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Abstract
We present a new iterative procedure for solving nonlinear equations with multiple
roots with high efficiency. Starting from the arithmetic mean of Newton’s and Cheby-
sev’s methods, we generate a two-step scheme using weight functions, resulting in
a family of iterative methods that satisfies the Kung and Traub conjecture, yielding
an optimal family for different choices of weight function. We have performed an in-
depth analysis of the stability of the family members, in order to select those members
with the highest stability for application in solving mathematical chemistry problems.
We show the good characteristics of the selected methods by applying them on four
relevant chemical problems.
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1 Introduction

Throughout history, physical phenomena have been modeled through mathematical
expressions. On many occasions, it is necessary to obtain the solution of the nonlinear
equation f (x) = 0, f : D ⊆ R → R. However, it is not always possible to obtain an
analytical solution to such a problem and we have to resort to approximate solutions.
Iterative methods obtain approximations to the solution as accurate as we need. The
best known and most widely used scheme is Newton’s method

xk+1 = xk − f (xk)

f ′(xk)
, k = 0, 1, 2, . . .

Under the convergence conditions – initial estimate close to the root and sufficiently
differentiable function – Newton’s method converges quadratically as long as we look
for a simple root. But there are many physical phenomena in which we have to look
for a multiple root, and there the convergence is impaired.

Nonlinear equations f (x) = 0 with multiple roots of multiplicity m > 1 satisfy
f (rm) = f ′(rm) = · · · = f (m−1)(rm) = 0 and f (m)(rm) �= 0. Many authors have
designed iterative methods for this purpose [1–6]. Kansal et al. [7] designed two-step
optimal methods of fourth order, starting from the arithmetic mean between second
order methods for multiple roots, and including weight functions and accelerating
parameters in the final scheme. Behl et al. [8, 9] followed a similar strategy to reach
order of convergence four.

In this paper we propose the design and analysis of an iterative class taking the
arithmetic mean of the accelerated Newton’s method [10]

xn+1 = xn − m
f (xn)

f ′(xn)
, n = 0, 1, 2, . . .

and Chebyshev’s iterative scheme [11]

xn+1 = xn − f (xn)

f ′(xn)
− f (xn)2 f ′′(xn)

2 f ′(xn)3
, n = 0, 1, 2, . . . ,

obtaining the following iterative method:

xn+1 = xn −
[
m + 1

2
+ 1

4
tn

]
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . , (1)

where tn = f (xn) f ′′(xn)
f ′(xn)2

.

Our aim is to design an optimal method in the sense of the Kung-Traub conjec-
ture [11] which states that the order of convergence p of an iterative scheme without
memory is at most 2d−1, where d is the number of different functional evaluations
performed by the iterative algorithm, reaching the optimality when p = 2d−1. More-
over, Traub showed in [11] that in order to design a one-step method with order of
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convergence p, its iterative expression must contain derivatives at least up to order
p − 1.

Let us notice that (1) is a one-step iterative method that uses three different func-
tional evaluations on each iterative step, being one of them a second-order derivative
of the function. With these features, its order of convergence is at most three, so this
method cannot reach the optimality. For this reason, we add an extra step in (1) to
obtain a two-step iterative scheme that does not require derivatives of order two and
uses only three functional evaluations so that according to the Kung-Traub conjecture
it could be possible to reach the optimal order of convergence 4.

The paper is structured as follows. Section2 analyzes the convergence of the intro-
duced family. Section3 studies the stability of the family, in order to find its best
members in terms of initial guesses. In Sect. 4 a numerical analysis is performed,
showing the validity of the method in chemistry and academic problems. Finally,
Sect. 5 collects the main conclusions of the manuscript.

2 Design of the fourth-order optimal family

Consider the Newton-type iterative method for multiple roots

xn+1 = xn − 2m

m + 2

f (xn)

f ′(xn)
, n = 0, 1, 2, . . .

Using Taylor series developments around x = xn , we have:

f ′
(
xn − 2m

m + 2

f (xn)

f ′(xn)

)
≈ f ′(xn) − 2m

m + 2

f (xn) f ′′(xn)
f ′(xn)

. (2)

From (2), the second derivative of the function can be approximated as

f ′′(xn) ≈ (m + 2) f ′(xn)
(
f ′(xn) − f ′(yn)

)
2m f (xn)

,

being yn = xn − 2m
m+2

f (xn)
f ′(xn) . In addition, we can write

tn = f (xn) f ′′(xn)
f ′(xn)2

≈ (m + 2)
(
f ′(xn) − f ′(yn)

)
2m f ′(xn)

. (3)

Replacing (3) in (1), we obtain

⎧⎪⎪⎨
⎪⎪⎩

yn = xn − 2m

m + 2

f (xn)

f ′(xn)
,

xn+1 = xn −
[
m + 1

2
+ 1

4
tn

]
f (xn)

f ′(xn)
,

n = 0, 1, 2, . . . (4)
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with tn = (m+2)( f ′(xn)− f ′(yn))
2m f ′(xn) .

It can be proved the linear convergence of (4). Also, although the derivative of order
two is not used, it is not an optimal method because three functional evaluations are
still carried out. Based on its iterative structure we design another method with higher
order of convergence. In this sense, we add two free parameters a and b in (4). Then
the biparametric family is

⎧⎪⎪⎨
⎪⎪⎩

yn = xn − 2m

m + 2

f (xn)

f ′(xn)
,

xn+1 = xn − [a(m + 1) + btn]
f (xn)

f ′(xn)
,

n = 0, 1, 2, . . . (5)

The convergence of family (5) is analyzed below.

Theorem 1 Let rm be a multiple zero with a muliplicity m ≥ 1 of a sufficiently differ-
entiable function f : I ⊆ R −→ R defined in an open interval I such that rm ∈ I . If
the initial estimation x0 is close enought to rm, then the iterative scheme defined by (5)
has order of convergence three when parameters a and b are defined as following:

a = m(4 + 2m + m2 − m2−m(2 + m)m)

4(m + 1)
, b = 1

2
m4−m(2 + m)m−1.

In this case, the error equation of the resulting method is given by

en+1 = 2c21
m3 e

3
n + O(e4n),

being ci = m!
(m+i)!

f (m+i)(rm )

f (m)(rm )
, i ≥ 1, and en = xn − rm, ∀n ∈ N.

Proof Using Taylor series developments around x = rm and taking into account
f ( j)(rm) = 0 when 0 ≤ j ≤ m − 1 and f (m)(rm) �= 0, we can write

f (xn) = f (m)(rm)

m! emn (1 + c1en + c2e
2
n + c3e

3
n + c4e

4
n) + O(e5n), (6)

and its derivative

f ′(xn) = f (m)(rm)

m! em−1
n (m + (m + 1)c1en + (m + 2)c2e

2
n + (m + 3)c3e

3
n

+ (m + 4)c4e
4
n) + O(e5n),

(7)

From (6) and (7), we obtain

f (xn)

f ′(xn)
= 1

m
en − c1

m2 e
2
n +

(
(m + 1)c21 − 2mc2

m3

)
e3n + O(e4n). (8)
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Then we have

yn − rm = en − 2m

m + 2

f (xn)

f ′(xn)

= m

2 + m
en + 2c1

m(2 + m)
e2n +

(
−2(m + 1)c21 + 4mc2

m2(2 + m)

)
e3n + O(e4n)

and then

f ′(yn) = f (m)(rm)

m! (yn − rm)m−1(m + (m + 1)c1(yn − rm) + (m + 2)c2(yn − rm)2

(m + 3)c3(yn − rm)3) + O(e4n)

can be written as

f ′(yn) = f (m)(rm)

m! emn

(
m

2 + m

)m [
2 + m

en
+ (−4 + 2m + 3m2 + m3)c1

m2

+−4(m − 2)c21 + m2(−8 + 4m + 4m2 + m3)c2
m4 en

+ 1

3m6(2 + m)2

(
4(2 + m)2(−12 + 4m − 4m2 + 5m3 + m4)c31

−12m2(2 + m)2(−8 + 4m + m2)c1c2 + β
)
e2n

]
+ O(e3n),

(9)

where β = 3m4(−48 − 24m + 36m2 + 30m3 + 9m4 + m5)c3.
Now, from (7) and (9) we have

tn = (m + 2)
(
f ′(xn) − f ′(yn)

)
2m f ′(xn)

= (m + 2)(m − mm(m + 2)m−1)

2m2 + 2mm−4(m + 2)m−1c1en

− 2
(
mm−6(m + 2)m−1((2 + m2)c21 − 2m2c2)

)
e2n + O(e3n).

(10)

Using (8) and (10) on the second step of the iterative scheme we obtain the error
equation

en+1 = en − [a(m + 1) + btn ]
f (xn)

f ′(xn)

=
[
1 − a(m + 1)

m
− b(m + 2)(m − mm (m + 2)1−m )

2m3

]
en

+ am3(1 + m) − 2bmm (2 + m)1−m + 1
2 bm(m + 2)(m − mm(m + 2)1−m )

m5
c1e

2
n

+ O(e3n).

123



Journal of Mathematical Chemistry (2023) 61:736–760 741

From the error equation, the iterative class (5) can achieve cubic order when it holds

{
1 − a(m+1)

m − b(m+2)(m−mm (m+2)1−m)

2m3 = 0
am3(1 + m) − 2bmm(2 + m)1−m + 1

2bm(m + 2)(m − mm(m + 2)1−m) = 0

Equivalently, the order is cubic when parameters a and b take the value

a = m(4 + 2m + m2 − m2−m(2 + m)m)

4(m + 1)
, b = 1

2
m4−m(2 + m)m−1.

and then the error equation of the method results into

en+1 = 2c21
m3 e

3
n + O(e4n).

��
In order to construct a fourth-order optimal method with less than three differ-

ent functional evaluations, we propose the introduction of a weight function on (5)
obtaining

⎧⎪⎪⎨
⎪⎪⎩

yn = xn − 2m

m + 2

f (xn)

f ′(xn)
,

xn+1 = xn − [a(m + 1) + btn] Q

(
f ′(yn)
f ′(xn)

)
f (xn)

f ′(xn)
,

n = 0, 1, 2, . . . , (11)

where tn = (m+2)( f ′(xn)− f ′(yn))
2m f ′(xn) and

a = m(4 + 2m + m2 − m2−m(2 + m)m)

4(m + 1)
, b = 1

2
m4−m(2 + m)m−1,

and Q ∈ C2(R) is a real variable weight function. The following result shows the
conditions that the weight function Q must satisfy in (11) to reach the optimal order
of convergence four.

Theorem 2 Let rm be a multiple zero with a muliplicity m ≥ 1 of a sufficiently differ-
entiable function f : I ⊆ R −→ R defined in an open interval I such that rm ∈ I .
If the initial estimation x0 is close enought to rm, then the iterative scheme defined by
(11) has order of convergence four when the weight function Q satisfies:

• Q(μ) = 1,
• Q′(μ) = 0,
• Q′′(μ) = 1

4m
3−2m(2 + m)2m,

• |Q′′′(μ)| < ∞,
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where μ =
(

m
2+m

)m−1
. Under these conditions, the following error equation is hold:

en+1 =
⎡
⎢⎣m4[12 + m(−8 + m(2 + m(2 + m)))] + 32

(
m

2+m

)3m
Q′′′(μ)c31

3m9

−c1c2
m

+ mc3
(2 + m)2

]
e4n + O(e5n),

being ci = m!
(m+i)!

f (m+i)(rm )

f (m)(rm )
, i ≥ 1, and en = xn − rm, ∀n ∈ N.

Proof From (6) and (7), we can write

f ′(yn)
f ′(xn)

=
(

m

2 + m

)m−1

− 4mm−3(2 + m)−mc1en

+ mm−5(2 + m)−m(4(2 + m2)c21 − 8m2c2)e
2
n

− 8

3

(
mm−7(2 + m)m−2

(
(2 + m)2(6 + m + m2(5 + (m − 1)m))c31

−3m2(2 + m)2(4 + m2)c1c2 + 3m4(6 + m(6 + m))c3
))

e3n + O(e4n).

(12)

Now we can write f ′(yn)
f ′(xn) = μ + ν, being μ =

(
m

2+m

)m−1
. From (12), the difference

holds v = f ′(yn)
f ′(xn) − μ ∼ O(en), so we consider the Taylor series expansion of the

weight function Q
(

f ′(yn)
f ′(xn)

)
= Q(μ + v) around μ

Q

(
f ′(yn)
f ′(xn)

)
= Q(μ) + Q′(μ)v + Q′′(μ)

2! v2 + Q′′′(μ)

3! v3 + O(e4n). (13)

Using (8), (10) and (13) in the iterative expression (11), the error equation holds

en+1 = en − [a(m + 1) + btn] Q

(
f ′(yn)
f ′(xn)

)
f (xn)

f ′(xn)
= K1en + K2e

2
n + K3e

3
n + O(e4n), (14)

where

K1 = 1 − Q(μ),

K2 = 4mm−3(2 + m)−mQ′(μ)c1,

K3 = m−6(2 + m)−2m
(
2m3(2 + m)2mQ(μ) − 4mm+1(2 + m)m(2 + m2)Q′(μ)

−8m2mQ′′(μ)
)
c21 + 16m3+m(2 + m)mQ′(μ)c2.
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To obtain an optimal family of iterative methods of order 4, the coefficients of en , e2n
and e3n in the error Eq. (14) must be zero simultaneously. Solving for K1 = 0, K2 = 0
and K3 = 0 we obtain the following conditions to cancel the terms up to order three
of Eq. (14)

⎧⎪⎪⎨
⎪⎪⎩

Q(μ) = 1,
Q′(μ) = 0,
Q′′(μ) = 1

4m
3−2m(2 + m)2m,

|Q′′′(μ)| < ∞.

(15)

Using the previous conditions, the error equation of family (11) shows that the order
of convergence is four:

en+1 =
⎡
⎢⎣m4(12 + m(−8 + m(2 + m(2 + m)))) + 32

(
m

2+m

)3m
Q′′′(μ)

3m9 c31

−c1c2
m

+ mc3
(2 + m)2

]
e4n + O(e5n).

��
According to Theorem2, we have designed a two-step family of iterative meth-

ods that only performs three functional evaluations on each iteration and reaches the
optimal order of convergence p = 4.

In the following, we will try to simplify the iterative expression of (11). First, using
the notation un = f ′(yn)

f ′(xn) we can write

tn = (m + 2)
(
f ′(xn) − f ′(yn)

)
2m f ′(xn)

= m + 2

2m
(1 − un)

and then

a(m + 1) + btn = m(4 + 2m + m2 − m2−m(2 + m)m)

4
+ 1

4
m3−m(2 + m)m(1+un)

= a1 + b1(1 − un),

being a1 = m(4+2m+m2−m2−m (2+m)m )
4 and b1 = 1

4m
3−m(2 + m)m .

On the other hand, from Theorem2, the weight function can be written as

Q

(
f ′(yn)
f ′(xn)

)
= 1 + 1

8
m3−2m(2 + m)2m

(
f ′(yn)
f ′(xn)

− μ

)2

+ α

6

(
f ′(yn)
f ′(xn)

− μ

)3

,
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where α = Q′′′(μ), |Q′′′(μ)| < ∞ and μ =
(

m
2+m

)m−1
. Finally, defining H with the

previous expressions

H(un) = [a1 + b1(1 − un)] Q (un) ,

family (11) can be simplified as

⎧⎪⎪⎨
⎪⎪⎩

yn = xn − 2m

m + 2

f (xn)

f ′(xn)
,

xn+1 = xn − H(un)
f (xn)

f ′(xn)
,

n = 0, 1, 2, . . . , (16)

being α ∈ C a free parameter. A new family of optimal iterative methods belonging
to (11) is designed. Let us denote the iterative class (16) by NC4 family. Next section
is devoted to perform a dynamical analysis of NC4 family in order to choose the best
members in terms of stability.

3 Stability of the family of methods

The stability analysis of a family of iterative methods studies the behaviour of the
schemes for a wide set of initial guesses. In this sense, this analysis discriminates
whether the methods are useful to solve the nonlinear problems or not.

In section3.1 the scaling theorem is introduced, and the Möbius transformation is
applied to reduce the amount of parameters involved. Section3.2 analyzes fixed and
critical points. Finally, section3.3 is devoted to select the members of the family with
better stability behaviour.

Complex dynamics is used to study the dynamical behaviour of the rational operator
associated to family NC4 applied on polynomials. The concepts can be reviewed in
more detail at [12–15].

3.1 Operator simplification throughMöbius transformation

The iterative family is applied for solving the general nonlinear multiple-root polyno-
mial p(z) = (z − δ1)

2(z − δ2). Theorem3 points that family NC4 satisfies the scaling
theorem, in order to simplify the stability analysis.

Theorem 3 (Scaling theorem for family NC4) Let f be an analytic function in Ĉ, and
let T (z) = βz+γ , β �= 0, an affine map. Let g(z) = λ ( f ◦ T ) (z) = λ f (T (z)) , λ �=
0. Let O f (z) the fixed point operator of family (16). Then, (T ◦Og ◦T−1)(z) = O f (z),
that is, Og and O f are affine conjugated by T .

Since family (16) satisfies the scaling theorem, the fixed point operators associated
to family NC4 applied to analytic functions are affine conjugated by an affine map.
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The rational operator of family NC4 applied on p(z) = (z − δ1)
2(z − δ2) is

Op(z) = z − (δ1 − z)(z − δ2)

δ1 + 2δ2 − 3z
ApBp, (17)

where

Ap = 6 − 8(δ1 + δ2 − 2z)
(
δ21 + δ1(δ2 − 3z) + 4δ22 − 9δ2z + 6z2

)
(δ1 + 2δ2 − 3z)3

,

Bp = α(δ1 − z)3
(
δ21 − 2δ1δ2 − 2δ22 + 6δ2z − 3z2

)3
48(δ1 + 2δ2 − 3z)9

+ 4(δ1 − z)2
(
δ21 − 2aδ2 − 2δ22 + 6δ2z − 3z2

)2
(δ1 + 2δ2 − 3z)6

+ 1.

Note that (17) depends on the variable z, the parameter α and the roots δ1 and δ2. In
order to overcome the dependence on the roots, we consider theMöbius transformation
[12]

M(z) = z − δ1

z − δ2
,

obtaining its affined conjugated operator

O(z) =
(
M ◦ Op ◦ M−1

)
(z) = z4

N10(z)

D13(z)
, (18)

where

N10(z) = 24z10 + (α + 864)z9 − 16(α − 396)z8+
+ 50(α + 864)z7 + 4(11α + 58176)z6 + (744192 − 220α)z5−
− 16(13α − 86976)z4 + 8(37α + 195840)z3 + 16(35α + 66816)z2+
+ 64(5α + 6528)z + 64(α + 1152),

D13(z) = (α + 264)z13 − 16(α + 33)z12 + (50α − 4224)z11 + 4(11α + 3264)z10−
− 4(55α − 7584)z9 − 16(13α + 15984)z8 + 8(37α − 133632)z7+
+ 80(7α − 19584)z6 + 320(α − 1440)z5 + 64(α + 28608)z4 + 3194880z3+
+ 2555904z2 + 1081344z + 196608.

Since M(δ1) = 0, M(δ2) = ∞ and M(∞) = 1, Möbius transformation maps roots
δ1 and δ2 with 0 and ∞, respectively, while the divergent behaviour will be at 1.

3.2 Analysis of fixed and critical points

Recalling [12, 13], the fixed points of family (18) are those that satisfiy O(z) = z:

123



746 Journal of Mathematical Chemistry (2023) 61:736–760

Fig. 1 Stability diagrams of the α-independent strange fixed points t1,2,3

• z = 0, that corresponds to the root of multiplicity two, whose asymptotical
behaviour is superattracting,

• z = ∞, that corresponds to the single root, whose asymptotical behaviour is
attracting,

– attracting, if |264 + α| < 24,
– neutral, if |264 + α| = 24, and
– repelling, if |264 + α| > 24,

• z = 1, that is a strange fixed point that maps the original divergence and it is

– attracting, if |68472 + 11α| > 472392,
– neutral, if |68472 + 11α| = 472392, and
– repelling, if |68472 + 11α| < 472392,

• the α-independent strange fixed points ti , i ∈ {1, 2, 3}, that match with the roots
of the polynomial q(z) = z3 − 10z2 − 16z − 8, and the α-dependent strange fixed
points s j , j ∈ {1, 2, . . . , 9}, that match with the roots of the polynomial r(z, α) =
z9(α+240)+ z8(1248−6α)+ z7(6α+4608)+ z6(16α+26112)+ z5(100608−
12α) + z4(216576− 24α) + z3(279552− 8α) + 227328z2 + 110592z + 24576,
whose asymptotical behaviour is analyzed numerically using the stability diagrams
of Figures2and4.

Figure1 represents the stability diagram of the strange fixed points t1, t2 and t3.
Values of α in the interval [0, 1] show the region where the strange fixed points are
attracting.

The unified stability diagram [16] represents in black the values of α such that one
strange fixed point is attracting. Figure2 represents the unified stability diagram of
fixed points t1, t2 and t3.

Figure3 represents the stability diagram of the strange fixed points s j , j ∈
{1, . . . , 6}. Values of α in the interval [0, 1] show the region where the strange fixed
points are attracting.

It can be shown that s7, s8 and s9 are repelling for every value of α.
Figure4 represents the unified stability diagram of fixed points s j , j ∈ {1, . . . , 6}.
The critical points of family (18) are those that satisfy O ′(z) = 0:
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Fig. 2 Unified stability diagram
of the α-independent strange
fixed points t1,2,3
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Fig. 3 Stability diagrams of the α-dependent strange fixed points s j , j ∈ {1, . . . , 6}

• z = 0,
• z = −2, that is a pre-image of z = 1, and
• the free critical points uk , k ∈ {1, . . . , 11} that match with the roots of the polyno-
mial v(z, α) = z11(α+264)+z10(−56α−7392)+z9(544α+6336)+z8(132480−
1308α)+z7(−924α−215424)+z6(4032α−1880064)+z5(2064α−2078208)+
z4(2617344−4176α)+z3(7520256−2496α)+z2(2240α+6881280)+z(2240α+
3072000) + 512α + 589824.

Figure5 represents the parameter planes of the free critical points, using a sim-
ilar routine than [14]. In this case, a mesh of 200 × 200 points in the rectangle
[�{α},�{α}] = [−1000, 1000] × [−1000, 1000] has been selected. White points
represent convergence to one of the roots of polynomial, while black points show
divergence and, therefore, unstable behaviour. The parameter planes of critical points
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Fig. 4 Unified stability diagram
of the α-dependent strange fixed
points s j , j ∈ {1, . . . , 6}
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Fig. 5 Parameter planes of free critical points
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Fig. 6 Unified parameter plane

-1000 -500 0 500 1000

{ }

-1000

-500

0

500

1000

{
}

u10 and u11 have not been represented, since both converge only to the roots of the
polynomial.

The information of the parameter planes of Figure5 is summarized via the unified
parameter plane of Figure6. It represents in black the values of α such that at least
one free critical point do not converge to one root of the polynomial.

3.3 Selection of the best members of the family

The analysis performed in section3.2 allows the selection of the parameter α in terms
of stability.

Below we are representing some dynamical planes associated to specific values
of α to show the different behaviours. The dynamical planes represent the basins of
attraction of every initial guess in the rectangle [�{z},�{z}] = [−30, 30]×[−30, 30],
taking amesh of 200×200 points, in a similarmanner than [14].Orange and blue points
represent the convergence to 0 or∞, respectively. Black points represent convergence
to a point different from the roots.

Selecting a value of α in the black region of Figure2 or4 results in a set of initial
guesses that converge to a strange attracting fixed point. Figure7shows two samples.

Figure7(a) represents the dynamical plane of the method α = −400 + 200i . A
wide set of initial estimations converge to the root 0. However, some initial guesses
converge to the strange attracting fixed point t1 ≈ 11.4574 represented in white star.
A similar behaviour is represented in Figure7(b), for the method corresponding to
α = −1500, where some initial estimations converge to the strange attracting fixed
point s1 ≈ 7.9661, represented in white star.

Free critical points can have their own basin of attraction, different from the roots of
the polynomial. Selecting a value of α in the black region of Figure6 results in iterative
methods whose free critical points converge to their own root. Figure8illustrates this
behaviour.

Figure8(a) represents the dynamical plane of the method α = 0. In this case,
u1 ≈ 26.8431 –represented in white square– is inside a basin of attraction of a two-
periodic orbit. Figure8(b) is the corresponding dynamical plane to α = −119+157i .
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Fig. 7 Dynamical planes for values of α such that at least one strange fixed point is attracting
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Fig. 8 Dynamical planes for values of α such that at least one free critical point do not converge to the roots
of the polynomial

The free critical point u2 ≈ 6.5275 + 12.8139i is inside de basin of attraction of
t1 ≈ 11.4574.

In order to show the good stability of the family for a wide set of values of α, we
select specific members in the white regions of Figures2, 4 and6. Figure9shows four
dynamical planes for specific values of α.

4 Numerical tests

In this section we compare the introduced method NC4 with relevant methods of the
literature. The selected methods can be found in Sharma and Sharma [17] denoted as
SS, Behl et al [9] denoted as B4, and Sharifi et al. [18] denoted as SH. The comparison
is performed on different chemical nonlinear equations that involve multiple roots. For
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Fig. 9 Dynamical planes with full convergence

the NC4 family, several parameters – extracted from Figures7, 8 and9 – have been
selected.

The numerical results of each problem are displayed in a table. In particular, each
method is applied until | f (xk+1)| < tol or |xk+1 − xk | < tol. If it is not stated
differently, tol = 10−300 is used along the following examples. Both values are shown
in the result tables for the last iterate computed. If the targeted solution is available,
we introduce the value of |xk+1 − α|. Furthermore, we include the number of iterates
(it) required to reach those tolerances and the approximated computational order of
convergence ACOC [19].

4.1 Non-ideal gas model

The Van der Waals gas equation describes the evolution of a non-ideal gas from its
idealised version. It uses two parameters a1 and a2 to study the nonideality of the gas.
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The equations are described as follows:

(
P + a1n2

V 2

)
(V − na2) = nRT ,

where P is the pressure of the gas, V is its volume, n are the moles of gas, R is the
universal constant of ideal gases and T is the absolute temperature of the gas.

Taking proper values for n, P y T and the constants a1 and a2 we end up with
equation

f1(x) = x3 − 5.22x2 + 9.0825x − 5.2675.

This is a polynomial with a double root at 1.75 and a simple root at 1.72. Table1shows
the results for the Non-ideal gas model.

We observe that for the parameter −1500 the NC4 method does not converge, this
can be expected since the parameter is in the region where at least one of the strange
fixed points is attracting.

4.2 Stirred-tank reactor

Let us consider a stirred tank reactor in which an isothermal fluid is stirred
continuously, given in Constantinides and Mostoufi [20].

Two components A and R are injected in the reactor at ratios Q and q − Q
respectively. The following reactions occurs in the reactor

A + R −→ B

B + R −→ C

C + R −→ D

C + R −→ E

Douglas [21] proposes a feedback control system in order to control the velocity of
the reaction. After his analysis the equation of the transfer function of the reaction is

Kc
2.98(x + 2.25)

(x + 1.45)(x + 2.85)2(x + 4.35)
= −1,

where Kc is the proportional gain of the controller in the control system. The control is
stable for those values of Kc with negative real part of the transfer function. In control
theory, the locatoin the poles of the transfer function improves the knowledge of the
behaviour of the controller. Therefore, we are interested finding the roots of equation

f2(x) = x4 + 11.5x3 + 47.49x2 + 83.06325x + 51.23266875 = 0.

Here, x = −2.85 is a root of multiplicity 2. There are two other roots located at
x = −1.45 and x = −4.35. The results are displayed in Table2.
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Twodifferent initial conditions have been considered. The second one is far from the
root, and therefore, several of the methods do not converge. Three of the parameters
tested are able to converge to the desired solution. We observe that the SS method
converges to a simple root, yielding an undesired result.

4.3 Oceanic acidity

The CO2 concentration of the ocean is modelled according to McHugh et al. [22] and
developed by Babajee [23] and Kansal et al [24].

The model computes the acidity levels of the ocean by computing the roots of
a fourth order polynomial. The hypothesis considered by Babajee [23] in order to
simplify the problem are

• The CO2 concentration only depends on the upper layer of the ocean. The model
does not consider deeper layers of ocean.

• The carbon is distributed as a perfect mixing in the ocean upper layer. That implies
that the spatial variables can be neglected.

The dilution of CO2 involves several chemical reactions, resulting in an increase
of the hidrogen ion concentration [H+] and, therefore, the acidification of the ocean.
The problem of the concentration of hydrogen can be solved by finding the root of the
nonlinear function

p([H+]) =
4∑

n=0

rn[H+]n

where the coefficients of the polynomials are

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r0 = 2K0K1K2Pt KB,

r1 = K0K1Pt KB + 2K0K1K2Pt + KW KB,

r2 = K0K1Pt + BKB + KW − AKB,

r3 = −KB − A,

r4 = −1.

The values K0, K1, K2, KW and KB are the equilibrium constants of the reactions
that involve the acidification process. The parameter A represents the alcalinity of the
ocean water, Pt is the partial pressure of CO2.

In [24] the values A = 2.050 and B = 0.409 are taken from [25, 26] and obtained
from [23]: Pt = 200, K0 = 3.347(−5), K1 = 9.747(−4), K2 = 8.501(−7), KW =
6.46(−9), KB− > 1.881(−6),
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The values of the constants Ki can be extracted from [23]. The value of Pt is a
variable thatwe set in Pt = 148.508.Under these conditions,we obtain the polynomial

f3(x) = −x4 + 2309x3

250
+ r2

484274251612376668581111x2

5000000000000000000

− 631234663625036799161187633x

50000000000000000000
+ 162684846663854470538576580159111

1250000000000000000000000
= 0,

that has a double root at x = 178.977 and two simple roots at x = −360.003 y
x = 11.2859.

Table3shows the numerical results to find the zero ofmultiplicity 2 for taht equation.
In that case the tolerance required is 10−200.

4.4 Fixed points in a bi-electronmodel

A classical problem in chemistry is study of the movement of an electron in the
hydrogen atom with a circularly polarised microwave field [27].

The dynamics of this model are given by the Hamiltonian

H = 1

2

(
p2x + p2y

)
− x · py + y · px − 1√

x2 + y2
+ K · x,

where K is the intensity of the microwave field. If a a negative charged nucleus is
considered instead of positive one, the resulting model is the bi-electron model

H = 1

2

(
p2x + p2y

)
− x · py + y · px + 1√

x2 + y2
+ K · x .

One is interested in searching in the fixed points of that model. Once computed the
dynamical equations it is clear that y = 0 and x must verify:

f4(x) = x3 − Kx2 + sign(x) = 0.

Considering K = 2 this equation has one double root for x = 1 and one single root
at x = 0. Table 4 shows the results for the bi-electron model.

5 Conclusion

In the present paper we have introduced a parametric family of order 4 to find roots
of multiplicity greater than 2 of nonlinear equations. In order to select the most stable
members of the class, a complete study on the stability and the parameters of the
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family has been performed. The application of these schemes is supported with sev-
eral numerical experiments in the field of mathematical chemistry, showing the good
properties of the introduced methods.
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