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Resumen

Con este trabajo tratamos de determinar la viabilidad que existe en la deteccién automatica
de expresiones de odio en castellano mediante la aplicaciéon de Deep Learning (DL) sobre el
dataset del proyecto Hatemedial. Para ello realizamos una comparativa de soluciones para
determinar qué modelo de DL ofrece mejor rendimiento para esta tarea. Se han realizado las
mismas pruebas con diferentes versiones del dataset; una versién con todos los registros y
otras versiones reducidas para intentar solventar los problemas derivados del desbalanceo de
clases. Las pruebas realizadas para los datasets balanceados exploran distintas casuisticas en
base a criterios como la longitud de los textos o el uso de textos pertenecientes a un mismo
medio, con el fin de entender si estas variables tienen importancia en el rendimiento de los
modelos. Tras el trabajo comparativo, encontramos que el dataset original resulta inservible
debido al problema del desbalanceo de clases, ocasionando que todos los modelos acaben
prediciendo Unicamente la clase dominante, obteniendo un 98% de accuracy pero un 0% de
recall para la clase minoritaria. Si nos centramos en las pruebas con los datasets balanceados,
el modelo BETO (versidn cased) es el que mejor rendimiento ofrece, superando los resultados
obtenidos por otros modelos del estado del arte entrenados con diferentes datasets.
Finalizamos exponiendo todas las dificultades encontradas y ofreciendo alternativas de

mejora para trabajos futuros.

El presente trabajo ha sido realizado dentro del proyecto: “Taxonomia, presencia e intensidad
de las expresiones de odio en entornos digitales vinculados a los medios informativos
profesionales espainoles — Hatemedia”. Proyecto PID2020-114584GB-100, financiado por la

Agencia Estatal de Investigacion - Ministerio de Ciencia e Innovacién.

Palabras Clave: Discurso de odio, Aprendizaje profundo, Aprendizaje por transferencia, BETO,

Procesamiento de lenguaje natural, Clasificacion de texto

L https://www.hatemedia.es/
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Abstract

With this work we try to determine the feasibility of the automatic detection of hate speech
in Spanish by applying Deep Learning (DL) on the dataset of the Hatemedia project. For this
purpose, we carried out a comparison of solutions to determine which DL model offers the
best performance for this task. The same tests have been carried out with different versions
of the dataset; one version with all the records and other reduced versions to try to solve the
problems derived from class imbalance. The tests carried out for the balanced datasets
explore different cases based on criteria such as the length of the texts or the use of texts
belonging to the same medium, in order to understand whether these variables are important
in the performance of the models. After the comparative work, we find that the original
dataset is useless due to the class imbalance problem, which makes all the models end up
predicting only the dominant class, obtaining 98% accuracy but 0% recall for the minority class.
If we focus on the tests with the balanced datasets, BETO model (cased version) is the one
that offers the best performance, outperforming the results obtained by other state-of-the-
art models trained with different datasets. We conclude by exposing all the difficulties

encountered and offering improvement alternatives for future work.

This work has been carried out as part of the project: "Taxonomy, presence and intensity of
hate speech in digital environments linked to Spanish professional media - Hatemedia".
Project PID2020-114584GB-100, funded by the State Research Agency - Ministry of Science

and Innovation.

Keywords: Hate speech, Deep learning, Transfer learning, BETO, Natural language processing,

Text classification
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Introduccion

Hoy en dia, el auge de las redes sociales y medios informativos online genera una enorme
cantidad de informacién y proliferacion de contenidos (desinformativos o no) que en muchas
ocasiones ponen en entredicho la tolerancia, civismo y respeto a determinados colectivos.
Ademas, el anonimato y la interactividad propias de la web facilitan el aumento y la

permanencia de los comentarios opresivos (Frenda et al., 2018).

En este contexto, la deteccidon automatica del discurso de odio o Hate Speech (HS, de sus siglas
en inglés) juega un papel importante. Sin embargo, nos encontramos ante el problema de que
no existe una definicién Unica para el discurso de odio, lo que complica en gran medida la
labor de crear algoritmos que detecten el odio automaticamente y con precision en un texto.
En los ultimos anos, se han introducido varias definiciones ad hoc por parte del sector legal,
académico y por las mismas redes sociales. Sin embargo, la elaboraciéon de una definicion
precisa del discurso del odio es una tarea dificil dada su naturaleza subjetiva. (Papcunova
et al., 2021). Al final, un texto escrito en internet podra ser considerado discurso de odio en
funcién de varios elementos que van mas alld de las simples palabras que lo componen, como
pueden ser las caracteristicas del propio emisor, su intencién, el contexto en el que se realiza,

la cultura del pais, etc.

Otra dificultad a tener en cuenta es que el mensaje de odio a veces se confunde con el término
"lenguaje ofensivo". Por este motivo, es importante remarcar la diferencia entre ambos
conceptos. Un texto es ofensivo si contiene alguna forma de lenguaje no aceptable. En esta
categoria pueden incluirse los insultos, las amenazas o las expresiones malsonantes (Plaza-

del-Arco et al., 2021).

Por ultimo, no podemos olvidar la complejidad intrinseca al propio lenguaje y sus
peculiaridades: la ironia, el humor, el doble sentido, el odio implicito, metaforas... Incluso
podemos encontrar textos absolutamente inocuos que utilizan términos malsonantes vy
comunmente utilizados en lenguaje ofensivo, siendo este un caso muy comun de falso positivo

en muchos clasificadores de texto (especialmente los basados en lexicén). Por si esto fuera

10
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poco, el castellano presenta un alto grado de complejidad morfoldgica que requiere
normalmente de tareas de preprocesamiento adicional para lograr aumentar el rendimiento
de los modelos.

Por todos estos motivos, la deteccién automatica de odio online presenta un reto de grandes

dimensiones que la comunidad cientifica se esfuerza en solucionar.

1.1.Motivacion

Actualmente existe una fuerte motivacién para estudiar la deteccidn automatica del discurso
del odio debido a la abrumadora difusidon de informacién online, impulsado por las nuevas
tecnologias y formas de relacionarnos en internet. La deteccién automatica del discurso del
odio mediante algoritmos de inteligencia artificial (IA) éticos y fiables va a ser una tarea crucial
para proteger los derechos fundamentales de las personas, especialmente importante ante
escenarios tan radicales como los que nos toca vivir hoy en dia, con guerras en curso y una
sociedad extremadamente polarizada. Dentro de este escenario, internet se convierte en una
potencial herramienta para distorsionan la realidad, atacar a personas e incluso deshumanizar
a ciertos colectivos. Por poner un ejemplo, los estudios han demostrado un aumento de la
incitacion al odio contra China en las redes sociales, especialmente los contenidos racistas y

abusivos que acusan a las personas de causar el brote de COVID-192,

El discurso de odio generalizado tiene importantes implicaciones sociales por motivos obvios.
Sin embargo, este puede tener otras consecuencias mucho menos obvias, como que puede
ser precursor de delitos mas graves cometidos en nuestra sociedad. De hecho, algunos
estudios afirman que existe una correlacién entre el nimero de violaciones y el nimero de
mensajes misoginos por estado dentro de los Estados Unidos (Filippo et al., 2015). En un
marco del discurso de odio mdas amplio, tenemos varios estudios que plantean la hipdtesis de
una correlacion entre el incremento de los mensajes de odio emitidos en internet y los

crimenes de odio cometidos en determinados lugares y contextos especificos (Miller &

2 Twitter Sees 900% Increase in Hate Speech towards China Due to Coronavirus, 2020
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Schwarz, 2021), (Lingiardi et al., 2020), (Alkomah & Ma, 2022). Estos estudios consideran
fundamental estudiar este tipo de mensajes de discurso de odio online con el fin de tomar
acciones preventivas y contrarrestar sus posibles efectos negativos. En el trabajo de Ligiardi
et al. (2020) se insta a realizar una investigacion futura que trate de verificar si los picos de
tuits intolerantes hacia un grupo objetivo tienden a coincidir con acontecimientos

sociopoliticos relacionados.
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1.2.Planteamiento del problema

Dada la enorme cantidad de contenidos generados por los usuarios en redes sociales, no es
adecuado confiar Unicamente en la supervisién humana para combatir el discurso de odio en
internet. Las plataformas sociales a gran escala estan invirtiendo actualmente importantes
recursos para detectar y clasificar automaticamente los contenidos de odio.

A pesar de los numerosos estudios en este campo, el discurso del odio sigue siendo un reto
desafiante. El estado del arte informa de que tanto las personas como los modelos de
aprendizaje automatico tienen dificultades para detectar el discurso de odio debido a la
complejidad y variedad de las categorias de odio. Ademas, las definiciones tedricas existentes
del discurso del odio no estan suficientemente elaboradas, por lo que actualmente no se
dispone de una definicidon totalmente precisa en la que poder basarnos a la hora de crear

datasets etiquetados y algoritmos automaticos.

Este estudio pretende contribuir a la deteccién automatica del discurso de odio en espafiol.
Para ello, hacemos uso del corpus etiquetado por el equipo del proyecto Hatemedia® y

comparamos varias técnicas de clasificacién basadas en modelos de aprendizaje profundo.

1.3.Estructura de la memoria

La estructura de la memoria esta organizada de la siguiente manera:

En la Seccidon 2 se hard un analisis del contexto y el estado del arte reflejando la importancia
del campo de estudio. Para ello, repasaremos en primer lugar los talleres y eventos mas
relevantes de los ultimos afos enfocados a tratar el problema de la deteccién de expresiones
de odio en textos, asi como los datasets y sistemas basados en inteligencia artificial mas

conocidos que se utilizan para intentar abordar este complejo problema.

3 Proyecto PID2020-114584GB-100, financiado por la Agencia Estatal de Investigacién - Ministerio de Ciencia e
Innovacién

13



Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

Los objetivos generales y especificos son descritos con mds detalle en la Seccién 3, donde

también se detallaran los pasos necesarios para la consecucion de estos.

En la Seccion 4 se describe el procedimiento que se va a seguir para llevar a cabo la
comparativa. Esto comprende desde la descripcidn de las versiones del dataset que se van a

utilizar, hasta los modelos seleccionados y las métricas de evaluacion utilizadas.

En la Secciéon 5 pasaremos a describir el desarrollo del trabajo, mostrando los resultados
obtenidos, para continuar en la Seccién 6 con una discusién sobre la relevancia de los

resultados, identificando las conclusiones mas importantes extraidos de estos resultados.

Finalmente, en la Seccidén 7 se dardn las conclusiones extraidas del trabajo y se propondran

lineas futuras de investigacion o desarrollo relacionado con el mismo.
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2. Contexto y estado del arte

El estudio de la deteccién y de la clasificacion automatica del discurso de odio mediante
procesamiento de lenguaje natural (PLN) es un campo relativamente reciente, pero ha
evolucionado rapidamente en los ultimos afios debido a su importancia (Garcia-Diaz et al.,
2022). En la Figura 1 mostramos una grafica de Dimensions* para los términos de busqueda
“hate speech detection”, filtrado por las categorias "Information and Computing Sciences” y
“Artificial Intelligence”, donde se puede apreciar un notable crecimiento en el nimero de

publicaciones de trabajos relacionados con el discurso de odio a lo largo de los ultimos afios.

3,000

L
2,500 / 4
® .
2,000
e
1,500
a
1,000 /
/. .
500 ,.-f-”'f.
. .
.__________.___._._-—-—-" .
0
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

@ Publications (total)
Figura 1: Grafica de Dimensions con los términos de busqueda de "hate speech detection” para las
categorias “Information and Computer Sciences” y “Artificial Intelligence”, donde se muestra el

numero de publicaciones por afio.

El interés en esta area ha aumentado a medida que las redes sociales y otras plataformas de
internet han crecido en términos de influencia y adopcion por parte de la gran mayoria de los
usuarios (Arango et al., 2019).

En la presente seccidon haremos una revisiéon del estado del arte, donde comenzaremos
destacando los principales eventos vy talleres a nivel mundial, enfocados en la deteccidon del
discurso del odio. A continuacién, listaremos algunos de los dataset mas utilizados para dichas

tareas. Finalmente, analizamos las diferentes técnicas de PLN utilizadas para extraer

4 https://app.dimensions.ai/discover/publication
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informacién de un texto, asi como los modelos de aprendizaje automatico empleados en el
estado del arte, desde los modelos de machine learning (ML) clasicos hasta soluciones mas

modernas basadas en aprendizaje profundo y Transformers.

2.1.CONGRESOS RELATIVOS A LA DETECCION DE ODIO EN TEXTOS

El impacto de las publicaciones nocivas online ha dado lugar a un gran nimero de estudios y
eventos enfocados a la deteccidén del odio y lenguaje ofensivo. Como ejemplo, se listan los
siguientes talleres y congresos®.

e SemEval®, taller internacional sobre el procesamiento del lenguaje natural cuya mision
es avanzar en el estado actual del arte. Cada afio, este taller propone una serie de
tareas compartidas en las que se presentan y comparan sistemas de andlisis semantico
computacional disefiados por diferentes equipos. Las tareas mds destacadas para la
deteccidn de odio en internet son:

o Identifying and Categorizing Offensive Language in Social Media (SemEval-
2029, Tarea 12)

o Multilingual Offensive Language Identification in Social Media (SemEval-2020,
Tarea 12)

El taller SemEval 2023 cuenta con la tarea 10 que trata sobre la deteccidn de sexismo
en internet. Este evento esta actualmente en curso y los resultados obtenidos por los

equipos participantes se publicaran a lo largo del afio.

e  Workshop on Online Abuse and Harms (WOAH’), que en el afio 2022 celebré su sexta
edicidn, cuyo objetivo es avanzar en la investigacion para detectar, clasificar y modelar
el contenido ofensivo y dafiino en internet.

e GermEval Shared Task® (edicidon de 2018 y 2019), centrado en el procesamiento del

lenguaje natural para deteccidn de lenguaje ofensivo en el idioma aleman.

5> Nétese que no todas las ediciones de cada evento estan enfocadas a la deteccién del discurso de odio, sino que
en cada afio se plantean una o varias tareas a resolver mediante PLN.

6 https://semeval.github.io/

7 https://www.workshopononlineabuse.com/

8 https://germeval.github.io/tasks/
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e PolEvaP (edicion de 2019, tarea 6), sobre la deteccidn automatica del ciberacoso en
Twitter para el lenguaje polaco.
e HASOC(2019), sobre identificacién de expresiones de odio y contenidos ofensivos en
las lenguas indoeuropeas.
e AM/* (2018), taller para la identificacion automatica de la misoginia, para el idioma
italiano y el inglés.
Con relacion a los estudios sobre el discurso del odio en idioma espafol, observamos que no
encontramos tanta variedad como los centrados en el idioma inglés. De hecho, los estudios
que existen estan relacionados mayoritariamente con la participacion de IberEval 2018 -
Automatic Misogyny Identification y la Tarea 5 del taller SemEval 2019 (Garcia-Diaz et al.,
2022).

SemEval-2019, Tarea 5

Esta tarea tuvo como objetivo detectar contenidos de odio en los textos de las redes sociales
en espanol, concretamente en las publicaciones de Twitter, contra dos objetivos: los
inmigrantes y las mujeres. Ademas, la tarea implementaba una perspectiva multilinglie en la
que se proporcionaron datos de los idiomas inglés y espafiol (HatEval), para entrenar y probar
los sistemas participantes. El conjunto de datos de HatEval estaba compuesto por 19.600 tuits,
13.000 en inglés y 6.600 en espanol. (Basile et al., 2019). Esta tarea se articulaba en torno a

dos subtareas relacionadas:

e Subtarea A: Consistia en una deteccidn basica de discurso de odio, en la que se pedia
a los participantes que marcaran la presencia de odio en los tweets (clasificaciéon
binaria).

e Subtarea B: En esta segunda subtarea se pretendia ir mas alld de la simple deteccidn
binaria de discurso de odio. De este modo, se trataba de determinar si el objetivo del
mensaje era un individuo un grupo de personas, y si el contenido del mensaje contenia

lenguaje agresivo.

% http://2019.poleval.pl/
10 https://hasocfire.github.io/hasoc/2019/
1 https://amievalita2018.wordpress.com/
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IberEval 2018 (AMI)
Este taller estaba enfocado a la deteccién de tweets misdginos mediante PLN, con un dataset
multilinglie, con 4.138 tuits escritos en espafiol y 3.977 en inglés (Fersini et al., 2018). Del
mismo modo que en el caso de SemEval 2019 task 5, IberEval 2018 estaba organizado en dos
subtareas:

e Subtarea A: Consistia en una tarea de identificacidn binaria de mensajes misdginos.

e Subtarea B: En esta segunda subtarea habia que determinar cuando el objetivo del

comentario miségino era un individuo concreto o un grupo.

2.2.DATASETS

En este apartado listamos algunos de los dataset mas utilizados en el estado del arte para

tareas de deteccién de discurso de odio en inglés.

e Waseem and Hovy: Este conjunto de datos estd compuesto por 16.000 tweets

anotados como "sexistas", "racistas" y "sin odio" (Waseem & Hovy, 2016).

e Davidson et al.: Compuesto por 24.802 tuits anotados en tres clases: discurso de odio,

ofensivo (pero no de odio), y ni ofensivo ni de odio (Davidson et al., 2017)

e HatEval: Este conjunto de datos se compone de 19.600 tweets, 13.000 en inglés y

6.600 en espaiiol (Basile et al., 2019).

e Stormfront: Dataset publico sobre discurso de odio recopilado a través de mensajes
de foros de Internet en idioma inglés. Este dataset estd disponible en GitHub'? . El foro

de origen es Stormfront®3.

2 https://github.com/Vicomtech/hate-speech-dataset
13 https://www.stormfront.org/
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TRAC-I: Se trata de un dataset creado a partir de textos de Facebook y Twitter, en
idioma hindi e inglés. Se compone de 12.000 mensajes clasificados en abiertamente
agresivos (esta clase expresa abiertamente la agresion utilizando Iéxicos simbdlicos
tipicos), encubiertamente agresivos (expresion sutil e indirecta de la agresion,
incluyendo el sarcasmo, la satira y las preguntas retdricas) y no agresivos (Kumar et al.,

2018).

HS: 4.575 tweets en hindiy en inglés etiquetados como discurso de odio (aquellos tuits
que inducen al odio) y discurso normal (tuits que no inducen ninguna forma de odio)

(Bohra et al., 2018).

HOT: Al igual que el dataset HS, tiene texto en hindi e inglés. Consta de 3.679 tuits
clasificados en tres categorias: No ofensivos, ofensivos (con objeto de herir los

sentimientos del receptor) e inductores de odio (Mathur et al., 2018).

A continuacion, se listan algunos de los datasets mas importantes en idioma espafiol,

utilizados por distintos estudios del estado del arte.

HaterNet: Dataset en idioma espafiol construido a partir de Twitter, compuesto por
6.000 textos etiquetados, con 1.567 tweets anotados como odio y 4.433 anotados

como no odio (Pereira-Kohatsu et al., 2019).

HatEval 2019: Dataset construido a partir de Twitter compuesto por 6.600 textos en
espafiol, con 2.739 anotados como odio y 3.861 etiquetados como no odio (Basile

et al,, 2019).

IberEval 2018 — AMI: Dataset en espafiol compuesto por 4.138 tweets, 2.064 anotados

como mensajes misoginos y 2.074 como no miséginos (Fersini et al., 2018).

MisoCorpus 2020: El conjunto de datos completo contiene 8.390 tweets y se divide

en: (1) VARS, que considera la violencia hacia las mujeres en la politica y los medios de
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comunicacion publicos; (2) SELA, sobre la comprensién de las diferencias en los
mensajes miséginos en el espaiol de Espafia y el espafiol de América Latina; y (3) DDSS,

que contiene rasgos generales relacionados con la misoginia (Garcia-Diaz et al., 2021).

2.3.TECNICAS Y MODELOS

El procedimiento que se suele seguir para realizar el analisis de un texto, ya sea con el objetivo
de detectar odio o para cualquier otro, consta de tres pasos:

1. Preprocesado de texto: Cuyo objetivo es preparar el texto para el analisis haciendo uso
de diferentes técnicas de PLN como las descritas en el apartado 2.3.1 Técnicas de
preprocesado.

2. Extraccion de caracteristicas: El rendimiento de un sistema de aprendizaje de IA
depende completamente de la correcta representacién del problema. El objetivo aqui
es extraer caracteristicas del texto a analizar para obtener representaciones que sean
manejables para su procesamiento (Plaza-del-Arco et al., 2021).

3. Clasificacion mediante modelos IA: Una vez tengamos una representacion de nuestros
textos mediante la extraccion de caracteristicas, podemos entrenar modelos de
inteligencia artificial (ya sea desde cero o apoyarnos en modelos pre-entrenados) que
nos permitan clasificar textos nuevos con mayor o menor precision. Las técnicas que
pueden utilizarse para crear modelos de clasificacién automatica de un texto son muy
variadas. Sin embargo, es posible agruparlas en tres tipos principales de técnicas:

aprendizaje automatico clasico, aprendizaje profundo y aprendizaje por transferencia.

2.3.1. Técnicas de preprocesado

Como es natural, el texto que nos llega en bruto puede presentar un formato que diste mucho
de lo que podriamos considerar el formato correcto, compuesto por palabras incompletas,
mal escritas o en otros idiomas, conteniendo espacios innecesarios, etc. Por ejemplo: p- e-r-r-
o, n€gr0. Ademads, en nuestro texto origen existirdn, casi con total seguridad, infinidad de
palabras innecesarias que no nos aporten ningun valor.

Asi pues, en primer lugar y antes de extraer caracteristicas del texto y construir modelos a

partir de esta informacién, debemos dedicar tiempo a las tareas de limpieza, formateo y
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preparacién de los datos. Estas tareas estan presentes en el dia a dia de todos los proyectos

de IA en general, y de procesamiento de lenguaje natural en particular (Urdaneta, 2019).

Existe una amplia variedad de librerias PLN Open Source para realizar estas tareas de

preprocesado en diversos idiomas como son NLTK', Freeling’®, Pattern.es'®, Spacy!’ y

Stanford NLP18,

Tokenizacion: Esta técnica consiste en la segmentacion del texto en frases, palabras o
incluso caracteres, es decir, segmentar el texto en unidades mas pequefias (tokens o
n-gramas) que podamos manejar como referencia para extraer caracteristicas que
aporten valor a nuestro sistema. Ademas, eliminaremos todos aquellos tokens que no
nos aporten valor, de modo que reduzcamos el nimero de elementos a tratar. Para
facilitar la labor de eliminar los tokens innecesarios de nuestro corpus, se suelen
utilizar listas de stopwords. Estas listas constan de palabras que, por ser muy habituales
en el idioma tratado o por cualquier otro motivo particular, aportan poco valor al
problema que estamos tratando. Por ello, es interesante identificarlas vy filtrarlas, por
ejemplo: los determinantes, las conjunciones "y / e", "o / u", etc. Esta una forma de
reducir los elementos de nuestro texto de entrada, pero también se pueden utilizar
otros métodos como, por ejemplo, decidir eliminar todas las palabras de longitud
menor o mayor a un umbral determinado.

Normalizaciéon: Normalizar nuestro texto sera una tarea importante si queremos que
nuestras palabras sigan un formato estandar. Del paso anterior, nuestro tokenizador ha
podido reconocer la misma palabra, pero escrita en mayusculas y en minudsculas (por
ejemplo, tres formas distintas de la misma palabra: hablar, HABLAR y Hablar). Si
gueremos tener solo una version, serd imprescindible normalizar nuestro texto.

POS (part-of-speech) tagging: El POS es la técnica sintactica para etiquetar a cada una
de las palabras de un texto su categoria gramatical. De esta forma, logramos capturar
caracteristicas sintacticas del texto, es decir, tenemos en cuenta la relacién de las

palabras. Trabajos anteriores han probado a identificar el odio utilizando

1% https://www.nltk.org/

15 http://nlp.Isi.upc.edu/freeling/node/1

16 https://www.clips.uantwerpen.be/pages/pattern-es
7 https://spacy.io/

18 https://stanfordnlp.github.io/stanfordnlp/
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caracteristicas sintacticas y léxicas, como los n-gramas (a nivel de caracter, palabray
frase) y el uso de una bolsa de palabras ofensivas. Por ejemplo, Warner and Hirschberg
(2012) encontré que el trigrama “<DET> judio <SUSTANTIVO>" es la caracteristica mas
significativa para detectar odio antisemita, mientras que Waseem and Hovy (2016)
identificd n-gramas de caracteres predictivos mediante coeficientes de regresién
logistica. (Wang, 2018).

= NER (Named Entity Recognition): La deteccién de entidades permite identificar
automaticamente determinadas palabras de un texto y clasificarlas en diferentes
categorias: nombres propios, lugares, marcas, cantidades, etc.

= Lematizacion: Tras aplicar las técnicas de tokenizacién y normalizaciéon, habremos
reducido considerablemente el nimero de elementos a tratar. Sin embargo, y debido a
las peculiaridades del lenguaje, podemos seguir teniendo diferentes formas que
representan la misma palabra. Por ejemplo, en espanol tenemos una gran variedad de
conjugaciones de los verbos: juego, juegas, juegan, jugaban... todas estas palabras
proceden del mismo verbo en infinitivo (jugar). También sabemos que perros, perrito,
perrazo, etc., son diferentes variantes del vocablo perro. La técnica de lematizacidn lo
gue consigue es reducir todas estas palabras derivadas a su lema, que es la forma en la
gue encuentras la palabra en el diccionario.

= Radicalizacion: En inglés, se conoce como stemming al procedimiento de convertir
palabras en raices. Estas raices son la parte invariable de palabras. Las raices se
diferencian del lema en que no tienen por qué ser palabras de un idioma. Por ejemplo,
si utilizamos la funcién Snowball Stemmer de la libreria NLTK de Python para obtener la
raiz de las palabras canta, cantas y cantamos, veremos que la raiz resultante es la
misma: “cant”. Ademas del snowball, nltk permite usar otros algoritmos como el Porter
Stemmer, muy utilizados en los estudios del estado del arte (Frenda etal., 2018) y

(Davidson et al., 2017) .

2.3.2. Técnicas de extraccion de caracteristicas

En primer lugar, revisaremos las técnicas mds simples de extraccién de caracteristicas,

(también conocidas como técnicas superficiales), donde destacamos la bolsa de palabras vy la
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técnica TF-IDF. A continuacidén, pasaremos a explicar los word embeddings, una técnica mas
compleja capaz de representar las palabras de nuestro lexicon mediante vectores

multidimensionales, capaces de capturar incluso relaciones semdnticas entre palabras.

= Bolsa de palabras

La bolsa de palabras (BoW, de sus siglas en inglés) es una representacién vectorial
compuesta por un diccionario (lexicones) con las palabras de los textos con los que se
quieren entrenar los modelos. En estos lexicones se representa la relevancia de cada
elemento mediante métricas como, por ejemplo, si la palabra aparece en el texto

(booleano), o la cantidad de veces que una palabra se repite en el texto.

A continuacién, mostramos un ejemplo muy simple de una bolsa de palabras (Figura
2), donde dados 2 textos se cuenta la ocurrencia de cada palabra como métrica para

la extraccidn de caracteristicas.
Textol: El gato es negro.
Texto2: El perro es blanco y es bonito.

Con este ejemplo, nuestro lexicdn estaria compuesto por las siguientes 8 palabras:

[El gato es negro perro blanco y bonito]

1 2 3 4 5 6 7 8

EL gato es negro perro blanco y bonito
Texto 1 1 1 1 1 0 0 0 0
Texto 2 1 0 2 0 1 1 1 1

Figura 2: Ejemplo de bolsa de palabras (BoW)

Se trata de un ejemplo muy simple donde la mayoria de palabras aparecen una vez o

ninguna, a excepcion de la palabra: “es”, que aparece 2 veces en el texto 2.

= TF-IDF
TF-IDF (del inglés Term frequency — Inverse document frequency) (Luhn, 1957) se trata

de una técnica muy popular y utilizada en el campo de la clasificacién de texto
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automatico, como se puede comprobar en varios de los trabajos realizados en el taller
de SemEval-2019 (Basile et al., 2019). TF-IDF es una técnica cuyo objetivo es encontrar
el documento mas relevante para cierto término dentro de una coleccién de
documentos. Para ello, mide con qué frecuencia aparece un término o frase dentro de
un documento determinado, y lo compara con el nimero de documentos que
mencionan ese mismo término dentro de una coleccién entera de documentos. De
esta forma, palabras muy utilizadas del lenguaje como son los determinantes o las
conjunciones (que aparecen en casi todos los documentos) tendran un valor bajo, ya
gue aportan muy poco valor. Sin embargo, palabras que se repiten mucho en uno o
varios documentos, pero no aparecen en el resto del conjunto de documentos,
obtendran un valor alto de TF-IDF.

Estas técnicas superficiales se enfrentan a limitaciones en la deteccidn de textos de
discurso de odio, especialmente cuando estos textos no contienen palabras ofensivas,
transmitiendo odio encubierto (Dinakar et al., 2011; Mathur et al., 2018). Lo mismo
ocurre en caso contrario, cuando el texto contiene palabras ofensivas, insultos o
cualquier expresidn soez, pero que carece de odio debido al contexto en el que se esta
utilizando. Como ya sabemos, las palabras pueden adoptar distintos significados
dependiendo del contexto en el que se encuentren, debido a elementos intrinsecos del
propio lenguaje como son el sarcasmo o el humor.

Como parte positiva, es que las decisiones de clasificacién de los modelos entrenados
a partir de caracteristicas a nivel superficial son modelos interpretables y, por tanto,
satisfacen el principio de explicabilidad dentro del marco de las directrices europeas
para una IA fiable (Hleg, 2019), permitiendo que los usuarios puedan comprender el
proceso de toma de decisiones y poder confiar en resultados de estos algoritmos

automaticos.

=  Word Embeddings

Word Embedding (Firth, 1957; Mikolov et al.,, 2013) es una de las técnicas mas
populares para representar el vocabulario de un texto, y esta presente en muchos de
los estudios del estado del arte para deteccidén de odio, como Melnyk, (2021) y Dash
et al. (2021) . Esta técnica es capaz de capturar el contexto y la similitud semantica y

sintactica (género, sindnimos, etc.) de las palabras dentro de un texto. Cada palabra se

24



Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

representa en forma de un vector n-dimensional basado en la situacion en la que
aparece junto con otras palabras. Esto nos permite generar vectores de palabras de
forma que palabras similares tengan incrustaciones de palabras similares (Sachdeva
et al.,, 2021).

Por ejemplo, si tenemos las palabras «perro», «gato» y «tomate», cabria esperar que
las palabras perro y gato estuvieran representadas por vectores mas cercanos entre si
en el espacio vectorial donde se definen estos vectores en relacién al vector que
representa la palabra tomate, que quedaria mas alejado. Las representaciones de
Word Embeddings pueden generarse a partir de representaciones pre-entrenadas
como Word2vec (Mikolov et al.,, 2013), Glove (Pennington et al., 2014) y fastText
(Bojanowski et al., 2017). Estos modelos son conceptualmente iguales, pero hay una
pequeiia diferencia: fastText opera a nivel de caracteres, mientras que Word2Vec y

Glove lo hacen a nivel de palabras.

2.3.3. Machine Learning clasico
Entre las diversas técnicas convencionales de aprendizaje automatico utilizadas en la tarea de
la deteccion del discurso del odio en Internet, destacan las maquinas de vectores soporte
(SVM), la regresion logistica y los Random Forest (Burnap & Williams, 2015; Davidson et al.,

2017; Nobata et al., 2016; Waseem & Hovy, 2016).

Sachdeva et al.,, 2021, muestra que estos tres modelos son los que proporcionan mejor
rendimiento dentro del ML convencional en términos de Accuracy, Precision, Recall y F1. Por
otro lado, en este estudio se concluye que el modelo K-Vecinos Mds Cercanos (KNN, de sus
siglas en inglés), obtuvo el peor rendimiento para la tarea de clasificacidn de textos.

El taller SemEval 2019, tarea 5 (que consistia en detectar discurso de odio en Twitter contra
mujeres e inmigrantes), muestra que el modelo SVM es especialmente relevante, ya que los
sistemas creados mediante este modelo obtuvieron los mejores resultados de la competicidon

(Basile et al., 2019).

2.3.4. Deep Learning
Durante los ultimos afos, los métodos de Deep Learning (DL) o aprendizaje profundo, han

despertado un gran interés a la hora de resolver el problema de la deteccion del discurso de
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odio (Badjatiya et al., 2017; Gamback & Sikdar, 2017; Grondahl et al., 2018; Arango et al.,
2019; Melnyk, 2021). Dentro de las técnicas de DL mas utilizadas en la clasificacién de textos,
destacan las redes neuronales convolucionales y las redes neuronales recurrentes (Garcia-Diaz
et al.,, 2022).

Badjatiya etal. (2017) y Gamback & Sikdar (2017) fueron los primeros en utilizar redes
neuronales recurrentes y redes neuronales de convolucién, respectivamente, para la

deteccion del discurso del odio en los tuits.

= CNN

Las redes neuronales convolucionales (CNN) son un tipo de red neuronal que procesa
capas de forma jerarquica, lo que les permite diferenciar distintas caracteristicas en las
entradas recibidas (Roy et al., 2020). La capa mas importante, y la que da nombre a lared,
es la capa convolucional. Esta capa funciona a partir de unos filtros que van desplazdndose
por laimagen o el texto, dependiendo el problema a resolver, obteniendo las salidas de la

capa mediante un producto escalar.

En el caso de imagenes, las primeras capas pueden detectar formas bdsicas como lineas,
esquinas o curvas y se van especializando hasta llegar a capas mas profundas que
reconocen formas complejas como el rostro de una persona o la silueta de un coche.
Aunque se disefiaron inicialmente para la visién por computador, han sido eficaces
también para tareas de PLN y de deteccidn de odio (Wang, 2018). En la Figura 3 podemos
observar la arquitectura de una red neuronal convolucional aplicada al problema de

analisis de sentimiento de textos.
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Figura 3: Arquitectura de una red neuronal convolucional®®

Cuando utilizamos una red CNN aplicada a PLN, lo que procesamos son textos en lugar de
imagenes. Estos textos tendran una representacion matricial, donde las filas representan las
palabras codificadas mediante word embeddings con una dimension d (espacio vectorial
donde hemos embebido los textos). Por tanto, cada filtro de convolucion tendrd una anchura
igual a la longitud del embedding donde estan incrustados los textos a procesar, en nuestro
ejemplo d=4, de modo que cada filtro ird recorriendo las palabras en una sola direccion, de
arriba abajo, en lugar de izquierda a derecha y de arriba abajo como sucede con las imagenes.
En nuestro ejemplo observamos que tenemos 4 filtros, dos de altura h=2 y otros dos de altura
h=3. Esto significa que queremos detectar caracteristicas locales en grupos formados por dos
y tres palabras, capturando diferentes niveles de correlacion entre palabras. Asi pues, cada
filtro se encargara de capturar cierta caracteristica de los datos.

Como estamos aplicando capas de convoluciéon que son unidimensionales (recorremos la
matriz de entrada de arriba a abajo), en lugar de las bidimensionales utilizadas en imagenes,
la salida que obtenemos tras aplicar nuestro filtro es un vector en lugar de una matriz. Estos

vectores serdn nuestros mapas de caracteristicas.

19 |magen extraida de (Nguyen et al., 2017)
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En la fase de max-Pooling solo nos quedamos con un elemento, el resultado mas grande de
cada uno de los mapas de caracteristicas, para reducir la dimensionalidad.

Finalmente, concatenamos los valores maximos obtenidos en la fase de max-Pooling para
conformar la entrada de la siguiente capa, una fully connected layer. En nuestro ejemplo,
tenemos dos capas densas como Ultimas capas. La ultima capa estara compuesta por una sola

neurona para clasificacion binaria.

* RNNyLSTM
Las redes neuronales recurrentes (RNN) son una clase de redes especializadas en analizar
datos de series temporales. La principal caracteristica de este tipo de redes radica en su
capacidad de modelar relaciones temporales entre elementos de la secuencia a través de un
estado interno de la red o hidden state, que podemos considerar como una memoria sobre lo
que la red ha visto hasta ese momento. En esta arquitectura se aplica una férmula recurrente
sobre una secuencia de entrada de manera que, en cada paso dado, se depende del nuevo
valor de entrada x y del estado interno h anterior. Por tanto, este tipo de arquitecturas

permiten modelar relaciones entre palabras dentro de un texto.

Las LSTM (Long Short Term Memory) son un tipo especial de redes recurrentes (Vigna et al.,
2017). Estas redes surgieron como una arquitectura encaminada a solucionar los problemas
de memoria de las RNN tradicionales. En la practica, estas Ultimas presentan problemas para
aprender relaciones con elementos de time step lejanos (es decir, que no estan cerca del time
step actual). Esto limita en gran parte el potencial tedrico de las RNN. Por ejemplo, dentro del
campo del procesamiento de lenguaje natural, cuando analizamos un texto es importante
mantener la informacion aprendida desde el inicio hasta el final de este, de modo que
podamos extraer caracteristicas y relaciones entre palabras dentro de un mismo texto.

Las LSTM estdn disefiadas para intentar solucionar este problema. En LSTM se establecen unos
criterios para almacenar la informacién obtenida hasta el momento. El modelo aprende qué
partes de la representacidn se deben olvidar para incluir las mas importantes. Para ello,
mantienen un estado interno cell state (c) ademas del hidden state (h), el cual representa una

especie de autopista de informacién a lo largo del tiempo.
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Figura 4: Arquitectura LSTM

Fuente: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

En la Figura 4 mostramos la arquitectura LSTM donde podemos observar que, en vez de

calcular directamente el valor de salida h, ahora obtenemos cuatro vectores distintos

conocidos como puertas o gates: i, f, g y 0, que después se combinan para obtener el cell state

cy el hidden state h. A continuacidn, explicamos brevemente la funcién de cada vector.

f (forget gate): Decide qué informacion del cell state hay que olvidar. Para ello, toma
el hidden state anterior y la entrada actual, los transforma y los lleva a una funcién de
activacion sigmoid. Si uno de los valores de este vector es 0, o cercano a 0, entonces
la LSTM eliminara esa porcién de informacién, mientras que si alcanza valores iguales

o cercanos a 1 esta informacién se mantendra y llegara a la celda de estado.

I (input gate): Decide qué nueva informacion incorporamos al cell-state. Para ello,
tomamos nuevamente el estado oculto anterior y la entrada actual, los transformamos
y los llevamos de nuevo a una funcién de activacidn sigmoid. En este caso, los valores
gue queremos preservar en la memoria de la red serdn aquellos cercanos a 1. Este
resultado lo multiplicamos por el vector g que viene de aplicar una funcién tanh a la

entrada actual, para obtener valores entre -1 y 1 que regulen la red.

Cell state (c): Teniendo ya los datos generados por las compuertas forget e input, ahora
podemos actualizar la celda de estado (es decir, la memoria de la red LSTM). Para ello,

primero debemos saber cuanto queremos olvidar. Para ello, multiplicamos el vector
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del olvido f por el valor del cell state c. A continuacion, sumamos lo anterior a lo

calculado en el input gate, generando asi la memoria actualizada.

e Output Gate: Finalmente debemos calcular el nuevo estado oculto, para lo cual
usamos el output gate o puerta de salida. En primer lugar, escalamos el nuevo cell
state para garantizar que esté en el rango de -1 a 1. Para ello usamos la funcién tanh.
Por otro lado, tomamos nuevamente el estado oculto anterior y la entrada actual y los
pasamos por una funcidn sigmoid. Finalmente, multiplicamos los dos valores

anteriores para obtener el nuevo estado oculto.

Existe una versioén alternativa llamada Bi-LSTM (Bidirectional Long Short-Term Memory). Se
trata de una arquitectura idéntica a la LSTM, solo que en este caso la red neuronal se
entrenara con los mismos datos una segunda vez, recorriéndolos en orden inverso. Si bien las
LSTM/BILSTM suponen una mejora respecto a las RNN clasicas, ambos modelos comparten
una arquitectura secuencial que limita en gran medida la paralelizacién de las ejecuciones vy,
por tanto, el rendimiento LSTM general. Por ultimo, la arquitectura GRU (Gated Recurrent
Unit), es una versién simplificada de LSTM introducida en 2014 por Chung et al. y utiliza un
sistema similar de gates al visto en la LSTM. Las mayores diferencias con LSTM son que se
combina el cell state y el hidden state en un solo elemento, asi como la forget gate y la input

gate en una sola puerta.

2.3.5. Transfer Learning
Utilizando como punto de partida modelos pre-entrenados, el Transfer Learning permite
desarrollar rapidamente modelos eficaces y resolver problemas complejos de PLN o de visidon
por computador sin necesidad de tener que entrenar nuestro propio modelo de cero o de
disponer de una inmensa cantidad de datos. De este modo, los modelos pre-entrenados se

han convertido en un elemento basico en el ambito del procesamiento del lenguaje natural.

En los ultimos afios, desde la introduccidn de la arquitectura Transformer, se han utilizado en

muchas otras tareas diferentes de PLN, superando a modelos anteriores basados en redes

neuronales recurrentes (Pérez et al., 2021). Los modelos Transformer tienen como principal
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innovacion la sustitucidn de las capas recurrentes, como las LSTMs que se venian usando hasta

ese momento en PLN, por las denominadas capas de atencion (Vaswani et al., 2017).

A nivel de arquitectura, los Transformers se basan en dos partes bien diferenciadas, un

codificador y un decodificador. Si observamos la Figura 5, el primer bloque que aparece en la

parte izquierda corresponde al codificador o encoder, mientras que el bloque de la derecha

corresponde al decodificador o decoder. El encoder esta compuesto por una pila de N =6

capas idénticas. Cada capa tiene dos subcapas. La primera es un mecanismo de autoatencidn

(multi-head attention), y la segunda es una red simple totalmente conectada. Por otro lado,

el descodificador también se compone de una pila de N = 6 capas idénticas. Ademas de las dos

subcapas de cada capa del codificador, el descodificador inserta una tercera subcapa multi-

head attention, que se aplica sobre la salida de la pila del codificador.
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Figura 5: Arquitectura Transformer?®

20 Imagen extraida de (Vaswani et al., 2017).
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Tanto el codificador como el decodificador trabajan sobre secuencias enteras de texto en lugar
de palabra por palabra. De este modo, en lugar de analizar palabras sueltas, se obtiene un
analisis global. A continuacion, describimos los elementos mas importantes de la arquitectura

Transformer.

= Positional encoding

Dado que nuestro modelo no contiene recurrencia ni convolucion, para que el modelo
pueda mantener el control sobre el orden de la secuencia, debemos incorporar alguna
informacidn sobre la posicidn relativa o absoluta de los tokens en la secuencia. Para ello,
afiadimos “codificaciones posicionales” a los embeddings de entrada en la parte inferior
de las pilas del codificador y decodificador. Las codificaciones posicionales tienen la misma
dimension que los embeddings, por lo que ambas pueden sumarse. Asi, para cada
elemento en la secuencia habrd un correspondiente vector posicional Unico que permitird
el procesamiento en paralelo de la totalidad de la secuencia en los siguientes bloques que
componen el Transformer, lo que supone una de las grandes innovaciones introducidas

por esta arquitectura.

= Self-attention

En la Figura 5, observamos que el elemento de entrada aparece tres veces suministrado al
modulo de multi-head attention, tanto en el codificador como en el decodificador. Esto es
un concepto que se llama auto-atencidn o self-attention, que basicamente es la clave del
Transformer. Como hemos comentado, la arquitectura Transformer recibe todo el texto
de una vez, siendo capaz de analizar como cada una de las palabras se relaciona con el
resto de las palabras de ese mismo texto y, de este modo, recomponer o reconstruir la
informacién segun esas relaciones. Asi, el mecanismo de self-attention recodificara los

textos en las primeras etapas del Transformer.

= Bloque residual y de normalizacion
El propdsito de este modulo es preservar la informacion al pasar por el bloque de multi-
head attention. Posteriormente, la salida de este bloque residual se lleva a un bloque de

normalizacion.
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= Capa fully-connected

Ademas de las subcapas de atencidon, cada una de las capas de nuestro codificador y
decodificador contiene una red feed-forward totalmente conectada, encargada de
aprender a representar de manera optimizada la informacién proveniente de la capa

anterior.

La mejora de rendimiento ofrecida por la arquitectura Transformer ha permitido el rdpido
desarrollo de modelos sobre conjuntos de datos tan grandes que anteriormente no era viable
procesar, dando lugar al modelo BERT (Bidirectional Encoder Representations from
Transformers) y a los GPT (Generative Pre-trained Transformer), estos ultimos utilizados

principalmente para generar textos que simulan la redaccién humana.

= Modelos BERT y RoBERTa
BERT es un modelo Transformer bidireccional, pre-entrenado sobre una gran cantidad de
datos sin etiquetar para aprender una representacién del lenguaje que se puede utilizar para
realizar fine-tuning y adaptarlo a tareas especificas de aprendizaje automatico (Devlin et al.,
2019; Pérez et al., 2021). RoBERTa (A Robustly Optimized BERT Pretraining Approach) es otro
modelo basado en la arquitectura BERT (Liu etal., 2019). RoBERTa utiliza la misma
arquitectura de BERT, pero aplicando pequefios cambios que mejoran notablemente el
rendimiento del modelo en todas las tareas en comparacidon con BERT. RoBERTa también

utiliza un vocabulario mas amplio (50K, frente los 30K de BERT).

* Modelos multilinglies
Dentro del campo de modelos multilinglies, encontramos m-BERT (Devlin et al., 2019) y XML-
R (Lample & Conneau, 2019). Estos dos modelos han impulsado el estado del arte en tareas
de PLN multilinglie mediante el pre-entrenamiento en muchos idiomas, mostrando cémo un
unico modelo puede aprender de varios idiomas, estableciendo bases sélidas para tareas no
relacionadas con el inglés (Cariete et al., 2020).
M-Bert (Multilingual BERT) ha sido pre-entrenado con el corpus Wikipedia en 104 idiomas,

capaz de realizar una generalizacion multilinglie sorprendentemente bien (Pires et al., 2019).
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Por su lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una version multilinglie de RoBERTa. Esta

pre-entrenada en 2,5 TB de datos CommonCraw! filtrados que contienen 100 idiomas.

o Modelos monolingiies para el idioma espafiol
El primer modelo monolinglie disponible publicamente en espafiol fue BETO (Cafiete et al.,
2020), un modelo BERT entrenado en su totalidad sobre un gran corpus en espaiiol, que
mejora los resultados obtenidos por m-Bert para clasificar textos en espafiol (Garcia-Diaz et
al., 2022), lo que demuestra que un modelo monolinglie con suficiente entrenamiento puede
superar a un modelo multilinglie, incluso cuando se utilizan mas recursos y entrenamiento
para este ultimo (Devlin et al., 2019). BETO tiene un tamafio similar al de un BERT-Base (BERT-
base tiene 12 capas, mientras que BERT-large 24). Existen 2 versiones de BETO, la cased y la
uncased. En la versidn uncased, el texto con el que se le ha entrenado ha sido previamente
transformado a minusculas, mientras que en la version cased, el texto con el que se le ha
entrenado es el mismo que el de entrada (sin cambios). Asimismo, en la versién uncased se

eliminan los acentos, mientras que en la versidn cased se conservan.

Mds recientemente, se han desarrollado otros modelos lingliisticos para el espafiol, como

BERTIN (de la Rosa et al., 2022) y RoBERTuito (Pérez et al., 2021), ambos basados en la

arquitectura RoBERTa.
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3. Objetivos y metodologia de trabajo

Considerando el estado del arte y los trabajos preliminares en el proyecto HATEMEDIA, se ha

planteado los siguientes objetivos.

3.1.0bjetivo general

Comparar el rendimiento de diferentes algoritmos de aprendizaje profundo y transfer learning

sobre el dataset creado por el proyecto HATEMEDIA, con el objetivo de determinar cual

clasifica mejor y concluir si es posible la deteccidon automatica de expresiones de odio dentro

de este caso de estudio.

3.2.0bjetivos especificos

Investigar las técnicas y métodos de aprendizaje automatico profundo y transfer
learning del estado del arte que abordan el problema de la detecciéon del discurso del
odio, para identificar qué técnicas y métodos nos conviene utilizar en nuestro estudio
comparativo.

Analisis exploratorio del dataset de HATEMEDIA con el objetivo de identificar
potenciales problemas y oportunidades.

Preprocesado y creacién de diferentes versiones de nuestro dataset original; una
version completa con todos los registros preprocesados y otras versiones reducidas
pero balanceadas.

Entrenar los modelos seleccionados con las diferentes versiones de nuestro dataset y
medir sus rendimientos.

Evaluar los resultados obtenidos para determinar la viabilidad de detecciéon de

expresiones de odio y la preferencia de usar alguno de los modelos, si la hubiera.
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La metodologia del trabajo consistird en seguir los pasos que se describen a continuacion:

Tabla 1: Lista de tareas a realizar para la consecucion de objetivos

Tarea

Lectura del estado del arte

Descripcion

Busqueda de informacidn sobre los recientes avances
en técnicas y modelos de IA para la deteccién del
discurso del odio.

Andlisis exploratorio de los datos

Andlisis exhaustivo de los datos disponibles en el
dataset de Hatemadia, con el fin de entender las
fortalezas y debilidades que nos ofrecen los datos de
cara a resolver el problema planteado.

Seleccion de los modelos de
aprendizaje profundo para realizar
nuestra comparativa

De los algoritmos de aprendizaje profundo y transfer
learning presentes en el estado del arte, decidir cudles
serdn utilizados en nuestro estudio comparativo.

Preparacion de los datos

Preparacion de los datos necesarios para alimentar los
algoritmos de aprendizaje profundo seleccionados,
aplicando las transformaciones y normalizaciones
necesarias.

Creacion de diferentes versiones del
dataset

Debido al desbalanceo de clases de nuestro conjunto
de datos original, sera necesario crear una nueva
versién del dataset que contenga una proporcién
balanceada de etiquetas para poder comparar los
resultados de las pruebas con cada dataset por
separado.

Aplicacién de técnicas seleccionadas
sobre los datos disponibles

Utilizar los algoritmos y técnicas seleccionadas sobre
los datasets disponibles para obtener resultados.

Identificar las meétricas de

evaluacion

Determinar las métricas para la evaluacién de los
algoritmos seleccionados.

Andlisis de resultados

Analisis comparativo de resultados para las distintas
técnicas y modelos utilizados en el estudio.

Conclusiones y lineas futuras

Andlisis de los resultados obtenidos y listar una serie
de recomendaciones a aplicar en trabajos futuros.
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4. CoOmo detectar odio en medios de informacion social

En este trabajo queremos evaluar la viabilidad de utilizar técnicas de aprendizaje profundo y
transfer learning sobre nuestro dataset de Hatemedia para obtener un modelo predictivo que
permita la deteccidn de expresiones de odio en castellano. Nuestra intencidn consiste en
apoyarnos en estos datos para investigar, en primer lugar, si es viable entrenar un modelo de
clasificacién binario que permita detectar si un texto contiene odio (independientemente de
su grado de intensidad) y, en caso afirmativo, determinaremos cudl de los modelos utilizados
funciona mejor. De esta forma, podriamos utilizar este modelo para favorecer la deteccién y
monitoreo de este tipo de expresiones en los entornos digitales. Por lo tanto, el objetivo de
este trabajo no es conseguir desarrollar un algoritmo novedoso que resuelva total o
parcialmente el problema tratado, sino estudiar la viabilidad de la aplicacidon de técnicas ya
existentes para determinar, en caso afirmativo, cudl de los algoritmos utilizados es la mejor

opcion.

4.1.DATASET

El dataset utilizado proviene del proyecto Hatemedia, que ha centrado su estudio en los
principales medios informativos profesionales de Espafa (La Vanguardia, ABC, El Pais, El
Mundo y 20Minutos), para analizar cdmo se difunden las expresiones de odio en los entornos
digitales asociados a este tipo de medios. En este dataset podemos encontrar mas de 500.000
textos etiquetados segun su grado de odio, textos procedentes tanto de publicaciones de
medios informativos como de mensajes de usuarios que interactian con estos desde sus
cuentas sociales en Facebook, Twitter y en sus portales institucionales. A pesar de tratarse de
un dataset con una buena cantidad de registros, tan solo una pequefia parte corresponden a
textos de ODIO. Debido a esto, se ha decidido crear distintas versiones balanceadas del
dataset original, de modo que podamos llevar a cabo diferentes pruebas en nuestra

comparativa.
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4.1.1. Dataset completo

Nuestro dataset original sufre del problema del desbalanceo, donde existe una clase que esta
representada en menor medida. De 574.760 registros, 12.296 estan etiquetados como ODIO
(el 2,1% de los datos), mientras que el 97,9% restante se corresponde con la etiqueta de

NO_ODIO (Figura 6).

Distribucién de etiquetas
562464

= NO_ODIO

Eam ODIO
500000 -

400000 A

300000 -

count

200000 4

100000 -

12296

Label_oOdio

Figura 6: Distribucion de etiquetas del dataset original

Por lo general, el desbalance de datos afecta a los algoritmos en su proceso de generalizacidn,
traduciéndose en que nuestro modelo entrenado no tenga una capacidad de prediccidén que
nos sirva para su uso posterior (Chawla et al., 2004). Intentaremos paliar este problema
mediante la creacién de datasets alternativos a partir del original, con un nimero balanceado

de clases, y compararemos los resultados obtenidos por separado.

4.1.2. Datasets balanceados
Crearemos 3 subconjuntos distintos de datos a partir del dataset original, prestando
atencidén al nimero de muestras de cada clase para obtener un dataset balanceado. Para
ello, seleccionaremos todos los mensajes etiquetados como ODIO y afiadiremos la misma
cantidad de mensajes etiquetados como NO_0ODIO, atendiendo a diferentes criterios para
cada uno de los nuevos datasets. Llamaremos a estas versiones de los datasets V1, V2 y

V3 respectivamente.
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Seleccion aleatoria de textos (V1): Tomaremos todos los textos etiquetados como

ODIO y anadiremos aleatoriamente la misma cantidad de textos de NO_ODIO.

Seleccion de textos de longitud homogénea (V2): En nuestro dataset original
tenemos textos que van desde 1 sola palabra hasta una longitud maxima de 3.044.
A la hora de entrenar un algoritmo para que pueda aprender a clasificar textos en
ODIOy NO_0ODIO, sera importante conocer si obtener un subconjunto de textos de
longitud homogénea supone alguna mejora en el rendimiento. Para ello crearemos

un nuevo dataset balanceado, consistente en textos de longitud homogénea.

Seleccion de textos correspondientes a un mismo medio (V3): La deteccién de
expresiones de odio en textos de internet es un problema complejo, tal y como
hemos comprobado en la seccidén 2. Contexto y estado del arte. Acotar el ambito
de estos textos podria mejorar el rendimiento de los modelos, y eso es
precisamente lo que vamos a analizar con este dataset, donde escogeremos textos
relacionados con un solo medio de entre todos los disponibles (EL PAIS, ELMUNDO,
LA VANGUARDIA, 20MIN y ABC). Elegiremos el medio en funcién de cual tenga el
mejor balance entre muestras ODIO y NO_ODIO y, dependiendo de los resultados
obtenidos por el dataset anterior, seleccionaremos o no Unicamente textos de

longitud homogénea.

4.2. MODELOS DE APRENDIZAJE PROFUNDO PARA LA DETECCION DEL ODIO

Para realizar nuestra comparativa, hemos seleccionado un total de 4 modelos predictivos (3

modelos de deep learning y 1 modelo de transfer learning) de los mencionados en el apartado

2.3. Técnicas y modelos. Para decidir el disefio final de los modelos a utilizar, como el nimero

de capas de convolucidén para la CNN, numero y tamafio de los filtros, afiadir o no mas de una

capa densa de neuronas, decidir si incluir capas de dropout, etc, hemos realizado pruebas

tomando distintas combinaciones, entre ellas las configuraciones presentadas en el trabajo

de Benitez-Andrades et al. (2022), donde se realiza un analisis comparativo de modelos con el

objetivo de detectar racismo y xenofobia en twitter usando redes CNN, LSTM vy transfer
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learning. Finalmente, hemos optado por las arquitecturas mas sencillas posibles que se
describen a continuacion, debido a que arquitecturas mas complejas aumentaban
considerablemente el tiempo de ejecucion sin aumentar apenas el rendimiento,

probablemente por sobre ajustarse demasiado a los datos de entrenamiento (overfitting).

e SNN: En primer lugar, utilizaremos un clasificador basado en un modelo de red
neuronal simple (SNN, simple neural network en inglés). Este sencillo modelo
consistird en una primera capa de embedding que sera posteriormente aplanada y
conectada directamente a una capa densa de 1 neurona con una funcidn de activacion
sigmoid, que sera la encargada de devolver el resultado de la clasificacidn binaria. Este
modelo SNN nos servira de linea base o baseline, pues la capacidad predictiva en este
caso residird en la capa de embedding, cuya salida proveera vectores bidimensionales
gue seran las representaciones de cada uno de nuestros textos. La capa densa de una
neurona sera la encargada de devolver como salida un valor entre 0 y 1, que ser3 el
que utilizaremos para determinar si el texto se clasifica como ODIO (> 0,5) o NO_0ODIO

(<=0,5).

e CNN: En segundo lugar, utilizaremos un modelo CNN, con una primera capa de
embedding, seguida por 1 capa convolucional 1D (probaremos diferente nimero y
tamafio de filtros para seleccionar la mejor combinacidn). La funcién de activacion
utilizada en esta capa serd la funcion RelLU (Unidad Lineal Rectificada), que en la
actualidad es la funcion de activacion con mas éxito y mas utilizada en redes de
neuronas profundas (Ramachandran etal.,, 2017). A la salida de esta capa de
convolucién se le aplicard una funcion de MaxPooling para reducir el tamafio de las
muestras, y el resultado se conectara a una capa densa de 1 neurona con una funcién

sigmoid.

e LSTM: En tercer lugar, seleccionamos para realizar nuestra comparativa el modelo
recurrente LSTM, donde utilizaremos en primer lugar una capa de embedding, seguida
de una capa LSTM (probaremos diferente nimero de neuronas para poder seleccionar
la mejor opcidn). La salida ird conectada, al igual que en los casos anteriores, a una

capa densa de 1 neurona con funcidn de activacion sigmoid.
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BETO: Finalmente, utilizaremos en nuestra comparativa el modelo Transformers
monolinglie para el idioma espanol BETO, tanto la versidn cased como uncased
(“dccuchile/bert-base-spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-
uncased” respectivamente). Estos modelos se pueden encontrar en la web de Hugging
Face %2, y son accesibles desde el cédigo a través de la biblioteca Transformers?3. La
libreria Hugging Face, ademas de soportar una variedad de diferentes modelos de
Transformers pre-entrenados, incluye versiones preconstruidas adaptadas a una tarea
especifica, como por ejemplo clasificacion de texto. Para nuestras pruebas

utilizaremos BertForSequenceClassification®4.

4.3. METRICAS DE EVALUACION

Como métricas para comparar los distintos modelos entrenados vamos a utilizar:

Accuracy (Exactitud): Esta métrica indica el nimero de muestras correctamente
clasificadas para todas las clases sobre el total de muestras. En nuestro caso, al tener
conjuntos de datos muy desequilibrados, este pardametro por si solo no nos es
suficiente ya que podemos clasificar muy bien la clase mayoritaria, teniendo valores
altos de exactitud y, sin embargo, detectar muy mal la clase minoritaria, en este caso

los textos de ODIO. La férmula para calcular el accuracy es la siguiente:

_ muestras_correctas _ TP+TN

Acc= =
total muestras TP+TN+FP+FN

Precision: nos indica lo precisa que es nuestra clasificacidn, es decir, de las muestras

reconocidas en una clase cuantas son correctas.

22 https://huggingface.co/dccuchile
2 https://huggingface.co/docs/transformers
24 https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification
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muestras clasificadas correctamente en una clase TP

Precision = =
total muestras clasificadas en esa clase TP+FP

e Recall (Exhaustividad): Esta métrica es también conocida como el ratio de verdaderos
positivos y es utilizada para saber cuantos valores positivos son correctamente

clasificados.

muestras clasificadas correctamente en una clase TP

Recall = =
total muestras de la clase TP+FN

Donde,

TP = True Positive o muestra clasificada en una clase de forma correcta.

TN = True Negative o muestra no clasificada en una clase correctamente.

FP = False Positive o muestra clasificada en una clase cuando no pertenece a ella.

FN = False Negative o muestra no clasificada en una clase cuando si pertenece a ella.

e Fl-score: Una métrica que combina Precisién y Recall.

2xPrecision*Recall

F1= —
Precision+Recall

e Macro-F1: Se trata de la media no ponderada de las puntuaciones F1-score.

sum(Fl—-scores)

Macro-F1 = —
numero de clases

42



Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

5. DESARROLLO DE MODELOS DE APRENDIZAJE PROFUNDO

PARA LA DETECCION DE ODIO

A continuacidn, se detalla el trabajo realizado en este estudio, desde la preparacion de datos

hasta el entrenamiento y evaluacién de los modelos y su posterior comparativa.

5.1. ANALISIS Y PREPARACION DE LOS DATOS

En un primer vistazo, observamos que nuestro dataset contiene 9 columnas (Figura 7).

medio soporte url tipo_mensaje texto intensidad tipo_odio tono_humoristico modificador
0 Pp::ls_ WEB hl‘lps:a'.'elpals.com!deportg%s‘;fggi‘;[rl{l: COMENTARIO B|DEI’§E nun:zgiiaﬁiir;irn 30 Otros NaN MaN
1 pAEiIS_ WEE HHDS:J'-'EHJGIS.CO\TIJ'CIBDOF[;U?IEIE(?}:I;?{I: COMENTARIO el real madrid ha th:.leasltggﬂltg\- 0.0 NaN NaN MaM
2 PP::'S_ WEB hnDS:ﬂ"B|DEiS.CDmn’ES‘][éaggfnfigi'lz-a[{jl: COMENTARIO cristina cnuenlessid%ogl’;lrgsailfr 30 Ideult')gico NaN NaN
3 PAEI; WEB "“p5:'r"'e'”ai5'°°m'res1°§g§ﬁigi1z'£_1_f COMENTARIO habria ““iﬂifgﬂ:oeég?;“?! 30 Ideoldgico Mah NalN
o s we  MoSlbescomemEN0L ooy MOPCOINCISINID 30 oo

Figura 7: Extracto de las cinco primeras filas del dataset original.
e Maedio: Indica el medio digital de donde se ha extraido el texto. En nuestro dataset

tenemos 5 valores diferentes (El PAIS, EL MUNDO, LA VANGUARDIA, 20MIN y ABC).
Soporte: Indica el soporte del medio (Web, Twitter).

Url: Link al texto. Hemos comprobado casos en el que los links no corresponden con el
texto al que deberia apuntar, por lo que consideramos que esta columna es poco
fiable.

Tipo_mensaje: Tipo mensaje puede tomar 3 valores (COMENTARIO, NOTICIA y
TITULAR_NOTICIA).

Texto: Es el texto para clasificar. Nuestra variable objetivo.

Intensidad: Indica la intensidad de la expresidn de odio, con siete posibles valores que
van desde 0.0 hasta 6.0. El valor 0.0 indica que el texto no contiene odio, mientras que
el resto de los valores corresponden a una intensidad de odio. Como en nuestro
estudio solo nos interesa realizar una clasificacion binaria, transformamos esta
columna a valores 0 y 1 (NO_ODIO y ODIO respectivamente), y la renombramos a

label_odio.
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e Tipo_odio: Indica el tipo de odio del texto. Este campo solo es aplicable a textos
etiquetados como ODIO. Existen 7 posibles valores (Racismo, Sexual, Misoginia,
Religioso, Xenofobia, Ideoldgico y Otros), ademas de combinaciones entre ellos (por
ejemplo, "Racismo, Misoginia") hasta un total de 72 combinaciones distintas.

e Tono_humoristico: Es un booleano que indica si existe humor en el texto etiquetado
como ODIO. (Solo aplicable a textos etiquetados como ODIO).

e Modificador: Contiene los valores: "Humor", "Atenuador", "Intensificador" y la
combinacidon "Intensificador, Atenuador”. (Solo aplicable a textos etiquetados como

oDIO).

A continuacion, realizamos un andlisis pormenorizado de los datos disponibles en el dataset

de Hatemedia, con el fin de entenderlos en profundidad y comprobar la calidad de los mismos.

5.1.1. Tratamiento de los valores nulos.
En este apartado perseguimos dos objetivos principales: 1) eliminar registros cuando el campo
“contenido” o “intensidad” es nulo; 2) si tenemos nulos en otras columnas, decidir qué hacer

con ellos.

En la Figura 8 mostramos el nimero de campos nulos para cada columna de nuestro dataset.
Los 562.467 registros con valor nulo en las columnas “tipo_odio” y “tono_humoristico” y los
574.410 de “modificador” son esperados, ya que se trata de columnas que, de tomar un valor,
solo lo toman cuando el texto en cuestidén es etiquetado como ODIO. Para el resto de los

textos, su valor debe ser siempre nulo.

cols = df.columns.values
for columna in cols:
print ('Columna’, columna ,":', df[df[columna].isnull(}].shape[@&], nulos.")

Columna medio : @ nulos.

Columna soporte : 8 nulos.

Columna url : @ nulos.

Columna tipo_mensaje : 1 nulos.

Columna texto : @ nulos.

Columna intensidad : @ nulos.

Columna tipo_odio : 5624567 nulos.
Columna tono_humoristico : 574617 nulos.
Columna modificador : 574418 nulos.
Columna label odic : © nulos.

Figura 8: Conteo de campos nulos por columna
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Si embargo, observamos también que tenemos un valor nulo en la columna tipo_mensaje.

Para decidir qué hacer con este registro, hemos seguido los siguientes pasos.

1. En primer lugar, hemos accedido a la url asociada a este registro:

https://twitter.com/1022840547118145536/status/1347858101454704642

Sin embargo, a pesar de que hace referencia a un tweet del medio “ABC”, hemos
comprobado que esta url no se corresponde con el texto en cuestién, si no con otro
distinto. Tras hacer la prueba con otras urls del fichero, confirmamos que esta columna
no tiene datos fiables.

2. Ensegundo lugar, hemos estudiado el valor que contiene el campo tipo_mensaje para
otros registros cuyo medio es “ABC” y su soporte es “Twitter”, para intentar deducir
qué valor podria ser el mds probable para nuestro campo nulo. Los valores que toma
este campo para otros registros similares son: “COMENTARIO”, “NOTICIA” o “NaN”.
Inicialmente, podriamos pensar que los textos catalogados como “NOTICIA” son textos
mas largos y elaborados, mientras que los de tipo “COMENTARIO” podrian
corresponderse a textos significativamente mas cortos. Sin embargo, comprobamos
gue no es asi, puesto que podemos observar algunos ejemplos de tipo_mensaje =
“NOTICIA” que estdan compuestos por textos de muy pocas palabras. Asi pues,
consideramos la hipétesis de que la columna tipo_mensaje (al menos para los registros
con medio y soporte “ABC” y “TWITTER”) hace la distinciéon de cuando un comentario
se escribe en contestacién a una noticia directamente, y cuando se escribe en
contestacion a otro comentario. Es decir, cuando un usuario escribe un comentario en
referencia a una noticia, su campo tipo_mensaje seria “NOTICIA” y en el caso de que
un usuario responda a otro comentario, su texto se catalogaria como tipo_mensaje =
"COMENTARIQ". En cualquier caso, esto es solo una suposicién.

Como no somos capaces de determinar con certeza el valor de tipo_mensaje para este

caso y teniendo en cuenta que el campo label_odio es 0 (correspondiente a la etiqueta de

NO_0DIO, que es la etiqueta mayoritaria en nuestro dataset), decidimos eliminar el

mensaje.
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5.1.2. Analisis exploratorio y visualizacion de los datos

Una vez hemos terminado el tratamiento de los valores nulos en el dataset, nos disponemos
a realizar un analisis exploratorio de los datos. Actualmente sabemos que el dataset esta
claramente desbalanceado (ver Figura 1), con 562.464 observaciones de NO_ODIO, frente a
12.296 de ODIO. A continuacidn, realizaremos un estudio de como se distribuyen los datos en

funcién de las distintas variables, para entender un poco mejor el dataset.

En primer lugar, estudiamos la distribucion de los datos en relacion a la variable SOPORTE. En
la Figura 9 podemos observar que el 60% del dataset corresponde a textos de soporte WEB,
mientras que el 40% corresponde a Twitter. Podria parecer que nuestros datos estdn bien
representados en ambos soportes. Sin embargo, si atendemos Unicamente a los textos de
ODIO, podemos apreciar que el 77% estan vinculados a Twitter. Este dato es interesante,
porque siendo los textos de odio tan solo un 2% de los textos totales del dataset, el 77% de

esta minoria estan asociados a la plataforma Twitter.

Distribucion de la variable soporte Distribucién de textos de ODIO en funcién del soporte

WEB

TWITTER

Figura 9: Distribucion de los datos en funcidn de la variable soporte (izquierda), y la misma distribucion pero

considerando solo los textos de ODIO (derecha)

Estudiaremos ahora la distribucion de la variable MEDIO con respecto a la variable SOPORTE:
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soporte = WEB soporte = TWITTER

EL PAIS
EL MUNDO
La Vanguardia

20MIN

medio

LA VANGUARDIA

ABC

20MIN

T T T T T T T T
0 20000 40000 60000 80000 o] 20000 40000 60000 80000
count count

Figura 10: Distribucion de la variable MEDIO con respecto a la variable SOPORTE (con medios duplicados)

En la Figura 10 podemos ver que tenemos medios duplicados: “La Vanguardia“, “20MIN” y

“ABC”. Normalizamos el nombre de los medios duplicados o con espacios sobrantes.

soporte = WEB soporte = TWITTER
EL PAiS
EL MUNDO

o

'é LA VANGUARDIA
20MIN
ABC

20000 40000 60000 80000 20000 40000 60000 80000

count count

Figura 11: Distribucién de la variable MEDIO con respecto a la variable SOPORTE (tras normalizacién de los

nombres de los medios)

La Figura 11 muestra un grafico con los nombres de los medios normalizados donde podemos

apreciar que todos los medios tienen presencia en ambos soportes (WEB y Twitter).
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Comparando los medios entre si, podemos comprobar que “La Vanguardia” es el medio con
menos textos en nuestro dataset. Sin embargo, este hecho no deberia suponer ningin
problema para nuestro estudio.

Ahora estudiamos la distribucidn de los datos Unicamente en relacion con la variable MEDIO.

Distribucién de la variable medio Distribucién de textos de ODIO en funcién del medio

20‘
EL PAIS

Figura 12: Distribucidn de la variable medio (izquierda), y la misma distribuciéon pero considerando solo los

EL MUNDO

EL MUNDO

‘ LA VANGUARDIA

EL PAlS
LA VANGUARDIA

20MIN

ABC

textos de ODIO (derecha)

En la Figura 12 podemos apreciar que EL MUNDO no solo es el medio con mayor presencia en
nuestro dataset (26%), sino que ademas es de donde se generan la mayor parte de los textos
de ODIO (un 43% del total). Por lo tanto, EL MUNDO parece la mejor opcion si decidimos crear
un dataset balanceado con textos provenientes de un mismo medio para anadir a nuestra

comparativa.

Analizamos ahora la distribucién de la variable tipo_mensaje con respecto a la etiqueta

label_odio (Figura 13).
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323702 . .
tipo_mensaje
300000 - EEE COMENTARIO
B NOTICIA
mmm TITULAR NOTICIA
250000 -
200000 -
=3
[=
3 157968
Y 150000 -
100000 -
50000 -
0. 15";'0 105
0 1

Label_Odio (0=NO_ODIO / 1=0DIO)

Figura 13: Distribucion de la variable tipo_mensaje con respecto a la etiqueta label_odio

Vemos que, para ambos casos (ODIOy NO_0DIO), la categoria mas comun es “COMENTARIO”,
y la menos comun es “TITULAR_NOTICIA”.

Las tres columnas restantes de nuestro dataset: tipo_odio, tono_humoristico y modificador,
no seran necesarias para nuestro estudio, ya que estas columnas unicamente dan informacién
adicional para los mensajes de odio (para el resto de los casos toman el valor nulo). A nosotros
nos bastara con conocer la etiqueta OD/IO y NO_ODIO para cada texto, con el objetivo de
entrenar nuestro modelo, sin necesidad de entrar en mas detalle sobre el tipo de odio. Aun

asi, hemos realizamos un pequeno andlisis y estos han sido los resultados:
- Tipo_odio: Observamos que, de los 12.296 textos de odio presentes en nuestro
dataset, la gran mayoria estdn catalogados con tipo_odio = "Otros" (73%), seguido

por tipo_odio = "ldeoldgico" (14%).

- Tono_humoristico: De los 12.296 textos de odio, tan solo 143 (1%) han sido

catalogados con tono_humoristico = ”Si”. El resto tienen valor nulo.
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- Modificador: Tan solo el 3% de los mensajes de odio contienen valor en este
campo. Los valores presentes son “Atenuador” (114 observaciones),

“Intensificador” (233), la tupla “Intensificador, Atenuador” (2) y Humor (1).

Tras este andlisis exploratorio, decidimos eliminar las columnas tipo_odio, tono_humoristico
y modificador por no aportar valor a nuestro estudio. También decidimos borrar el registro
gue contiene el campo “tipo_mensaje” a nulo, de modo que dejamos un dataset libre de

valores nulos.

5.1.3. Preparacion de la columna Texto

El siguiente paso serd tratar la columna texto de nuestro dataset. La columna texto es la que
contiene los mensajes a clasificar como ODIO / NO_0ODIO, por lo que debemos realizar un
preprocesado de modo que aseguremos que el contenido de esta columna es éptimo para

poder entrenar nuestros modelos de inteligencia artificial.

Para ello, creamos una funcion que implemente un flujo de limpieza y preprocesado de los

datos, consistente en los siguientes pasos:

e Limpieza de URLs

e Eliminacién de @ y su mencion

e Eliminacién de los caracteres especiales

e Eliminacién de palabras con longitud <2

e Eliminacién de espacios en blanco adicionales
e Tokenizacién

e Lematizacion
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def limpiar_ texto(texto):
"""Funcidén que dado un texto devuelve ese mismo texto preprocesado, realizando las siguientes tareas:"""

# Eliminames Los links de las URLs
texto = re.sub(r'' " (?i)\b((?:https?:// |www\d{0,3}[.]][a-2z0-9.\-1+[.][a-z]{2,4}) (2 : [*\s O T+ N (([*\s <> ]+ (M [MAs (<> 1+\)))

#ELiminamos la @ y su mencidn
texto = re.sub(r"@[A-za-ze-9A-y\uesfi\uead1]+”, ' ', texto)

# Eliminamos los caracteres especiales.
texto = re.sub(r'\w', ' ', texto)

# Eliminamos caracteres sueltos (longitud <2)
texto = re.sub(r'\b\w{1}\b', ' ", texto)

# Eliminamos espacios en blanco adicionales
texto = re.sub(r" +", ' ', texto)

# Eliminamos espacio en blanco del principio (en caso de que hubiera)
texto = re.sub(r'~\s", ', texto)

# Eliminamos espacio en blanco del final (en caso de que hubiera)
texto = re.sub(r'\s+$', '', texto)

return texto

Figura 14: Extraccion de codigo que implementa el flujo de preprocesado de la columna texto

En la Figura 14 mostramos el cédigo de la funcion limpiar_texto, que comienza por eliminar
las urls, que no nos van a dar ningun valor a lo hora de hacer nuestra clasificacién. Asi mismo,
eliminamos las menciones propias de los tweets (expresiones que empiezan por @).

Continuamos por eliminar todos los caracteres especiales de los textos utilizando la expresién
regular re.sub(r'\W', ' ', texto). Tras ello, eliminamos los caracteres sueltos (longitud <2), y
también eliminamos los espacios en blanco adicionales que nos hayan podido quedar, tanto

en el interior del texto, como al principio y al final.

nlp = spacy.load('es_core_news_sm")
def normalizar (t):
"""Funcion que dada una lista de textos, devuelve esa misma lista de textos
con los textos normalizados, realizando las siguientes tareas:
1.- Pasamos la palabra a mindsculas
2.- Lematizamos la palabra
3.- Eliminamos todas las palabras que no nos aporten valor desde el punto de vista de su categoria gramatical.

#POS -> incluimos PROPN para mantener nombres propios, AUX porque en spacy espafol perderiamos formas verbales
#si no Lo incluimos (por ejemplo estoy, seria y serd son etiquetados como AUX por spacy).
#También incluimos INTJ (interjecciones), porque hemos detectado que spacy no hace un uso correcto de esta etiqueta
#y adjetivos como "traidor" son consideradas INTJ.

for index, texto in enumerate(tqdm(t)):
texto = nlp(texto.lower())
t[index] = " ".join([word.lemma_ for word in texto if word.pos_ in ['NOUN', 'ADJ', 'VERB', 'ADV','PROPN', 'AUX', "INTJ']]

return t

Figura 15: Extraccion de codigo que implementa el flujo de normalizacion y lematizacién de la columna texto

En la Figura 15 podemos ver el cddigo de la funcién normalizar. Esta funcidn se ayuda de la
libreria spacy para pasar el texto a minusculas y lematizar cada palabra. Por ultimo, nos

guedamos solo con las palabras que pertenezcan a ciertas categorias gramaticales que
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consideramos utiles para nuestro estudio, como nombres, adjetivos, verbos y adverbios.
Hemos decidido quedarnos con las etiquetas gramaticales AUX (verbo auxiliar) e INTJ
(interjeccidn), porque en el idioma espafiol, las palabras etiquetadas como AUX son formas
verbales que deseamos mantener, como por ejemplo “estoy”, “seria” y “serd”. En el idioma
inglés, las palabras con la etiqueta AUX normalmente se eliminarian del estudio. En el caso de
la etiqueta INTJ, hemos detectado que spacy no hace un uso correcto de esta etiqueta para el
idioma espafiol en todos los casos, de modo que durante nuestra investigacién hemos
encontrado que adjetivos como "traidor" son consideradas INTJ. Como no queremos perder
estas palabras, decidimos mantener todas las palabras etiquetadas como INTJ.

Tras realizar el preprocesado de los datos, mostramos algunos ejemplos del resultado:

Texto sin procesar:

a mi me la trae floja el resultado. esta sefora no daba la talla. como otros ya aludidos.
Texto procesado:

traer flojo resultado sefiora no dar talla ya aludido

EEEFERRERE R R R R R

Texto sin procesar:

actuar si que actud. presuntamente coaccionando a las “profesoras”™. lo de buena fe ya es de traca.
Texto procesado:

actuar actuar presuntamente coaccionar profesora buena fe ya ser traca

HEEERRERRR R R R R R R

Texto sin procesar:
hostialll sera que por fin va a reconocer los derechos de sus hijos extramaritales!!!

espafia merece un rey bastardol!!!
Texto procesado:
hostia ser fin ir reconocer derecho hijo extramarital espafia merecer rey bastardo

Figura 16: Comparacion del texto antes y después de aplicar preprocesado

En la Figura 16 podemos comprobar que, tras el preprocesado del texto, hemos eliminados
signos de puntacidn, espacios en blanco sobrantes, saltos de linea y cualquier otro caracter
especial. Asimismo, las palabras han sido normalizadas y lematizadas.

Tras la realizacion del preprocesado, observamos que hemos perdido 23 textos de ODIO y
2.522 de NO_0DIO, todos ellos comentarios compuestos por palabras intranscendentes o mal

escritas que se han convertido en textos nulos, tal y como podemos ver en la Figura 17.
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texto_procesado texto_sin_procesar

NaN esa misma
NaN quo
NaN jufl
NaN @g2reven
NaN @lavanguardia
NaN dep
NaN dep
NaN d. e p.
NaN d e p
NaN y?

Figura 17: Textos procesados nulos vs textos sin procesar

Eliminamos todas esas filas con textos nulos, ya que no nos aportaran nada para nuestra

investigacion.

5.1.4. Estudio de la longitud de los textos

Analizar la longitud de los textos como una variable mas nos revelard informacion importante
sobre nuestros datos, como la longitud maxima y minima, asi como su distribucién. Los
modelos de aprendizaje profundo pueden mostrar un comportamiento muy diferente en
funcién de las longitudes de los textos que se les proporciona, tanto desde el punto de vista

de rendimiento como de tiempo de ejecucion.

Para poder analizar la longitud de los textos programamos una funciéon lambda que cuente las
palabras de cada uno de ellos y las almacenamos en una nueva columna de nuestro dataset
llamada “num_palabras”. En la Figura 18 mostramos como queda nuestro dataset procesado,
tras afnadir la nueva columna “num_palabras”, eliminar las filas y columnas innecesarias y con

los textos preprocesados.
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df join[ "num_palabras'] = df_join['texto'].apply(lambda t: len(t.split(" "}))

df join

texto label_odio medio soporte tipo_mensaje num_palabras

0 barca nunca acaezar segundo tercero ya estara... 1 ELPAIS WEB COMENTARIO 14

1 real madrid haber poner punto final andadura c... 0 ELPAIiS WEB COMENTARIO 103

2 cristinar cifuent poder haber ser presidenta m._. 1 ELPAIS WEB COMENTARIO 74

3  haber reabrir caso supremo dedicar proteger si... 1 ELPAIS WEB COMENTARIO 9

4 parecer poco exagerado pedir mas afio prision c... 1 ELPAIS WEB COMENTARIO 78
574755 sabéis estar abultado tamario pelota leer tonte... 1 ELPAIS TWITTER COMENTARIO 10
574756 s6lo dinero pablice invertir vuestro panfleto ... 1 ELPAIS TWITTER COMENTARIO 14
574757 panfleto criticar gasto plblco sois puta mierd... 1 ELPAIS TWITTER COMENTARIO 19
574758 servicio enfermo estar problema oler izquierdo... 1 ELPAIS TWITTER COMENTARIO 7
574759 asi ser iréis mierda ya no valeis panfleto 1 ELPAIS TWITTER COMENTARIO 8

572214 rows = 6 columns

Figura 18: Creacion columna num_palabras que contiene la longitud de los textos

A continuacién, realizamos un estudio detallado basado en nuestro nuevo campo

“num_palabras”. El objetivo es conocer cémo se distribuye esta variable para entender si

existe algun patrdon de correlacién y sacar conclusiones que puedan ayudarnos a abordar

nuestro problema. Para ello, obtendremos estadisticas basadas en la longitud de los textos

como la longitud media, minima y maxima, primero de forma general (teniendo en cuenta

todos los textos) y a continuacidn centrandonos Unicamente en los textos de odio. Asimismo,

obtendremos estadisticas de la longitud de textos en funcién de las variables TIPO_MENSAJE

y MEDIO.

5.1.4.1. Estudio general de longitud de los textos

En la Figura 19 se muestran las estadisticas relacionadas con la longitud de los textos de

nuestro dataset. Observamos que tenemos textos que van desde 1 una sola palabra (estos

textos tan cortos probablemente no nos aporten informacidn util a la hora de entrenar

nuestro clasificador), hasta 3.044 palabras, con una media global de 60 palabras por texto.
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Longitud general de los textos

La longitud media de los textos es: 68 palabra(s)

La longitud min de los textos es: 1 palabra(s)

La longitud max de los textos es: 3844 palabra(s)

Estadistica detallada para la longitud de los textos del dataset:

count 572214 . a062808

mean 68.8877%6
std 145.8399563
min 1.@68668
25% 5.a6ee68
5% 16. 6628668
75k 26. 66828660
max Jadd . engens

Mame: num_palabras, dtype: floatsd

Figura 19: Estadisticas para la longitud general de los textos del dataset

Probablemente, los textos que contienen una Unica palabra no aporten informacion util a la
hora de entrenar el clasificador. Es muy probable también que la diferencia tan grande que
existe entre los textos de longitud minima y maxima perjudique el rendimiento del clasificador
ya que, tras el proceso de padding, los textos mds cortos se representaran como un vector de
unos pocos enteros al inicio y mds de 3000 ceros al final. Por este motivo, una parte de nuestra
investigacion sera trabajar con un dataset compuesto de textos de longitud homogénea para
poder comparar los resultados obtenidos.

También podemos apreciar en estas estadisticas que el 75% de los textos de nuestro dataset
estd compuesto por 26 palabras o menos. Esto quiere decir que la longitud maxima de 3044
es un valor atipico. Mds adelante analizaremos la longitud de los textos en funcién de otras
variables como TIPO_MENSAJE o MEDIO, de modo que podamos entender si los textos mas

largos guardan alguna relacién con cierto tipo de variables.

5.1.4.2. Longitud en funcién de etiqueta label _odio

En la Figura 20 mostramos el mismo estudio anterior pero esta vez atendiendo a la etiqueta
label_odio. Comprobamos que, de media, los mensajes de ODIO son significativamente mas
cortos que los etiquetados como NO_ODIO, 9 palabras frente a 61. El 75% de los textos de
odio contienen 11 palabras o menos. Cuando construyamos nuestro dataset balanceado en

base a la longitud de las palabras, tendremos que tener en cuenta estas estadisticas que
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devuelven los mensajes de odio para crear un dataset donde la media de la longitud de los

textos sea alrededor de nueve palabras.

Longitud de los mensajes en funcidn de etiqueta ODIO / NO_ODIO:

Para mensajes d= ODIO

La longitud media de los mensajes de ODIO es: 9 palabra(s)
La longitud min de los mensajes de ODIO es: 1 palabra(s)

La longitud max de los mensajes de ODIO es: 1381 palabra(s)

Para mensajes de NO_ODIO

La longitud media de los mensajes de NO_ODIO es: 61 palabra(s)
La longitud min de los mensajes de WO _ODIO es: 1 palabra(s)

La longitud max de los mensajes de NO_ODIO es: 3844 palabra(s)
Estadistica detallada para la longitud de los mensajes de ODIO:

count 12273 .380888

mean 9.8351%99
std 18.127268
min 1.280860
25% 3.286268
Se% 6.2068680
75% 11.2860880
max 1381.208868

Mame: num_palabras, dtype: floatsed
Estadistica detallada para la longitud de los mensajes de HNO_ODIO:

count 552941.802800

mean bl.286786
std 147.287687
min 1.008808
25% 5.08088608
Se% 16.abaese
75% 27 .a68e80
max 3844 . 808680

Mame: num_palabras, dtype: floatsd

Figura 20: Estadisticas para la longitud de los textos en funcion de su etiqueta label_odio

5.1.4.3. Longitud en funcidn de tipo_mensaje y medio

Ahora nos disponemos a analizar la distribucién de la variable NUM_PALABRAS en funcién de
TIPO_MENSAJE y MEDIO, tanto para los textos en general, como Unicamente para los textos
etiquetados como ODIO. Los resultados son mostrados a continuacidn en las Figuras 21, 22 y

23:
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TITULAR NOTICIA

NOTICIA

COMENTARIO

count 26849 .668068

mean 14.532854
std 56.672585
min 1.0e806a
25% 5.0eeooa
5a% 7 .0e806a
755 9.0ee06a
max 1832.0@8008

Mame: num_palabras, dtype: floatsd

count 159143 . e0baas

mean 155.2187@3
std 232.668582
min 1.e008880
25% 3.e008880
Se# 25.800000
75% 251.200888
max 3e44.e00880

MName: num_palabras, dtype: floatsd

count 332222 .600600

mean 25.60839382
std 62.377658
min 1.862808
255 5.809808
S8 18.802800
755 21.802800
max 2820.08000800

Name: num_palabras, dtype: floated

Estadisticas de la longitud de los textos en funcidn del TIPO_MENSAJE (solo para textos de odio):
TITULAR NOTICIA NOTICIA COMENTARIO
count 185 .ee6ee0 count 1578 . 688688 count 18592 . ac0e806
mean 5.914286 mean 18.831847 mean 8.799962
std 5.282617 std 43.32458354 std 16.869878
min 1.88eaa0 min 1.8686882 min 1.a88860
25% 2.88eaa0 25% 3.0e2002 25% 3.eeeac0
583 4. 868880 58% 6.880088 S8% 6.808ea8
75% 9.800e80 75% 11. 682686 75% 11.ae0e86
max 34 .8e0ee0 max 1361.00808e max 115.a60ee0

Name: num_palabras, dtype: float6d

Mame: num_palabras, dtype: floated

Name: num_palabras, dtype: floated

Figura 21: Estadisticas de la longitud de los textos en funcion del tipo_mensaje (arriba) y las mismas

estadisticas, pero centradas tnicamente en los textos de odio (abajo)

En base a estas estadisticas observamos que los textos correspondientes a TITULAR_NOTICIA

son significativamente mas cortos que las NOTICIAS y COMENTARIOS, tanto para todos los
textos en general como para los de odio. Si nos centramos Unicamente en los textos de

ODIO, podemos observar que el 75% de ellos tienen 11 palabras o menos para cualquier

valor de TIPO_MENSAIJE.

Estadisticas de la longitud de los textos en funcién del MEDIO

ABC

EL PAls

28MIN

count 8612 .02a008

mean G4 .384456
std 146.9458586
min 1.6e6088
25% 5.oeaooa
So% 0.68600806
75% 29.0ec008
max 2820.006006

Mame: num_palabras, dtype: floated

count 136389 . 000000

mean 93.29852¢
std 2@6.288317
min 1.806808
25% 6. 800888
{=54 18. 060888
5% 33.000880
max 2993 . 000800

Mame: num_palabras, dtype: floated

count 143836. 000800

mean 68.867761
std 114.678845
min 1.600080
25% 3.a0e600
5% 0.880600
5% 55.@8ec08

max

Name:

2139. 600600

num_palabras, dtype: floated

LA VANGUARDIA

EL MUNDO

count 43738.006008

mean 41.238766
std 119.535639
min 1.0e6008
25% 4.6068000
50% 8.006000
75% 15.888088
max 2870 .0ge0ee

MName: num_palabras, dtype: floate4

count 151515 . 268268

mean 29.438858
std 1@2.311496
min 1.068888
25% 6.9688000
Se% 11.060888
75% 22 .0608888
max 1844 . gooese

Name: num_palabras, dtype: float64

Figura 22: Estadisticas de la longitud de textos en funcion del MEDIO
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del MEDIO (solo para textos de odio):

ABC

EL pafs

28MIN

count 2154,

1.
3.
5.

mean 2.
std 14.
min
25%
5ok
75% 18.
max tB3.

eoegos
473538
688545
eoegos
eoegos
eoegos
aeaass
aeaass

Mame: num_palabras, dtype: floatéd

count 234@.0be0ee

mean 1@.928632
std 34.8583558
min 1.8828882
25% 3.008e8882
5ok 7 .880008
75% 13.880608
max 1381.8882008

MName: num_palabras, dtype: floatéd

count 2825.0a00e8

mean 7.9679a1
std 9.828697
min 1.8e6808
25% 3.0e0808
5@ 5.oeoeea
75% 12.826028
max G2.8280828

Name: num_palabras, dtype: floatsd

LA VANGUARDIA

EL MUNDO

count 453
mean 2
std 6
min 1
25% 3
5@k [
iy 18
max 47

.egeaae
.848565
.9368587
.eeoaae
.eeoaae
.eeoaae
.eeoaae
.eeoaae
Mame: num_palabras, dtype: floatéd

count 52el.000002

mean 8.919638
std 9.766324
min 1.8828882
25% 3.008e8882
Se% 6.880008
75% 11.880008
max 92.880008

Name: num_palabras, dtype: floatéd

Figura 23: Estadisticas de la longitud de textos en funcion del MEDIO, pero GUnicamente centrado en los

textos de odio

Las estadisticas relacionadas con la longitud de textos en funciéon del medio no nos aportan

mayor conocimiento para textos de ODIO, seguimos viendo que el 75% estan compuestos por

13 palabras o menos, variando el valor medio en pocas palabras segun el MEDIO.

Observamos que el estudio de la variable NUM_PALABRAS con respecto a tipo_mensaje y

medio no nos aporta informacidn adicional con respecto a lo visto en el estudio general, si

bien nos confirma coherencia en nuestros datos, siendo los comentarios y los titulos de las

noticias textos mas cortos que la propia noticia.

5.1.5. Proceso de Tokenizacion

Antes de poder entrenar nuestros modelos, necesitamos transformar nuestros datos para que

estos sean legibles para nuestros modelos. Los modelos BERT tienen su propia forma de

tokenizar los datos, por lo que explicamos de forma separada este proceso.
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5.1.5.1. Tokenizacion en Deep Learning

Para realizar el proceso de tokenizacién en los modelos de deep learning, en primer lugar,
usamos la clase Tokenizer?> del mddulo Keras. Esta clase permite vectorizar el corpus de texto,
convirtiendo cada texto en una secuencia de nimeros enteros. Para ello, primero utilizamos
la funciodn fit_on_texts() para crear un diccionario de palabra-indice. En este diccionario, cada
palabra de nuestro corpus es usada como indice, mientras que los valores son un indice Unico
para cada palabra. Esta tupla sera utilizara posteriormente por la funcion text_to_sequences()
para convertir cada texto en una secuencia de enteros, donde cada entero corresponde a una

Unica palabra del corpus.

tokenizer = Tokenizer()
tokenizer.fit_on_texts(X)

X _token = tokenizer.texts to seguences(X)
print (X [45])

print (X token[45])

entonces ser estar forrado hacienda comunista ir rico

[184, 1, 5, 20882, 1778, 1204, 12, 1128]

Figura 24: Extracto donde se muestra el uso de la clase Tokenizer del médulo keras

Si exploramos ahora la variable X_token (Figura 24), veremos que tenemos una lista cuyo
contenido son numeros. Estos numeros son las representaciones de las palabras del texto
original. En nuestro ejemplo, el texto compuesto por 8 palabras: “entonces ser estar forrado
hacienda comunistair rico” se ha convertido en una lista con 8 enteros [184, 1, 5, 20882, 1778,
1204, 12, 1228], cada entero correspondiente a una palabra, por ejemplo, el valor 184

corresponde a la palabra “entonces”.

También podemos observar que la longitud de las listas es variable. Esto supone un problema
si queremos alimentar una red neuronal, que necesita vectores de longitud fija. Por ello,

debemos establecer un valor maximo que llamaremos MAX_LONG que, en nuestro caso, sera

% https://keras.io/api/keras_nlp/tokenizers/tokenizer/
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la longitud del texto mas largo de nuestro corpus. Los textos cuya longitud sea inferior a
MAX_LONG, se rellenaran al final con ceros. Este proceso se conoce como padding y permite

generar una lista de textos de longitud fija.

En la Figura 25 determinamos el tamaiio del vocabulario y, a continuacién, realizamos el

proceso de padding.

MAX_LONG = df.num_palabras.max()

|

# Afiadimos +1 al tamafio del vocabulario para reservar el indice @ necesarioc para el padding.
vocab_size = len(tokenizer.word_index) + 1

#definimos longitud maxima
MAX LONG = df.num_palabras.max()

#Aplicamos padding a nuestros textos

X_token = pad_sequences(X_token, padding="post', maxlen=MAX_LONG)
#vocab_size = 387186 palabras

print ('MAX_LONG:', MAX_LONG)

print ('Tamafio Vocabulario:',vocab_size)

print(X token [45])

print('Tamafic vector con padding:',len (X_token [45])) #Longitud es MAX_LONG
MAX LONG: 2844

Tamafo Wocabulario: 287186

[184 1 5 ... @ &8 8]
Tamafic vector con padding: 3844

Figura 25: Extracto de cédigo donde se calculan MAX_LONG, vocab_size y se aplica padding a los textos

5.1.5.2. Tokenizacion en BERT

En esta seccidn, prepararemos nuestro conjunto de datos al formato en el que se puede
entrenar BETO. Para poder alimentar el modelo con nuestros textos, hay que dividirlos
previamente en tokens y, a continuacién, asignar estos tokens a su indice en el vocabulario

del tokenizador.

Antes de tokenizar, tenemos que cumplir con los requisitos de formato que nos exige la
arquitectura BERT (Devlin et al., 2019).

- Anadir tokens especiales al principio y al final de cada texto. En concreto, debemos

anteponer el simbolo especial [CLS] al principio de cada texto y afiadir el simbolo

especial [SEP] al final del texto.
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- Homogeneizar la longitud de los textos mediante la definicidon de una longitud fija,
truncando los textos mas largos y aplicando padding a los textos mas cortos. El
relleno o padding se realiza con un token especial [PAD]. La longitud mdaxima de los

textos que permite la arquitectura BERT es de 512 tokens.

- Diferenciar explicitamente los tokens que aportan valor real de los tokens de
relleno con la "mascara de atencidon" o "attention mask". Esta "mascara de
atencion" es una matriz de 1s y Os que indica qué tokens son de relleno y cudles
no. Esta mascara indica al mecanismo de "autoatencidon" de BERT que no incorpore

estos tokens especiales [PAD] a su interpretacion del texto.

La tokenizacidn la realizaremos con el tokenizador propio de BERT (BertTokenizer, de la libreria
Transformers). BertTokenizer se encarga de asignar a cada token (cada palabra) un indice del

vocabulario del tokenizador.

Tras esto, hacemos uso de la funcién tokenizer.encode plus(), encargada de realizar los
siguientes pasos:

1. Divide la frase en tokens.

2. Aflade los tokens especiales [CLS] y [SEP].

3. Asigna los tokens a sus ID.

4. Rellena o trunca los textos para dejarlos con la misma longitud (rellena con 1s

hasta completar la longitud maxima establecida).

5. Crea las mascaras de atencidn que diferencian los tokens que aportan valor de los

tokens de relleno [PAD].
De esta forma, obtenemos los vectores input_ids (realizado en los primeros 4 pasos de la

funcién encode plus) y attention_mask (paso 5), necesarios para poder entrenar

posteriormente nuestro modelo BETO.
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5.1.6. Creacién de conjunto de datos de entrenamiento y de test

En esta seccion explicaremos cédmo ha sido el proceso de division de los datos para obtener

los conjuntos de entrenamiento y test para cada uno de los datasets.

5.1.6.1. Dataset completo
Para poder realizar nuestras pruebas, primero debemos dividir nuestro dataset en conjuntos
de entrenamiento y de test. Fijamos el tamafio del conjunto de test en el 20% de todo el
conjunto de datos. Seguidamente imprimimos el numero de muestras de cada conjunto,

utilizando la funcién Counter(), incluida en el paquete collections (Figura 26).

X = X _token
y= df["label odio']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=188)

print(f"Distribucién de las muestras en conjunto de entrenamiento: {Counter(y train)}™)

a
print(f"Distribucidén de las muestras en conjunto de test: {Counter(y_test)}")

Distribucién de las muestras en conjunto de entrenamiento: Counter({@: 447517, 1: 9354})
Distribucidn de las muestras en conjunto de test: Counter({@: 112824, 1: 241%})

Figura 26: Distribucion de datos en conjunto de entrenamiento y test

5.1.6.2. Dataset balanceado
Un conjunto de datos equilibrado o balanceado es un conjunto de datos en el que cada clase

objetivo estd representada aproximadamente por el mismo nimero de muestras.

Para lograr el equilibrio vamos a aplicar una técnica conocida como undersampling, cuyo
objetivo es reducir las muestras dominantes (en nuestro caso las etiquetas de NO_ODIO), de

modo que los ejemplos ODIO y NO_ODIO queden balanceados en nuestro dataset (Figura 27).

from imblearn.under_sampling import RandomUnderSampler
under_sampler = RandomUnderSampler(random_state=42)
X_balanceado, y_balanceado = under_sampler.fit_resample(X.values.reshape(-1, 1), y.values.reshape(-1, 1))

print({f"Nuestro Dataset ya estd balanceado: {Counter(y_balanceado)}")
print (f"Tamafic total del dataset: {len(y_balanceado.tolist(}))}")

Nuestro Dataset ya esta balanceado: Counter({&: 12273, 1: 12273})
Tamafio total del dataset: 24546

Figura 27: Uso de la técnica de undersampling para lograr un dataset balanceado
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Observamos que ahora el nimero de palabras de nuestro vocabulario es menor al que
teniamos con el dataset completo. Ahora tenemos 57.306 palabras (afiadimos +1 para

reservar el indice 0 necesario para el padding).

En la Figura 28 mostramos cémo quedan distribuidas las etiquetas tanto para el conjunto de
entrenamiento como para el conjunto de test. Se puede apreciar que estos conjuntos estan

balanceados.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=18a)
print{f"Distribucidn de las muestras en conjunto de entrenamiento: {Counter(y_train)}")
print(f"Distribucidén de las muestras en conjunto de test: {Counter(y_test)}")
print(f"Tamafio del dataset: {len(y_train)+len(y_test)}")

Distribucidn de las muestras en conjunto de entrenamiento: Counter({1l: 9851, 8: 9785})

Distribucidén de las muestras en conjunto de test: Counter({8: 2488, 1: 2422})
Tamafio del dataset: 24546

Figura 28: Distribucion de datos en conjunto de entrenamiento y test para dataset V1

Para crear los 2 dataset balanceados restantes, uno con textos de longitud homogénea (V2) y
otro con textos pertenecientes al medio “El MUNDO” (V3), seguimos un procedimiento

analogo.

Para la creacién del dataset V2, se ha filtrado previamente por la columna num_palabras para
seleccionar textos con una longitud maxima 32 palabras. Como resultado obtenemos un
dataset balanceado de tamafio 23.932 (Figura 29), lo que quiere decir que hemos perdido 614
registros sin comparamos con el dataset balanceado de seleccidon aleatoria. El motivo de esta
reduccion es que 307 textos etiquetados como ODIO se han filtrado por superar 32 palabras.
Por lo tanto, al crear el dataset balanceado, tenemos 307 muestran menos de cada clase (614

registros).
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¥_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=188)
print{f"Distribucidn de las muestras en conjunto de entrenamiento: {Counter(y_train)}")
print{f"Distribucidn de las muestras en conjunto de test: {Counter(y test)}")
print(f"Tamafc del dataset: {len(y_train)+len(y_test)}™)

Distribucidén de las muestras en conjunto de entrenamiento: Counter({1l: 9582, 8: 9563})

Distribucién de las muestras en conjunto de test: Counter({@: 2483, 1: 23841)
Tamafio del dataset: 23932

Figura 29: Distribucion en conjunto de entrenamiento y test para dataset V2

Para la creacion del dataset con textos pertenecientes a “El MUNDQ”, se ha realizado un filtro
tanto por num_palabras como por medio. Se ha decidido filtrar por num_palabras porque los
resultados para el modelo LSTM son mucho mejores cuando obtenemos un dataset de
longitud acotada, como veremos en la siguiente seccién 5.2 Entrenamiento y evaluacion de
los modelos. Como resultado, obtenemos un dataset balanceado de tamafio 10.268 (Figura
30), lo que indica que hemos perdido 14.278 textos con respecto al dataset balanceado de
seleccion aleatoria (24.546 - 10.268). Esto es debido a que en nuestro dataset original tan solo
5.134 textos de ODIO pertenecen al medio “EL MUNDOQO” y ademas contienen menos de 32

caracteres.

¥ _train, X _test, y_train, y test = train _test split(X, y, test size=8.2, random state=188)
print(f"Distribucion de las muestras en conjuntc de entrenamiento: {Counter(y train)}")

print(f"Distribucidn de las muestras en conjunto de test: {Counter(y_test)}")

print(f"Tamafo del dataset: {len{y_train)+len(y_test)}")

Distribucién de las muestras en conjunto de entrenamiento: Counter({@: 4123, 1: 4891})
Distribucidn de las muestras en conjunto de test: Counter({1l: 1843, 8: 1@811})
Tamafio del dataset: 18268

Figura 30: Distribucion en conjunto de entrenamiento y test para dataset V3
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5.2.ENTRENAMIENTO Y EVALUACION DE LOS MODELOS

Para cada uno de los modelos seleccionados, realizaremos experimentos con las distintas
versiones del dataset descritos en el apartado 4. Como detectar odio en los medios de
informacion social. Todos los experimentos han sido ejecutados desde la version gratuita
colab, configurando el entorno para hacer uso del modo de ejecucion GPU (Tesla T4), lo que
nos ha permitido ejecutar nuestros modelos hasta 10 veces mas rapido que desde el entorno

basico.

5.2.1. SNN (Simple Neural Network)
Comenzamos nuestro experimento con una red neuronal simple que usaremos a modo de
linea base. Para ello creamos un modelo Sequential() y, a continuacién, creamos nuestra capa
de embedding. La capa de embedding tendra una longitud de entrada de MAX_LONG. Para la
dimensién del vector y tras probar varias alternativas, el valor seleccionado es 50. El tamafio
del vocabulario serd de VOCAB_SIZE, calculado en el apartado 5.1.5.1 Tokenizaciéon en Deep
Learning. A continuacién, como estamos conectando directamente nuestra capa de
embedding a una capa fully-connected, aplanamos la capa de embedding. Por ultimo,
afadimos una capa densa con funcién de activacion sigmoid, que es la mds adecuada para
problemas de clasificacidn binaria. Para compilar nuestro modelo, usaremos el algoritmo de
descenso de gradiente eficiente Adam Optimizer, utilizado en Benitez-Andrades et al. (2022).
Para nuestra funcién de pérdida usaremos binary_crossentropy, por tratarse de un problema

de clasificacion binaria. Finalmente, como métrica queremos medir la Accuracy (Figura 31).

model SHN = Sequential()
embedding_layer = Embedding(vocab_size, 58, input_length=MaX_ LONG, trainable=True)
model_SHN.add(embedding_layer)

model SNN.add(Flatten())
model SHN.add(Dense(l, activation='sigmoid'))

model SHN.compile{optimizer="adam', loss="binary_crossentropy’', metrics=["'acc'])

Figura 31: Extracto del cédigo python del modelo SNN
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5.2.1.1. Dataset Completo

Nuestra primera prueba la realizaremos con el dataset completo. Este dataset, en el que ya
hemos aplicado el preprocesamiento visto en el apartado 5.1 Analisis y preparacion de los

datos, consta de 572.214 registros y 6 columnas (Figura 6).

Como hay 387.186 palabras en nuestro corpus (valor de VOCAB_SIZE) y cada palabra se
representa como un vector de 50 dimensiones, el nUmero de pardmetros serd de 387.186 x
50 = 19.359.300 en la capa de embedding. En la capa de aplanamiento, simplemente
multiplicamos las filas (longitud de cada vector de entrada o MAX_LONG) y las columnas o
dimensiones del embedding (3044 x 50 = 152200). Por ultimo, en la capa densa, el nUmero de
pardmetros es de 152201, 152200 provenientes de la capa de aplanamiento y 1 del pardmetro

de sesgo (Figura 32).

Layer (type) OQutput Shape Param #
“embedding 2 (Embedding)  (Nome, 3044, 50) 19359300

flatten 2 (Flatten) (None, 152288) e

dense 2 (Dense) {Nonme, 1) 152281

Total params: 19,511,591
Trainable params: 19,511,581
Non-trainable params: @

Figura 32: Resumen del modelo SNN compilado para el dataset completo

Utilizamos el método fit() de la libreria scikit-learn para entrenar nuestra red neuronal,
seleccionando diferentes valores de batch_size (25, 50, 100) y epochs (2, 3, 5) para poder
comparar rendimientos. Finalmente, indicamos un validation_split de 0,1 para que el 10% de
los datos de entrenamiento se utilice como datos de validacion. Finalmente, evaluamos

nuestro modelo con el método evaluate().

Observamos que con el dataset completo obtenemos una accuracy del 99% para los datos de
entrenamiento y un 98% para los datos de validacion. Finalmente, y tras la evaluacion del

modelo con los datos de test, obtenemos un accuracy del 98%.

66



Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

Estos resultados podrian parecer buenos, pues una accuracy de 98% para los datos de test son
un muy buen valor. Sin embargo, debemos analizar los valores ofrecidos por la matriz de
confusion para estar seguros de que nuestro modelo esta funcionando correctamente. En la
Figura 33 mostramos la matriz de confusidén obtenida, donde observamos que todas las
predicciones se corresponden con la etiqueta NO_ODIO, con 112.024 instancias predichas

correctamente y 2.419 instancias etiquetadas de forma incorrecta.

Matriz de Confusion (Dataset Original)

100000
WO _ODIC 112024 0 A0000
r_n -
& 60000
5
£
F40000
oD A 2419 0
F 20000
WO ODIC oD
Prediccion

Figura 33: Matriz de confusion con dataset completo

Las pruebas realizadas para el dataset completo muestran unos resultados propios de un
dataset desbalanceado (Tabla 2). Al final, al modelo le basta con predecir siempre la clase
dominante para conseguir un 98% de accuracy (acertando siempre los textos de NO_0ODIO
conseguimos acertar un 98% de las ocasiones). Sin embargo, esto implica que nunca predice
la etiqueta ODIO, y esto se traduce en un recall del 0% para esta clase. Por lo tanto, estos
modelos entrenados con el dataset completo no son utiles en absoluto para resolver nuestro

problema.

67



Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

Tabla 2: Resultados en test para todos los modelos con dataset completo

Precision Recall Fl-score n_registros
98% 100% 99% 112024
0% 0% 0% 2419

NO_ODIO
oDIO

98% 114443

Estos mismos resultados se han obtenido para los diferentes valores de batch_size y epochs.
Asimismo, los resultados de la matriz de confusidon para el dataset completo son exactamente
los mismos para todos los modelos utilizados en nuestra comparativa por lo que de aqui en

adelante centraremos nuestras pruebas en las versiones de los datasets balanceados.

5.2.1.2. Datasets Balanceados
A continuacién, mostramos los resultados obtenidos por el modelo SNN para cada una de las
versiones del dataset balanceado (V1, V2 y V3). La columna “Tiempo” se refiere al tiempo

empleado en entrenar y validar el modelo.

= SSNy V1 (Muestras Aleatorias)
A diferencia de lo que ocurria con el dataset completo, para V1 los resultados muestran unos
valores razonables para todas las métricas (Tabla 3). Observamos que, con este dataset
balanceado, el modelo es capaz de recuperar un 84% de los textos de ODIO (recall) con una

accuracy del 86%.

Tabla 3: Resultados en test para SNN con dataset V1

Precision Recall Fl-score n_registros
85% 87% 86% 2488
87% 84% 85% 2422

NO_ODIO
oDIO

Accuracy 86% 4910
Tiempo 13s
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En la Figura 34 mostramos la matriz de confusién obtenida para SNN y V1, donde observamos
2.173 instancias correctamente clasificadas como NO_ODIO y 2.041 correctamente

clasificadas como ODI/O.

SNN con dataset V1

2000

1750
NC_0DIO
1500

- 1250

Valor Real

- 1000

DI
- 750

. - 500
NO_ODIO ][]
Prediccion —

Figura 34: Matriz de confusion obtenida modelo SNN y dataset V1

Estos resultados se han conseguido con un batch_size de tamano 50 y 2 épocas. Hemos
comprobado que mas alld de la tercera epoch perdemos accuracy para el conjunto de test

debido al fendmeno overfitting o sobreajuste del modelo al conjunto de entrenamiento.

= SSNy V2 (Longitud homogénea)
En la Tabla 4 observamos que para el dataset balanceado V2 empeoramos ligeramente todas
las métricas con respecto al dataset V1, alcanzando un accuracy del 83%. Esto indica que el
hecho de tener unos textos de longitud homogénea no ha ayudado en este sentido al modelo
SSN a predecir mejor. Por el contrario, debemos mencionar que el tiempo de ejecucidn si que
mejoré con respecto a los tiempos obtenidos con el dataset V1, reduciéndose
aproximadamente un 30%. De este modo comprobamos que, al acotarse la longitud de los

textos, los tiempos de cdmputo se reducen notablemente.
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Tabla 4: Resultados en test para SNN con dataset V2

Precision Recall Fl-score n_registros
80% 87% 83% 2403
86% 78% 82% 2384

Accuracy 83% 4787
Tiempo Os

A continuacion, mostramos la matriz de confusién obtenida para SNN y V2 (Figura 35).

NO_ODIO
oDIO

Observamos que las instancias predichas correctamente han disminuido ligeramente con

respecto al dataset V1, con 2.099 para la etiqueta de NO_ODIO y 1.856 para la etiqueta ODIO.

SNN con dataset V2 2000

1500

NO_ODIO 1600

1400

- 1200

YWalor Real

- 1000

'I:]DID T n EDU

- 600

WO QDD L] 0] - 400
Prediccion —

Figura 35: Matriz de confusion obtenida modelo SNN y dataset V2

= SNNy V3 (Medio “El Mundo”)

Vamos a realizar las mismas pruebas, pero con el dataset V3. En esta ocasidon, hemos decidido
seleccionar textos Unicamente del medio El MUNDO (ademas de filtrarlos por longitud < 32),

para comprobar si seleccionar textos de un mismo medio contribuye a mejorar el rendimiento

del modelo.
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En la Tabla 5 mostramos los resultados obtenidos:

Tabla 5: Resultados en test para SNN con dataset V3

Precision Recall Fl-score n_registros
NO_ODIO 81% 77% 1011
oDIO 71% 75% 1043

Accuracy 76% 2054
Tiempo 3s

Observamos que hemos obtenido unas métricas por debajo de lo conseguido con el dataset

V2. Estos no son los resultados esperados, pues confidbamos en que seleccionar textos de un
mismo medio ayudara al modelo a predecir mejor. Sin embargo, creemos que estos resultados
se deben a la reduccién del nimero total de registros de entrenamiento (hemos pasado de
23.932 registros en V2 frente a 10.268 registros en V3). Al tener menos muestras para
aprender, el modelo cae en overfitting, sobre ajustandose a los datos de entrenamiento, y no
es capaz de generalizar correctamente. De hecho, nuestro modelo alcanza un 99% de accuracy
para el conjunto de entrenamiento tras 2 épocas, mientras que se queda en un 76% para el
conjunto de test. También apreciamos un menor tiempo de ejecucion con respecto a V2, pero

este hecho es normal al tener que procesar menos registros.

SMM con dataset V3 500

NO_ODIO
m
&
=
£
- A00
QDI A
- 300
NO ODIO oDIO
Prediccion — 200

Figura 36: Matriz de confusion obtenida modelo SNN y dataset V3
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5.2.2. CNN (Convolutional Neural Network)
A continuacidén, vamos a realizar las mismas pruebas con la red neuronal convolucional. Como
hemos comentado, solo mostraremos los resultados obtenidos con los datasets balanceados,
pues tras realizar el experimento con el dataset completo comprobamos que el resultado es
exactamente el mismo que con la SNN (solo predice la clase dominante debido al pronunciado

desbalanceo de clases).
Con el fin de garantizar que los resultados obtenidos por la red neuronal sean lo mas elevados
posibles, se han realizado una serie de pruebas en las que se ha comprobado el rendimiento

del modelo en funcidn del valor de determinados parametros que mostramos en la Tabla 6.

Tabla 6: Parametros seleccionados para CNN

Parametro Opciones probadas Opcion seleccionada
Batch size 25,50, 100 50
Epochs 2,3,5 2
N_Filtros 32,64,128 64
Tamano Filtro 3,4,5 3
Optimizador Adam, SGD Adam
Learning rate le-2, 1le-3 le-3

Nuestra red neuronal convolucional contendra una capa de embedding seguida de una capa
convolucional con funcién de activacidon RELU y 1 capa max_pooling para reducir el tamafio
de las caracteristicas, cuya salida ird conectada a una capa densa de 1 neurona con funcion de
activacion sigmoid (Figura 37). Para compilar nuestro modelo, usaremos el Adam Optimizer y

para nuestra funcion de pérdida usaremos binary_crossentropy.
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Layer (type) Output Shape Faram #

enbedding 10 (Embedding)  (None, 32, 50) 1220700
convld 8 (ConvlD) (None, 38, 64) 9664
global max_poolingld 8 (Glo (Mone, B4) a

balMaxPoolinglD)

dense_14 (Dense) {(None, 1} 65

Total params: 1,238,429
Trainable params: 1,238,429
Mon-trainable params: @

Figura 37: Resumen del modelo CNN

A continuacidon, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

* CNNy V1 (Muestras Aleatorias)

Comenzamos con los resultados obtenidos por el modelo CNN con el dataset V1. En la Tabla
7 podemos observar que este modelo alcanza un 87% de accuracy, superando ligeramente al

modelo SNN, que obtuvo un 86% con este mismo dataset.

Tabla 7: Resultados en test para CNN con dataset V1

Precision Recall Fl-score n_registros
NO_ODIO 88% 86% 87% 2488
oDIO 86% 88% 87% 2422

Accuracy 87% 4910
Tiempo 18s
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En la Figura 38 mostramos la matriz de confusion obtenida para CNN y V1. Comprobamos que
este modelo es capaz de predecir correctamente 2.134 instancias para la etiqueta de

NO_0ODIO y 2.122 instancias para la etiqueta ODIO.

CMM con dataset V1 2000

1750

NO_0DIO
1500

- 1250

Valor Real

- 1000

ODIC
- 750

- 500

NO_ODIO [}
Prediccion

Figura 38: Matriz de confusion obtenida modelo CNN y dataset V1

= CNNy V2 (Longitud homogénea)

A continuaciéon, mostramos los resultados para CNN y V2 (Tabla 8), donde alcanzamos un
accuracy del 85%, superando ligeramente los resultados obtenidos por SNN con este mismo

dataset (83%).

Tabla 8: Resultados en test para CNN con dataset V2

Precision Recall Fl-score n_registros
NO_ODIO 85% 84% 85% 2403
OoDIO 84% 85% 85% 2384

Accuracy 85% 4787
Tiempo 13s
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A continuacion, mostramos la matriz de confusidon obtenida para CNN y V2 (Figura 39).

Comprobamos que este modelo es capaz de predecir correctamente 2.026 instancias para la

etiqueta de NO_0ODIO y 2.031 instancias para la etiqueta ODIO.

2000
CMM con dataset V2

1800

1600
NC_0DIO

1400

- 1200
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- 1000

OIS
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MO _0DIO Ln] (e} L 400
Prediccion

Figura 39: Matriz de confusion obtenida modelo CNN y dataset V2

* CNNy V3 (Medio “El Mundo”)

Finalmente, mostramos los resultados obtenidos por el modelo CNN con el dataset V3:

Tabla 9: Resultados en test para CNN con dataset V3

Precision Recall Fl-score n_registros
79% 87% 83% 1011
86% 78% 82% 1043

NO_ODIO
oDIO

Accuracy 83% 2054
Tiempo 5s
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En la Figura 40 mostramos la matriz de confusidon obtenida para CNN y V3, obteniendo 884
instancias etiquetadas correctamente para la etiqueta de NO_ODIO y 813 para la etiqueta

ODIO.

CHN con dataset V3
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Figura 40: Matriz de confusion obtenida modelo CNN y dataset V3

Como podemos observar, los resultados de CNN son relativamente buenos para todos los
datasets, siendo la versién V1 la que alcanza los mejores registros (87% tanto para la métrica
accuracy como para Fl-score. Por lo tanto, para CNN la reduccion de la longitud de los textos
no ha supuesto ningun beneficio en términos de accuracy, precision, recall o F1. Sin embargo,
para V2 si que hemos mejorado en términos de tiempo de ejecucion, teniendo en cuenta que

ambos datasets cuentan con un ndmero similar de registros.

El rendimiento obtenido con el dataset V3 es el mas bajo de todos los datasets balanceados.
El motivo de este hecho es el mismo que se explicé con modelo SNN. Al tener menos muestras
para aprender, el modelo cae en overfitting, sobre ajustandose a los datos de entrenamiento,

y no es capaz de generalizar correctamente.

Como ocurrid en SNN, los mejores resultados para el entrenamiento se han conseguido con 2
épocas. Hemos comprobado que, mas alla de la tercera epoch perdemos accuracy para el
conjunto de test debido al fendmeno overfitting o sobreajuste del modelo al conjunto de

entrenamiento.
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5.2.3. LSTM (Short Term Memory)

A continuacion, vamos a realizar las mismas pruebas para la red neuronal LSTM.
En la Tabla 10 mostramos la seleccién de los mejores pardametros para nuestra red. Como
podemos observar, en LSTM no tenemos tamaio de filtro como parametro. Por lo demas, las

configuraciones mas dptimas son idénticas a las de CNN.

Tabla 10: Parametros seleccionados para LSTM

Parametro Opciones probadas Opciodn seleccionada
Batch size 25, 50, 100 50
Epochs 2,3,5 2
N_Filtros 32,64,128 64
Optimizador Adam, SGD Adam
Learning rate le-2, 1le-3 le-3

Nuestra red LSTM contendra inicialmente una capa de embedding, tal y como hemos hecho
en los casos anteriores. A continuacidon, creamos una capa LSTM con 64 neuronas conectada
a una capa densa de 1 neurona con funcién de activacién sigmoid (Figura 41). Para compilar
nuestro modelo, usaremos el Adam Optimizer y para nuestra funcién de pérdida usaremos

binary_crossentropy.

Layer (type) Output Shape Param #
“embedding 2 (Embedding)  (None, 32, 58) 744200
1stm (LSTM) (None, 64) 20448
dense_ 2 (Dense) {None, 1} 65

Total params: 773,785
Trainable params: 773,765
Mon-trainable params: @

Figura 41: Resumen del modelo LSTM
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A continuacidon, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

= LSTMy V1 (Muestras Aleatorias)

Dados los resultados mostrados por la matriz de confusion (Figura 42), es evidente que el
modelo LSTM no funciona bien para este dataset, pues Unicamente predice la clase de ODI/O.
Uno de los posibles motivos de este comportamiento es la longitud mdxima de los textos
(3.044 caracteres) que hace que los mensajes mas cortos estén compuestos mayoritariamente
por valores O (tras el proceso de padding), perjudicando el rendimiento de nuestro algoritmo

basado en la arquitectura RNN.

Tabla 11: Resultados en test para LSTM con dataset V1

Precision Recall Fl-score n_registros
NO_ODIO 0% 0% 2488
oDIo 100% 66% 2422

Accuracy 49% 4910
Tiempo 70s

Los resultados mostrados en la Tabla 11 confirman este mal comportamiento del modelo

LSTM con V1, donde observamos un 0% en las métricas de precision, recall y F1-score para la
clase NO_ODIO. Ademads, podemos extraer que se ha necesitado un tiempo de ejecucién

aproximadamente 3 veces superior al necesitado para ejecutar la red CNN.
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LSTM con dataset V1
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Figura 42: Matriz de confusion obtenida modelo LSTM y dataset V1

* LSTMy V2 (Longitud homogénea)
Los resultados obtenidos al entrenar la red LSTM con el dataset V2 son bastante buenos,
cercanos incluso a los obtenidos por CNN. Esto confirma que la longitud de los textos (o la
falta de homogeneidad de estos) era el motivo por el cual la red recurrente no estaba

funcionando correctamente.

Tabla 12: Resultados en test para LSTM con dataset V2

Precision Recall Fl-score n_registros
83% 86% 84% 2403
85% 82% 83% 2384

NO_ODIO
oDIO

Accuracy 84% 4787
Tiempo 29s

Otro dato interesante que se puede extraer de la Tabla 12 es que LSTM requiere

aproximadamente el doble de tiempo de ejecucién que CNN.
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A continuacion, mostramos la matriz de confusidon obtenida para el modelo LSTM con el

dataset V2.
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Figura 43: Matriz de confusion obtenida modelo LSTM y dataset V2

* LSTMy V3 (Medio “El Mundo”)
Al igual que ocurria con los modelos anteriores, los resultados obtenidos para el dataset V3

son ligeramente inferiores a los obtenidos con el dataset V2 (80% de accuracy frente a los 84%

obtenidos con V2).

Tabla 13: Resultados en test para LSTM con dataset V3

Precision Recall Fl-score n_registros
80% 78% 79% 1011
79% 81% 80% 1043

Accuracy 80% 2054
Tiempo 13s

El motivo que podemos dar es el mismo que el comentado para los casos anteriores. Al

NO_ODIO
oDIO

disponer de menor cantidad de datos para el entrenamiento, el modelo se ve afectado por

el fendmeno de overfitting o sobreajuste, impidiéndole generalizar correctamente.
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En la Figura 44 mostramos la matriz de confusion obtenida para el modelo LSTM con el
dataset V3.
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Figura 44: Matriz de confusion obtenida modelo LSTM y dataset balanceado V3

5.2.4. BETO

A continuacion, explicaremos el proceso de entrenamiento del modelo BETO y mostraremos
los resultados en conjunto de test. Para garantizar que los resultados obtenidos por este
modelo de transfer learning sean los mejores posibles, se han realizado una serie de pruebas
en las que se ha evaluado el rendimiento del modelo en funcidn del valor que toman distintos
parametros, del mismo modo que se hace en el trabajo de Benitez-Andrades et al. (2022).

Podemos ver los valores finales seleccionados para cada uno en la Tabla 14.

Tabla 14: Parametros seleccionados para BETO

arametra Opciones probada Opcion seleccionada
Tipo de Modelo cased, uncased cased
Batch size 25, 50, 100 50
Epochs 2,3,5 2
Optimizador Adam, SGD Adam
Learning rate 2e-5, 3e-5, 4e-5 2e-5
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Una vez que nuestros datos de entrada estan formateados correctamente y hemos obtenido
los vectores de input_ids y attention_mask descritos en la seccién 5.1.5.2 Tokenizaciéon en
BERT, ya podemos prepararnos para adaptar el modelo BETO pre-entrenado para nuestra

tarea de clasificacion.

En primer lugar, crearemos un iterador para nuestro conjunto de datos utilizando la clase
Dataloader de torch.utils.data. El objeto Dataloader necesita saber nuestro tamafio de
nuestro batch para el entrenamiento. En nuestro caso, indicamos un batch_size de 50.

A continuacién, creamos los Dataloaders para nuestros conjuntos de entrenamiento y

validacién (Figura 45)

# Creamos los Dataloaders para nuestros conjuntos de entrenamiento y wvalidacion.

# Tomaremos muestras de entrenamiento en orden aleatorio.

train_dataloader = Dataloader(
train_dataset,
sampler = RandomSampler(train_dataset), # Seleccionamos batches al azar.
batch_size = batch_size # Indicamos el batch_size

# Para la wvalidacion el orden no importa, asi gue los leeremos secuencialmente.
validation_dataloader = Dataloader(
val_dataset,
sampler = SequentialSampler(val dataset), # Seleccionamos los batches secuencialmente.
batch_size = batch_size

Figura 45: Creacion Dataloader para conjunto de entrenamiento y validacion

Tanto train_dataloader como validation_dataloader son tuplas que contienen los siguientes
elementos que son necesarios para entrenar nuestro modelo:

- input_ids (tensor de tamafio batch_size x max_sequence_length),

- attention_mask (tensor de tamafio batch_size x max_sequence_length)

- labels (tensor de tamafio batch_size x n_labels)

La implementacion de Hugging Face pytorch incluye un conjunto de interfaces disefiadas para
diversas tareas de PLNZ?®, Nosotros utilizaremos el modelo BertForSequenceClassification

(Figura 46). Se trata de la arquitectura BERT con una capa lineal afiadida al final que

26 https://huggingface.co/transformers/v2.2.0/model_doc/bert.html
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utilizaremos como clasificador de nuestros textos. A medida que alimentamos los datos de
entrada, todo el modelo BERT pre-entrenado y la capa de clasificacion adicional no entrenada

se entrenan para nuestra tarea especifica.

# Cargamos BertForSeguenceClassification, el modelo BERT preentrenado con una dnica
# capa de clasificacién lineal afiadida al final.

modelo = ‘dccuchile/bert-base-spanish-wwm-casead’
model = BertForSequenceClassification.from_pretrained(
modelo, #modelo Beto (case)
num_labels = 2, # 2 etiquetas para clasificacidn binaria
output_ attentions = False, # Indica si el modelo devuelve attentions-weights.
output_hidden_states = False, # Indica si el modelo devuelve todas las hidden-states.

Figura 46: Carga del modelo BETO (cased)

Una vez que tenemos nuestro modelo cargado, establecemos los valores de los
hiperparametros: Optimizador, Learning Rate y Epochs indicados en la Tabla 14. Finalmente,
para llevar a cabo el entrenamiento del modelo nos hemos basado en el cédigo del script

run_glue.py?’ proporcionado por Hugging Face.

A continuacidon, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

= Muestras Aleatorias (V1)
Comenzamos mostrando los resultados obtenidos por el modelo BETO con el dataset V1. En
la Tabla 15 observamos como BETO es capaz de alcanzar un 89% de accuracy, superando los
resultados obtenidos por los modelos anteriores de aprendizaje profundo, donde los
resultados fueron de 86% (SNN), 87% (CNN) y 49% (LSTM). Como parte negativa, destacamos
un tiempo de entrenamiento de 392 segundos, superando notablemente los tiempos

requeridos por los modelos anteriores (13s, 18s y 70s respectivamente).

27

https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/example
s/run_glue.py#L128
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Tabla 15: Resultados en test para BETO con dataset V1

Precision Recall Fl-score n_registros
92% 85% 88% 2483
86% 92% 89% 2427

NO_ODIO
oDIO

Accuracy 89% 4910
Tiempo 392s

En la Figura 47 mostramos la matriz de confusién obtenida para BETO y V1. Comprobamos

gue este modelo de transfer learning es capaz de predecir correctamente 2.112 instancias

para la etiqueta de NO_0ODIO y 2.238 instancias para la etiqueta ODIO.

BETO con dataset V1
-2000
-1750
NO_ODIO

-1500
-1250
-1000

QDIO -750
-500

NO_ODIO oDIO 950
Prediccion

Valor Real

Figura 47: Matriz de confusion obtenida modelo BETO y dataset balanceado V1
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* Longitud homogénea (V2)

A continuacion, mostramos los resultados obtenidos por el modelo BETO y el dataset V2 (Tabla

16), donde alcanzamos un accuracy del 87%.

Tabla 16: Resultados en test para BETO con dataset V2

Precision Recall Fl-score n_registros
NO_ODIO 89% 84% 86% 2360
oDIo 85% 89% 87% 2427

87% 4787

En la Figura 48 mostramos la matriz de confusién obtenida para BETO y V2. En este caso, BETO
es capaz de predecir correctamente 1.989 instancias para la etiqueta de NO_ODIO y 2.170

instancias para la etiqueta ODIO.

BETO con dataset V2 2000

-1750

NO_ODIO
-1500

-1250

Valor Real

-1000

0oDIO 257

-750

-500
NO ODIO OoDIO
Prediccion

Figura 48: Matriz de confusion obtenida modelo BETO y dataset balanceado V2

85



* Medio “El Mundo” (V3)

Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

En la Tabla 17 podemos observar que el dataset V3 es el que ofrece los peores resultados, en

este caso un 84% de accuracy. Tal y como sucedié con el resto de los modelos utilizados en

esta comparativa, la reduccién del nimero de registros de entrenamiento ha penalizado la

capacidad de generalizacidon de BETO.

Tabla 17: Resultados en test para BETO con dataset V3

NO_ODIO

Recall

Precision

Fl-score

n_registros

oDIO

Accuracy

87% 81% 84% 1056
81% 87% 84% 998
84% 2054

Finalizamos mostrando la matriz de confusién correspondiente a BETO y el dataset V3. En este

caso, nuestro modelo ha sido capaz de etiquetar correctamente 856 instancias de la clase

NO_0ODIO y 870 de la clase ODIO.

NO_ODIO

Valor Real

oDIO

Figura 49: Matriz de confusion obtenida modelo BETO y dataset balanceado V3

BETO con dataset V3

-800

-500
-400
128
-300
-200
NO _ODIO oDIO
Prediccion

86



Carlos Simén Gallego
Master Universitario en Inteligencia Artificial

6. Discusion y analisis de resultados

En primer lugar, debemos comentar que el dataset original presenta un desbalanceo de clases
tan acuciado que resulta inservible, pues todos los modelos entrenados con este dataset
terminan prediciendo siempre la clase dominante, consiguiendo un 98% de accuracy, pues
devolviendo siempre NO_ODIO conseguimos acertar un 98% de las ocasiones. Sin embargo,
esto implica que nunca predice la etiqueta ODIO, y esto se traduce en un recall del 0% para
esta clase. Por lo tanto, estos modelos entrenados con el dataset completo no son Utiles para

resolver nuestro problema.

Si nos centramos en las pruebas realizadas con los tres datasets balanceados (V1, V2 y V3),
observamos que los mejores resultados en términos de accuracy y F1 los encontramos con
BETO (cased) entrenado con el dataset V1 (selecciéon aleatoria), seguido por CNN entrenado
también con V1 y empatado con BETO entrenado con V2. En la Tabla 18 hemos resaltado los
los porcentajes mds altos por cada dataset. En este punto, habria que resaltar que CNN
requiere mucho menos tiempo que BETO para completar su entrenamiento, 18 segundos

frente a 392 segundos respectivamente para el dataset V1.

Tabla 18: Comparativa de resultados en test

SNN CNN LSTM BETO (cased)
86% 87% 49% 89%
Accuracy 83% 85% 84% 87%
76% 83% 80% 84%
86% 87% 0% 88%
F1-score (NO_ODIO) 83% 85% 84% 86%
77% 83% 79% 84%
85% 87% 66% 89%
F1-score (ODIO) 82% 85% 83% 87%
75% 82% 80% 84%

Estos resultados nos podrian llevar a pensar que un dataset balanceado de seleccidn aleatoria
(V1) es la mejor opcidn para entrenar nuestros modelos de deep learning y transfer learning.

Sin embargo, este dataset entrafia una serie de desventajas: por ejemplo, el modelo LSTM no
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funciona correctamente con este dataset debido a la longitud maxima de los textos (3.044
palabras) que hace que los mensajes mas cortos estén compuestos mayoritariamente por
valores 0 (padding), perjudicando el rendimiento de nuestro algoritmo basado en la
arquitectura de red recurrente. Se ha comprobado que, con textos de longitud homogénea,
este modelo alcanza una exactitud cercana a la obtenida por CNN (aunque con tiempos de

entrenamiento entre 2 y 3 tres veces superiores en LSTM).

Atendiendo a los tiempos de ejecucidon de cada dataset, los tiempos con V1 son
aproximadamente un 50% mayores con respecto a los tiempos de ejecucién con V2, tanto
para la red SSN como para CNN. Para el caso de LSTM, esta diferencia de tiempos se
acrecienta, siendo el tiempo de ejecucion en V1 mas del doble que en V2 (70 segundos frente
a 29 segundos). Este hecho hace que debamos cuestionarnos si la mejora en las métricas
obtenidas en V1 compensan el tiempo y esfuerzo invertido. Con un dataset de entrenamiento
como el nuestro (alrededor de 20K registros) esta decisién no es critica, pues ambos tiempos
de ejecucion son asumibles. Sin embargo, si se desea trabajar con un dataset de grandes

dimensiones, este hecho debe ser tenido en cuenta.

La Tabla 19 muestra los resultados del estado del arte para la deteccién de discurso de odio
en espaiol obtenidos a partir de los conjuntos de datos de HaterNet y HatEval, ademds de un
dataset ad-hoc creado en el trabajo de Amores etal. (2021). A continuacién, vamos a
comparar estos resultados con nuestra mejor propuesta en términos de macro-F1, el modelo

BETO cased entrenado con el dataset balanceado V1.

Para el conjunto de datos HaterNet, el modelo de Plaza-del-Arco et al. (2021) presenta un
modelo BETO (cased) que supera a nuestra propuesta en términos de F1 para la etiqueta
NO_0DIO, alcanzando un 89% frente a nuestro 88%. Sin embargo, en términos de macro-F1,
nuestro modelo BETO mejora los resultados de Plaza-del-Arco et al. (2021) en un 14%. El
motivo es que nuestro modelo es capaz de predecir mejor la etiqueta de odio, seguramente a
consecuencia de haber sido entrenado con un dataset mejor balanceado y con un mayor
numero de muestras de textos de odio. En la Tabla 20 mostramos la distribucién de cada

dataset.
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En el estudio de Amores et al. (2021) se generaron un total de ocho modelos predictivos: seis
usando algoritmos de aprendizaje superficial, uno generado a partir de los votos de esos
modelos anteriores y otro usando aprendizaje profundo. Los mejores resultados los obtuvo
este Ultimo modelo, basado en una red neuronal recurrente GRU, alcanzando un macro-F1

del 77%. Nuestra propuesta mejora este resultado en un 16%.

En cuanto al conjunto de datos HatEval, Plaza-del-Arco et al. (2021) y Pérez et al. (2021)
superaron el mejor resultado obtenido en la competicion de SemEval-2019 Task 5, probando
un modelo BETO (cased) y Robertuito (uncased) respectivamente. El modelo Robertuito es el
gue alcanza mejor rendimiento en términos de Macro-F1, con un 80%. Nuestro modelo BETO
cased entrenado sobre el dataset V1 supera los resultados de Pérez et al. (2021) con una

mejora del 11%.

Tabla 19: Resultados del estado del arte para la deteccion de discurso de odio en espafiol

Modelo Dataset F1 (NO_ODIO) F1 (ODIO) Macro-F1
SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%
RNN-GRU (Amores et al., 2021) Ad-hoc - - 77%
BETO, 44 (Plaza-del-Arco et al., 2021) HaterNet 89% 66% 78%
BETO,,seq (Plaza-del-Arco et al., 2021) HatEval 80% 76% 78%
Robertuito,ncaseq (Pérez et al., 2021) HatEval - - 80%
BETO_,sq (Nuestra propuesta) Hatemedia (V1) 88% 89% 89%

Tabla 20: Distribucion de los datasets en espaiiol

Dataset n_registros NO_ODIO OoDIO
HatEval 6.600 3.861 (59%) 2.739 (41%)
HaterNet 6.000 4.433 (74%) 1.567 (26%)
Ad-hoc (Amores et al. 2021) 10.213 3879 (38%) 6334 (62%)
Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)

Comparando estos resultados destacamos la importancia de entrenar los modelos sobre un
dataset balanceado con el mayor nimero posible de registros, con el fin de obtener un modelo
gue reajuste sus parametros en base a la informacion del dataset sin caer en el fendmeno de

overfitting, de modo que a posteriori sea capaz de generalizar con la llegada de nuevos datos.
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7. Conclusiones y trabajo futuro

7.1.Conclusiones

Con este trabajo pretendiamos comparar el rendimiento de diferentes algoritmos de
aprendizaje profundo y transfer learning sobre el dataset creado por el proyecto HATEMEDIA,
con el fin de determinar cual clasifica mejor y concluir si la deteccién automatica de

expresiones de odio era viable dado nuestro conjunto de datos.

Para conseguirlo, el primer objetivo planteado que consistia en investigar las técnicas y
métodos de aprendizaje automatico profundo y transfer learning disponibles que abordan el
problema de la deteccién del discurso del odio, se ha desarrollado en el apartado 2.3,
abordando no solo los diferentes modelos, sino también las técnicas de preprocesado vy

extraccion de caracteristicas mas utilizadas en el estado del arte.

En este punto enlazamos con el segundo objetivo, el andlisis exploratorio del dataset de
HATEMEDIA, desarrollado con detalle en el apartado 5.1. Llevar a cabo este anlisis
exploratorio revelé que el dataset original sufria de un fuerte desbalanceo de clases que lo
hacia inservible. Esto nos llevd al siguiente objetivo: crear diferentes versiones balanceadas
de nuestro dataset original para solventar este problema y poder realizar una posterior

comparativa.

Los objetivos relativos al entrenamiento y evaluacién de los modelos para medir sus
rendimientos con los diferentes datasets se han desarrollado en el apartado 5.2, donde hemos
realizado un andlisis de la parametrizacién a utilizar, construyendo modelos precisos
(especialmente BETO y CNN, con 89% y 87% de accuracy respectivamente) en la deteccion de
odio. Aqui, una dificultad que encontramos fue la falta de homogeneidad de los textos (textos
compuestos desde 1 palabra hasta 3.044). Este hecho produjo que el modelo LSTM no
funcionara correctamente, si bien este problema fue solventado al construir el dataset de

longitud homogénea (V2).
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Asi, los resultados obtenidos son muy satisfactorios y los modelos generados a partir de los
datasets balanceados tienen unas prestaciones mds que aceptables, concluyendo que la
deteccién automatica de expresiones de odio es viable para estos datasets balanceados,
siendo BETO (version cased) el modelo que mejor resultados ha ofrecido en términos de
accuracy y Fl1-score, seguido de cerca por el modelo CNN, este ultimo ademas con tiempos de

entrenamiento hasta 22 veces mas eficientes que BETO.

Dejando a un lado el modelo SNN (que se ha utilizado como linea base), LSTM es el modelo
que peor rendimiento ha ofrecido. Tras analizar los resultados obtenidos con del dataset V1,
no recomendariamos LSTM para analisis de textos extensos, al menos cuando la longitud de
los textos del dataset no sea homogénea. Por el contrario, BETO y CNN han respondido
satisfactoriamente a todas las versiones de los datasets balanceados, por lo que los convierte

en los modelos mas versatiles.

7.2.Lineas de trabajo futuro

Nuestro dataset original contenia mds de 570.000 registros, pero resultd inservible debido al
problema del desbalanceo de clases. Como lineas futuras planteamos realizar las mismas
pruebas presentadas en este trabajo, pero con un dataset balanceado con mayor cantidad de
registros. Nuestros datasets balanceados han permitido generar un conjunto de
entrenamiento del orden de 20K registros, lo que ha dificultado la capacidad de los modelos
para generalizar, cayendo en el problema de overfitting o sobreajuste tras las primeras épocas

de entrenamiento.

Otra alternativa interesante a explorar seria utilizar embeddings pre-entrenados como
Word2vec, Glove o fasttext, en lugar de la capa de embedding de keras actual para comprobar

si utilizar estos algoritmos suponen una mejora sustancial en términos de accuracy y F1-score.

Por otro lado, hemos identificado textos en nuestro dataset original que, por si solos, no se
podrian considerar textos de odio, pero que han sido etiquetados en funcién de su contexto
(por ejemplo, conversaciones cruzadas entre usuarios de internet). Mostramos tres ejemplos

de textos etiquetados como ODI/O que, como textos aislados, no deberian serlo:
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- Ejemplo 1: “la de falconetti acaso?”

- Ejemplo 2: “cela.... camilo? y dices que no daba vergiienza ajena?”

- Ejemplo 3: ”el muerto, culpable, pues.”
Consideramos que estos ejemplos etiquetados como OD/O no hacen mas que introducir ruido
al modelo, por lo que para mejoras futuras a la hora de crear el dataset, habria que incluir
Unicamente textos completos de los que se pudiera inferir odio por si mismos de manera

aislada, y que no dependieran del contexto en el que se encuentren.
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Con este trabajo tratamos de determinar la viabilidad que existe en la deteccion automatica de expresiones de
odio en castellano mediante la aplicacion de Deep Learning (DL) sobre el dataset del proyecto Hatemedia. Para
ello realizamos una comparativa de soluciones para determinar qué modelo de DL ofrece mejor rendimiento
para esta tarea. Se han realizado las mismas pruebas con diferentes versiones del dataset; una version con todos
los registros y otras versiones reducidas y balanceadas. Tras el trabajo comparativo, encontramos que el dataset
original resulta inservible debido al problema de desbalanceo de clases, que hace que todos los modelos acaben
prediciendo Gnicamente la clase dominante. Para los datasets balanceados, el modelo BETO (version cased) es
el que mejor rendimiento ofrece, superando los resultados obtenidos por otros modelos del estado del arte
entrenados con diferentes datasets. Finalizamos exponiendo todas las dificultades encontradas y ofreciendo
alternativas de mejora para trabajos futuros.

I INTRODUCCION para intentar abordar este complejo problema. Los objetivos

generales y especificos son descritos en el apartado III, donde
. ) ) también se detallaran los pasos necesarios para la consecucion de
H OY en dia, el auge de las redes sociales y medios estos. En el apartado IV se describe el procedimiento que se va a

informativos online genera una enorme cantidad de
informacion y proliferacion de contenidos (desinformativos o no)
que en muchas ocasiones ponen en entredicho la tolerancia,
civismo y respeto a determinados colectivos.

Dada esta enorme cantidad de contenidos generados, no es
factible confiar Uinicamente en la supervision humana para
combatir el discurso de odio en internet. Sin embargo, nos
encontramos ante el problema de que no existe una definicién
unica para el discurso de odio, lo que complica en gran medida la
labor de crear datasets etiquetados y algoritmos que detecten el
odio automaticamente y con precision en un texto.

Este estudio pretende contribuir a la deteccion automatica del
discurso de odio en espafiol. Para ello, hacemos uso del corpus
etiquetado por el equipo del proyecto Hatemedia! y comparamos
varias técnicas de clasificacion basadas en modelos de aprendizaje
profundo.

En el apartado II se hara un analisis del contexto y el estado del
arte, donde repasaremos los talleres y eventos mas relevantes de
los ultimos afios enfocados a tratar el problema de la deteccion de
expresiones de odio en textos, asi como los datasets y sistemas
basados en inteligencia artificial mas conocidos que se utilizan

1 https://www.hatemedia.es/

seguir para llevar a cabo la comparativa. Esto comprende desde la
descripcion de las versiones del dataset que se van a utilizar, hasta
los modelos seleccionados y las métricas de evaluacion utilizadas.
En el apartado V pasaremos a describir con todo detalle el
desarrollo del trabajo, mostrando los resultados y mediciones
obtenidos, para continuar en el apartado VI con una discusién
sobre la relevancia de los resultados, identificando los datos mas
importantes extraidos de estos resultados. Finalmente, en el
apartado VII se daran las conclusiones extraidas del trabajo y se
propondran lineas futuras de investigacion o desarrollo
relacionado con el mismo

II. ESTADO DEL ARTE

El estudio de la deteccion y clasificacion automatica del
discurso de odio mediante procesamiento de lenguaje natural
(PLN) es un campo relativamente reciente, pero el interés en
esta area ha aumentado a medida que las redes sociales y otras
plataformas de internet han crecido en términos de influencia y
adopcion por parte de la gran mayoria de los usuarios [1].

En la presente seccion haremos una revision del estado del
arte, donde comenzaremos destacando los principales eventos



y talleres a nivel mundial enfocados en la deteccion del discurso
del odio. A continuacion, listaremos algunos de los dataset mas
utilizados para dichas tareas. Finalmente, analizamos las
diferentes técnicas de PLN utilizadas para extraer informacion
de un texto, asi como los modelos de aprendizaje automatico
empleados en el estado del arte, desde los modelos de machine
learning (ML) clasicos hasta soluciones mas modernas basadas
en aprendizaje profundo y Transformers.

2.1 Congresos relativos a la deteccion de odio en textos

El impacto de las publicaciones nocivas online ha dado lugar
a un gran nuimero de estudios y eventos enfocados a la
deteccion del odio y lenguaje ofensivo. Como ejemplo, se listan
los siguientes talleres y congresos.

e  SemEval* Taller internacional sobre el procesamiento
del lenguaje natural cuya mision es avanzar en el estado
actual del arte. Cada afio, este taller propone una serie
de tareas compartidas en las que se presentan y
comparan  sistemas de  analisis  semantico
computacional disefiados por diferentes equipos

e Workshop on Online Abuse and Harms (WOAH?), que
en el afio 2022 celebro su sexta edicion, cuyo objetivo
es avanzar en la investigacion para detectar, clasificar
y modelar el contenido ofensivo y daiiino en internet.

e  GermEval Shared Task* (edicion de 2018 y 2019),
centrado en el procesamiento del lenguaje natural para
deteccion de lenguaje ofensivo en el idioma aleman.

e  PolEval’ (edicion de 2019, tarea 6), sobre la deteccion
automatica del ciberacoso en Twitter para el lenguaje
polaco.

e  HASOC® (2019), sobre identificacion de expresiones
de odio y contenidos ofensivos en las lenguas
indoeuropeas.

e AMI’ (2018), taller para la identificacion automatica
de la misoginia, para el idioma italiano y el inglés.

En relacion a los estudios sobre el discurso del odio en
idioma espafiol, observamos que no encontramos tanta
variedad como los centrados en el idioma inglés. De hecho, los
estudios que existen estan relacionados mayoritariamente con
la participacion de IberEval 2018 - Automatic Misogyny
Identification y la Tarea 5 del taller SemEval 2019 [2].

e  SemEval-2019, Tarea 5

Esta tarea tuvo como objetivo detectar contenidos de odio en
los textos de las redes sociales en espaiiol, concretamente en las
publicaciones de Twitter, contra dos objetivos: los inmigrantes
y las mujeres. Ademas, la tarea implementaba una perspectiva
multilingiie en la que se proporcionaron datos de los idiomas
inglés y espaiiol (HatEval), para entrenar y probar los sistemas
participantes. El conjunto de datos de HatEval estaba
compuesto por 19.600 tuits, 13.000 en inglés y 6.600 en

2 https://semeval.github.io/

3 https://www.workshopononlineabuse.com/

4 https://germeval.github.io/tasks/
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espafiol [3]. Esta tarea se articulaba en torno a dos subtareas
relacionadas:

- Subtarea A: Consistia en una deteccion basica de discurso
de odio, en la que se pedia a los participantes que marcaran
la presencia de odio en los tweets (clasificacion binaria).

- Subtarea B: En esta segunda subtarea se trataba de
determinar si el objetivo del mensaje era un individuo un
grupo de personas, y si el contenido del mensaje contenia
lenguaje agresivo.

o IberEval 2018 (AMI)

Este taller estaba enfocado a la deteccion de tweets
misoginos mediante PLN, con un dataset multilingiie, con
4.138 tuits escritos en espafiol y 3.977 en inglés [4]. Del mismo
modo que en el caso de SemEval 2019 task 5, IberEval 2018
estaba organizado en dos subtareas:

- Subtarea A: Consistia en una tarea de identificacion
binaria de mensajes misdginos.

- Subtarea B: En esta segunda subtarea habia que
determinar cudndo el objetivo del comentario misoégino
era un individuo concreto o un grupo.

2.2 Datasets

En este apartado listamos algunos de los dataset mas
utilizados en el estado del arte para tareas de deteccion de
discurso de odio en inglés.

e Waseem and Hovy: Este conjunto de datos esta
compuesto por 16.000 tweets anotados como

"sexistas", "racistas" y "sin odio" [5].

e Davidson et al.: Compuesto por 24.802 tuits anotados
en tres clases: discurso de odio, ofensivo (pero no de
odio), y ni ofensivo ni de odio [6].

e  HatEval: Este conjunto de datos se compone de 19.600
tweets, 13.000 en inglés y 6.600 en espafiol [3].

e  HS:4.575 tweets en hindi y en inglés etiquetados como
discurso de odio (aquellos tuits que inducen al odio) y
discurso normal (tuits que no inducen ninguna forma de

odio) [7].

A continuacion, se listan algunos de los datasets mas
importantes en idioma espaiiol:

e  HaterNet: Dataset en idioma espafiol construido a partir
de Twitter, compuesto por 6.000 textos etiquetados,
con 1.567 tweets anotados como odio y 4.433 anotados
como no odio [8].

> http://2019.poleval.pl/
6 https:/hasocfire.github.io/hasoc/2019/
7 https://amievalita2018.wordpress.com/
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e  HatEval 2019: Dataset construido a partir de Twitter
compuesto por 6.600 textos en espaflol, con 2.739
anotados como odio y 3.861 etiquetados como no odio

[3].

e IberEval 2018 — AMI: Dataset en espafiol compuesto
por 4.138 tweets, 2.064 anotados como mensajes
misdginos y 2.074 como no misodginos [4].

2.3 Técnicas y modelos

El procedimiento que se suele seguir para realizar el analisis
de un texto, ya sea con el objetivo de detectar odio o para
cualquier otro, consta de tres pasos: 1. Preprocesado de texto,
2. Extraccion de caracteristicas, 3. Clasificacion mediante
modelos IA.

2.3.1. Técnicas de preprocesado

Como es natural, el texto que nos llega en bruto puede
presentar un formato que diste mucho de lo que podriamos
considerar el formato correcto, compuesto por palabras
incompletas, mal escritas o en otros idiomas, conteniendo
espacios innecesarios, etc. Ademds, en nuestro texto origen
existirdn, casi con total seguridad, infinidad de palabras
innecesarias que no nos aporten ningun valor.

Asi pues, en primer lugar y antes de extraer caracteristicas
del texto y construir modelos a partir de esta informacion,
debemos dedicar tiempo a las tareas de limpieza, formateo y
preparacion de los datos. Estas tareas estan presentes en el dia
a dia de todos los proyectos de IA en general, y de
procesamiento de lenguaje natural en particular [9].

Algunas de las técnicas de preprocesado mas habituales son
las siguientes:

e  Tokenizacion, que consiste en segmentar el texto en
unidades mas pequefias (tokens o n-gramas) que
podamos manejar como referencia para extraer
caracteristicas que aporten valor a nuestro sistema.
Ademas, eliminaremos todos aquellos tokens que no
nos aporten valor, de modo que reduzcamos el nimero
de elementos a tratar.

e  Normalizacion: Sera una tarea importante si queremos
que nuestras palabras sigan un formato estandar. Del
paso anterior, nuestro tokenizador ha podido reconocer
la misma palabra, pero escrita en mayusculas y en
minusculas, por ejemplo. Si queremos tener solo una
version, serd imprescindible normalizar nuestro texto.

e  POS (part-of-speech) tagging: El POS es la técnica
sintactica para etiquetar a cada una de las palabras de
un texto su categoria gramatical.

e  Lematizacion: La técnica de lematizacion lo que
consigue es reducir todas las palabras derivadas a su
lema, que es la forma en la que encuentras la palabra en
el diccionario.

e NER (Named Entity Recognition): La deteccion de
entidades  permite identificar  automaticamente
determinadas palabras de un texto y clasificarlas en
diferentes categorias.
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2.3.2. Técnicas de extraccion de caracteristicas

Las técnicas mas simples de extraccion de caracteristicas,
(también conocidas como técnicas superficiales), son la bolsa
de palabras (BoW, de sus siglas en inglés) y la técnica TF-IDF(
del inglés Term frequency — Inverse document frequency) [10].
BoW es una representacion vectorial compuesta por un
diccionario (lexicones) con las palabras de los textos con los
que se quieren entrenar los modelos. En estos lexicones se
representa la relevancia de cada elemento mediante métricas
como, por ejemplo, si la palabra aparece en el texto (booleano),
o la cantidad de veces que una palabra se repite en el texto. TF-
IDF es una técnica cuyo objetivo es encontrar el documento
mas relevante para cierto término dentro de una coleccion de
documentos. Para ello, mide con qué frecuencia aparece un
término o frase dentro de un documento determinado, y lo
compara con el nimero de documentos que mencionan ese
mismo término dentro de una coleccion entera de documentos.

Una técnica mas compleja son los Word Embeddings [11]
[12], utilizadas para representar las palabras de nuestro lexicén
mediante vectores multidimensionales, capaces de capturar
incluso relaciones semanticas entre palabras. Esta técnica esta
presente en muchos de los estudios del estado del arte para
deteccion de odio, como [13] y [14]. Las representaciones de
Word Embeddings pueden generarse a partir de
representaciones pre-entrenadas como Word2vec [12], Glove

[15]) y fastText [16].

2.3.3. Machine Learning cldsico

Entre las diversas técnicas convencionales de aprendizaje
automatico utilizadas en la tarea de la deteccion del discurso
del odio en Internet, destacan las maquinas de vectores soporte
(SVM), la regresion logistica y los Random Forest [17] [6]

[18]; [5D).

[19] muestra que estos tres modelos son los que
proporcionan mejor rendimiento dentro del ML convencional
en términos de Accuracy, Precision, Recall y F1. Por otro lado,
en este estudio se concluye que el modelo K-Vecinos Mas
Cercanos (KNN, de sus siglas en inglés), obtuvo el peor
rendimiento para la tarea de clasificacion de textos.

El taller SemEval 2019, tarea 5 (que consistia en detectar
discurso de odio en Twitter contra mujeres e inmigrantes),
muestra que el modelo SVM es especialmente relevante, ya que
los sistemas creados mediante este modelo obtuvieron los
mejores resultados de la competicion [3].

2.3.3.1. Deep Learning

Dentro de las técnicas de DL mas utilizadas en la
clasificacion de textos, destacan las redes neuronales
convolucionales (CNN) y las redes neuronales recurrentes
(RNN) [2].

20] y [21] fueron los primeros en utilizar redes neuronales
recurrentes y redes neuronales de  convolucion,
respectivamente, para la deteccion del discurso del odio en los
tuits.

CNN

Las CNN son un tipo de red neuronal que procesa capas de
forma jerarquica, lo que les permite diferenciar distintas
caracteristicas en las entradas recibidas. La capa mas
importante, y la que da nombre a la red, es la capa
convolucional. Esta capa funciona a partir de unos filtros que
van desplazandose por la imagen o el texto, dependiendo el
problema a resolver, obteniendo las salidas de la capa mediante
un producto escalar.



Aunque se diseflaron inicialmente para la vision por
computador, han sido eficaces también para tareas de PLN y de
deteccion de odio [22]. En la Figura 1 podemos observar la
arquitectura de una red neuronal convolucional aplicada al
problema de analisis de sentimiento de textos.

Figura. 1. Arquitectura de una CNN extraida de [38]

Cuando utilizamos una red CNN aplicada a PLN, lo que
procesamos son textos en lugar de imdagenes. Estos textos
tendran una representacion matricial, donde las filas
representan la las palabras codificadas mediante word
embeddings con una dimensién d (espacio vectorial donde
hemos embebido los textos). Por tanto, cada filtro de
convolucion tendra una anchura igual a la longitud del
embedding donde estan incrustados los textos a procesar, en
nuestro ejemplo d=4, de modo que cada filtro ira recorriendo
las palabras en una sola direccion, de arriba abajo, en lugar de
izquierda a derecha y de arriba abajo como sucede con las
imagenes.

En nuestro ejemplo observamos que tenemos 4 filtros, dos
de altura h=2 y otros dos de altura h=3. Esto significa que
queremos detectar caracteristicas locales en grupos formados
por dos y tres palabras, capturando diferentes niveles de
correlacion entre palabras. Asi pues, cada filtro se encargara de
capturar cierta caracteristica de los datos. Como estamos
aplicando capas de convolucion que son unidimensionales
(recorremos la matriz de entrada de arriba a abajo), en lugar de
las bidimensionales utilizadas en imagenes, la salida que
obtenemos tras aplicar nuestro filtro es un vector en lugar de
una matriz. Estos vectores seran nuestros mapas de
caracteristicas.

En la fase de max-Pooling solo nos quedamos con un
elemento, el resultado méas grande de cada uno de los mapas de
caracteristicas, para reducir la dimensionalidad.

Finalmente, concatenamos los valores maximos obtenidos
en la fase de max-Pooling para conformar la entrada de la
siguiente capa, una fully connected layer. En nuestro ejemplo,
tenemos dos capas densas como ultimas capas. La ultima capa
estara compuesta por una sola neurona para clasificacion
binaria.

RNNy LSTM

Las redes neuronales recurrentes (RNN) son una clase de
redes especializadas en analizar datos de series temporales. La
principal caracteristica de este tipo de redes radica en su
capacidad de modelar relaciones temporales entre elementos de
la secuencia a través de un estado interno de la red o hidden
state, que podemos considerar como una memoria sobre lo que
lared ha visto hasta ese momento. En esta arquitectura se aplica
una formula recurrente sobre una secuencia de entrada de
manera que, en cada paso dado, se depende del nuevo valor de
entrada x y del estado interno h anterior. Por tanto, este tipo de
arquitecturas permiten modelar relaciones entre palabras dentro
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de un texto.

Las LSTM (Long Short Term Memory) son un tipo especial
de redes recurrentes [23]. Estas redes surgieron como una
arquitectura encaminada a solucionar los problemas de
memoria de las RNN tradicionales. En la practica, estas ultimas
presentan problemas para aprender relaciones con elementos de
time step lejanos (es decir, que no estan cerca del time step
actual). Esto limita en gran parte el potencial teérico de las
RNN. Por ejemplo, dentro del campo del procesamiento de
lenguaje natural, cuando analizamos un texto es importante
mantener la informacion aprendida desde el inicio hasta el final
del mismo, de modo que podamos extraer caracteristicas y
relaciones entre palabras dentro de un mismo texto. Las LSTM
estan disefiadas para intentar solucionar este problema. En
LSTM se establecen unos criterios para almacenar la
informacion obtenida hasta el momento. El modelo aprende
qué partes de la representacion se deben olvidar para incluir las
mas importantes.

Existe wuna version alternativa llamada Bi-LSTM
(Bidirectional Long Short-Term Memory). Se trata de una
arquitectura idéntica a la LSTM, solo que en este caso la red
neuronal se entrenara con los mismos datos una segunda vez,
recorriéndolos en orden inverso. Si bien las LSTM/BiLSTM
suponen una mejora respecto a las RNN clasicas, ambos
modelos comparten una arquitectura secuencial que limita en
gran medida la paralelizacion de las ejecuciones y, por tanto, el
rendimiento LSTM general. Por 1ultimo, la arquitectura GRU
(Gated Recurrent Unit), es una version simplificada de LSTM
introducida en 2014 por [24].

Transfer learning

Utilizando como punto de partida modelos pre-entrenados,
el Transfer Learning permite desarrollar rapidamente modelos
eficaces y resolver problemas complejos de PLN o de vision
por computador sin necesidad de tener que entrenar nuestro
propio modelo de cero o de disponer de una inmensa cantidad
de datos. De este modo, los modelos pre-entrenados se han
convertido en un elemento bdasico en el ambito del
procesamiento del lenguaje natural.

En los ultimos aflos, desde la introduccion de la arquitectura
Transformer, se han utilizado en muchas otras tareas diferentes
de PLN, superando a modelos anteriores basados en redes
neuronales recurrentes [25]. Los modelos Transformer tienen
como principal innovacion la sustitucion de las capas
recurrentes, como las LSTMs que se venian usando hasta ese
momento en PLN, por las denominadas capas de atencion [26].

A nivel de arquitectura, los Transformers se basan en dos
partes bien diferenciadas, un codificador o encoder y un
decodificador o decoder. El encoder estd compuesto por una
pila de N = 6 capas idénticas. Cada capa tiene dos subcapas. La
primera es un mecanismo de autoatencion (multi-head
attention), y la segunda es una red simple totalmente conectada.
Por otro lado, el descodificador también se compone de una pila
de N = 6 capas idénticas. Ademas de las dos subcapas de cada
capa del codificador, el descodificador inserta una tercera
subcapa multi-head attention, que se aplica sobre la salida de la
pila del codificador. Tanto el codificador como el decodificador
trabajan sobre secuencias enteras de texto en lugar de palabra
por palabra. De este modo, en lugar de analizar palabras sueltas,
se obtiene un analisis global.

La mejora de rendimiento ofrecida por la arquitectura
Transformer ha permitido el rapido desarrollo de modelos sobre
conjuntos de datos tan grandes que anteriormente no era viable
procesar, dando lugar al modelo BERT (Bidirectional Encoder
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Representations from Transformers) y a los GPT (Generative
Pre-trained  Transformer), estos ultimos utilizados
principalmente para generar textos que simulan la redaccion
humana

Modelos BERT y RoBERTa

BERT es un modelo Transformer bidireccional, pre-
entrenado sobre una gran cantidad de datos sin etiquetar para
aprender una representacion del lenguaje que se puede utilizar
para realizar fine-tuning y adaptarlo a tareas especificas de
aprendizaje automatico [27] [25]. RoBERTa (A Robustly
Optimized BERT Pretraining Approach) es otro modelo basado
en la arquitectura BERT [28]. RoBERTa utiliza la misma
arquitectura de BERT, pero aplicando pequefios cambios que
mejoran notablemente el rendimiento del modelo en todas las
tareas en comparacion con BERT. RoBERTa también utiliza
un vocabulario mas amplio (50K, frente los 30K de BERT).

Modelos multilingiies

Dentro del campo de modelos multilingiies, encontramos m-
BERT [27] y XML-R [29]. Estos dos modelos han impulsado
el estado del arte en tareas de PLN multilingiie mediante el pre-
entrenamiento en muchos idiomas, mostrando como un Gnico
modelo puede aprender de varios idiomas, estableciendo bases
solidas para tareas no relacionadas con el inglés [30].

M-Bert (Multilingual BERT) ha sido pre-entrenado con el
corpus Wikipedia en 104 idiomas, capaz de realizar una
generalizacion multilingiie sorprendentemente bien [31]. Por su
lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una
version multilingiie de ROBERTa. Esta pre-entrenada en 2,5 TB
de datos CommonCrawl filtrados que contienen 100 idiomas.

Modelos monolingiies para el idioma espaiiol

El primer modelo monolingiie disponible publicamente en
espanol fue BETO [30], un modelo BERT entrenado en su
totalidad sobre un gran corpus en espafiol, que mejora los
resultados obtenidos por m-Bert para clasificar textos en
espanol [2], lo que demuestra que un modelo monolingiie con
suficiente entrenamiento puede superar a un modelo
multilingilie, incluso cuando se utilizan mas recursos y
entrenamiento para este ultimo [27]. BETO tiene un tamafio
similar al de un BERT-Base (BERT-base tiene 12 capas,
mientras que BERT-large 24). Existen 2 versiones de BETO, la
cased y la uncased. En la version uncased, el texto con el que
se le ha entrenado ha sido previamente transformado a
mintsculas, mientras que en la version cased, el texto con el
que se le ha entrenado es el mismo que el de entrada (sin
cambios). Asimismo, en la versiéon uncased se eliminan los
acentos, mientras que en la version cased se conservan.

Mas recientemente, se han desarrollado otros modelos
lingiiisticos para el espafiol, como BERTIN [32] y
RoBERTuito [25], ambos basados en la arquitectura
RoBERTa.

III. OBJETIVOS Y METODOLOGIA
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Los objetivos especificos y metodologia necesarios para
llevar a cabo el objetivo general consistiran en: realizar un
estudio del estado del arte para identificar qué técnicas y
métodos nos conviene utilizar en nuestra comparativa. Realizar
un analisis exploratorio de los datos disponibles en el dataset
de Hatemadia con el objetivo de identificar potenciales
problemas y oportunidades. Preprocesar los datos y creacion de
diferentes versiones de nuestro dataset original; una version
completa y otras versiones reducidas pero balanceadas.
Entrenar los modelos seleccionados con las diferentes
versiones de nuestro dataset y medir sus rendimientos. Evaluar
los resultados obtenidos para determinar la viabilidad de
deteccion de expresiones de odio y la preferencia de usar
alguno de los modelos, si la hubiera.

El desarrollo sera iterativo siguiendo los objetivos
especificos marcados en el trabajo.

IV. CONTRIBUCION

El objetivo general de este trabajo es comparar el
rendimiento de diferentes algoritmos de aprendizaje profundo
y transfer learning sobre el dataset creado por el proyecto
HATEMEDIA, con el objetivo de determinar cuél clasifica
mejor y concluir si es posible la deteccion automatica de
expresiones de odio dentro de este caso de estudio.

En este trabajo queremos evaluar la viabilidad de utilizar
técnicas de aprendizaje profundo y transfer learning sobre
nuestro dataset de Hatemedia para obtener un modelo
predictivo que permita la deteccién de expresiones de odio en
castellano. Nuestra intencidén consiste en apoyarnos en estos
datos para investigar, en primer lugar, si es viable entrenar un
modelo de clasificacion binario que permita detectar si un texto
contiene odio (independientemente de su grado de intensidad)
y, en caso afirmativo, determinaremos cudl de los modelos
utilizados funciona mejor.

4.1 Dataset

El dataset utilizado proviene del proyecto Hatemedia, que ha
centrado su estudio en los principales medios informativos
profesionales de Espana (La Vanguardia, ABC, El Pais, El
Mundo y 20Minutos), para analizar como se difunden las
expresiones de odio en los entornos digitales asociados a este
tipo de medios. Este dataset estd compuesto por 574.760
registros. A pesar de tratarse de un dataset con una buena
cantidad de registros, sufre del problema del desbalanceo de
clases, donde existe una etiqueta que estd representada en
menor medida. Del total de registros, 12.296 estan etiquetados
como ODIO (el 2,1% de los datos), mientras que el 97,9%
restante se corresponde con la etiqueta de NO_ODIO.

Por lo general, el desbalance de datos afecta a los algoritmos
en su proceso de generalizacion, traduciéndose en que nuestro
modelo entrenado no tenga una capacidad de prediccion que
nos sirva para su uso posterior [33]. Debido a este problema, se
ha decidido crear tres versiones balanceadas del dataset
original, de modo que podamos llevar a cabo diferentes pruebas
en nuestra comparativa. Para ello, seleccionaremos todos los
mensajes etiquetados como ODIO y anadiremos la misma
cantidad de mensajes etiquetados como NO_ODIO, atendiendo
a diferentes criterios para cada uno de los nuevos datasets.
Llamaremos a estas versiones de los datasets V1, V2 y V3
respectivamente.

e  Seleccion aleatoria de textos (V1): Tomaremos todos
los textos etiquetados como ODIO vy afiadiremos
aleatoriamente la misma cantidad de textos de
NO_ODIO.

e Seleccion de textos de longitud homogénea (V2): En
nuestro dataset original tenemos textos que van desde
1 sola palabra hasta una longitud maxima de 3044. A
la hora de entrenar un algoritmo para que pueda
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aprender a clasificar textos en ODIO y NO_ODIO, sera
importante conocer si obtener un subconjunto de textos
de longitud homogénea supone alguna mejora en el
rendimiento. Para ello crearemos un nuevo dataset
balanceado, consistente en textos de longitud
homogénea.

e  Seleccion de textos correspondientes a un mismo
medio (V3): Escogeremos textos relacionados con un
solo medio de entre todos los disponibles (EL PA{S, EL
MUNDO, LA VANGUARDIA, 20MIN y ABC).
Elegiremos el medio en funcion de cual tenga el mejor
balance entre muestras ODIO y NO_ODIO vy,
dependiendo de los resultados obtenidos por el dataset
anterior, seleccionaremos o0 no Unicamente textos de
longitud homogénea

4.2. Analisis y preparacion de los datos

El primer paso en nuestro estudio consistio en un analisis
pormenorizado de los datos disponibles en el dataset de
Hatemadia, con el fin de entenderlos en profundidad y
comprobar la calidad de los mismos. Inicialmente se realiz6 un
estudio de los valores nulos con el objetivo principal de
identificar estos registros y decidir como proceder con ellos.
Finalmente, se eliminaron todos aquellos datos que no
aportaban valor a nuestro estudio. Una vez terminamos el
tratamiento de los valores nulos en el dataset, se realiz6 un
analisis exploratorio de los datos, donde nos deshicimos de
columnas innecesarias para nuestro estudio y pudimos
comprobar el problema de desbalanceo de clases que sufre
nuestro dataset, con 562.464 observaciones de NO_ODIO,
frente a 12296 de ODIO. Tras ello, preparamos
implementamos una funcion que aplicaba un flujo de limpieza
y preprocesado de los datos, realizando tareas como la
eliminacion de urls y caracteres especiales, eliminacion de
palabras de longitud<2, eliminacion de espacios en blanco
sobrantes, tokenizacion y lematizacion, de modo que los datos
quedaran correctamente preparados para alimentar nuestros
modelos. Asimismo, se realiz6 un estudio de la longitud de los
textos. Analizar la longitud de los textos como una variable mas
nos reveld informaciéon importante sobre nuestros datos, como
la longitud maxima y minima, asi como su distribucion.
Finalmente, tuvimos que aplicar un proceso de tokenizacion a
los datos, de modo que fueran legibles por los modelos. La
arquitectura BERT tiene su propia forma de tokenizar los datos,
por lo que tuvimos que tratar de forma separada este proceso:
por un lado, para los tres modelos de deep learning y, por otro,
BETO.

4.3. Modelos de DL para la deteccion de odio

Para realizar nuestra comparativa, hemos seleccionado un
total de 4 modelos predictivos, una red neuronal simple (SNN),
una red convolucional (CNN), una red LSTM y el Transformer
para el idioma espafiol BETO.

Para decidir el disefio final de los modelos a utilizar, como
el niumero de capas de convolucién para la CNN, niimero y
tamafio de los filtros, afiadir o no mas de una capa densa de
neuronas, decidir si incluir capas de dropout, etc, hemos
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realizado pruebas tomando distintas combinaciones, entre ellas
las configuraciones presentadas en el trabajo de [34], donde se
realiza un analisis comparativo de modelos con el objetivo de
detectar racismo y xenofobia en twitter usando redes CNN,
LSTM vy transfer learning. Finalmente, hemos optado por las
arquitecturas que se describen a continuacion:

SNN: Este sencillo modelo consistira en una primera capa
de embedding que serd posteriormente aplanada y conectada
directamente a una capa densa de 1 neurona con una funcion de
activacion sigmoid, que sera la encargada de devolver el
resultado de la clasificacion binaria.

CNN: Esta red estard compuesta por una primera capa de
embedding, seguida por una capa convolucional 1D
(probaremos diferente numero y tamafo de filtros para
seleccionar la mejor combinacion). La funcion de activacion
utilizada en esta capa sera la funcion ReLU (Unidad Lineal
Rectificada), que en la actualidad es la funcién de activacion
con mas éxito y mas utilizada en redes de neuronas profundas
[35]. A la salida de esta capa de convolucion se le aplicara una
funcion de MaxPooling para reducir el tamafio de las muestras,
y el resultado se conectara a una capa densa de 1 neurona con
una funcién sigmoid.

LSTM: Utilizaremos en primer lugar una capa de
embedding, seguida de una capa LSTM (probaremos diferente
numero de neuronas para poder seleccionar la mejor opcion).
La salida ira conectada, al igual que en los casos anteriores, a
una capa densa de 1 neurona con funcién de activacion
sigmoid.

BETO: Finalmente, utilizaremos en nuestra comparativa el
modelo transformer monolingiie para el idioma espafiol BETO,
tanto la version cased como uncased (“dccuchile/bert-base-
spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-
uncased” respectivamente). Estos modelos se pueden encontrar
en la web de Hugging Face®, y son accesibles desde el codigo
a través de la biblioteca Transformers’.

4.4 Parametrizacion

Con el fin de garantizar que los resultados obtenidos por la
red neuronal sean lo mas elevados posibles, se han realizado
una serie de pruebas en las que se ha comprobado el
rendimiento del modelo en funcion del valor de determinados
parametros que mostramos en las Tablas 1,2y 3.

Tabla 1: Parametros seleccionados para CNN

Parametro Opciones probadas Opcion seleccionada
Batch size 25,50, 100 50
Epochs 2,3,5 2
N_Filtros 32,64,128 64
Tamaiio Filtro 3,4,5 3
Optimizador Adam, SGD Adam
Learning rate le-2, le-3 le-3

Tabla 2: Parametros seleccionados para LSTM

Parametro Opciones probadas Opcion seleccionada
Batch size 25, 50, 100 50
Epochs 2,3,5 2
N_Filtros 32,64,128 64
Optimizador Adam, SGD Adam
Learning rate le-2, le-3 le-3

% https://huggingface.co/docs/transformers




Tabla 3: Parametros seleccionados para BETO

etro Opciones probada Opcidn seleccionada

Tipo de Modelo

cased, uncased cased
Batch size 25, 50, 100 50
Epochs 2,3,5 2
Optimizador Adam, SGD Adam
Learning rate 2e-5, 3e-5, 4e-5 2e-5

4.4 Métricas de evaluacion

Como métricas para comparar los distintos modelos vamos
a utilizar la accuracy (Acc) o exactitud, que indica el nimero
de muestras correctamente clasificadas para todas las clases
sobre el total de muestras, la F1-score, una métrica que combina
Precision y Recall, y a Macro-F1, que se trata de la media no
ponderada de las puntuaciones F1-score.

TP+TN ., TP
Acc= ————  ; Precision = ———; Recall =
TP+TN+FP+FN TP+FP

TP
TP+FN

2+Precision*Recall sum(F1—-scores)

numero de clases

; Macro-F1 =

F1-score = — 5
Precisién+Recall

Donde: TP representa las muestras negativas correctamente
clasificadas, FP las muestras positivas clasificadas como
negativas, FN las negativas clasificadas como positivas y FP
las positivas clasificadas como negativas.

V. EVALUACION Y RESULTADOS

Para cada uno de los modelos seleccionados, realizaremos
experimentos con las distintas versiones del dataset descritos
en el apartado anterior. Todos los experimentos han sido
ejecutados desde la version gratuita colab, configurando el
entorno para hacer uso del modo de ejecucion GPU (Tesla T4),
lo que nos ha permitido ejecutar nuestros modelos hasta 10
veces mas rapido que desde el entorno basico.

Resultados con dataset completo

Las pruebas realizadas para el dataset completo muestran
unos resultados propios de un dataset desbalanceado (Figura 2).
Al final, al modelo le basta con predecir siempre la clase
dominante para conseguir un 98% de accuracy (acertando
siempre los textos de NO_ODIO conseguimos acertar un 98%
de las ocasiones). Sin embargo, esto implica que nunca predice
la etiqueta ODIO, y esto se traduce en un recall del 0% para
esta clase. Por lo tanto, estos modelos entrenados con el dataset
completo no son utiles en absoluto para resolver nuestro
problema.

Matriz de Confusién (Dataset Original)
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Figura 2: Matriz de confusion con dataset completo para todos los
modelos

Carlos Simon Gallego
Master Universitario en Inteligencia Artificial

Estos mismos resultados se han obtenido para los diferentes
valores de batch_size y epochs.

Resultados con datasets balanceados (V1, V2, V3)

La Tabla 4 muestra los resultados obtenidos por los modelos
para cada una de las versiones del dataset balanceado V1, V2,
y V3. Estos resultados se han conseguido con un batch_size de
tamafio 50 y 2 épocas. Hemos comprobado que mas alla de la
tercera epoch perdemos accuracy para el conjunto de test
debido al fenémeno overfitting o sobreajuste del modelo al
conjunto de entrenamiento.

Tabla 4: Comparativa de resultados en test

SNN CNN LSTM BETO (cased)
86% 87% 49% 89%
Accuracy 83% 85% 84% 87%
76% 83% 80% 84%
86% 87% 0% 88%
F1-score (NO_ODIO) 83% 85% 84% 86%
77% 83% 79% 84%
85% 87% 66% 89%
Fl-score (ODIO) 82% 85% 83% 87%
75% 82% 80% 84%

A diferencia de lo que ocurria con el dataset completo, para
los datasets balanceados se obtienen unos valores razonables
para todas las métricas, con excepcion del modelo LSTM al
entrenarse con el dataset V1. En este caso, nuestro modelo no
pasa de un 49% de accuracy y un 0% de F1 para la clase de
NO_ODIO. Es evidente que el modelo LSTM no funciona bien
para este dataset V1, pues Unicamente predice la clase de
ODIO. El motivo de este comportamiento es la longitud
maxima de los textos (3044 caracteres) que hace que los
mensajes mas cortos estén compuestos mayoritariamente por
valores 0 (tras el proceso de padding), perjudicando el
rendimiento de nuestro algoritmo basado en la arquitectura
RNN. Confirmamos este punto con los resultados de los
datasets V2 y V3, donde obtenemos unos resultados bastante
buenos, cercanos a los obtenidos por CNN.

Por otro lado, observamos que con dataset balanceado V2
empeoramos ligeramente todas las métricas con respecto al
dataset V1. Esto indica que el hecho de tener unos textos de
longitud homogénea no ha ayudado en este sentido a los
modelos a predecir mejor. Sin embargo, debemos comentar que
el tiempo de ejecucion si mejord, reduciéndose
aproximadamente un 30% al acotarse la longitud de los textos.
Para el dataset V3, observamos unas métricas por debajo de lo
conseguido con el dataset V2. Creemos que estos resultados se
deben a la reduccion del numero total de registros de
entrenamiento (hemos pasado de 23.932 registros en V2 frente
a 10.268 registros en V3). Al tener menos muestras para
aprender, los modelos caen en overfitting, sobre ajustandose a
los datos de entrenamiento, y no es capaz de generalizar
correctamente

V1. DISCUSION

En primer lugar, debemos comentar que el dataset original
presenta un desbalanceo de clases tan acuciado que resulta
inservible, pues todos los modelos entrenados con este dataset
terminan prediciendo siempre la clase dominante.

Si nos centramos en las pruebas realizadas con los tres
datasets balanceados, observamos que los mejores resultados

7



en términos de accuracy y F1 los encontramos con BETO
(cased) entrenado con el dataset V1, seguido por CNN
entrenado también con V1 y empatado con BETO entrenado
con V2 (Tabla 4).

Estos resultados nos podrian llevar a pensar que un dataset
balanceado de seleccion aleatoria (V1) es la mejor opcion para
entrenar nuestros modelos. Sin embargo, este dataset entrafa
una serie de desventajas: por ejemplo, el modelo LSTM no
funciona correctamente con este dataset debido a la longitud
maxima de los textos (3.044 palabras) que hace que los
mensajes mas cortos estén compuestos mayoritariamente por
valores 0 (padding), perjudicando el rendimiento de nuestro
algoritmo basado en la arquitectura de red recurrente. Se ha
comprobado que, con textos de longitud homogénea, este
modelo alcanza una exactitud cercana a la obtenida por CNN
(aunque con tiempos de entrenamiento entre 2 y 3 tres veces
superiores en LSTM).

La Tabla 5 muestra los resultados del estado del arte (SOA)
para la deteccion de discurso de odio en espaiiol obtenidos a
partir de los conjuntos de datos de HaterNet y HatEval, ademas
de un dataset ad-hoc creado en el trabajo de [36]. Comparamos
estos resultados con nuestra mejor propuesta en términos de
macro-F1, el modelo BETO cased entrenado con el dataset
balanceado V1.

Para el conjunto de datos HaterNet, el modelo de [37]
presenta un modelo BETO (cased) que supera a nuestra
propuesta en términos de F1 para la etiqueta NO_ODIO,
alcanzando un 89% frente a nuestro 88%. Sin embargo, en
términos de macro-F1, nuestro modelo BETO mejora los
resultados de [37], en un 14%. El motivo es que nuestro modelo
es capaz de predecir mejor la etiqueta de odio, seguramente a
consecuencia de haber sido entrenado con un dataset mejor
balanceado y con un mayor nimero de muestras de textos de
odio. En la Tabla 6 mostramos la distribucion de cada dataset.

En el estudio de [36] se generaron un total de ocho modelos
predictivos: seis usando algoritmos de aprendizaje superficial,
uno generado a partir de los votos de esos modelos anteriores y
otro usando aprendizaje profundo. Los mejores resultados los
obtuvo este ultimo modelo, basado en una red neuronal
recurrente GRU, alcanzando un macro-F1 del 77%. Nuestra
propuesta mejora este resultado en un 16%.

En cuanto al conjunto de datos HatEval, [37] y [25]
superaron el mejor resultado obtenido en la competicion de
SemEval-2019 Task 5, probando un modelo BETO (cased) y
Robertuito (uncased) respectivamente. El modelo Robertuito es
el que alcanza mejor rendimiento en términos de Macro-F1, con
un 80%. Nuestro modelo BETO cased entrenado sobre el
dataset V1 supera los resultados de [25] con una mejora del
11%.

Tabla 5: Resultados SOA para deteccion de discurso de odio en espafiol

Modelo Dataset F1 (NO_ODIO) F1 (ODIO) Macro-F1
SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%
RNN-GRU [36] Ad-hoc - - 77%
BETO,.eq [37] HaterNet 89% 66% 78%
BETO,eq [37] HatEval 80% 76% 78%
Robertuito,,cseq [25] HatEval - - 80%
BETO,,.q (Nuestra propuesta) | Hatemedia (V1) 88% 89% 89%

Comparando estos resultados destacamos la importancia de
entrenar estos modelos de transfer learning sobre un dataset
balanceado con el mayor numero posible de registros, con el fin
de obtener un modelo que reajuste sus parametros en base a la
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informacion del dataset sin caer en el fenémeno de overfitting,
de modo que a posteriori sea capaz de generalizar con la llegada
de nuevos datos.

Tabla 6: Distribucion de los datasets en espafiol

Dataset n_registros NO_ODIO oDIO
HatEval 6.600 3.861 (59%) 2.739 (41%)
HaterNet 6.000 4.433 (74%) 1.567 (26%)
Ad-hoc [36] 10.213 3879 (38%) 6334 (62%)
Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)

VII. CONCLUSIONES

Si bien los resultados a partir del dataset original no son
buenos debido al problema del desbalanceo de clases, los
modelos generados a partir de los datasets balanceados tienen
unas prestaciones mas que aceptables, concluyendo que la
deteccion automatica de expresiones de odio es viable para
estos datasets balanceados, siendo BETO (version cased) el
modelo que mejor resultados ofrece en términos de accuracy y
Fl-score, seguido muy de cerca por el modelo CNN. No
recomendariamos LSTM para analisis de textos extensos, al
menos cuando la longitud de los textos del dataset no sea
homogénea, a la vista de los resultados obtenidos por este
modelo con V1. Por el contrario, tanto BETO como CNN han
respondido bien a todas las versiones de los datasets
balanceados, por lo que los convierte en los modelos mas
versatiles

Finalmente, como lineas futuras planteamos. realizar las
mismas pruebas presentadas en este trabajo, pero con un dataset
balanceado con mayor cantidad de registros. Nuestros datasets
balanceados han permitido generar un conjunto de
entrenamiento del orden de 20K registros, lo que ha dificultado
la capacidad de los modelos para generalizar, cayendo en el
problema de overfitting o sobreajuste tras las primeras épocas
de entrenamiento.
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