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Resumen  

Con este trabajo tratamos de determinar la viabilidad que existe en la detección automática 

de expresiones de odio en castellano mediante la aplicación de Deep Learning (DL) sobre el 

dataset del proyecto Hatemedia1. Para ello realizamos una comparativa de soluciones para 

determinar qué modelo de DL ofrece mejor rendimiento para esta tarea. Se han realizado las 

mismas pruebas con diferentes versiones del dataset; una versión con todos los registros y 

otras versiones reducidas para intentar solventar los problemas derivados del desbalanceo de 

clases. Las pruebas realizadas para los datasets balanceados exploran distintas casuísticas en 

base a criterios como la longitud de los textos o el uso de textos pertenecientes a un mismo 

medio, con el fin de entender si estas variables tienen importancia en el rendimiento de los 

modelos. Tras el trabajo comparativo, encontramos que el dataset original resulta inservible 

debido al problema del desbalanceo de clases, ocasionando que todos los modelos acaben 

prediciendo únicamente la clase dominante, obteniendo un 98% de accuracy pero un 0% de 

recall para la clase minoritaria. Si nos centramos en las pruebas con los datasets balanceados, 

el modelo BETO (versión cased) es el que mejor rendimiento ofrece, superando los resultados 

obtenidos por otros modelos del estado del arte entrenados con diferentes datasets. 

Finalizamos exponiendo todas las dificultades encontradas y ofreciendo alternativas de 

mejora para trabajos futuros. 

 

El presente trabajo ha sido realizado dentro del proyecto: “Taxonomía, presencia e intensidad 

de las expresiones de odio en entornos digitales vinculados a los medios informativos 

profesionales españoles – Hatemedia”. Proyecto PID2020-114584GB-I00, financiado por la 

Agencia Estatal de Investigación - Ministerio de Ciencia e Innovación. 

 

Palabras Clave: Discurso de odio, Aprendizaje profundo, Aprendizaje por transferencia, BETO, 

Procesamiento de lenguaje natural, Clasificación de texto 

 

 

1 https://www.hatemedia.es/ 
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Abstract 

With this work we try to determine the feasibility of the automatic detection of hate speech 

in Spanish by applying Deep Learning (DL) on the dataset of the Hatemedia project. For this 

purpose, we carried out a comparison of solutions to determine which DL model offers the 

best performance for this task. The same tests have been carried out with different versions 

of the dataset; one version with all the records and other reduced versions to try to solve the 

problems derived from class imbalance. The tests carried out for the balanced datasets 

explore different cases based on criteria such as the length of the texts or the use of texts 

belonging to the same medium, in order to understand whether these variables are important 

in the performance of the models. After the comparative work, we find that the original 

dataset is useless due to the class imbalance problem, which makes all the models end up 

predicting only the dominant class, obtaining 98% accuracy but 0% recall for the minority class. 

If we focus on the tests with the balanced datasets, BETO model (cased version) is the one 

that offers the best performance, outperforming the results obtained by other state-of-the-

art models trained with different datasets. We conclude by exposing all the difficulties 

encountered and offering improvement alternatives for future work. 

 

This work has been carried out as part of the project: "Taxonomy, presence and intensity of 

hate speech in digital environments linked to Spanish professional media - Hatemedia". 

Project PID2020-114584GB-I00, funded by the State Research Agency - Ministry of Science 

and Innovation. 

 

Keywords: Hate speech, Deep learning, Transfer learning, BETO, Natural language processing, 

Text classification 
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Introducción  

Hoy en día, el auge de las redes sociales y medios informativos online genera una enorme 

cantidad de información y proliferación de contenidos (desinformativos o no) que en muchas 

ocasiones ponen en entredicho la tolerancia, civismo y respeto a determinados colectivos. 

Además, el anonimato y la interactividad propias de la web facilitan el aumento y la 

permanencia de los comentarios opresivos (Frenda et al., 2018). 

 

En este contexto, la detección automática del discurso de odio o Hate Speech (HS, de sus siglas 

en inglés) juega un papel importante. Sin embargo, nos encontramos ante el problema de que 

no existe una definición única para el discurso de odio, lo que complica en gran medida la 

labor de crear algoritmos que detecten el odio automáticamente y con precisión en un texto.   

En los últimos años, se han introducido varias definiciones ad hoc por parte del sector legal, 

académico y por las mismas redes sociales. Sin embargo, la elaboración de una definición 

precisa del discurso del odio es una tarea difícil dada su naturaleza subjetiva. (Papcunová 

et al., 2021). Al final, un texto escrito en internet podrá ser considerado discurso de odio en 

función de varios elementos que van más allá de las simples palabras que lo componen, como 

pueden ser las características del propio emisor, su intención, el contexto en el que se realiza, 

la cultura del país, etc.  

 

Otra dificultad a tener en cuenta es que el mensaje de odio a veces se confunde con el término 

"lenguaje ofensivo". Por este motivo, es importante remarcar la diferencia entre ambos 

conceptos. Un texto es ofensivo si contiene alguna forma de lenguaje no aceptable. En esta 

categoría pueden incluirse los insultos, las amenazas o las expresiones malsonantes (Plaza-

del-Arco et al., 2021).  

 

Por último, no podemos olvidar la complejidad intrínseca al propio lenguaje y sus 

peculiaridades: la ironía, el humor, el doble sentido, el odio implícito, metáforas... Incluso 

podemos encontrar textos absolutamente inocuos que utilizan términos malsonantes y 

comúnmente utilizados en lenguaje ofensivo, siendo este un caso muy común de falso positivo 

en muchos clasificadores de texto (especialmente los basados en lexicón).  Por si esto fuera 
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poco, el castellano presenta un alto grado de complejidad morfológica que requiere 

normalmente de tareas de preprocesamiento adicional para lograr aumentar el rendimiento 

de los modelos. 

Por todos estos motivos, la detección automática de odio online presenta un reto de grandes 

dimensiones que la comunidad científica se esfuerza en solucionar. 

 

1.1. Motivación 

Actualmente existe una fuerte motivación para estudiar la detección automática del discurso 

del odio debido a la abrumadora difusión de información online, impulsado por las nuevas 

tecnologías y formas de relacionarnos en internet. La detección automática del discurso del 

odio mediante algoritmos de inteligencia artificial (IA) éticos y fiables va a ser una tarea crucial 

para proteger los derechos fundamentales de las personas, especialmente importante ante 

escenarios tan radicales como los que nos toca vivir hoy en día, con guerras en curso y una 

sociedad extremadamente polarizada. Dentro de este escenario, internet se convierte en una 

potencial herramienta para distorsionan la realidad, atacar a personas e incluso deshumanizar 

a ciertos colectivos.  Por poner un ejemplo, los estudios han demostrado un aumento de la 

incitación al odio contra China en las redes sociales, especialmente los contenidos racistas y 

abusivos que acusan a las personas de causar el brote de COVID-192. 

 

El discurso de odio generalizado tiene importantes implicaciones sociales por motivos obvios. 

Sin embargo, este puede tener otras consecuencias mucho menos obvias, como que puede 

ser precursor de delitos más graves cometidos en nuestra sociedad. De hecho, algunos 

estudios afirman que existe una correlación entre el número de violaciones y el número de 

mensajes misóginos por estado dentro de los Estados Unidos (Filippo et al., 2015). En un 

marco del discurso de odio más amplio, tenemos varios estudios que plantean la hipótesis de 

una correlación entre el incremento de los mensajes de odio emitidos en internet y los 

crímenes de odio cometidos en determinados lugares y contextos específicos (Müller & 

 

2 Twitter Sees 900% Increase in Hate Speech towards China Due to Coronavirus, 2020 
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Schwarz, 2021), (Lingiardi et al., 2020), (Alkomah & Ma, 2022). Estos estudios consideran 

fundamental estudiar este tipo de mensajes de discurso de odio online con el fin de tomar 

acciones preventivas y contrarrestar sus posibles efectos negativos. En el trabajo de Ligiardi 

et al. (2020) se insta a realizar una investigación futura que trate de verificar si los picos de 

tuits intolerantes hacia un grupo objetivo tienden a coincidir con acontecimientos 

sociopolíticos relacionados.  
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1.2. Planteamiento del problema 

Dada la enorme cantidad de contenidos generados por los usuarios en redes sociales, no es 

adecuado confiar únicamente en la supervisión humana para combatir el discurso de odio en 

internet. Las plataformas sociales a gran escala están invirtiendo actualmente importantes 

recursos para detectar y clasificar automáticamente los contenidos de odio. 

A pesar de los numerosos estudios en este campo, el discurso del odio sigue siendo un reto 

desafiante. El estado del arte informa de que tanto las personas como los modelos de 

aprendizaje automático tienen dificultades para detectar el discurso de odio debido a la 

complejidad y variedad de las categorías de odio. Además, las definiciones teóricas existentes 

del discurso del odio no están suficientemente elaboradas, por lo que actualmente no se 

dispone de una definición totalmente precisa en la que poder basarnos a la hora de crear 

datasets etiquetados y algoritmos automáticos. 

 

Este estudio pretende contribuir a la detección automática del discurso de odio en español. 

Para ello, hacemos uso del corpus etiquetado por el equipo del proyecto Hatemedia3 y 

comparamos varias técnicas de clasificación basadas en modelos de aprendizaje profundo. 

 

1.3. Estructura de la memoria 

La estructura de la memoria está organizada de la siguiente manera: 

En la Sección 2 se hará un análisis del contexto y el estado del arte reflejando la importancia 

del campo de estudio. Para ello, repasaremos en primer lugar los talleres y eventos más 

relevantes de los últimos años enfocados a tratar el problema de la detección de expresiones 

de odio en textos, así como los datasets y sistemas basados en inteligencia artificial más 

conocidos que se utilizan para intentar abordar este complejo problema.  

 

3 Proyecto PID2020-114584GB-I00, financiado por la Agencia Estatal de Investigación - Ministerio de Ciencia e 
Innovación 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

14 

 

Los objetivos generales y específicos son descritos con más detalle en la Sección 3, donde 

también se detallarán los pasos necesarios para la consecución de estos. 

En la Sección 4 se describe el procedimiento que se va a seguir para llevar a cabo la 

comparativa. Esto comprende desde la descripción de las versiones del dataset que se van a 

utilizar, hasta los modelos seleccionados y las métricas de evaluación utilizadas.  

En la Sección 5 pasaremos a describir el desarrollo del trabajo, mostrando los resultados 

obtenidos, para continuar en la Sección 6 con una discusión sobre la relevancia de los 

resultados, identificando las conclusiones más importantes extraídos de estos resultados. 

Finalmente, en la Sección 7 se darán las conclusiones extraídas del trabajo y se propondrán 

líneas futuras de investigación o desarrollo relacionado con el mismo. 
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2. Contexto y estado del arte 

El estudio de la detección y de la clasificación automática del discurso de odio mediante 

procesamiento de lenguaje natural (PLN) es un campo relativamente reciente, pero ha 

evolucionado rápidamente en los últimos años debido a su importancia (García-Díaz et al., 

2022).  En la Figura 1 mostramos una gráfica de Dimensions4  para los términos de búsqueda 

“hate speech detection”, filtrado por las categorías "Information and Computing Sciences” y 

“Artificial Intelligence”, donde se puede apreciar un notable crecimiento en el número de 

publicaciones de trabajos relacionados con el discurso de odio a lo largo de los últimos años. 

 

Figura 1: Gráfica de Dimensions con los términos de búsqueda de "hate speech detection” para las 

categorías “Information and Computer Sciences” y “Artificial Intelligence”, donde se muestra el 

número de publicaciones por año. 

 

El interés en esta área ha aumentado a medida que las redes sociales y otras plataformas de 

internet han crecido en términos de influencia y adopción por parte de la gran mayoría de los 

usuarios (Arango et al., 2019).  

En la presente sección haremos una revisión del estado del arte, donde comenzaremos 

destacando los principales eventos y talleres a nivel mundial, enfocados en la detección del 

discurso del odio.  A continuación, listaremos algunos de los dataset más utilizados para dichas 

tareas. Finalmente, analizamos las diferentes técnicas de PLN utilizadas para extraer 

 

4 https://app.dimensions.ai/discover/publication 
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información de un texto, así como los modelos de aprendizaje automático empleados en el 

estado del arte, desde los modelos de machine learning (ML) clásicos hasta soluciones más 

modernas basadas en aprendizaje profundo y Transformers. 

 

2.1. CONGRESOS RELATIVOS A LA DETECCIÓN DE ODIO EN TEXTOS 

El impacto de las publicaciones nocivas online ha dado lugar a un gran número de estudios y 

eventos enfocados a la detección del odio y lenguaje ofensivo. Como ejemplo, se listan los 

siguientes talleres y congresos5. 

• SemEval6, taller internacional sobre el procesamiento del lenguaje natural cuya misión 

es avanzar en el estado actual del arte. Cada año, este taller propone una serie de 

tareas compartidas en las que se presentan y comparan sistemas de análisis semántico 

computacional diseñados por diferentes equipos. Las tareas más destacadas para la 

detección de odio en internet son:  

o Identifying and Categorizing Offensive Language in Social Media (SemEval-

2029, Tarea 12)  

o Multilingual Offensive Language Identification in Social Media (SemEval-2020, 

Tarea 12) 

 

El taller SemEval 2023 cuenta con la tarea 10 que trata sobre la detección de sexismo 

en internet. Este evento está actualmente en curso y los resultados obtenidos por los 

equipos participantes se publicarán a lo largo del año. 

 

• Workshop on Online Abuse and Harms (WOAH7), que en el año 2022 celebró su sexta 

edición, cuyo objetivo es avanzar en la investigación para detectar, clasificar y modelar 

el contenido ofensivo y dañino en internet. 

• GermEval Shared Task8 (edición de 2018 y 2019), centrado en el procesamiento del 

lenguaje natural para detección de lenguaje ofensivo en el idioma alemán. 

 

5 Nótese que no todas las ediciones de cada evento están enfocadas a la detección del discurso de odio, sino que 
en cada año se plantean una o varias tareas a resolver mediante PLN. 
6 https://semeval.github.io/ 
7 https://www.workshopononlineabuse.com/ 
8 https://germeval.github.io/tasks/ 
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• PolEval9 (edición de 2019, tarea 6), sobre la detección automática del ciberacoso en 

Twitter para el lenguaje polaco. 

• HASOC10 (2019), sobre identificación de expresiones de odio y contenidos ofensivos en 

las lenguas indoeuropeas.  

• AMI11 (2018), taller para la identificación automática de la misoginia, para el idioma 

italiano y el inglés. 

Con relación a los estudios sobre el discurso del odio en idioma español, observamos que no 

encontramos tanta variedad como los centrados en el idioma inglés.  De hecho, los estudios 

que existen están relacionados mayoritariamente con la participación de IberEval 2018 - 

Automatic Misogyny Identification y la Tarea 5 del taller SemEval 2019 (García-Díaz et al., 

2022).    

 

SemEval-2019, Tarea 5  

Esta tarea tuvo como objetivo detectar contenidos de odio en los textos de las redes sociales 

en español, concretamente en las publicaciones de Twitter, contra dos objetivos: los 

inmigrantes y las mujeres. Además, la tarea implementaba una perspectiva multilingüe en la 

que se proporcionaron datos de los idiomas inglés y español (HatEval), para entrenar y probar 

los sistemas participantes. El conjunto de datos de HatEval estaba compuesto por 19.600 tuits, 

13.000 en inglés y 6.600 en español. (Basile et al., 2019). Esta tarea se articulaba en torno a 

dos subtareas relacionadas: 

 

• Subtarea A: Consistía en una detección básica de discurso de odio, en la que se pedía 

a los participantes que marcaran la presencia de odio en los tweets (clasificación 

binaria). 

• Subtarea B: En esta segunda subtarea se pretendía ir más allá de la simple detección 

binaria de discurso de odio. De este modo, se trataba de determinar si el objetivo del 

mensaje era un individuo un grupo de personas, y si el contenido del mensaje contenía 

lenguaje agresivo. 

 

9 http://2019.poleval.pl/ 
10 https://hasocfire.github.io/hasoc/2019/ 
11 https://amievalita2018.wordpress.com/ 
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IberEval 2018 (AMI) 

Este taller estaba enfocado a la detección de tweets misóginos mediante PLN, con un dataset 

multilingüe, con 4.138 tuits escritos en español y 3.977 en inglés (Fersini et al., 2018). Del 

mismo modo que en el caso de SemEval 2019 task 5, IberEval 2018 estaba organizado en dos 

subtareas: 

• Subtarea A: Consistía en una tarea de identificación binaria de mensajes misóginos. 

• Subtarea B: En esta segunda subtarea había que determinar cuándo el objetivo del 

comentario misógino era un individuo concreto o un grupo. 

 

 

2.2. DATASETS 

 

En este apartado listamos algunos de los dataset más utilizados en el estado del arte para 

tareas de detección de discurso de odio en inglés. 

 

• Waseem and Hovy: Este conjunto de datos está compuesto por 16.000 tweets 

anotados como "sexistas", "racistas" y "sin odio" (Waseem & Hovy, 2016). 

 

• Davidson et al.: Compuesto por 24.802 tuits anotados en tres clases: discurso de odio, 

ofensivo (pero no de odio), y ni ofensivo ni de odio (Davidson et al., 2017) 

 

• HatEval: Este conjunto de datos se compone de 19.600 tweets, 13.000 en inglés y 

6.600 en español (Basile et al., 2019).  

 

• Stormfront: Dataset público sobre discurso de odio recopilado a través de mensajes 

de foros de Internet en idioma inglés. Este dataset está disponible en GitHub12 . El foro 

de origen es Stormfront13. 

 

 

12 https://github.com/Vicomtech/hate-speech-dataset 
13 https://www.stormfront.org/ 
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• TRAC-I: Se trata de un dataset creado a partir de textos de Facebook y Twitter, en 

idioma hindi e inglés. Se compone de 12.000 mensajes clasificados en abiertamente 

agresivos (esta clase expresa abiertamente la agresión utilizando léxicos simbólicos 

típicos), encubiertamente agresivos (expresión sutil e indirecta de la agresión, 

incluyendo el sarcasmo, la sátira y las preguntas retóricas) y no agresivos (Kumar et al., 

2018). 

 

• HS: 4.575 tweets en hindi y en inglés etiquetados como discurso de odio (aquellos tuits 

que inducen al odio) y discurso normal (tuits que no inducen ninguna forma de odio) 

(Bohra et al., 2018). 

 

• HOT: Al igual que el dataset HS, tiene texto en hindi e inglés. Consta de 3.679 tuits 

clasificados en tres categorías: No ofensivos, ofensivos (con objeto de herir los 

sentimientos del receptor) e inductores de odio (Mathur et al., 2018). 

 

A continuación, se listan algunos de los datasets más importantes en idioma español, 

utilizados por distintos estudios del estado del arte. 

 

• HaterNet: Dataset en idioma español construido a partir de Twitter, compuesto por 

6.000 textos etiquetados, con 1.567 tweets anotados como odio y 4.433 anotados 

como no odio (Pereira-Kohatsu et al., 2019). 

 

• HatEval 2019: Dataset construido a partir de Twitter compuesto por 6.600 textos en 

español, con 2.739 anotados como odio y 3.861 etiquetados como no odio (Basile 

et al., 2019). 

 

• IberEval 2018 – AMI: Dataset en español compuesto por 4.138 tweets, 2.064 anotados 

como mensajes misóginos y 2.074 como no misóginos (Fersini et al., 2018).  

 

• MisoCorpus 2020:  El conjunto de datos completo contiene 8.390 tweets y se divide 

en: (1) VARS, que considera la violencia hacia las mujeres en la política y los medios de 
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comunicación públicos; (2) SELA, sobre la comprensión de las diferencias en los 

mensajes misóginos en el español de España y el español de América Latina; y (3) DDSS, 

que contiene rasgos generales relacionados con la misoginia (García-Díaz et al., 2021). 

 

 

2.3. TÉCNICAS Y MODELOS 

El procedimiento que se suele seguir para realizar el análisis de un texto, ya sea con el objetivo 

de detectar odio o para cualquier otro, consta de tres pasos:  

1. Preprocesado de texto: Cuyo objetivo es preparar el texto para el análisis haciendo uso 

de diferentes técnicas de PLN como las descritas en el apartado 2.3.1 Técnicas de 

preprocesado. 

2. Extracción de características: El rendimiento de un sistema de aprendizaje de IA 

depende completamente de la correcta representación del problema. El objetivo aquí 

es extraer características del texto a analizar para obtener representaciones que sean 

manejables para su procesamiento (Plaza-del-Arco et al., 2021). 

3. Clasificación mediante modelos IA: Una vez tengamos una representación de nuestros 

textos mediante la extracción de características, podemos entrenar modelos de 

inteligencia artificial (ya sea desde cero o apoyarnos en modelos pre-entrenados) que 

nos permitan clasificar textos nuevos con mayor o menor precisión. Las técnicas que 

pueden utilizarse para crear modelos de clasificación automática de un texto son muy 

variadas. Sin embargo, es posible agruparlas en tres tipos principales de técnicas: 

aprendizaje automático clásico, aprendizaje profundo y aprendizaje por transferencia. 

 

2.3.1. Técnicas de preprocesado  

Como es natural, el texto que nos llega en bruto puede presentar un formato que diste mucho 

de lo que podríamos considerar el formato correcto, compuesto por palabras incompletas, 

mal escritas o en otros idiomas, conteniendo espacios innecesarios, etc. Por ejemplo: p- e-r-r-

o, n€gr0. Además, en nuestro texto origen existirán, casi con total seguridad, infinidad de 

palabras innecesarias que no nos aporten ningún valor. 

Así pues, en primer lugar y antes de extraer características del texto y construir modelos a 

partir de esta información, debemos dedicar tiempo a las tareas de limpieza, formateo y 
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preparación de los datos. Estas tareas están presentes en el día a día de todos los proyectos 

de IA en general, y de procesamiento de lenguaje natural en particular (Urdaneta, 2019). 

Existe una amplia variedad de librerías PLN Open Source para realizar estas tareas de 

preprocesado en diversos idiomas como son NLTK14, Freeling15, Pattern.es16, Spacy17 y 

Stanford NLP18. 

▪ Tokenización:  Esta técnica consiste en la segmentación del texto en frases, palabras o 

incluso caracteres, es decir, segmentar el texto en unidades más pequeñas (tokens o 

n-gramas) que podamos manejar como referencia para extraer características que 

aporten valor a nuestro sistema. Además, eliminaremos todos aquellos tokens que no 

nos aporten valor, de modo que reduzcamos el número de elementos a tratar. Para 

facilitar la labor de eliminar los tokens innecesarios de nuestro corpus, se suelen 

utilizar listas de stopwords. Estas listas constan de palabras que, por ser muy habituales 

en el idioma tratado o por cualquier otro motivo particular, aportan poco valor al 

problema que estamos tratando. Por ello, es interesante identificarlas y filtrarlas, por 

ejemplo: los determinantes, las conjunciones "y / e", "o / u", etc. Esta una forma de 

reducir los elementos de nuestro texto de entrada, pero también se pueden utilizar 

otros métodos como, por ejemplo, decidir eliminar todas las palabras de longitud 

menor o mayor a un umbral determinado. 

▪ Normalización: Normalizar nuestro texto será una tarea importante si queremos que 

nuestras palabras sigan un formato estándar. Del paso anterior, nuestro tokenizador ha 

podido reconocer la misma palabra, pero escrita en mayúsculas y en minúsculas (por 

ejemplo, tres formas distintas de la misma palabra: hablar, HABLAR y Hablar). Si 

queremos tener solo una versión, será imprescindible normalizar nuestro texto. 

▪ POS (part-of-speech) tagging: El POS es la técnica sintáctica para etiquetar a cada una 

de las palabras de un texto su categoría gramatical. De esta forma, logramos capturar 

características sintácticas del texto, es decir, tenemos en cuenta la relación de las 

palabras. Trabajos anteriores han probado a identificar el odio utilizando 

 

14 https://www.nltk.org/ 
15 http://nlp.lsi.upc.edu/freeling/node/1   
16 https://www.clips.uantwerpen.be/pages/pattern-es 
17 https://spacy.io/ 
18 https://stanfordnlp.github.io/stanfordnlp/   
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características sintácticas y léxicas, como los n-gramas (a nivel de carácter, palabra y 

frase) y el uso de una bolsa de palabras ofensivas.  Por ejemplo, Warner and Hirschberg 

(2012) encontró que el trigrama “<DET> judío <SUSTANTIVO>” es la característica más 

significativa para detectar odio antisemita, mientras que Waseem and Hovy (2016) 

identificó n-gramas de caracteres predictivos mediante coeficientes de regresión 

logística. (Wang, 2018). 

▪ NER (Named Entity Recognition): La detección de entidades permite identificar 

automáticamente determinadas palabras de un texto y clasificarlas en diferentes 

categorías: nombres propios, lugares, marcas, cantidades, etc. 

▪ Lematización: Tras aplicar las técnicas de tokenización y normalización, habremos 

reducido considerablemente el número de elementos a tratar. Sin embargo, y debido a 

las peculiaridades del lenguaje, podemos seguir teniendo diferentes formas que 

representan la misma palabra. Por ejemplo, en español tenemos una gran variedad de 

conjugaciones de los verbos: juego, juegas, juegan, jugaban… todas estas palabras 

proceden del mismo verbo en infinitivo (jugar). También sabemos que perros, perrito, 

perrazo, etc., son diferentes variantes del vocablo perro. La técnica de lematización lo 

que consigue es reducir todas estas palabras derivadas a su lema, que es la forma en la 

que encuentras la palabra en el diccionario. 

▪ Radicalización: En inglés, se conoce como stemming al procedimiento de convertir 

palabras en raíces. Estas raíces son la parte invariable de palabras. Las raíces se 

diferencian del lema en que no tienen por qué ser palabras de un idioma. Por ejemplo, 

si utilizamos la función Snowball Stemmer de la librería NLTK de Python para obtener la 

raíz de las palabras canta, cantas y cantamos, veremos que la raíz resultante es la 

misma: “cant”. Además del snowball, nltk permite usar otros algoritmos como el Porter 

Stemmer, muy utilizados en los estudios del estado del arte (Frenda et al., 2018) y 

(Davidson et al., 2017) . 

 
 
 

2.3.2. Técnicas de extracción de características 

 

En primer lugar, revisaremos las técnicas más simples de extracción de características, 

(también conocidas como técnicas superficiales), donde destacamos la bolsa de palabras y la 
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técnica TF-IDF. A continuación, pasaremos a explicar los word embeddings, una técnica más 

compleja capaz de representar las palabras de nuestro lexicón mediante vectores 

multidimensionales, capaces de capturar incluso relaciones semánticas entre palabras. 

 

▪ Bolsa de palabras 

La bolsa de palabras (BoW, de sus siglas en inglés) es una representación vectorial 

compuesta por un diccionario (lexicones) con las palabras de los textos con los que se 

quieren entrenar los modelos. En estos lexicones se representa la relevancia de cada 

elemento mediante métricas como, por ejemplo, si la palabra aparece en el texto 

(booleano), o la cantidad de veces que una palabra se repite en el texto.  

 

A continuación, mostramos un ejemplo muy simple de una bolsa de palabras (Figura 

2), donde dados 2 textos se cuenta la ocurrencia de cada palabra como métrica para 

la extracción de características. 

 

Texto1:  El gato es negro. 

Texto2:  El perro es blanco y es bonito.  

Con este ejemplo, nuestro lexicón estaría compuesto por las siguientes 8 palabras:  

 

[El gato es negro perro blanco y bonito] 

 

Figura 2: Ejemplo de bolsa de palabras (BoW) 

 

Se trata de un ejemplo muy simple donde la mayoría de palabras aparecen una vez o 

ninguna, a excepción de la palabra: “es”, que aparece 2 veces en el texto 2. 

 

▪ TF-IDF 

TF-IDF (del inglés Term frequency – Inverse document frequency) (Luhn, 1957) se trata 

de una técnica muy popular y utilizada en el campo de la clasificación de texto 

1 2 3 4 5 6 7 8

EL gato es negro perro blanco y bonito

Texto 1 1 1 1 1 0 0 0 0

Texto 2 1 0 2 0 1 1 1 1
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automático, como se puede comprobar en varios de los trabajos realizados en el taller 

de SemEval-2019 (Basile et al., 2019). TF-IDF es una técnica cuyo objetivo es encontrar 

el documento más relevante para cierto término dentro de una colección de 

documentos. Para ello, mide con qué frecuencia aparece un término o frase dentro de 

un documento determinado, y lo compara con el número de documentos que 

mencionan ese mismo término dentro de una colección entera de documentos. De 

esta forma, palabras muy utilizadas del lenguaje como son los determinantes o las 

conjunciones (que aparecen en casi todos los documentos) tendrán un valor bajo, ya 

que aportan muy poco valor. Sin embargo, palabras que se repiten mucho en uno o 

varios documentos, pero no aparecen en el resto del conjunto de documentos, 

obtendrán un valor alto de TF-IDF.  

Estas técnicas superficiales se enfrentan a limitaciones en la detección de textos de 

discurso de odio, especialmente cuando estos textos no contienen palabras ofensivas, 

transmitiendo odio encubierto (Dinakar et al., 2011;  Mathur et al., 2018). Lo mismo 

ocurre en caso contrario, cuando el texto contiene palabras ofensivas, insultos o 

cualquier expresión soez, pero que carece de odio debido al contexto en el que se está 

utilizando. Como ya sabemos, las palabras pueden adoptar distintos significados 

dependiendo del contexto en el que se encuentren, debido a elementos intrínsecos del 

propio lenguaje como son el sarcasmo o el humor. 

Como parte positiva, es que las decisiones de clasificación de los modelos entrenados 

a partir de características a nivel superficial son modelos interpretables y, por tanto, 

satisfacen el principio de explicabilidad dentro del marco de las directrices europeas 

para una IA fiable (Hleg, 2019), permitiendo que los usuarios puedan comprender el 

proceso de toma de decisiones y poder confiar en resultados de estos algoritmos 

automáticos.  

 

▪ Word Embeddings 

Word Embedding (Firth, 1957; Mikolov et al., 2013) es una de las técnicas más 

populares para representar el vocabulario de un texto, y está presente en muchos de 

los estudios del estado del arte para detección de odio, como Melnyk, (2021) y Dash 

et al. (2021) . Esta técnica es capaz de capturar el contexto y la similitud semántica y 

sintáctica (género, sinónimos, etc.) de las palabras dentro de un texto. Cada palabra se 
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representa en forma de un vector n-dimensional basado en la situación en la que 

aparece junto con otras palabras. Esto nos permite generar vectores de palabras de 

forma que palabras similares tengan incrustaciones de palabras similares (Sachdeva 

et al., 2021). 

Por ejemplo, si tenemos las palabras «perro», «gato» y «tomate», cabría esperar que 

las palabras perro y gato estuvieran representadas por vectores más cercanos entre sí 

en el espacio vectorial donde se definen estos vectores en relación al vector que 

representa la palabra tomate, que quedaría más alejado. Las representaciones de 

Word Embeddings pueden generarse a partir de representaciones pre-entrenadas 

como Word2vec (Mikolov et al., 2013), Glove (Pennington et al., 2014) y fastText 

(Bojanowski et al., 2017). Estos modelos son conceptualmente iguales, pero hay una 

pequeña diferencia: fastText opera a nivel de caracteres, mientras que Word2Vec y 

Glove lo hacen a nivel de palabras.  

 

2.3.3. Machine Learning clásico 

Entre las diversas técnicas convencionales de aprendizaje automático utilizadas en la tarea de 

la detección del discurso del odio en Internet, destacan las máquinas de vectores soporte 

(SVM), la regresión logística y los Random Forest (Burnap & Williams, 2015; Davidson et al., 

2017; Nobata et al., 2016; Waseem & Hovy, 2016). 

 

Sachdeva et al., 2021, muestra que estos tres modelos son los que proporcionan mejor 

rendimiento dentro del ML convencional en términos de Accuracy, Precision, Recall y F1. Por 

otro lado, en este estudio se concluye que el modelo K-Vecinos Más Cercanos (KNN, de sus 

siglas en inglés), obtuvo el peor rendimiento para la tarea de clasificación de textos. 

El taller SemEval 2019, tarea 5 (que consistía en detectar discurso de odio en Twitter contra 

mujeres e inmigrantes), muestra que el modelo SVM es especialmente relevante, ya que los 

sistemas creados mediante este modelo obtuvieron los mejores resultados de la competición 

(Basile et al., 2019). 

 

2.3.4. Deep Learning  

Durante los últimos años, los métodos de Deep Learning (DL) o aprendizaje profundo, han 

despertado un gran interés a la hora de resolver el problema de la detección del discurso de 
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odio (Badjatiya et al., 2017; Gambäck & Sikdar, 2017; Gröndahl et al., 2018; Arango et al., 

2019; Melnyk, 2021).  Dentro de las técnicas de DL más utilizadas en la clasificación de textos, 

destacan las redes neuronales convolucionales y las redes neuronales recurrentes (García-Díaz 

et al., 2022).  

Badjatiya et al. (2017) y Gambäck & Sikdar (2017) fueron los primeros en utilizar redes 

neuronales recurrentes y redes neuronales de convolución, respectivamente, para la 

detección del discurso del odio en los tuits. 

 

▪ CNN 

Las redes neuronales convolucionales (CNN) son un tipo de red neuronal que procesa 

capas de forma jerárquica, lo que les permite diferenciar distintas características en las 

entradas recibidas (Roy et al., 2020).  La capa más importante, y la que da nombre a la red, 

es la capa convolucional. Esta capa funciona a partir de unos filtros que van desplazándose 

por la imagen o el texto, dependiendo el problema a resolver, obteniendo las salidas de la 

capa mediante un producto escalar.  

 

En el caso de imágenes, las primeras capas pueden detectar formas básicas como líneas, 

esquinas o curvas y se van especializando hasta llegar a capas más profundas que 

reconocen formas complejas como el rostro de una persona o la silueta de un coche. 

Aunque se diseñaron inicialmente para la visión por computador, han sido eficaces 

también para tareas de PLN y de detección de odio (Wang, 2018). En la Figura 3 podemos 

observar la arquitectura de una red neuronal convolucional aplicada al problema de 

análisis de sentimiento de textos. 
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Figura 3: Arquitectura de una red neuronal convolucional19 

 

Cuando utilizamos una red CNN aplicada a PLN, lo que procesamos son textos en lugar de 

imágenes. Estos textos tendrán una representación matricial, donde las filas representan las 

palabras codificadas mediante word embeddings con una dimensión d (espacio vectorial 

donde hemos embebido los textos). Por tanto, cada filtro de convolución tendrá una anchura 

igual a la longitud del embedding donde están incrustados los textos a procesar, en nuestro 

ejemplo d=4, de modo que cada filtro irá recorriendo las palabras en una sola dirección, de 

arriba abajo, en lugar de izquierda a derecha y de arriba abajo como sucede con las imágenes.  

En nuestro ejemplo observamos que tenemos 4 filtros, dos de altura h=2 y otros dos de altura 

h=3. Esto significa que queremos detectar características locales en grupos formados por dos 

y tres palabras, capturando diferentes niveles de correlación entre palabras. Así pues, cada 

filtro se encargará de capturar cierta característica de los datos.  

Como estamos aplicando capas de convolución que son unidimensionales (recorremos la 

matriz de entrada de arriba a abajo), en lugar de las bidimensionales utilizadas en imágenes, 

la salida que obtenemos tras aplicar nuestro filtro es un vector en lugar de una matriz. Estos 

vectores serán nuestros mapas de características.  

 

19 Imagen extraída de (Nguyen et al., 2017) 
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En la fase de max-Pooling solo nos quedamos con un elemento, el resultado más grande de 

cada uno de los mapas de características, para reducir la dimensionalidad.  

Finalmente, concatenamos los valores máximos obtenidos en la fase de max-Pooling para 

conformar la entrada de la siguiente capa, una fully connected layer. En nuestro ejemplo, 

tenemos dos capas densas como últimas capas. La última capa estará compuesta por una sola 

neurona para clasificación binaria. 

 

▪ RNN y LSTM 

Las redes neuronales recurrentes (RNN) son una clase de redes especializadas en analizar 

datos de series temporales. La principal característica de este tipo de redes radica en su 

capacidad de modelar relaciones temporales entre elementos de la secuencia a través de un 

estado interno de la red o hidden state, que podemos considerar como una memoria sobre lo 

que la red ha visto hasta ese momento. En esta arquitectura se aplica una fórmula recurrente 

sobre una secuencia de entrada de manera que, en cada paso dado, se depende del nuevo 

valor de entrada x y del estado interno h anterior. Por tanto, este tipo de arquitecturas 

permiten modelar relaciones entre palabras dentro de un texto. 

  

Las LSTM (Long Short Term Memory) son un tipo especial de redes recurrentes (Vigna et al., 

2017). Estas redes surgieron como una arquitectura encaminada a solucionar los problemas 

de memoria de las RNN tradicionales. En la práctica, estas últimas presentan problemas para 

aprender relaciones con elementos de time step lejanos (es decir, que no están cerca del time 

step actual). Esto limita en gran parte el potencial teórico de las RNN. Por ejemplo, dentro del 

campo del procesamiento de lenguaje natural, cuando analizamos un texto es importante 

mantener la información aprendida desde el inicio hasta el final de este, de modo que 

podamos extraer características y relaciones entre palabras dentro de un mismo texto.  

Las LSTM están diseñadas para intentar solucionar este problema. En LSTM se establecen unos 

criterios para almacenar la información obtenida hasta el momento. El modelo aprende qué 

partes de la representación se deben olvidar para incluir las más importantes. Para ello, 

mantienen un estado interno cell state (c) además del hidden state (h), el cual representa una 

especie de autopista de información a lo largo del tiempo.  
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Figura 4: Arquitectura LSTM 

Fuente: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

 

En la Figura 4 mostramos la arquitectura LSTM donde podemos observar que, en vez de 

calcular directamente el valor de salida h, ahora obtenemos cuatro vectores distintos 

conocidos como puertas o gates: i, f, g y o, que después se combinan para obtener el cell state 

c y el hidden state h.  A continuación, explicamos brevemente la función de cada vector. 

 

• f (forget gate): Decide qué información del cell state hay que olvidar. Para ello, toma 

el hidden state anterior y la entrada actual, los transforma y los lleva a una función de 

activación sigmoid. Si uno de los valores de este vector es 0, o cercano a 0, entonces 

la LSTM eliminará esa porción de información, mientras que si alcanza valores iguales 

o cercanos a 1 esta información se mantendrá y llegará a la celda de estado. 

 

• I (input gate): Decide qué nueva información incorporamos al cell-state. Para ello, 

tomamos nuevamente el estado oculto anterior y la entrada actual, los transformamos 

y los llevamos de nuevo a una función de activación sigmoid. En este caso, los valores 

que queremos preservar en la memoria de la red serán aquellos cercanos a 1. Este 

resultado lo multiplicamos por el vector g que viene de aplicar una función tanh a la 

entrada actual, para obtener valores entre -1 y 1 que regulen la red.  

 

• Cell state (c): Teniendo ya los datos generados por las compuertas forget e input, ahora 

podemos actualizar la celda de estado (es decir, la memoria de la red LSTM). Para ello, 

primero debemos saber cuánto queremos olvidar. Para ello, multiplicamos el vector 
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del olvido f por el valor del cell state c. A continuación, sumamos lo anterior a lo 

calculado en el input gate, generando así la memoria actualizada. 

 

• Output Gate: Finalmente debemos calcular el nuevo estado oculto, para lo cual 

usamos el output gate o puerta de salida. En primer lugar, escalamos el nuevo cell 

state para garantizar que esté en el rango de -1 a 1. Para ello usamos la función tanh. 

Por otro lado, tomamos nuevamente el estado oculto anterior y la entrada actual y los 

pasamos por una función sigmoid. Finalmente, multiplicamos los dos valores 

anteriores para obtener el nuevo estado oculto. 

 

Existe una versión alternativa llamada Bi-LSTM (Bidirectional Long Short-Term Memory). Se 

trata de una arquitectura idéntica a la LSTM, solo que en este caso la red neuronal se 

entrenará con los mismos datos una segunda vez, recorriéndolos en orden inverso. Si bien las 

LSTM/BiLSTM suponen una mejora respecto a las RNN clásicas, ambos modelos comparten 

una arquitectura secuencial que limita en gran medida la paralelización de las ejecuciones y, 

por tanto, el rendimiento LSTM general.  Por último, la arquitectura GRU (Gated Recurrent 

Unit), es una versión simplificada de LSTM introducida en 2014 por Chung et al. y utiliza un 

sistema similar de gates al visto en la LSTM. Las mayores diferencias con LSTM son que se 

combina el cell state y el hidden state en un solo elemento, así como la forget gate y la input 

gate en una sola puerta. 

 

2.3.5. Transfer Learning 

Utilizando como punto de partida modelos pre-entrenados, el Transfer Learning permite 

desarrollar rápidamente modelos eficaces y resolver problemas complejos de PLN o de visión 

por computador sin necesidad de tener que entrenar nuestro propio modelo de cero o de 

disponer de una inmensa cantidad de datos. De este modo, los modelos pre-entrenados se 

han convertido en un elemento básico en el ámbito del procesamiento del lenguaje natural.  

 

En los últimos años, desde la introducción de la arquitectura Transformer, se han utilizado en 

muchas otras tareas diferentes de PLN, superando a modelos anteriores basados en redes 

neuronales recurrentes (Pérez et al., 2021).  Los modelos Transformer tienen como principal 
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innovación la sustitución de las capas recurrentes, como las LSTMs que se venían usando hasta 

ese momento en PLN, por las denominadas capas de atención (Vaswani et al., 2017).  

 

A nivel de arquitectura, los Transformers se basan en dos partes bien diferenciadas, un 

codificador y un decodificador. Si observamos la Figura 5, el primer bloque que aparece en la 

parte izquierda corresponde al codificador o encoder, mientras que el bloque de la derecha 

corresponde al decodificador o decoder. El encoder está compuesto por una pila de N = 6 

capas idénticas. Cada capa tiene dos subcapas. La primera es un mecanismo de autoatención 

(multi-head attention), y la segunda es una red simple totalmente conectada. Por otro lado, 

el descodificador también se compone de una pila de N = 6 capas idénticas. Además de las dos 

subcapas de cada capa del codificador, el descodificador inserta una tercera subcapa multi-

head attention, que se aplica sobre la salida de la pila del codificador. 

 

Figura 5: Arquitectura Transformer20 

 

 

20 Imagen extraida de (Vaswani et al., 2017). 
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Tanto el codificador como el decodificador trabajan sobre secuencias enteras de texto en lugar 

de palabra por palabra. De este modo, en lugar de analizar palabras sueltas, se obtiene un 

análisis global. A continuación, describimos los elementos más importantes de la arquitectura 

Transformer. 

 

▪ Positional encoding 

Dado que nuestro modelo no contiene recurrencia ni convolución, para que el modelo 

pueda mantener el control sobre el orden de la secuencia, debemos incorporar alguna 

información sobre la posición relativa o absoluta de los tokens en la secuencia. Para ello, 

añadimos “codificaciones posicionales” a los embeddings de entrada en la parte inferior 

de las pilas del codificador y decodificador. Las codificaciones posicionales tienen la misma 

dimensión que los embeddings, por lo que ambas pueden sumarse. Así, para cada 

elemento en la secuencia habrá un correspondiente vector posicional único que permitirá 

el procesamiento en paralelo de la totalidad de la secuencia en los siguientes bloques que 

componen el Transformer, lo que supone una de las grandes innovaciones introducidas 

por esta arquitectura. 

 

▪ Self-attention 

En la Figura 5, observamos que el elemento de entrada aparece tres veces suministrado al 

módulo de multi-head attention, tanto en el codificador como en el decodificador. Esto es 

un concepto que se llama auto-atención o self-attention, que básicamente es la clave del 

Transformer. Como hemos comentado, la arquitectura Transformer recibe todo el texto 

de una vez, siendo capaz de analizar como cada una de las palabras se relaciona con el 

resto de las palabras de ese mismo texto y, de este modo, recomponer o reconstruir la 

información según esas relaciones. Así, el mecanismo de self-attention recodificará los 

textos en las primeras etapas del Transformer.  

 

▪ Bloque residual y de normalización 

El propósito de este módulo es preservar la información al pasar por el bloque de multi-

head attention. Posteriormente, la salida de este bloque residual se lleva a un bloque de 

normalización. 
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▪ Capa fully-connected 

Además de las subcapas de atención, cada una de las capas de nuestro codificador y 

decodificador contiene una red feed-forward totalmente conectada, encargada de 

aprender a representar de manera optimizada la información proveniente de la capa 

anterior. 

 

La mejora de rendimiento ofrecida por la arquitectura Transformer ha permitido el rápido 

desarrollo de modelos sobre conjuntos de datos tan grandes que anteriormente no era viable 

procesar, dando lugar al modelo BERT (Bidirectional Encoder Representations from 

Transformers) y a los GPT (Generative Pre-trained Transformer), estos últimos utilizados 

principalmente para generar textos que simulan la redacción humana. 

 

▪ Modelos BERT y RoBERTa 

BERT es un modelo Transformer bidireccional, pre-entrenado sobre una gran cantidad de 

datos sin etiquetar para aprender una representación del lenguaje que se puede utilizar para 

realizar fine-tuning y adaptarlo a tareas específicas de aprendizaje automático (Devlin et al., 

2019; Pérez et al., 2021).  RoBERTa (A Robustly Optimized BERT Pretraining Approach) es otro 

modelo basado en la arquitectura BERT (Liu et al., 2019). RoBERTa utiliza la misma 

arquitectura de BERT, pero aplicando pequeños cambios que mejoran notablemente el 

rendimiento del modelo en todas las tareas en comparación con BERT. RoBERTa también 

utiliza un vocabulario más amplio (50K, frente los 30K de BERT). 

 

▪ Modelos multilingües  

Dentro del campo de modelos multilingües, encontramos m-BERT (Devlin et al., 2019) y XML-

R  (Lample & Conneau, 2019). Estos dos modelos han impulsado el estado del arte en tareas 

de PLN multilingüe mediante el pre-entrenamiento en muchos idiomas, mostrando cómo un 

único modelo puede aprender de varios idiomas, estableciendo bases sólidas para tareas no 

relacionadas con el inglés (Cañete et al., 2020). 

M-Bert (Multilingual BERT) ha sido pre-entrenado con el corpus Wikipedia en 104 idiomas, 

capaz de realizar una generalización multilingüe sorprendentemente bien (Pires et al., 2019). 
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Por su lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una versión multilingüe de RoBERTa. Está 

pre-entrenada en 2,5 TB de datos CommonCrawl filtrados que contienen 100 idiomas. 

 

• Modelos monolingües para el idioma español 

El primer modelo monolingüe disponible públicamente en español fue BETO (Cañete et al., 

2020), un modelo BERT entrenado en su totalidad sobre un gran corpus en español, que 

mejora los resultados obtenidos por m-Bert para clasificar textos en español (García-Díaz et 

al., 2022), lo que demuestra que un modelo monolingüe con suficiente entrenamiento puede 

superar a un modelo multilingüe, incluso cuando se utilizan más recursos y entrenamiento 

para este último (Devlin et al., 2019). BETO tiene un tamaño similar al de un BERT-Base (BERT-

base tiene 12 capas, mientras que BERT-large 24). Existen 2 versiones de BETO, la cased y la 

uncased. En la versión uncased, el texto con el que se le ha entrenado ha sido previamente 

transformado a minúsculas, mientras que en la versión cased, el texto con el que se le ha 

entrenado es el mismo que el de entrada (sin cambios). Asimismo, en la versión uncased se 

eliminan los acentos, mientras que en la versión cased se conservan. 

 

Más recientemente, se han desarrollado otros modelos lingüísticos para el español, como 

BERTIN (de la Rosa et al., 2022) y RoBERTuito (Pérez et al., 2021) , ambos basados en la 

arquitectura RoBERTa.
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3. Objetivos y metodología de trabajo 

Considerando el estado del arte y los trabajos preliminares en el proyecto HATEMEDIA, se ha 

planteado los siguientes objetivos. 

 

3.1. Objetivo general 

Comparar el rendimiento de diferentes algoritmos de aprendizaje profundo y transfer learning 

sobre el dataset creado por el proyecto HATEMEDIA, con el objetivo de determinar cuál 

clasifica mejor y concluir si es posible la detección automática de expresiones de odio dentro 

de este caso de estudio. 

 

3.2. Objetivos específicos 

• Investigar las técnicas y métodos de aprendizaje automático profundo y transfer 

learning del estado del arte que abordan el problema de la detección del discurso del 

odio, para identificar qué técnicas y métodos nos conviene utilizar en nuestro estudio 

comparativo. 

• Análisis exploratorio del dataset de HATEMEDIA con el objetivo de identificar 

potenciales problemas y oportunidades.  

• Preprocesado y creación de diferentes versiones de nuestro dataset original; una 

versión completa con todos los registros preprocesados y otras versiones reducidas 

pero balanceadas. 

• Entrenar los modelos seleccionados con las diferentes versiones de nuestro dataset y 

medir sus rendimientos. 

• Evaluar los resultados obtenidos para determinar la viabilidad de detección de 

expresiones de odio y la preferencia de usar alguno de los modelos, si la hubiera.  
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3.3. Metodología del trabajo 

La metodología del trabajo consistirá en seguir los pasos que se describen a continuación: 

Tabla 1: Lista de tareas a realizar para la consecución de objetivos 

 Tarea Descripción 

1 Lectura del estado del arte 
Búsqueda de información sobre los recientes avances 
en técnicas y modelos de IA para la detección del 
discurso del odio.  

2 Análisis exploratorio de los datos 

Análisis exhaustivo de los datos disponibles en el 
dataset de Hatemadia, con el fin de entender las 
fortalezas y debilidades que nos ofrecen los datos de 
cara a resolver el problema planteado.  

3 
Selección de los modelos de 
aprendizaje profundo para realizar 
nuestra comparativa 

De los algoritmos de aprendizaje profundo y transfer 
learning presentes en el estado del arte, decidir cuáles 
serán utilizados en nuestro estudio comparativo. 

4 Preparación de los datos 

Preparación de los datos necesarios para alimentar los 
algoritmos de aprendizaje profundo seleccionados, 
aplicando las transformaciones y normalizaciones 
necesarias.  

5 
Creación de diferentes versiones del 
dataset 

Debido al desbalanceo de clases de nuestro conjunto 
de datos original, será necesario crear una nueva 
versión del dataset que contenga una proporción 
balanceada de etiquetas para poder comparar los 
resultados de las pruebas con cada dataset por 
separado. 

6 
Aplicación de técnicas seleccionadas 
sobre los datos disponibles 

Utilizar los algoritmos y técnicas seleccionadas sobre 
los datasets disponibles para obtener resultados. 

7 
Identificar las métricas de 
evaluación 

Determinar las métricas para la evaluación de los 
algoritmos seleccionados. 

8 Análisis de resultados 
Análisis comparativo de resultados para las distintas 
técnicas y modelos utilizados en el estudio. 

9 Conclusiones y líneas futuras 
Análisis de los resultados obtenidos y listar una serie 
de recomendaciones a aplicar en trabajos futuros. 
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4. Cómo detectar odio en medios de información social 

En este trabajo queremos evaluar la viabilidad de utilizar técnicas de aprendizaje profundo y 

transfer learning sobre nuestro dataset de Hatemedia para obtener un modelo predictivo que 

permita la detección de expresiones de odio en castellano. Nuestra intención consiste en 

apoyarnos en estos datos para investigar, en primer lugar, si es viable entrenar un modelo de 

clasificación binario que permita detectar si un texto contiene odio (independientemente de 

su grado de intensidad) y, en caso afirmativo, determinaremos cuál de los modelos utilizados 

funciona mejor. De esta forma, podríamos utilizar este modelo para favorecer la detección y 

monitoreo de este tipo de expresiones en los entornos digitales. Por lo tanto, el objetivo de 

este trabajo no es conseguir desarrollar un algoritmo novedoso que resuelva total o 

parcialmente el problema tratado, sino estudiar la viabilidad de la aplicación de técnicas ya 

existentes para determinar, en caso afirmativo, cuál de los algoritmos utilizados es la mejor 

opción.  

 

4.1. DATASET 

El dataset utilizado proviene del proyecto Hatemedia, que ha centrado su estudio en los 

principales medios informativos profesionales de España (La Vanguardia, ABC, El País, El 

Mundo y 20Minutos), para analizar cómo se difunden las expresiones de odio en los entornos 

digitales asociados a este tipo de medios. En este dataset podemos encontrar más de 500.000 

textos etiquetados según su grado de odio, textos procedentes tanto de publicaciones de 

medios informativos como de mensajes de usuarios que interactúan con estos desde sus 

cuentas sociales en Facebook, Twitter y en sus portales institucionales. A pesar de tratarse de 

un dataset con una buena cantidad de registros, tan solo una pequeña parte corresponden a 

textos de ODIO. Debido a esto, se ha decidido crear distintas versiones balanceadas del 

dataset original, de modo que podamos llevar a cabo diferentes pruebas en nuestra 

comparativa. 
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4.1.1. Dataset completo  

Nuestro dataset original sufre del problema del desbalanceo, donde existe una clase que está 

representada en menor medida. De 574.760 registros, 12.296 están etiquetados como ODIO 

(el 2,1% de los datos), mientras que el 97,9% restante se corresponde con la etiqueta de 

NO_ODIO (Figura 6). 

 

 

Figura 6: Distribución de etiquetas del dataset original 

 

Por lo general, el desbalance de datos afecta a los algoritmos en su proceso de generalización, 

traduciéndose en que nuestro modelo entrenado no tenga una capacidad de predicción que 

nos sirva para su uso posterior (Chawla et al., 2004). Intentaremos paliar este problema 

mediante la creación de datasets alternativos a partir del original, con un número balanceado 

de clases, y compararemos los resultados obtenidos por separado. 

 

4.1.2. Datasets balanceados 

Crearemos 3 subconjuntos distintos de datos a partir del dataset original, prestando 

atención al número de muestras de cada clase para obtener un dataset balanceado. Para 

ello, seleccionaremos todos los mensajes etiquetados como ODIO y añadiremos la misma 

cantidad de mensajes etiquetados como NO_ODIO, atendiendo a diferentes criterios para 

cada uno de los nuevos datasets. Llamaremos a estas versiones de los datasets V1, V2 y 

V3 respectivamente. 
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- Selección aleatoria de textos (V1): Tomaremos todos los textos etiquetados como 

ODIO y añadiremos aleatoriamente la misma cantidad de textos de NO_ODIO. 

 

- Selección de textos de longitud homogénea (V2): En nuestro dataset original 

tenemos textos que van desde 1 sola palabra hasta una longitud máxima de 3.044. 

A la hora de entrenar un algoritmo para que pueda aprender a clasificar textos en 

ODIO y NO_ODIO, será importante conocer si obtener un subconjunto de textos de 

longitud homogénea supone alguna mejora en el rendimiento. Para ello crearemos 

un nuevo dataset balanceado, consistente en textos de longitud homogénea. 

 

- Selección de textos correspondientes a un mismo medio (V3): La detección de 

expresiones de odio en textos de internet es un problema complejo, tal y como 

hemos comprobado en la sección 2. Contexto y estado del arte. Acotar el ámbito 

de estos textos podría mejorar el rendimiento de los modelos, y eso es 

precisamente lo que vamos a analizar con este dataset, donde escogeremos textos 

relacionados con un solo medio de entre todos los disponibles (EL PAÍS, EL MUNDO, 

LA VANGUARDIA, 20MIN y ABC). Elegiremos el medio en función de cual tenga el 

mejor balance entre muestras ODIO y NO_ODIO y, dependiendo de los resultados 

obtenidos por el dataset anterior, seleccionaremos o no únicamente textos de 

longitud homogénea. 

 

4.2.  MODELOS DE APRENDIZAJE PROFUNDO PARA LA DETECCIÓN DEL ODIO 

Para realizar nuestra comparativa, hemos seleccionado un total de 4 modelos predictivos (3 

modelos de deep learning y 1 modelo de transfer learning) de los mencionados en el apartado 

2.3. Técnicas y modelos. Para decidir el diseño final de los modelos a utilizar, como el número 

de capas de convolución para la CNN, número y tamaño de los filtros, añadir o no más de una 

capa densa de neuronas, decidir si incluir capas de dropout, etc, hemos realizado pruebas 

tomando distintas combinaciones, entre ellas las configuraciones presentadas en el trabajo 

de Benítez-Andrades et al. (2022), donde se realiza un análisis comparativo de modelos con el 

objetivo de detectar racismo y xenofobia en twitter usando redes CNN, LSTM y transfer 
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learning. Finalmente, hemos optado por las arquitecturas más sencillas posibles que se 

describen a continuación, debido a que arquitecturas más complejas aumentaban 

considerablemente el tiempo de ejecución sin aumentar apenas el rendimiento, 

probablemente por sobre ajustarse demasiado a los datos de entrenamiento (overfitting). 

 

• SNN: En primer lugar, utilizaremos un clasificador basado en un modelo de red 

neuronal simple (SNN, simple neural network en inglés). Este sencillo modelo 

consistirá en una primera capa de embedding que será posteriormente aplanada y 

conectada directamente a una capa densa de 1 neurona con una función de activación 

sigmoid, que será la encargada de devolver el resultado de la clasificación binaria. Este 

modelo SNN nos servirá de línea base o baseline, pues la capacidad predictiva en este 

caso residirá en la capa de embedding, cuya salida proveerá vectores bidimensionales 

que serán las representaciones de cada uno de nuestros textos. La capa densa de una 

neurona será la encargada de devolver como salida un valor entre 0 y 1, que será el 

que utilizaremos para determinar si el texto se clasifica como ODIO (> 0,5) o NO_ODIO 

(<=0,5). 

 

• CNN: En segundo lugar, utilizaremos un modelo CNN, con una primera capa de 

embedding, seguida por 1 capa convolucional 1D (probaremos diferente número y 

tamaño de filtros para seleccionar la mejor combinación). La función de activación 

utilizada en esta capa será la función ReLU (Unidad Lineal Rectificada), que en la 

actualidad es la función de activación con más éxito y más utilizada en redes de 

neuronas profundas (Ramachandran et al., 2017). A la salida de esta capa de 

convolución se le aplicará una función de MaxPooling para reducir el tamaño de las 

muestras, y el resultado se conectará a una capa densa de 1 neurona con una función 

sigmoid. 

 

• LSTM: En tercer lugar, seleccionamos para realizar nuestra comparativa el modelo 

recurrente LSTM, donde utilizaremos en primer lugar una capa de embedding, seguida 

de una capa LSTM (probaremos diferente número de neuronas para poder seleccionar 

la mejor opción). La salida irá conectada, al igual que en los casos anteriores, a una 

capa densa de 1 neurona con función de activación sigmoid. 
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• BETO: Finalmente, utilizaremos en nuestra comparativa el modelo Transformers 

monolingüe para el idioma español BETO, tanto la versión cased como uncased 

(“dccuchile/bert-base-spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-

uncased” respectivamente). Estos modelos se pueden encontrar en la web de Hugging 

Face 22, y son accesibles desde el código a través de la biblioteca Transformers23. La 

librería Hugging Face, además de soportar una variedad de diferentes modelos de 

Transformers pre-entrenados, incluye versiones preconstruidas adaptadas a una tarea 

específica, como por ejemplo clasificación de texto. Para nuestras pruebas 

utilizaremos BertForSequenceClassification24. 

 

4.3.  MÉTRICAS DE EVALUACIÓN 

Como métricas para comparar los distintos modelos entrenados vamos a utilizar: 

 

• Accuracy (Exactitud): Esta métrica indica el número de muestras correctamente 

clasificadas para todas las clases sobre el total de muestras. En nuestro caso, al tener 

conjuntos de datos muy desequilibrados, este parámetro por sí solo no nos es 

suficiente ya que podemos clasificar muy bien la clase mayoritaria, teniendo valores 

altos de exactitud y, sin embargo, detectar muy mal la clase minoritaria, en este caso 

los textos de ODIO. La fórmula para calcular el accuracy es la siguiente: 

 

𝐴𝑐𝑐= 
𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑠

total muestras
 =   

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

 

• Precisión: nos indica lo precisa que es nuestra clasificación, es decir, de las muestras 

reconocidas en una clase cuántas son correctas.  

 

 

 

22 https://huggingface.co/dccuchile 
23 https://huggingface.co/docs/transformers 
24 https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification 
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Precisión = 
muestras clasificadas correctamente en una clase 

total muestras clasificadas en esa clase
= 

𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

• Recall (Exhaustividad): Esta métrica es también conocida como el ratio de verdaderos 

positivos y es utilizada para saber cuántos valores positivos son correctamente 

clasificados.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠 𝑐𝑙𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑑𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑚𝑒𝑛𝑡𝑒 𝑒𝑛 𝑢𝑛𝑎 𝑐𝑙𝑎𝑠𝑒

𝑡𝑜𝑡𝑎𝑙 𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑐𝑙𝑎𝑠𝑒
 = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

Donde,  

TP = True Positive o muestra clasificada en una clase de forma correcta.  

TN = True Negative o muestra no clasificada en una clase correctamente.  

FP = False Positive o muestra clasificada en una clase cuando no pertenece a ella.  

FN = False Negative o muestra no clasificada en una clase cuando sí pertenece a ella. 

 

• F1-score: Una métrica que combina Precisión y Recall. 

 

F1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

• Macro-F1: Se trata de la media no ponderada de las puntuaciones F1-score. 

Macro-F1 =  
𝑠𝑢𝑚(𝐹1−𝑠𝑐𝑜𝑟𝑒𝑠)

𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑙𝑎𝑠𝑒𝑠
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5. DESARROLLO DE MODELOS DE APRENDIZAJE PROFUNDO 

PARA LA DETECCIÓN DE ODIO 

A continuación, se detalla el trabajo realizado en este estudio, desde la preparación de datos 

hasta el entrenamiento y evaluación de los modelos y su posterior comparativa. 

 

5.1.  ANÁLISIS Y PREPARACIÓN DE LOS DATOS 

 En un primer vistazo, observamos que nuestro dataset contiene 9 columnas (Figura 7). 

 

Figura 7: Extracto de las cinco primeras filas del dataset original. 

 

• Medio: Indica el medio digital de donde se ha extraído el texto. En nuestro dataset 

tenemos 5 valores diferentes (El PAÍS, EL MUNDO, LA VANGUARDIA, 20MIN y ABC). 

• Soporte: Indica el soporte del medio (Web, Twitter). 

• Url: Link al texto. Hemos comprobado casos en el que los links no corresponden con el 

texto al que debería apuntar, por lo que consideramos que esta columna es poco 

fiable. 

• Tipo_mensaje: Tipo mensaje puede tomar 3 valores (COMENTARIO, NOTICIA y 

TITULAR_NOTICIA). 

• Texto: Es el texto para clasificar. Nuestra variable objetivo. 

• Intensidad: Indica la intensidad de la expresión de odio, con siete posibles valores que 

van desde 0.0 hasta 6.0. El valor 0.0 indica que el texto no contiene odio, mientras que 

el resto de los valores corresponden a una intensidad de odio. Como en nuestro 

estudio sólo nos interesa realizar una clasificación binaria, transformamos esta 

columna a valores 0 y 1 (NO_ODIO y ODIO respectivamente), y la renombramos a 

label_odio. 
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• Tipo_odio: Indica el tipo de odio del texto. Este campo solo es aplicable a textos 

etiquetados como ODIO. Existen 7 posibles valores (Racismo, Sexual, Misoginia, 

Religioso, Xenofobia, Ideológico y Otros), además de combinaciones entre ellos (por 

ejemplo, "Racismo, Misoginia") hasta un total de 72 combinaciones distintas. 

• Tono_humorístico: Es un booleano que indica si existe humor en el texto etiquetado 

como ODIO. (Solo aplicable a textos etiquetados como ODIO). 

• Modificador: Contiene los valores: "Humor", "Atenuador", "Intensificador" y la 

combinación "Intensificador, Atenuador”. (Solo aplicable a textos etiquetados como 

ODIO). 

 

A continuación, realizamos un análisis pormenorizado de los datos disponibles en el dataset 

de Hatemedia, con el fin de entenderlos en profundidad y comprobar la calidad de los mismos. 

 

5.1.1. Tratamiento de los valores nulos. 

En este apartado perseguimos dos objetivos principales: 1) eliminar registros cuando el campo 

“contenido” o “intensidad” es nulo; 2) si tenemos nulos en otras columnas, decidir qué hacer 

con ellos.  

 

En la Figura 8 mostramos el número de campos nulos para cada columna de nuestro dataset. 

Los 562.467 registros con valor nulo en las columnas “tipo_odio” y “tono_humorístico” y los 

574.410 de “modificador” son esperados, ya que se trata de columnas que, de tomar un valor, 

solo lo toman cuando el texto en cuestión es etiquetado como ODIO. Para el resto de los 

textos, su valor debe ser siempre nulo.  

 

 

Figura 8: Conteo de campos nulos por columna 
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Si embargo, observamos también que tenemos un valor nulo en la columna tipo_mensaje. 

 

Para decidir qué hacer con este registro, hemos seguido los siguientes pasos. 

 

1. En primer lugar, hemos accedido a la url asociada a este registro: 

https://twitter.com/1022840547118145536/status/1347858101454704642  

 Sin embargo, a pesar de que hace referencia a un tweet del medio “ABC”, hemos 

comprobado que esta url no se corresponde con el texto en cuestión, si no con otro 

distinto. Tras hacer la prueba con otras urls del fichero, confirmamos que esta columna 

no tiene datos fiables. 

2. En segundo lugar, hemos estudiado el valor que contiene el campo tipo_mensaje para 

otros registros cuyo medio es “ABC” y su soporte es “Twitter”, para intentar deducir 

qué valor podría ser el más probable para nuestro campo nulo. Los valores que toma 

este campo para otros registros similares son: “COMENTARIO”, “NOTICIA” o “NaN”. 

Inicialmente, podríamos pensar que los textos catalogados como “NOTICIA” son textos 

más largos y elaborados, mientras que los de tipo “COMENTARIO” podrían 

corresponderse a textos significativamente más cortos. Sin embargo, comprobamos 

que no es así, puesto que podemos observar algunos ejemplos de tipo_mensaje = 

“NOTICIA” que están compuestos por textos de muy pocas palabras. Así pues, 

consideramos la hipótesis de que la columna tipo_mensaje (al menos para los registros 

con medio y soporte “ABC” y “TWITTER”) hace la distinción de cuándo un comentario 

se escribe en contestación a una noticia directamente, y cuándo se escribe en 

contestación a otro comentario. Es decir, cuando un usuario escribe un comentario en 

referencia a una noticia, su campo tipo_mensaje sería “NOTICIA” y en el caso de que 

un usuario responda a otro comentario, su texto se catalogaría como tipo_mensaje = 

"COMENTARIO". En cualquier caso, esto es solo una suposición. 

Como no somos capaces de determinar con certeza el valor de tipo_mensaje para este 

caso y teniendo en cuenta que el campo label_odio es 0 (correspondiente a la etiqueta de 

NO_ODIO, que es la etiqueta mayoritaria en nuestro dataset), decidimos eliminar el 

mensaje. 

https://twitter.com/1022840547118145536/status/1347858101454704642
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5.1.2. Análisis exploratorio y visualización de los datos 

Una vez hemos terminado el tratamiento de los valores nulos en el dataset, nos disponemos 

a realizar un análisis exploratorio de los datos. Actualmente sabemos que el dataset está 

claramente desbalanceado (ver Figura 1), con 562.464 observaciones de NO_ODIO, frente a 

12.296 de ODIO. A continuación, realizaremos un estudio de cómo se distribuyen los datos en 

función de las distintas variables, para entender un poco mejor el dataset. 

 

En primer lugar, estudiamos la distribución de los datos en relación a la variable SOPORTE. En 

la Figura 9 podemos observar que el 60% del dataset corresponde a textos de soporte WEB, 

mientras que el 40% corresponde a Twitter. Podría parecer que nuestros datos están bien 

representados en ambos soportes. Sin embargo, si atendemos únicamente a los textos de 

ODIO, podemos apreciar que el 77% están vinculados a Twitter. Este dato es interesante, 

porque siendo los textos de odio tan solo un 2% de los textos totales del dataset, el 77% de 

esta minoría están asociados a la plataforma Twitter. 

 

 

Figura 9: Distribución de los datos en función de la variable soporte (izquierda), y la misma distribución pero 

considerando solo los textos de ODIO (derecha) 

 

Estudiaremos ahora la distribución de la variable MEDIO con respecto a la variable SOPORTE: 
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Figura 10: Distribución de la variable MEDIO con respecto a la variable SOPORTE (con medios duplicados) 

 

En la Figura 10 podemos ver que tenemos medios duplicados: “La Vanguardia“, “20MIN” y 

“ABC”. Normalizamos el nombre de los medios duplicados o con espacios sobrantes. 

 

Figura 11: Distribución de la variable MEDIO con respecto a la variable SOPORTE (tras normalización de los 

nombres de los medios) 

 

La Figura 11 muestra un gráfico con los nombres de los medios normalizados donde podemos 

apreciar que todos los medios tienen presencia en ambos soportes (WEB y Twitter). 
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Comparando los medios entre sí, podemos comprobar que “La Vanguardia” es el medio con 

menos textos en nuestro dataset. Sin embargo, este hecho no debería suponer ningún 

problema para nuestro estudio. 

Ahora estudiamos la distribución de los datos únicamente en relación con la variable MEDIO. 

 

Figura 12: Distribución de la variable medio (izquierda), y la misma distribución pero considerando solo los 

textos de ODIO (derecha) 

 

En la Figura 12 podemos apreciar que EL MUNDO no solo es el medio con mayor presencia en 

nuestro dataset (26%), sino que además es de donde se generan la mayor parte de los textos 

de ODIO (un 43% del total). Por lo tanto, EL MUNDO parece la mejor opción si decidimos crear 

un dataset balanceado con textos provenientes de un mismo medio para añadir a nuestra 

comparativa. 

 

Analizamos ahora la distribución de la variable tipo_mensaje con respecto a la etiqueta 

label_odio (Figura 13). 
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Figura 13: Distribución de la variable tipo_mensaje con respecto a la etiqueta label_odio 

 

Vemos que, para ambos casos (ODIO y NO_ODIO), la categoría más común es “COMENTARIO”, 

y la menos común es “TITULAR_NOTICIA”.  

 

Las tres columnas restantes de nuestro dataset: tipo_odio, tono_humorístico y modificador, 

no serán necesarias para nuestro estudio, ya que estas columnas únicamente dan información 

adicional para los mensajes de odio (para el resto de los casos toman el valor nulo). A nosotros 

nos bastará con conocer la etiqueta ODIO y NO_ODIO para cada texto, con el objetivo de 

entrenar nuestro modelo, sin necesidad de entrar en más detalle sobre el tipo de odio. Aun 

así, hemos realizamos un pequeño análisis y estos han sido los resultados: 

 

- Tipo_odio: Observamos que, de los 12.296 textos de odio presentes en nuestro 

dataset, la gran mayoría están catalogados con tipo_odio = "Otros" (73%), seguido 

por tipo_odio = "Ideológico" (14%). 

 

- Tono_humorístico: De los 12.296 textos de odio, tan solo 143 (1%) han sido 

catalogados con tono_humorístico = ”Si”. El resto tienen valor nulo. 
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- Modificador: Tan solo el 3% de los mensajes de odio contienen valor en este 

campo. Los valores presentes son “Atenuador” (114 observaciones), 

“Intensificador” (233), la tupla “Intensificador, Atenuador” (2) y Humor (1).  

 

Tras este análisis exploratorio, decidimos eliminar las columnas tipo_odio, tono_humorístico 

y modificador por no aportar valor a nuestro estudio. También decidimos borrar el registro 

que contiene el campo “tipo_mensaje” a nulo, de modo que dejamos un dataset libre de 

valores nulos. 

 

 

5.1.3. Preparación de la columna Texto 

 

El siguiente paso será tratar la columna texto de nuestro dataset. La columna texto es la que 

contiene los mensajes a clasificar como ODIO / NO_ODIO, por lo que debemos realizar un 

preprocesado de modo que aseguremos que el contenido de esta columna es óptimo para 

poder entrenar nuestros modelos de inteligencia artificial. 

 

Para ello, creamos una función que implemente un flujo de limpieza y preprocesado de los 

datos, consistente en los siguientes pasos: 

 

• Limpieza de URLs 

• Eliminación de @ y su mención 

• Eliminación de los caracteres especiales 

• Eliminación de palabras con longitud <2 

• Eliminación de espacios en blanco adicionales 

• Tokenización 

• Lematización 
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Figura 14: Extracción de código que implementa el flujo de preprocesado de la columna texto 

 

En la Figura 14 mostramos el código de la función limpiar_texto, que comienza por eliminar 

las urls, que no nos van a dar ningún valor a lo hora de hacer nuestra clasificación. Así mismo, 

eliminamos las menciones propias de los tweets (expresiones que empiezan por @). 

Continuamos por eliminar todos los caracteres especiales de los textos utilizando la expresión 

regular re.sub(r'\W', ' ', texto). Tras ello, eliminamos los caracteres sueltos (longitud <2), y 

también eliminamos los espacios en blanco adicionales que nos hayan podido quedar, tanto 

en el interior del texto, como al principio y al final. 

 

 

Figura 15: Extracción de código que implementa el flujo de normalización y lematización de la columna texto 

 

En la Figura 15 podemos ver el código de la función normalizar. Esta función se ayuda de la 

librería spacy para pasar el texto a minúsculas y lematizar cada palabra. Por último, nos 

quedamos solo con las palabras que pertenezcan a ciertas categorías gramaticales que 
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consideramos útiles para nuestro estudio, como nombres, adjetivos, verbos y adverbios. 

Hemos decidido quedarnos con las etiquetas gramaticales AUX (verbo auxiliar) e INTJ 

(interjección), porque en el idioma español, las palabras etiquetadas como AUX son formas 

verbales que deseamos mantener, como por ejemplo “estoy”, “sería” y “será”. En el idioma 

inglés, las palabras con la etiqueta AUX normalmente se eliminarían del estudio. En el caso de 

la etiqueta INTJ, hemos detectado que spacy no hace un uso correcto de esta etiqueta para el 

idioma español en todos los casos, de modo que durante nuestra investigación hemos 

encontrado que adjetivos como "traidor" son consideradas INTJ. Como no queremos perder 

estas palabras, decidimos mantener todas las palabras etiquetadas como INTJ. 

Tras realizar el preprocesado de los datos, mostramos algunos ejemplos del resultado: 

 

 

Figura 16: Comparación del texto antes y después de aplicar preprocesado 

 

En la Figura 16 podemos comprobar que, tras el preprocesado del texto, hemos eliminados 

signos de puntación, espacios en blanco sobrantes, saltos de línea y cualquier otro carácter 

especial. Asimismo, las palabras han sido normalizadas y lematizadas. 

Tras la realización del preprocesado, observamos que hemos perdido 23 textos de ODIO y 

2.522 de NO_ODIO, todos ellos comentarios compuestos por palabras intranscendentes o mal 

escritas que se han convertido en textos nulos, tal y como podemos ver en la Figura 17. 
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Figura 17: Textos procesados nulos vs textos sin procesar 

 

Eliminamos todas esas filas con textos nulos, ya que no nos aportarán nada para nuestra 

investigación. 

 

5.1.4. Estudio de la longitud de los textos 

Analizar la longitud de los textos como una variable más nos revelará información importante 

sobre nuestros datos, como la longitud máxima y mínima, así como su distribución. Los 

modelos de aprendizaje profundo pueden mostrar un comportamiento muy diferente en 

función de las longitudes de los textos que se les proporciona, tanto desde el punto de vista 

de rendimiento como de tiempo de ejecución. 

   

Para poder analizar la longitud de los textos programamos una función lambda que cuente las 

palabras de cada uno de ellos y las almacenamos en una nueva columna de nuestro dataset 

llamada “num_palabras”. En la Figura 18 mostramos como queda nuestro dataset procesado, 

tras añadir la nueva columna “num_palabras”, eliminar las filas y columnas innecesarias y con 

los textos preprocesados. 
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Figura 18: Creación columna num_palabras que contiene la longitud de los textos 

 

A continuación, realizamos un estudio detallado basado en nuestro nuevo campo 

“num_palabras”. El objetivo es conocer cómo se distribuye esta variable para entender si 

existe algún patrón de correlación y sacar conclusiones que puedan ayudarnos a abordar 

nuestro problema. Para ello, obtendremos estadísticas basadas en la longitud de los textos 

como la longitud media, mínima y máxima, primero de forma general (teniendo en cuenta 

todos los textos) y a continuación centrándonos únicamente en los textos de odio. Asimismo, 

obtendremos estadísticas de la longitud de textos en función de las variables TIPO_MENSAJE 

y MEDIO. 

 

5.1.4.1. Estudio general de longitud de los textos 

En la Figura 19 se muestran las estadísticas relacionadas con la longitud de los textos de 

nuestro dataset. Observamos que tenemos textos que van desde 1 una sola palabra (estos 

textos tan cortos probablemente no nos aporten información útil a la hora de entrenar 

nuestro clasificador), hasta 3.044 palabras, con una media global de 60 palabras por texto. 
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Figura 19: Estadísticas para la longitud general de los textos del dataset 

 

Probablemente, los textos que contienen una única palabra no aporten información útil a la 

hora de entrenar el clasificador. Es muy probable también que la diferencia tan grande que 

existe entre los textos de longitud mínima y máxima perjudique el rendimiento del clasificador 

ya que, tras el proceso de padding, los textos más cortos se representarán como un vector de 

unos pocos enteros al inicio y más de 3000 ceros al final. Por este motivo, una parte de nuestra 

investigación será trabajar con un dataset compuesto de textos de longitud homogénea para 

poder comparar los resultados obtenidos. 

También podemos apreciar en estas estadísticas que el 75% de los textos de nuestro dataset 

está compuesto por 26 palabras o menos. Esto quiere decir que la longitud máxima de 3044 

es un valor atípico. Más adelante analizaremos la longitud de los textos en función de otras 

variables como TIPO_MENSAJE o MEDIO, de modo que podamos entender si los textos más 

largos guardan alguna relación con cierto tipo de variables. 

 

5.1.4.2. Longitud en función de etiqueta label_odio 

En la Figura 20 mostramos el mismo estudio anterior pero esta vez atendiendo a la etiqueta 

label_odio. Comprobamos que, de media, los mensajes de ODIO son significativamente más 

cortos que los etiquetados como NO_ODIO, 9 palabras frente a 61. El 75% de los textos de 

odio contienen 11 palabras o menos. Cuando construyamos nuestro dataset balanceado en 

base a la longitud de las palabras, tendremos que tener en cuenta estas estadísticas que 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

56 

devuelven los mensajes de odio para crear un dataset donde la media de la longitud de los 

textos sea alrededor de nueve palabras. 

 

 

 

Figura 20: Estadísticas para la longitud de los textos en función de su etiqueta label_odio 

 

 
5.1.4.3. Longitud en función de tipo_mensaje y medio 

 

Ahora nos disponemos a analizar la distribución de la variable NUM_PALABRAS en función de 

TIPO_MENSAJE y MEDIO, tanto para los textos en general, como únicamente para los textos 

etiquetados como ODIO. Los resultados son mostrados a continuación en las Figuras 21, 22 y 

23: 
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Figura 21: Estadísticas de la longitud de los textos en función del tipo_mensaje (arriba) y las mismas 

estadísticas, pero centradas únicamente en los textos de odio (abajo) 

 

En base a estas estadísticas observamos que los textos correspondientes a TITULAR_NOTICIA 

son significativamente más cortos que las NOTICIAS y COMENTARIOS, tanto para todos los 

textos en general como para los de odio. Si nos centramos únicamente en los textos de 

ODIO, podemos observar que el 75% de ellos tienen 11 palabras o menos para cualquier 

valor de TIPO_MENSAJE. 

 

 

Figura 22: Estadísticas de la longitud de textos en función del MEDIO 
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Figura 23: Estadísticas de la longitud de textos en función del MEDIO, pero únicamente centrado en los 

textos de odio 

 

Las estadísticas relacionadas con la longitud de textos en función del medio no nos aportan 

mayor conocimiento para textos de ODIO, seguimos viendo que el 75% están compuestos por 

13 palabras o menos, variando el valor medio en pocas palabras según el MEDIO. 

 

Observamos que el estudio de la variable NUM_PALABRAS con respecto a tipo_mensaje y 

medio no nos aporta información adicional con respecto a lo visto en el estudio general, si 

bien nos confirma coherencia en nuestros datos, siendo los comentarios y los títulos de las 

noticias textos más cortos que la propia noticia.  

 

 

5.1.5. Proceso de Tokenización 

 

Antes de poder entrenar nuestros modelos, necesitamos transformar nuestros datos para que 

estos sean legibles para nuestros modelos. Los modelos BERT tienen su propia forma de 

tokenizar los datos, por lo que explicamos de forma separada este proceso. 
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5.1.5.1. Tokenización en Deep Learning 

 

Para realizar el proceso de tokenización en los modelos de deep learning, en primer lugar, 

usamos la clase Tokenizer25 del módulo Keras.  Esta clase permite vectorizar el corpus de texto, 

convirtiendo cada texto en una secuencia de números enteros. Para ello, primero utilizamos 

la función fit_on_texts() para crear un diccionario de palabra-índice. En este diccionario, cada 

palabra de nuestro corpus es usada como índice, mientras que los valores son un índice único 

para cada palabra. Esta tupla será utilizará posteriormente por la función text_to_sequences() 

para convertir cada texto en una secuencia de enteros, donde cada entero corresponde a una 

única palabra del corpus. 

 

 

Figura 24: Extracto donde se muestra el uso de la clase Tokenizer del módulo keras 

 

Si exploramos ahora la variable X_token (Figura 24), veremos que tenemos una lista cuyo 

contenido son números. Estos números son las representaciones de las palabras del texto 

original. En nuestro ejemplo, el texto compuesto por 8 palabras: “entonces ser estar forrado 

hacienda comunista ir rico” se ha convertido en una lista con 8 enteros [184, 1, 5, 20882, 1778, 

1204, 12, 1228], cada entero correspondiente a una palabra, por ejemplo, el valor 184 

corresponde a la palabra “entonces”.   

 

También podemos observar que la longitud de las listas es variable.  Esto supone un problema 

si queremos alimentar una red neuronal, que necesita vectores de longitud fija. Por ello, 

debemos establecer un valor máximo que llamaremos MAX_LONG que, en nuestro caso, será 

 

25 https://keras.io/api/keras_nlp/tokenizers/tokenizer/ 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

60 

la longitud del texto más largo de nuestro corpus. Los textos cuya longitud sea inferior a 

MAX_LONG, se rellenarán al final con ceros. Este proceso se conoce como padding y permite 

generar una lista de textos de longitud fija. 

 

En la Figura 25 determinamos el tamaño del vocabulario y, a continuación, realizamos el 

proceso de padding. 

 

 

Figura 25: Extracto de código donde se calculan MAX_LONG, vocab_size y se aplica padding a los textos 

 

5.1.5.2. Tokenización en BERT 

En esta sección, prepararemos nuestro conjunto de datos al formato en el que se puede 

entrenar BETO. Para poder alimentar el modelo con nuestros textos, hay que dividirlos 

previamente en tokens y, a continuación, asignar estos tokens a su índice en el vocabulario 

del tokenizador.  

 

Antes de tokenizar, tenemos que cumplir con los requisitos de formato que nos exige la 

arquitectura BERT (Devlin et al., 2019).  

- Añadir tokens especiales al principio y al final de cada texto. En concreto, debemos 

anteponer el símbolo especial [CLS] al principio de cada texto y añadir el símbolo 

especial [SEP] al final del texto. 
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- Homogeneizar la longitud de los textos mediante la definición de una longitud fija, 

truncando los textos más largos y aplicando padding a los textos más cortos. El 

relleno o padding se realiza con un token especial [PAD]. La longitud máxima de los 

textos que permite la arquitectura BERT es de 512 tokens.  

 

- Diferenciar explícitamente los tokens que aportan valor real de los tokens de 

relleno con la "máscara de atención" o "attention mask". Esta "máscara de 

atención" es una matriz de 1s y 0s que indica qué tokens son de relleno y cuáles 

no. Esta máscara indica al mecanismo de "autoatención" de BERT que no incorpore 

estos tokens especiales [PAD] a su interpretación del texto. 

 

La tokenización la realizaremos con el tokenizador propio de BERT (BertTokenizer, de la librería 

Transformers). BertTokenizer se encarga de asignar a cada token (cada palabra) un índice del 

vocabulario del tokenizador.  

 

Tras esto, hacemos uso de la función tokenizer.encode_plus(), encargada de realizar los 

siguientes pasos: 

1. Divide la frase en tokens. 

2. Añade los tokens especiales [CLS] y [SEP]. 

3. Asigna los tokens a sus ID. 

4. Rellena o trunca los textos para dejarlos con la misma longitud (rellena con 1s 

hasta completar la longitud máxima establecida). 

5. Crea las máscaras de atención que diferencian los tokens que aportan valor de los 

tokens de relleno [PAD]. 

 

De esta forma, obtenemos los vectores input_ids (realizado en los primeros 4 pasos de la 

función encode_plus) y attention_mask (paso 5), necesarios para poder entrenar 

posteriormente nuestro modelo BETO. 
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5.1.6. Creación de conjunto de datos de entrenamiento y de test  

En esta sección explicaremos cómo ha sido el proceso de división de los datos para obtener 

los conjuntos de entrenamiento y test para cada uno de los datasets. 

 

5.1.6.1. Dataset completo 

Para poder realizar nuestras pruebas, primero debemos dividir nuestro dataset en conjuntos 

de entrenamiento y de test. Fijamos el tamaño del conjunto de test en el 20% de todo el 

conjunto de datos. Seguidamente imprimimos el número de muestras de cada conjunto, 

utilizando la función Counter(), incluida en el paquete collections (Figura 26). 

 

Figura 26: Distribución de datos en conjunto de entrenamiento y test 

 

5.1.6.2. Dataset balanceado 

Un conjunto de datos equilibrado o balanceado es un conjunto de datos en el que cada clase 

objetivo está representada aproximadamente por el mismo número de muestras.  

 

Para lograr el equilibrio vamos a aplicar una técnica conocida como undersampling, cuyo 

objetivo es reducir las muestras dominantes (en nuestro caso las etiquetas de NO_ODIO), de 

modo que los ejemplos ODIO y NO_ODIO queden balanceados en nuestro dataset (Figura 27). 

 

 

Figura 27: Uso de la técnica de undersampling para lograr un dataset balanceado 
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Observamos que ahora el número de palabras de nuestro vocabulario es menor al que 

teníamos con el dataset completo. Ahora tenemos 57.306 palabras (añadimos +1 para 

reservar el índice 0 necesario para el padding). 

 

En la Figura 28 mostramos cómo quedan distribuidas las etiquetas tanto para el conjunto de 

entrenamiento como para el conjunto de test. Se puede apreciar que estos conjuntos están 

balanceados. 

 

 

Figura 28: Distribución de datos en conjunto de entrenamiento y test para dataset V1 

 

Para crear los 2 dataset balanceados restantes, uno con textos de longitud homogénea (V2) y 

otro con textos pertenecientes al medio “El MUNDO” (V3), seguimos un procedimiento 

análogo. 

 

Para la creación del dataset V2, se ha filtrado previamente por la columna num_palabras para 

seleccionar textos con una longitud máxima 32 palabras. Como resultado obtenemos un 

dataset balanceado de tamaño 23.932 (Figura 29), lo que quiere decir que hemos perdido 614 

registros sin comparamos con el dataset balanceado de selección aleatoria. El motivo de esta 

reducción es que 307 textos etiquetados como ODIO se han filtrado por superar 32 palabras. 

Por lo tanto, al crear el dataset balanceado, tenemos 307 muestran menos de cada clase (614 

registros). 
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Figura 29: Distribución en conjunto de entrenamiento y test para dataset V2 

 

Para la creación del dataset con textos pertenecientes a “El MUNDO”, se ha realizado un filtro 

tanto por num_palabras como por medio. Se ha decidido filtrar por num_palabras porque los 

resultados para el modelo LSTM son mucho mejores cuando obtenemos un dataset de 

longitud acotada, como veremos en la siguiente sección 5.2 Entrenamiento y evaluación de 

los modelos. Como resultado, obtenemos un dataset balanceado de tamaño 10.268 (Figura 

30), lo que indica que hemos perdido 14.278 textos con respecto al dataset balanceado de 

selección aleatoria (24.546 - 10.268). Esto es debido a que en nuestro dataset original tan solo 

5.134 textos de ODIO pertenecen al medio “EL MUNDO” y además contienen menos de 32 

caracteres. 

 

 

Figura 30: Distribución en conjunto de entrenamiento y test para dataset V3 
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5.2. ENTRENAMIENTO Y EVALUACIÓN DE LOS MODELOS 

Para cada uno de los modelos seleccionados, realizaremos experimentos con las distintas 

versiones del dataset descritos en el apartado 4. Cómo detectar odio en los medios de 

información social. Todos los experimentos han sido ejecutados desde la versión gratuita 

colab, configurando el entorno para hacer uso del modo de ejecución GPU (Tesla T4), lo que 

nos ha permitido ejecutar nuestros modelos hasta 10 veces más rápido que desde el entorno 

básico. 

 

5.2.1. SNN (Simple Neural Network) 

Comenzamos nuestro experimento con una red neuronal simple que usaremos a modo de 

línea base. Para ello creamos un modelo Sequential() y, a continuación, creamos nuestra capa 

de embedding. La capa de embedding tendrá una longitud de entrada de MAX_LONG. Para la 

dimensión del vector y tras probar varias alternativas, el valor seleccionado es 50. El tamaño 

del vocabulario será de VOCAB_SIZE, calculado en el apartado 5.1.5.1 Tokenización en Deep 

Learning. A continuación, como estamos conectando directamente nuestra capa de 

embedding a una capa fully-connected, aplanamos la capa de embedding. Por último, 

añadimos una capa densa con función de activación sigmoid, que es la más adecuada para 

problemas de clasificación binaria. Para compilar nuestro modelo, usaremos el algoritmo de 

descenso de gradiente eficiente Adam Optimizer, utilizado en Benítez-Andrades et al. (2022). 

Para nuestra función de pérdida usaremos binary_crossentropy, por tratarse de un problema 

de clasificación binaria. Finalmente, como métrica queremos medir la Accuracy (Figura 31). 

 

 

Figura 31: Extracto del código python del modelo SNN 
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5.2.1.1. Dataset Completo 

Nuestra primera prueba la realizaremos con el dataset completo. Este dataset, en el que ya 

hemos aplicado el preprocesamiento visto en el apartado 5.1 Análisis y preparación de los 

datos, consta de 572.214 registros y 6 columnas (Figura 6). 

 

Como hay 387.186 palabras en nuestro corpus (valor de VOCAB_SIZE) y cada palabra se 

representa como un vector de 50 dimensiones, el número de parámetros será de 387.186 x 

50 = 19.359.300 en la capa de embedding. En la capa de aplanamiento, simplemente 

multiplicamos las filas (longitud de cada vector de entrada o MAX_LONG) y las columnas o 

dimensiones del embedding (3044 x 50 = 152200). Por último, en la capa densa, el número de 

parámetros es de 152201, 152200 provenientes de la capa de aplanamiento y 1 del parámetro 

de sesgo (Figura 32). 

 

Figura 32: Resumen del modelo SNN compilado para el dataset completo 

 

Utilizamos el método fit() de la librería scikit-learn para entrenar nuestra red neuronal, 

seleccionando diferentes valores de batch_size (25, 50, 100) y epochs (2, 3, 5) para poder 

comparar rendimientos. Finalmente, indicamos un validation_split de 0,1 para que el 10% de 

los datos de entrenamiento se utilice como datos de validación.  Finalmente, evaluamos 

nuestro modelo con el método evaluate().  

 

Observamos que con el dataset completo obtenemos una accuracy del 99% para los datos de 

entrenamiento y un 98% para los datos de validación. Finalmente, y tras la evaluación del 

modelo con los datos de test, obtenemos un accuracy del 98%. 
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Estos resultados podrían parecer buenos, pues una accuracy de 98% para los datos de test son 

un muy buen valor. Sin embargo, debemos analizar los valores ofrecidos por la matriz de 

confusión para estar seguros de que nuestro modelo está funcionando correctamente. En la 

Figura 33 mostramos la matriz de confusión obtenida, donde observamos que todas las 

predicciones se corresponden con la etiqueta NO_ODIO, con 112.024 instancias predichas 

correctamente y 2.419 instancias etiquetadas de forma incorrecta. 

 

Figura 33: Matriz de confusión con dataset completo 

 

Las pruebas realizadas para el dataset completo muestran unos resultados propios de un 

dataset desbalanceado (Tabla 2). Al final, al modelo le basta con predecir siempre la clase 

dominante para conseguir un 98% de accuracy (acertando siempre los textos de NO_ODIO 

conseguimos acertar un 98% de las ocasiones). Sin embargo, esto implica que nunca predice 

la etiqueta ODIO, y esto se traduce en un recall del 0% para esta clase. Por lo tanto, estos 

modelos entrenados con el dataset completo no son útiles en absoluto para resolver nuestro 

problema. 

 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

68 

 

Tabla 2: Resultados en test para todos los modelos con dataset completo 

 

 

Estos mismos resultados se han obtenido para los diferentes valores de batch_size y epochs.  

Asimismo, los resultados de la matriz de confusión para el dataset completo son exactamente 

los mismos para todos los modelos utilizados en nuestra comparativa por lo que de aquí en 

adelante centraremos nuestras pruebas en las versiones de los datasets balanceados. 

 

5.2.1.2. Datasets Balanceados 

A continuación, mostramos los resultados obtenidos por el modelo SNN para cada una de las 

versiones del dataset balanceado (V1, V2 y V3). La columna “Tiempo” se refiere al tiempo 

empleado en entrenar y validar el modelo.   

 

▪ SSN y V1 (Muestras Aleatorias) 

A diferencia de lo que ocurría con el dataset completo, para V1 los resultados muestran unos 

valores razonables para todas las métricas (Tabla 3). Observamos que, con este dataset 

balanceado, el modelo es capaz de recuperar un 84% de los textos de ODIO (recall) con una 

accuracy del 86%.  

 

Tabla 3: Resultados en test para SNN con dataset V1 

 

 

Precision Recall F1-score n_registros

NO_ODIO 98% 100% 99% 112024

ODIO 0% 0% 0% 2419

Accuracy 11444398%

Precision Recall F1-score n_registros

NO_ODIO 85% 87% 86% 2488

ODIO 87% 84% 85% 2422

Accuracy 4910

Tiempo 13s

86%
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En la Figura 34 mostramos la matriz de confusión obtenida para SNN y V1, donde observamos 

2.173 instancias correctamente clasificadas como NO_ODIO y 2.041 correctamente 

clasificadas como ODIO. 

 

Figura 34: Matriz de confusión obtenida modelo SNN y dataset V1 

 

Estos resultados se han conseguido con un batch_size de tamaño 50 y 2 épocas. Hemos 

comprobado que más allá de la tercera epoch perdemos accuracy para el conjunto de test 

debido al fenómeno overfitting o sobreajuste del modelo al conjunto de entrenamiento.  

 

▪ SSN y V2 (Longitud homogénea) 

En la Tabla 4  observamos que para el dataset balanceado V2 empeoramos ligeramente todas 

las métricas con respecto al dataset V1, alcanzando un accuracy del 83%. Esto indica que el 

hecho de tener unos textos de longitud homogénea no ha ayudado en este sentido al modelo 

SSN a predecir mejor. Por el contrario, debemos mencionar que el tiempo de ejecución sí que 

mejoró con respecto a los tiempos obtenidos con el dataset V1, reduciéndose 

aproximadamente un 30%. De este modo comprobamos que, al acotarse la longitud de los 

textos, los tiempos de cómputo se reducen notablemente. 
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Tabla 4:  Resultados en test para SNN con dataset V2 

 

 

A continuación, mostramos la matriz de confusión obtenida para SNN y V2 (Figura 35). 

Observamos que las instancias predichas correctamente han disminuido ligeramente con 

respecto al dataset V1, con 2.099 para la etiqueta de NO_ODIO y 1.856 para la etiqueta ODIO. 

 

Figura 35: Matriz de confusión obtenida modelo SNN y dataset V2 

 

▪ SNN y V3 (Medio “El Mundo”) 

Vamos a realizar las mismas pruebas, pero con el dataset V3. En esta ocasión, hemos decidido 

seleccionar textos únicamente del medio El MUNDO (además de filtrarlos por longitud < 32), 

para comprobar si seleccionar textos de un mismo medio contribuye a mejorar el rendimiento 

del modelo.   

 

Precision Recall F1-score n_registros

NO_ODIO 80% 87% 83% 2403

ODIO 86% 78% 82% 2384

Accuracy 4787

Tiempo 9s

83%
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En la Tabla 5 mostramos los resultados obtenidos: 

Tabla 5: Resultados en test para SNN con dataset V3 

 

Observamos que hemos obtenido unas métricas por debajo de lo conseguido con el dataset 

V2. Estos no son los resultados esperados, pues confiábamos en que seleccionar textos de un 

mismo medio ayudara al modelo a predecir mejor. Sin embargo, creemos que estos resultados 

se deben a la reducción del número total de registros de entrenamiento (hemos pasado de 

23.932 registros en V2 frente a 10.268 registros en V3). Al tener menos muestras para 

aprender, el modelo cae en overfitting, sobre ajustándose a los datos de entrenamiento, y no 

es capaz de generalizar correctamente. De hecho, nuestro modelo alcanza un 99% de accuracy 

para el conjunto de entrenamiento tras 2 épocas, mientras que se queda en un 76% para el 

conjunto de test. También apreciamos un menor tiempo de ejecución con respecto a V2, pero 

este hecho es normal al tener que procesar menos registros. 

 

Figura 36: Matriz de confusión obtenida modelo SNN y dataset V3 

 

Precision Recall F1-score n_registros

NO_ODIO 73% 81% 77% 1011

ODIO 79% 71% 75% 1043

Accuracy 2054

Tiempo 

76%

3s
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5.2.2. CNN (Convolutional Neural Network) 

A continuación, vamos a realizar las mismas pruebas con la red neuronal convolucional. Como 

hemos comentado, solo mostraremos los resultados obtenidos con los datasets balanceados, 

pues tras realizar el experimento con el dataset completo comprobamos que el resultado es 

exactamente el mismo que con la SNN (solo predice la clase dominante debido al pronunciado 

desbalanceo de clases). 

 

Con el fin de garantizar que los resultados obtenidos por la red neuronal sean lo más elevados 

posibles, se han realizado una serie de pruebas en las que se ha comprobado el rendimiento 

del modelo en función del valor de determinados parámetros que mostramos en la Tabla 6. 

 

Tabla 6: Parámetros seleccionados para CNN 

 

 

Nuestra red neuronal convolucional contendrá una capa de embedding seguida de una capa 

convolucional con función de activación RELU y 1 capa max_pooling para reducir el tamaño 

de las características, cuya salida irá conectada a una capa densa de 1 neurona con función de 

activación sigmoid (Figura 37). Para compilar nuestro modelo, usaremos el Adam Optimizer y 

para nuestra función de pérdida usaremos binary_crossentropy. 

 

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Tamaño Filtro 3, 4, 5 3

Optimizador Adam, SGD Adam

Learning rate 1e−2,  1e−3 1e−3
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Figura 37: Resumen del modelo CNN 

 

A continuación, mostramos los resultados obtenidos para cada una de las versiones del 

dataset balanceado (V1, V2 y V3).  

 

 

▪ CNN y V1 (Muestras Aleatorias)  

Comenzamos con los resultados obtenidos por el modelo CNN con el dataset V1. En la Tabla 

7 podemos observar que este modelo alcanza un 87% de accuracy, superando ligeramente al 

modelo SNN, que obtuvo un 86% con este mismo dataset. 

 

Tabla 7: Resultados en test para CNN con dataset V1 

 

 

Precision Recall F1-score n_registros

NO_ODIO 88% 86% 87% 2488

ODIO 86% 88% 87% 2422

Accuracy 4910

Tiempo 

87%

18s
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En la Figura 38 mostramos la matriz de confusión obtenida para CNN y V1. Comprobamos que 

este modelo es capaz de predecir correctamente 2.134 instancias para la etiqueta de 

NO_ODIO y 2.122 instancias para la etiqueta ODIO. 

 

Figura 38: Matriz de confusión obtenida modelo CNN y dataset V1 

 

▪ CNN y V2 (Longitud homogénea) 

A continuación, mostramos los resultados para CNN y V2 (Tabla 8), donde alcanzamos un 

accuracy del 85%, superando ligeramente los resultados obtenidos por SNN con este mismo 

dataset (83%). 

 

Tabla 8: Resultados en test para CNN con dataset V2 

 

 

Precision Recall F1-score n_registros

NO_ODIO 85% 84% 85% 2403

ODIO 84% 85% 85% 2384

Accuracy 4787

Tiempo 

85%

13s
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A continuación, mostramos la matriz de confusión obtenida para CNN y V2 (Figura 39). 

Comprobamos que este modelo es capaz de predecir correctamente 2.026 instancias para la 

etiqueta de NO_ODIO y 2.031 instancias para la etiqueta ODIO. 

 

 

Figura 39: Matriz de confusión obtenida modelo CNN y dataset V2 

 

▪ CNN y V3 (Medio “El Mundo”) 

Finalmente, mostramos los resultados obtenidos por el modelo CNN con el dataset V3: 

 

Tabla 9: Resultados en test para CNN con dataset V3 

 

 

Precision Recall F1-score n_registros

NO_ODIO 79% 87% 83% 1011

ODIO 86% 78% 82% 1043

Accuracy 2054

Tiempo 5s

83%
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En la Figura 40 mostramos la matriz de confusión obtenida para CNN y V3, obteniendo 884 

instancias etiquetadas correctamente para la etiqueta de NO_ODIO y 813 para la etiqueta 

ODIO. 

 

Figura 40: Matriz de confusión obtenida modelo CNN y dataset V3 

 

Como podemos observar, los resultados de CNN son relativamente buenos para todos los 

datasets, siendo la versión V1 la que alcanza los mejores registros (87% tanto para la métrica 

accuracy como para F1-score. Por lo tanto, para CNN la reducción de la longitud de los textos 

no ha supuesto ningún beneficio en términos de accuracy, precisión, recall o F1. Sin embargo, 

para V2 sí que hemos mejorado en términos de tiempo de ejecución, teniendo en cuenta que 

ambos datasets cuentan con un número similar de registros. 

 

El rendimiento obtenido con el dataset V3 es el más bajo de todos los datasets balanceados. 

El motivo de este hecho es el mismo que se explicó con modelo SNN. Al tener menos muestras 

para aprender, el modelo cae en overfitting, sobre ajustándose a los datos de entrenamiento, 

y no es capaz de generalizar correctamente. 

 

Como ocurrió en SNN, los mejores resultados para el entrenamiento se han conseguido con 2 

épocas. Hemos comprobado que, más allá de la tercera epoch perdemos accuracy para el 

conjunto de test debido al fenómeno overfitting o sobreajuste del modelo al conjunto de 

entrenamiento. 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

77 

 

5.2.3. LSTM (Short Term Memory) 

A continuación, vamos a realizar las mismas pruebas para la red neuronal LSTM.  

 

En la Tabla 10 mostramos la selección de los mejores parámetros para nuestra red. Como 

podemos observar, en LSTM no tenemos tamaño de filtro como parámetro. Por lo demás, las 

configuraciones más óptimas son idénticas a las de CNN. 

 

Tabla 10: Parámetros seleccionados para LSTM 

 

 

Nuestra red LSTM contendrá inicialmente una capa de embedding, tal y como hemos hecho 

en los casos anteriores. A continuación, creamos una capa LSTM con 64 neuronas conectada 

a una capa densa de 1 neurona con función de activación sigmoid (Figura 41). Para compilar 

nuestro modelo, usaremos el Adam Optimizer y para nuestra función de pérdida usaremos 

binary_crossentropy. 

 

 

Figura 41: Resumen del modelo LSTM 

 

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Optimizador Adam, SGD Adam

Learning rate 1e−2,  1e−3 1e−3
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A continuación, mostramos los resultados obtenidos para cada una de las versiones del 

dataset balanceado (V1, V2 y V3).  

 

▪ LSTM y V1 (Muestras Aleatorias) 

 

Dados los resultados mostrados por la matriz de confusión (Figura 42), es evidente que el 

modelo LSTM no funciona bien para este dataset, pues únicamente predice la clase de ODIO. 

Uno de los posibles motivos de este comportamiento es la longitud máxima de los textos 

(3.044 caracteres) que hace que los mensajes más cortos estén compuestos mayoritariamente 

por valores 0 (tras el proceso de padding), perjudicando el rendimiento de nuestro algoritmo 

basado en la arquitectura RNN.  

 

Tabla 11: Resultados en test para LSTM con dataset V1 

 

 

Los resultados mostrados en la Tabla 11 confirman este mal comportamiento del modelo 

LSTM con V1, donde observamos un 0% en las métricas de precisión, recall y F1-score para la 

clase NO_ODIO. Además, podemos extraer que se ha necesitado un tiempo de ejecución 

aproximadamente 3 veces superior al necesitado para ejecutar la red CNN. 

 

 

 

 

 

Precision Recall F1-score n_registros

NO_ODIO 0% 0% 0% 2488

ODIO 49% 100% 66% 2422

Accuracy 4910

Tiempo 

49%

70s
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Figura 42: Matriz de confusión obtenida modelo LSTM y dataset V1 

 

▪ LSTM y V2 (Longitud homogénea) 

Los resultados obtenidos al entrenar la red LSTM con el dataset V2 son bastante buenos, 

cercanos incluso a los obtenidos por CNN. Esto confirma que la longitud de los textos (o la 

falta de homogeneidad de estos) era el motivo por el cual la red recurrente no estaba 

funcionando correctamente.  

 

Tabla 12: Resultados en test para LSTM con dataset V2 

 

 

Otro dato interesante que se puede extraer de la Tabla 12 es que LSTM requiere 

aproximadamente el doble de tiempo de ejecución que CNN. 

Precision Recall F1-score n_registros

NO_ODIO 83% 86% 84% 2403

ODIO 85% 82% 83% 2384

Accuracy 4787

Tiempo 

84%

29s



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

80 

A continuación, mostramos la matriz de confusión obtenida para el modelo LSTM con el 

dataset V2. 

 

Figura 43: Matriz de confusión obtenida modelo LSTM y dataset V2 

 

▪ LSTM y V3 (Medio “El Mundo”) 

Al igual que ocurría con los modelos anteriores, los resultados obtenidos para el dataset V3 

son ligeramente inferiores a los obtenidos con el dataset V2 (80% de accuracy frente a los 84% 

obtenidos con V2).  

 

Tabla 13: Resultados en test para LSTM con dataset V3 

 

 

El motivo que podemos dar es el mismo que el comentado para los casos anteriores. Al 

disponer de menor cantidad de datos para el entrenamiento, el modelo se ve afectado por 

el fenómeno de overfitting o sobreajuste, impidiéndole generalizar correctamente. 

Precision Recall F1-score n_registros

NO_ODIO 80% 78% 79% 1011

ODIO 79% 81% 80% 1043

Accuracy 2054

Tiempo 13s

80%
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En la Figura 44 mostramos la matriz de confusión obtenida para el modelo LSTM con el 

dataset V3. 

 

Figura 44: Matriz de confusión obtenida modelo LSTM y dataset balanceado V3 

 

5.2.4. BETO 

A continuación, explicaremos el proceso de entrenamiento del modelo BETO y mostraremos 

los resultados en conjunto de test. Para garantizar que los resultados obtenidos por este 

modelo de transfer learning sean los mejores posibles, se han realizado una serie de pruebas 

en las que se ha evaluado el rendimiento del modelo en función del valor que toman distintos 

parámetros, del mismo modo que se hace en el trabajo de Benítez-Andrades et al. (2022). 

Podemos ver los valores finales seleccionados para cada uno en la Tabla 14. 

 

Tabla 14: Parámetros seleccionados para BETO 

 

 

Parámetro Opciones probadas Opción seleccionada

Tipo de Modelo cased, uncased cased

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

Optimizador Adam, SGD Adam

Learning rate 2e−5, 3e−5, 4e−5 2e−5
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Una vez que nuestros datos de entrada están formateados correctamente y hemos obtenido 

los vectores de input_ids y attention_mask descritos en la sección 5.1.5.2 Tokenización en 

BERT, ya podemos prepararnos para adaptar el modelo BETO pre-entrenado para nuestra 

tarea de clasificación.   

 

En primer lugar, crearemos un iterador para nuestro conjunto de datos utilizando la clase 

DataLoader de torch.utils.data. El objeto DataLoader necesita saber nuestro tamaño de 

nuestro batch para el entrenamiento. En nuestro caso, indicamos un batch_size de 50. 

A continuación, creamos los DataLoaders para nuestros conjuntos de entrenamiento y 

validación (Figura 45) 

 

Figura 45: Creación Dataloader para conjunto de entrenamiento y validación 

 

Tanto train_dataloader como validation_dataloader son tuplas que contienen los siguientes 

elementos que son necesarios para entrenar nuestro modelo:  

- input_ids (tensor de tamaño batch_size x max_sequence_length),  

- attention_mask (tensor de tamaño batch_size x max_sequence_length)  

- labels (tensor de tamaño batch_size x n_labels) 

 

La implementación de Hugging Face pytorch incluye un conjunto de interfaces diseñadas para 

diversas tareas de PLN26. Nosotros utilizaremos el modelo BertForSequenceClassification 

(Figura 46). Se trata de la arquitectura BERT con una capa lineal añadida al final que 

 

26 https://huggingface.co/transformers/v2.2.0/model_doc/bert.html 
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utilizaremos como clasificador de nuestros textos. A medida que alimentamos los datos de 

entrada, todo el modelo BERT pre-entrenado y la capa de clasificación adicional no entrenada 

se entrenan para nuestra tarea específica. 

 

 

Figura 46: Carga del modelo BETO (cased)  

 

Una vez que tenemos nuestro modelo cargado, establecemos los valores de los 

hiperparámetros: Optimizador, Learning Rate y Epochs indicados en la Tabla 14.  Finalmente, 

para llevar a cabo el entrenamiento del modelo nos hemos basado en el código del script 

run_glue.py27 proporcionado por Hugging Face.  

 

A continuación, mostramos los resultados obtenidos para cada una de las versiones del 

dataset balanceado (V1, V2 y V3).  

 

▪ Muestras Aleatorias (V1) 

Comenzamos mostrando los resultados obtenidos por el modelo BETO con el dataset V1. En 

la Tabla 15 observamos como BETO es capaz de alcanzar un 89% de accuracy, superando los 

resultados obtenidos por los modelos anteriores de aprendizaje profundo, donde los 

resultados fueron de 86% (SNN), 87% (CNN) y 49% (LSTM). Como parte negativa, destacamos 

un tiempo de entrenamiento de 392 segundos, superando notablemente los tiempos 

requeridos por los modelos anteriores (13s, 18s y 70s respectivamente). 

 

27 
https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/example
s/run_glue.py#L128 
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Tabla 15: Resultados en test para BETO con dataset V1 

 

 

En la Figura 47 mostramos la matriz de confusión obtenida para BETO y V1. Comprobamos 

que este modelo de transfer learning es capaz de predecir correctamente 2.112 instancias 

para la etiqueta de NO_ODIO y 2.238 instancias para la etiqueta ODIO. 

 

 

Figura 47: Matriz de confusión obtenida modelo BETO y dataset balanceado V1 

 

 

 

 

Precision Recall F1-score n_registros

NO_ODIO 92% 85% 88% 2483

ODIO 86% 92% 89% 2427

Accuracy 4910

Tiempo 

89%

392s
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▪ Longitud homogénea (V2) 

A continuación, mostramos los resultados obtenidos por el modelo BETO y el dataset V2 (Tabla 

16), donde alcanzamos un accuracy del 87%.  

 

Tabla 16: Resultados en test para BETO con dataset V2 

 

 

En la Figura 48 mostramos la matriz de confusión obtenida para BETO y V2. En este caso, BETO 

es capaz de predecir correctamente 1.989 instancias para la etiqueta de NO_ODIO y 2.170 

instancias para la etiqueta ODIO. 

 

 

Figura 48: Matriz de confusión obtenida modelo BETO y dataset balanceado V2 

 

 

Precision Recall F1-score n_registros

NO_ODIO 89% 84% 86% 2360

ODIO 85% 89% 87% 2427

Accuracy 478787%
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▪ Medio “El Mundo” (V3) 

En la Tabla 17 podemos observar que el dataset V3 es el que ofrece los peores resultados, en 

este caso un 84% de accuracy. Tal y como sucedió con el resto de los modelos utilizados en 

esta comparativa, la reducción del número de registros de entrenamiento ha penalizado la 

capacidad de generalización de BETO. 

 

Tabla 17: Resultados en test para BETO con dataset V3 

 

 

Finalizamos mostrando la matriz de confusión correspondiente a BETO y el dataset V3. En este 

caso, nuestro modelo ha sido capaz de etiquetar correctamente 856 instancias de la clase 

NO_ODIO y 870 de la clase ODIO. 

 

 

Figura 49: Matriz de confusión obtenida modelo BETO y dataset balanceado V3 

Precision Recall F1-score n_registros

NO_ODIO 87% 81% 84% 1056

ODIO 81% 87% 84% 998

Accuracy 205484%
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6. Discusión y análisis de resultados 

En primer lugar, debemos comentar que el dataset original presenta un desbalanceo de clases 

tan acuciado que resulta inservible, pues todos los modelos entrenados con este dataset 

terminan prediciendo siempre la clase dominante, consiguiendo un 98% de accuracy, pues 

devolviendo siempre NO_ODIO conseguimos acertar un 98% de las ocasiones. Sin embargo, 

esto implica que nunca predice la etiqueta ODIO, y esto se traduce en un recall del 0% para 

esta clase. Por lo tanto, estos modelos entrenados con el dataset completo no son útiles para 

resolver nuestro problema. 

 

Si nos centramos en las pruebas realizadas con los tres datasets balanceados (V1, V2 y V3), 

observamos que los mejores resultados en términos de accuracy y F1 los encontramos con 

BETO (cased) entrenado con el dataset V1 (selección aleatoria), seguido por CNN entrenado 

también con V1 y empatado con BETO entrenado con V2. En la Tabla 18 hemos resaltado los 

los porcentajes más altos por cada dataset. En este punto, habría que resaltar que CNN 

requiere mucho menos tiempo que BETO para completar su entrenamiento, 18 segundos 

frente a 392 segundos respectivamente para el dataset V1. 

 

Tabla 18: Comparativa de resultados en test 

 

 

Estos resultados nos podrían llevar a pensar que un dataset balanceado de selección aleatoria 

(V1) es la mejor opción para entrenar nuestros modelos de deep learning y transfer learning. 

Sin embargo, este dataset entraña una serie de desventajas: por ejemplo, el modelo LSTM no 

SNN CNN LSTM BETO (cased)

V1 86% 87% 49% 89%

V2 83% 85% 84% 87%
V3 76% 83% 80% 84%

V1 86% 87% 0% 88%
V2 83% 85% 84% 86%
V3 77% 83% 79% 84%

V1 85% 87% 66% 89%
V2 82% 85% 83% 87%

V3 75% 82% 80% 84%

Accuracy

F1-score (NO_ODIO)

F1-score (ODIO)



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

88 

funciona correctamente con este dataset debido a la longitud máxima de los textos (3.044 

palabras) que hace que los mensajes más cortos estén compuestos mayoritariamente por 

valores 0 (padding), perjudicando el rendimiento de nuestro algoritmo basado en la 

arquitectura de red recurrente. Se ha comprobado que, con textos de longitud homogénea, 

este modelo alcanza una exactitud cercana a la obtenida por CNN (aunque con tiempos de 

entrenamiento entre 2 y 3 tres veces superiores en LSTM).  

 

Atendiendo a los tiempos de ejecución de cada dataset, los tiempos con V1 son 

aproximadamente un 50% mayores con respecto a los tiempos de ejecución con V2, tanto 

para la red SSN como para CNN. Para el caso de LSTM, esta diferencia de tiempos se 

acrecienta, siendo el tiempo de ejecución en V1 más del doble que en V2 (70 segundos frente 

a 29 segundos). Este hecho hace que debamos cuestionarnos si la mejora en las métricas 

obtenidas en V1 compensan el tiempo y esfuerzo invertido. Con un dataset de entrenamiento 

como el nuestro (alrededor de 20K registros) esta decisión no es crítica, pues ambos tiempos 

de ejecución son asumibles. Sin embargo, si se desea trabajar con un dataset de grandes 

dimensiones, este hecho debe ser tenido en cuenta. 

 

La Tabla 19 muestra los resultados del estado del arte para la detección de discurso de odio 

en español obtenidos a partir de los conjuntos de datos de HaterNet y HatEval, además de un 

dataset ad-hoc creado en el trabajo de Amores et al. (2021). A continuación, vamos a 

comparar estos resultados con nuestra mejor propuesta en términos de macro-F1, el modelo 

BETO cased entrenado con el dataset balanceado V1. 

 

Para el conjunto de datos HaterNet, el modelo de Plaza-del-Arco et al. (2021) presenta un 

modelo BETO (cased) que supera a nuestra propuesta en términos de F1 para la etiqueta 

NO_ODIO, alcanzando un 89% frente a nuestro 88%. Sin embargo, en términos de macro-F1, 

nuestro modelo BETO mejora los resultados de Plaza-del-Arco et al. (2021) en un 14%. El 

motivo es que nuestro modelo es capaz de predecir mejor la etiqueta de odio, seguramente a 

consecuencia de haber sido entrenado con un dataset mejor balanceado y con un mayor 

número de muestras de textos de odio. En la Tabla 20 mostramos la distribución de cada 

dataset. 
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En el estudio de Amores et al. (2021) se generaron un total de ocho modelos predictivos: seis 

usando algoritmos de aprendizaje superficial, uno generado a partir de los votos de esos 

modelos anteriores y otro usando aprendizaje profundo. Los mejores resultados los obtuvo 

este último modelo, basado en una red neuronal recurrente GRU, alcanzando un macro-F1 

del 77%. Nuestra propuesta mejora este resultado en un 16%.  

 

En cuanto al conjunto de datos HatEval, Plaza-del-Arco et al. (2021) y Pérez et al. (2021) 

superaron el mejor resultado obtenido en la competición de SemEval-2019 Task 5, probando 

un modelo BETO (cased) y Robertuito (uncased) respectivamente. El modelo Robertuito es el 

que alcanza mejor rendimiento en términos de Macro-F1, con un 80%. Nuestro modelo BETO 

cased entrenado sobre el dataset V1 supera los resultados de Pérez et al. (2021) con una 

mejora del 11%.  

 

Tabla 19: Resultados del estado del arte para la detección de discurso de odio en español 

 

 

Tabla 20: Distribución de los datasets en español 

 

 

Comparando estos resultados destacamos la importancia de entrenar los modelos sobre un 

dataset balanceado con el mayor número posible de registros, con el fin de obtener un modelo 

que reajuste sus parámetros en base a la información del dataset sin caer en el fenómeno de 

overfitting, de modo que a posteriori sea capaz de generalizar con la llegada de nuevos datos. 

 

Modelo Dataset F1  (NO_ODIO) F1  (ODIO) Macro-F1

SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%

RNN-GRU (Amores et al., 2021)  Ad-hoc - - 77%

BETOcased (Plaza-del-Arco et al., 2021) HaterNet 89% 66% 78%

BETOcased (Plaza-del-Arco et al., 2021) HatEval 80% 76% 78%

Robertuitouncased  (Pérez et al., 2021) HatEval - - 80%

BETOcased (Nuestra propuesta) Hatemedia (V1) 88% 89% 89%

Dataset n_registros NO_ODIO ODIO

HatEval 6.600 3.861 (59%) 2.739 (41%)

HaterNet 6.000 4.433 (74%) 1.567 (26%)

 Ad-hoc (Amores et al. 2021) 10.213 3879 (38%) 6334 (62%)

Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)
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7. Conclusiones y trabajo futuro 

7.1. Conclusiones 

Con este trabajo pretendíamos comparar el rendimiento de diferentes algoritmos de 

aprendizaje profundo y transfer learning sobre el dataset creado por el proyecto HATEMEDIA, 

con el fin de determinar cuál clasifica mejor y concluir si la detección automática de 

expresiones de odio era viable dado nuestro conjunto de datos.   

 

Para conseguirlo, el primer objetivo planteado que consistía en investigar las técnicas y 

métodos de aprendizaje automático profundo y transfer learning disponibles que abordan el 

problema de la detección del discurso del odio, se ha desarrollado en el apartado 2.3, 

abordando no solo los diferentes modelos, sino también las técnicas de preprocesado y 

extracción de características más utilizadas en el estado del arte. 

 

En este punto enlazamos con el segundo objetivo, el análisis exploratorio del dataset de 

HATEMEDIA, desarrollado con detalle en el apartado 5.1. Llevar a cabo este análisis 

exploratorio reveló que el dataset original sufría de un fuerte desbalanceo de clases que lo 

hacía inservible. Esto nos llevó al siguiente objetivo: crear diferentes versiones balanceadas 

de nuestro dataset original para solventar este problema y poder realizar una posterior 

comparativa.  

 

Los objetivos relativos al entrenamiento y evaluación de los modelos para medir sus 

rendimientos con los diferentes datasets se han desarrollado en el apartado 5.2, donde hemos 

realizado un análisis de la parametrización a utilizar, construyendo modelos precisos 

(especialmente BETO y CNN, con 89% y 87% de accuracy respectivamente) en la detección de 

odio. Aquí, una dificultad que encontramos fue la falta de homogeneidad de los textos (textos 

compuestos desde 1 palabra hasta 3.044). Este hecho produjo que el modelo LSTM no 

funcionara correctamente, si bien este problema fue solventado al construir el dataset de 

longitud homogénea (V2). 
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Así, los resultados obtenidos son muy satisfactorios y los modelos generados a partir de los 

datasets balanceados tienen unas prestaciones más que aceptables, concluyendo que la 

detección automática de expresiones de odio es viable para estos datasets balanceados, 

siendo BETO (versión cased) el modelo que mejor resultados ha ofrecido en términos de 

accuracy y F1-score, seguido de cerca por el modelo CNN, este último además con tiempos de 

entrenamiento hasta 22 veces más eficientes que BETO.  

 

Dejando a un lado el modelo SNN (que se ha utilizado como línea base), LSTM es el modelo 

que peor rendimiento ha ofrecido. Tras analizar los resultados obtenidos con del dataset V1, 

no recomendaríamos LSTM para análisis de textos extensos, al menos cuando la longitud de 

los textos del dataset no sea homogénea. Por el contrario, BETO y CNN han respondido 

satisfactoriamente a todas las versiones de los datasets balanceados, por lo que los convierte 

en los modelos más versátiles. 

 

7.2. Líneas de trabajo futuro 

Nuestro dataset original contenía más de 570.000 registros, pero resultó inservible debido al 

problema del desbalanceo de clases. Como líneas futuras planteamos realizar las mismas 

pruebas presentadas en este trabajo, pero con un dataset balanceado con mayor cantidad de 

registros. Nuestros datasets balanceados han permitido generar un conjunto de 

entrenamiento del orden de 20K registros, lo que ha dificultado la capacidad de los modelos 

para generalizar, cayendo en el problema de overfitting o sobreajuste tras las primeras épocas 

de entrenamiento.   

 

Otra alternativa interesante a explorar sería utilizar embeddings pre-entrenados como 

Word2vec, Glove o fasttext, en lugar de la capa de embedding de keras actual para comprobar 

si utilizar estos algoritmos suponen una mejora sustancial en términos de accuracy y F1-score. 

 

Por otro lado, hemos identificado textos en nuestro dataset original que, por sí solos, no se 

podrían considerar textos de odio, pero que han sido etiquetados en función de su contexto 

(por ejemplo, conversaciones cruzadas entre usuarios de internet). Mostramos tres ejemplos 

de textos etiquetados como ODIO que, como textos aislados, no deberían serlo: 
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- Ejemplo 1: “¿la de falconetti acaso?” 

- Ejemplo 2: “cela.... camilo? y dices que no daba vergüenza ajena?” 

- Ejemplo 3: ”el muerto, culpable, pues.” 

Consideramos que estos ejemplos etiquetados como ODIO no hacen más que introducir ruido 

al modelo, por lo que para mejoras futuras a la hora de crear el dataset, habría que incluir 

únicamente textos completos de los que se pudiera inferir odio por sí mismos de manera 

aislada, y que no dependieran del contexto en el que se encuentren.  



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

93 

Bibliografía 

Alkomah, F., & Ma, X. (2022). A Literature Review of Textual Hate Speech Detection Methods 

and Datasets. En Information (Switzerland) (Vol. 13, Issue 6). MDPI. 

https://doi.org/10.3390/info13060273 

Amores, J. J., Blanco-Herrero, D., Sánchez-Holgado, P., & Frías-Vázquez, M. (2021). Detecting 

ideological hatred on Twitter. Development and evaluation of a political ideology hate 

speech detector in tweets in Spanish. Cuadernos.Info, 49, 98-124. 

https://doi.org/10.7764/cdi.49.27817 

Arango, A., Pérez, J., & Poblete, B. (2019). Hate Speech Detection is Not as Easy as You May 

Think: A Closer Look at Model Validation. Proceedings of the 42nd International ACM 

SIGIR Conference on Research and Development in Information Retrieval, 45-54. 

https://doi.org/10.1145/3331184.3331262 

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep Learning for Hate Speech 

Detection in Tweets. Proceedings of the 26th International Conference on World Wide 

Web Companion - WWW 17 Companion. https://doi.org/10.1145/3041021.3054223 

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo, F. M., Rosso, P., & 

Sanguinetti, M. (2019). SemEval-2019 Task 5: Multilingual Detection of Hate Speech 

Against Immigrants and Women in Twitter. Proceedings of the 13th International 

Workshop on Semantic Evaluation, 54-63. https://doi.org/10.18653/v1/S19-2007 

Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á., Aveleira-Mata, J., Alija-Pérez, J. 

M., & García-Ordás, M. T. (2022). Detecting racism and xenophobia using deep learning 

models on Twitter data: CNN, LSTM and BERT. PeerJ Computer Science, 8. 

https://doi.org/10.7717/PEERJ-CS.906 

Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., & Shrivastava, M. (2018). A Dataset of Hindi-English 

Code-Mixed Social Media Text for Hate Speech Detection. 

https://github.com/deepanshu1995/HateSpeech-Hindi- 

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with 

Subword Information. Transactions of the Association for Computational Linguistics, 5, 

135-146. https://doi.org/10.1162/tacl_a_00051 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

94 

Burnap, P., & Williams, M. (2015). Cyber Hate Speech on Twitter: An Application of Machine 

Classification and Statistical Modeling for Policy and Decision Making: Machine 

Classification of Cyber Hate Speech. Policy & Internet, 7. https://doi.org/10.1002/poi3.85 

Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., & Pérez, J. (2020). SPANISH PRE-

TRAINED BERT MODEL AND EVALUATION DATA. 

https://github.com/josecannete/spanish-corpora 

Chawla, N. v, Japkowicz, N., & Kotcz, A. (2004). Editorial: Special Issue on Learning from 

Imbalanced Data Sets. SIGKDD Explor. Newsl., 6(1), 1-6. 

https://doi.org/10.1145/1007730.1007733 

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent 

Neural Networks on Sequence Modeling. http://arxiv.org/abs/1412.3555 

Dash, S., Grover, R., Shekhawat, G., Kaur, S., Mishra, D., & Pal, J. (2021). Insights Into 

Incitement: A Computational Perspective on Dangerous Speech on Twitter in India. 

http://arxiv.org/abs/2111.03906 

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated Hate Speech Detection 

and the Problem of Offensive Language. http://arxiv.org/abs/1703.04009 

de la Rosa, J., Ponferrada, E. G., Villegas, P., Salas, P. G. de P., Romero, M., & Grandury, M. 

(2022). BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity 

Sampling. http://arxiv.org/abs/2207.06814 

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep 

Bidirectional Transformers for Language Understanding. Proceedings of the 2019 

Conference of the North American Chapter of the Association for Computational 

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-

4186. https://doi.org/10.18653/v1/N19-1423 

Dinakar, K., Reichart, R., & Lieberman, H. (2011, octubre). Modeling the Detection of Textual 

Cyberbullying. 

Fersini, E., Rosso, P., & Anzovino, M. (2018). Overview of the Task on Automatic Misogyny 

Identification at IberEval 2018. https://figure-eight.com/ 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

95 

Filippo, M., Fulper, R. S., Ferrara, E. la, Ahn, Y., Flammini, A., Lewis, B., & Rowe, K. K. (2015). 

Misogynistic Language on Twitter and Sexual Violence. 

Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (Special 

Volume of the Philological Society), 1952-59, 1-32. 

Frenda, S., Montes, M., Ghanem, B., & Montes-Y-Gómez, M. (2018). Exploration of Misogyny 

in Spanish and English tweets Text Mining in Semi-structured data sets View project Hate 

Speech Detection View project Exploration of Misogyny in Spanish and English tweets. 

https://www.researchgate.net/publication/326838153 

Gambäck, B., & Sikdar, U. K. (2017). Using Convolutional Neural Networks to Classify Hate-

Speech. Proceedings of the First Workshop on Abusive Language Online, 85-90. 

https://doi.org/10.18653/v1/W17-3013 

García-Díaz, J. A., Cánovas-García, M., Colomo-Palacios, R., & Valencia-García, R. (2021). 

Detecting misogyny in Spanish tweets. An approach based on linguistics features and 

word embeddings. Future Generation Computer Systems, 114, 506-518. 

https://doi.org/https://doi.org/10.1016/j.future.2020.08.032 

García-Díaz, J. A., Jiménez-Zafra, S. M., García-Cumbreras, M. A., & Valencia-García, R. (2022). 

Evaluating feature combination strategies for hate-speech detection in Spanish using 

linguistic features and transformers. Complex and Intelligent Systems. 

https://doi.org/10.1007/s40747-022-00693-x 

Gröndahl, T., Pajola, L., Juuti, M., Conti, M., & Asokan, N. (2018). All You Need is «Love»: 

Evading Hate-speech Detection. http://arxiv.org/abs/1808.09115 

Kumar, R., Reganti, A. N., Bhatia, A., Maheshwari, T., & Rao, B. (2018). Aggression-annotated 

Corpus of Hindi-English Code-mixed Data. 

Lample, G., & Conneau, A. (2019). Cross-lingual Language Model Pretraining. 

http://arxiv.org/abs/1901.07291 

Lingiardi, V., Carone, N., Semeraro, G., Musto, C., D’Amico, M., & Brena, S. (2020). Mapping 

Twitter hate speech towards social and sexual minorities: a lexicon-based approach to 

semantic content analysis. Behaviour and Information Technology, 39(7), 711-721. 

https://doi.org/10.1080/0144929X.2019.1607903 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

96 

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & 

Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. 

http://arxiv.org/abs/1907.11692 

Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of Literary 

Information. IBM Journal of Research and Development, 1(4), 309-317. 

https://doi.org/10.1147/rd.14.0309 

Mathur, P., Sawhney, R., Ayyar, M., & Ratn Shah, R. (2018). Did you offend me? Classification 

of Offensive Tweets in Hinglish Language. www.github.com/pmathur5k10/ 

Melnyk, L. (2021). Hate speech targets in COVID-19 related comments on Ukrainian news 

websites. Journal of Computer-Assisted Linguistic Research, 5(1), 47-75. 

https://doi.org/10.4995/jclr.2021.15966 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations 

of Words and Phrases and their Compositionality. arXiv. 

https://doi.org/10.48550/ARXIV.1310.4546 

Müller, K., & Schwarz, C. (2021). Fanning the Flames of Hate: Social Media and Hate Crime. 

Journal of the European Economic Association, 19(4), 2131-2167. 

https://doi.org/10.1093/jeea/jvaa045 

Nguyen, H.-T., Nguyen, M., & Le. (2017, enero). An Ensemble Method with Sentiment Features 

and Clustering Support. 

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., & Chang, Y. (2016). Abusive language 

detection in online user content. 25th International World Wide Web Conference, WWW 

2016, 145-153. https://doi.org/10.1145/2872427.2883062 

Papcunová, J., Martončik, M., Fedáková, D., Kentoš, M., Bozogáňová, M., Srba, I., Moro, R., 

Pikuliak, M., Šimko, M., & Adamkovič, M. (2021). Hate speech operationalization: a 

preliminary examination of hate speech indicators and their structure. Complex and 

Intelligent Systems. https://doi.org/10.1007/s40747-021-00561-0 

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word 

Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural 

Language Processing (EMNLP), 1532-1543. https://doi.org/10.3115/v1/D14-1162 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

97 

Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F., & Camacho-Collados, M. (2019). 

Detecting and Monitoring Hate Speech in Twitter. Sensors, 19(21). 

https://doi.org/10.3390/s19214654 

Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). RoBERTuito: a pre-trained 

language model for social media text in Spanish. http://arxiv.org/abs/2111.09453 

Pires, T., Schlinger, E., & Garrette, D. (2019). How Multilingual is Multilingual BERT? 

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 

4996-5001. https://doi.org/10.18653/v1/P19-1493 

Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López, L. A., & Martín-Valdivia, M. T. 

(2021). Comparing pre-trained language models for Spanish hate speech detection. 

Expert Systems with Applications, 166. https://doi.org/10.1016/j.eswa.2020.114120 

Ramachandran, P., Zoph, B., & Le, Q. v. (2017). Searching for Activation Functions. 

http://arxiv.org/abs/1710.05941 

Roy, P. K., Tripathy, A. K., Das, T. K., & Gao, X. Z. (2020). A framework for hate speech detection 

using deep convolutional neural network. IEEE Access, 8, 204951-204962. 

https://doi.org/10.1109/ACCESS.2020.3037073 

Sachdeva, J., Chaudhary, K. K., Madaan, H., & Meel, P. (2021). Text Based Hate-Speech 

Analysis. Proceedings - International Conference on Artificial Intelligence and Smart 

Systems, ICAIS 2021, 661-668. https://doi.org/10.1109/ICAIS50930.2021.9396013 

Urdaneta, L. A. (2019, abril). Reducir el número de palabras de un texto: lematización y 

radicalización (stemming) con Python. https://medium.com/qu4nt/reducir-el-

n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-

stemming-con-python-965bfd0c69fa 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, & 

Polosukhin, I. (2017). Attention is All you Need. En I. Guyon, U. von Luxburg, S. Bengio, H. 

Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information 

Processing Systems (Vol. 30). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

98 

Vigna, F. del, Cimino, A., Dell’orletta, F., Petrocchi, M., & Tesconi, M. (2017). Hate me, hate 

me not: Hate speech detection on Facebook. https://curl.haxx.se 

Wang, C. (2018). Interpreting Neural Network Hate Speech Classifiers. 

Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features for 

Hate Speech Detection on Twitter. NAACL. 

  
  



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

99 

 

Anexo. Artículo de investigación 

  



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

Comparativa de modelos de aprendizaje profundo 

para la detección de odio en castellano en medios de 

información social  

Carlos Simón Gallego 

Universidad Internacional de la Rioja, Logroño (España) 

8 de febrero de 2023  

 

 

 

I. INTRODUCCIÓN 

OY en día, el auge de las redes sociales y medios 

informativos online genera una enorme cantidad de 

información y proliferación de contenidos (desinformativos o no) 

que en muchas ocasiones ponen en entredicho la tolerancia, 

civismo y respeto a determinados colectivos.  

Dada esta enorme cantidad de contenidos generados, no es 

factible confiar únicamente en la supervisión humana para 

combatir el discurso de odio en internet.  Sin embargo, nos 

encontramos ante el problema de que no existe una definición 

única para el discurso de odio, lo que complica en gran medida la 

labor de crear datasets etiquetados y algoritmos que detecten el 

odio automáticamente y con precisión en un texto. 

Este estudio pretende contribuir a la detección automática del 

discurso de odio en español. Para ello, hacemos uso del corpus 

etiquetado por el equipo del proyecto Hatemedia1 y comparamos 

varias técnicas de clasificación basadas en modelos de aprendizaje 

profundo. 

En el apartado II se hará un análisis del contexto y el estado del 

arte, donde repasaremos los talleres y eventos más relevantes de 

los últimos años enfocados a tratar el problema de la detección de 

expresiones de odio en textos, así como los datasets y sistemas 

basados en inteligencia artificial más conocidos que se utilizan 

 

1 https://www.hatemedia.es/ 

para intentar abordar este complejo problema. Los objetivos 

generales y específicos son descritos en el apartado III, donde 

también se detallarán los pasos necesarios para la consecución de 

estos. En el apartado IV se describe el procedimiento que se va a 

seguir para llevar a cabo la comparativa. Esto comprende desde la 

descripción de las versiones del dataset que se van a utilizar, hasta 

los modelos seleccionados y las métricas de evaluación utilizadas. 

En el apartado V pasaremos a describir con todo detalle el 

desarrollo del trabajo, mostrando los resultados y mediciones 

obtenidos, para continuar en el apartado VI con una discusión 

sobre la relevancia de los resultados, identificando los datos más 

importantes extraídos de estos resultados. Finalmente, en el 

apartado VII se darán las conclusiones extraídas del trabajo y se 

propondrán líneas futuras de investigación o desarrollo 

relacionado con el mismo 

II. ESTADO DEL ARTE 

El estudio de la detección y clasificación automática del 

discurso de odio mediante procesamiento de lenguaje natural 

(PLN) es un campo relativamente reciente, pero el interés en 

esta área ha aumentado a medida que las redes sociales y otras 

plataformas de internet han crecido en términos de influencia y 

adopción por parte de la gran mayoría de los usuarios [1].   

En la presente sección haremos una revisión del estado del 

arte, donde comenzaremos destacando los principales eventos 

H 
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Con este trabajo tratamos de determinar la viabilidad que existe en la detección automática de expresiones de 

odio en castellano mediante la aplicación de Deep Learning (DL) sobre el dataset del proyecto Hatemedia. Para 

ello realizamos una comparativa de soluciones para determinar qué modelo de DL ofrece mejor rendimiento 
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alternativas de mejora para trabajos futuros.  

PALABRAS 

CLAVE 

Discurso de odio, 

Aprendizaje profundo, 

BETO, Procesamiento 

de lenguaje natural, 

Clasificación de texto 

 



Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

2 

y talleres a nivel mundial enfocados en la detección del discurso 

del odio.  A continuación, listaremos algunos de los dataset más 

utilizados para dichas tareas. Finalmente, analizamos las 

diferentes técnicas de PLN utilizadas para extraer información 

de un texto, así como los modelos de aprendizaje automático 

empleados en el estado del arte, desde los modelos de machine 

learning (ML) clásicos hasta soluciones más modernas basadas 

en aprendizaje profundo y Transformers. 

2.1 Congresos relativos a la detección de odio en textos 

El impacto de las publicaciones nocivas online ha dado lugar 

a un gran número de estudios y eventos enfocados a la 

detección del odio y lenguaje ofensivo. Como ejemplo, se listan 

los siguientes talleres y congresos. 

• SemEval2: Taller internacional sobre el procesamiento 

del lenguaje natural cuya misión es avanzar en el estado 

actual del arte. Cada año, este taller propone una serie 

de tareas compartidas en las que se presentan y 

comparan sistemas de análisis semántico 

computacional diseñados por diferentes equipos 

 

• Workshop on Online Abuse and Harms (WOAH3), que 

en el año 2022 celebró su sexta edición, cuyo objetivo 

es avanzar en la investigación para detectar, clasificar 

y modelar el contenido ofensivo y dañino en internet. 

 

• GermEval Shared Task4 (edición de 2018 y 2019), 

centrado en el procesamiento del lenguaje natural para 

detección de lenguaje ofensivo en el idioma alemán. 

• PolEval5 (edición de 2019, tarea 6), sobre la detección 

automática del ciberacoso en Twitter para el lenguaje 

polaco. 

 

• HASOC6  (2019), sobre identificación de expresiones 

de odio y contenidos ofensivos en las lenguas 

indoeuropeas.  

 

• AMI7  (2018), taller para la identificación automática 

de la misoginia, para el idioma italiano y el inglés. 

 

En relación a los estudios sobre el discurso del odio en 

idioma español, observamos que no encontramos tanta 

variedad como los centrados en el idioma inglés.  De hecho, los 

estudios que existen están relacionados mayoritariamente con 

la participación de IberEval 2018 - Automatic Misogyny 

Identification y la Tarea 5 del taller SemEval 2019 [2]. 

 

• SemEval-2019, Tarea 5 

Esta tarea tuvo como objetivo detectar contenidos de odio en 

los textos de las redes sociales en español, concretamente en las 

publicaciones de Twitter, contra dos objetivos: los inmigrantes 

y las mujeres. Además, la tarea implementaba una perspectiva 

multilingüe en la que se proporcionaron datos de los idiomas 

inglés y español (HatEval), para entrenar y probar los sistemas 

participantes. El conjunto de datos de HatEval estaba 

compuesto por 19.600 tuits, 13.000 en inglés y 6.600 en 

 

2 https://semeval.github.io/ 
3 https://www.workshopononlineabuse.com/  
4 https://germeval.github.io/tasks/ 

español [3]. Esta tarea se articulaba en torno a dos subtareas 

relacionadas: 

- Subtarea A: Consistía en una detección básica de discurso 

de odio, en la que se pedía a los participantes que marcaran 

la presencia de odio en los tweets (clasificación binaria). 

 

- Subtarea B: En esta segunda subtarea se trataba de 

determinar si el objetivo del mensaje era un individuo un 

grupo de personas, y si el contenido del mensaje contenía 

lenguaje agresivo. 

 

• IberEval 2018 (AMI) 

 

Este taller estaba enfocado a la detección de tweets 

misóginos mediante PLN, con un dataset multilingüe, con 

4.138 tuits escritos en español y 3.977 en inglés [4]. Del mismo 

modo que en el caso de SemEval 2019 task 5, IberEval 2018 

estaba organizado en dos subtareas: 

- Subtarea A: Consistía en una tarea de identificación 

binaria de mensajes misóginos. 

 

- Subtarea B: En esta segunda subtarea había que 

determinar cuándo el objetivo del comentario misógino 

era un individuo concreto o un grupo. 

 

2.2 Datasets 

En este apartado listamos algunos de los dataset más 

utilizados en el estado del arte para tareas de detección de 

discurso de odio en inglés. 

• Waseem and Hovy: Este conjunto de datos está 

compuesto por 16.000 tweets anotados como 

"sexistas", "racistas" y "sin odio" [5]. 

 

• Davidson et al.: Compuesto por 24.802 tuits anotados 

en tres clases: discurso de odio, ofensivo (pero no de 

odio), y ni ofensivo ni de odio [6]. 

 

• HatEval: Este conjunto de datos se compone de 19.600 

tweets, 13.000 en inglés y 6.600 en español [3]. 

 

• HS: 4.575 tweets en hindi y en inglés etiquetados como 

discurso de odio (aquellos tuits que inducen al odio) y 

discurso normal (tuits que no inducen ninguna forma de 

odio) [7]. 

 

A continuación, se listan algunos de los datasets más 

importantes en idioma español: 

• HaterNet: Dataset en idioma español construido a partir 

de Twitter, compuesto por 6.000 textos etiquetados, 

con 1.567 tweets anotados como odio y 4.433 anotados 

como no odio [8]. 

 

5 http://2019.poleval.pl/ 
6 https://hasocfire.github.io/hasoc/2019/ 
7 https://amievalita2018.wordpress.com/ 

https://semeval.github.io/
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• HatEval 2019: Dataset construido a partir de Twitter 

compuesto por 6.600 textos en español, con 2.739 

anotados como odio y 3.861 etiquetados como no odio 

[3]. 

 

• IberEval 2018 – AMI: Dataset en español compuesto 

por 4.138 tweets, 2.064 anotados como mensajes 

misóginos y 2.074 como no misóginos [4]. 

 

2.3 Técnicas y modelos 

El procedimiento que se suele seguir para realizar el análisis 

de un texto, ya sea con el objetivo de detectar odio o para 

cualquier otro, consta de tres pasos: 1. Preprocesado de texto, 

2. Extracción de características, 3. Clasificación mediante 

modelos IA. 

2.3.1. Técnicas de preprocesado 

Como es natural, el texto que nos llega en bruto puede 

presentar un formato que diste mucho de lo que podríamos 

considerar el formato correcto, compuesto por palabras 

incompletas, mal escritas o en otros idiomas, conteniendo 

espacios innecesarios, etc. Además, en nuestro texto origen 

existirán, casi con total seguridad, infinidad de palabras 

innecesarias que no nos aporten ningún valor. 

Así pues, en primer lugar y antes de extraer características 

del texto y construir modelos a partir de esta información, 

debemos dedicar tiempo a las tareas de limpieza, formateo y 

preparación de los datos. Estas tareas están presentes en el día 

a día de todos los proyectos de IA en general, y de 

procesamiento de lenguaje natural en particular [9].  

Algunas de las técnicas de preprocesado más habituales son 

las siguientes:  

• Tokenización, que consiste en segmentar el texto en 

unidades más pequeñas (tokens o n-gramas) que 

podamos manejar como referencia para extraer 

características que aporten valor a nuestro sistema. 

Además, eliminaremos todos aquellos tokens que no 

nos aporten valor, de modo que reduzcamos el número 

de elementos a tratar.  

 

• Normalización: Será una tarea importante si queremos 

que nuestras palabras sigan un formato estándar. Del 

paso anterior, nuestro tokenizador ha podido reconocer 

la misma palabra, pero escrita en mayúsculas y en 

minúsculas, por ejemplo. Si queremos tener solo una 

versión, será imprescindible normalizar nuestro texto. 

 

• POS (part-of-speech) tagging: El POS es la técnica 

sintáctica para etiquetar a cada una de las palabras de 

un texto su categoría gramatical. 

 

• Lematización: La técnica de lematización lo que 

consigue es reducir todas las palabras derivadas a su 

lema, que es la forma en la que encuentras la palabra en 

el diccionario. 

 

• NER (Named Entity Recognition): La detección de 

entidades permite identificar automáticamente 
determinadas palabras de un texto y clasificarlas en 

diferentes categorías. 

 

2.3.2. Técnicas de extracción de características 

Las técnicas más simples de extracción de características, 

(también conocidas como técnicas superficiales), son la bolsa 

de palabras (BoW, de sus siglas en inglés) y la técnica TF-IDF( 

del inglés Term frequency – Inverse document frequency) [10]. 

BoW es una representación vectorial compuesta por un 

diccionario (lexicones) con las palabras de los textos con los 

que se quieren entrenar los modelos. En estos lexicones se 

representa la relevancia de cada elemento mediante métricas 

como, por ejemplo, si la palabra aparece en el texto (booleano), 

o la cantidad de veces que una palabra se repite en el texto.  TF-

IDF es una técnica cuyo objetivo es encontrar el documento 

más relevante para cierto término dentro de una colección de 

documentos. Para ello, mide con qué frecuencia aparece un 

término o frase dentro de un documento determinado, y lo 

compara con el número de documentos que mencionan ese 

mismo término dentro de una colección entera de documentos.  

Una técnica más compleja son los Word Embeddings [11] 

[12], utilizadas para representar las palabras de nuestro lexicón 

mediante vectores multidimensionales, capaces de capturar 

incluso relaciones semánticas entre palabras. Esta técnica está 

presente en muchos de los estudios del estado del arte para 

detección de odio, como [13] y [14]. Las representaciones de 

Word Embeddings pueden generarse a partir de 

representaciones pre-entrenadas como Word2vec [12], Glove 

[15]) y fastText [16]. 

2.3.3. Machine Learning clásico 

Entre las diversas técnicas convencionales de aprendizaje 

automático utilizadas en la tarea de la detección del discurso 

del odio en Internet, destacan las máquinas de vectores soporte 

(SVM), la regresión logística y los Random Forest [17] [6] 

[18]; [5]). 

[19] muestra que estos tres modelos son los que 

proporcionan mejor rendimiento dentro del ML convencional 

en términos de Accuracy, Precision, Recall y F1. Por otro lado, 

en este estudio se concluye que el modelo K-Vecinos Más 

Cercanos (KNN, de sus siglas en inglés), obtuvo el peor 

rendimiento para la tarea de clasificación de textos. 

El taller SemEval 2019, tarea 5 (que consistía en detectar 

discurso de odio en Twitter contra mujeres e inmigrantes), 

muestra que el modelo SVM es especialmente relevante, ya que 

los sistemas creados mediante este modelo obtuvieron los 

mejores resultados de la competición [3]. 

2.3.3.1. Deep Learning 

Dentro de las técnicas de DL más utilizadas en la 

clasificación de textos, destacan las redes neuronales 

convolucionales (CNN) y las redes neuronales recurrentes 

(RNN) [2].  

[20] y [21]  fueron los primeros en utilizar redes neuronales 

recurrentes y redes neuronales de convolución, 

respectivamente, para la detección del discurso del odio en los 

tuits. 

CNN 

Las CNN son un tipo de red neuronal que procesa capas de 

forma jerárquica, lo que les permite diferenciar distintas 

características en las entradas recibidas.  La capa más 

importante, y la que da nombre a la red, es la capa 

convolucional. Esta capa funciona a partir de unos filtros que 

van desplazándose por la imagen o el texto, dependiendo el 

problema a resolver, obteniendo las salidas de la capa mediante 

un producto escalar. 
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Aunque se diseñaron inicialmente para la visión por 

computador, han sido eficaces también para tareas de PLN y de 

detección de odio [22]. En la Figura 1 podemos observar la 

arquitectura de una red neuronal convolucional aplicada al 

problema de análisis de sentimiento de textos. 

 

Figura. 1. Arquitectura de una CNN extraída de [38] 

Cuando utilizamos una red CNN aplicada a PLN, lo que 

procesamos son textos en lugar de imágenes. Estos textos 

tendrán una representación matricial, donde las filas 

representan la las palabras codificadas mediante word 

embeddings con una dimensión d (espacio vectorial donde 

hemos embebido los textos). Por tanto, cada filtro de 

convolución tendrá una anchura igual a la longitud del 

embedding donde están incrustados los textos a procesar, en 

nuestro ejemplo d=4, de modo que cada filtro irá recorriendo 

las palabras en una sola dirección, de arriba abajo, en lugar de 

izquierda a derecha y de arriba abajo como sucede con las 

imágenes.  

En nuestro ejemplo observamos que tenemos 4 filtros, dos 

de altura h=2 y otros dos de altura h=3. Esto significa que 

queremos detectar características locales en grupos formados 

por dos y tres palabras, capturando diferentes niveles de 

correlación entre palabras. Así pues, cada filtro se encargará de 

capturar cierta característica de los datos. Como estamos 

aplicando capas de convolución que son unidimensionales 

(recorremos la matriz de entrada de arriba a abajo), en lugar de 

las bidimensionales utilizadas en imágenes, la salida que 

obtenemos tras aplicar nuestro filtro es un vector en lugar de 

una matriz. Estos vectores serán nuestros mapas de 

características.  

En la fase de max-Pooling solo nos quedamos con un 

elemento, el resultado más grande de cada uno de los mapas de 

características, para reducir la dimensionalidad.  

Finalmente, concatenamos los valores máximos obtenidos 

en la fase de max-Pooling para conformar la entrada de la 

siguiente capa, una fully connected layer. En nuestro ejemplo, 

tenemos dos capas densas como últimas capas. La última capa 

estará compuesta por una sola neurona para clasificación 

binaria. 

RNN y LSTM 

Las redes neuronales recurrentes (RNN) son una clase de 

redes especializadas en analizar datos de series temporales. La 

principal característica de este tipo de redes radica en su 

capacidad de modelar relaciones temporales entre elementos de 

la secuencia a través de un estado interno de la red o hidden 

state, que podemos considerar como una memoria sobre lo que 

la red ha visto hasta ese momento. En esta arquitectura se aplica 

una fórmula recurrente sobre una secuencia de entrada de 

manera que, en cada paso dado, se depende del nuevo valor de 

entrada x y del estado interno h anterior. Por tanto, este tipo de 

arquitecturas permiten modelar relaciones entre palabras dentro 

de un texto. 

Las LSTM (Long Short Term Memory) son un tipo especial 

de redes recurrentes [23]. Estas redes surgieron como una 

arquitectura encaminada a solucionar los problemas de 

memoria de las RNN tradicionales. En la práctica, estas últimas 

presentan problemas para aprender relaciones con elementos de 

time step lejanos (es decir, que no están cerca del time step 

actual). Esto limita en gran parte el potencial teórico de las 

RNN. Por ejemplo, dentro del campo del procesamiento de 

lenguaje natural, cuando analizamos un texto es importante 

mantener la información aprendida desde el inicio hasta el final 

del mismo, de modo que podamos extraer características y 

relaciones entre palabras dentro de un mismo texto. Las LSTM 

están diseñadas para intentar solucionar este problema. En 

LSTM se establecen unos criterios para almacenar la 

información obtenida hasta el momento. El modelo aprende 

qué partes de la representación se deben olvidar para incluir las 

más importantes. 

Existe una versión alternativa llamada Bi-LSTM 

(Bidirectional Long Short-Term Memory). Se trata de una 

arquitectura idéntica a la LSTM, solo que en este caso la red 

neuronal se entrenará con los mismos datos una segunda vez, 

recorriéndolos en orden inverso. Si bien las LSTM/BiLSTM 

suponen una mejora respecto a las RNN clásicas, ambos 

modelos comparten una arquitectura secuencial que limita en 

gran medida la paralelización de las ejecuciones y, por tanto, el 

rendimiento LSTM general.  Por último, la arquitectura GRU 

(Gated Recurrent Unit), es una versión simplificada de LSTM 

introducida en 2014 por [24]. 

Transfer learning 

Utilizando como punto de partida modelos pre-entrenados, 

el Transfer Learning permite desarrollar rápidamente modelos 

eficaces y resolver problemas complejos de PLN o de visión 

por computador sin necesidad de tener que entrenar nuestro 

propio modelo de cero o de disponer de una inmensa cantidad 

de datos. De este modo, los modelos pre-entrenados se han 

convertido en un elemento básico en el ámbito del 

procesamiento del lenguaje natural.  

En los últimos años, desde la introducción de la arquitectura 

Transformer, se han utilizado en muchas otras tareas diferentes 

de PLN, superando a modelos anteriores basados en redes 

neuronales recurrentes [25]. Los modelos Transformer tienen 

como principal innovación la sustitución de las capas 

recurrentes, como las LSTMs que se venían usando hasta ese 

momento en PLN, por las denominadas capas de atención [26]. 

A nivel de arquitectura, los Transformers se basan en dos 

partes bien diferenciadas, un codificador o encoder y un 

decodificador o decoder. El encoder está compuesto por una 

pila de N = 6 capas idénticas. Cada capa tiene dos subcapas. La 

primera es un mecanismo de autoatención (multi-head 

attention), y la segunda es una red simple totalmente conectada. 

Por otro lado, el descodificador también se compone de una pila 

de N = 6 capas idénticas. Además de las dos subcapas de cada 

capa del codificador, el descodificador inserta una tercera 

subcapa multi-head attention, que se aplica sobre la salida de la 

pila del codificador. Tanto el codificador como el decodificador 

trabajan sobre secuencias enteras de texto en lugar de palabra 

por palabra. De este modo, en lugar de analizar palabras sueltas, 

se obtiene un análisis global.  

La mejora de rendimiento ofrecida por la arquitectura 

Transformer ha permitido el rápido desarrollo de modelos sobre 

conjuntos de datos tan grandes que anteriormente no era viable 

procesar, dando lugar al modelo BERT (Bidirectional Encoder 
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Representations from Transformers) y a los GPT (Generative 

Pre-trained Transformer), estos últimos utilizados 

principalmente para generar textos que simulan la redacción 

humana 

 

Modelos BERT y RoBERTa 

BERT es un modelo Transformer bidireccional, pre-

entrenado sobre una gran cantidad de datos sin etiquetar para 

aprender una representación del lenguaje que se puede utilizar 

para realizar fine-tuning y adaptarlo a tareas específicas de 

aprendizaje automático [27] [25].  RoBERTa (A Robustly 

Optimized BERT Pretraining Approach) es otro modelo basado 

en la arquitectura BERT [28]. RoBERTa utiliza la misma 

arquitectura de BERT, pero aplicando pequeños cambios que 

mejoran notablemente el rendimiento del modelo en todas las 

tareas en comparación con BERT. RoBERTa también utiliza 

un vocabulario más amplio (50K, frente los 30K de BERT). 

Modelos multilingües 

Dentro del campo de modelos multilingües, encontramos m-

BERT [27] y XML-R [29]. Estos dos modelos han impulsado 

el estado del arte en tareas de PLN multilingüe mediante el pre-

entrenamiento en muchos idiomas, mostrando cómo un único 

modelo puede aprender de varios idiomas, estableciendo bases 

sólidas para tareas no relacionadas con el inglés [30]. 

M-Bert (Multilingual BERT) ha sido pre-entrenado con el 

corpus Wikipedia en 104 idiomas, capaz de realizar una 

generalización multilingüe sorprendentemente bien [31]. Por su 

lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una 

versión multilingüe de RoBERTa. Está pre-entrenada en 2,5 TB 

de datos CommonCrawl filtrados que contienen 100 idiomas. 

Modelos monolingües para el idioma español 

El primer modelo monolingüe disponible públicamente en 

español fue BETO [30], un modelo BERT entrenado en su 

totalidad sobre un gran corpus en español, que mejora los 

resultados obtenidos por m-Bert para clasificar textos en 

español [2], lo que demuestra que un modelo monolingüe con 

suficiente entrenamiento puede superar a un modelo 

multilingüe, incluso cuando se utilizan más recursos y 

entrenamiento para este último [27]. BETO tiene un tamaño 

similar al de un BERT-Base (BERT-base tiene 12 capas, 

mientras que BERT-large 24). Existen 2 versiones de BETO, la 

cased y la uncased. En la versión uncased, el texto con el que 

se le ha entrenado ha sido previamente transformado a 

minúsculas, mientras que en la versión cased, el texto con el 

que se le ha entrenado es el mismo que el de entrada (sin 

cambios). Asimismo, en la versión uncased se eliminan los 

acentos, mientras que en la versión cased se conservan. 

Más recientemente, se han desarrollado otros modelos 

lingüísticos para el español, como BERTIN [32] y 

RoBERTuito [25], ambos basados en la arquitectura 

RoBERTa. 

 

III. OBJETIVOS Y METODOLOGÍA 

El objetivo general de este trabajo es comparar el 

rendimiento de diferentes algoritmos de aprendizaje profundo 

y transfer learning sobre el dataset creado por el proyecto 

HATEMEDIA, con el objetivo de determinar cuál clasifica 

mejor y concluir si es posible la detección automática de 

expresiones de odio dentro de este caso de estudio. 

Los objetivos específicos y metodología necesarios para 

llevar a cabo el objetivo general consistirán en: realizar un 

estudio del estado del arte para identificar qué técnicas y 

métodos nos conviene utilizar en nuestra comparativa. Realizar 

un análisis exploratorio de los datos disponibles en el dataset 

de Hatemadia con el objetivo de identificar potenciales 

problemas y oportunidades. Preprocesar los datos y creación de 

diferentes versiones de nuestro dataset original; una versión 

completa y otras versiones reducidas pero balanceadas. 

Entrenar los modelos seleccionados con las diferentes 

versiones de nuestro dataset y medir sus rendimientos. Evaluar 

los resultados obtenidos para determinar la viabilidad de 

detección de expresiones de odio y la preferencia de usar 

alguno de los modelos, si la hubiera. 

El desarrollo será iterativo siguiendo los objetivos 

específicos marcados en el trabajo. 

 

IV. CONTRIBUCIÓN 

En este trabajo queremos evaluar la viabilidad de utilizar 

técnicas de aprendizaje profundo y transfer learning sobre 

nuestro dataset de Hatemedia para obtener un modelo 

predictivo que permita la detección de expresiones de odio en 

castellano. Nuestra intención consiste en apoyarnos en estos 

datos para investigar, en primer lugar, si es viable entrenar un 

modelo de clasificación binario que permita detectar si un texto 

contiene odio (independientemente de su grado de intensidad) 

y, en caso afirmativo, determinaremos cuál de los modelos 

utilizados funciona mejor. 

4.1 Dataset  

El dataset utilizado proviene del proyecto Hatemedia, que ha 

centrado su estudio en los principales medios informativos 

profesionales de España (La Vanguardia, ABC, El País, El 

Mundo y 20Minutos), para analizar cómo se difunden las 

expresiones de odio en los entornos digitales asociados a este 

tipo de medios. Este dataset está compuesto por 574.760 

registros. A pesar de tratarse de un dataset con una buena 

cantidad de registros, sufre del problema del desbalanceo de 

clases, donde existe una etiqueta que está representada en 

menor medida. Del total de registros, 12.296 están etiquetados 

como ODIO (el 2,1% de los datos), mientras que el 97,9% 

restante se corresponde con la etiqueta de NO_ODIO. 

Por lo general, el desbalance de datos afecta a los algoritmos 

en su proceso de generalización, traduciéndose en que nuestro 

modelo entrenado no tenga una capacidad de predicción que 

nos sirva para su uso posterior [33]. Debido a este problema, se 

ha decidido crear tres versiones balanceadas del dataset 

original, de modo que podamos llevar a cabo diferentes pruebas 

en nuestra comparativa. Para ello, seleccionaremos todos los 

mensajes etiquetados como ODIO y añadiremos la misma 

cantidad de mensajes etiquetados como NO_ODIO, atendiendo 

a diferentes criterios para cada uno de los nuevos datasets. 

Llamaremos a estas versiones de los datasets V1, V2 y V3 

respectivamente. 

• Selección aleatoria de textos (V1): Tomaremos todos 

los textos etiquetados como ODIO y añadiremos 

aleatoriamente la misma cantidad de textos de 

NO_ODIO. 

 

• Selección de textos de longitud homogénea (V2): En 

nuestro dataset original tenemos textos que van desde 

1 sola palabra hasta una longitud máxima de 3044. A 

la hora de entrenar un algoritmo para que pueda 
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aprender a clasificar textos en ODIO y NO_ODIO, será 

importante conocer si obtener un subconjunto de textos 

de longitud homogénea supone alguna mejora en el 

rendimiento. Para ello crearemos un nuevo dataset 

balanceado, consistente en textos de longitud 

homogénea. 

 

• Selección de textos correspondientes a un mismo 

medio (V3): Escogeremos textos relacionados con un 

solo medio de entre todos los disponibles (EL PAÍS, EL 

MUNDO, LA VANGUARDIA, 20MIN y ABC). 

Elegiremos el medio en función de cual tenga el mejor 

balance entre muestras ODIO y NO_ODIO y, 

dependiendo de los resultados obtenidos por el dataset 

anterior, seleccionaremos o no únicamente textos de 

longitud homogénea 

 

4.2. Análisis y preparación de los datos 

El primer paso en nuestro estudio consistió en un análisis 

pormenorizado de los datos disponibles en el dataset de 

Hatemadia, con el fin de entenderlos en profundidad y 

comprobar la calidad de los mismos. Inicialmente se realizó un 

estudio de los valores nulos con el objetivo principal de 

identificar estos registros y decidir cómo proceder con ellos. 

Finalmente, se eliminaron todos aquellos datos que no 

aportaban valor a nuestro estudio. Una vez terminamos el 

tratamiento de los valores nulos en el dataset, se realizó un 

análisis exploratorio de los datos, donde nos deshicimos de 

columnas innecesarias para nuestro estudio y pudimos 

comprobar el problema de desbalanceo de clases que sufre 

nuestro dataset, con 562.464 observaciones de NO_ODIO, 

frente a 12.296 de ODIO. Tras ello, preparamos 

implementamos una función que aplicaba un flujo de limpieza 

y preprocesado de los datos, realizando tareas como la 

eliminación de urls y caracteres especiales, eliminación de 

palabras de longitud<2, eliminación de espacios en blanco 

sobrantes, tokenización y lematización, de modo que los datos 

quedaran correctamente preparados para alimentar nuestros 

modelos. Asimismo, se realizó un estudio de la longitud de los 

textos. Analizar la longitud de los textos como una variable más 

nos reveló información importante sobre nuestros datos, como 

la longitud máxima y mínima, así como su distribución. 

Finalmente, tuvimos que aplicar un proceso de tokenización a 

los datos, de modo que fueran legibles por los modelos. La 

arquitectura BERT tiene su propia forma de tokenizar los datos, 

por lo que tuvimos que tratar de forma separada este proceso: 

por un lado, para los tres modelos de deep learning y, por otro, 

BETO. 

 

4.3. Modelos de DL para la detección de odio 

Para realizar nuestra comparativa, hemos seleccionado un 

total de 4 modelos predictivos, una red neuronal simple (SNN), 

una red convolucional (CNN), una red LSTM y el Transformer 

para el idioma español BETO. 

Para decidir el diseño final de los modelos a utilizar, como 

el número de capas de convolución para la CNN, número y 

tamaño de los filtros, añadir o no más de una capa densa de 

neuronas, decidir si incluir capas de dropout, etc, hemos 

 

8 https://huggingface.co/dccuchile 

realizado pruebas tomando distintas combinaciones, entre ellas 

las configuraciones presentadas en el trabajo de [34], donde se 

realiza un análisis comparativo de modelos con el objetivo de 

detectar racismo y xenofobia en twitter usando redes CNN, 

LSTM y transfer learning. Finalmente, hemos optado por las 

arquitecturas que se describen a continuación: 

SNN: Este sencillo modelo consistirá en una primera capa 

de embedding que será posteriormente aplanada y conectada 

directamente a una capa densa de 1 neurona con una función de 

activación sigmoid, que será la encargada de devolver el 

resultado de la clasificación binaria. 

CNN: Esta red estará compuesta por una primera capa de 

embedding, seguida por una capa convolucional 1D 

(probaremos diferente número y tamaño de filtros para 

seleccionar la mejor combinación). La función de activación 

utilizada en esta capa será la función ReLU (Unidad Lineal 

Rectificada), que en la actualidad es la función de activación 

con más éxito y más utilizada en redes de neuronas profundas 

[35]. A la salida de esta capa de convolución se le aplicará una 

función de MaxPooling para reducir el tamaño de las muestras, 

y el resultado se conectará a una capa densa de 1 neurona con 

una función sigmoid. 

LSTM: Utilizaremos en primer lugar una capa de 

embedding, seguida de una capa LSTM (probaremos diferente 

número de neuronas para poder seleccionar la mejor opción). 

La salida irá conectada, al igual que en los casos anteriores, a 

una capa densa de 1 neurona con función de activación 

sigmoid. 

BETO: Finalmente, utilizaremos en nuestra comparativa el 

modelo transformer monolingüe para el idioma español BETO, 

tanto la versión cased como uncased (“dccuchile/bert-base-

spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-

uncased” respectivamente). Estos modelos se pueden encontrar 

en la web de Hugging Face8, y son accesibles desde el código 

a través de la biblioteca Transformers9. 

 

4.4 Parametrización 

Con el fin de garantizar que los resultados obtenidos por la 

red neuronal sean lo más elevados posibles, se han realizado 

una serie de pruebas en las que se ha comprobado el 

rendimiento del modelo en función del valor de determinados 

parámetros que mostramos en las Tablas 1, 2 y 3. 

Tabla 1: Parámetros seleccionados para CNN 

 

 

Tabla 2:  Parámetros seleccionados para LSTM 

 

9 https://huggingface.co/docs/transformers 

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Optimizador Adam, SGD Adam

Learning rate 1e−2,  1e−3 1e−3
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Tabla 3: Parámetros seleccionados para BETO 

 

 

4.4 Métricas de evaluación 

Como métricas para comparar los distintos modelos vamos 

a utilizar la accuracy (Acc) o exactitud, que indica el número 

de muestras correctamente clasificadas para todas las clases 

sobre el total de muestras, la F1-score, una métrica que combina 

Precisión y Recall, y a Macro-F1, que se trata de la media no 

ponderada de las puntuaciones F1-score.  

𝐴𝑐𝑐= 
TP+TN

TP+TN+FP+FN
 ;  Precisión = TP

TP+FP
; 𝑅𝑒𝑐𝑎𝑙𝑙 =  

TP

TP+FN
 

F1-score =  
2∗Precisión∗Recall

Precisión+Recall
 ; Macro-F1 =  

sum(F1−scores)

número de clases
 

Donde: TP representa las muestras negativas correctamente 

clasificadas, FP las muestras positivas clasificadas como 

negativas, FN las negativas clasificadas como positivas y FP 

las positivas clasificadas como negativas. 

V. EVALUACIÓN Y RESULTADOS  

Para cada uno de los modelos seleccionados, realizaremos 

experimentos con las distintas versiones del dataset descritos 

en el apartado anterior. Todos los experimentos han sido 

ejecutados desde la versión gratuita colab, configurando el 

entorno para hacer uso del modo de ejecución GPU (Tesla T4), 

lo que nos ha permitido ejecutar nuestros modelos hasta 10 

veces más rápido que desde el entorno básico. 

Resultados con dataset completo 

Las pruebas realizadas para el dataset completo muestran 

unos resultados propios de un dataset desbalanceado (Figura 2). 

Al final, al modelo le basta con predecir siempre la clase 

dominante para conseguir un 98% de accuracy (acertando 

siempre los textos de NO_ODIO conseguimos acertar un 98% 

de las ocasiones). Sin embargo, esto implica que nunca predice 

la etiqueta ODIO, y esto se traduce en un recall del 0% para 

esta clase. Por lo tanto, estos modelos entrenados con el dataset 

completo no son útiles en absoluto para resolver nuestro 

problema. 

 

Figura 2: Matriz de confusión con dataset completo para todos los 

modelos 

Estos mismos resultados se han obtenido para los diferentes 

valores de batch_size y epochs. 

 

Resultados con datasets balanceados (V1, V2, V3) 

La Tabla 4 muestra los resultados obtenidos por los modelos 

para cada una de las versiones del dataset balanceado V1, V2, 

y V3. Estos resultados se han conseguido con un batch_size de 

tamaño 50 y 2 épocas. Hemos comprobado que más allá de la 

tercera epoch perdemos accuracy para el conjunto de test 

debido al fenómeno overfitting o sobreajuste del modelo al 

conjunto de entrenamiento. 

Tabla 4: Comparativa de resultados en test 

 

 

A diferencia de lo que ocurría con el dataset completo, para 

los datasets balanceados se obtienen unos valores razonables 

para todas las métricas, con excepción del modelo LSTM al 

entrenarse con el dataset V1. En este caso, nuestro modelo no 

pasa de un 49% de accuracy y un 0% de F1 para la clase de 

NO_ODIO. Es evidente que el modelo LSTM no funciona bien 

para este dataset V1, pues únicamente predice la clase de 

ODIO. El motivo de este comportamiento es la longitud 

máxima de los textos (3044 caracteres) que hace que los 

mensajes más cortos estén compuestos mayoritariamente por 

valores 0 (tras el proceso de padding), perjudicando el 

rendimiento de nuestro algoritmo basado en la arquitectura 

RNN.  Confirmamos este punto con los resultados de los 

datasets V2 y V3, donde obtenemos unos resultados bastante 

buenos, cercanos a los obtenidos por CNN. 

Por otro lado, observamos que con dataset balanceado V2 

empeoramos ligeramente todas las métricas con respecto al 

dataset V1. Esto indica que el hecho de tener unos textos de 

longitud homogénea no ha ayudado en este sentido a los 

modelos a predecir mejor. Sin embargo, debemos comentar que 

el tiempo de ejecución sí mejoró, reduciéndose 

aproximadamente un 30% al acotarse la longitud de los textos. 

Para el dataset V3, observamos unas métricas por debajo de lo 

conseguido con el dataset V2. Creemos que estos resultados se 

deben a la reducción del número total de registros de 

entrenamiento (hemos pasado de 23.932 registros en V2 frente 

a 10.268 registros en V3). Al tener menos muestras para 

aprender, los modelos caen en overfitting, sobre ajustándose a 

los datos de entrenamiento, y no es capaz de generalizar 

correctamente 

 

VI. DISCUSIÓN 

En primer lugar, debemos comentar que el dataset original 

presenta un desbalanceo de clases tan acuciado que resulta 

inservible, pues todos los modelos entrenados con este dataset 

terminan prediciendo siempre la clase dominante. 

Si nos centramos en las pruebas realizadas con los tres 

datasets balanceados, observamos que los mejores resultados 

SNN CNN LSTM BETO (cased)

V1 86% 87% 49% 89%

V2 83% 85% 84% 87%
V3 76% 83% 80% 84%

V1 86% 87% 0% 88%
V2 83% 85% 84% 86%
V3 77% 83% 79% 84%

V1 85% 87% 66% 89%
V2 82% 85% 83% 87%

V3 75% 82% 80% 84%

Accuracy

F1-score (NO_ODIO)

F1-score (ODIO)
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en términos de accuracy y F1 los encontramos con BETO 

(cased) entrenado con el dataset V1, seguido por CNN 

entrenado también con V1 y empatado con BETO entrenado 

con V2 (Tabla 4).   

Estos resultados nos podrían llevar a pensar que un dataset 

balanceado de selección aleatoria (V1) es la mejor opción para 

entrenar nuestros modelos. Sin embargo, este dataset entraña 

una serie de desventajas: por ejemplo, el modelo LSTM no 

funciona correctamente con este dataset debido a la longitud 

máxima de los textos (3.044 palabras) que hace que los 

mensajes más cortos estén compuestos mayoritariamente por 

valores 0 (padding), perjudicando el rendimiento de nuestro 

algoritmo basado en la arquitectura de red recurrente. Se ha 

comprobado que, con textos de longitud homogénea, este 

modelo alcanza una exactitud cercana a la obtenida por CNN 

(aunque con tiempos de entrenamiento entre 2 y 3 tres veces 

superiores en LSTM). 

La Tabla 5 muestra los resultados del estado del arte (SOA) 

para la detección de discurso de odio en español obtenidos a 

partir de los conjuntos de datos de HaterNet y HatEval, además 

de un dataset ad-hoc creado en el trabajo de [36]. Comparamos 

estos resultados con nuestra mejor propuesta en términos de 

macro-F1, el modelo BETO cased entrenado con el dataset 

balanceado V1.  

Para el conjunto de datos HaterNet, el modelo de [37] 

presenta un modelo BETO (cased) que supera a nuestra 

propuesta en términos de F1 para la etiqueta NO_ODIO, 

alcanzando un 89% frente a nuestro 88%. Sin embargo, en 

términos de macro-F1, nuestro modelo BETO mejora los 

resultados de [37], en un 14%. El motivo es que nuestro modelo 

es capaz de predecir mejor la etiqueta de odio, seguramente a 

consecuencia de haber sido entrenado con un dataset mejor 

balanceado y con un mayor número de muestras de textos de 

odio. En la Tabla 6 mostramos la distribución de cada dataset. 

En el estudio de [36] se generaron un total de ocho modelos 

predictivos: seis usando algoritmos de aprendizaje superficial, 

uno generado a partir de los votos de esos modelos anteriores y 

otro usando aprendizaje profundo. Los mejores resultados los 

obtuvo este último modelo, basado en una red neuronal 

recurrente GRU, alcanzando un macro-F1 del 77%. Nuestra 

propuesta mejora este resultado en un 16%.  

En cuanto al conjunto de datos HatEval, [37] y [25] 

superaron el mejor resultado obtenido en la competición de 

SemEval-2019 Task 5, probando un modelo BETO (cased) y 

Robertuito (uncased) respectivamente. El modelo Robertuito es 

el que alcanza mejor rendimiento en términos de Macro-F1, con 

un 80%. Nuestro modelo BETO cased entrenado sobre el 

dataset V1 supera los resultados de [25] con una mejora del 

11%. 

 

Tabla 5: Resultados SOA para detección de discurso de odio en español 

 

Comparando estos resultados destacamos la importancia de 

entrenar estos modelos de transfer learning sobre un dataset 

balanceado con el mayor número posible de registros, con el fin 

de obtener un modelo que reajuste sus parámetros en base a la 

información del dataset sin caer en el fenómeno de overfitting, 

de modo que a posteriori sea capaz de generalizar con la llegada 

de nuevos datos. 

 

Tabla 6: Distribución de los datasets en español 

 

 

VII. CONCLUSIONES 

Si bien los resultados a partir del dataset original no son 

buenos debido al problema del desbalanceo de clases, los 

modelos generados a partir de los datasets balanceados tienen 

unas prestaciones más que aceptables, concluyendo que la 

detección automática de expresiones de odio es viable para 

estos datasets balanceados, siendo BETO (versión cased) el 

modelo que mejor resultados ofrece en términos de accuracy y 

F1-score, seguido muy de cerca por el modelo CNN. No 

recomendaríamos LSTM para análisis de textos extensos, al 

menos cuando la longitud de los textos del dataset no sea 

homogénea, a la vista de los resultados obtenidos por este 

modelo con V1. Por el contrario, tanto BETO como CNN han 

respondido bien a todas las versiones de los datasets 

balanceados, por lo que los convierte en los modelos más 

versátiles  

Finalmente, como líneas futuras planteamos. realizar las 

mismas pruebas presentadas en este trabajo, pero con un dataset 

balanceado con mayor cantidad de registros. Nuestros datasets 

balanceados han permitido generar un conjunto de 

entrenamiento del orden de 20K registros, lo que ha dificultado 

la capacidad de los modelos para generalizar, cayendo en el 

problema de overfitting o sobreajuste tras las primeras épocas 

de entrenamiento. 

 

REFERENCIAS 

[1] Arango, A., Pérez, J., & Poblete, B. (2019). Hate Speech 

Detection is Not as Easy as You May Think: A Closer Look at 
Model Validation. Proceedings of the 42nd International ACM 

SIGIR Conference on Research and Development in Information 
Retrieval, 45-54. https://doi.org/10.1145/3331184.3331262 

[2] García-Díaz, J. A., Jiménez-Zafra, S. M., García-Cumbreras, M. 

A., & Valencia-García, R. (2022). Evaluating feature 

combination strategies for hate-speech detection in Spanish using 
linguistic features and transformers. Complex and Intelligent 
Systems. https://doi.org/10.1007/s40747-022-00693-x 

[3] Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel 
Pardo, F. M., Rosso, P., & Sanguinetti, M. (2019). SemEval-

2019 Task 5: Multilingual Detection of Hate Speech Against 

Immigrants and Women in Twitter. Proceedings of the 13th 
International Workshop on Semantic Evaluation, 54-63. 
https://doi.org/10.18653/v1/S19-2007 

[4] Fersini, E., Rosso, P., & Anzovino, M. (2018). Overview of the 
Task on Automatic Misogyny Identification at IberEval 2018. 
https://figure-eight.com/ 

[5] Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful 

Modelo Dataset F1  (NO_ODIO) F1  (ODIO) Macro-F1

SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%

RNN-GRU [36]  Ad-hoc - - 77%

BETOcased [37] HaterNet 89% 66% 78%

BETOcased [37] HatEval 80% 76% 78%

Robertuitouncased  [25] HatEval - - 80%

BETOcased (Nuestra propuesta) Hatemedia (V1) 88% 89% 89%

Dataset n_registros NO_ODIO ODIO

HatEval 6.600 3.861 (59%) 2.739 (41%)

HaterNet 6.000 4.433 (74%) 1.567 (26%)

 Ad-hoc [36] 10.213 3879 (38%) 6334 (62%)

Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)

https://doi.org/10.1145/3331184.3331262
https://doi.org/10.1007/s40747-022-00693-x
https://doi.org/10.18653/v1/S19-2007
https://figure-eight.com/


Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

9 

People? Predictive Features for Hate Speech Detection on 

Twitter. NAACL. 

[6] Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). 

Automated Hate Speech Detection and the Problem of Offensive 
Language. http://arxiv.org/abs/1703.04009 

[7] Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., & Shrivastava, M. 

(2018). A Dataset of Hindi-English Code-Mixed Social Media 
Text for Hate Speech Detection. 
https://github.com/deepanshu1995/HateSpeech-Hindi- 

[8] Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F., & 
Camacho-Collados, M. (2019). Detecting and Monitoring Hate 

Speech in Twitter. Sensors, 19(21). 
https://doi.org/10.3390/s19214654 

[9] Urdaneta, L. A. (2019, abril). Reducir el número de palabras de 

un texto: lematización y radicalización (stemming) con Python. 

https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-
palabras-de-un-texto-lematizaci%C3%B3n-y-
radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa 

[10] Luhn, H. P. (1957). A Statistical Approach to Mechanized 
Encoding and Searching of Literary Information. IBM Journal of 

Research and Development, 1(4), 309-317. 
https://doi.org/10.1147/rd.14.0309 

[11] Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. 

Studies in Linguistic Analysis (Special Volume of the 
Philological Society), 1952-59, 1-32. 

[12] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. 

(2013). Distributed Representations of Words and Phrases and 
their Compositionality. arXiv. 
https://doi.org/10.48550/ARXIV.1310.4546 

[13] Melnyk, L. (2021). Hate speech targets in COVID-19 related 
comments on Ukrainian news websites. Journal of Computer-

Assisted Linguistic Research, 5(1), 47-75. 
https://doi.org/10.4995/jclr.2021.15966 

[14] Dash, S., Grover, R., Shekhawat, G., Kaur, S., Mishra, D., & Pal, 

J. (2021). Insights Into Incitement: A Computational Perspective 

on Dangerous Speech on Twitter in India. 
http://arxiv.org/abs/2111.03906 
 

[15] Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global 
Vectors for Word Representation. Proceedings of the 2014 

Conference on Empirical Methods in Natural Language 

Processing (EMNLP), 1532-1543. 
https://doi.org/10.3115/v1/D14-1162 

[16] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). 

Enriching Word Vectors with Subword Information. 
Transactions of the Association for Computational Linguistics, 

5, 135-146. https://doi.org/10.1162/tacl_a_00051 

[17] Burnap, P., & Williams, M. (2015). Cyber Hate Speech on 
Twitter: An Application of Machine Classification and Statistical 

Modeling for Policy and Decision Making: Machine 

Classification of Cyber Hate Speech. Policy & Internet, 7. 
https://doi.org/10.1002/poi3.85 

[18] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., & Chang, Y. 
(2016). Abusive language detection in online user content. 25th 

International World Wide Web Conference, WWW 2016, 145-
153. https://doi.org/10.1145/2872427.2883062 

[19] Sachdeva, J., Chaudhary, K. K., Madaan, H., & Meel, P. (2021). 

Text Based Hate-Speech Analysis. Proceedings - International 

Conference on Artificial Intelligence and Smart Systems, ICAIS 

2021, 661-668. 
https://doi.org/10.1109/ICAIS50930.2021.9396013 

[20] Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep 
Learning for Hate Speech Detection in Tweets. Proceedings of 

the 26th International Conference on World Wide Web 

Companion - WWW 17 Companion. 
https://doi.org/10.1145/3041021.3054223 

[21] Gambäck, B., & Sikdar, U. K. (2017). Using Convolutional 

Neural Networks to Classify Hate-Speech. Proceedings of the 
First Workshop on Abusive Language Online, 85-90. 
https://doi.org/10.18653/v1/W17-3013 

[22] Wang, C. (2018). Interpreting Neural Network Hate Speech 
Classifiers. 

[23] Vigna, F. del, Cimino, A., Dell’orletta, F., Petrocchi, M., & 

Tesconi, M. (2017). Hate me, hate me not: Hate speech detection 
on Facebook. https://curl.haxx.se 

[24] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical 

Evaluation of Gated Recurrent Neural Networks on Sequence 
Modeling. http://arxiv.org/abs/1412.3555 

[25] Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). 

RoBERTuito: a pre-trained language model for social media text 
in Spanish. http://arxiv.org/abs/2111.09453 

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017). 
Attention is All you Need. En I. Guyon, U. von Luxburg, S. 

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett 
(Eds.), Advances in Neural Information Processing Systems 

(Vol. 30). Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee9
1fbd053c1c4a845aa-Paper.pdf 

[27] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). 

BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding. Proceedings of the 2019 Conference 

of the North American Chapter of the Association for 

Computational Linguistics: Human Language Technologies, 
Volume 1 (Long and Short Papers), 4171-4186. 
https://doi.org/10.18653/v1/N19-1423 

[28] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., 
Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: 

A Robustly Optimized BERT Pretraining Approach. 
http://arxiv.org/abs/1907.11692 

[29] Lample, G., & Conneau, A. (2019). Cross-lingual Language 
Model Pretraining. http://arxiv.org/abs/1901.07291 

[30] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., & 

Pérez, J. (2020). SPANISH PRE-TRAINED BERT MODEL 

AND EVALUATION DATA. 
https://github.com/josecannete/spanish-corpora 

[31] Pires, T., Schlinger, E., & Garrette, D. (2019). How Multilingual 

is Multilingual BERT? Proceedings of the 57th Annual Meeting 

of the Association for Computational Linguistics, 4996-5001. 
https://doi.org/10.18653/v1/P19-1493 

[32] de la Rosa, J., Ponferrada, E. G., Villegas, P., Salas, P. G. de P., 

Romero, M., & Grandury, M. (2022). BERTIN: Efficient Pre-
Training of a Spanish Language Model using Perplexity 
Sampling. http://arxiv.org/abs/2207.06814 

[33] Chawla, N. v, Japkowicz, N., & Kotcz, A. (2004). Editorial: 

http://arxiv.org/abs/1703.04009
https://github.com/deepanshu1995/HateSpeech-Hindi-
https://doi.org/10.3390/s19214654
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.4995/jclr.2021.15966
http://arxiv.org/abs/2111.03906
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1002/poi3.85
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1109/ICAIS50930.2021.9396013
https://doi.org/10.1145/3041021.3054223
https://doi.org/10.18653/v1/W17-3013
https://curl.haxx.se/
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2111.09453
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1901.07291
https://github.com/josecannete/spanish-corpora
https://doi.org/10.18653/v1/P19-1493
http://arxiv.org/abs/2207.06814


Carlos Simón Gallego 
Máster Universitario en Inteligencia Artificial 

10 

Special Issue on Learning from Imbalanced Data Sets. SIGKDD 

Explor. Newsl., 6(1), 1-6. 
https://doi.org/10.1145/1007730.1007733 

[34] Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á., 
Aveleira-Mata, J., Alija-Pérez, J. M., & García-Ordás, M. T. 

(2022). Detecting racism and xenophobia using deep learning 

models on Twitter data: CNN, LSTM and BERT. PeerJ 
Computer Science, 8. https://doi.org/10.7717/PEERJ-CS.906 

[35] Ramachandran, P., Zoph, B., & Le, Q. v. (2017). Searching for 
Activation Functions. http://arxiv.org/abs/1710.05941 

[36] Amores, J. J., Blanco-Herrero, D., Sánchez-Holgado, P., & Frías-

Vázquez, M. (2021). Detecting ideological hatred on Twitter. 

Development and evaluation of a political ideology hate speech 

detector in tweets in Spanish. Cuadernos.Info, 49, 98-124. 
https://doi.org/10.7764/cdi.49.27817 

[37] Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López, 
L. A., & Martín-Valdivia, M. T. (2021). Comparing pre-trained 

language models for Spanish hate speech detection. Expert 

Systems with Applications, 166. 
https://doi.org/10.1016/j.eswa.2020.114120 

[38] Nguyen, H.-T., Nguyen, M., & Le. (2017, enero). An Ensemble 
Method with Sentiment Features and Clustering Support. 

 

 

https://doi.org/10.1145/1007730.1007733
https://doi.org/10.7717/PEERJ-CS.906
http://arxiv.org/abs/1710.05941
https://doi.org/10.7764/cdi.49.27817
https://doi.org/10.1016/j.eswa.2020.114120

