204C0103.
The OP_PUSHDATA1 operand is represented as 0x4C followed by 1 byte for each
argument.

While scripts can be represented in multiple forms, however, scripts are not malleable.
In other words, scripts must be preserved as submitted to the node as part of the
transaction to ensure the signature does not change. When computing the hash of the
transaction, strict format rules must be implemented to ensure that changes in the
signature format, which still makes the content of the transaction valid, do not change
the transaction's hash. If this measure is not implemented, then an attacker can disrupt
the cluster's operations by creating alternative versions of the same system operation,
making it difficult for the user to understand why their original transaction is failing.
The sequence of the events would be as follows:

1. User submits transaction A

2. Malicious node takes version A and modifies the format of the signature,

therefore creating a new transaction B

3. Both transactions are submitted to nodes to be added to the next block. Both

transactions cannot be added because A would invalidate B or vice versa.

4. If transaction A is added to the block, the attack failed

5. If transaction B is added to the block, A becomes invalid.

6. The user might assume A was added to the block, and any future transaction

referencing A will fail.

7. The user needs to research and find the existence of transaction B

6.2. Script language Opcodes
Opcodes can be categorized by types of operations like constant declaration, stack
manipulation, control flow, encryption, etc.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 56

The following opcodes are used to push constant data onto the stack:

Opcode Hex Description

OP_DATA_1 -

OP_DATA_75

0x01-

0x4b

The next 1-75 bytes is data to be pushed onto the

stack.

OP_PUSHDATA1 0x4c The next byte contains the number of bytes to be

pushed onto the stack.

OP_PUSHDATA2 0x4d The following two bytes contain the number of

bytes to be pushed onto the stack in little-endian

order.

OP_PUSHDATA4 0x4e The next four bytes contain the number of bytes to

be pushed onto the stack in little-endian order.

OP_1NEGATE 0x4f The number -1 is pushed onto the stack.

OP_FALSE/OP_0 0x00 The number 0 is pushed onto the stack. Flow

control operators interpret this value as False.

OP_TRUE/OP_1 0x51 The number 1 is pushed onto the stack. Flow

control operators interpret this value as True.

OP_2 - OP-16 0x52-

0x60

The number 2-16 is pushed onto the stack.

The following opcodes are used to implement flow control logic as well as for scripts to

stop execution:

57 Chapter 6: Cluster Management

Opcode Hex Description

OP_IF 0x63 If the top stack value is OP_TRUE/OP_1 then the following

statements are executed until OP_ENDIF or OP_ELSE is found.

OP_NOTIF 0x64 If the top stack value is OP_FALSE/OP_0 then the following

statements are executed until OP_ENDIF or OP_ELSE is found.

OP_ELSE 0x67 If the preceding OP_IF, OP_NOTIF or OP_ELSE was not executed

then following statements are executed. Multiple OP_ELSE

sections can be executed as a result.

OP_ENDIF 0x68 Ends an if/else block. All blocks must end, or script execution

fails. An OP_ENDIF without OP_IF earlier is also invalid.

OP_VERIFY 0x69 Marks transaction as invalid if top stack value is not

OP_TRUE/OP_1. The top stack value is removed.

OP_RETURN 0x6a Marks transaction as invalid.

The following opcodes are used to implement stack manipulation logic:

Opcode Hex Description

OP_TOALTSTACK 0x6b Puts the input onto the top of the alt stack. Removes it

from the main stack.

OP_FROMALTSTACK 0x6c Puts the input onto the top of the main stack. Removes

it from the alt stack.

OP_2DROP 0x6d Removes the top two stack items.

OP2_DUP 0x6e Duplicates the top two stack items.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 58

OP_3DUP 0x6f Duplicates the top three stack items.

OP_2OVER 0x70 Copies the pair of items two spaces back in the stack to

the front.

OP_2ROT 0x71 The fifth and sixth items back are moved to the top of

the stack.

OP_2SWAP 0x72 Swaps the top two pairs of items.

OP_IFDUP 0x73 If the top stack value is not OP_FALSE/OP_0, duplicate

it.

OP_DEPTH 0x74 Puts the number of stack items onto the stack.

OP_DROP 0x75 Removes the top stack item.

OP_DUP 0x76 Duplicates the top stack item.

OP_NIP 0x77 Removes the second-to-top stack item.

OP_OVER 0x78 Copies the second-to-top stack item to the top.

OP_PICK 0x79 If the top of the stack is N. The item N position back in

the stack is copied to the top.

OP_ROLL 0x7a If the top of the stack is N. The item N back in the stack

is moved to the top.

OP_ROT 0x7b The 3rd item down the stack is moved to the top.

OP_SWAP 0x7c The top two items on the stack are swapped.

OP_TUCK 0x7d The item at the top of the stack is copied and inserted

before the second-to-top item.

59 Chapter 6: Cluster Management

OP_SIZE 0x82 Pushes the string length of the top element of the stack

(without popping it).

The following opcodes are used to implement bitwise and arithmetic logic:

Opcode Hex Description

OP_EQUAL 0x87 Returns OP_TRUE/OP_1 if the inputs are

exactly equal, OP_FALSE/OP_0 otherwise.

OP_EQUALVERIFY 0x88 Same as OP_EQUAL, but runs OP_VERIFY

afterward.

OP_1ADD 0x8b 1 is added to the input.

OP_1SUB 0x8c 1 is subtracted from the input.

OP_NEGATE 0x8f The sign of the input is flipped.

OP_ABS 0x90 The input is made positive.

OP_NOT 0x91 If the input is 0 or 1, it is flipped. Otherwise,

the output will be 0.

OP_0NOTEQUAL 0x92 Returns 0 if the input is 0. 1 otherwise.

OP_ADD 0x93 A and B are in the stack. A is added to B.

OP_SUB 0x94 A and B are in the stack. B is subtracted from A.

OP_BOOLAND 0x9a If both a and b are not 0, the output is 1.

Otherwise, 0.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 60

OP_BOOLOR 0x9b If a or b is not 0, the output is 1. Otherwise, 0.

OP_NUMEQUAL 0x9c Returns 1 if the numbers are equal, 0

otherwise.

OP_NUMEQUALVERIFY 0x9d Same as OP_NUMEQUAL, but runs OP_VERIFY

afterward.

OP_NUMNOTEQUAL 0x9e Returns 1 if the numbers are not equal, 0

otherwise.

OP_LESSTHAN 0x9f Returns 1 if a is less than b, 0 otherwise.

OP_GREATERTHAN 0xa0 Returns 1 if a is greater than b, 0 otherwise.

OP_LESSTHANOREQUAL 0xa1 Returns 1 if a is less than or equal to b, 0

otherwise.

OP_GREATERTHANOREQUAL 0xa2 Returns 1 if a is greater than or equal to b, 0

otherwise.

OP_MIN 0xa3 Returns the smaller of a and b.

OP_MAX 0xa4 Returns the larger of a and b.

OP_WITHIN 0xa5 Returns 1 if x is within the specified range (left-

inclusive), 0 otherwise.

The following opcodes are used to implement cryptographic operations:

Opcode Hex Description

OP_RIPEMD160 0xa6 The input is hashed using SHA-1.

61 Chapter 6: Cluster Management

OP_SHA1 0xa7 The input is hashed using SHA-1.

OP_SHA256 0xa8 The input is hashed using SHA-256.

OP_HASH160 0xa9 The input is hashed twice: first with SHA-256

and then with RIPEMD-160.

OP_HASH256 0xaa The input is hashed two times with SHA-256.

OP_CODESEPARATOR 0xab All the signature checking words will only match

signatures to the data after the most recently

executed OP_CODESEPARATOR.

OP_CHECKSIG 0xac The entire transaction's outputs, inputs, and

script (from the most recently executed

OP_CODESEPARATOR to the end) are hashed.

The signature used by OP_CHECKSIG must be a

valid signature for this hash and public key. If it

is, 1 is returned, 0 otherwise.

OP_CHECKSIGVERIFY 0xad Same as OP_CHECKSIG, but OP_VERIFY is

executed afterward.

OP_CHECKMULTISIG 0xae Compares the first signature against each public

key until it finds an ECDSA match. Starting with

the subsequent public key, it compares the

second signature against each remaining public

key until it finds an ECDSA match. The process is

repeated until all signatures have been checked

or not enough public keys remain to produce a

successful result. All signatures need to match a

public key. Because public keys are not checked

again if they fail any signature comparison,

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 62

signatures must be placed in the scriptSig using

the same order as their corresponding public

keys were placed in the scriptPubKey or

redeemScript. If all signatures are valid, 1 is

returned, 0 otherwise. Due to a bug, one extra

unused value is removed from the stack.

OP_CHECKMULTISIGVERIFY 0xaf Same as OP_CHECKMULTISIG, but OP_VERIFY is

executed afterward.

The following opcodes are used to implement time management operations:

Opcode Hex Description

OP_CHECKLOCKTIMEVERIFY 0xa6 Marks transaction as invalid if the top stack

item is greater than the transaction's LockTime

field; otherwise, script evaluation continues as

though an OP_NOP was executed. The

transaction is also invalid if 1. the stack is

empty, or 2. the top stack item is negative, or 3.

the top stack item is greater than or equal to

500000000 while the transaction's LockTime

field is less than 500000000, or vice versa; or 4.

OP_CHECKSEQUENCEVERIFY

Marks transaction as invalid if the relative lock

time of the input is not equal to or longer than

the value of the top stack item

To demonstrate how scripts are executed, this is a script example:

63 Chapter 6: Cluster Management

OP_DUP OP_HASH160 <hash_public_key> OP_EQUALVERIFY OP_CHECKSIG

When encoded in hexadecimal, the transaction script will look as in Figure 18 when
embedded into the block.

Figure 18 Transaction Script Encoding

The executing the script, the interpreter executes each of the instructions step-by-step.
Figure 19 shows the contents of the stack at each step of the execution. This transaction
execution will be considered valid as it ends with OP_TRUE on the stack.

Step Stack state Script Description

1 <script_signature>

<public_key>

OP_DUP

OP_HASH160

<hash_public_key>

OP_EQUALVERIFY

OP_CHECKSIG

Initial state: scriptSig and scriptPubKey are

combined.

2 <script_signature>

<public_key>

<public_key>

OP_DUP

OP_HASH160

<hash_public_key>

OP_EQUALVERIFY

OP_CHECKSIG

Duplicates the top stack item.

3 <script_signature>

<public_key>

<hash_public_key>

OP_HASH160

<hash_public_key>

OP_EQUALVERIFY

OP_CHECKSIG

The input is hashed twice: first with SHA-

256 and then with RIPEMD-160.

4 <script_signature>

<public_key>

<hash_public_key>

<hash_public_key>

<hash_public_key>

OP_EQUALVERIFY

OP_CHECKSIG

<hash_public_key> is pushed onto the

stack

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 64

5 <script_signature>

<public_key>

OP_EQUALVERIFY

OP_CHECKSIG

Continues if the two top elements of the

stack are equal. Removes it from the

stack.

6 <1> OP_CHECKSIG The entire transaction's outputs, inputs,

and script are hashed. The signature used

by OP_CHECKSIG must be a valid signature

for this hash and public key. Pushes

OP_TRUE onto the stack.

Figure 19 Step by Step script execution

6.3. Blockchain Initialization
Every network starts with at least one node. The first block of a network is referred to as
the genesis block. It is the only block on the chain where the previous block hash is
zero. Typically, the genesis block contains a single transaction that initializes the
cluster. The creator of the first block signs establishes the cryptographic criteria to be
met for subsequent transactions.

{

 "version": 1,

 "vin": [

 {

 "txid": "0",

 "txid": "0xFFFF",

 "scriptSig": "Any text can go here"

 }

],

 "vout": [

 {

 "value": {

 "kind": "Cluster",

 "apiVersion": "v1",

 "metadata": {

 "name": "Demo"

 }

65 Chapter 6: Cluster Management

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_creator>

OP_EQUALVERIFY

OP_CHECKSIG"

 }

]

}

Figure 20 First cluster transaction

In the example provided in Figure 20, the operator explicitly requires the following
transaction, i.e., using this one as input, to provide the operator’s public key to be
hashed and compared with the one embedded in the script (OP_EQUALVERIFY). This
of course does not provide any security. For that, the script also requires the user to sign
the transaction with the private (OP_CHECKSIG). Initially, the creator is the only one
with access to the cluster's resources.

The next step toward making this cluster functional is to add more worker nodes to the
network. Any node can participate in the network, but only nodes part of the cluster can
host applications. For example, a node might connect to the network via the gossip
protocol but until a new transaction is added to the blockchain adding the node, the
node would not be considered a candidate to host applications by the scheduler. Non-
cluster node examples include developer nodes that host applications on the cluster that
can run a client application to validate and analyze the chain's current state. Other nodes
can participate as validators to obtain a copy of the block to perform other functions
such as security scanning, policy compliance, SLA, capacity planning, etc.

Adding a node is considered a change to the cluster configuration. Any transaction that
modifies the cluster requires the latest Cluster transaction as input. The example in
Figure 21 is a transaction adding a node to the cluster. The input of the transaction
references the output of the transaction that created the cluster or any subsequent
transactions that updated the cluster resource. The transaction's output is the node
definition following the Kubernetes resource format, which includes the DNS name of
the node.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the lastest cluster transaction>",

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 66

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Node",

 "metadata": {

 "name": "my-first-node",

 "labels": {

 "name": "development"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 21 Transaction adding a node to the cluster

Nodes can optionally have a locking script that enables delegation of the operations of
the node configuration. The transaction's output utilizes the same protection mechanism
used by the cluster transaction. Any future transactions referring to the output of the
node creation transaction must provide proof that they hold the private key
corresponding to the public key embedded within the script by signing the transaction
with it.

Once a transaction has been executed, it cannot be replayed. Nodes must check if the
transaction has already been added to a previous block. Additional optimizations will be
considered in the future to avoid the overhead of maintaining an index of all the
transactions in the blockchain.

67 Chapter 6: Cluster Management

The example in Figure 21 requires that any future modifications to the node need either
using the latest cluster transaction (parent container) or the latest transaction of the
node. Figure 22 provides an example of a transaction to take the anode offline by
updating the labels attached to the node. Once the transaction is added to the
blockchain, future transactions must refer to the new transaction.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest node transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Node",

 "metadata": {

 "name": "my-first-node",

 "labels": {

 "name": "offline"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 22 Transaction modifying an existing node

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 68

The transaction signature needs to be calculated using the public key of the admin of the
node instead of the creator of the cluster. A node admin can also change the locking
script to change the signature requirements for the node, including removing his
permissions by removing the locking script with a subsequent transaction.

6.4. Adding a namespace

Namespaces provide a mechanism for isolating groups of resources like applications
within a cluster. Namespaces require the latest cluster transaction as the input, including
the signature that satisfies the locking script.

Namespaces are used to separate resources across different environments—for example,
development, staging, and production. Figure 23 includes an example of a transaction
that creates a new “development” namespace using the Kubernetes resource format
definition.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "default",

 "labels": {

 "name": "development"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

69 Chapter 6: Cluster Management

OP_HASH160

<hash_public_key_from_creator>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 23 Transaction creating a new namespace

As in the previous example with nodes, namespaces can optionally have a locking script
that enables other operators to access the resources that would require the Namespace
transaction as input. It is also possible to use scripting capabilities to add complex
access logic through the locking script. Figure 24 is an example of transactions that can
be done by multiple administrators.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "default",

 "labels": {

 "name": "development"

 }

 }

 },

 "scriptPubKey": "

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 70

1

<hash_public_key_owner_1>

<hash_public_key_owner_2>

<hash_public_key_owner_3>

3

CHECKMULTISIG"

 }

]

}

Figure 24 Namespace with multiple administrators

6.5. Complex Locking Logic

It is also possible to restrict within a transaction the conditions under which future
transactions can access a resource. The following are examples of common
administrative restrictions:

6.5.1. Granting permissions to one or many users for five days

5d

OP_CHECKSEQUENCEVERIFY

OP_VERIFY

1

<hash_public_key_owner_1>

<hash_public_key_owner_2>

<hash_public_key_owner_3>

3

OP_CHECKMULTISIG

The 5d constant estimates the number of blocks that can be generated in five days.
OP_CHECKSEQUENCEVERIFY checks whether the current block number is more
than the block number of the input transaction plus the number on the stack, in this case,
five days’ worth of blocks.

6.5.2. Locking a resource for some time

5d

OP_CHECKSEQUENCEVERIFY

71 Chapter 6: Cluster Management

OP_DROP

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG

6.5.3. Require multiple signatures. For example, 2 out of 3 operator users need to
sign the transaction

2

<hash_public_key_owner_1>

<hash_public_key_owner_2>

<hash_public_key_owner_3>

3

OP_CHECKMULTISIG

6.5.4. Require two signatures for some time. Then after that period, any
modifications can be done with a single admin signing the transaction

OP_IF

 2

 <hash_public_key_owner_1>

 <hash_public_key_owner_2>

 <hash_public_key_owner_3>

 3

 OP_CHECKMULTISIG

OP_ELSE

 5d

 OP_CHECKSEQUENCEVERIFY

 OP_DROP

 1

 <hash_public_key_owner_1>

 <hash_public_key_owner_2>

 <hash_public_key_owner_3>

 3

 OP_CHECKMULTISIG

OP_ENDIF

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 72

The previous examples of locking logic apply to any type of resource, including nodes
and clusters. This enables scenarios where specific resources have lesser operational
requirements while others, like clusters, enforce more complex logical conditions. It
would be common to require multiple signatures to perform any changes at the cluster
level.

6.6. Deleting Resources
Resources can be deleted by specifying the latest output transaction that modified the
resource as input. The output of a transaction that deletes a resource is null. It is also
important to note that all descendants are deleted when deleting a parent resource. This
means that nodes need to keep an index that maps resources to the last transaction that
modified the resource. Figure 25 is an example of decoded transaction deleting a
namespace.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

]

}

Figure 25 Delete resource transaction

Clusters are the only resources that cannot be deleted, as this is the root of all
transactions.

6.7. Multiple transaction outputs
A transaction can have multiple outputs. For example, creating or updating multiple
namespaces within a single transaction is possible. Every output of the transaction has a
locking script. Figure 26 is an example of a transaction with more than one output
namespace resources. Because each resource needs to be uniquely identified as an input
of future transactions, creating multiple resources in the same output is not permitted.
Future research will evaluate utilizing different indexing mechanisms for transaction
outputs to provide a more compact representation for more than one resource.

73 Chapter 6: Cluster Management

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "development-ns",

 "labels": {

 "name": "development"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_creator>

OP_EQUALVERIFY

OP_CHECKSIG",

 },

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "production-ns",

 "labels": {

 "name": "production"

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 74

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_creator>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 26 Multiple output transaction

When a transaction input refers to a transaction with multiple outputs, it is necessary to
use the “vout” field for the correct output. Figure 27 shows a transaction deleting the
production namespace created on the previous transaction.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the multiple ns transaction>",

 "vout": 1,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

]

}

Figure 27 Deleting resources from multi-output transactions

6.8. Permission hierarchy

Access to resources is determined by the locking script used in its latest transaction that
modified the resource or the locking script of any parent resources in that order. When
evaluating whether a transaction should be allowed, the depth-last order in the hierarchy
in Figure 28 is applied.

75 Chapter 6: Cluster Management

Figure 28 Resource hierarchy

For example, a Pod transaction can include a locking script that references the hash of
Alice’s key. Bob's key hash is included in the script transactions that locked the
namespace where the Pod was created. Even if the new Pod transaction does not include
Alice’s key hash, he can still modify the resource by using the transaction of the
namespace as input to alter the Pod.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 76

The process to evaluate of access control follows these steps:

1. Check that the latest input transaction modified the output resource

specified in the “vout” field.

2. If the transaction's output is the object being modified, evaluate the locking

script. If the locking script returns OP_TRUE, accept the transaction.

3. If the transaction's output is another object, check whether the object is the

parent of the object being modified. If it is the case, evaluate the locking

script. If the locking script returns OP_TRUE, accept the transaction.

 77

CHAPTER 7. BUILDING THE NETWORK

7.1. Nodes joining the network

Nodes connect to a network via the P2P gossip protocol. When a node is first initialized,
it needs to be configured with one or more nodes from which it can discover the other
nodes on the network.

When a node starts up for the first time, it connects to the configured node address
resolved by the DNS service. If the node connects to the network for the first time, it
will not know the chain or other peers. After a successful connection, the node calls the
GetPeers function on the other nodes to receive the list of known peers to be persisted in
the peer's database.

To participate in the network operations, a node must first download the network’s
blockchain. By calling GetBlocks on the peer nodes, it will receive the longest known
chain by its peers in the form of block headers. Once the list of blocks is parsed, it gets
added to the list of pending blocks and proceeds to request those blocks across all
known peers.

By looking at the block headers, the node has enough information to validate the chain
by looking at the hash of each block. It does not know, however, whether the
transactions on the block are valid.

After the node downloads the largest known chain, it parses the contents and builds the
state database with the information by processing each block in order and validating the
transactions. It also validates the list of available peers and updates it to ensure it only
accepts proposed blocks from peer nodes part of the cluster during that process.

While a node can only receive new proposed blocks in the form of block headers from
other nodes in the cluster, it can download Blocks from any other node connected to the
network. After a block is downloaded, it is validated through the Merkle tree hash
stored in the block header. If a peer provides an invalid block, the peer is marked as
blacklisted.

Downloading the chain and building the state database is expensive as it requires
validating every single transaction in the blockchain. A possible optimization is to
provide a parameter that establishes a recent block hash as confirmed valid as part of the
node's configuration, therefore eliminating the need to validate every single transaction
in the block. Another possible optimization is including the hash of the configuration
resource tree in every block, enabling a new node to download the tree from another
node and validating the hash, further accelerating the initialization process.

To prevent Sybil attacks, the node should only maintain a percentage of node
connections to non-cluster nodes and transmit the list of black-listed nodes when other
peers call GetPeers on the node. When a node gets added to the cluster through a

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 78

transaction, the node should add the node's address to the peer list. Incoming
connections from nodes outside the network should be limited to ensure that non-cluster
nodes use all network connections.

Figure 29 Node network topology

Non-cluster nodes are allowed to obtain a copy of the blockchain for different use cases:

1. Development: A developer needs a copy of the blockchain to build and test

transactions before submitting them to the cluster. Users submitting

transactions need access to the blockchain to calculate signatures and hashes

of resources being used from previous transactions. In addition, testing and

locking scripts are critical operations as transactions in the cluster are

irreversible.

2. Analytics: Building systems that aid with the analytical operations of the

cluster. For example, capacity planning, cluster utilization, efficiency,

consensus performance, security analytics, etc.

3. Watchtower: Watchtowers act as ‘watchdogs’ of the blockchain to identify

and penalize malicious nodes. For example, monitoring blocks' contents and

removing nodes generating blocks that do not contain transactions

79 Chapter 7: Building the Network

broadcasted through the network, indicating the node might have been

compromised.

4. Oracles: Oracles are auxiliary input nodes that produce transactions that

help with the operations and maintenance of the network, for example, by

creating transactions that report the application's state. Oracle inputs are

signed and support the construction of locking scripts. For instance, an

Oracle can provide a transaction signature that unlocks a resource that needs

to be updated to scale up resources. Oracles are helpful to gate-keep

processes based on data, not just signatures.

7.2. Submitting a transaction

Users can submit transactions directly to nodes through the RPC API. When a node
validates transactions as soon as they are received, including:

1. The input transaction exists.

2. The input resource is valid, including parsing the content and ensuring well-

formed.

3. The input resource has a locking script.

4. The transaction used to refer to the input resource is the latest transaction in

the chain for that resource.

5. The SigScript field satisfies the inputs of the locking script and, upon

execution, returns OP_TRUE.

6. The output resources are valid.

7. The output script, if any, is valid.

If all checks pass, the transactions are added to the Pending changes transaction list and
communicated to all other nodes connected to that node. Notice that the transaction can
still become invalid in the context of a new block due to another transaction invalidating
it.

7.3. Validating a transaction
When a user submits a transaction, two possible mechanisms satisfy the validation
requirements—direct or indirect resource access.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 80

- Direct access transactions reference the latest transaction with the target object as

output and index the correct output. It's the user's responsibility to identify the most

recent transaction and produce a signature that meets the requirements of the locking

script.

- Indirect access transactions have as input the latest transaction of the parent

resource. For example, creating a node refers to the output of the most recent cluster

resource transaction.

As previously stated, locking scripts are simple, stack-based, and processed from left to
right as a series of sequential instructions. Data is pushed onto the stack, and opcodes
are used to perform operations on the items on the stack. Only resources that have
output scripts can be used in subsequent transaction inputs.

7.4. Block Formation
Validators check every transaction during the block forming process. A node is formed
by ordering the pending transactions and encoding them into a single block. The
selection of transactions to be included in a block is a critical aspect of the system's
design and will be further analyzed in the following sections. Transaction order is
performed through both Topological and Canonical Ordering.

- Topological ordering by ordering transactions according to the position of

the input resources in the permission hierarchy. In other words, placing

transactions in the following order: first clusters, then nodes, namespaces,

etc. Transactions with the same input are ordered using the same process

but evaluating the outputs, placing null output first. For example, a

transaction that creates a node is placed before a transaction that creates a

namespace, as both would have the same input.

- Canonical ordering occurs when two resources have equivalent inputs and

outputs in the resource permission hierarchy. When this happens, those

transactions are ordered by the transaction Id calculated as the SHA256 of

the transaction data. For example, two transactions that create a node will

be shorted by the transaction ID.

81 Chapter 7: Building the Network

Topological ordering ensures that sequential transactions that depend on a previous
transaction are evaluated in a way that maximizes transaction validity. For example, a
pod cannot be created until the parent namespace is created. Null output ordering is
essential for cases when a transaction that eliminates resources needs to be processed in
the same block as a transaction that allocates new resources.

Canonical ordering ensures that the output is unique and deterministic given the same
set of transactions. In other words, given the same unordered transactions, the result
after ordering would be the same regardless of who performs the ordering or when the
operation is done.

 83

CHAPTER 8. CONSENSUS ALGORITHMS

8.1. Selecting a block creator
Minting a block is the most critical operation in a blockchain. The following section
will analyze different algorithms that can be used to ensure that blocks are minted,
validated, and added to the blockchain throughout the network while minimizing the
amount of trust required. In essence, these algorithms enable the capability to achieve
consensus on which blocks to add to the chain based on rules that ensure fairness and
security to all participants.

The analysis we will perform include, when relevant, their characteristic behavior for
the following properties:

1. Partition resistance: The ability to operate and recover when network

partitions occur for a short time or more extended periods. Including single

network partitions, multiple network partitions, and network partitions with

Byzantine Agents. In this section, we will also analyze the behavior of the

network under different latency scenarios.

2. Resource Consumption: The total amount of resources used to mint a new

block and distribute it across the network and the total amount of resources

required to tamper with a block in the chain at different depth levels

3. Byzantine fault tolerance: What happens when an actor decides not to

follow the rules and tamper with blocks of the chain or newly minted

blocks. Including when the BFT notes are the minority and the majority.

The analysis will include normal circumstances and network partition

scenarios.

4. Availability: What are the necessary conditions for a transaction to be

submitted to the network and added to a block with a reasonable guarantee

of not being rolled back. In other words, the transaction is statistically

confirmed.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 84

8.2. Consensus algorithms

The following consensus algorithms will be evaluated as part of this research:

1. Proof of work (PoW) is a consensus algorithm based on demonstrable

computational effort across a fixed time window, forcing each party to

upfront a total energy/computational cost proportional to their weight on the

consensus effort.

2. Proof of space (PoS) is a consensus algorithm based on demonstrable

storage capacity requiring every participant to pre-compute and store an

established function output. Participants must be able to prove knowledge of

that output at any time, ensuring a commitment to integrity by upfronting

the storage cost.

3. Proof of Authority (PoA) is a consensus mechanism based on the proven

identity of the participants. This algorithm requires establishing a level of

trust across the participants.

4. Proof-of-stake (PoS) is a consensus algorithm based on demonstrable funds

at stake requiring all participants to deposit a monetary amount in an escrow

account controlled by a cryptographic protocol.

As part of the evaluation, we will consider the following security attacks:

1. Distributed Denial of Service Attack: Overwhelming the system with

transactions, for example, using compromised keys.

2. Sybil Attack: Overwhelming the system with Byzantine validator nodes or

compromised nodes submitting incorrect validations or block submissions.

8.3. Proof of Work

Proof of work (PoW) is a cryptographic proof in which one party proves to others that a
certain amount of a specific computational effort has been expended. This section
analyzes how adding PoW requirements to the consensus algorithm ensures a
homogeneous selection of nodes generating blocks and secures the network by
guaranteeing that any attacker compounds the computational requirements required to
disrupt the process.

85 Chapter 8: Consensus Algorithms

As the Application Specific Integrated Circuits (ASICS) and Field Programmable Gate
Arrays (FPGA) are used for PoW computation for blockchain consensus operation, the
decentralized nature of blockchain networks is being threatened. For simplicity, we will
focus on SHA256 proof of work. The need for more complex solutions to protect the
network from adversaries with hardware-accelerated devices should be noted.

In PoW, every node competes in building a block by iterating through computing the
block header's hash combined with a Nonce. Before a hash can be calculated, the block
needs to be formed. In PoW consensus, there is a delay between when a transaction is
submitted and when the transaction is added to the block. The race to build and hash the
next block starts after a node has received a valid block, meaning all transactions in the
block are correct, and the block's hash meets the target difficulty levels.

8.4.1. Building new blocks

Nodes gather pending transactions from the pending transaction pool to form new
blocks. After ordering and validating them, transactions are hashed and organized into a
Merkle tree. The tree's root is added to the block header, which will be hashed as part of
the mining process. The node then can start iterating through hashing of the block
header by adding the current value of the node Nonce and incrementing it in every
iteration.

Figure 30 Proof of Work consensus

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 86

The Nonce of the node is an integer value initialized when the node is created and
maintained throughout the node's lifetime. Because Nonce is persisted and not reset on
every block iteration, it ensures random distribution of Nonces across the network over
time. For example, if two nodes with identical computing power were created
simultaneously and started with the same Nonce value, network timing differences and
finding hashes that meet the target requirement will diverge the Nonces of those nodes
over time.

8.4.2. Target difficulty

The Target value is determined by the current network difficulty setting, which carries
over across blocks. Nodes are tasked to find a 256-bit unsigned integer whose hash
combined with the header must be equal to or below for that header to be a valid part of
the blockchain. Because hashes are randomly distributed, the average time required to
find a hash meeting the difficulty requirements is proportional to the network's
computing power.

In essence, the target is inversely proportional to the difficulty. The difficulty is encoded
as a compact representation of a 256-bit number. The first byte of the 32-bit field
represents an exponent, and the remaining 3 bytes encode a mantissa.

𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 = 𝑀𝑎𝑛𝑡𝑖𝑠𝑠𝑎 ∗ 2!∗($%&'($()*+)

At the genesis of the blockchain, the first difficulty target can be inferred by estimating
the hashing performance of the first node and applying the following formula.

𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 =
𝑀𝑎𝑥𝑇𝑎𝑟𝑔𝑒𝑡𝐻𝑎𝑠ℎ𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑

𝐻𝑎𝑠ℎ𝑃𝑒𝑟𝑆𝑒𝑐𝑜𝑛𝑑 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒

The MaxTarget is the highest value of a 248-byte number. In this case:

0x00000000FF

Because Bitcoin stores the target as a floating-point type, this is truncated:

x00000000FFFF00

Which is the compact representation being 0x1D00FFFF.

87 Chapter 8: Consensus Algorithms

TargetBlockTime is the desired number of seconds between blocks. This parameter will
determine block latency and should be carefully selected. It should be high enough to
minimize the chances of 2 or more nodes generating a block simultaneously yet low
enough to meet operational latency requirements.

As more nodes are added to the network, the difficulty level must be adjusted to ensure
that the network produces blocks at the desired TargetBlockTime. Difficulty
adjustments are calculated automatically according to the height of the block:

𝑁𝑒𝑥𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦 ∗ 𝑇𝑎𝑟𝑔𝑒𝑡𝐵𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ∗ 𝐵𝑙𝑜𝑐𝑘𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑃𝑒𝑟𝑖𝑜𝑑

∑ (𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(− 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝(*-)
./'0123456)7$()8$9:'3
(;-

BlockAdjustmentPeriod is a network parameter that specifies the number of blocks
between adjustments. Given that this is not a complex operation to calculate, the value
can be estimated by taking into consideration the rate of change of total available
hashing power, which should be targeted to be a percentage of the entire computing
capability of the network to ensure that the threats to the consensus algorithm scale with
the size of the network.

8.4.3. Block collisions

Two nodes may find a solution to the hash problem simultaneously or within a period
where the broadcasting of the block happens simultaneously. Every node must follow
the rules when receiving a valid block:

1. If the block is the next one in the chain, add it to the chain.

2. If the block number is higher than the next block in the chain, request any

blocks that precede the received block and adopt the sub-chain.

3. If blocks in the current chain collide with the sub-chain, discard those

blocks and adopt the new chain. Transactions that were part of the sub-chain

and are not found in the new chain are re-added to the pending transaction

list.

While it might be possible that the blockchain is forked temporarily by nodes adopting
different versions of blocks, these rules ensure that the chain self-stabilizes by ensuring
the survival of the longest chain generated by the chain with the largest group of nodes
that adopted it. If the network is split exactly in half, network timings and performance
invariance will ensure that one of the chains falls behind and deprecates. As illustrated
in Figure 31 the same logic applies if the collision occurs between more than two nodes.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 88

Figure 31 Resolving chain splitting.

The total resource consumption of the consensus algorithm is the sum of all computing
power not used by the network to execute applications. While searching for the next
block hash is not considered productive work, it has several security benefits and
incentives for the network owners to right-size the network to maintain an acceptable
level of unproductive resource consumption.

8.4.4. Byzantine Fault Tolerance

PoW networks are Byzantine fault-tolerant to a certain extent. In case some network
nodes are compromised, the consensus algorithm can still be effective if the attacker
controls less than 51% of the hashing power. Those nodes can be instructed to ignore
legitimate transactions and produce blocks with valid but irrelevant transactions. In
addition, compromised nodes must not accept legitimate valid blocks for the attack to
be effective. The security attack will stop the processing of legitimate transactions and
prevent operations on the network, which can be potentially used to disrupt applications
running in the cluster.

89 Chapter 8: Consensus Algorithms

Figure 32 Blockchain 51% attack

Suppose the attacker compromises less than 51% of the hashing power. In that case, it
can still disrupt operations but not halt them. The network will still accept valid blocks
generated by normal nodes, and compromised nodes will be forced to take the blocks to
ensure they can follow the longest chain to broadcast empty blocks.

Table 4 Hashing power attack ratios contain an example of the number of nodes that
need to compromise the consensus process assuming 80% utilization of the network
computing power for production workloads and 100 KH/s per node. Assuming
Byzantine nodes utilize 100% of the compute power for hashing.

Legitimate

Nodes

Compromised

Nodes

Hashing

Power

Compromised

Hashing Power

% Of

Dummy

Blocks

% Of

Legitimate

Blocks

100 0 2 MH/s 0 MH/s 0% 100%

99 1 1.98

MH/s

100 KH/s

5% 95%

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 90

95 5 1.9 MH/s 500 KH/s 21% 79%

90 10 1.8 MH/s 1 MH/s 36% 64%

85 15 1.5 MH/s 1.5 MH/s 50% 50%

80 20 1.6 MH/s 2 MH/s 55% Discarded

50 50 1.6 MH/s 5 MH/s 75% Discarded

Table 4 Hashing power attack ratios

In the Table 3 example, when the attacker compromises less than 15 nodes, it can slow
down the operational network throughput by producing valid dummy blocks added to
the chain as if they contain legitimate transactions. In this case, the attacker does not
have enough hashing power to create blocks to maintain a chain of dummy blocks fast
enough. Once the hashing power crosses the 51% threshold, the attacker can, on
average, generate more blocks than the rest of the network, therefore, ensuring the
dummy chain is the one that survives, and any other block is discarded.

To restore partial control of the cluster, it is only necessary to restore enough nodes
such that there are more legitimate nodes than compromised nodes. After system control
is restored, all blocks generated by the byzantine nodes will still be part of the chain as
those changes are irreversible.

It is possible to implement heuristics for legitimate nodes to reject blocks generated by
potentially compromised nodes. Those techniques are outside the scope of this research.

8.4.5. Network Partitioning

Network partitioning occurs when a group of isolated nodes cannot communicate with
the rest of the network's nodes. This is a common scenario when those nodes are not in
the same data center, or the data center is partitioned into two or more availability
zones.

When a network partition occurs, there is a risk that transactions submitted to the
network partition with the shortest chain are lost once the network connectivity is
restored.

91 Chapter 8: Consensus Algorithms

Figure 33 Network Partition in PoW

If Byzantine agents attack a network partition, each network partition will behave as if it
was a unique cluster of nodes. In other words, if the byzantine agents in one network
partition obtain more hashing power than the legitimate nodes, no new transactions will
occur on that partition. Once the network partition is restored, the longest chain
produced (the network partition with more hashing power) will spread across the
cluster, and any other chains will be discarded.

In the example below, the network is partitioned into two. Assuming the same
constraints as before of 80% productive utilization of legitimate nodes, the partition
with 18 nodes and a total of 1.8 MH/s will be able to maintain a longer chain. However,
the network partition with only two nodes and one of them compromised will not be
able to process any new transactions as the byzantine node will have the ability to hash
at 100 KH/s vs. 20 KH/s of the legitimate node. In addition, any transaction between the
time the partition occurs and the node is compromised will be discarded once the
longest chain is adopted.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 92

Figure 34 Restoring Network Partitions

8.4.6 Block size considerations

Block size, by default, can be up to 232 bytes or 4Gb. Assuming an average transaction of
1024 bytes, the system will be limited to 4 million operations per block. It is important
to note that changes that require more than 4GB of block space will be needed to be
spread across multiple blocks. For example, a global configuration change to all
resources in the cluster might require extending changes through numerous blocks. In
addition, propagation of those transactions might not happen within the BlockPeriod
time, therefore not reaching the node winning the hash lottery.

The following formula defines the throughput of the system:

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
2+<

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑆𝑖𝑧𝑒 ∗ 𝐵𝑙𝑜𝑐𝑘𝑃𝑒𝑟𝑖𝑜𝑑

If the BlockPeriod is 60 seconds and the average transaction size is 1024 bytes, the total
average throughput of the cluster is 69905 operations per second.

93 Chapter 8: Consensus Algorithms

8.4.7. Other Attacks

A Sybil attack is where an attacker tries to create as many nodes as possible to
overwhelm the P2P network. Because nodes need to be explicitly added to the network,
in other words, it is not a permission-less network, this type of attack is not possible.
Nodes should connect to nodes that are not part of the cluster.

Distributed Denial of Service Attack (DDoS) occurs when a key that provides access to
resources in the cluster is compromised, therefore enabling the possibility of submitting
valid transactions to overwhelm the P2P network. Several countermeasures can be
implemented to mitigate the effects of these attacks:

1. Transaction throttling: Establishing the maximum number of transactions

that a node can emit or receive from another node or user.

2. Resource type quotas: Establish a maximum number of operations per input

resource type.

3. Anomaly detection: Develop pattern matching algorithms that detect

anomalous transaction operations.

4. Multi-signature locks: Requiring multiple signatures for operations reduces

the risks when a signature is compromised.

5. Watchtowers: Require every transaction signed by a third party to ensure

that the watchtower requirement is implemented for subsequent transactions

and other external verifications to guarantee that only legitimate

transactions are added to the network.

6. Time-locked transactions: Only accept transactions that impose a time lock

after several transactions per second on the same resource have been

executed.

One of the advantages of locking scripts is integrating with external systems via the
encoding of complex logic and signature proofs.

Other types of DDoS attacks are possible by, for example, overwhelming the TCP/IP
layer and blocking the ability of a node to connect to other nodes. These attacks are out
of the scope of this research.

In large-scale distributed systems, Nonce distribution should be homogeneous due to
the implicit randomness of the block generation process. In cases where a group of
nodes colludes to take control over the network, it is beneficial for the attacker to
sequence the Nonce hash calculation to minimize overlaps between attacking nodes.
This manipulation of the Nonce could be detected by analyzing the Nonce distribution
across the nodes.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 94

An example of distribution manipulation happens when hash computing power is
aggregated in mining pools. Figure 30 showcases the Nonce distribution of popular
cryptocurrencies that utilize PoW and allows the aggregation of nodes via mining pools
which sequence the Nonce being evaluated across all nodes part of the pool.

Figure 35 Nonce distribution across blocks

In cases where compromised nodes hashing power utilization is maximized, it would be
possible to detect the increased hashing power of the network by detecting the
accelerated production of both legitimate and dummy blocks.

8.5. Proof of Space
Proofs of Space (PoSpace) is very similar to proofs of work (PoW), except that instead
of computation, storage is used to prove that the prover has reserved a certain amount of
space. PoSpace is different from memory-hard functions in that the bottleneck is not in
the number of memory access events but the amount of space required. If a prover does
not reserve the claimed amount of space, it should be hard to pass the verification for
security challenges. An adversary who stores a file of size significantly less than N bits
should not be able to produce valid proof for a randomly selected challenge [65].

95 Chapter 8: Consensus Algorithms

Figure 36 Proof of Space consensus

8.5.1. Building new blocks

Using a proof of space system, every node can immediately compute a proof, so we
somehow need to nominate a node that will produce the next block. A possible
implementation is to order the hash of the proof. The node producing the lowest scalar
value of the proof hash should be the next block of the chain. To finalize the block, one
must augment the block with the output of a verifiable delay function that limits the
network's speed to generate blocks.

When a node is initialized, the PoSpace storage needs to be initialized. One of the
advantages of this consensus protocol is that this is a single-time operation, reducing the
total cost of resources to produce proofs. In addition, once the node is decommissioned,
the storage space can be reclaimed. Figure 36 shows the process each node follows
during the consensus mechanism.

Legitimate Compromised % Of Dummy % Of Legitimate

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 96

Nodes Nodes Blocks Blocks

100 0 0% 100%

99 1 5% 1%

90 10 90% 10%

50 50 50% 50%

49 41 100% Discarded

Table 5 Proof of Space effect of compromised nodes

It is important to note that the expensive node initialization makes this consensus
protocol unsuitable for highly dynamic environments where nodes are created and
destroyed upon the system’s load. For example, dynamic cloud environments vs.
physical machines in a data center.

8.5.2. Security considerations

In addition, when nodes are compromised, unlike in PoW, the compromised node's
capability to generate proofs stays constant. Therefore, for an attacker to halt the
network's operations, it would require obtaining control of at least 51% of the nodes.
Table 5 summarizes the effects that compromised nodes would have on the network.

It is important to note that PoSpace is more resistant to compromised nodes for smaller
clusters. For the control plane to be disrupted, a cluster with ten nodes would require at
least six to be compromised. Most other considerations are identical to PoW.

8.5.3. Lightweight clients

It is possible to implement light nodes in PoSpace. For light nodes, a full node can
create a smaller proof that can convince the light node that the weight of a chain is close
to some value. This is called proof of weight. Naively, the light node could download
every block in the chain and all the necessary proofs and verify them. However, this
would require a lot of bandwidth and CPU.

Conceptually similar to the mechanism used by Flyweight clients [66], a light node can
validate through a hashing mechanism that the blockchain in the full node has been
fully validated and is the longest consensed chain across the network. This enables the
lightweight node to consume the system’s state database without participating in the
consensus process.

97 Chapter 8: Consensus Algorithms

8.6. Proof of Authority
Proof of Authority (PoA) is a reputation-based consensus algorithm that introduces a
practical and efficient solution for blockchain networks. The PoA consensus algorithm
leverages the value of identities, meaning block validators are arbitrarily selected as
trustworthy entities. The weight of the participants in the consensus algorithm is backed
by trust.

The identity of a node consists of an asymmetrical key pair. The keys of a node must be
generated before the node can be added to the network, as the public key would be part
of the resource. When a node is created, it initializes the key pair and stores it in a
secure element, for example, a TPM module.

Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international
standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure
hardware through integrated cryptographic keys.

8.6.1. Adding a node to the network

A node connects to the P2P network during the setup process without being part of the
cluster by authenticating with a pre-created staging key. This key allows the node to
download the blockchain from the network. Once the node has a copy of the
blockchain, the admin can request from the node the transaction required to add it to the
cluster and submit the transaction by providing the locking script. Figure 37 shows an
example of a node added to the network, including its public key hash. This enables the
node to update any of its metadata. The node uses the staging key to sign the
transaction.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Node",

 "metadata": {

 "name": "new-node",

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 98

 "pubKey": "<node_public_key>",

 "labels": {

 "name": "offline"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 37 Adding node with a public key.

Once the node has been added to the cluster, all other nodes update their peer list with
the node's name and the public key that will later be used to validate blocks from the
node.

8.6.2. Security concerns

If the staging key is compromised, the attacker can create as many nodes as they want
and block the consensus algorithm. The following are possible ways to mitigate the risk
of an attacker getting hold of the keys:

1. Create a staging key per node and make the keys single-time use. This

process would limit the number of nodes the attacker can create to the

number of keys they can get hold of.

2. Limit the rate of nodes that can be added to the cluster.

3. In on-demand environments, it is possible to pre-create all nodes and turn

them off. This can also reduce the time to synchronize the blockchain but

using de-duplication technology and cloning disk containing the most recent

blockchain.

4. Reduce or temporarily eliminate the weight of the new nodes in the

consensus algorithm. For example, nodes created in the last 24 hours cannot

participate in the consensus algorithm. This introduces other possible

99 Chapter 8: Consensus Algorithms

attacks for small clusters where only a portion of the cluster is old enough to

join in the consensus, confining all consensus to a small list of nodes.

8.6.3. Consensus algorithm

Nodes on the network compete to produce the next block by signing a proposed block
header and broadcasting the signature. The node will enter a contest to be selected to
submit the next block.

Figure 38 Proof of Authority consensus

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 100

The winner will be selected using a collusion-resistant Multiparty Computation Random
Ordering algorithm [67]. Once all the nodes receive the results of the random ordering,
the first one is to propose the node. If the first one fails to produce a valid block, then
the second of the list gets a chance. The process continues until one of the nodes has a
valid block. The Verifiable Delay Function is added to the sequence of producing the
block to ensure blocks are generated at the predefined cadence.

Other possible mechanisms to ensure a node's fair selection include using Verifiable
Random Function [68] (VRF). VRFs require all nodes to share a secret key that can be
further randomized with the last block's hash. Seeding the key with the block's hash
reduces the possibility of a node pre-calculating which future nodes will be selected to
generate the next block.

The consensus has similar characteristics to the PoSpace consensus mechanism with the
difference of being resistant to Out of Network attacks where supplemental compute or
storage power enhances the capabilities of the adversary to produce blocks.

The significant difference with PoA consensus is that adding nodes to the network
needs to be orchestrated. The nodes cannot be added to the block before they are
created, and the key pair is registered with the cluster.

Alternatively, a root of trust can be created such that nodes can provide a certificate
chain that automatically allows them to become part of the network if the node entries
are pre-created in the cluster. The certificate root to generate those certificates becomes
a single point of failure for the cluster.

8.6.4. Security Considerations

To further eliminate the possibility of forging blocks that produce a hash that can pre-
select the winning node, it is necessary to add the restriction that a node cannot be
selected more than once for several blocks proportional to the size of the network. In
addition, other heuristics can be added to the algorithm to ensure that a percentage of all
the pending transactions must be added to the block for the other nodes to consider the
block valid.

All honest nodes will respond, and the computation can be complete. If any nodes do
not respond in a specified time, a new round will be started, excluding the nodes that
did not reply in the first round. Every time a node fails to respond, it will be blocked for
a determined period, for example, 100 blocks.

8.7. Proof of Stake
Proof of Stake (PoS) protocols are a class of consensus mechanisms for blockchains that
work by selecting validators in proportion to their quantity of holdings in the associated
cryptocurrency. This consensus mechanism is particularly interesting for scenarios
where the nodes are managed by parties that do not necessarily trust each by structuring
financial compensation in a way that makes an attack less advantageous. If a node

101 Chapter 8: Consensus Algorithms

misbehaves (offline, attacks the network, deflects from the protocol) in the network, the
process of implementing the penalty is called slashing.

For this research, we will focus on Bitcoin as the financial instrument used in the
staking protocols. The cluster blockchain essentially becomes a layer two operation
relying on the Bitcoin network to secure the funds at stake required to participate in the
consensus algorithm [69].

To orchestrate the financial compensation in the following example, we used the Pay-
to-script (P2SH) capability of the Bitcoin network. A P2SH hash allows transactions to
be sent to a script hash instead of a public key hash. To spend the amount sent via
P2SH, the recipient must provide a script matching the script hash and corresponding
signatures making the script evaluated return OP_TRUE. One of the characteristics of
P2SH is that the script only needs to be made public when unlocking the funds.

8.7.1 Adding nodes to the network

To enable the protocol, every node needs to be identifiable by a node's public key. The
public key uniquely identifies the specific node and is usually presented as a
hexadecimal encoding. As in PoA, nodes generate a private root key when first
initialized and stored in a secure element or TPM module.

Nodes must submit a Bitcoin on-chain staking transaction that must be verifiable by
every other node. The transaction contains the hash signature of a script that requires at
least half of the node's signature to unlock the funds and locking period. Because only
half of the nodes are required to sign the slashing penalty, the consensus mechanism can
enforce it even if some nodes are offline.

In addition, the node can recover the funds without any intervention from the cluster
after a lockout period. The time specified on the script is the staking period during
which the funds are not recoverable by the node. Figure 39 shows a stalking transaction
script with a 5d lockout period.

OP_IF

 <N/2>

 <hash_pubk_node_1>

 <hash_pubk_node_2>

…

 <hash_pubk_node_N>

 <N> OP_CHECKMULTISIG

OP_ELSE

 5d

 OP_CHECKSEQUENCEVERIFY

 OP_DROP

 OP_DUP

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 102

 OP_HASH160

 <hash_public_key_from_stalking_node>

 OP_EQUALVERIFY

 OP_CHECKSIG

OP_ENDIF

Figure 39 Staking transaction script

The consensus involves two phases:

1. Multiparty computation generates the ordered list of nodes selected to mint

the next block. Alternatively, a Verifiable Random Function can be used as

stated in Proof of Authority.

2. Node production and validation.

103 Chapter 8: Consensus Algorithms

Figure 40 Proof of Stake

8.7.2 Consensus Algorithm

The first phase of the consensus is identical to PoA, where a collusion-resistant
multiparty computation is used to ensure a fair selection of candidates to generate the
next block. Unlike in the cryptocurrency PoS protocols, all nodes have the same weight
in the algorithm. Future research will evaluate the possibility of separating the functions

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 104

into minting nodes and validators. After the node is selected, an additional penalty is
calculated if the selected node does not produce the next valid block. All candidates
must produce the block within a specified timeout. If the node fails to deliver the block,
the next node on the multiparty computation is expected to create the next block. This
time, the node will also produce a transaction where all nodes that participated in the
multi-party computations, minus the nodes that failed to create the block, are
compensated. When a node receives a block and a signature, it verifies that it has not
received another block already if it has not, the node signs the transaction and sends it to
the producer.

Figure 41 Slashing transaction

Figure 41and Figure 42 are examples of a Bitcoin transaction to be signed by nodes to
be compensated for the delay in the consensus.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the staking transaction>",

 "vout": 0,

 "scriptSig": "

<ECDSA Tx Signature Node 1>

<ECDSA Tx Signature Node 2>

105 Chapter 8: Consensus Algorithms

<ECDSA Tx Signature Node 3>

...

<ECDSA Tx Signature Node N>

OP_IF

 <N/2>

 <hash_pubk_node_1>

 <hash_pubk_node_2>

…

 <hash_pubk_node_N>

 <N> OP_CHECKMULTISIG

OP_ELSE

 5d

 OP_CHECKSEQUENCEVERIFY

 OP_DROP

 OP_DUP

 OP_HASH160

 <hash_public_key_from_stalking_node>

 OP_EQUALVERIFY

 OP_CHECKSIG

OP_ENDIF",

 "scriptPubKey": "

OP_HASH160

<hash_public_key>

OP_DUP"

 }

],

 "vout": [

 {

 "value": <(stack_amount-fees)/N + fees>,

 "vout": 0,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_block_producing_node>

OP_EQUALVERIFY

OP_CHECKSIG",

 },

 {

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 106

 "value": <(stack_amount-fees)/N>,

 "vout": 1,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_node_1>

OP_EQUALVERIFY

OP_CHECKSIG",

 },

...

 {

 "value": <(stack_amount-fees)/N>,

 "vout": <N>,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_node_N>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Figure 42 Redistribution transaction

It is essential to notice that in this transaction, the redeem script contains the locking
script itself instead of the hash, and the preceding signatures are needed to unlock it.
While this would be an expensive operation, it should only happen when nodes fail to
perform what they committed to do as part of the consensus.

It is recommended to use Taproot further to increase the performance and privacy of the
mechanism. Taproot enables the users to break down the unlocking script into multiple
scripts and only reveal the one used to unlock the staked amount. The mechanism relies
on Merkle trees. The hash corresponding to every script is added to the Merkle tree, and
the tree's root is included in the transaction as part of the unlocking script. To unlock the
transaction, the user only needs to provide one of the scripts, the hash and the Merkle
tree instead of all the scripts, thus reducing the transaction size.

107 Chapter 8: Consensus Algorithms

When a stake distribution event occurs, the node processing the transaction is
responsible for paying the transaction fees reimbursed as part of the transaction. The
node payment is calculated using the following formula:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑁𝑜𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡

=
𝑆𝑡𝑎𝑐𝑘𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡 − 𝐹𝑒𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑎𝑖𝑙𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 + 𝐹𝑒𝑒𝑠

While the rest of the nodes have the following amount:

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑁𝑜𝑑𝑒𝐴𝑚𝑜𝑢𝑛𝑡 =
𝑆𝑡𝑎𝑐𝑘𝑒𝑑𝐴𝑚𝑜𝑢𝑛𝑡 − 𝐹𝑒𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟𝐹𝑎𝑖𝑙𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠

8.7.3. Security Considerations

As in other consensus algorithms, DoS attacks require taking control over most nodes in
the network. In contrast, attacks with less than the majority of nodes will be discouraged
by losing the capital involved. Even in the case of launching a successful attack, the
only thing the attacker can do is disrupt operations. In any case, attackers cannot change
the contents of the blockchain and cannot forge blocks.

While beyond the scope of this research, the usage of blockchain platforms that support
Turing's complete smart contracts can provide further sophistication to the economic
incentive structure and management of funds. A Decentralized Autonomous
Organization (DAO) implemented by a smart contract can be used to provide
coordination between parties in an automated and trustless environment.

PART III: CONCLUSIONS AND

FUTURE RESEARCH

CHAPTER 9. CONCLUSIONS

The proposed architecture provides the foundation for a fully distributed configuration
management system that stores the global configuration in a blockchain structure and is
distributed across all the nodes in the network. This architecture solution offers
improved network-partitioning resistance and availability

The system is available, providing a node is accessible to the user. However, the intent-
record consistency is compromised and replaced with casual consistency. In essence, a
user querying a different node that received the change might obtain a response that
does not include the most recent change, that is, until that change is broadcast through
the network and adopted in a block that is part of the longest computed chain. This
scenario, we believe, is an acceptable compromise toward autonomy and availability of
the system.

The benefits of this decentralized architecture can be summarized as follows:

- Reduced management costs for small and medium deployments.

- Cryptographic proofs replace access control.

- Flexible policies based on a safe scripting language.

- An immutable record of all operations.

- Increased system availability.

- Partition resistance.

- Elimination of central point of failure.

The disadvantages of the proposed system include:

- The increased overhead of computing and storage requirements for each

node.

- Casual consistency might make it harder to predict the actual state of the

system.

- The Increased complexity of key management and lifecycle.

- The complexity of encoding usage policies as a script.

- Recovery of a security breach is more challenging to contain due to a lack

of a single point of control.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 112

9.1. Reduced management Costs

Management costs are categorized as Operational and Capital costs. Operational costs
represent the day-to-day costs of deploying and running the system. Capital costs
represent the Hardware and Software initial required to run the system. When running in
a cloud environment, all HW costs can be re-categorized as Operational costs. Table 6
summarizes the cost differences for the different evaluated approaches.

 Operational Capital

Centralized Requires deployment of the
controller node in addition to
the worker nodes.

Requires securing access control
mechanism and typically set up
zero trust security environment.

Additional controller nodes and
distributed storage management
systems (Etcd, MySQL)

Configuration is centralized and
replicated per storage management
node.

Requires separate logging
infrastructure to store operational
history and events.

Proof of Work Requires management of
hashing hardware.

Additional cost to run PoW
algorithm across all worker
nodes.

Additional cost of hashing hardware.

Configuration replicated across all
nodes

Proof of Storage Requires management of
storage devices.

Additional cost of storage devices.

Configuration replicated across all
nodes.

Proof of Stake Requires management and
custody of staked assets.

Configuration replicated across all
nodes.

Proof of Authority Requires security and
management of access control
keys.

Configuration replicated across all
nodes.

113 Chapter 8: Consensus Algorithms

Table 6 Summary of operational and capital costs

For example, a system comprised of 100 worker nodes with 1600 vCPUs and 6000 Gb
of RAM would require the investment captured in Table 7. The investment evaluation
uses the price calculator of a public cloud provider to calculate the hardware costs and
estimates a cost of 5 engineers for a centralized approach vs 3 for the proposed
decentralized solutions. Notice as the size of the cluster increases the number of
engineers increases at a slower rate, where at some point the cost of running a
centralized system becomes cheaper.

 Centralized PoW PoSpace PoStake PoA

Controller 3x $600

Database 3x $600

Node 100x

(16 vCPUS & 60Gb)
$38000 $38000 $38000 $38000 $38000

Node 100x with GPU

(Nvidia T4)
 $18000

Storage 100x (1TB) $10000

Logging Node 3x $600

Deployment and
Maintenance

($150K per engineer)

$60000 $36000 $36000 $36000 $36000

 $99800 $92000 $84000 $74000 $74000

Table 7 Cost comparison

For larger systems, there are other variables that will determine the management cost
which would determine the total cost of ownership of the system. Examples of these
variables are:

- Geographical distribution of the cluster. Highly dispersed nodes would

increase the complexity of the deployment and cost of replicating controller

nodes.

- The number of users consuming resources.

- The number of different applications running in the cluster.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 114

115 Chapter 8: Consensus Algorithms

9.2. Access Control through cryptographic proofs

In all centralized systems evaluated, access control is determined by Role-based Access
Control (RBAC). In these systems, access is determined by the user’s role which
implies a set of operations that can be performed against the system’s resources. Figure
43 is an example of Role that allows access to the API to access “configmaps”.

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

 namespace: default

 name: development-configmap-manager

rules:

- apiGroups: [""]

 resources: ["configmaps"]

 resourceNames: ["development-configmap"]

 verbs: ["update", "get"]

Figure 43 RBAC Security

In effect, RBAC access controls provide a layer of security between the user and the
system acting as a gatekeeper to the system resources. Any compromises to this layer
will render all access control ineffective as there is no implicit access control at the
protocol layer or declarative model.

In the proposed model, the access control policies are encoded and publicly visible on
the blockchain. Access control is built-in at the protocol layer and each node in the
network cryptographically verifies any transaction. Distributed auditability makes
attacks impossible as long as the nodes follow the protocol, and in any case, any
violation can be independently verified and detected. In addition, a critical difference
between RBAC and the proposed system is the script system that encodes complex
policy logic, including cryptographically signed events, time controls, and multi-
signature controls. Table 8 shows a high-level comparison of the capabilities between
RBAC and Locking Scripts.

 RBAC Locking Script

Groups Yes Yes, via Multisig

Roles Yes Possible via external input

Read/Write Yes Public Read, Write via Locking Script

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 116

Timeouts Possible

through

webhooks

Yes

External inputs Possible

through

webhooks

Yes, via Oracles

Cryptographic verification No Yes

Multi-user access control No Yes, via Multisig

Public Auditability No Yes

Historical traceability External Logs Yes

User controlled security No Yes, via custom scripts

Table 8 RBAC vs Locking Scripts

9.3. Blockchain Security

Minting an additional block to the blockchain is perhaps the most critical operation to
meet the desired consistency and performance requirements. In future research, we
analyzed different algorithms that can potentially be used to ensure that blocks are
minted, validated, and added to the blockchain throughout the network while
minimizing the amount of trust required. In essence, these algorithms enable the
capability to achieve consensus on which blocks to add to the chain based on rules that
ensure fairness and security for all participants.

To evaluate the suitability of the different algorithms for internet applications, we
compare the different researched algorithms using three properties:

1. Overhead: The capital and operational cost of running the consensus

mechanism.

2. Trust setup: The amount of required trust pre-established before

participation in the consensus mechanism.

3. Setup speed: The time required to add a node to the network.

117 Chapter 8: Consensus Algorithms

 Overhead Trust Setup Setup Speed

Proof Of Work High cost of
Operation

Low, protected by
Hash Power

Instant

Proof Of Space High Capital Cost Low, protected by
Proof of Space
reserved

Slow, depending on
storage size

Proof of Stake High Capital
Reserves

Low, protected by
capital reserve

Medium, wait for
epoch

Proof of Authority High, pre-
established setup

Instant

Table 9 Consensus algorithm comparison

Table 9 summarizes the properties of the different researched algorithms. Based on this
analysis we can infer its suitability for the following different scenarios:

1. Large Internet application: Applications serving users across the globe or

multiple regions with variable load demands.

2. Enterprise Cluster: Cluster shared by multiple applications with variable

demand.

3. Shared multi-organization: Cluster shared across multiple organizations with

multiple applications and variable demand.

4. Development Cluster: Cluster used by development organizations for testing

and staging purposes.

The evaluated algorithms are evaluated against these scenarios both On-Cloud and On-
Prem in Table 10 based on the properties summarized in Table 9. Consensus algorithms
with high setup costs are less suitable for On-Cloud scenarios due to the on-demand
nature of these environments. Conversely, those algorithms are well suited for On-Prem
environments where the infrastructure is already in place independent of its utilization.

 PoW PoSpace PoStake PoA

Large Internet application On-Cloud Yes No No Yes

Large Internet application On-Prem Yes Yes No Yes

On-prem enterprise cluster Yes Yes No Yes

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 118

Multi-cloud enterprise cluster Yes No No Yes

Shared multi-organization On-Cloud Yes No Yes No

Shared multi-organization On-Prem Yes Yes Yes No

Development Cluster No No No Yes

Table 10 Consensus algorithm suitability

Additionally, consensus algorithms that require pre-establish trust are well suited for
highly coordinated organizations that can centralize the cluster operations. For
organizations or multiple organizations without centralized trust, Proof-of-Stake
algorithms prompt cooperation encouraging good behavior through monetary penalties.

CHAPTER 10. FUTURE RESEARCH

10.1. ZK-SNARKS

“Zero-knowledge” (ZK) proofs allow one participant to prove a verifier that a statement
is true, without revealing any information beyond the validity of the statement itself.

ZK proofs can be used to limit the amount of information that the network of nodes
needs to know in order to successfully coordinate and distribute applications across the
cluster. Scheduling algorithms can operate over range values and the decryption key is
only made available to qualified secured nodes.

10.2. DAO Cluster Governance

A decentralized autonomous organization offers cluster administrators a model for the
collective management of the cluster resources. DAOs differ from traditional
organizations managed by boards and committees enabling a decentralized model for
sharing resources across clusters and organizations.

10.3. Confidential computing

Confidential computing uses hardware-integrated solutions to provide a level of
assurance of data integrity, data confidentiality, and code integrity. Organizations can
run sensitive applications and data on untrusted infrastructure, public clouds, and all
other hosted environments. Together with the combination of the rest of the
technologies covered in this research, it provides the foundation for the development of
a Peer-to-Peer public cloud service provider.

BIBLIOGRAPHY

REFERENCES

 [1] A. Berenberg and B. Calder, “Deployment Archetypes for Cloud Applications,”
ACM Comput. Surv., vol. 55, no. 3, p. 61:1-61:48, Feb. 2022, doi:
10.1145/3498336.

[2] H. Jamous, “A Reference Architecture for Building Highly Available and Scalable
Cloud Application”.

[3] S. S. Gill and R. Buyya, “A Taxonomy and Future Directions for Sustainable
Cloud Computing: 360 Degree View.” arXiv, Jul. 09, 2018. Accessed: May 17,
2022. [Online]. Available: http://arxiv.org/abs/1712.02899

[4] A. Gunka, S. Seycek, and H. Kühn, “Moving an application to the cloud: an
evolutionary approach,” in Proceedings of the 2013 international workshop on
Multi-cloud applications and federated clouds, New York, NY, USA, Apr. 2013,
pp. 35–42. doi: 10.1145/2462326.2462334.

[5] B. Power, “Digital Transformation Through SaaS Multiclouds,” IEEE Cloud
Computing, vol. 5, no. 3, pp. 27–30, May 2018, doi:
10.1109/MCC.2018.032591613.

[6] L. Mostarda, S. Marinovic, and N. Dulay, “Distributed Orchestration of Pervasive
Services,” in 2010 24th IEEE International Conference on Advanced Information
Networking and Applications, Apr. 2010, pp. 166–173. doi:
10.1109/AINA.2010.100.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646, Oct.
2016, doi: 10.1109/JIOT.2016.2579198.

[8] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman, “Bringing the cloud to the
edge,” in 2014 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2014, pp. 346–351.

[9] D. Bernstein, “Cloud foundry aims to become the OpenStack of PaaS,” IEEE
Cloud Computing, vol. 1, no. 2, pp. 57–60, 2014.

[10] A. Lomov, “OpenShift and Cloud Foundry PaaS:,” p. 10.

[11] B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center,” p. 14.

[12] N. Naik, “Building a virtual system of systems using docker swarm in multiple
clouds,” in 2016 IEEE International Symposium on Systems Engineering (ISSE),
Oct. 2016, pp. 1–3. doi: 10.1109/SysEng.2016.7753148.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 124

[13] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings of the
sixth ACM symposium on cloud computing, 2015, pp. 167–167.

[14] “Using the Cloud to build multi-region architecture.”
https://europeclouds.com/blog/using-the-cloud-to-build-multi-region-architecture
(accessed May 17, 2022).

[15] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in Proceedings of the
Tenth European Conference on Computer Systems, New York, NY, USA, Apr.
2015, pp. 1–17. doi: 10.1145/2741948.2741964.

[16] H. Qu, O. Mashayekhi, D. Terei, and P. Levis, “Canary: A Scheduling
Architecture for High Performance Cloud Computing,” p. 13.

[17] G. Sayfan, Mastering kubernetes. Packt Publishing Ltd, 2017.

[18] C. Pahl and P. Jamshidi, “Software Architecture for the Cloud – A Roadmap
Towards Control-Theoretic, Model-Based Cloud Architecture,” in Software
Architecture, Cham, 2015, pp. 212–220. doi: 10.1007/978-3-319-23727-5_17.

[19] P. Alemany, R. Vilalta, R. Muñoz, R. Casellas, and R. Maríinez, “Peer-to-Peer
Blockchain-based NFV Service Platform for End-to-End Network Slice
Orchestration Across Multiple NFVI Domains,” in 2020 IEEE 3rd 5G World
Forum (5GWF), Sep. 2020, pp. 151–156. doi:
10.1109/5GWF49715.2020.9221311.

[20] S. Gilbert and N. Lynch, “Perspectives on the CAP Theorem,” Computer, vol. 45,
no. 2, pp. 30–36, Feb. 2012, doi: 10.1109/MC.2011.389.

[21] M. K. Gokhroo, M. C. Govil, and E. S. Pilli, “Detecting and mitigating faults in
cloud computing environment,” in 2017 3rd International Conference on
Computational Intelligence Communication Technology (CICT), Feb. 2017, pp. 1–
9. doi: 10.1109/CIACT.2017.7977362.

[22] H. C. Lim, S. Babu, J. S. Chase, and S. S. Parekh, “Automated control in cloud
computing: challenges and opportunities,” in Proceedings of the 1st workshop on
Automated control for datacenters and clouds, New York, NY, USA, Jun. 2009,
pp. 13–18. doi: 10.1145/1555271.1555275.

[23] B. Yang, F. Tan, Y.-S. Dai, and S. Guo, “Performance Evaluation of Cloud
Service Considering Fault Recovery,” in Cloud Computing, Berlin, Heidelberg,
2009, pp. 571–576. doi: 10.1007/978-3-642-10665-1_54.

[24] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pp. 51–58, 2001.

[25] Y. Wang, Z. Wang, Y. Chai, and X. Wang, “Rethink the Linearizability
Constraints of Raft for Distributed Key-Value Stores,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE), 2021, pp. 1877–1882.

125 References

[26] “Failover Pattern with a Self-Healing Mechanism for High Availability Cloud
Solutions | IEEE Conference Publication | IEEE Xplore.”
https://ieeexplore.ieee.org/abstract/document/6820969/ (accessed May 17, 2022).

[27] “Intent-based cloud service management | IEEE Conference Publication | IEEE
Xplore.” https://ieeexplore.ieee.org/abstract/document/8401600/ (accessed May
18, 2022).

[28] “A Comprehensive Study of ‘etcd’—An Open-Source Distributed Key-Value
Store with Relevant Distributed Databases | SpringerLink.”
https://link.springer.com/chapter/10.1007/978-981-19-0284-0_35 (accessed May
18, 2022).

[29] “An Analysis of Quorum-based Abstractions | Proceedings of the 2018 Workshop
on Advanced Tools, Programming Languages, and PLatforms for Implementing
and Evaluating Algorithms for Distributed systems.”
https://dl.acm.org/doi/abs/10.1145/3231104.3231957 (accessed May 18, 2022).

[30] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-Free Replicated
Data Types,” in Stabilization, Safety, and Security of Distributed Systems, vol.
6976, X. Défago, F. Petit, and V. Villain, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 386–400. doi: 10.1007/978-3-642-24550-3_29.

[31] “Decentralized Kubernetes Federation Control Plane | IEEE Conference
Publication | IEEE Xplore.” https://ieeexplore.ieee.org/abstract/document/9302768
(accessed May 18, 2022).

[32] D. Lindsay, G. Yeung, Y. Elkhatib, and P. Garraghan, “An Empirical Study of
Inter-cluster Resource Orchestration within Federated Cloud Clusters,” in 2021
IEEE International Conference on Joint Cloud Computing (JCC), Aug. 2021, pp.
44–50. doi: 10.1109/JCC53141.2021.00019.

[33] M. Savi et al., A Blockchain-based Brokerage Platform for Fog Computing
Resource Federation. 2020. doi: 10.1109/ICIN48450.2020.9059337.

[34] C. Melo, J. Dantas, P. Pereira, and P. Maciel, “Distributed application provisioning
over Ethereum-based private and permissioned blockchain: availability modeling,
capacity, and costs planning,” J Supercomput, vol. 77, no. 9, pp. 9615–9641, Sep.
2021, doi: 10.1007/s11227-020-03617-z.

[35] D. E. Sarmiento, A. Lèbre, L. Nussbaum, and A. Chari, “Decentralized SDN
Control Plane for a Distributed Cloud-Edge Infrastructure: A Survey,” IEEE
Communications Surveys & Tutorials, 2021, doi: 10.1109/COMST.2021.3050297.

[36] C. Felix, H. Garg, and S. Dikaleh, “Kubernetes security and access management: a
workshop exploring security & access features in Kubernetes,” in
Proceedings of the 29th Annual International Conference on Computer Science
and Software Engineering, USA, Nov. 2019, pp. 395–396.

[37] B. Rochwerger et al., “The Reservoir model and architecture for open federated
cloud computing,” IBM Journal of Research and Development, vol. 53, no. 4, p.
4:1-4:11, Jul. 2009, doi: 10.1147/JRD.2009.5429058.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 126

[38] C. A. Lee, “Cloud Federation Management and Beyond: Requirements, Relevant
Standards, and Gaps,” IEEE Cloud Computing, vol. 3, no. 1, pp. 42–49, Jan. 2016,
doi: 10.1109/MCC.2016.15.

[39] C. Pahl, N. EL Ioini, and S. Helmer, “A Decision Framework for Blockchain
Platforms for IoT and Edge Computing:,” in Proceedings of the 3rd International
Conference on Internet of Things, Big Data and Security, Funchal, Madeira,
Portugal, 2018, pp. 105–113. doi: 10.5220/0006688601050113.

[40] O. Novo, “Blockchain Meets IoT: An Architecture for Scalable Access
Management in IoT,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1184–
1195, Apr. 2018, doi: 10.1109/JIOT.2018.2812239.

[41] “A Proof-of-Authority Blockchain Based Distributed Control System for Islanded
Microgrids | IEEE Journals & Magazine | IEEE Xplore.”
https://ieeexplore.ieee.org/document/9681332 (accessed Jun. 06, 2022).

[42] “Ethereum Whitepaper,” ethereum.org. https://ethereum.org (accessed Jun. 06,
2022).

[43] “Cardano is a decentralized public blockchain and cryptocurrency project and is
fully open source.,” Cardano. https://cardano.org/ (accessed Jun. 06, 2022).

[44] A. Yakovenko, “Solana: A new architecture for a high performance blockchain,”
p. 32.

[45] S. Aggarwal and N. Kumar, “Chapter Sixteen - Hyperledger☆☆Working model.,”
in Advances in Computers, vol. 121, S. Aggarwal, N. Kumar, and P. Raj, Eds.
Elsevier, 2021, pp. 323–343. doi: 10.1016/bs.adcom.2020.08.016.

[46] BIP 114 - Merkelized Abstract Syntax Tree. Bitcoin, 2022. Accessed: Jun. 07,
2022. [Online]. Available:
https://github.com/bitcoin/bips/blob/b1791c24aa163eb6578d0bfaadcf44997484eea
f/bip-0114.mediawiki

[47] I. Weber et al., “On Availability for Blockchain-Based Systems,” in 2017 IEEE
36th Symposium on Reliable Distributed Systems (SRDS), Sep. 2017, pp. 64–73.
doi: 10.1109/SRDS.2017.15.

[48] J. M. Hellerstein and P. Alvaro, “Keeping CALM: When Distributed Consistency
is Easy.” arXiv, Jan. 25, 2019. Accessed: May 18, 2022. [Online]. Available:
http://arxiv.org/abs/1901.01930

[49] J. C. Yim, H.-K. Yoo, J. Kwak, and S.-M. Kim, “Blockchain and consensus
algorithm,” Electronics and telecommunications trends, vol. 33, no. 1, pp. 45–56,
2018.

[50] F. Hofmann, S. Wurster, E. Ron, and M. Böhmecke-Schwafert, “The immutability
concept of blockchains and benefits of early standardization,” in 2017 ITU
Kaleidoscope: Challenges for a Data-Driven Society (ITU K), Nov. 2017, pp. 1–8.
doi: 10.23919/ITU-WT.2017.8247004.

127 References

[51] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges and
opportunities: a survey,” International Journal of Web and Grid Services, vol. 14,
no. 4, pp. 352–375, Jan. 2018, doi: 10.1504/IJWGS.2018.095647.

[52] C. Li, P. Li, D. Zhou, W. Xu, F. Long, and A. Yao, “Scaling Nakamoto Consensus
to Thousands of Transactions per Second,” arXiv, arXiv:1805.03870, Aug. 2018.
doi: 10.48550/arXiv.1805.03870.

[53] Y. Sun, “Commutativity-aware Runtime Verification for Concurrent Programs,”
Thesis, 2021. Accessed: Jun. 05, 2022. [Online]. Available:
https://oaktrust.library.tamu.edu/handle/1969.1/193203

[54] D. Ernst, A. Becker, and S. Tai, “Rapid Canary Assessment Through Proxying and
Two-Stage Load Balancing,” in 2019 IEEE International Conference on Software
Architecture Companion (ICSA-C), Mar. 2019, pp. 116–122. doi: 10.1109/ICSA-
C.2019.00028.

[55] A. Jeffery, H. Howard, and R. Mortier, “Rearchitecting Kubernetes for the Edge,”
in Proceedings of the 4th International Workshop on Edge Systems, Analytics and
Networking, New York, NY, USA, Apr. 2021, pp. 7–12. doi:
10.1145/3434770.3459730.

[56] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Kubernetes as an
Availability Manager for Microservice Applications.” arXiv, Jan. 15, 2019.
Accessed: May 18, 2022. [Online]. Available: http://arxiv.org/abs/1901.04946

[57] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Deploying
Microservice Based Applications with Kubernetes: Experiments and Lessons
Learned,” in 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), Jul. 2018, pp. 970–973. doi: 10.1109/CLOUD.2018.00148.

[58] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes
controller for managing the availability of elastic microservice based stateful
applications,” Journal of Systems and Software, vol. 175, p. 110924, May 2021,
doi: 10.1016/j.jss.2021.110924.

[59] A. Singh, T. “johnny Ngan, P. Druschel, and D. S. Wallach, “Eclipse attacks on
overlay networks: Threats and defenses,” 2006.

[60] T. C. Aysal, M. E. Yildiz, and A. Scaglione, “Broadcast gossip algorithms,” in
2008 IEEE Information Theory Workshop, May 2008, pp. 343–347. doi:
10.1109/ITW.2008.4578682.

[61] W. Fan, S.-Y. Chang, X. Zhou, and S. Xu, “ConMan: A Connection Manipulation-
based Attack Against Bitcoin Networking,” in 2021 IEEE Conference on
Communications and Network Security (CNS), Oct. 2021, pp. 101–109. doi:
10.1109/CNS53000.2021.9705018.

[62] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broadcast Gossip
Algorithms for Consensus,” IEEE Transactions on Signal Processing, vol. 57, no.
7, pp. 2748–2761, Jul. 2009, doi: 10.1109/TSP.2009.2016247.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 128

[63] C. H. Moore and G. C. Leach, “FORTH - A Language for Interactive Computing,”
p. 27.

[64] S. Lucas, “The origins of the halting problem,” Journal of Logical and Algebraic
Methods in Programming, vol. 121, p. 100687, Jun. 2021, doi:
10.1016/j.jlamp.2021.100687.

[65] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of Space: When Space
Is of the Essence,” in Security and Cryptography for Networks, Cham, 2014, pp.
538–557. doi: 10.1007/978-3-319-10879-7_31.

[66] B. Bünz, L. Kiffer, L. Luu, and M. Zamani, “FlyClient: Super-Light Clients for
Cryptocurrencies,” in 2020 IEEE Symposium on Security and Privacy (SP), May
2020, pp. 928–946. doi: 10.1109/SP40000.2020.00049.

[67] D. Bogdanov, S. Laur, and R. Talviste, “A Practical Analysis of Oblivious Sorting
Algorithms for Secure Multi-party Computation,” in Secure IT Systems, Cham,
2014, pp. 59–74. doi: 10.1007/978-3-319-11599-3_4.

[68] Y. Dodis and A. Yampolskiy, “A Verifiable Random Function with Short Proofs
and Keys,” in Public Key Cryptography - PKC 2005, Berlin, Heidelberg, 2005, pp.
416–431. doi: 10.1007/978-3-540-30580-4_28.

[69] E. N. Tas, D. Tse, F. Yu, and S. Kannan, “Babylon: Reusing Bitcoin Mining to
Enhance Proof-of-Stake Security,” arXiv, arXiv:2201.07946, Jan. 2022. doi:
10.48550/arXiv.2201.07946.

[70] V. Buterin, “Ethereum white paper,” GitHub repository, vol. 1, pp. 22–23, 2013.

[71] S.-H. Chun and B.-S. Choi, “Service models and pricing schemes for cloud
computing,” Cluster Comput, vol. 17, no. 2, pp. 529–535, Jun. 2014, doi:
10.1007/s10586-013-0296-1.

[72] G. Laatikainen, A. Ojala, and O. Mazhelis, “Cloud Services Pricing Models,” in
Software Business. From Physical Products to Software Services and Solutions,
Berlin, Heidelberg, 2013, pp. 117–129. doi: 10.1007/978-3-642-39336-5_12.

[73] 8x Protocol - Whitepaper. Helis Network, 2019. Accessed: Jun. 08, 2022.
[Online]. Available: https://github.com/helisnetwork/8x-whitepaper

[74] “EIP-721: Non-Fungible Token Standard,” Ethereum Improvement Proposals.
https://eips.ethereum.org/EIPS/eip-721 (accessed Jun. 08, 2022).

[75] AztecProtocol/AZTEC. Aztec Network, 2022. Accessed: Jun. 08, 2022. [Online].
Available:
https://github.com/AztecProtocol/AZTEC/blob/7a020f4ced9680f6e4a452fe570671
aac0802471/AZTEC.pdf

[76] B. Thompson, “Shopify and the Power of Platforms,” Stratechery by Ben
Thompson, Jul. 11, 2019. https://stratechery.com/2019/shopify-and-the-power-of-
platforms/ (accessed Jun. 08, 2022).

129 References

[77] B. Thompson, “Defining Aggregators,” Stratechery by Ben Thompson, Sep. 26,
2017. https://stratechery.com/2017/defining-aggregators/ (accessed Jun. 08, 2022).

[78] “A Multi-party Protocol for Constructing the Public Parameters of the Pinocchio
zk-SNARK | SpringerLink.” https://link.springer.com/chapter/10.1007/978-3-662-
58820-8_5 (accessed Jun. 08, 2022).

[79] “The Maker Protocol White Paper | Feb 2020.”
https://makerdao.com/en/whitepaper/[https://makerdao.com/en](https://makerdao.c
om/en) (accessed Jun. 08, 2022).

APPENDIX 1. SERVICE MONETIZATION

BLOCKCHAIN-BASED SERVICE MONETIZATION
FOR CLOUD SERVICES

1.1. Introduction

While many cryptocurrencies enable peer-to-peer payments without a trusted party [70],
none provide mechanisms to allow payee-initiated or recurring payments using public
permissionless blockchains with decentralized validators. It is also interesting to
contrast that Software and Infrastructure as a service have come to rely exclusively on
business models built on recurring payments and subscriptions [60]. In effect, the world
of cloud services has not been able to enjoy the benefits of decentralized finance due to
a mismatch of payment and contracting motions.

At the core of the cloud subscription models is the drive to reinvent industries seeking
to build personalized relationships with their consumers. A cloud service's success
depends on an organization's ability to adapt and enable flexible consumption models
that match the needs of its target market [71]. Fundamentally, service pricing needs to
quantify the value provided to the consumer accurately. Furthermore, the price of a
service is a delicate and ever-changing orchestration of the relationship with the
consumer, who constantly re-considers the value provided by the service producer.

For this research, we have classified pricing models into two broad categories: usage-
based and capability-based pricing models [72].

- Usage-based pricing models are well suited for services where a consumer

can naturally identify a discrete, quantifiable property of a service that

represents the value provided. For example, consumers of a data storage

service can naturally determine the amount of data consumed as a

correlated metric of the value provided.

- Capability-based pricing models are well suited for services where the

value provided is not directly proportional to quantifiable metrics

associated with the service delivered. The service price is then segmented

into desirable features for the different target consumers and either priced

individually or bundled.

Capability-based pricing models enable consumers to estimate costs before
consumption. In contrast, usage-based pricing models typically require forecasting
based on previous consumption and careful evaluation of evolving consumption

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 134

patterns. In addition, subscriptions typically involve complex commercial patterns,
including term commitment discounts, promotions, prepayments, and sales and channel
commissions, among many others.

The current state of the art only scratches the surface of these complex commercial
motions. This work outlines an approach to enable commercial-grade subscription
models on the Ethereum blockchain. We are publishing this research to outline
protocols expressed as Ethereum smart contracts to extend state of the art for the
negotiation and commitment phases.

Previous attempts to implement recurring payments smart contracts over the Ethereum
blockchain have been abandoned and have not been verified [73]. In addition, our
approach provides an explicit separation between the administrative and settlement
functions.

The referenced solutions include smart contracts that standardize the interfaces used by
consumers and producers to express their commercial relationships. This research does
not cover off-chain solutions to enable the execution of payments or offer solutions to
custodial issues.

1.2. System Model and Methods

The proposed solution builds on the standard ERC-721 [74] interface, issuing a Non-
Fungible Token (NFT) for each subscription. ERC-721 enables consumers to adopt
existing NFT management technology, including crypto Wallets and interfaces to
manage ownership, transfers, and approvals.

interface ISubscription {

 /// @dev This emits when the Subscription Contract is created

 event ContractCreated(

 address indexed _from,

 uint256 indexed subscriptionId,

 uint256 periodLength,

 uint256 periodCount,

 uint256 periodCost,

 bytes data

);

 /// @dev This emits when the Subscription Contract is signed

 event ContractSigned(

 address indexed _from,

 uint256 indexed _subscriptionId);

 /// @dev This emits when a subscription is renewed

135 Appendix 2. Resource Operations

 event Renewed(

 address indexed _from,

 uint256 subscriptionId,

 uint256 periodLength,

 uint256 periodCount,

 uint256 periodCost

);

 /// @dev This emits when the state of a Subscription is

changed.

 event StatusChanged(

 address indexed _from,

 uint256 indexed subscriptionId,

 SubscriptionStatus status

);

 /// @notice Creates a new subscription contract and waits for

the

 /// consumer to sign it

 /// @param _subscriptionId to be used as NFT tokenId

 /// @param _to Address of the consumer that is receiving the

service

 /// @param _serviceURI The service unique resource identifier

 /// @param _periodLength The length of the subscription period

in

 /// days

 /// @param _periodCount The period number. If `periodCount` ==

0 the

 /// subscription is open ended

 /// @param _periodCost The cost per period

 /// @param _data Additional data with no specified format, sent

in

 /// call to `_to` see ERC721TokenReceiver for reference

 function createSubscriptionContract(

 address _to,

 uint256 _subscriptionId,

 string memory _serviceURI,

 uint256 _periodLength,

 uint256 _periodCount,

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 136

 uint256 _periodCost,

 bytes memory _data

) external;

 /// @notice The consumer signs the subscription and the NFT is

 /// transferred to the `_to` address using SafeTransferFrom

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription address or `msg.sender` does not match the

`_to`

 /// address for this SubscriptionContract

 function signSubscriptionContract(uint256 _subscriptionId)

external;

 /// @notice Returns the status of the subscription

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription

 /// @return Status of the subscription unless throwing

 function getSubscriptionStatus(

 uint256 _subscriptionId

) external view returns (SubscriptionStatus);

 /// @notice Creates a new subscription contract using the terms

of

 /// of the original subscription. The periodCount will include

any

 /// number of periods left on the original subscription. The

 /// previous

 /// subscription status will change to RENEWED.

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription or is not in valid state

 /// @param _newSubscriptionId to be used as NFT tokenId for the

new

 /// Subscription

 function renewSubscription(

 uint256 _subscriptionId,

 uint256 _newSubscriptionId) external;

137 Appendix 2. Resource Operations

 /// @notice Set the status of a subscription to `PAUSED`.

Throws if

 /// subscription cannot be paused

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription.

 function pauseSubscription(uint256 _subscriptionId) external;

 /// @notice Set the status of a subscription to `PAUSED`.

Throws if

 /// subscription cannot be resumed

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription.

 function resumeSubscription(uint256 _subscriptionId) external;

 /// @notice Set the status of a subscription to `TERMINATED`.

Throws

 /// if subscription cannot be terminated

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription

 function terminateSubscription(uint256 _subscriptionId)

external;

 /// @notice Set the status of a subscription to `CANCELLED`.

Throws

 /// if subscription cannot be canceled

 /// @param _subscriptionId Throws if `_subscriptionId` is not a

valid

 /// Subscription

 function cancelSubscription(uint256 _subscriptionId) external;

}

Figure 44 Subscription solidity interface

Every Subscription Contract is identified by a unique ID represented as a non-Fungible
token implementing the ERC-721 interface as presented in Figure 44 and available at
https://github.com/thinkelastic/subcrypto.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 138

The producer or intermediary creates a subscription. The NFT representing the
Subscription will be owned by the address of the entity that created it. Once the
subscription contract is instantiated, the state of the subscription is initialized as
OFFERED and ready to be signed by the address provided during the creation. Essential
to the spirit of NFTs, the token represents consumer authority over the subscription, and
until it is signed, that authority is not transferred to the consumer.

The producer waits until the consumer signs the contract. The signing also implies
acceptance of the terms and conditions of the service, including any financial
responsibility. It is worth pointing out that the financial burden of the contract does not
transfer with the change of control of the NFT and stays with the consumer even if the
NFT is assigned to another address. Once the contract is signed, the subscription
contract NFT is transferred to the consumer, and the subscription status is changed to
ACTIVE. Therefore, the subscription term starts the moment the consumer signs the
subscription.

As stated before, the consumer can use the ownership of this NFT as an assertion of
ownership across other systems. The NFT can be transferred to other accounts,
therefore, delegating the rights that the NFT ownership might entitle but not the
financial liability incurred by accepting the original offer.

The state machine in Figure 45 represents the valid state transitions of a subscription.
Once the subscription is ACTIVE, the consumer might pause the subscription if the
contract implementation allows it. Pausing a subscription does interrupt the service
delivery, but it typically does not extend the term while the service is paused.

Figure 45 Subscription state machine

Some producers might extend the term length and provide rebates or alternative
promotion mechanisms to give customers extra flexibility. In addition, a producer might
pause a service, for example, to address a customer not meeting the terms of service.
Pausing enables the service to be disabled, allowing the consumer or the producer to
restore the service to its original functional state. A resumed subscription would revert
to the ACTIVE state.

139 Appendix 2. Resource Operations

Function Caller Validation Valid States

createSubscriptionContract Producer The person calling this function is
automatically designed as a producer.
The _to parameter designates the
address of the consumer.

N/A

signSubscriptionContract Consumer Only the consumer is allowed to sign
the contract.

OFFERED

getSubscriptionStatus Anybody

Any state

renewSubscription Consumer Only the consumer is allowed to
renew the subscription.

EXPIRED,
ACTIVE

pauseSubscription Consumer,
Producer

ACTIVE

resumeSubscription Consumer,
Producer

PAUSED

terminateSubscription Producer Only the producer can terminate the
subscription.

ACTIVE,
PAUSED

cancelSubscription Consumer Only the consumer is allowed to
cancel the subscription.

ACTIVE,
PAUSED

Table 11 Permissions and valid transitions

Subscriptions that are either Active or Paused can be terminated by either the producer
or the consumer. The smart contract implementation separates these two actions into
two separate functions. Active or Expired subscriptions can be renewed. Renewals or
modifications of a subscription are performed by issuing a new NFT that replaces the
original contract. Other than the status of the NFT, the subscription data is immutable.

The status of the subscription is stored as part of the contract state. When invoking
getSubscriptionStatus, a check needs to be performed on whether the subscription has
expired and updates the internal state accordingly.

To ensure that only the involved parties interact with the contract, the implementation
needs to keep track of both the consumer and the producer's identities. Each function
would require verification that the subscription is in the right state and that caller is
allowed to invoke the function. Table 11 Permissions and valid transitions summarizes
the high-level permission logic.

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 140

The owner of the token is the designated consumer of the subscription. Once the
subscription has been signed, an ERC721 compatible token is transferred to the
consumer.

1.3. Results

In this research, we have presented an implementation of a subscription model that
demonstrates the capabilities of permissionless blockchains to remove the platform
walls that surround modern e-Commerce systems, opening the infrastructure that
supports producer-consumer relationships. This translates to the following benefits:

1. Standardized system interface and logic transparency enabling higher

productivity and trust across all parties.

2. Blockchain architecture increases automation and productivity because all

operations must be programmatic instead of manual. There are also no

exceptions to the contract logic because system rules cannot be modified.

3. Transparency, consumers, and producers have equal access to data.

4. Privacy, producers, and consumers can optionally hide their transactions

using Zero Proof networks, for example, the AZTEC Protocol [75].

5. Due to the system's openness and transparency, a new ecosystem can arise

without the producer's permission.

The most basic form of contractual negotiation is to commit to consuming services
using the list price and the default terms offered by the producer. Most subscription
options are Monthly, Annual, or Quarterly terms with a limited menu of options for
consumers. However, negotiation and contracting needs vary depending on the nature of
the service.

Large-scale service producers typically offer subscription packages that rely on
simplicity and consistency via single capability pricing or 2 to 3 bundled options for
producers providing more than one service. The goal is to eliminate the friction of
adoption and maximize the appeal to the maximum number of consumers. These
services include cloud storage, streaming, and online gaming services.

Service producers of commoditized services where little differentiation is possible and
negligible platform effects tend to focus on pricing targeting customer commitment,
including term discounts and signing up for automatic recurring payments and renewals.
In some cases, prepayment for several years of the service. These services include
internet providers, cell phone providers, VPNs, and security services. To facilitate the
pricing structure of these services, focus on capabilities with usage-based overages to
target the maximum number of users with attractive pricing while monetizing
consumers beyond standard utilization patterns.

141 Appendix 2. Resource Operations

Service producers for specialized or domain-specific services' primary concern are to
enable target consumers to try, evaluate and ramp up utilization. These services are the
most heterogeneous in nature and typically require contractual flexibility and, in most
cases, split commissions across parties responsible for the success of the contractual
process. Most enterprise software services follow this pattern as the needs of large
organizations is distinct enough, making it hard to identify commonalities.

Over the last two decades, we have seen a new model of horizontal and vertical
integration in the software distribution model due to the elimination of distribution costs
enabled by the internet.

- Platforms aim to gain a competitive advantage by delivering a complete

vertical solution for an entire domain. The goal is to leverage the platform

effects of providing related domain services by reducing consumption

complexity and the operational surface. These services include AWS,

Azure, Google Cloud, Adobe Cloud, and Office 365 [76].

- Aggregators aim to gain a competitive advantage by gaining a horizontal

monopoly on suppliers, distributors, and consumers/users. Gaining such

market exclusivity allows them to provide better value at a reduced cost

due to the economies of scale. These services include Netflix, Airbnb, and

Uber [77].

Both platforms and aggregators seek to control all aspects of user interaction, including
providing payment processing and credit cards to enhance the user experience and ease
of use. Nowadays, service producers not part of a Platform or Aggregator are at a
disadvantage. At the same time, consumers experience a reduced set of options and
restricted functionality as they gravitate toward the ease of use of those platforms.

Essential to the spirit of permissionless blockchains like Ethereum is the ability for any
party to produce and consume capabilities like those found on platforms and
aggregators as Smart Contracts. These mechanisms, in aggregate, can be reasonably
expected to fulfill the lifecycle of commercial contracts like the ones previously
discussed.

Most producers rely on channel partners to distribute, sell, and support their products.
Although online service producers seek a close feedback loop with consumers, factors
including support and financial and regulatory requirements need the specialized
capabilities of those partners.

Traditional channel relationships are usually fraught with commercial issues, most of
them derived from the lack of transparency of the commercial ledger. Examples are:

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 142

1. Exclusivity violations

2. Price discrimination

3. Vertical Non-Price Restraints

4. Territorial and Customer Restrictions

5. Tying

6. Legal embargos

7. Denial of service on moral grounds

1.4. Conclusions

This research has established the benefits of ledger transparency provided by smart
contracts on permissionless blockchains. However, most businesses would consider
their business information critically confidential. To address this issue, further research
will be performed to evaluate Zero-knowledge proof protocols that enable the different
parties to prove assertions that meet the transparency requirements without revealing
confidential information [78]. For example, using the AZTEC protocol to facilitate
private transactions on Ethereum. This allows the logic of transactions to be validated
while keeping the values encrypted.

As organizations conduct business utilizing blockchains as transaction ledgers, in
aggregate, it can be reasonably expected for the value of those transactions to maintain a
stable price relative to the monetary denomination of the rest of their business.

The Maker Protocol enables those businesses to execute stable coin-denominated
transactions. In some sense, this sounds ideal; however, it adds the additional
complexity of having customers convert their cryptocurrency to a contracted stable coin,
thus assuming the volatility risk [79]. For example, a consumer might commit to a
transaction that requires a monthly payment of DAI tokens pegged against the dollar at
a ratio of $1 = 1 DAI. If the consumer has his assets denominated in ETH, changes in
the value of ETH can positively or negatively affect the total contract value for the
consumer.

The critical point is that consumers and producers can protect the transaction value of
contracts executed through the blockchain utilizing DeFI protocols. Still, the way this is
achieved is beyond the scope of this paper.

APPENDIX 2: RESOURCE OPERATIONS

RESOURCE OPERATIONS

2.1. Node

2.1.1. Create Node

To create a node, the user needs to reference the latest cluster transaction as input and a
scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Node",

 "metadata": {

 "name": "new-node",

 "pubKey": "<node_public_key>",

 "labels": {

 "name": "online"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 146

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.1.2. Update Node

To update a node, the user needs to reference the latest cluster or node transaction as
input and a scriptSig value that satisfies the input transaction script. The value field
must contain a fully updated Node document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest node transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Node",

 "metadata": {

 "name": "new-node",

 "pubKey": "<node_public_key>",

 "labels": {

 "name": "offline"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

147 Appendix 2. Resource Operations

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.1.3. Remove Node

To delete a node, the user needs to reference the latest cluster or node transaction as
input and a scriptSig value that satisfies the input transaction script. The value of the
transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest node transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

149 Appendix 2. Resource Operations

2.2. Namespace

2.2.1. Create Namespace

To create a namespace, the user needs to reference the latest cluster transaction as input
and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest cluster transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "development",

 "labels": {

 "name": "beta"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 150

2.2.2. Update Namespace

To update a namespace, the user needs to reference the latest cluster or namespace
transaction as input and a scriptSig value that satisfy the input transaction script. The
value field must contain a fully updated Namespace document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Namespace",

 "metadata": {

 "name": "development",

 "labels": {

 "name": "release-candidate"

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

151 Appendix 2. Resource Operations

2.2.3. Remove Namespace

To delete a node, the user needs to reference the latest cluster or namespace transaction
as input and a scriptSig value that satisfy the input transaction script. The value of the
transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

153 Appendix 2. Resource Operations

2.3. Pod

2.3.1. Create Pod

To create a pod, the user needs to reference the latest namespace transaction as input
and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Pod",

 "metadata": {

 "name": "nginx",

 "labels": {

 "name": "development"

 }

 },

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [80]

 }

 }

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 154

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.3.2. Update Pod

To update a pod, the user needs to reference the latest namespace or pod transaction as
input and a scriptSig value that satisfy the input transaction script. The value field must
contain a fully updated Pod document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest pod transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Pod",

 "metadata": {

 "name": "nginx",

 "labels": {

 "name": "release-candidate"

 }

 },

 "spec": {

155 Appendix 2. Resource Operations

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [8080]

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.3.3. Remove Pod

To delete a pod, the user needs to reference the latest namespace or pod transaction as
input and a scriptSig value that satisfy the input transaction script. The value of the
transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest pod transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 156

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

157 Appendix 2. Resource Operations

2.4. Service

2.4.1. Create Service

To create a service, the user needs to reference the latest namespace transaction as input
and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Service",

 "metadata": {

 "name": "nginx-service"

 },

 "spec": {

 "selector": {

 “name”: “development”

 },

 "ports": [

 {

 “protocol”: "nginx",

 “port”: 80,

 "targetPort": 8080

 }

 }

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 158

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.3.2. Update Service

To update a service, the user needs to reference the latest namespace or service
transaction as input and a scriptSig value that satisfy the input transaction script. The
value field must contain a fully updated Service document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest service transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Service",

 "metadata": {

 "name": "nginx",

 },

 "spec": {

 "selector": {

 “name”: “release-candidate”

 },

 "ports": [

159 Appendix 2. Resource Operations

 {

 “protocol”: "nginx",

 “port”: 8080,

 "targetPort": 8080

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.4.3. Remove Service

To delete a service, the user needs to reference the latest namespace or service
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest service transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 160

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

161 Appendix 2. Resource Operations

2.5. Deployment

2.5.1. Create Deployment

To create a deployment, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Deployment",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “name”: “development”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “development”

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 162

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [80]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.5.2. Update Deployment

To update a deployment, the user needs to reference the latest namespace or deployment
transaction as input and a scriptSig value that satisfy the input transaction script. The
value field must contain a fully updated Deployment document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest deployment

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

163 Appendix 2. Resource Operations

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Deployment",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “name”: “release-candidate”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “release-candidate”

 }

 },

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [8080]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 164

OP_CHECKSIG",

 }

]

}

2.5.3. Remove Deployment

To delete a deployment, the user needs to reference the latest namespace or deployment
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest deployment

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

165 Appendix 2. Resource Operations

2.6. ReplicationController

2.6.1. Create ReplicationController

To create a ReplicationController, the user needs to reference the latest namespace
transaction as input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "ReplicationController",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “name”: “development”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “development”

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 166

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [80]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.6.2. Update ReplicationController

To update a ReplicationController, the user needs to reference the latest namespace or
ReplicationController transaction as input and a scriptSig value that satisfy the input
transaction script. The value field must contain a fully updated ReplicationController
document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest ReplicationController

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

167 Appendix 2. Resource Operations

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "ReplicationController",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “name”: “release-candidate”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “release-candidate”

 }

 },

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [8080]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 168

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.6.3. Remove ReplicationController

To delete a ReplicationController, the user needs to reference the latest namespace or
ReplicationController transaction as input and a scriptSig value that satisfy the input
transaction script. The value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest ReplicationController

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

169 Appendix 2. Resource Operations

2.7. Job
2.7.1. Create Job

To create a Job, the user needs to reference the latest namespace transaction as input and
a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Job",

 "metadata": {

 "name": "my-job "

 },

 "template": {

 “metadata”: {

 "spec": {

 "containers": {

 “name”: "job-container",

 “image”: "job-image",

 “command”: [“job”, “-parameter=1”

]

 }

 }

 }

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 170

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.7.2. Suspend Job

To suspend a Job, the user needs to reference the latest namespace or Job transaction as
input and a scriptSig value that satisfy the input transaction script. The value field must
contain a fully updated Job document

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest Job transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Job",

 "metadata": {

 "name": "my-job "

 },

 "template": {

 “metadata”: {

 "spec": {

 "containers": {

 “name”: "job-container",

171 Appendix 2. Resource Operations

 “image”: "job-image",

 “command”: [“job”, “-parameter=1”

]

 }

 }

 }

 },

 "status": {

 "conditions": {

 "status": “True”,

 "type": “Suspended”

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

173 Appendix 2. Resource Operations

2.8. CronJob
2.8.1. Create CronJob

To create a CronJob, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "CronJob",

 "metadata": {

 "name": "my-cronjob"

 },

 "spec": {

 “jobTemplate”: {

 “schedule”: “* * * * *”,

 "spec": {

 “template”: {

 "containers": {

 “name”: "job-container",

 “image”: "job-image",

 “command”: [“job”, “-

parameter=1”]

 }

 }

 }

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 174

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.8.2. Delete CronJob

To delete a CronJob, the user needs to reference the latest namespace or CronJob
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest CronJob transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

175 Appendix 2. Resource Operations

]

}

177 Appendix 2. Resource Operations

2.9. ReplicaSet
2.9.1. Create ReplicaSet

To create a ReplicaSet, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "ReplicaSet",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “tier”: “front”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “development”

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 178

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [80]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.9.2. Update ReplicaSet

To update a ReplicaSet, the user needs to reference the latest namespace or ReplicaSet
transaction as input and a scriptSig value that satisfy the input transaction script. The
value field must contain a fully updated ReplicaSet document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest ReplicaSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

179 Appendix 2. Resource Operations

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "ReplicaSet",

 "metadata": {

 "name": "nginx-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “tier”: “front-release-candidate”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “name”: “release-candidate”

 }

 },

 "spec": {

 "containers": {

 “name”: "nginx",

 “image”: "nginx",

 “ports”: {

 "containerPort": [8080]

 }

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 180

OP_CHECKSIG",

 }

]

}

2.9.3. Remove ReplicaSet

To delete a ReplicaSet, the user needs to reference the latest namespace or ReplicaSet
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest ReplicaSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

181 Appendix 2. Resource Operations

2.10. StatefulSet
2.10.1. Create StatefulSet

To create a StatefulSet, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "StatefulSet",

 "metadata": {

 "name": "storage-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “tier”: “data”

 }

 },

 "template": {

 “metadata”: {

 “labels”: {

 “tier”: “storage”

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 182

 "spec": {

 "containers": {

 “name”: "db",

 “image”: "db",

 “ports”: {

 "containerPort": [80]

 },

 “volumeMounts”: [{

 "name": “db”,

 "mountPath":

“/usr/share/data”

 }

]

 }

 },

 "volumeClaimTemplates": [

 {

 "metadata": {

 "name": "db"

 },

 "spec": {

 "accessModes": [

 "ReadWrite"

],

 "storageClassName": "my-db-class",

 "resources": {

 "requests": {

 "storage": "100Gi"

 }

 }

 }

 }

]

 }

 }

 },

 "scriptPubKey": "

OP_DUP

183 Appendix 2. Resource Operations

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.10.2. Update StatefulSet

To update a StatefulSet, the user needs to reference the latest namespace or StatefulSet
transaction as input and a scriptSig value that satisfy the input transaction script. The
value field must contain a fully updated StatefulSet document.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest StatefulSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "StatefulSet",

 "metadata": {

 "name": "storage-deployment"

 },

 "spec": {

 "replicas": 3,

 "selector": {

 “matchLabels”: {

 “tier”: “data”

 }

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 184

 },

 "template": {

 “metadata”: {

 “labels”: {

 “tier”: “storage”

 }

 },

 "spec": {

 "containers": {

 “name”: "db",

 “image”: "db",

 “ports”: {

 "containerPort": [8080]

 },

 “volumeMounts”: [{

 "name": “db”,

 "mountPath":

“/usr/share/data”

 }

]

 }

 },

 "volumeClaimTemplates": [

 {

 "metadata": {

 "name": "db"

 },

 "spec": {

 "accessModes": [

 "ReadWrite"

],

 "storageClassName": "my-db-class",

 "resources": {

 "requests": {

 "storage": "150Gi"

 }

 }

 }

185 Appendix 2. Resource Operations

 }

]

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.10.3. Remove StatefulSet

To delete a StatefulSet, the user needs to reference the latest namespace or StatefulSet
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest StatefulSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 186

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

187 Appendix 2. Resource Operations

2.11. DaemonSet
2.11.1. Create DaemonSet

To create a DaemonSet, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 {

 "apiVersion": "apps/v1",

 "kind": "DaemonSet",

 "metadata": {

 "name": "elasticsearch",

 "namespace": "kube-system",

 "labels": {

 "k8s-app": "logging"

 }

 },

 "spec": {

 "selector": {

 "matchLabels": {

 "name": " elasticsearch"

 }

 },

 "template": {

 "metadata": {

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 188

 "labels": {

 "name": " elasticsearch"

 }

 },

 "spec": {

 "containers": [

 {

 "name": "elasticsearch",

 "image": "fluentd:v2.5.2",

 "resources": {

 "limits": {

 "memory": "200Mi"

 },

 "requests": {

 "cpu": "100m",

 "memory": "200Mi"

 }

 },

 "volumeMounts": [

 {

 "name": "varlog",

 "mountPath": "/var/log"

 },

 {

 "name": "varlibcontainers",

 "mountPath":

"/var/lib/containers",

 "readOnly": true

 }

]

 }

],

 "terminationGracePeriodSeconds": 30,

 "volumes": [

 {

 "name": "varlog",

 "hostPath": {

 "path": "/var/log"

189 Appendix 2. Resource Operations

 }

 },

 {

 "name": "varlibdockercontainers",

 "hostPath": {

 "path": "/var/lib/docker/containers"

 }

 }

]

 }

 }

 }

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.11.2. Update DaemonSet

To update a DaemonSet, the user needs to reference the latest namespace or
DaemonSettransaction as input and a scriptSig value that satisfy the input transaction
script. The value field must contain a fully updated DaemonSetdocument.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest DaemonSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 190

 }

],

 "vout": [

 {

 "value": {

 {

 "apiVersion": "apps/v1",

 "kind": "DaemonSet",

 "metadata": {

 "name": "elasticsearch",

 "namespace": "kube-system",

 "labels": {

 "k8s-app": "logging"

 }

 },

 "spec": {

 "selector": {

 "matchLabels": {

 "name": " elasticsearch"

 }

 },

 "template": {

 "metadata": {

 "labels": {

 "name": " elasticsearch"

 }

 },

 "spec": {

 "containers": [

 {

 "name": "elasticsearch",

 "image": "fluentd:v2.5.3",

 "resources": {

 "limits": {

 "memory": "250Mi"

 },

 "requests": {

 "cpu": "100m",

191 Appendix 2. Resource Operations

 "memory": "400Mi"

 }

 },

 "volumeMounts": [

 {

 "name": "varlog",

 "mountPath": "/var/log"

 },

 {

 "name": "varlibcontainers",

 "mountPath":

"/var/lib/containers",

 "readOnly": true

 }

]

 }

],

 "terminationGracePeriodSeconds": 30,

 "volumes": [

 {

 "name": "varlog",

 "hostPath": {

 "path": "/var/log"

 }

 },

 {

 "name": "varlibdockercontainers",

 "hostPath": {

 "path": "/var/lib/docker/containers"

 }

 }

]

 }

 }

 }

 }

 },

 "scriptPubKey": "

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 192

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.11.3. Remove DaemonSet

To delete a DaemonSet, the user needs to reference the latest namespace or DaemonSet
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest DaemonSet

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

193 Appendix 2. Resource Operations

2.12. Secret

2.12.1. Create Secret

To create a Secret, the user needs to reference the latest namespace transaction as input
and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "data": {

 "username": "dGhlc2lz",

 "password": "ZXhjZWxsZW50"

 },

 "kind": "Secret",

 "metadata": {

 "name": "mysecret",

 "namespace": "default",

 "resourceVersion": "1",

 "uid": "7c41dad2-fc54-11ec-b939-0242ac120002",

 "labels": {

 "name": " elasticsearch"

 }

 },

 "type": "Opaque"

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 194

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.12.2. Update Secret

To update a Secret, the user needs to reference the latest namespace or Secret as input
and a scriptSig value that satisfy the input transaction script. The value field must
contain a fully updated Secret.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest Secret transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "data": {

 "username": "dGhlc2lz",

 "password": "YXdlc29tZQ=="

 },

 "kind": "Secret",

 "metadata": {

 "name": "mysecret",

 "namespace": "default",

 "resourceVersion": "1",

195 Appendix 2. Resource Operations

 "uid": "7c41dad2-fc54-11ec-b939-0242ac120002",

 "labels": {

 "name": " elasticsearch"

 }

 },

 "type": "Opaque"

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.12.3. Remove Secret

To delete a Secret, the user needs to reference the latest namespace or Secret transaction
as input and a scriptSig value that satisfy the input transaction script. The value of the
transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest Secret transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 196

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

197 Appendix 2. Resource Operations

2.13. ServiceAccounts

2.13.1. Create ServiceAccount

To create a ServiceAccount, the user needs to reference the latest namespace transaction
as input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "ServiceAccount",

 "metadata": {

 "name": "my-service-account",

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 198

2.13.2. Remove ServiceAccount

To delete a ServiceAccount, the user needs to reference the latest namespace or
ServiceAccount transaction as input and a scriptSig value that satisfy the input
transaction script. The value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest ServiceAccount

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

199 Appendix 2. Resource Operations

2.14. Ingress

2.14.1. Create Ingress

To create an Ingress, the user needs to reference the latest namespace transaction as
input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Ingress",

 "metadata": {

 "name": "minimal-ingress",

 "annotations": {

 "nginx.ingress.kubernetes.io/rewrite-target":

"/"

 }

 },

 "spec": {

 "ingressClassName": "nginx-example",

 "rules": [

 {

 "http": {

 "paths": [

 {

 "path": "/healthcheck-path",

 "pathType": "Prefix",

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 200

 "backend": {

 "service": {

 "name": "test",

 "port": {

 "number": 80

 }

 }

 }

 }

]

 }

 }

]

 }

 },

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.14.2. Update Ingress

To update an Ingress, the user needs to reference the latest namespace or Ingress as
input and a scriptSig value that satisfy the input transaction script. The value field must
contain a fully updated Ingress.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest Ingress transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

201 Appendix 2. Resource Operations

 }

],

 "vout": [

 {

 "value": {

 "apiVersion": "v1",

 "kind": "Ingress",

 "metadata": {

 "name": "minimal-ingress",

 "annotations": {

 "nginx.ingress.kubernetes.io/rewrite-target":

"/"

 }

 },

 "spec": {

 "ingressClassName": "nginx-example",

 "rules": [

 {

 "http": {

 "paths": [

 {

 "path": "/healthcheck-path",

 "pathType": "Prefix",

 "backend": {

 "service": {

 "name": "test",

 "port": {

 "number": 8080

 }

 }

 }

 }

]

 }

 }

]

 }

 },

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 202

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.14.3. Remove Ingress

To delete an Ingress, the user needs to reference the latest namespace or Ingress
transaction as input and a scriptSig value that satisfy the input transaction script. The
value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest Ingress transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

203 Appendix 2. Resource Operations

2.15. NetworkPolicy
2.15.1. Create NetworkPolicy

To create a NetworkPolicy, the user needs to reference the latest namespace transaction
as input and a scriptSig value that satisfies the input transaction script.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest namespace

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": {

 "kind": "NetworkPolicy",

 "metadata": {

 "name": "test-network-policy",

 "namespace": "default"

 },

 "spec": {

 "podSelector": {

 "matchLabels": {

 "role": "db"

 }

 },

 "policyTypes": [

 "Ingress",

 "Egress"

],

 "ingress": [

 {

 "from": [

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 204

 {

 "ipBlock": {

 "cidr": "172.17.0.0/16",

 "except": [

 "172.17.1.0/24"

]

 }

 },

 {

 "namespaceSelector": {

 "matchLabels": {

 "project": "myproject"

 }

 }

 },

 {

 "podSelector": {

 "matchLabels": {

 "role": "frontend"

 }

 }

 }

],

 "ports": [

 {

 "protocol": "TCP",

 "port": 6379

 }

]

 }

],

 "egress": [

 {

 "to": [

 {

 "ipBlock": {

 "cidr": "10.0.0.0/24"

 }

205 Appendix 2. Resource Operations

 }

],

 "ports": [

 {

 "protocol": "TCP",

 "port": 5978

 }

]

 }

]

 }

 }.

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

2.15.2. Update NetworkPolicy

To update a NetworkPolicy, the user needs to reference the latest namespace or
NetworkPolicy as input and a scriptSig value that satisfy the input transaction script.
The value field must contain a fully updated NetworkPolicy.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest NetworkPolicy

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 206

 "vout": [

 {

 "value": {

 "kind": "NetworkPolicy",

 "metadata": {

 "name": "test-network-policy",

 "namespace": "default"

 },

 "spec": {

 "podSelector": {

 "matchLabels": {

 "role": "db"

 }

 },

 "policyTypes": [

 "Ingress",

 "Egress"

],

 "ingress": [

 {

 "from": [

 {

 "ipBlock": {

 "cidr": "172.17.0.0/16",

 "except": [

 "172.17.1.0/24"

]

 }

 },

 {

 "namespaceSelector": {

 "matchLabels": {

 "project": "myproject"

 }

 }

 },

 {

 "podSelector": {

207 Appendix 2. Resource Operations

 "matchLabels": {

 "role": "frontend-release-candidate"

 }

 }

 }

],

 "ports": [

 {

 "protocol": "TCP",

 "port": 6379

 }

]

 }

],

 "egress": [

 {

 "to": [

 {

 "ipBlock": {

 "cidr": "10.0.0.0/24"

 }

 }

],

 "ports": [

 {

 "protocol": "TCP",

 "port": 5978

 }

]

 }

]

 }

 }.

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

Towards Decentralized Service Orchestration for Heterogeneous Cloud Services 208

OP_CHECKSIG",

 }

]

}

2.15.3. Remove NetworkPolicy

To delete a NetworkPolicy, the user needs to reference the latest namespace or
NetworkPolicy transaction as input and a scriptSig value that satisfy the input
transaction script. The value of the transaction must be null.

{

 "version": 1,

 "vin": [

 {

 "txid": "<txid from the latest NetworkPolicy

transaction>",

 "vout": 0,

 "scriptSig": "<ECDSA Tx Signature><PublicKey>"

 }

],

 "vout": [

 {

 "value": null,

 "scriptPubKey": "

OP_DUP

OP_HASH160

<hash_public_key_from_admin>

OP_EQUALVERIFY

OP_CHECKSIG",

 }

]

}

