
Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

Universidad Internacional de La Rioja

Escuela Superior de Ingeniería y

Tecnología

Máster Universitario en Inteligencia Artificial

Comparativa de modelos de aprendizaje

profundo para la detección de odio en

castellano en medios de información

social.

Trabajo fin de estudio presentado por: Carlos Simón Gallego

Tipo de trabajo: Comparativa de soluciones

Director/a: Almudena Ruiz-Iniesta

Fecha: 08/02/2023

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

2

Resumen

Con este trabajo tratamos de determinar la viabilidad que existe en la detección automática

de expresiones de odio en castellano mediante la aplicación de Deep Learning (DL) sobre el

dataset del proyecto Hatemedia1. Para ello realizamos una comparativa de soluciones para

determinar qué modelo de DL ofrece mejor rendimiento para esta tarea. Se han realizado las

mismas pruebas con diferentes versiones del dataset; una versión con todos los registros y

otras versiones reducidas para intentar solventar los problemas derivados del desbalanceo de

clases. Las pruebas realizadas para los datasets balanceados exploran distintas casuísticas en

base a criterios como la longitud de los textos o el uso de textos pertenecientes a un mismo

medio, con el fin de entender si estas variables tienen importancia en el rendimiento de los

modelos. Tras el trabajo comparativo, encontramos que el dataset original resulta inservible

debido al problema del desbalanceo de clases, ocasionando que todos los modelos acaben

prediciendo únicamente la clase dominante, obteniendo un 98% de accuracy pero un 0% de

recall para la clase minoritaria. Si nos centramos en las pruebas con los datasets balanceados,

el modelo BETO (versión cased) es el que mejor rendimiento ofrece, superando los resultados

obtenidos por otros modelos del estado del arte entrenados con diferentes datasets.

Finalizamos exponiendo todas las dificultades encontradas y ofreciendo alternativas de

mejora para trabajos futuros.

El presente trabajo ha sido realizado dentro del proyecto: “Taxonomía, presencia e intensidad

de las expresiones de odio en entornos digitales vinculados a los medios informativos

profesionales españoles – Hatemedia”. Proyecto PID2020-114584GB-I00, financiado por la

Agencia Estatal de Investigación - Ministerio de Ciencia e Innovación.

Palabras Clave: Discurso de odio, Aprendizaje profundo, Aprendizaje por transferencia, BETO,

Procesamiento de lenguaje natural, Clasificación de texto

1 https://www.hatemedia.es/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

3

Abstract

With this work we try to determine the feasibility of the automatic detection of hate speech

in Spanish by applying Deep Learning (DL) on the dataset of the Hatemedia project. For this

purpose, we carried out a comparison of solutions to determine which DL model offers the

best performance for this task. The same tests have been carried out with different versions

of the dataset; one version with all the records and other reduced versions to try to solve the

problems derived from class imbalance. The tests carried out for the balanced datasets

explore different cases based on criteria such as the length of the texts or the use of texts

belonging to the same medium, in order to understand whether these variables are important

in the performance of the models. After the comparative work, we find that the original

dataset is useless due to the class imbalance problem, which makes all the models end up

predicting only the dominant class, obtaining 98% accuracy but 0% recall for the minority class.

If we focus on the tests with the balanced datasets, BETO model (cased version) is the one

that offers the best performance, outperforming the results obtained by other state-of-the-

art models trained with different datasets. We conclude by exposing all the difficulties

encountered and offering improvement alternatives for future work.

This work has been carried out as part of the project: "Taxonomy, presence and intensity of

hate speech in digital environments linked to Spanish professional media - Hatemedia".

Project PID2020-114584GB-I00, funded by the State Research Agency - Ministry of Science

and Innovation.

Keywords: Hate speech, Deep learning, Transfer learning, BETO, Natural language processing,

Text classification

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

4

Índice de contenidos

1.1. Motivación ... 11

1.2. Planteamiento del problema ... 13

1.3. Estructura de la memoria .. 13

2. Contexto y estado del arte .. 15

2.1. Congresos relativos a la detección de odio en textos ... 16

2.2. Datasets ... 18

2.3. Técnicas y Modelos .. 20

2.3.1. Técnicas de pre-procesado ... 20

2.3.2. Técnicas de extracción de características .. 22

2.3.3. Machine Learning clásico ... 25

2.3.4. Deep Learning ... 25

2.3.5. Transfer Learning .. 30

3. Objetivos y metodología de trabajo .. 35

3.1. Objetivo general... 35

3.2. Objetivos específicos ... 35

3.3. Metodología del trabajo .. 36

4. Cómo detectar odio en medios de información social ... 37

4.1. Dataset ... 37

4.1.1. Dataset completo ... 38

4.1.2. Datasets balanceados ... 38

4.2. Modelos de aprendizaje profundo para la detección del odio 39

4.3. Métricas de evaluación .. 41

5. Desarrollo de modelos de aprendizaje profundo para la detección de odio 43

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

5

5.1. Análisis y preparación de los datos .. 43

5.1.1. Tratamiento de los valores nulos. .. 44

5.1.2. Análisis exploratorio y visualización de los datos... 46

5.1.3. Preparación de la columna Texto ... 50

5.1.4. Estudio de la longitud de los textos ... 53

5.1.5. Proceso de Tokenización .. 58

5.1.6. Creación de conjunto de datos de entrenamiento y de test 62

5.2. Entrenamiento y evaluación de los modelos ... 65

5.2.1. SNN (Simple Neural Network) .. 65

5.2.2. CNN (Convolutional Neural Network) .. 72

5.2.3. LSTM (Short Term Memory) ... 77

5.2.4. BETO ... 81

6. Discusión y análisis de resultados ... 87

7. Conclusiones y trabajo futuro ... 90

7.1. Conclusiones .. 90

7.2. Líneas de trabajo futuro .. 91

Bibliografía .. 93

Anexo. Artículo de investigación .. 99

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

6

Índice de figuras

Figura 1: Gráfica de Dimensions con los términos de búsqueda de "hate speech detection”

para las categorías “Information and Computer Sciences” y “Artificial Intelligence”, donde se

muestra el número de publicaciones por año. .. 15

Figura 2: Ejemplo de bolsa de palabras (BoW) ... 23

Figura 3: Arquitectura de una red neuronal convolucional ... 27

Figura 4: Arquitectura LSTM Fuente: http://colah.github.io/posts/2015-08-Understanding-

LSTMs/ .. 29

Figura 5: Arquitectura Transformer ... 31

Figura 6: Distribución de etiquetas del dataset original .. 38

Figura 7: Extracto de las cinco primeras filas del dataset original. .. 43

Figura 8: Conteo de campos nulos por columna .. 44

Figura 9: Distribución de los datos en función de la variable soporte (izquierda), y la misma

distribución pero considerando solo los textos de ODIO (derecha) .. 46

Figura 10: Distribución de la variable MEDIO con respecto a la variable SOPORTE (con medios

duplicados) ... 47

Figura 11: Distribución de la variable MEDIO con respecto a la variable SOPORTE (tras

normalización de los nombres de los medios) ... 47

Figura 12: Distribución de la variable medio (izquierda), y la misma distribución pero

considerando solo los textos de ODIO (derecha) ... 48

Figura 13: Distribución de la variable tipo_mensaje con respecto a la etiqueta label_odio ... 49

Figura 14: Extracción de código que implementa el flujo de preprocesado de la columna texto

 .. 51

Figura 15: Extracción de código que implementa el flujo de normalización y lematización de la

columna texto ... 51

Figura 16: Comparación del texto antes y después de aplicar preprocesado 52

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

7

Figura 17: Textos procesados nulos vs textos sin procesar.. 53

Figura 18: Creación columna num_palabras que contiene la longitud de los textos 54

Figura 19: Estadísticas para la longitud general de los textos del dataset 55

Figura 20: Estadísticas para la longitud de los textos en función de su etiqueta label_odio .. 56

Figura 21: Estadísticas de la longitud de los textos en función del tipo_mensaje (arriba) y las

mismas estadísticas, pero centradas únicamente en los textos de odio (abajo) 57

Figura 22: Estadísticas de la longitud de textos en función del MEDIO 57

Figura 23: Estadísticas de la longitud de textos en función del MEDIO, pero únicamente

centrado en los textos de odio ... 58

Figura 24: Extracto donde se muestra el uso de la clase Tokenizer del módulo keras 59

Figura 25: Extracto de código donde se calculan MAX_LONG, vocab_size y se aplica padding a

los textos ... 60

Figura 26: Distribución de datos en conjunto de entrenamiento y test 62

Figura 27: Uso de la técnica de undersampling para lograr un dataset balanceado 62

Figura 28: Distribución de datos en conjunto de entrenamiento y test para dataset V1 63

Figura 29: Distribución en conjunto de entrenamiento y test para dataset V2 64

Figura 30: Distribución en conjunto de entrenamiento y test para dataset V3 64

Figura 31: Extracto del código python del modelo SNN .. 65

Figura 32: Resumen del modelo SNN compilado para el dataset completo 66

Figura 33: Matriz de confusión con dataset completo ... 67

Figura 34: Matriz de confusión obtenida modelo SNN y dataset V1 69

Figura 35: Matriz de confusión obtenida modelo SNN y dataset V2 70

Figura 36: Matriz de confusión obtenida modelo SNN y dataset V3 71

Figura 37: Resumen del modelo CNN ... 73

Figura 38: Matriz de confusión obtenida modelo CNN y dataset V1 74

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

8

Figura 39: Matriz de confusión obtenida modelo CNN y dataset V2 75

Figura 40: Matriz de confusión obtenida modelo CNN y dataset V3 76

Figura 41: Resumen del modelo LSTM ... 77

Figura 42: Matriz de confusión obtenida modelo LSTM y dataset V1 79

Figura 43: Matriz de confusión obtenida modelo LSTM y dataset V2 80

Figura 44: Matriz de confusión obtenida modelo LSTM y dataset balanceado V3.................. 81

Figura 45: Creación Dataloader para conjunto de entrenamiento y validación 82

Figura 46: Carga del modelo BETO (cased) .. 83

Figura 47: Matriz de confusión obtenida modelo BETO y dataset balanceado V1 84

Figura 48: Matriz de confusión obtenida modelo BETO y dataset balanceado V2 85

Figura 49: Matriz de confusión obtenida modelo BETO y dataset balanceado V3 86

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

9

Índice de tablas

Tabla 1: Lista de tareas a realizar para la consecución de objetivos.. 36

Tabla 2: Resultados en test para todos los modelos con dataset completo 68

Tabla 3: Resultados en test para SNN con dataset V1 ... 68

Tabla 4: Resultados en test para SNN con dataset V2 .. 70

Tabla 5: Resultados en test para SNN con dataset V3 ... 71

Tabla 6: Parámetros seleccionados para CNN .. 72

Tabla 7: Resultados en test para CNN con dataset V1 ... 73

Tabla 8: Resultados en test para CNN con dataset V2 ... 74

Tabla 9: Resultados en test para CNN con dataset V3 ... 75

Tabla 10: Parámetros seleccionados para LSTM .. 77

Tabla 11: Resultados en test para LSTM con dataset V1 ... 78

Tabla 12: Resultados en test para LSTM con dataset V2 ... 79

Tabla 13: Resultados en test para LSTM con dataset V3 ... 80

Tabla 14: Parámetros seleccionados para BETO .. 81

Tabla 15: Resultados en test para BETO con dataset V1 .. 84

Tabla 16: Resultados en test para BETO con dataset V2 .. 85

Tabla 17: Resultados en test para BETO con dataset V3 .. 86

Tabla 18: Comparativa de resultados en test ... 87

Tabla 19: Resultados del estado del arte para la detección de discurso de odio en español . 89

Tabla 20: Distribución de los datasets en español ... 89

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

10

Introducción

Hoy en día, el auge de las redes sociales y medios informativos online genera una enorme

cantidad de información y proliferación de contenidos (desinformativos o no) que en muchas

ocasiones ponen en entredicho la tolerancia, civismo y respeto a determinados colectivos.

Además, el anonimato y la interactividad propias de la web facilitan el aumento y la

permanencia de los comentarios opresivos (Frenda et al., 2018).

En este contexto, la detección automática del discurso de odio o Hate Speech (HS, de sus siglas

en inglés) juega un papel importante. Sin embargo, nos encontramos ante el problema de que

no existe una definición única para el discurso de odio, lo que complica en gran medida la

labor de crear algoritmos que detecten el odio automáticamente y con precisión en un texto.

En los últimos años, se han introducido varias definiciones ad hoc por parte del sector legal,

académico y por las mismas redes sociales. Sin embargo, la elaboración de una definición

precisa del discurso del odio es una tarea difícil dada su naturaleza subjetiva. (Papcunová

et al., 2021). Al final, un texto escrito en internet podrá ser considerado discurso de odio en

función de varios elementos que van más allá de las simples palabras que lo componen, como

pueden ser las características del propio emisor, su intención, el contexto en el que se realiza,

la cultura del país, etc.

Otra dificultad a tener en cuenta es que el mensaje de odio a veces se confunde con el término

"lenguaje ofensivo". Por este motivo, es importante remarcar la diferencia entre ambos

conceptos. Un texto es ofensivo si contiene alguna forma de lenguaje no aceptable. En esta

categoría pueden incluirse los insultos, las amenazas o las expresiones malsonantes (Plaza-

del-Arco et al., 2021).

Por último, no podemos olvidar la complejidad intrínseca al propio lenguaje y sus

peculiaridades: la ironía, el humor, el doble sentido, el odio implícito, metáforas... Incluso

podemos encontrar textos absolutamente inocuos que utilizan términos malsonantes y

comúnmente utilizados en lenguaje ofensivo, siendo este un caso muy común de falso positivo

en muchos clasificadores de texto (especialmente los basados en lexicón). Por si esto fuera

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

11

poco, el castellano presenta un alto grado de complejidad morfológica que requiere

normalmente de tareas de preprocesamiento adicional para lograr aumentar el rendimiento

de los modelos.

Por todos estos motivos, la detección automática de odio online presenta un reto de grandes

dimensiones que la comunidad científica se esfuerza en solucionar.

1.1. Motivación

Actualmente existe una fuerte motivación para estudiar la detección automática del discurso

del odio debido a la abrumadora difusión de información online, impulsado por las nuevas

tecnologías y formas de relacionarnos en internet. La detección automática del discurso del

odio mediante algoritmos de inteligencia artificial (IA) éticos y fiables va a ser una tarea crucial

para proteger los derechos fundamentales de las personas, especialmente importante ante

escenarios tan radicales como los que nos toca vivir hoy en día, con guerras en curso y una

sociedad extremadamente polarizada. Dentro de este escenario, internet se convierte en una

potencial herramienta para distorsionan la realidad, atacar a personas e incluso deshumanizar

a ciertos colectivos. Por poner un ejemplo, los estudios han demostrado un aumento de la

incitación al odio contra China en las redes sociales, especialmente los contenidos racistas y

abusivos que acusan a las personas de causar el brote de COVID-192.

El discurso de odio generalizado tiene importantes implicaciones sociales por motivos obvios.

Sin embargo, este puede tener otras consecuencias mucho menos obvias, como que puede

ser precursor de delitos más graves cometidos en nuestra sociedad. De hecho, algunos

estudios afirman que existe una correlación entre el número de violaciones y el número de

mensajes misóginos por estado dentro de los Estados Unidos (Filippo et al., 2015). En un

marco del discurso de odio más amplio, tenemos varios estudios que plantean la hipótesis de

una correlación entre el incremento de los mensajes de odio emitidos en internet y los

crímenes de odio cometidos en determinados lugares y contextos específicos (Müller &

2 Twitter Sees 900% Increase in Hate Speech towards China Due to Coronavirus, 2020

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

12

Schwarz, 2021), (Lingiardi et al., 2020), (Alkomah & Ma, 2022). Estos estudios consideran

fundamental estudiar este tipo de mensajes de discurso de odio online con el fin de tomar

acciones preventivas y contrarrestar sus posibles efectos negativos. En el trabajo de Ligiardi

et al. (2020) se insta a realizar una investigación futura que trate de verificar si los picos de

tuits intolerantes hacia un grupo objetivo tienden a coincidir con acontecimientos

sociopolíticos relacionados.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

13

1.2. Planteamiento del problema

Dada la enorme cantidad de contenidos generados por los usuarios en redes sociales, no es

adecuado confiar únicamente en la supervisión humana para combatir el discurso de odio en

internet. Las plataformas sociales a gran escala están invirtiendo actualmente importantes

recursos para detectar y clasificar automáticamente los contenidos de odio.

A pesar de los numerosos estudios en este campo, el discurso del odio sigue siendo un reto

desafiante. El estado del arte informa de que tanto las personas como los modelos de

aprendizaje automático tienen dificultades para detectar el discurso de odio debido a la

complejidad y variedad de las categorías de odio. Además, las definiciones teóricas existentes

del discurso del odio no están suficientemente elaboradas, por lo que actualmente no se

dispone de una definición totalmente precisa en la que poder basarnos a la hora de crear

datasets etiquetados y algoritmos automáticos.

Este estudio pretende contribuir a la detección automática del discurso de odio en español.

Para ello, hacemos uso del corpus etiquetado por el equipo del proyecto Hatemedia3 y

comparamos varias técnicas de clasificación basadas en modelos de aprendizaje profundo.

1.3. Estructura de la memoria

La estructura de la memoria está organizada de la siguiente manera:

En la Sección 2 se hará un análisis del contexto y el estado del arte reflejando la importancia

del campo de estudio. Para ello, repasaremos en primer lugar los talleres y eventos más

relevantes de los últimos años enfocados a tratar el problema de la detección de expresiones

de odio en textos, así como los datasets y sistemas basados en inteligencia artificial más

conocidos que se utilizan para intentar abordar este complejo problema.

3 Proyecto PID2020-114584GB-I00, financiado por la Agencia Estatal de Investigación - Ministerio de Ciencia e
Innovación

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

14

Los objetivos generales y específicos son descritos con más detalle en la Sección 3, donde

también se detallarán los pasos necesarios para la consecución de estos.

En la Sección 4 se describe el procedimiento que se va a seguir para llevar a cabo la

comparativa. Esto comprende desde la descripción de las versiones del dataset que se van a

utilizar, hasta los modelos seleccionados y las métricas de evaluación utilizadas.

En la Sección 5 pasaremos a describir el desarrollo del trabajo, mostrando los resultados

obtenidos, para continuar en la Sección 6 con una discusión sobre la relevancia de los

resultados, identificando las conclusiones más importantes extraídos de estos resultados.

Finalmente, en la Sección 7 se darán las conclusiones extraídas del trabajo y se propondrán

líneas futuras de investigación o desarrollo relacionado con el mismo.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

15

2. Contexto y estado del arte

El estudio de la detección y de la clasificación automática del discurso de odio mediante

procesamiento de lenguaje natural (PLN) es un campo relativamente reciente, pero ha

evolucionado rápidamente en los últimos años debido a su importancia (García-Díaz et al.,

2022). En la Figura 1 mostramos una gráfica de Dimensions4 para los términos de búsqueda

“hate speech detection”, filtrado por las categorías "Information and Computing Sciences” y

“Artificial Intelligence”, donde se puede apreciar un notable crecimiento en el número de

publicaciones de trabajos relacionados con el discurso de odio a lo largo de los últimos años.

Figura 1: Gráfica de Dimensions con los términos de búsqueda de "hate speech detection” para las

categorías “Information and Computer Sciences” y “Artificial Intelligence”, donde se muestra el

número de publicaciones por año.

El interés en esta área ha aumentado a medida que las redes sociales y otras plataformas de

internet han crecido en términos de influencia y adopción por parte de la gran mayoría de los

usuarios (Arango et al., 2019).

En la presente sección haremos una revisión del estado del arte, donde comenzaremos

destacando los principales eventos y talleres a nivel mundial, enfocados en la detección del

discurso del odio. A continuación, listaremos algunos de los dataset más utilizados para dichas

tareas. Finalmente, analizamos las diferentes técnicas de PLN utilizadas para extraer

4 https://app.dimensions.ai/discover/publication

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

16

información de un texto, así como los modelos de aprendizaje automático empleados en el

estado del arte, desde los modelos de machine learning (ML) clásicos hasta soluciones más

modernas basadas en aprendizaje profundo y Transformers.

2.1. CONGRESOS RELATIVOS A LA DETECCIÓN DE ODIO EN TEXTOS

El impacto de las publicaciones nocivas online ha dado lugar a un gran número de estudios y

eventos enfocados a la detección del odio y lenguaje ofensivo. Como ejemplo, se listan los

siguientes talleres y congresos5.

• SemEval6, taller internacional sobre el procesamiento del lenguaje natural cuya misión

es avanzar en el estado actual del arte. Cada año, este taller propone una serie de

tareas compartidas en las que se presentan y comparan sistemas de análisis semántico

computacional diseñados por diferentes equipos. Las tareas más destacadas para la

detección de odio en internet son:

o Identifying and Categorizing Offensive Language in Social Media (SemEval-

2029, Tarea 12)

o Multilingual Offensive Language Identification in Social Media (SemEval-2020,

Tarea 12)

El taller SemEval 2023 cuenta con la tarea 10 que trata sobre la detección de sexismo

en internet. Este evento está actualmente en curso y los resultados obtenidos por los

equipos participantes se publicarán a lo largo del año.

• Workshop on Online Abuse and Harms (WOAH7), que en el año 2022 celebró su sexta

edición, cuyo objetivo es avanzar en la investigación para detectar, clasificar y modelar

el contenido ofensivo y dañino en internet.

• GermEval Shared Task8 (edición de 2018 y 2019), centrado en el procesamiento del

lenguaje natural para detección de lenguaje ofensivo en el idioma alemán.

5 Nótese que no todas las ediciones de cada evento están enfocadas a la detección del discurso de odio, sino que
en cada año se plantean una o varias tareas a resolver mediante PLN.
6 https://semeval.github.io/
7 https://www.workshopononlineabuse.com/
8 https://germeval.github.io/tasks/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

17

• PolEval9 (edición de 2019, tarea 6), sobre la detección automática del ciberacoso en

Twitter para el lenguaje polaco.

• HASOC10 (2019), sobre identificación de expresiones de odio y contenidos ofensivos en

las lenguas indoeuropeas.

• AMI11 (2018), taller para la identificación automática de la misoginia, para el idioma

italiano y el inglés.

Con relación a los estudios sobre el discurso del odio en idioma español, observamos que no

encontramos tanta variedad como los centrados en el idioma inglés. De hecho, los estudios

que existen están relacionados mayoritariamente con la participación de IberEval 2018 -

Automatic Misogyny Identification y la Tarea 5 del taller SemEval 2019 (García-Díaz et al.,

2022).

SemEval-2019, Tarea 5

Esta tarea tuvo como objetivo detectar contenidos de odio en los textos de las redes sociales

en español, concretamente en las publicaciones de Twitter, contra dos objetivos: los

inmigrantes y las mujeres. Además, la tarea implementaba una perspectiva multilingüe en la

que se proporcionaron datos de los idiomas inglés y español (HatEval), para entrenar y probar

los sistemas participantes. El conjunto de datos de HatEval estaba compuesto por 19.600 tuits,

13.000 en inglés y 6.600 en español. (Basile et al., 2019). Esta tarea se articulaba en torno a

dos subtareas relacionadas:

• Subtarea A: Consistía en una detección básica de discurso de odio, en la que se pedía

a los participantes que marcaran la presencia de odio en los tweets (clasificación

binaria).

• Subtarea B: En esta segunda subtarea se pretendía ir más allá de la simple detección

binaria de discurso de odio. De este modo, se trataba de determinar si el objetivo del

mensaje era un individuo un grupo de personas, y si el contenido del mensaje contenía

lenguaje agresivo.

9 http://2019.poleval.pl/
10 https://hasocfire.github.io/hasoc/2019/
11 https://amievalita2018.wordpress.com/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

18

IberEval 2018 (AMI)

Este taller estaba enfocado a la detección de tweets misóginos mediante PLN, con un dataset

multilingüe, con 4.138 tuits escritos en español y 3.977 en inglés (Fersini et al., 2018). Del

mismo modo que en el caso de SemEval 2019 task 5, IberEval 2018 estaba organizado en dos

subtareas:

• Subtarea A: Consistía en una tarea de identificación binaria de mensajes misóginos.

• Subtarea B: En esta segunda subtarea había que determinar cuándo el objetivo del

comentario misógino era un individuo concreto o un grupo.

2.2. DATASETS

En este apartado listamos algunos de los dataset más utilizados en el estado del arte para

tareas de detección de discurso de odio en inglés.

• Waseem and Hovy: Este conjunto de datos está compuesto por 16.000 tweets

anotados como "sexistas", "racistas" y "sin odio" (Waseem & Hovy, 2016).

• Davidson et al.: Compuesto por 24.802 tuits anotados en tres clases: discurso de odio,

ofensivo (pero no de odio), y ni ofensivo ni de odio (Davidson et al., 2017)

• HatEval: Este conjunto de datos se compone de 19.600 tweets, 13.000 en inglés y

6.600 en español (Basile et al., 2019).

• Stormfront: Dataset público sobre discurso de odio recopilado a través de mensajes

de foros de Internet en idioma inglés. Este dataset está disponible en GitHub12 . El foro

de origen es Stormfront13.

12 https://github.com/Vicomtech/hate-speech-dataset
13 https://www.stormfront.org/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

19

• TRAC-I: Se trata de un dataset creado a partir de textos de Facebook y Twitter, en

idioma hindi e inglés. Se compone de 12.000 mensajes clasificados en abiertamente

agresivos (esta clase expresa abiertamente la agresión utilizando léxicos simbólicos

típicos), encubiertamente agresivos (expresión sutil e indirecta de la agresión,

incluyendo el sarcasmo, la sátira y las preguntas retóricas) y no agresivos (Kumar et al.,

2018).

• HS: 4.575 tweets en hindi y en inglés etiquetados como discurso de odio (aquellos tuits

que inducen al odio) y discurso normal (tuits que no inducen ninguna forma de odio)

(Bohra et al., 2018).

• HOT: Al igual que el dataset HS, tiene texto en hindi e inglés. Consta de 3.679 tuits

clasificados en tres categorías: No ofensivos, ofensivos (con objeto de herir los

sentimientos del receptor) e inductores de odio (Mathur et al., 2018).

A continuación, se listan algunos de los datasets más importantes en idioma español,

utilizados por distintos estudios del estado del arte.

• HaterNet: Dataset en idioma español construido a partir de Twitter, compuesto por

6.000 textos etiquetados, con 1.567 tweets anotados como odio y 4.433 anotados

como no odio (Pereira-Kohatsu et al., 2019).

• HatEval 2019: Dataset construido a partir de Twitter compuesto por 6.600 textos en

español, con 2.739 anotados como odio y 3.861 etiquetados como no odio (Basile

et al., 2019).

• IberEval 2018 – AMI: Dataset en español compuesto por 4.138 tweets, 2.064 anotados

como mensajes misóginos y 2.074 como no misóginos (Fersini et al., 2018).

• MisoCorpus 2020: El conjunto de datos completo contiene 8.390 tweets y se divide

en: (1) VARS, que considera la violencia hacia las mujeres en la política y los medios de

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

20

comunicación públicos; (2) SELA, sobre la comprensión de las diferencias en los

mensajes misóginos en el español de España y el español de América Latina; y (3) DDSS,

que contiene rasgos generales relacionados con la misoginia (García-Díaz et al., 2021).

2.3. TÉCNICAS Y MODELOS

El procedimiento que se suele seguir para realizar el análisis de un texto, ya sea con el objetivo

de detectar odio o para cualquier otro, consta de tres pasos:

1. Preprocesado de texto: Cuyo objetivo es preparar el texto para el análisis haciendo uso

de diferentes técnicas de PLN como las descritas en el apartado 2.3.1 Técnicas de

preprocesado.

2. Extracción de características: El rendimiento de un sistema de aprendizaje de IA

depende completamente de la correcta representación del problema. El objetivo aquí

es extraer características del texto a analizar para obtener representaciones que sean

manejables para su procesamiento (Plaza-del-Arco et al., 2021).

3. Clasificación mediante modelos IA: Una vez tengamos una representación de nuestros

textos mediante la extracción de características, podemos entrenar modelos de

inteligencia artificial (ya sea desde cero o apoyarnos en modelos pre-entrenados) que

nos permitan clasificar textos nuevos con mayor o menor precisión. Las técnicas que

pueden utilizarse para crear modelos de clasificación automática de un texto son muy

variadas. Sin embargo, es posible agruparlas en tres tipos principales de técnicas:

aprendizaje automático clásico, aprendizaje profundo y aprendizaje por transferencia.

2.3.1. Técnicas de preprocesado

Como es natural, el texto que nos llega en bruto puede presentar un formato que diste mucho

de lo que podríamos considerar el formato correcto, compuesto por palabras incompletas,

mal escritas o en otros idiomas, conteniendo espacios innecesarios, etc. Por ejemplo: p- e-r-r-

o, n€gr0. Además, en nuestro texto origen existirán, casi con total seguridad, infinidad de

palabras innecesarias que no nos aporten ningún valor.

Así pues, en primer lugar y antes de extraer características del texto y construir modelos a

partir de esta información, debemos dedicar tiempo a las tareas de limpieza, formateo y

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

21

preparación de los datos. Estas tareas están presentes en el día a día de todos los proyectos

de IA en general, y de procesamiento de lenguaje natural en particular (Urdaneta, 2019).

Existe una amplia variedad de librerías PLN Open Source para realizar estas tareas de

preprocesado en diversos idiomas como son NLTK14, Freeling15, Pattern.es16, Spacy17 y

Stanford NLP18.

▪ Tokenización: Esta técnica consiste en la segmentación del texto en frases, palabras o

incluso caracteres, es decir, segmentar el texto en unidades más pequeñas (tokens o

n-gramas) que podamos manejar como referencia para extraer características que

aporten valor a nuestro sistema. Además, eliminaremos todos aquellos tokens que no

nos aporten valor, de modo que reduzcamos el número de elementos a tratar. Para

facilitar la labor de eliminar los tokens innecesarios de nuestro corpus, se suelen

utilizar listas de stopwords. Estas listas constan de palabras que, por ser muy habituales

en el idioma tratado o por cualquier otro motivo particular, aportan poco valor al

problema que estamos tratando. Por ello, es interesante identificarlas y filtrarlas, por

ejemplo: los determinantes, las conjunciones "y / e", "o / u", etc. Esta una forma de

reducir los elementos de nuestro texto de entrada, pero también se pueden utilizar

otros métodos como, por ejemplo, decidir eliminar todas las palabras de longitud

menor o mayor a un umbral determinado.

▪ Normalización: Normalizar nuestro texto será una tarea importante si queremos que

nuestras palabras sigan un formato estándar. Del paso anterior, nuestro tokenizador ha

podido reconocer la misma palabra, pero escrita en mayúsculas y en minúsculas (por

ejemplo, tres formas distintas de la misma palabra: hablar, HABLAR y Hablar). Si

queremos tener solo una versión, será imprescindible normalizar nuestro texto.

▪ POS (part-of-speech) tagging: El POS es la técnica sintáctica para etiquetar a cada una

de las palabras de un texto su categoría gramatical. De esta forma, logramos capturar

características sintácticas del texto, es decir, tenemos en cuenta la relación de las

palabras. Trabajos anteriores han probado a identificar el odio utilizando

14 https://www.nltk.org/
15 http://nlp.lsi.upc.edu/freeling/node/1
16 https://www.clips.uantwerpen.be/pages/pattern-es
17 https://spacy.io/
18 https://stanfordnlp.github.io/stanfordnlp/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

22

características sintácticas y léxicas, como los n-gramas (a nivel de carácter, palabra y

frase) y el uso de una bolsa de palabras ofensivas. Por ejemplo, Warner and Hirschberg

(2012) encontró que el trigrama “<DET> judío <SUSTANTIVO>” es la característica más

significativa para detectar odio antisemita, mientras que Waseem and Hovy (2016)

identificó n-gramas de caracteres predictivos mediante coeficientes de regresión

logística. (Wang, 2018).

▪ NER (Named Entity Recognition): La detección de entidades permite identificar

automáticamente determinadas palabras de un texto y clasificarlas en diferentes

categorías: nombres propios, lugares, marcas, cantidades, etc.

▪ Lematización: Tras aplicar las técnicas de tokenización y normalización, habremos

reducido considerablemente el número de elementos a tratar. Sin embargo, y debido a

las peculiaridades del lenguaje, podemos seguir teniendo diferentes formas que

representan la misma palabra. Por ejemplo, en español tenemos una gran variedad de

conjugaciones de los verbos: juego, juegas, juegan, jugaban… todas estas palabras

proceden del mismo verbo en infinitivo (jugar). También sabemos que perros, perrito,

perrazo, etc., son diferentes variantes del vocablo perro. La técnica de lematización lo

que consigue es reducir todas estas palabras derivadas a su lema, que es la forma en la

que encuentras la palabra en el diccionario.

▪ Radicalización: En inglés, se conoce como stemming al procedimiento de convertir

palabras en raíces. Estas raíces son la parte invariable de palabras. Las raíces se

diferencian del lema en que no tienen por qué ser palabras de un idioma. Por ejemplo,

si utilizamos la función Snowball Stemmer de la librería NLTK de Python para obtener la

raíz de las palabras canta, cantas y cantamos, veremos que la raíz resultante es la

misma: “cant”. Además del snowball, nltk permite usar otros algoritmos como el Porter

Stemmer, muy utilizados en los estudios del estado del arte (Frenda et al., 2018) y

(Davidson et al., 2017) .

2.3.2. Técnicas de extracción de características

En primer lugar, revisaremos las técnicas más simples de extracción de características,

(también conocidas como técnicas superficiales), donde destacamos la bolsa de palabras y la

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

23

técnica TF-IDF. A continuación, pasaremos a explicar los word embeddings, una técnica más

compleja capaz de representar las palabras de nuestro lexicón mediante vectores

multidimensionales, capaces de capturar incluso relaciones semánticas entre palabras.

▪ Bolsa de palabras

La bolsa de palabras (BoW, de sus siglas en inglés) es una representación vectorial

compuesta por un diccionario (lexicones) con las palabras de los textos con los que se

quieren entrenar los modelos. En estos lexicones se representa la relevancia de cada

elemento mediante métricas como, por ejemplo, si la palabra aparece en el texto

(booleano), o la cantidad de veces que una palabra se repite en el texto.

A continuación, mostramos un ejemplo muy simple de una bolsa de palabras (Figura

2), donde dados 2 textos se cuenta la ocurrencia de cada palabra como métrica para

la extracción de características.

Texto1: El gato es negro.

Texto2: El perro es blanco y es bonito.

Con este ejemplo, nuestro lexicón estaría compuesto por las siguientes 8 palabras:

[El gato es negro perro blanco y bonito]

Figura 2: Ejemplo de bolsa de palabras (BoW)

Se trata de un ejemplo muy simple donde la mayoría de palabras aparecen una vez o

ninguna, a excepción de la palabra: “es”, que aparece 2 veces en el texto 2.

▪ TF-IDF

TF-IDF (del inglés Term frequency – Inverse document frequency) (Luhn, 1957) se trata

de una técnica muy popular y utilizada en el campo de la clasificación de texto

1 2 3 4 5 6 7 8

EL gato es negro perro blanco y bonito

Texto 1 1 1 1 1 0 0 0 0

Texto 2 1 0 2 0 1 1 1 1

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

24

automático, como se puede comprobar en varios de los trabajos realizados en el taller

de SemEval-2019 (Basile et al., 2019). TF-IDF es una técnica cuyo objetivo es encontrar

el documento más relevante para cierto término dentro de una colección de

documentos. Para ello, mide con qué frecuencia aparece un término o frase dentro de

un documento determinado, y lo compara con el número de documentos que

mencionan ese mismo término dentro de una colección entera de documentos. De

esta forma, palabras muy utilizadas del lenguaje como son los determinantes o las

conjunciones (que aparecen en casi todos los documentos) tendrán un valor bajo, ya

que aportan muy poco valor. Sin embargo, palabras que se repiten mucho en uno o

varios documentos, pero no aparecen en el resto del conjunto de documentos,

obtendrán un valor alto de TF-IDF.

Estas técnicas superficiales se enfrentan a limitaciones en la detección de textos de

discurso de odio, especialmente cuando estos textos no contienen palabras ofensivas,

transmitiendo odio encubierto (Dinakar et al., 2011; Mathur et al., 2018). Lo mismo

ocurre en caso contrario, cuando el texto contiene palabras ofensivas, insultos o

cualquier expresión soez, pero que carece de odio debido al contexto en el que se está

utilizando. Como ya sabemos, las palabras pueden adoptar distintos significados

dependiendo del contexto en el que se encuentren, debido a elementos intrínsecos del

propio lenguaje como son el sarcasmo o el humor.

Como parte positiva, es que las decisiones de clasificación de los modelos entrenados

a partir de características a nivel superficial son modelos interpretables y, por tanto,

satisfacen el principio de explicabilidad dentro del marco de las directrices europeas

para una IA fiable (Hleg, 2019), permitiendo que los usuarios puedan comprender el

proceso de toma de decisiones y poder confiar en resultados de estos algoritmos

automáticos.

▪ Word Embeddings

Word Embedding (Firth, 1957; Mikolov et al., 2013) es una de las técnicas más

populares para representar el vocabulario de un texto, y está presente en muchos de

los estudios del estado del arte para detección de odio, como Melnyk, (2021) y Dash

et al. (2021) . Esta técnica es capaz de capturar el contexto y la similitud semántica y

sintáctica (género, sinónimos, etc.) de las palabras dentro de un texto. Cada palabra se

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

25

representa en forma de un vector n-dimensional basado en la situación en la que

aparece junto con otras palabras. Esto nos permite generar vectores de palabras de

forma que palabras similares tengan incrustaciones de palabras similares (Sachdeva

et al., 2021).

Por ejemplo, si tenemos las palabras «perro», «gato» y «tomate», cabría esperar que

las palabras perro y gato estuvieran representadas por vectores más cercanos entre sí

en el espacio vectorial donde se definen estos vectores en relación al vector que

representa la palabra tomate, que quedaría más alejado. Las representaciones de

Word Embeddings pueden generarse a partir de representaciones pre-entrenadas

como Word2vec (Mikolov et al., 2013), Glove (Pennington et al., 2014) y fastText

(Bojanowski et al., 2017). Estos modelos son conceptualmente iguales, pero hay una

pequeña diferencia: fastText opera a nivel de caracteres, mientras que Word2Vec y

Glove lo hacen a nivel de palabras.

2.3.3. Machine Learning clásico

Entre las diversas técnicas convencionales de aprendizaje automático utilizadas en la tarea de

la detección del discurso del odio en Internet, destacan las máquinas de vectores soporte

(SVM), la regresión logística y los Random Forest (Burnap & Williams, 2015; Davidson et al.,

2017; Nobata et al., 2016; Waseem & Hovy, 2016).

Sachdeva et al., 2021, muestra que estos tres modelos son los que proporcionan mejor

rendimiento dentro del ML convencional en términos de Accuracy, Precision, Recall y F1. Por

otro lado, en este estudio se concluye que el modelo K-Vecinos Más Cercanos (KNN, de sus

siglas en inglés), obtuvo el peor rendimiento para la tarea de clasificación de textos.

El taller SemEval 2019, tarea 5 (que consistía en detectar discurso de odio en Twitter contra

mujeres e inmigrantes), muestra que el modelo SVM es especialmente relevante, ya que los

sistemas creados mediante este modelo obtuvieron los mejores resultados de la competición

(Basile et al., 2019).

2.3.4. Deep Learning

Durante los últimos años, los métodos de Deep Learning (DL) o aprendizaje profundo, han

despertado un gran interés a la hora de resolver el problema de la detección del discurso de

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

26

odio (Badjatiya et al., 2017; Gambäck & Sikdar, 2017; Gröndahl et al., 2018; Arango et al.,

2019; Melnyk, 2021). Dentro de las técnicas de DL más utilizadas en la clasificación de textos,

destacan las redes neuronales convolucionales y las redes neuronales recurrentes (García-Díaz

et al., 2022).

Badjatiya et al. (2017) y Gambäck & Sikdar (2017) fueron los primeros en utilizar redes

neuronales recurrentes y redes neuronales de convolución, respectivamente, para la

detección del discurso del odio en los tuits.

▪ CNN

Las redes neuronales convolucionales (CNN) son un tipo de red neuronal que procesa

capas de forma jerárquica, lo que les permite diferenciar distintas características en las

entradas recibidas (Roy et al., 2020). La capa más importante, y la que da nombre a la red,

es la capa convolucional. Esta capa funciona a partir de unos filtros que van desplazándose

por la imagen o el texto, dependiendo el problema a resolver, obteniendo las salidas de la

capa mediante un producto escalar.

En el caso de imágenes, las primeras capas pueden detectar formas básicas como líneas,

esquinas o curvas y se van especializando hasta llegar a capas más profundas que

reconocen formas complejas como el rostro de una persona o la silueta de un coche.

Aunque se diseñaron inicialmente para la visión por computador, han sido eficaces

también para tareas de PLN y de detección de odio (Wang, 2018). En la Figura 3 podemos

observar la arquitectura de una red neuronal convolucional aplicada al problema de

análisis de sentimiento de textos.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

27

Figura 3: Arquitectura de una red neuronal convolucional19

Cuando utilizamos una red CNN aplicada a PLN, lo que procesamos son textos en lugar de

imágenes. Estos textos tendrán una representación matricial, donde las filas representan las

palabras codificadas mediante word embeddings con una dimensión d (espacio vectorial

donde hemos embebido los textos). Por tanto, cada filtro de convolución tendrá una anchura

igual a la longitud del embedding donde están incrustados los textos a procesar, en nuestro

ejemplo d=4, de modo que cada filtro irá recorriendo las palabras en una sola dirección, de

arriba abajo, en lugar de izquierda a derecha y de arriba abajo como sucede con las imágenes.

En nuestro ejemplo observamos que tenemos 4 filtros, dos de altura h=2 y otros dos de altura

h=3. Esto significa que queremos detectar características locales en grupos formados por dos

y tres palabras, capturando diferentes niveles de correlación entre palabras. Así pues, cada

filtro se encargará de capturar cierta característica de los datos.

Como estamos aplicando capas de convolución que son unidimensionales (recorremos la

matriz de entrada de arriba a abajo), en lugar de las bidimensionales utilizadas en imágenes,

la salida que obtenemos tras aplicar nuestro filtro es un vector en lugar de una matriz. Estos

vectores serán nuestros mapas de características.

19 Imagen extraída de (Nguyen et al., 2017)

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

28

En la fase de max-Pooling solo nos quedamos con un elemento, el resultado más grande de

cada uno de los mapas de características, para reducir la dimensionalidad.

Finalmente, concatenamos los valores máximos obtenidos en la fase de max-Pooling para

conformar la entrada de la siguiente capa, una fully connected layer. En nuestro ejemplo,

tenemos dos capas densas como últimas capas. La última capa estará compuesta por una sola

neurona para clasificación binaria.

▪ RNN y LSTM

Las redes neuronales recurrentes (RNN) son una clase de redes especializadas en analizar

datos de series temporales. La principal característica de este tipo de redes radica en su

capacidad de modelar relaciones temporales entre elementos de la secuencia a través de un

estado interno de la red o hidden state, que podemos considerar como una memoria sobre lo

que la red ha visto hasta ese momento. En esta arquitectura se aplica una fórmula recurrente

sobre una secuencia de entrada de manera que, en cada paso dado, se depende del nuevo

valor de entrada x y del estado interno h anterior. Por tanto, este tipo de arquitecturas

permiten modelar relaciones entre palabras dentro de un texto.

Las LSTM (Long Short Term Memory) son un tipo especial de redes recurrentes (Vigna et al.,

2017). Estas redes surgieron como una arquitectura encaminada a solucionar los problemas

de memoria de las RNN tradicionales. En la práctica, estas últimas presentan problemas para

aprender relaciones con elementos de time step lejanos (es decir, que no están cerca del time

step actual). Esto limita en gran parte el potencial teórico de las RNN. Por ejemplo, dentro del

campo del procesamiento de lenguaje natural, cuando analizamos un texto es importante

mantener la información aprendida desde el inicio hasta el final de este, de modo que

podamos extraer características y relaciones entre palabras dentro de un mismo texto.

Las LSTM están diseñadas para intentar solucionar este problema. En LSTM se establecen unos

criterios para almacenar la información obtenida hasta el momento. El modelo aprende qué

partes de la representación se deben olvidar para incluir las más importantes. Para ello,

mantienen un estado interno cell state (c) además del hidden state (h), el cual representa una

especie de autopista de información a lo largo del tiempo.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

29

Figura 4: Arquitectura LSTM

Fuente: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

En la Figura 4 mostramos la arquitectura LSTM donde podemos observar que, en vez de

calcular directamente el valor de salida h, ahora obtenemos cuatro vectores distintos

conocidos como puertas o gates: i, f, g y o, que después se combinan para obtener el cell state

c y el hidden state h. A continuación, explicamos brevemente la función de cada vector.

• f (forget gate): Decide qué información del cell state hay que olvidar. Para ello, toma

el hidden state anterior y la entrada actual, los transforma y los lleva a una función de

activación sigmoid. Si uno de los valores de este vector es 0, o cercano a 0, entonces

la LSTM eliminará esa porción de información, mientras que si alcanza valores iguales

o cercanos a 1 esta información se mantendrá y llegará a la celda de estado.

• I (input gate): Decide qué nueva información incorporamos al cell-state. Para ello,

tomamos nuevamente el estado oculto anterior y la entrada actual, los transformamos

y los llevamos de nuevo a una función de activación sigmoid. En este caso, los valores

que queremos preservar en la memoria de la red serán aquellos cercanos a 1. Este

resultado lo multiplicamos por el vector g que viene de aplicar una función tanh a la

entrada actual, para obtener valores entre -1 y 1 que regulen la red.

• Cell state (c): Teniendo ya los datos generados por las compuertas forget e input, ahora

podemos actualizar la celda de estado (es decir, la memoria de la red LSTM). Para ello,

primero debemos saber cuánto queremos olvidar. Para ello, multiplicamos el vector

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

30

del olvido f por el valor del cell state c. A continuación, sumamos lo anterior a lo

calculado en el input gate, generando así la memoria actualizada.

• Output Gate: Finalmente debemos calcular el nuevo estado oculto, para lo cual

usamos el output gate o puerta de salida. En primer lugar, escalamos el nuevo cell

state para garantizar que esté en el rango de -1 a 1. Para ello usamos la función tanh.

Por otro lado, tomamos nuevamente el estado oculto anterior y la entrada actual y los

pasamos por una función sigmoid. Finalmente, multiplicamos los dos valores

anteriores para obtener el nuevo estado oculto.

Existe una versión alternativa llamada Bi-LSTM (Bidirectional Long Short-Term Memory). Se

trata de una arquitectura idéntica a la LSTM, solo que en este caso la red neuronal se

entrenará con los mismos datos una segunda vez, recorriéndolos en orden inverso. Si bien las

LSTM/BiLSTM suponen una mejora respecto a las RNN clásicas, ambos modelos comparten

una arquitectura secuencial que limita en gran medida la paralelización de las ejecuciones y,

por tanto, el rendimiento LSTM general. Por último, la arquitectura GRU (Gated Recurrent

Unit), es una versión simplificada de LSTM introducida en 2014 por Chung et al. y utiliza un

sistema similar de gates al visto en la LSTM. Las mayores diferencias con LSTM son que se

combina el cell state y el hidden state en un solo elemento, así como la forget gate y la input

gate en una sola puerta.

2.3.5. Transfer Learning

Utilizando como punto de partida modelos pre-entrenados, el Transfer Learning permite

desarrollar rápidamente modelos eficaces y resolver problemas complejos de PLN o de visión

por computador sin necesidad de tener que entrenar nuestro propio modelo de cero o de

disponer de una inmensa cantidad de datos. De este modo, los modelos pre-entrenados se

han convertido en un elemento básico en el ámbito del procesamiento del lenguaje natural.

En los últimos años, desde la introducción de la arquitectura Transformer, se han utilizado en

muchas otras tareas diferentes de PLN, superando a modelos anteriores basados en redes

neuronales recurrentes (Pérez et al., 2021). Los modelos Transformer tienen como principal

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

31

innovación la sustitución de las capas recurrentes, como las LSTMs que se venían usando hasta

ese momento en PLN, por las denominadas capas de atención (Vaswani et al., 2017).

A nivel de arquitectura, los Transformers se basan en dos partes bien diferenciadas, un

codificador y un decodificador. Si observamos la Figura 5, el primer bloque que aparece en la

parte izquierda corresponde al codificador o encoder, mientras que el bloque de la derecha

corresponde al decodificador o decoder. El encoder está compuesto por una pila de N = 6

capas idénticas. Cada capa tiene dos subcapas. La primera es un mecanismo de autoatención

(multi-head attention), y la segunda es una red simple totalmente conectada. Por otro lado,

el descodificador también se compone de una pila de N = 6 capas idénticas. Además de las dos

subcapas de cada capa del codificador, el descodificador inserta una tercera subcapa multi-

head attention, que se aplica sobre la salida de la pila del codificador.

Figura 5: Arquitectura Transformer20

20 Imagen extraida de (Vaswani et al., 2017).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

32

Tanto el codificador como el decodificador trabajan sobre secuencias enteras de texto en lugar

de palabra por palabra. De este modo, en lugar de analizar palabras sueltas, se obtiene un

análisis global. A continuación, describimos los elementos más importantes de la arquitectura

Transformer.

▪ Positional encoding

Dado que nuestro modelo no contiene recurrencia ni convolución, para que el modelo

pueda mantener el control sobre el orden de la secuencia, debemos incorporar alguna

información sobre la posición relativa o absoluta de los tokens en la secuencia. Para ello,

añadimos “codificaciones posicionales” a los embeddings de entrada en la parte inferior

de las pilas del codificador y decodificador. Las codificaciones posicionales tienen la misma

dimensión que los embeddings, por lo que ambas pueden sumarse. Así, para cada

elemento en la secuencia habrá un correspondiente vector posicional único que permitirá

el procesamiento en paralelo de la totalidad de la secuencia en los siguientes bloques que

componen el Transformer, lo que supone una de las grandes innovaciones introducidas

por esta arquitectura.

▪ Self-attention

En la Figura 5, observamos que el elemento de entrada aparece tres veces suministrado al

módulo de multi-head attention, tanto en el codificador como en el decodificador. Esto es

un concepto que se llama auto-atención o self-attention, que básicamente es la clave del

Transformer. Como hemos comentado, la arquitectura Transformer recibe todo el texto

de una vez, siendo capaz de analizar como cada una de las palabras se relaciona con el

resto de las palabras de ese mismo texto y, de este modo, recomponer o reconstruir la

información según esas relaciones. Así, el mecanismo de self-attention recodificará los

textos en las primeras etapas del Transformer.

▪ Bloque residual y de normalización

El propósito de este módulo es preservar la información al pasar por el bloque de multi-

head attention. Posteriormente, la salida de este bloque residual se lleva a un bloque de

normalización.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

33

▪ Capa fully-connected

Además de las subcapas de atención, cada una de las capas de nuestro codificador y

decodificador contiene una red feed-forward totalmente conectada, encargada de

aprender a representar de manera optimizada la información proveniente de la capa

anterior.

La mejora de rendimiento ofrecida por la arquitectura Transformer ha permitido el rápido

desarrollo de modelos sobre conjuntos de datos tan grandes que anteriormente no era viable

procesar, dando lugar al modelo BERT (Bidirectional Encoder Representations from

Transformers) y a los GPT (Generative Pre-trained Transformer), estos últimos utilizados

principalmente para generar textos que simulan la redacción humana.

▪ Modelos BERT y RoBERTa

BERT es un modelo Transformer bidireccional, pre-entrenado sobre una gran cantidad de

datos sin etiquetar para aprender una representación del lenguaje que se puede utilizar para

realizar fine-tuning y adaptarlo a tareas específicas de aprendizaje automático (Devlin et al.,

2019; Pérez et al., 2021). RoBERTa (A Robustly Optimized BERT Pretraining Approach) es otro

modelo basado en la arquitectura BERT (Liu et al., 2019). RoBERTa utiliza la misma

arquitectura de BERT, pero aplicando pequeños cambios que mejoran notablemente el

rendimiento del modelo en todas las tareas en comparación con BERT. RoBERTa también

utiliza un vocabulario más amplio (50K, frente los 30K de BERT).

▪ Modelos multilingües

Dentro del campo de modelos multilingües, encontramos m-BERT (Devlin et al., 2019) y XML-

R (Lample & Conneau, 2019). Estos dos modelos han impulsado el estado del arte en tareas

de PLN multilingüe mediante el pre-entrenamiento en muchos idiomas, mostrando cómo un

único modelo puede aprender de varios idiomas, estableciendo bases sólidas para tareas no

relacionadas con el inglés (Cañete et al., 2020).

M-Bert (Multilingual BERT) ha sido pre-entrenado con el corpus Wikipedia en 104 idiomas,

capaz de realizar una generalización multilingüe sorprendentemente bien (Pires et al., 2019).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

34

Por su lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una versión multilingüe de RoBERTa. Está

pre-entrenada en 2,5 TB de datos CommonCrawl filtrados que contienen 100 idiomas.

• Modelos monolingües para el idioma español

El primer modelo monolingüe disponible públicamente en español fue BETO (Cañete et al.,

2020), un modelo BERT entrenado en su totalidad sobre un gran corpus en español, que

mejora los resultados obtenidos por m-Bert para clasificar textos en español (García-Díaz et

al., 2022), lo que demuestra que un modelo monolingüe con suficiente entrenamiento puede

superar a un modelo multilingüe, incluso cuando se utilizan más recursos y entrenamiento

para este último (Devlin et al., 2019). BETO tiene un tamaño similar al de un BERT-Base (BERT-

base tiene 12 capas, mientras que BERT-large 24). Existen 2 versiones de BETO, la cased y la

uncased. En la versión uncased, el texto con el que se le ha entrenado ha sido previamente

transformado a minúsculas, mientras que en la versión cased, el texto con el que se le ha

entrenado es el mismo que el de entrada (sin cambios). Asimismo, en la versión uncased se

eliminan los acentos, mientras que en la versión cased se conservan.

Más recientemente, se han desarrollado otros modelos lingüísticos para el español, como

BERTIN (de la Rosa et al., 2022) y RoBERTuito (Pérez et al., 2021) , ambos basados en la

arquitectura RoBERTa.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

35

3. Objetivos y metodología de trabajo

Considerando el estado del arte y los trabajos preliminares en el proyecto HATEMEDIA, se ha

planteado los siguientes objetivos.

3.1. Objetivo general

Comparar el rendimiento de diferentes algoritmos de aprendizaje profundo y transfer learning

sobre el dataset creado por el proyecto HATEMEDIA, con el objetivo de determinar cuál

clasifica mejor y concluir si es posible la detección automática de expresiones de odio dentro

de este caso de estudio.

3.2. Objetivos específicos

• Investigar las técnicas y métodos de aprendizaje automático profundo y transfer

learning del estado del arte que abordan el problema de la detección del discurso del

odio, para identificar qué técnicas y métodos nos conviene utilizar en nuestro estudio

comparativo.

• Análisis exploratorio del dataset de HATEMEDIA con el objetivo de identificar

potenciales problemas y oportunidades.

• Preprocesado y creación de diferentes versiones de nuestro dataset original; una

versión completa con todos los registros preprocesados y otras versiones reducidas

pero balanceadas.

• Entrenar los modelos seleccionados con las diferentes versiones de nuestro dataset y

medir sus rendimientos.

• Evaluar los resultados obtenidos para determinar la viabilidad de detección de

expresiones de odio y la preferencia de usar alguno de los modelos, si la hubiera.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

36

3.3. Metodología del trabajo

La metodología del trabajo consistirá en seguir los pasos que se describen a continuación:

Tabla 1: Lista de tareas a realizar para la consecución de objetivos

 Tarea Descripción

1 Lectura del estado del arte
Búsqueda de información sobre los recientes avances
en técnicas y modelos de IA para la detección del
discurso del odio.

2 Análisis exploratorio de los datos

Análisis exhaustivo de los datos disponibles en el
dataset de Hatemadia, con el fin de entender las
fortalezas y debilidades que nos ofrecen los datos de
cara a resolver el problema planteado.

3
Selección de los modelos de
aprendizaje profundo para realizar
nuestra comparativa

De los algoritmos de aprendizaje profundo y transfer
learning presentes en el estado del arte, decidir cuáles
serán utilizados en nuestro estudio comparativo.

4 Preparación de los datos

Preparación de los datos necesarios para alimentar los
algoritmos de aprendizaje profundo seleccionados,
aplicando las transformaciones y normalizaciones
necesarias.

5
Creación de diferentes versiones del
dataset

Debido al desbalanceo de clases de nuestro conjunto
de datos original, será necesario crear una nueva
versión del dataset que contenga una proporción
balanceada de etiquetas para poder comparar los
resultados de las pruebas con cada dataset por
separado.

6
Aplicación de técnicas seleccionadas
sobre los datos disponibles

Utilizar los algoritmos y técnicas seleccionadas sobre
los datasets disponibles para obtener resultados.

7
Identificar las métricas de
evaluación

Determinar las métricas para la evaluación de los
algoritmos seleccionados.

8 Análisis de resultados
Análisis comparativo de resultados para las distintas
técnicas y modelos utilizados en el estudio.

9 Conclusiones y líneas futuras
Análisis de los resultados obtenidos y listar una serie
de recomendaciones a aplicar en trabajos futuros.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

37

4. Cómo detectar odio en medios de información social

En este trabajo queremos evaluar la viabilidad de utilizar técnicas de aprendizaje profundo y

transfer learning sobre nuestro dataset de Hatemedia para obtener un modelo predictivo que

permita la detección de expresiones de odio en castellano. Nuestra intención consiste en

apoyarnos en estos datos para investigar, en primer lugar, si es viable entrenar un modelo de

clasificación binario que permita detectar si un texto contiene odio (independientemente de

su grado de intensidad) y, en caso afirmativo, determinaremos cuál de los modelos utilizados

funciona mejor. De esta forma, podríamos utilizar este modelo para favorecer la detección y

monitoreo de este tipo de expresiones en los entornos digitales. Por lo tanto, el objetivo de

este trabajo no es conseguir desarrollar un algoritmo novedoso que resuelva total o

parcialmente el problema tratado, sino estudiar la viabilidad de la aplicación de técnicas ya

existentes para determinar, en caso afirmativo, cuál de los algoritmos utilizados es la mejor

opción.

4.1. DATASET

El dataset utilizado proviene del proyecto Hatemedia, que ha centrado su estudio en los

principales medios informativos profesionales de España (La Vanguardia, ABC, El País, El

Mundo y 20Minutos), para analizar cómo se difunden las expresiones de odio en los entornos

digitales asociados a este tipo de medios. En este dataset podemos encontrar más de 500.000

textos etiquetados según su grado de odio, textos procedentes tanto de publicaciones de

medios informativos como de mensajes de usuarios que interactúan con estos desde sus

cuentas sociales en Facebook, Twitter y en sus portales institucionales. A pesar de tratarse de

un dataset con una buena cantidad de registros, tan solo una pequeña parte corresponden a

textos de ODIO. Debido a esto, se ha decidido crear distintas versiones balanceadas del

dataset original, de modo que podamos llevar a cabo diferentes pruebas en nuestra

comparativa.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

38

4.1.1. Dataset completo

Nuestro dataset original sufre del problema del desbalanceo, donde existe una clase que está

representada en menor medida. De 574.760 registros, 12.296 están etiquetados como ODIO

(el 2,1% de los datos), mientras que el 97,9% restante se corresponde con la etiqueta de

NO_ODIO (Figura 6).

Figura 6: Distribución de etiquetas del dataset original

Por lo general, el desbalance de datos afecta a los algoritmos en su proceso de generalización,

traduciéndose en que nuestro modelo entrenado no tenga una capacidad de predicción que

nos sirva para su uso posterior (Chawla et al., 2004). Intentaremos paliar este problema

mediante la creación de datasets alternativos a partir del original, con un número balanceado

de clases, y compararemos los resultados obtenidos por separado.

4.1.2. Datasets balanceados

Crearemos 3 subconjuntos distintos de datos a partir del dataset original, prestando

atención al número de muestras de cada clase para obtener un dataset balanceado. Para

ello, seleccionaremos todos los mensajes etiquetados como ODIO y añadiremos la misma

cantidad de mensajes etiquetados como NO_ODIO, atendiendo a diferentes criterios para

cada uno de los nuevos datasets. Llamaremos a estas versiones de los datasets V1, V2 y

V3 respectivamente.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

39

- Selección aleatoria de textos (V1): Tomaremos todos los textos etiquetados como

ODIO y añadiremos aleatoriamente la misma cantidad de textos de NO_ODIO.

- Selección de textos de longitud homogénea (V2): En nuestro dataset original

tenemos textos que van desde 1 sola palabra hasta una longitud máxima de 3.044.

A la hora de entrenar un algoritmo para que pueda aprender a clasificar textos en

ODIO y NO_ODIO, será importante conocer si obtener un subconjunto de textos de

longitud homogénea supone alguna mejora en el rendimiento. Para ello crearemos

un nuevo dataset balanceado, consistente en textos de longitud homogénea.

- Selección de textos correspondientes a un mismo medio (V3): La detección de

expresiones de odio en textos de internet es un problema complejo, tal y como

hemos comprobado en la sección 2. Contexto y estado del arte. Acotar el ámbito

de estos textos podría mejorar el rendimiento de los modelos, y eso es

precisamente lo que vamos a analizar con este dataset, donde escogeremos textos

relacionados con un solo medio de entre todos los disponibles (EL PAÍS, EL MUNDO,

LA VANGUARDIA, 20MIN y ABC). Elegiremos el medio en función de cual tenga el

mejor balance entre muestras ODIO y NO_ODIO y, dependiendo de los resultados

obtenidos por el dataset anterior, seleccionaremos o no únicamente textos de

longitud homogénea.

4.2. MODELOS DE APRENDIZAJE PROFUNDO PARA LA DETECCIÓN DEL ODIO

Para realizar nuestra comparativa, hemos seleccionado un total de 4 modelos predictivos (3

modelos de deep learning y 1 modelo de transfer learning) de los mencionados en el apartado

2.3. Técnicas y modelos. Para decidir el diseño final de los modelos a utilizar, como el número

de capas de convolución para la CNN, número y tamaño de los filtros, añadir o no más de una

capa densa de neuronas, decidir si incluir capas de dropout, etc, hemos realizado pruebas

tomando distintas combinaciones, entre ellas las configuraciones presentadas en el trabajo

de Benítez-Andrades et al. (2022), donde se realiza un análisis comparativo de modelos con el

objetivo de detectar racismo y xenofobia en twitter usando redes CNN, LSTM y transfer

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

40

learning. Finalmente, hemos optado por las arquitecturas más sencillas posibles que se

describen a continuación, debido a que arquitecturas más complejas aumentaban

considerablemente el tiempo de ejecución sin aumentar apenas el rendimiento,

probablemente por sobre ajustarse demasiado a los datos de entrenamiento (overfitting).

• SNN: En primer lugar, utilizaremos un clasificador basado en un modelo de red

neuronal simple (SNN, simple neural network en inglés). Este sencillo modelo

consistirá en una primera capa de embedding que será posteriormente aplanada y

conectada directamente a una capa densa de 1 neurona con una función de activación

sigmoid, que será la encargada de devolver el resultado de la clasificación binaria. Este

modelo SNN nos servirá de línea base o baseline, pues la capacidad predictiva en este

caso residirá en la capa de embedding, cuya salida proveerá vectores bidimensionales

que serán las representaciones de cada uno de nuestros textos. La capa densa de una

neurona será la encargada de devolver como salida un valor entre 0 y 1, que será el

que utilizaremos para determinar si el texto se clasifica como ODIO (> 0,5) o NO_ODIO

(<=0,5).

• CNN: En segundo lugar, utilizaremos un modelo CNN, con una primera capa de

embedding, seguida por 1 capa convolucional 1D (probaremos diferente número y

tamaño de filtros para seleccionar la mejor combinación). La función de activación

utilizada en esta capa será la función ReLU (Unidad Lineal Rectificada), que en la

actualidad es la función de activación con más éxito y más utilizada en redes de

neuronas profundas (Ramachandran et al., 2017). A la salida de esta capa de

convolución se le aplicará una función de MaxPooling para reducir el tamaño de las

muestras, y el resultado se conectará a una capa densa de 1 neurona con una función

sigmoid.

• LSTM: En tercer lugar, seleccionamos para realizar nuestra comparativa el modelo

recurrente LSTM, donde utilizaremos en primer lugar una capa de embedding, seguida

de una capa LSTM (probaremos diferente número de neuronas para poder seleccionar

la mejor opción). La salida irá conectada, al igual que en los casos anteriores, a una

capa densa de 1 neurona con función de activación sigmoid.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

41

• BETO: Finalmente, utilizaremos en nuestra comparativa el modelo Transformers

monolingüe para el idioma español BETO, tanto la versión cased como uncased

(“dccuchile/bert-base-spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-

uncased” respectivamente). Estos modelos se pueden encontrar en la web de Hugging

Face 22, y son accesibles desde el código a través de la biblioteca Transformers23. La

librería Hugging Face, además de soportar una variedad de diferentes modelos de

Transformers pre-entrenados, incluye versiones preconstruidas adaptadas a una tarea

específica, como por ejemplo clasificación de texto. Para nuestras pruebas

utilizaremos BertForSequenceClassification24.

4.3. MÉTRICAS DE EVALUACIÓN

Como métricas para comparar los distintos modelos entrenados vamos a utilizar:

• Accuracy (Exactitud): Esta métrica indica el número de muestras correctamente

clasificadas para todas las clases sobre el total de muestras. En nuestro caso, al tener

conjuntos de datos muy desequilibrados, este parámetro por sí solo no nos es

suficiente ya que podemos clasificar muy bien la clase mayoritaria, teniendo valores

altos de exactitud y, sin embargo, detectar muy mal la clase minoritaria, en este caso

los textos de ODIO. La fórmula para calcular el accuracy es la siguiente:

𝐴𝑐𝑐=
𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑠

total muestras
 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• Precisión: nos indica lo precisa que es nuestra clasificación, es decir, de las muestras

reconocidas en una clase cuántas son correctas.

22 https://huggingface.co/dccuchile
23 https://huggingface.co/docs/transformers
24 https://huggingface.co/transformers/v3.0.2/model_doc/bert.html#bertforsequenceclassification

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

42

Precisión =
muestras clasificadas correctamente en una clase

total muestras clasificadas en esa clase
=

𝑇𝑃

𝑇𝑃+𝐹𝑃

• Recall (Exhaustividad): Esta métrica es también conocida como el ratio de verdaderos

positivos y es utilizada para saber cuántos valores positivos son correctamente

clasificados.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠 𝑐𝑙𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑑𝑎𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑎𝑚𝑒𝑛𝑡𝑒 𝑒𝑛 𝑢𝑛𝑎 𝑐𝑙𝑎𝑠𝑒

𝑡𝑜𝑡𝑎𝑙 𝑚𝑢𝑒𝑠𝑡𝑟𝑎𝑠 𝑑𝑒 𝑙𝑎 𝑐𝑙𝑎𝑠𝑒
 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

Donde,

TP = True Positive o muestra clasificada en una clase de forma correcta.

TN = True Negative o muestra no clasificada en una clase correctamente.

FP = False Positive o muestra clasificada en una clase cuando no pertenece a ella.

FN = False Negative o muestra no clasificada en una clase cuando sí pertenece a ella.

• F1-score: Una métrica que combina Precisión y Recall.

F1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖ó𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

• Macro-F1: Se trata de la media no ponderada de las puntuaciones F1-score.

Macro-F1 =
𝑠𝑢𝑚(𝐹1−𝑠𝑐𝑜𝑟𝑒𝑠)

𝑛ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑐𝑙𝑎𝑠𝑒𝑠

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

43

5. DESARROLLO DE MODELOS DE APRENDIZAJE PROFUNDO

PARA LA DETECCIÓN DE ODIO

A continuación, se detalla el trabajo realizado en este estudio, desde la preparación de datos

hasta el entrenamiento y evaluación de los modelos y su posterior comparativa.

5.1. ANÁLISIS Y PREPARACIÓN DE LOS DATOS

 En un primer vistazo, observamos que nuestro dataset contiene 9 columnas (Figura 7).

Figura 7: Extracto de las cinco primeras filas del dataset original.

• Medio: Indica el medio digital de donde se ha extraído el texto. En nuestro dataset

tenemos 5 valores diferentes (El PAÍS, EL MUNDO, LA VANGUARDIA, 20MIN y ABC).

• Soporte: Indica el soporte del medio (Web, Twitter).

• Url: Link al texto. Hemos comprobado casos en el que los links no corresponden con el

texto al que debería apuntar, por lo que consideramos que esta columna es poco

fiable.

• Tipo_mensaje: Tipo mensaje puede tomar 3 valores (COMENTARIO, NOTICIA y

TITULAR_NOTICIA).

• Texto: Es el texto para clasificar. Nuestra variable objetivo.

• Intensidad: Indica la intensidad de la expresión de odio, con siete posibles valores que

van desde 0.0 hasta 6.0. El valor 0.0 indica que el texto no contiene odio, mientras que

el resto de los valores corresponden a una intensidad de odio. Como en nuestro

estudio sólo nos interesa realizar una clasificación binaria, transformamos esta

columna a valores 0 y 1 (NO_ODIO y ODIO respectivamente), y la renombramos a

label_odio.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

44

• Tipo_odio: Indica el tipo de odio del texto. Este campo solo es aplicable a textos

etiquetados como ODIO. Existen 7 posibles valores (Racismo, Sexual, Misoginia,

Religioso, Xenofobia, Ideológico y Otros), además de combinaciones entre ellos (por

ejemplo, "Racismo, Misoginia") hasta un total de 72 combinaciones distintas.

• Tono_humorístico: Es un booleano que indica si existe humor en el texto etiquetado

como ODIO. (Solo aplicable a textos etiquetados como ODIO).

• Modificador: Contiene los valores: "Humor", "Atenuador", "Intensificador" y la

combinación "Intensificador, Atenuador”. (Solo aplicable a textos etiquetados como

ODIO).

A continuación, realizamos un análisis pormenorizado de los datos disponibles en el dataset

de Hatemedia, con el fin de entenderlos en profundidad y comprobar la calidad de los mismos.

5.1.1. Tratamiento de los valores nulos.

En este apartado perseguimos dos objetivos principales: 1) eliminar registros cuando el campo

“contenido” o “intensidad” es nulo; 2) si tenemos nulos en otras columnas, decidir qué hacer

con ellos.

En la Figura 8 mostramos el número de campos nulos para cada columna de nuestro dataset.

Los 562.467 registros con valor nulo en las columnas “tipo_odio” y “tono_humorístico” y los

574.410 de “modificador” son esperados, ya que se trata de columnas que, de tomar un valor,

solo lo toman cuando el texto en cuestión es etiquetado como ODIO. Para el resto de los

textos, su valor debe ser siempre nulo.

Figura 8: Conteo de campos nulos por columna

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

45

Si embargo, observamos también que tenemos un valor nulo en la columna tipo_mensaje.

Para decidir qué hacer con este registro, hemos seguido los siguientes pasos.

1. En primer lugar, hemos accedido a la url asociada a este registro:

https://twitter.com/1022840547118145536/status/1347858101454704642

 Sin embargo, a pesar de que hace referencia a un tweet del medio “ABC”, hemos

comprobado que esta url no se corresponde con el texto en cuestión, si no con otro

distinto. Tras hacer la prueba con otras urls del fichero, confirmamos que esta columna

no tiene datos fiables.

2. En segundo lugar, hemos estudiado el valor que contiene el campo tipo_mensaje para

otros registros cuyo medio es “ABC” y su soporte es “Twitter”, para intentar deducir

qué valor podría ser el más probable para nuestro campo nulo. Los valores que toma

este campo para otros registros similares son: “COMENTARIO”, “NOTICIA” o “NaN”.

Inicialmente, podríamos pensar que los textos catalogados como “NOTICIA” son textos

más largos y elaborados, mientras que los de tipo “COMENTARIO” podrían

corresponderse a textos significativamente más cortos. Sin embargo, comprobamos

que no es así, puesto que podemos observar algunos ejemplos de tipo_mensaje =

“NOTICIA” que están compuestos por textos de muy pocas palabras. Así pues,

consideramos la hipótesis de que la columna tipo_mensaje (al menos para los registros

con medio y soporte “ABC” y “TWITTER”) hace la distinción de cuándo un comentario

se escribe en contestación a una noticia directamente, y cuándo se escribe en

contestación a otro comentario. Es decir, cuando un usuario escribe un comentario en

referencia a una noticia, su campo tipo_mensaje sería “NOTICIA” y en el caso de que

un usuario responda a otro comentario, su texto se catalogaría como tipo_mensaje =

"COMENTARIO". En cualquier caso, esto es solo una suposición.

Como no somos capaces de determinar con certeza el valor de tipo_mensaje para este

caso y teniendo en cuenta que el campo label_odio es 0 (correspondiente a la etiqueta de

NO_ODIO, que es la etiqueta mayoritaria en nuestro dataset), decidimos eliminar el

mensaje.

https://twitter.com/1022840547118145536/status/1347858101454704642

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

46

5.1.2. Análisis exploratorio y visualización de los datos

Una vez hemos terminado el tratamiento de los valores nulos en el dataset, nos disponemos

a realizar un análisis exploratorio de los datos. Actualmente sabemos que el dataset está

claramente desbalanceado (ver Figura 1), con 562.464 observaciones de NO_ODIO, frente a

12.296 de ODIO. A continuación, realizaremos un estudio de cómo se distribuyen los datos en

función de las distintas variables, para entender un poco mejor el dataset.

En primer lugar, estudiamos la distribución de los datos en relación a la variable SOPORTE. En

la Figura 9 podemos observar que el 60% del dataset corresponde a textos de soporte WEB,

mientras que el 40% corresponde a Twitter. Podría parecer que nuestros datos están bien

representados en ambos soportes. Sin embargo, si atendemos únicamente a los textos de

ODIO, podemos apreciar que el 77% están vinculados a Twitter. Este dato es interesante,

porque siendo los textos de odio tan solo un 2% de los textos totales del dataset, el 77% de

esta minoría están asociados a la plataforma Twitter.

Figura 9: Distribución de los datos en función de la variable soporte (izquierda), y la misma distribución pero

considerando solo los textos de ODIO (derecha)

Estudiaremos ahora la distribución de la variable MEDIO con respecto a la variable SOPORTE:

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

47

Figura 10: Distribución de la variable MEDIO con respecto a la variable SOPORTE (con medios duplicados)

En la Figura 10 podemos ver que tenemos medios duplicados: “La Vanguardia“, “20MIN” y

“ABC”. Normalizamos el nombre de los medios duplicados o con espacios sobrantes.

Figura 11: Distribución de la variable MEDIO con respecto a la variable SOPORTE (tras normalización de los

nombres de los medios)

La Figura 11 muestra un gráfico con los nombres de los medios normalizados donde podemos

apreciar que todos los medios tienen presencia en ambos soportes (WEB y Twitter).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

48

Comparando los medios entre sí, podemos comprobar que “La Vanguardia” es el medio con

menos textos en nuestro dataset. Sin embargo, este hecho no debería suponer ningún

problema para nuestro estudio.

Ahora estudiamos la distribución de los datos únicamente en relación con la variable MEDIO.

Figura 12: Distribución de la variable medio (izquierda), y la misma distribución pero considerando solo los

textos de ODIO (derecha)

En la Figura 12 podemos apreciar que EL MUNDO no solo es el medio con mayor presencia en

nuestro dataset (26%), sino que además es de donde se generan la mayor parte de los textos

de ODIO (un 43% del total). Por lo tanto, EL MUNDO parece la mejor opción si decidimos crear

un dataset balanceado con textos provenientes de un mismo medio para añadir a nuestra

comparativa.

Analizamos ahora la distribución de la variable tipo_mensaje con respecto a la etiqueta

label_odio (Figura 13).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

49

Figura 13: Distribución de la variable tipo_mensaje con respecto a la etiqueta label_odio

Vemos que, para ambos casos (ODIO y NO_ODIO), la categoría más común es “COMENTARIO”,

y la menos común es “TITULAR_NOTICIA”.

Las tres columnas restantes de nuestro dataset: tipo_odio, tono_humorístico y modificador,

no serán necesarias para nuestro estudio, ya que estas columnas únicamente dan información

adicional para los mensajes de odio (para el resto de los casos toman el valor nulo). A nosotros

nos bastará con conocer la etiqueta ODIO y NO_ODIO para cada texto, con el objetivo de

entrenar nuestro modelo, sin necesidad de entrar en más detalle sobre el tipo de odio. Aun

así, hemos realizamos un pequeño análisis y estos han sido los resultados:

- Tipo_odio: Observamos que, de los 12.296 textos de odio presentes en nuestro

dataset, la gran mayoría están catalogados con tipo_odio = "Otros" (73%), seguido

por tipo_odio = "Ideológico" (14%).

- Tono_humorístico: De los 12.296 textos de odio, tan solo 143 (1%) han sido

catalogados con tono_humorístico = ”Si”. El resto tienen valor nulo.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

50

- Modificador: Tan solo el 3% de los mensajes de odio contienen valor en este

campo. Los valores presentes son “Atenuador” (114 observaciones),

“Intensificador” (233), la tupla “Intensificador, Atenuador” (2) y Humor (1).

Tras este análisis exploratorio, decidimos eliminar las columnas tipo_odio, tono_humorístico

y modificador por no aportar valor a nuestro estudio. También decidimos borrar el registro

que contiene el campo “tipo_mensaje” a nulo, de modo que dejamos un dataset libre de

valores nulos.

5.1.3. Preparación de la columna Texto

El siguiente paso será tratar la columna texto de nuestro dataset. La columna texto es la que

contiene los mensajes a clasificar como ODIO / NO_ODIO, por lo que debemos realizar un

preprocesado de modo que aseguremos que el contenido de esta columna es óptimo para

poder entrenar nuestros modelos de inteligencia artificial.

Para ello, creamos una función que implemente un flujo de limpieza y preprocesado de los

datos, consistente en los siguientes pasos:

• Limpieza de URLs

• Eliminación de @ y su mención

• Eliminación de los caracteres especiales

• Eliminación de palabras con longitud <2

• Eliminación de espacios en blanco adicionales

• Tokenización

• Lematización

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

51

Figura 14: Extracción de código que implementa el flujo de preprocesado de la columna texto

En la Figura 14 mostramos el código de la función limpiar_texto, que comienza por eliminar

las urls, que no nos van a dar ningún valor a lo hora de hacer nuestra clasificación. Así mismo,

eliminamos las menciones propias de los tweets (expresiones que empiezan por @).

Continuamos por eliminar todos los caracteres especiales de los textos utilizando la expresión

regular re.sub(r'\W', ' ', texto). Tras ello, eliminamos los caracteres sueltos (longitud <2), y

también eliminamos los espacios en blanco adicionales que nos hayan podido quedar, tanto

en el interior del texto, como al principio y al final.

Figura 15: Extracción de código que implementa el flujo de normalización y lematización de la columna texto

En la Figura 15 podemos ver el código de la función normalizar. Esta función se ayuda de la

librería spacy para pasar el texto a minúsculas y lematizar cada palabra. Por último, nos

quedamos solo con las palabras que pertenezcan a ciertas categorías gramaticales que

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

52

consideramos útiles para nuestro estudio, como nombres, adjetivos, verbos y adverbios.

Hemos decidido quedarnos con las etiquetas gramaticales AUX (verbo auxiliar) e INTJ

(interjección), porque en el idioma español, las palabras etiquetadas como AUX son formas

verbales que deseamos mantener, como por ejemplo “estoy”, “sería” y “será”. En el idioma

inglés, las palabras con la etiqueta AUX normalmente se eliminarían del estudio. En el caso de

la etiqueta INTJ, hemos detectado que spacy no hace un uso correcto de esta etiqueta para el

idioma español en todos los casos, de modo que durante nuestra investigación hemos

encontrado que adjetivos como "traidor" son consideradas INTJ. Como no queremos perder

estas palabras, decidimos mantener todas las palabras etiquetadas como INTJ.

Tras realizar el preprocesado de los datos, mostramos algunos ejemplos del resultado:

Figura 16: Comparación del texto antes y después de aplicar preprocesado

En la Figura 16 podemos comprobar que, tras el preprocesado del texto, hemos eliminados

signos de puntación, espacios en blanco sobrantes, saltos de línea y cualquier otro carácter

especial. Asimismo, las palabras han sido normalizadas y lematizadas.

Tras la realización del preprocesado, observamos que hemos perdido 23 textos de ODIO y

2.522 de NO_ODIO, todos ellos comentarios compuestos por palabras intranscendentes o mal

escritas que se han convertido en textos nulos, tal y como podemos ver en la Figura 17.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

53

Figura 17: Textos procesados nulos vs textos sin procesar

Eliminamos todas esas filas con textos nulos, ya que no nos aportarán nada para nuestra

investigación.

5.1.4. Estudio de la longitud de los textos

Analizar la longitud de los textos como una variable más nos revelará información importante

sobre nuestros datos, como la longitud máxima y mínima, así como su distribución. Los

modelos de aprendizaje profundo pueden mostrar un comportamiento muy diferente en

función de las longitudes de los textos que se les proporciona, tanto desde el punto de vista

de rendimiento como de tiempo de ejecución.

Para poder analizar la longitud de los textos programamos una función lambda que cuente las

palabras de cada uno de ellos y las almacenamos en una nueva columna de nuestro dataset

llamada “num_palabras”. En la Figura 18 mostramos como queda nuestro dataset procesado,

tras añadir la nueva columna “num_palabras”, eliminar las filas y columnas innecesarias y con

los textos preprocesados.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

54

Figura 18: Creación columna num_palabras que contiene la longitud de los textos

A continuación, realizamos un estudio detallado basado en nuestro nuevo campo

“num_palabras”. El objetivo es conocer cómo se distribuye esta variable para entender si

existe algún patrón de correlación y sacar conclusiones que puedan ayudarnos a abordar

nuestro problema. Para ello, obtendremos estadísticas basadas en la longitud de los textos

como la longitud media, mínima y máxima, primero de forma general (teniendo en cuenta

todos los textos) y a continuación centrándonos únicamente en los textos de odio. Asimismo,

obtendremos estadísticas de la longitud de textos en función de las variables TIPO_MENSAJE

y MEDIO.

5.1.4.1. Estudio general de longitud de los textos

En la Figura 19 se muestran las estadísticas relacionadas con la longitud de los textos de

nuestro dataset. Observamos que tenemos textos que van desde 1 una sola palabra (estos

textos tan cortos probablemente no nos aporten información útil a la hora de entrenar

nuestro clasificador), hasta 3.044 palabras, con una media global de 60 palabras por texto.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

55

Figura 19: Estadísticas para la longitud general de los textos del dataset

Probablemente, los textos que contienen una única palabra no aporten información útil a la

hora de entrenar el clasificador. Es muy probable también que la diferencia tan grande que

existe entre los textos de longitud mínima y máxima perjudique el rendimiento del clasificador

ya que, tras el proceso de padding, los textos más cortos se representarán como un vector de

unos pocos enteros al inicio y más de 3000 ceros al final. Por este motivo, una parte de nuestra

investigación será trabajar con un dataset compuesto de textos de longitud homogénea para

poder comparar los resultados obtenidos.

También podemos apreciar en estas estadísticas que el 75% de los textos de nuestro dataset

está compuesto por 26 palabras o menos. Esto quiere decir que la longitud máxima de 3044

es un valor atípico. Más adelante analizaremos la longitud de los textos en función de otras

variables como TIPO_MENSAJE o MEDIO, de modo que podamos entender si los textos más

largos guardan alguna relación con cierto tipo de variables.

5.1.4.2. Longitud en función de etiqueta label_odio

En la Figura 20 mostramos el mismo estudio anterior pero esta vez atendiendo a la etiqueta

label_odio. Comprobamos que, de media, los mensajes de ODIO son significativamente más

cortos que los etiquetados como NO_ODIO, 9 palabras frente a 61. El 75% de los textos de

odio contienen 11 palabras o menos. Cuando construyamos nuestro dataset balanceado en

base a la longitud de las palabras, tendremos que tener en cuenta estas estadísticas que

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

56

devuelven los mensajes de odio para crear un dataset donde la media de la longitud de los

textos sea alrededor de nueve palabras.

Figura 20: Estadísticas para la longitud de los textos en función de su etiqueta label_odio

5.1.4.3. Longitud en función de tipo_mensaje y medio

Ahora nos disponemos a analizar la distribución de la variable NUM_PALABRAS en función de

TIPO_MENSAJE y MEDIO, tanto para los textos en general, como únicamente para los textos

etiquetados como ODIO. Los resultados son mostrados a continuación en las Figuras 21, 22 y

23:

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

57

Figura 21: Estadísticas de la longitud de los textos en función del tipo_mensaje (arriba) y las mismas

estadísticas, pero centradas únicamente en los textos de odio (abajo)

En base a estas estadísticas observamos que los textos correspondientes a TITULAR_NOTICIA

son significativamente más cortos que las NOTICIAS y COMENTARIOS, tanto para todos los

textos en general como para los de odio. Si nos centramos únicamente en los textos de

ODIO, podemos observar que el 75% de ellos tienen 11 palabras o menos para cualquier

valor de TIPO_MENSAJE.

Figura 22: Estadísticas de la longitud de textos en función del MEDIO

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

58

Figura 23: Estadísticas de la longitud de textos en función del MEDIO, pero únicamente centrado en los

textos de odio

Las estadísticas relacionadas con la longitud de textos en función del medio no nos aportan

mayor conocimiento para textos de ODIO, seguimos viendo que el 75% están compuestos por

13 palabras o menos, variando el valor medio en pocas palabras según el MEDIO.

Observamos que el estudio de la variable NUM_PALABRAS con respecto a tipo_mensaje y

medio no nos aporta información adicional con respecto a lo visto en el estudio general, si

bien nos confirma coherencia en nuestros datos, siendo los comentarios y los títulos de las

noticias textos más cortos que la propia noticia.

5.1.5. Proceso de Tokenización

Antes de poder entrenar nuestros modelos, necesitamos transformar nuestros datos para que

estos sean legibles para nuestros modelos. Los modelos BERT tienen su propia forma de

tokenizar los datos, por lo que explicamos de forma separada este proceso.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

59

5.1.5.1. Tokenización en Deep Learning

Para realizar el proceso de tokenización en los modelos de deep learning, en primer lugar,

usamos la clase Tokenizer25 del módulo Keras. Esta clase permite vectorizar el corpus de texto,

convirtiendo cada texto en una secuencia de números enteros. Para ello, primero utilizamos

la función fit_on_texts() para crear un diccionario de palabra-índice. En este diccionario, cada

palabra de nuestro corpus es usada como índice, mientras que los valores son un índice único

para cada palabra. Esta tupla será utilizará posteriormente por la función text_to_sequences()

para convertir cada texto en una secuencia de enteros, donde cada entero corresponde a una

única palabra del corpus.

Figura 24: Extracto donde se muestra el uso de la clase Tokenizer del módulo keras

Si exploramos ahora la variable X_token (Figura 24), veremos que tenemos una lista cuyo

contenido son números. Estos números son las representaciones de las palabras del texto

original. En nuestro ejemplo, el texto compuesto por 8 palabras: “entonces ser estar forrado

hacienda comunista ir rico” se ha convertido en una lista con 8 enteros [184, 1, 5, 20882, 1778,

1204, 12, 1228], cada entero correspondiente a una palabra, por ejemplo, el valor 184

corresponde a la palabra “entonces”.

También podemos observar que la longitud de las listas es variable. Esto supone un problema

si queremos alimentar una red neuronal, que necesita vectores de longitud fija. Por ello,

debemos establecer un valor máximo que llamaremos MAX_LONG que, en nuestro caso, será

25 https://keras.io/api/keras_nlp/tokenizers/tokenizer/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

60

la longitud del texto más largo de nuestro corpus. Los textos cuya longitud sea inferior a

MAX_LONG, se rellenarán al final con ceros. Este proceso se conoce como padding y permite

generar una lista de textos de longitud fija.

En la Figura 25 determinamos el tamaño del vocabulario y, a continuación, realizamos el

proceso de padding.

Figura 25: Extracto de código donde se calculan MAX_LONG, vocab_size y se aplica padding a los textos

5.1.5.2. Tokenización en BERT

En esta sección, prepararemos nuestro conjunto de datos al formato en el que se puede

entrenar BETO. Para poder alimentar el modelo con nuestros textos, hay que dividirlos

previamente en tokens y, a continuación, asignar estos tokens a su índice en el vocabulario

del tokenizador.

Antes de tokenizar, tenemos que cumplir con los requisitos de formato que nos exige la

arquitectura BERT (Devlin et al., 2019).

- Añadir tokens especiales al principio y al final de cada texto. En concreto, debemos

anteponer el símbolo especial [CLS] al principio de cada texto y añadir el símbolo

especial [SEP] al final del texto.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

61

- Homogeneizar la longitud de los textos mediante la definición de una longitud fija,

truncando los textos más largos y aplicando padding a los textos más cortos. El

relleno o padding se realiza con un token especial [PAD]. La longitud máxima de los

textos que permite la arquitectura BERT es de 512 tokens.

- Diferenciar explícitamente los tokens que aportan valor real de los tokens de

relleno con la "máscara de atención" o "attention mask". Esta "máscara de

atención" es una matriz de 1s y 0s que indica qué tokens son de relleno y cuáles

no. Esta máscara indica al mecanismo de "autoatención" de BERT que no incorpore

estos tokens especiales [PAD] a su interpretación del texto.

La tokenización la realizaremos con el tokenizador propio de BERT (BertTokenizer, de la librería

Transformers). BertTokenizer se encarga de asignar a cada token (cada palabra) un índice del

vocabulario del tokenizador.

Tras esto, hacemos uso de la función tokenizer.encode_plus(), encargada de realizar los

siguientes pasos:

1. Divide la frase en tokens.

2. Añade los tokens especiales [CLS] y [SEP].

3. Asigna los tokens a sus ID.

4. Rellena o trunca los textos para dejarlos con la misma longitud (rellena con 1s

hasta completar la longitud máxima establecida).

5. Crea las máscaras de atención que diferencian los tokens que aportan valor de los

tokens de relleno [PAD].

De esta forma, obtenemos los vectores input_ids (realizado en los primeros 4 pasos de la

función encode_plus) y attention_mask (paso 5), necesarios para poder entrenar

posteriormente nuestro modelo BETO.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

62

5.1.6. Creación de conjunto de datos de entrenamiento y de test

En esta sección explicaremos cómo ha sido el proceso de división de los datos para obtener

los conjuntos de entrenamiento y test para cada uno de los datasets.

5.1.6.1. Dataset completo

Para poder realizar nuestras pruebas, primero debemos dividir nuestro dataset en conjuntos

de entrenamiento y de test. Fijamos el tamaño del conjunto de test en el 20% de todo el

conjunto de datos. Seguidamente imprimimos el número de muestras de cada conjunto,

utilizando la función Counter(), incluida en el paquete collections (Figura 26).

Figura 26: Distribución de datos en conjunto de entrenamiento y test

5.1.6.2. Dataset balanceado

Un conjunto de datos equilibrado o balanceado es un conjunto de datos en el que cada clase

objetivo está representada aproximadamente por el mismo número de muestras.

Para lograr el equilibrio vamos a aplicar una técnica conocida como undersampling, cuyo

objetivo es reducir las muestras dominantes (en nuestro caso las etiquetas de NO_ODIO), de

modo que los ejemplos ODIO y NO_ODIO queden balanceados en nuestro dataset (Figura 27).

Figura 27: Uso de la técnica de undersampling para lograr un dataset balanceado

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

63

Observamos que ahora el número de palabras de nuestro vocabulario es menor al que

teníamos con el dataset completo. Ahora tenemos 57.306 palabras (añadimos +1 para

reservar el índice 0 necesario para el padding).

En la Figura 28 mostramos cómo quedan distribuidas las etiquetas tanto para el conjunto de

entrenamiento como para el conjunto de test. Se puede apreciar que estos conjuntos están

balanceados.

Figura 28: Distribución de datos en conjunto de entrenamiento y test para dataset V1

Para crear los 2 dataset balanceados restantes, uno con textos de longitud homogénea (V2) y

otro con textos pertenecientes al medio “El MUNDO” (V3), seguimos un procedimiento

análogo.

Para la creación del dataset V2, se ha filtrado previamente por la columna num_palabras para

seleccionar textos con una longitud máxima 32 palabras. Como resultado obtenemos un

dataset balanceado de tamaño 23.932 (Figura 29), lo que quiere decir que hemos perdido 614

registros sin comparamos con el dataset balanceado de selección aleatoria. El motivo de esta

reducción es que 307 textos etiquetados como ODIO se han filtrado por superar 32 palabras.

Por lo tanto, al crear el dataset balanceado, tenemos 307 muestran menos de cada clase (614

registros).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

64

Figura 29: Distribución en conjunto de entrenamiento y test para dataset V2

Para la creación del dataset con textos pertenecientes a “El MUNDO”, se ha realizado un filtro

tanto por num_palabras como por medio. Se ha decidido filtrar por num_palabras porque los

resultados para el modelo LSTM son mucho mejores cuando obtenemos un dataset de

longitud acotada, como veremos en la siguiente sección 5.2 Entrenamiento y evaluación de

los modelos. Como resultado, obtenemos un dataset balanceado de tamaño 10.268 (Figura

30), lo que indica que hemos perdido 14.278 textos con respecto al dataset balanceado de

selección aleatoria (24.546 - 10.268). Esto es debido a que en nuestro dataset original tan solo

5.134 textos de ODIO pertenecen al medio “EL MUNDO” y además contienen menos de 32

caracteres.

Figura 30: Distribución en conjunto de entrenamiento y test para dataset V3

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

65

5.2. ENTRENAMIENTO Y EVALUACIÓN DE LOS MODELOS

Para cada uno de los modelos seleccionados, realizaremos experimentos con las distintas

versiones del dataset descritos en el apartado 4. Cómo detectar odio en los medios de

información social. Todos los experimentos han sido ejecutados desde la versión gratuita

colab, configurando el entorno para hacer uso del modo de ejecución GPU (Tesla T4), lo que

nos ha permitido ejecutar nuestros modelos hasta 10 veces más rápido que desde el entorno

básico.

5.2.1. SNN (Simple Neural Network)

Comenzamos nuestro experimento con una red neuronal simple que usaremos a modo de

línea base. Para ello creamos un modelo Sequential() y, a continuación, creamos nuestra capa

de embedding. La capa de embedding tendrá una longitud de entrada de MAX_LONG. Para la

dimensión del vector y tras probar varias alternativas, el valor seleccionado es 50. El tamaño

del vocabulario será de VOCAB_SIZE, calculado en el apartado 5.1.5.1 Tokenización en Deep

Learning. A continuación, como estamos conectando directamente nuestra capa de

embedding a una capa fully-connected, aplanamos la capa de embedding. Por último,

añadimos una capa densa con función de activación sigmoid, que es la más adecuada para

problemas de clasificación binaria. Para compilar nuestro modelo, usaremos el algoritmo de

descenso de gradiente eficiente Adam Optimizer, utilizado en Benítez-Andrades et al. (2022).

Para nuestra función de pérdida usaremos binary_crossentropy, por tratarse de un problema

de clasificación binaria. Finalmente, como métrica queremos medir la Accuracy (Figura 31).

Figura 31: Extracto del código python del modelo SNN

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

66

5.2.1.1. Dataset Completo

Nuestra primera prueba la realizaremos con el dataset completo. Este dataset, en el que ya

hemos aplicado el preprocesamiento visto en el apartado 5.1 Análisis y preparación de los

datos, consta de 572.214 registros y 6 columnas (Figura 6).

Como hay 387.186 palabras en nuestro corpus (valor de VOCAB_SIZE) y cada palabra se

representa como un vector de 50 dimensiones, el número de parámetros será de 387.186 x

50 = 19.359.300 en la capa de embedding. En la capa de aplanamiento, simplemente

multiplicamos las filas (longitud de cada vector de entrada o MAX_LONG) y las columnas o

dimensiones del embedding (3044 x 50 = 152200). Por último, en la capa densa, el número de

parámetros es de 152201, 152200 provenientes de la capa de aplanamiento y 1 del parámetro

de sesgo (Figura 32).

Figura 32: Resumen del modelo SNN compilado para el dataset completo

Utilizamos el método fit() de la librería scikit-learn para entrenar nuestra red neuronal,

seleccionando diferentes valores de batch_size (25, 50, 100) y epochs (2, 3, 5) para poder

comparar rendimientos. Finalmente, indicamos un validation_split de 0,1 para que el 10% de

los datos de entrenamiento se utilice como datos de validación. Finalmente, evaluamos

nuestro modelo con el método evaluate().

Observamos que con el dataset completo obtenemos una accuracy del 99% para los datos de

entrenamiento y un 98% para los datos de validación. Finalmente, y tras la evaluación del

modelo con los datos de test, obtenemos un accuracy del 98%.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

67

Estos resultados podrían parecer buenos, pues una accuracy de 98% para los datos de test son

un muy buen valor. Sin embargo, debemos analizar los valores ofrecidos por la matriz de

confusión para estar seguros de que nuestro modelo está funcionando correctamente. En la

Figura 33 mostramos la matriz de confusión obtenida, donde observamos que todas las

predicciones se corresponden con la etiqueta NO_ODIO, con 112.024 instancias predichas

correctamente y 2.419 instancias etiquetadas de forma incorrecta.

Figura 33: Matriz de confusión con dataset completo

Las pruebas realizadas para el dataset completo muestran unos resultados propios de un

dataset desbalanceado (Tabla 2). Al final, al modelo le basta con predecir siempre la clase

dominante para conseguir un 98% de accuracy (acertando siempre los textos de NO_ODIO

conseguimos acertar un 98% de las ocasiones). Sin embargo, esto implica que nunca predice

la etiqueta ODIO, y esto se traduce en un recall del 0% para esta clase. Por lo tanto, estos

modelos entrenados con el dataset completo no son útiles en absoluto para resolver nuestro

problema.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

68

Tabla 2: Resultados en test para todos los modelos con dataset completo

Estos mismos resultados se han obtenido para los diferentes valores de batch_size y epochs.

Asimismo, los resultados de la matriz de confusión para el dataset completo son exactamente

los mismos para todos los modelos utilizados en nuestra comparativa por lo que de aquí en

adelante centraremos nuestras pruebas en las versiones de los datasets balanceados.

5.2.1.2. Datasets Balanceados

A continuación, mostramos los resultados obtenidos por el modelo SNN para cada una de las

versiones del dataset balanceado (V1, V2 y V3). La columna “Tiempo” se refiere al tiempo

empleado en entrenar y validar el modelo.

▪ SSN y V1 (Muestras Aleatorias)

A diferencia de lo que ocurría con el dataset completo, para V1 los resultados muestran unos

valores razonables para todas las métricas (Tabla 3). Observamos que, con este dataset

balanceado, el modelo es capaz de recuperar un 84% de los textos de ODIO (recall) con una

accuracy del 86%.

Tabla 3: Resultados en test para SNN con dataset V1

Precision Recall F1-score n_registros

NO_ODIO 98% 100% 99% 112024

ODIO 0% 0% 0% 2419

Accuracy 11444398%

Precision Recall F1-score n_registros

NO_ODIO 85% 87% 86% 2488

ODIO 87% 84% 85% 2422

Accuracy 4910

Tiempo 13s

86%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

69

En la Figura 34 mostramos la matriz de confusión obtenida para SNN y V1, donde observamos

2.173 instancias correctamente clasificadas como NO_ODIO y 2.041 correctamente

clasificadas como ODIO.

Figura 34: Matriz de confusión obtenida modelo SNN y dataset V1

Estos resultados se han conseguido con un batch_size de tamaño 50 y 2 épocas. Hemos

comprobado que más allá de la tercera epoch perdemos accuracy para el conjunto de test

debido al fenómeno overfitting o sobreajuste del modelo al conjunto de entrenamiento.

▪ SSN y V2 (Longitud homogénea)

En la Tabla 4 observamos que para el dataset balanceado V2 empeoramos ligeramente todas

las métricas con respecto al dataset V1, alcanzando un accuracy del 83%. Esto indica que el

hecho de tener unos textos de longitud homogénea no ha ayudado en este sentido al modelo

SSN a predecir mejor. Por el contrario, debemos mencionar que el tiempo de ejecución sí que

mejoró con respecto a los tiempos obtenidos con el dataset V1, reduciéndose

aproximadamente un 30%. De este modo comprobamos que, al acotarse la longitud de los

textos, los tiempos de cómputo se reducen notablemente.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

70

Tabla 4: Resultados en test para SNN con dataset V2

A continuación, mostramos la matriz de confusión obtenida para SNN y V2 (Figura 35).

Observamos que las instancias predichas correctamente han disminuido ligeramente con

respecto al dataset V1, con 2.099 para la etiqueta de NO_ODIO y 1.856 para la etiqueta ODIO.

Figura 35: Matriz de confusión obtenida modelo SNN y dataset V2

▪ SNN y V3 (Medio “El Mundo”)

Vamos a realizar las mismas pruebas, pero con el dataset V3. En esta ocasión, hemos decidido

seleccionar textos únicamente del medio El MUNDO (además de filtrarlos por longitud < 32),

para comprobar si seleccionar textos de un mismo medio contribuye a mejorar el rendimiento

del modelo.

Precision Recall F1-score n_registros

NO_ODIO 80% 87% 83% 2403

ODIO 86% 78% 82% 2384

Accuracy 4787

Tiempo 9s

83%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

71

En la Tabla 5 mostramos los resultados obtenidos:

Tabla 5: Resultados en test para SNN con dataset V3

Observamos que hemos obtenido unas métricas por debajo de lo conseguido con el dataset

V2. Estos no son los resultados esperados, pues confiábamos en que seleccionar textos de un

mismo medio ayudara al modelo a predecir mejor. Sin embargo, creemos que estos resultados

se deben a la reducción del número total de registros de entrenamiento (hemos pasado de

23.932 registros en V2 frente a 10.268 registros en V3). Al tener menos muestras para

aprender, el modelo cae en overfitting, sobre ajustándose a los datos de entrenamiento, y no

es capaz de generalizar correctamente. De hecho, nuestro modelo alcanza un 99% de accuracy

para el conjunto de entrenamiento tras 2 épocas, mientras que se queda en un 76% para el

conjunto de test. También apreciamos un menor tiempo de ejecución con respecto a V2, pero

este hecho es normal al tener que procesar menos registros.

Figura 36: Matriz de confusión obtenida modelo SNN y dataset V3

Precision Recall F1-score n_registros

NO_ODIO 73% 81% 77% 1011

ODIO 79% 71% 75% 1043

Accuracy 2054

Tiempo

76%

3s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

72

5.2.2. CNN (Convolutional Neural Network)

A continuación, vamos a realizar las mismas pruebas con la red neuronal convolucional. Como

hemos comentado, solo mostraremos los resultados obtenidos con los datasets balanceados,

pues tras realizar el experimento con el dataset completo comprobamos que el resultado es

exactamente el mismo que con la SNN (solo predice la clase dominante debido al pronunciado

desbalanceo de clases).

Con el fin de garantizar que los resultados obtenidos por la red neuronal sean lo más elevados

posibles, se han realizado una serie de pruebas en las que se ha comprobado el rendimiento

del modelo en función del valor de determinados parámetros que mostramos en la Tabla 6.

Tabla 6: Parámetros seleccionados para CNN

Nuestra red neuronal convolucional contendrá una capa de embedding seguida de una capa

convolucional con función de activación RELU y 1 capa max_pooling para reducir el tamaño

de las características, cuya salida irá conectada a una capa densa de 1 neurona con función de

activación sigmoid (Figura 37). Para compilar nuestro modelo, usaremos el Adam Optimizer y

para nuestra función de pérdida usaremos binary_crossentropy.

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Tamaño Filtro 3, 4, 5 3

Optimizador Adam, SGD Adam

Learning rate 1e−2, 1e−3 1e−3

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

73

Figura 37: Resumen del modelo CNN

A continuación, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

▪ CNN y V1 (Muestras Aleatorias)

Comenzamos con los resultados obtenidos por el modelo CNN con el dataset V1. En la Tabla

7 podemos observar que este modelo alcanza un 87% de accuracy, superando ligeramente al

modelo SNN, que obtuvo un 86% con este mismo dataset.

Tabla 7: Resultados en test para CNN con dataset V1

Precision Recall F1-score n_registros

NO_ODIO 88% 86% 87% 2488

ODIO 86% 88% 87% 2422

Accuracy 4910

Tiempo

87%

18s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

74

En la Figura 38 mostramos la matriz de confusión obtenida para CNN y V1. Comprobamos que

este modelo es capaz de predecir correctamente 2.134 instancias para la etiqueta de

NO_ODIO y 2.122 instancias para la etiqueta ODIO.

Figura 38: Matriz de confusión obtenida modelo CNN y dataset V1

▪ CNN y V2 (Longitud homogénea)

A continuación, mostramos los resultados para CNN y V2 (Tabla 8), donde alcanzamos un

accuracy del 85%, superando ligeramente los resultados obtenidos por SNN con este mismo

dataset (83%).

Tabla 8: Resultados en test para CNN con dataset V2

Precision Recall F1-score n_registros

NO_ODIO 85% 84% 85% 2403

ODIO 84% 85% 85% 2384

Accuracy 4787

Tiempo

85%

13s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

75

A continuación, mostramos la matriz de confusión obtenida para CNN y V2 (Figura 39).

Comprobamos que este modelo es capaz de predecir correctamente 2.026 instancias para la

etiqueta de NO_ODIO y 2.031 instancias para la etiqueta ODIO.

Figura 39: Matriz de confusión obtenida modelo CNN y dataset V2

▪ CNN y V3 (Medio “El Mundo”)

Finalmente, mostramos los resultados obtenidos por el modelo CNN con el dataset V3:

Tabla 9: Resultados en test para CNN con dataset V3

Precision Recall F1-score n_registros

NO_ODIO 79% 87% 83% 1011

ODIO 86% 78% 82% 1043

Accuracy 2054

Tiempo 5s

83%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

76

En la Figura 40 mostramos la matriz de confusión obtenida para CNN y V3, obteniendo 884

instancias etiquetadas correctamente para la etiqueta de NO_ODIO y 813 para la etiqueta

ODIO.

Figura 40: Matriz de confusión obtenida modelo CNN y dataset V3

Como podemos observar, los resultados de CNN son relativamente buenos para todos los

datasets, siendo la versión V1 la que alcanza los mejores registros (87% tanto para la métrica

accuracy como para F1-score. Por lo tanto, para CNN la reducción de la longitud de los textos

no ha supuesto ningún beneficio en términos de accuracy, precisión, recall o F1. Sin embargo,

para V2 sí que hemos mejorado en términos de tiempo de ejecución, teniendo en cuenta que

ambos datasets cuentan con un número similar de registros.

El rendimiento obtenido con el dataset V3 es el más bajo de todos los datasets balanceados.

El motivo de este hecho es el mismo que se explicó con modelo SNN. Al tener menos muestras

para aprender, el modelo cae en overfitting, sobre ajustándose a los datos de entrenamiento,

y no es capaz de generalizar correctamente.

Como ocurrió en SNN, los mejores resultados para el entrenamiento se han conseguido con 2

épocas. Hemos comprobado que, más allá de la tercera epoch perdemos accuracy para el

conjunto de test debido al fenómeno overfitting o sobreajuste del modelo al conjunto de

entrenamiento.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

77

5.2.3. LSTM (Short Term Memory)

A continuación, vamos a realizar las mismas pruebas para la red neuronal LSTM.

En la Tabla 10 mostramos la selección de los mejores parámetros para nuestra red. Como

podemos observar, en LSTM no tenemos tamaño de filtro como parámetro. Por lo demás, las

configuraciones más óptimas son idénticas a las de CNN.

Tabla 10: Parámetros seleccionados para LSTM

Nuestra red LSTM contendrá inicialmente una capa de embedding, tal y como hemos hecho

en los casos anteriores. A continuación, creamos una capa LSTM con 64 neuronas conectada

a una capa densa de 1 neurona con función de activación sigmoid (Figura 41). Para compilar

nuestro modelo, usaremos el Adam Optimizer y para nuestra función de pérdida usaremos

binary_crossentropy.

Figura 41: Resumen del modelo LSTM

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Optimizador Adam, SGD Adam

Learning rate 1e−2, 1e−3 1e−3

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

78

A continuación, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

▪ LSTM y V1 (Muestras Aleatorias)

Dados los resultados mostrados por la matriz de confusión (Figura 42), es evidente que el

modelo LSTM no funciona bien para este dataset, pues únicamente predice la clase de ODIO.

Uno de los posibles motivos de este comportamiento es la longitud máxima de los textos

(3.044 caracteres) que hace que los mensajes más cortos estén compuestos mayoritariamente

por valores 0 (tras el proceso de padding), perjudicando el rendimiento de nuestro algoritmo

basado en la arquitectura RNN.

Tabla 11: Resultados en test para LSTM con dataset V1

Los resultados mostrados en la Tabla 11 confirman este mal comportamiento del modelo

LSTM con V1, donde observamos un 0% en las métricas de precisión, recall y F1-score para la

clase NO_ODIO. Además, podemos extraer que se ha necesitado un tiempo de ejecución

aproximadamente 3 veces superior al necesitado para ejecutar la red CNN.

Precision Recall F1-score n_registros

NO_ODIO 0% 0% 0% 2488

ODIO 49% 100% 66% 2422

Accuracy 4910

Tiempo

49%

70s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

79

Figura 42: Matriz de confusión obtenida modelo LSTM y dataset V1

▪ LSTM y V2 (Longitud homogénea)

Los resultados obtenidos al entrenar la red LSTM con el dataset V2 son bastante buenos,

cercanos incluso a los obtenidos por CNN. Esto confirma que la longitud de los textos (o la

falta de homogeneidad de estos) era el motivo por el cual la red recurrente no estaba

funcionando correctamente.

Tabla 12: Resultados en test para LSTM con dataset V2

Otro dato interesante que se puede extraer de la Tabla 12 es que LSTM requiere

aproximadamente el doble de tiempo de ejecución que CNN.

Precision Recall F1-score n_registros

NO_ODIO 83% 86% 84% 2403

ODIO 85% 82% 83% 2384

Accuracy 4787

Tiempo

84%

29s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

80

A continuación, mostramos la matriz de confusión obtenida para el modelo LSTM con el

dataset V2.

Figura 43: Matriz de confusión obtenida modelo LSTM y dataset V2

▪ LSTM y V3 (Medio “El Mundo”)

Al igual que ocurría con los modelos anteriores, los resultados obtenidos para el dataset V3

son ligeramente inferiores a los obtenidos con el dataset V2 (80% de accuracy frente a los 84%

obtenidos con V2).

Tabla 13: Resultados en test para LSTM con dataset V3

El motivo que podemos dar es el mismo que el comentado para los casos anteriores. Al

disponer de menor cantidad de datos para el entrenamiento, el modelo se ve afectado por

el fenómeno de overfitting o sobreajuste, impidiéndole generalizar correctamente.

Precision Recall F1-score n_registros

NO_ODIO 80% 78% 79% 1011

ODIO 79% 81% 80% 1043

Accuracy 2054

Tiempo 13s

80%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

81

En la Figura 44 mostramos la matriz de confusión obtenida para el modelo LSTM con el

dataset V3.

Figura 44: Matriz de confusión obtenida modelo LSTM y dataset balanceado V3

5.2.4. BETO

A continuación, explicaremos el proceso de entrenamiento del modelo BETO y mostraremos

los resultados en conjunto de test. Para garantizar que los resultados obtenidos por este

modelo de transfer learning sean los mejores posibles, se han realizado una serie de pruebas

en las que se ha evaluado el rendimiento del modelo en función del valor que toman distintos

parámetros, del mismo modo que se hace en el trabajo de Benítez-Andrades et al. (2022).

Podemos ver los valores finales seleccionados para cada uno en la Tabla 14.

Tabla 14: Parámetros seleccionados para BETO

Parámetro Opciones probadas Opción seleccionada

Tipo de Modelo cased, uncased cased

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

Optimizador Adam, SGD Adam

Learning rate 2e−5, 3e−5, 4e−5 2e−5

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

82

Una vez que nuestros datos de entrada están formateados correctamente y hemos obtenido

los vectores de input_ids y attention_mask descritos en la sección 5.1.5.2 Tokenización en

BERT, ya podemos prepararnos para adaptar el modelo BETO pre-entrenado para nuestra

tarea de clasificación.

En primer lugar, crearemos un iterador para nuestro conjunto de datos utilizando la clase

DataLoader de torch.utils.data. El objeto DataLoader necesita saber nuestro tamaño de

nuestro batch para el entrenamiento. En nuestro caso, indicamos un batch_size de 50.

A continuación, creamos los DataLoaders para nuestros conjuntos de entrenamiento y

validación (Figura 45)

Figura 45: Creación Dataloader para conjunto de entrenamiento y validación

Tanto train_dataloader como validation_dataloader son tuplas que contienen los siguientes

elementos que son necesarios para entrenar nuestro modelo:

- input_ids (tensor de tamaño batch_size x max_sequence_length),

- attention_mask (tensor de tamaño batch_size x max_sequence_length)

- labels (tensor de tamaño batch_size x n_labels)

La implementación de Hugging Face pytorch incluye un conjunto de interfaces diseñadas para

diversas tareas de PLN26. Nosotros utilizaremos el modelo BertForSequenceClassification

(Figura 46). Se trata de la arquitectura BERT con una capa lineal añadida al final que

26 https://huggingface.co/transformers/v2.2.0/model_doc/bert.html

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

83

utilizaremos como clasificador de nuestros textos. A medida que alimentamos los datos de

entrada, todo el modelo BERT pre-entrenado y la capa de clasificación adicional no entrenada

se entrenan para nuestra tarea específica.

Figura 46: Carga del modelo BETO (cased)

Una vez que tenemos nuestro modelo cargado, establecemos los valores de los

hiperparámetros: Optimizador, Learning Rate y Epochs indicados en la Tabla 14. Finalmente,

para llevar a cabo el entrenamiento del modelo nos hemos basado en el código del script

run_glue.py27 proporcionado por Hugging Face.

A continuación, mostramos los resultados obtenidos para cada una de las versiones del

dataset balanceado (V1, V2 y V3).

▪ Muestras Aleatorias (V1)

Comenzamos mostrando los resultados obtenidos por el modelo BETO con el dataset V1. En

la Tabla 15 observamos como BETO es capaz de alcanzar un 89% de accuracy, superando los

resultados obtenidos por los modelos anteriores de aprendizaje profundo, donde los

resultados fueron de 86% (SNN), 87% (CNN) y 49% (LSTM). Como parte negativa, destacamos

un tiempo de entrenamiento de 392 segundos, superando notablemente los tiempos

requeridos por los modelos anteriores (13s, 18s y 70s respectivamente).

27
https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/example
s/run_glue.py#L128

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

84

Tabla 15: Resultados en test para BETO con dataset V1

En la Figura 47 mostramos la matriz de confusión obtenida para BETO y V1. Comprobamos

que este modelo de transfer learning es capaz de predecir correctamente 2.112 instancias

para la etiqueta de NO_ODIO y 2.238 instancias para la etiqueta ODIO.

Figura 47: Matriz de confusión obtenida modelo BETO y dataset balanceado V1

Precision Recall F1-score n_registros

NO_ODIO 92% 85% 88% 2483

ODIO 86% 92% 89% 2427

Accuracy 4910

Tiempo

89%

392s

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

85

▪ Longitud homogénea (V2)

A continuación, mostramos los resultados obtenidos por el modelo BETO y el dataset V2 (Tabla

16), donde alcanzamos un accuracy del 87%.

Tabla 16: Resultados en test para BETO con dataset V2

En la Figura 48 mostramos la matriz de confusión obtenida para BETO y V2. En este caso, BETO

es capaz de predecir correctamente 1.989 instancias para la etiqueta de NO_ODIO y 2.170

instancias para la etiqueta ODIO.

Figura 48: Matriz de confusión obtenida modelo BETO y dataset balanceado V2

Precision Recall F1-score n_registros

NO_ODIO 89% 84% 86% 2360

ODIO 85% 89% 87% 2427

Accuracy 478787%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

86

▪ Medio “El Mundo” (V3)

En la Tabla 17 podemos observar que el dataset V3 es el que ofrece los peores resultados, en

este caso un 84% de accuracy. Tal y como sucedió con el resto de los modelos utilizados en

esta comparativa, la reducción del número de registros de entrenamiento ha penalizado la

capacidad de generalización de BETO.

Tabla 17: Resultados en test para BETO con dataset V3

Finalizamos mostrando la matriz de confusión correspondiente a BETO y el dataset V3. En este

caso, nuestro modelo ha sido capaz de etiquetar correctamente 856 instancias de la clase

NO_ODIO y 870 de la clase ODIO.

Figura 49: Matriz de confusión obtenida modelo BETO y dataset balanceado V3

Precision Recall F1-score n_registros

NO_ODIO 87% 81% 84% 1056

ODIO 81% 87% 84% 998

Accuracy 205484%

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

87

6. Discusión y análisis de resultados

En primer lugar, debemos comentar que el dataset original presenta un desbalanceo de clases

tan acuciado que resulta inservible, pues todos los modelos entrenados con este dataset

terminan prediciendo siempre la clase dominante, consiguiendo un 98% de accuracy, pues

devolviendo siempre NO_ODIO conseguimos acertar un 98% de las ocasiones. Sin embargo,

esto implica que nunca predice la etiqueta ODIO, y esto se traduce en un recall del 0% para

esta clase. Por lo tanto, estos modelos entrenados con el dataset completo no son útiles para

resolver nuestro problema.

Si nos centramos en las pruebas realizadas con los tres datasets balanceados (V1, V2 y V3),

observamos que los mejores resultados en términos de accuracy y F1 los encontramos con

BETO (cased) entrenado con el dataset V1 (selección aleatoria), seguido por CNN entrenado

también con V1 y empatado con BETO entrenado con V2. En la Tabla 18 hemos resaltado los

los porcentajes más altos por cada dataset. En este punto, habría que resaltar que CNN

requiere mucho menos tiempo que BETO para completar su entrenamiento, 18 segundos

frente a 392 segundos respectivamente para el dataset V1.

Tabla 18: Comparativa de resultados en test

Estos resultados nos podrían llevar a pensar que un dataset balanceado de selección aleatoria

(V1) es la mejor opción para entrenar nuestros modelos de deep learning y transfer learning.

Sin embargo, este dataset entraña una serie de desventajas: por ejemplo, el modelo LSTM no

SNN CNN LSTM BETO (cased)

V1 86% 87% 49% 89%

V2 83% 85% 84% 87%
V3 76% 83% 80% 84%

V1 86% 87% 0% 88%
V2 83% 85% 84% 86%
V3 77% 83% 79% 84%

V1 85% 87% 66% 89%
V2 82% 85% 83% 87%

V3 75% 82% 80% 84%

Accuracy

F1-score (NO_ODIO)

F1-score (ODIO)

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

88

funciona correctamente con este dataset debido a la longitud máxima de los textos (3.044

palabras) que hace que los mensajes más cortos estén compuestos mayoritariamente por

valores 0 (padding), perjudicando el rendimiento de nuestro algoritmo basado en la

arquitectura de red recurrente. Se ha comprobado que, con textos de longitud homogénea,

este modelo alcanza una exactitud cercana a la obtenida por CNN (aunque con tiempos de

entrenamiento entre 2 y 3 tres veces superiores en LSTM).

Atendiendo a los tiempos de ejecución de cada dataset, los tiempos con V1 son

aproximadamente un 50% mayores con respecto a los tiempos de ejecución con V2, tanto

para la red SSN como para CNN. Para el caso de LSTM, esta diferencia de tiempos se

acrecienta, siendo el tiempo de ejecución en V1 más del doble que en V2 (70 segundos frente

a 29 segundos). Este hecho hace que debamos cuestionarnos si la mejora en las métricas

obtenidas en V1 compensan el tiempo y esfuerzo invertido. Con un dataset de entrenamiento

como el nuestro (alrededor de 20K registros) esta decisión no es crítica, pues ambos tiempos

de ejecución son asumibles. Sin embargo, si se desea trabajar con un dataset de grandes

dimensiones, este hecho debe ser tenido en cuenta.

La Tabla 19 muestra los resultados del estado del arte para la detección de discurso de odio

en español obtenidos a partir de los conjuntos de datos de HaterNet y HatEval, además de un

dataset ad-hoc creado en el trabajo de Amores et al. (2021). A continuación, vamos a

comparar estos resultados con nuestra mejor propuesta en términos de macro-F1, el modelo

BETO cased entrenado con el dataset balanceado V1.

Para el conjunto de datos HaterNet, el modelo de Plaza-del-Arco et al. (2021) presenta un

modelo BETO (cased) que supera a nuestra propuesta en términos de F1 para la etiqueta

NO_ODIO, alcanzando un 89% frente a nuestro 88%. Sin embargo, en términos de macro-F1,

nuestro modelo BETO mejora los resultados de Plaza-del-Arco et al. (2021) en un 14%. El

motivo es que nuestro modelo es capaz de predecir mejor la etiqueta de odio, seguramente a

consecuencia de haber sido entrenado con un dataset mejor balanceado y con un mayor

número de muestras de textos de odio. En la Tabla 20 mostramos la distribución de cada

dataset.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

89

En el estudio de Amores et al. (2021) se generaron un total de ocho modelos predictivos: seis

usando algoritmos de aprendizaje superficial, uno generado a partir de los votos de esos

modelos anteriores y otro usando aprendizaje profundo. Los mejores resultados los obtuvo

este último modelo, basado en una red neuronal recurrente GRU, alcanzando un macro-F1

del 77%. Nuestra propuesta mejora este resultado en un 16%.

En cuanto al conjunto de datos HatEval, Plaza-del-Arco et al. (2021) y Pérez et al. (2021)

superaron el mejor resultado obtenido en la competición de SemEval-2019 Task 5, probando

un modelo BETO (cased) y Robertuito (uncased) respectivamente. El modelo Robertuito es el

que alcanza mejor rendimiento en términos de Macro-F1, con un 80%. Nuestro modelo BETO

cased entrenado sobre el dataset V1 supera los resultados de Pérez et al. (2021) con una

mejora del 11%.

Tabla 19: Resultados del estado del arte para la detección de discurso de odio en español

Tabla 20: Distribución de los datasets en español

Comparando estos resultados destacamos la importancia de entrenar los modelos sobre un

dataset balanceado con el mayor número posible de registros, con el fin de obtener un modelo

que reajuste sus parámetros en base a la información del dataset sin caer en el fenómeno de

overfitting, de modo que a posteriori sea capaz de generalizar con la llegada de nuevos datos.

Modelo Dataset F1 (NO_ODIO) F1 (ODIO) Macro-F1

SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%

RNN-GRU (Amores et al., 2021) Ad-hoc - - 77%

BETOcased (Plaza-del-Arco et al., 2021) HaterNet 89% 66% 78%

BETOcased (Plaza-del-Arco et al., 2021) HatEval 80% 76% 78%

Robertuitouncased (Pérez et al., 2021) HatEval - - 80%

BETOcased (Nuestra propuesta) Hatemedia (V1) 88% 89% 89%

Dataset n_registros NO_ODIO ODIO

HatEval 6.600 3.861 (59%) 2.739 (41%)

HaterNet 6.000 4.433 (74%) 1.567 (26%)

 Ad-hoc (Amores et al. 2021) 10.213 3879 (38%) 6334 (62%)

Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

90

7. Conclusiones y trabajo futuro

7.1. Conclusiones

Con este trabajo pretendíamos comparar el rendimiento de diferentes algoritmos de

aprendizaje profundo y transfer learning sobre el dataset creado por el proyecto HATEMEDIA,

con el fin de determinar cuál clasifica mejor y concluir si la detección automática de

expresiones de odio era viable dado nuestro conjunto de datos.

Para conseguirlo, el primer objetivo planteado que consistía en investigar las técnicas y

métodos de aprendizaje automático profundo y transfer learning disponibles que abordan el

problema de la detección del discurso del odio, se ha desarrollado en el apartado 2.3,

abordando no solo los diferentes modelos, sino también las técnicas de preprocesado y

extracción de características más utilizadas en el estado del arte.

En este punto enlazamos con el segundo objetivo, el análisis exploratorio del dataset de

HATEMEDIA, desarrollado con detalle en el apartado 5.1. Llevar a cabo este análisis

exploratorio reveló que el dataset original sufría de un fuerte desbalanceo de clases que lo

hacía inservible. Esto nos llevó al siguiente objetivo: crear diferentes versiones balanceadas

de nuestro dataset original para solventar este problema y poder realizar una posterior

comparativa.

Los objetivos relativos al entrenamiento y evaluación de los modelos para medir sus

rendimientos con los diferentes datasets se han desarrollado en el apartado 5.2, donde hemos

realizado un análisis de la parametrización a utilizar, construyendo modelos precisos

(especialmente BETO y CNN, con 89% y 87% de accuracy respectivamente) en la detección de

odio. Aquí, una dificultad que encontramos fue la falta de homogeneidad de los textos (textos

compuestos desde 1 palabra hasta 3.044). Este hecho produjo que el modelo LSTM no

funcionara correctamente, si bien este problema fue solventado al construir el dataset de

longitud homogénea (V2).

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

91

Así, los resultados obtenidos son muy satisfactorios y los modelos generados a partir de los

datasets balanceados tienen unas prestaciones más que aceptables, concluyendo que la

detección automática de expresiones de odio es viable para estos datasets balanceados,

siendo BETO (versión cased) el modelo que mejor resultados ha ofrecido en términos de

accuracy y F1-score, seguido de cerca por el modelo CNN, este último además con tiempos de

entrenamiento hasta 22 veces más eficientes que BETO.

Dejando a un lado el modelo SNN (que se ha utilizado como línea base), LSTM es el modelo

que peor rendimiento ha ofrecido. Tras analizar los resultados obtenidos con del dataset V1,

no recomendaríamos LSTM para análisis de textos extensos, al menos cuando la longitud de

los textos del dataset no sea homogénea. Por el contrario, BETO y CNN han respondido

satisfactoriamente a todas las versiones de los datasets balanceados, por lo que los convierte

en los modelos más versátiles.

7.2. Líneas de trabajo futuro

Nuestro dataset original contenía más de 570.000 registros, pero resultó inservible debido al

problema del desbalanceo de clases. Como líneas futuras planteamos realizar las mismas

pruebas presentadas en este trabajo, pero con un dataset balanceado con mayor cantidad de

registros. Nuestros datasets balanceados han permitido generar un conjunto de

entrenamiento del orden de 20K registros, lo que ha dificultado la capacidad de los modelos

para generalizar, cayendo en el problema de overfitting o sobreajuste tras las primeras épocas

de entrenamiento.

Otra alternativa interesante a explorar sería utilizar embeddings pre-entrenados como

Word2vec, Glove o fasttext, en lugar de la capa de embedding de keras actual para comprobar

si utilizar estos algoritmos suponen una mejora sustancial en términos de accuracy y F1-score.

Por otro lado, hemos identificado textos en nuestro dataset original que, por sí solos, no se

podrían considerar textos de odio, pero que han sido etiquetados en función de su contexto

(por ejemplo, conversaciones cruzadas entre usuarios de internet). Mostramos tres ejemplos

de textos etiquetados como ODIO que, como textos aislados, no deberían serlo:

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

92

- Ejemplo 1: “¿la de falconetti acaso?”

- Ejemplo 2: “cela.... camilo? y dices que no daba vergüenza ajena?”

- Ejemplo 3: ”el muerto, culpable, pues.”

Consideramos que estos ejemplos etiquetados como ODIO no hacen más que introducir ruido

al modelo, por lo que para mejoras futuras a la hora de crear el dataset, habría que incluir

únicamente textos completos de los que se pudiera inferir odio por sí mismos de manera

aislada, y que no dependieran del contexto en el que se encuentren.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

93

Bibliografía

Alkomah, F., & Ma, X. (2022). A Literature Review of Textual Hate Speech Detection Methods

and Datasets. En Information (Switzerland) (Vol. 13, Issue 6). MDPI.

https://doi.org/10.3390/info13060273

Amores, J. J., Blanco-Herrero, D., Sánchez-Holgado, P., & Frías-Vázquez, M. (2021). Detecting

ideological hatred on Twitter. Development and evaluation of a political ideology hate

speech detector in tweets in Spanish. Cuadernos.Info, 49, 98-124.

https://doi.org/10.7764/cdi.49.27817

Arango, A., Pérez, J., & Poblete, B. (2019). Hate Speech Detection is Not as Easy as You May

Think: A Closer Look at Model Validation. Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information Retrieval, 45-54.

https://doi.org/10.1145/3331184.3331262

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep Learning for Hate Speech

Detection in Tweets. Proceedings of the 26th International Conference on World Wide

Web Companion - WWW 17 Companion. https://doi.org/10.1145/3041021.3054223

Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo, F. M., Rosso, P., &

Sanguinetti, M. (2019). SemEval-2019 Task 5: Multilingual Detection of Hate Speech

Against Immigrants and Women in Twitter. Proceedings of the 13th International

Workshop on Semantic Evaluation, 54-63. https://doi.org/10.18653/v1/S19-2007

Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á., Aveleira-Mata, J., Alija-Pérez, J.

M., & García-Ordás, M. T. (2022). Detecting racism and xenophobia using deep learning

models on Twitter data: CNN, LSTM and BERT. PeerJ Computer Science, 8.

https://doi.org/10.7717/PEERJ-CS.906

Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., & Shrivastava, M. (2018). A Dataset of Hindi-English

Code-Mixed Social Media Text for Hate Speech Detection.

https://github.com/deepanshu1995/HateSpeech-Hindi-

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching Word Vectors with

Subword Information. Transactions of the Association for Computational Linguistics, 5,

135-146. https://doi.org/10.1162/tacl_a_00051

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

94

Burnap, P., & Williams, M. (2015). Cyber Hate Speech on Twitter: An Application of Machine

Classification and Statistical Modeling for Policy and Decision Making: Machine

Classification of Cyber Hate Speech. Policy & Internet, 7. https://doi.org/10.1002/poi3.85

Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., & Pérez, J. (2020). SPANISH PRE-

TRAINED BERT MODEL AND EVALUATION DATA.

https://github.com/josecannete/spanish-corpora

Chawla, N. v, Japkowicz, N., & Kotcz, A. (2004). Editorial: Special Issue on Learning from

Imbalanced Data Sets. SIGKDD Explor. Newsl., 6(1), 1-6.

https://doi.org/10.1145/1007730.1007733

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent

Neural Networks on Sequence Modeling. http://arxiv.org/abs/1412.3555

Dash, S., Grover, R., Shekhawat, G., Kaur, S., Mishra, D., & Pal, J. (2021). Insights Into

Incitement: A Computational Perspective on Dangerous Speech on Twitter in India.

http://arxiv.org/abs/2111.03906

Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017). Automated Hate Speech Detection

and the Problem of Offensive Language. http://arxiv.org/abs/1703.04009

de la Rosa, J., Ponferrada, E. G., Villegas, P., Salas, P. G. de P., Romero, M., & Grandury, M.

(2022). BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity

Sampling. http://arxiv.org/abs/2207.06814

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171-

4186. https://doi.org/10.18653/v1/N19-1423

Dinakar, K., Reichart, R., & Lieberman, H. (2011, octubre). Modeling the Detection of Textual

Cyberbullying.

Fersini, E., Rosso, P., & Anzovino, M. (2018). Overview of the Task on Automatic Misogyny

Identification at IberEval 2018. https://figure-eight.com/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

95

Filippo, M., Fulper, R. S., Ferrara, E. la, Ahn, Y., Flammini, A., Lewis, B., & Rowe, K. K. (2015).

Misogynistic Language on Twitter and Sexual Violence.

Firth, J. R. (1957). A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (Special

Volume of the Philological Society), 1952-59, 1-32.

Frenda, S., Montes, M., Ghanem, B., & Montes-Y-Gómez, M. (2018). Exploration of Misogyny

in Spanish and English tweets Text Mining in Semi-structured data sets View project Hate

Speech Detection View project Exploration of Misogyny in Spanish and English tweets.

https://www.researchgate.net/publication/326838153

Gambäck, B., & Sikdar, U. K. (2017). Using Convolutional Neural Networks to Classify Hate-

Speech. Proceedings of the First Workshop on Abusive Language Online, 85-90.

https://doi.org/10.18653/v1/W17-3013

García-Díaz, J. A., Cánovas-García, M., Colomo-Palacios, R., & Valencia-García, R. (2021).

Detecting misogyny in Spanish tweets. An approach based on linguistics features and

word embeddings. Future Generation Computer Systems, 114, 506-518.

https://doi.org/https://doi.org/10.1016/j.future.2020.08.032

García-Díaz, J. A., Jiménez-Zafra, S. M., García-Cumbreras, M. A., & Valencia-García, R. (2022).

Evaluating feature combination strategies for hate-speech detection in Spanish using

linguistic features and transformers. Complex and Intelligent Systems.

https://doi.org/10.1007/s40747-022-00693-x

Gröndahl, T., Pajola, L., Juuti, M., Conti, M., & Asokan, N. (2018). All You Need is «Love»:

Evading Hate-speech Detection. http://arxiv.org/abs/1808.09115

Kumar, R., Reganti, A. N., Bhatia, A., Maheshwari, T., & Rao, B. (2018). Aggression-annotated

Corpus of Hindi-English Code-mixed Data.

Lample, G., & Conneau, A. (2019). Cross-lingual Language Model Pretraining.

http://arxiv.org/abs/1901.07291

Lingiardi, V., Carone, N., Semeraro, G., Musto, C., D’Amico, M., & Brena, S. (2020). Mapping

Twitter hate speech towards social and sexual minorities: a lexicon-based approach to

semantic content analysis. Behaviour and Information Technology, 39(7), 711-721.

https://doi.org/10.1080/0144929X.2019.1607903

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

96

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., &

Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach.

http://arxiv.org/abs/1907.11692

Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of Literary

Information. IBM Journal of Research and Development, 1(4), 309-317.

https://doi.org/10.1147/rd.14.0309

Mathur, P., Sawhney, R., Ayyar, M., & Ratn Shah, R. (2018). Did you offend me? Classification

of Offensive Tweets in Hinglish Language. www.github.com/pmathur5k10/

Melnyk, L. (2021). Hate speech targets in COVID-19 related comments on Ukrainian news

websites. Journal of Computer-Assisted Linguistic Research, 5(1), 47-75.

https://doi.org/10.4995/jclr.2021.15966

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations

of Words and Phrases and their Compositionality. arXiv.

https://doi.org/10.48550/ARXIV.1310.4546

Müller, K., & Schwarz, C. (2021). Fanning the Flames of Hate: Social Media and Hate Crime.

Journal of the European Economic Association, 19(4), 2131-2167.

https://doi.org/10.1093/jeea/jvaa045

Nguyen, H.-T., Nguyen, M., & Le. (2017, enero). An Ensemble Method with Sentiment Features

and Clustering Support.

Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., & Chang, Y. (2016). Abusive language

detection in online user content. 25th International World Wide Web Conference, WWW

2016, 145-153. https://doi.org/10.1145/2872427.2883062

Papcunová, J., Martončik, M., Fedáková, D., Kentoš, M., Bozogáňová, M., Srba, I., Moro, R.,

Pikuliak, M., Šimko, M., & Adamkovič, M. (2021). Hate speech operationalization: a

preliminary examination of hate speech indicators and their structure. Complex and

Intelligent Systems. https://doi.org/10.1007/s40747-021-00561-0

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global Vectors for Word

Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 1532-1543. https://doi.org/10.3115/v1/D14-1162

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

97

Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F., & Camacho-Collados, M. (2019).

Detecting and Monitoring Hate Speech in Twitter. Sensors, 19(21).

https://doi.org/10.3390/s19214654

Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021). RoBERTuito: a pre-trained

language model for social media text in Spanish. http://arxiv.org/abs/2111.09453

Pires, T., Schlinger, E., & Garrette, D. (2019). How Multilingual is Multilingual BERT?

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

4996-5001. https://doi.org/10.18653/v1/P19-1493

Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López, L. A., & Martín-Valdivia, M. T.

(2021). Comparing pre-trained language models for Spanish hate speech detection.

Expert Systems with Applications, 166. https://doi.org/10.1016/j.eswa.2020.114120

Ramachandran, P., Zoph, B., & Le, Q. v. (2017). Searching for Activation Functions.

http://arxiv.org/abs/1710.05941

Roy, P. K., Tripathy, A. K., Das, T. K., & Gao, X. Z. (2020). A framework for hate speech detection

using deep convolutional neural network. IEEE Access, 8, 204951-204962.

https://doi.org/10.1109/ACCESS.2020.3037073

Sachdeva, J., Chaudhary, K. K., Madaan, H., & Meel, P. (2021). Text Based Hate-Speech

Analysis. Proceedings - International Conference on Artificial Intelligence and Smart

Systems, ICAIS 2021, 661-668. https://doi.org/10.1109/ICAIS50930.2021.9396013

Urdaneta, L. A. (2019, abril). Reducir el número de palabras de un texto: lematización y

radicalización (stemming) con Python. https://medium.com/qu4nt/reducir-el-

n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-

stemming-con-python-965bfd0c69fa

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. ukasz, &

Polosukhin, I. (2017). Attention is All you Need. En I. Guyon, U. von Luxburg, S. Bengio, H.

Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in Neural Information

Processing Systems (Vol. 30). Curran Associates, Inc.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

98

Vigna, F. del, Cimino, A., Dell’orletta, F., Petrocchi, M., & Tesconi, M. (2017). Hate me, hate

me not: Hate speech detection on Facebook. https://curl.haxx.se

Wang, C. (2018). Interpreting Neural Network Hate Speech Classifiers.

Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features for

Hate Speech Detection on Twitter. NAACL.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

99

Anexo. Artículo de investigación

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

Comparativa de modelos de aprendizaje profundo

para la detección de odio en castellano en medios de

información social

Carlos Simón Gallego

Universidad Internacional de la Rioja, Logroño (España)

8 de febrero de 2023

I. INTRODUCCIÓN

OY en día, el auge de las redes sociales y medios

informativos online genera una enorme cantidad de

información y proliferación de contenidos (desinformativos o no)

que en muchas ocasiones ponen en entredicho la tolerancia,

civismo y respeto a determinados colectivos.

Dada esta enorme cantidad de contenidos generados, no es

factible confiar únicamente en la supervisión humana para

combatir el discurso de odio en internet. Sin embargo, nos

encontramos ante el problema de que no existe una definición

única para el discurso de odio, lo que complica en gran medida la

labor de crear datasets etiquetados y algoritmos que detecten el

odio automáticamente y con precisión en un texto.

Este estudio pretende contribuir a la detección automática del

discurso de odio en español. Para ello, hacemos uso del corpus

etiquetado por el equipo del proyecto Hatemedia1 y comparamos

varias técnicas de clasificación basadas en modelos de aprendizaje

profundo.

En el apartado II se hará un análisis del contexto y el estado del

arte, donde repasaremos los talleres y eventos más relevantes de

los últimos años enfocados a tratar el problema de la detección de

expresiones de odio en textos, así como los datasets y sistemas

basados en inteligencia artificial más conocidos que se utilizan

1 https://www.hatemedia.es/

para intentar abordar este complejo problema. Los objetivos

generales y específicos son descritos en el apartado III, donde

también se detallarán los pasos necesarios para la consecución de

estos. En el apartado IV se describe el procedimiento que se va a

seguir para llevar a cabo la comparativa. Esto comprende desde la

descripción de las versiones del dataset que se van a utilizar, hasta

los modelos seleccionados y las métricas de evaluación utilizadas.

En el apartado V pasaremos a describir con todo detalle el

desarrollo del trabajo, mostrando los resultados y mediciones

obtenidos, para continuar en el apartado VI con una discusión

sobre la relevancia de los resultados, identificando los datos más

importantes extraídos de estos resultados. Finalmente, en el

apartado VII se darán las conclusiones extraídas del trabajo y se

propondrán líneas futuras de investigación o desarrollo

relacionado con el mismo

II. ESTADO DEL ARTE

El estudio de la detección y clasificación automática del

discurso de odio mediante procesamiento de lenguaje natural

(PLN) es un campo relativamente reciente, pero el interés en

esta área ha aumentado a medida que las redes sociales y otras

plataformas de internet han crecido en términos de influencia y

adopción por parte de la gran mayoría de los usuarios [1].

En la presente sección haremos una revisión del estado del

arte, donde comenzaremos destacando los principales eventos

H

RESUMEN

Con este trabajo tratamos de determinar la viabilidad que existe en la detección automática de expresiones de

odio en castellano mediante la aplicación de Deep Learning (DL) sobre el dataset del proyecto Hatemedia. Para

ello realizamos una comparativa de soluciones para determinar qué modelo de DL ofrece mejor rendimiento

para esta tarea. Se han realizado las mismas pruebas con diferentes versiones del dataset; una versión con todos

los registros y otras versiones reducidas y balanceadas. Tras el trabajo comparativo, encontramos que el dataset

original resulta inservible debido al problema de desbalanceo de clases, que hace que todos los modelos acaben

prediciendo únicamente la clase dominante. Para los datasets balanceados, el modelo BETO (versión cased) es

el que mejor rendimiento ofrece, superando los resultados obtenidos por otros modelos del estado del arte

entrenados con diferentes datasets. Finalizamos exponiendo todas las dificultades encontradas y ofreciendo

alternativas de mejora para trabajos futuros.

PALABRAS

CLAVE

Discurso de odio,

Aprendizaje profundo,

BETO, Procesamiento

de lenguaje natural,

Clasificación de texto

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

2

y talleres a nivel mundial enfocados en la detección del discurso

del odio. A continuación, listaremos algunos de los dataset más

utilizados para dichas tareas. Finalmente, analizamos las

diferentes técnicas de PLN utilizadas para extraer información

de un texto, así como los modelos de aprendizaje automático

empleados en el estado del arte, desde los modelos de machine

learning (ML) clásicos hasta soluciones más modernas basadas

en aprendizaje profundo y Transformers.

2.1 Congresos relativos a la detección de odio en textos

El impacto de las publicaciones nocivas online ha dado lugar

a un gran número de estudios y eventos enfocados a la

detección del odio y lenguaje ofensivo. Como ejemplo, se listan

los siguientes talleres y congresos.

• SemEval2: Taller internacional sobre el procesamiento

del lenguaje natural cuya misión es avanzar en el estado

actual del arte. Cada año, este taller propone una serie

de tareas compartidas en las que se presentan y

comparan sistemas de análisis semántico

computacional diseñados por diferentes equipos

• Workshop on Online Abuse and Harms (WOAH3), que

en el año 2022 celebró su sexta edición, cuyo objetivo

es avanzar en la investigación para detectar, clasificar

y modelar el contenido ofensivo y dañino en internet.

• GermEval Shared Task4 (edición de 2018 y 2019),

centrado en el procesamiento del lenguaje natural para

detección de lenguaje ofensivo en el idioma alemán.

• PolEval5 (edición de 2019, tarea 6), sobre la detección

automática del ciberacoso en Twitter para el lenguaje

polaco.

• HASOC6 (2019), sobre identificación de expresiones

de odio y contenidos ofensivos en las lenguas

indoeuropeas.

• AMI7 (2018), taller para la identificación automática

de la misoginia, para el idioma italiano y el inglés.

En relación a los estudios sobre el discurso del odio en

idioma español, observamos que no encontramos tanta

variedad como los centrados en el idioma inglés. De hecho, los

estudios que existen están relacionados mayoritariamente con

la participación de IberEval 2018 - Automatic Misogyny

Identification y la Tarea 5 del taller SemEval 2019 [2].

• SemEval-2019, Tarea 5

Esta tarea tuvo como objetivo detectar contenidos de odio en

los textos de las redes sociales en español, concretamente en las

publicaciones de Twitter, contra dos objetivos: los inmigrantes

y las mujeres. Además, la tarea implementaba una perspectiva

multilingüe en la que se proporcionaron datos de los idiomas

inglés y español (HatEval), para entrenar y probar los sistemas

participantes. El conjunto de datos de HatEval estaba

compuesto por 19.600 tuits, 13.000 en inglés y 6.600 en

2 https://semeval.github.io/
3 https://www.workshopononlineabuse.com/
4 https://germeval.github.io/tasks/

español [3]. Esta tarea se articulaba en torno a dos subtareas

relacionadas:

- Subtarea A: Consistía en una detección básica de discurso

de odio, en la que se pedía a los participantes que marcaran

la presencia de odio en los tweets (clasificación binaria).

- Subtarea B: En esta segunda subtarea se trataba de

determinar si el objetivo del mensaje era un individuo un

grupo de personas, y si el contenido del mensaje contenía

lenguaje agresivo.

• IberEval 2018 (AMI)

Este taller estaba enfocado a la detección de tweets

misóginos mediante PLN, con un dataset multilingüe, con

4.138 tuits escritos en español y 3.977 en inglés [4]. Del mismo

modo que en el caso de SemEval 2019 task 5, IberEval 2018

estaba organizado en dos subtareas:

- Subtarea A: Consistía en una tarea de identificación

binaria de mensajes misóginos.

- Subtarea B: En esta segunda subtarea había que

determinar cuándo el objetivo del comentario misógino

era un individuo concreto o un grupo.

2.2 Datasets

En este apartado listamos algunos de los dataset más

utilizados en el estado del arte para tareas de detección de

discurso de odio en inglés.

• Waseem and Hovy: Este conjunto de datos está

compuesto por 16.000 tweets anotados como

"sexistas", "racistas" y "sin odio" [5].

• Davidson et al.: Compuesto por 24.802 tuits anotados

en tres clases: discurso de odio, ofensivo (pero no de

odio), y ni ofensivo ni de odio [6].

• HatEval: Este conjunto de datos se compone de 19.600

tweets, 13.000 en inglés y 6.600 en español [3].

• HS: 4.575 tweets en hindi y en inglés etiquetados como

discurso de odio (aquellos tuits que inducen al odio) y

discurso normal (tuits que no inducen ninguna forma de

odio) [7].

A continuación, se listan algunos de los datasets más

importantes en idioma español:

• HaterNet: Dataset en idioma español construido a partir

de Twitter, compuesto por 6.000 textos etiquetados,

con 1.567 tweets anotados como odio y 4.433 anotados

como no odio [8].

5 http://2019.poleval.pl/
6 https://hasocfire.github.io/hasoc/2019/
7 https://amievalita2018.wordpress.com/

https://semeval.github.io/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

3

• HatEval 2019: Dataset construido a partir de Twitter

compuesto por 6.600 textos en español, con 2.739

anotados como odio y 3.861 etiquetados como no odio

[3].

• IberEval 2018 – AMI: Dataset en español compuesto

por 4.138 tweets, 2.064 anotados como mensajes

misóginos y 2.074 como no misóginos [4].

2.3 Técnicas y modelos

El procedimiento que se suele seguir para realizar el análisis

de un texto, ya sea con el objetivo de detectar odio o para

cualquier otro, consta de tres pasos: 1. Preprocesado de texto,

2. Extracción de características, 3. Clasificación mediante

modelos IA.

2.3.1. Técnicas de preprocesado

Como es natural, el texto que nos llega en bruto puede

presentar un formato que diste mucho de lo que podríamos

considerar el formato correcto, compuesto por palabras

incompletas, mal escritas o en otros idiomas, conteniendo

espacios innecesarios, etc. Además, en nuestro texto origen

existirán, casi con total seguridad, infinidad de palabras

innecesarias que no nos aporten ningún valor.

Así pues, en primer lugar y antes de extraer características

del texto y construir modelos a partir de esta información,

debemos dedicar tiempo a las tareas de limpieza, formateo y

preparación de los datos. Estas tareas están presentes en el día

a día de todos los proyectos de IA en general, y de

procesamiento de lenguaje natural en particular [9].

Algunas de las técnicas de preprocesado más habituales son

las siguientes:

• Tokenización, que consiste en segmentar el texto en

unidades más pequeñas (tokens o n-gramas) que

podamos manejar como referencia para extraer

características que aporten valor a nuestro sistema.

Además, eliminaremos todos aquellos tokens que no

nos aporten valor, de modo que reduzcamos el número

de elementos a tratar.

• Normalización: Será una tarea importante si queremos

que nuestras palabras sigan un formato estándar. Del

paso anterior, nuestro tokenizador ha podido reconocer

la misma palabra, pero escrita en mayúsculas y en

minúsculas, por ejemplo. Si queremos tener solo una

versión, será imprescindible normalizar nuestro texto.

• POS (part-of-speech) tagging: El POS es la técnica

sintáctica para etiquetar a cada una de las palabras de

un texto su categoría gramatical.

• Lematización: La técnica de lematización lo que

consigue es reducir todas las palabras derivadas a su

lema, que es la forma en la que encuentras la palabra en

el diccionario.

• NER (Named Entity Recognition): La detección de

entidades permite identificar automáticamente
determinadas palabras de un texto y clasificarlas en

diferentes categorías.

2.3.2. Técnicas de extracción de características

Las técnicas más simples de extracción de características,

(también conocidas como técnicas superficiales), son la bolsa

de palabras (BoW, de sus siglas en inglés) y la técnica TF-IDF(

del inglés Term frequency – Inverse document frequency) [10].

BoW es una representación vectorial compuesta por un

diccionario (lexicones) con las palabras de los textos con los

que se quieren entrenar los modelos. En estos lexicones se

representa la relevancia de cada elemento mediante métricas

como, por ejemplo, si la palabra aparece en el texto (booleano),

o la cantidad de veces que una palabra se repite en el texto. TF-

IDF es una técnica cuyo objetivo es encontrar el documento

más relevante para cierto término dentro de una colección de

documentos. Para ello, mide con qué frecuencia aparece un

término o frase dentro de un documento determinado, y lo

compara con el número de documentos que mencionan ese

mismo término dentro de una colección entera de documentos.

Una técnica más compleja son los Word Embeddings [11]

[12], utilizadas para representar las palabras de nuestro lexicón

mediante vectores multidimensionales, capaces de capturar

incluso relaciones semánticas entre palabras. Esta técnica está

presente en muchos de los estudios del estado del arte para

detección de odio, como [13] y [14]. Las representaciones de

Word Embeddings pueden generarse a partir de

representaciones pre-entrenadas como Word2vec [12], Glove

[15]) y fastText [16].

2.3.3. Machine Learning clásico

Entre las diversas técnicas convencionales de aprendizaje

automático utilizadas en la tarea de la detección del discurso

del odio en Internet, destacan las máquinas de vectores soporte

(SVM), la regresión logística y los Random Forest [17] [6]

[18]; [5]).

[19] muestra que estos tres modelos son los que

proporcionan mejor rendimiento dentro del ML convencional

en términos de Accuracy, Precision, Recall y F1. Por otro lado,

en este estudio se concluye que el modelo K-Vecinos Más

Cercanos (KNN, de sus siglas en inglés), obtuvo el peor

rendimiento para la tarea de clasificación de textos.

El taller SemEval 2019, tarea 5 (que consistía en detectar

discurso de odio en Twitter contra mujeres e inmigrantes),

muestra que el modelo SVM es especialmente relevante, ya que

los sistemas creados mediante este modelo obtuvieron los

mejores resultados de la competición [3].

2.3.3.1. Deep Learning

Dentro de las técnicas de DL más utilizadas en la

clasificación de textos, destacan las redes neuronales

convolucionales (CNN) y las redes neuronales recurrentes

(RNN) [2].

[20] y [21] fueron los primeros en utilizar redes neuronales

recurrentes y redes neuronales de convolución,

respectivamente, para la detección del discurso del odio en los

tuits.

CNN

Las CNN son un tipo de red neuronal que procesa capas de

forma jerárquica, lo que les permite diferenciar distintas

características en las entradas recibidas. La capa más

importante, y la que da nombre a la red, es la capa

convolucional. Esta capa funciona a partir de unos filtros que

van desplazándose por la imagen o el texto, dependiendo el

problema a resolver, obteniendo las salidas de la capa mediante

un producto escalar.

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

4

Aunque se diseñaron inicialmente para la visión por

computador, han sido eficaces también para tareas de PLN y de

detección de odio [22]. En la Figura 1 podemos observar la

arquitectura de una red neuronal convolucional aplicada al

problema de análisis de sentimiento de textos.

Figura. 1. Arquitectura de una CNN extraída de [38]

Cuando utilizamos una red CNN aplicada a PLN, lo que

procesamos son textos en lugar de imágenes. Estos textos

tendrán una representación matricial, donde las filas

representan la las palabras codificadas mediante word

embeddings con una dimensión d (espacio vectorial donde

hemos embebido los textos). Por tanto, cada filtro de

convolución tendrá una anchura igual a la longitud del

embedding donde están incrustados los textos a procesar, en

nuestro ejemplo d=4, de modo que cada filtro irá recorriendo

las palabras en una sola dirección, de arriba abajo, en lugar de

izquierda a derecha y de arriba abajo como sucede con las

imágenes.

En nuestro ejemplo observamos que tenemos 4 filtros, dos

de altura h=2 y otros dos de altura h=3. Esto significa que

queremos detectar características locales en grupos formados

por dos y tres palabras, capturando diferentes niveles de

correlación entre palabras. Así pues, cada filtro se encargará de

capturar cierta característica de los datos. Como estamos

aplicando capas de convolución que son unidimensionales

(recorremos la matriz de entrada de arriba a abajo), en lugar de

las bidimensionales utilizadas en imágenes, la salida que

obtenemos tras aplicar nuestro filtro es un vector en lugar de

una matriz. Estos vectores serán nuestros mapas de

características.

En la fase de max-Pooling solo nos quedamos con un

elemento, el resultado más grande de cada uno de los mapas de

características, para reducir la dimensionalidad.

Finalmente, concatenamos los valores máximos obtenidos

en la fase de max-Pooling para conformar la entrada de la

siguiente capa, una fully connected layer. En nuestro ejemplo,

tenemos dos capas densas como últimas capas. La última capa

estará compuesta por una sola neurona para clasificación

binaria.

RNN y LSTM

Las redes neuronales recurrentes (RNN) son una clase de

redes especializadas en analizar datos de series temporales. La

principal característica de este tipo de redes radica en su

capacidad de modelar relaciones temporales entre elementos de

la secuencia a través de un estado interno de la red o hidden

state, que podemos considerar como una memoria sobre lo que

la red ha visto hasta ese momento. En esta arquitectura se aplica

una fórmula recurrente sobre una secuencia de entrada de

manera que, en cada paso dado, se depende del nuevo valor de

entrada x y del estado interno h anterior. Por tanto, este tipo de

arquitecturas permiten modelar relaciones entre palabras dentro

de un texto.

Las LSTM (Long Short Term Memory) son un tipo especial

de redes recurrentes [23]. Estas redes surgieron como una

arquitectura encaminada a solucionar los problemas de

memoria de las RNN tradicionales. En la práctica, estas últimas

presentan problemas para aprender relaciones con elementos de

time step lejanos (es decir, que no están cerca del time step

actual). Esto limita en gran parte el potencial teórico de las

RNN. Por ejemplo, dentro del campo del procesamiento de

lenguaje natural, cuando analizamos un texto es importante

mantener la información aprendida desde el inicio hasta el final

del mismo, de modo que podamos extraer características y

relaciones entre palabras dentro de un mismo texto. Las LSTM

están diseñadas para intentar solucionar este problema. En

LSTM se establecen unos criterios para almacenar la

información obtenida hasta el momento. El modelo aprende

qué partes de la representación se deben olvidar para incluir las

más importantes.

Existe una versión alternativa llamada Bi-LSTM

(Bidirectional Long Short-Term Memory). Se trata de una

arquitectura idéntica a la LSTM, solo que en este caso la red

neuronal se entrenará con los mismos datos una segunda vez,

recorriéndolos en orden inverso. Si bien las LSTM/BiLSTM

suponen una mejora respecto a las RNN clásicas, ambos

modelos comparten una arquitectura secuencial que limita en

gran medida la paralelización de las ejecuciones y, por tanto, el

rendimiento LSTM general. Por último, la arquitectura GRU

(Gated Recurrent Unit), es una versión simplificada de LSTM

introducida en 2014 por [24].

Transfer learning

Utilizando como punto de partida modelos pre-entrenados,

el Transfer Learning permite desarrollar rápidamente modelos

eficaces y resolver problemas complejos de PLN o de visión

por computador sin necesidad de tener que entrenar nuestro

propio modelo de cero o de disponer de una inmensa cantidad

de datos. De este modo, los modelos pre-entrenados se han

convertido en un elemento básico en el ámbito del

procesamiento del lenguaje natural.

En los últimos años, desde la introducción de la arquitectura

Transformer, se han utilizado en muchas otras tareas diferentes

de PLN, superando a modelos anteriores basados en redes

neuronales recurrentes [25]. Los modelos Transformer tienen

como principal innovación la sustitución de las capas

recurrentes, como las LSTMs que se venían usando hasta ese

momento en PLN, por las denominadas capas de atención [26].

A nivel de arquitectura, los Transformers se basan en dos

partes bien diferenciadas, un codificador o encoder y un

decodificador o decoder. El encoder está compuesto por una

pila de N = 6 capas idénticas. Cada capa tiene dos subcapas. La

primera es un mecanismo de autoatención (multi-head

attention), y la segunda es una red simple totalmente conectada.

Por otro lado, el descodificador también se compone de una pila

de N = 6 capas idénticas. Además de las dos subcapas de cada

capa del codificador, el descodificador inserta una tercera

subcapa multi-head attention, que se aplica sobre la salida de la

pila del codificador. Tanto el codificador como el decodificador

trabajan sobre secuencias enteras de texto en lugar de palabra

por palabra. De este modo, en lugar de analizar palabras sueltas,

se obtiene un análisis global.

La mejora de rendimiento ofrecida por la arquitectura

Transformer ha permitido el rápido desarrollo de modelos sobre

conjuntos de datos tan grandes que anteriormente no era viable

procesar, dando lugar al modelo BERT (Bidirectional Encoder

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

5

Representations from Transformers) y a los GPT (Generative

Pre-trained Transformer), estos últimos utilizados

principalmente para generar textos que simulan la redacción

humana

Modelos BERT y RoBERTa

BERT es un modelo Transformer bidireccional, pre-

entrenado sobre una gran cantidad de datos sin etiquetar para

aprender una representación del lenguaje que se puede utilizar

para realizar fine-tuning y adaptarlo a tareas específicas de

aprendizaje automático [27] [25]. RoBERTa (A Robustly

Optimized BERT Pretraining Approach) es otro modelo basado

en la arquitectura BERT [28]. RoBERTa utiliza la misma

arquitectura de BERT, pero aplicando pequeños cambios que

mejoran notablemente el rendimiento del modelo en todas las

tareas en comparación con BERT. RoBERTa también utiliza

un vocabulario más amplio (50K, frente los 30K de BERT).

Modelos multilingües

Dentro del campo de modelos multilingües, encontramos m-

BERT [27] y XML-R [29]. Estos dos modelos han impulsado

el estado del arte en tareas de PLN multilingüe mediante el pre-

entrenamiento en muchos idiomas, mostrando cómo un único

modelo puede aprender de varios idiomas, estableciendo bases

sólidas para tareas no relacionadas con el inglés [30].

M-Bert (Multilingual BERT) ha sido pre-entrenado con el

corpus Wikipedia en 104 idiomas, capaz de realizar una

generalización multilingüe sorprendentemente bien [31]. Por su

lado, XML-R (XLM-RoBERTa) XLM-RoBERTa es una

versión multilingüe de RoBERTa. Está pre-entrenada en 2,5 TB

de datos CommonCrawl filtrados que contienen 100 idiomas.

Modelos monolingües para el idioma español

El primer modelo monolingüe disponible públicamente en

español fue BETO [30], un modelo BERT entrenado en su

totalidad sobre un gran corpus en español, que mejora los

resultados obtenidos por m-Bert para clasificar textos en

español [2], lo que demuestra que un modelo monolingüe con

suficiente entrenamiento puede superar a un modelo

multilingüe, incluso cuando se utilizan más recursos y

entrenamiento para este último [27]. BETO tiene un tamaño

similar al de un BERT-Base (BERT-base tiene 12 capas,

mientras que BERT-large 24). Existen 2 versiones de BETO, la

cased y la uncased. En la versión uncased, el texto con el que

se le ha entrenado ha sido previamente transformado a

minúsculas, mientras que en la versión cased, el texto con el

que se le ha entrenado es el mismo que el de entrada (sin

cambios). Asimismo, en la versión uncased se eliminan los

acentos, mientras que en la versión cased se conservan.

Más recientemente, se han desarrollado otros modelos

lingüísticos para el español, como BERTIN [32] y

RoBERTuito [25], ambos basados en la arquitectura

RoBERTa.

III. OBJETIVOS Y METODOLOGÍA

El objetivo general de este trabajo es comparar el

rendimiento de diferentes algoritmos de aprendizaje profundo

y transfer learning sobre el dataset creado por el proyecto

HATEMEDIA, con el objetivo de determinar cuál clasifica

mejor y concluir si es posible la detección automática de

expresiones de odio dentro de este caso de estudio.

Los objetivos específicos y metodología necesarios para

llevar a cabo el objetivo general consistirán en: realizar un

estudio del estado del arte para identificar qué técnicas y

métodos nos conviene utilizar en nuestra comparativa. Realizar

un análisis exploratorio de los datos disponibles en el dataset

de Hatemadia con el objetivo de identificar potenciales

problemas y oportunidades. Preprocesar los datos y creación de

diferentes versiones de nuestro dataset original; una versión

completa y otras versiones reducidas pero balanceadas.

Entrenar los modelos seleccionados con las diferentes

versiones de nuestro dataset y medir sus rendimientos. Evaluar

los resultados obtenidos para determinar la viabilidad de

detección de expresiones de odio y la preferencia de usar

alguno de los modelos, si la hubiera.

El desarrollo será iterativo siguiendo los objetivos

específicos marcados en el trabajo.

IV. CONTRIBUCIÓN

En este trabajo queremos evaluar la viabilidad de utilizar

técnicas de aprendizaje profundo y transfer learning sobre

nuestro dataset de Hatemedia para obtener un modelo

predictivo que permita la detección de expresiones de odio en

castellano. Nuestra intención consiste en apoyarnos en estos

datos para investigar, en primer lugar, si es viable entrenar un

modelo de clasificación binario que permita detectar si un texto

contiene odio (independientemente de su grado de intensidad)

y, en caso afirmativo, determinaremos cuál de los modelos

utilizados funciona mejor.

4.1 Dataset

El dataset utilizado proviene del proyecto Hatemedia, que ha

centrado su estudio en los principales medios informativos

profesionales de España (La Vanguardia, ABC, El País, El

Mundo y 20Minutos), para analizar cómo se difunden las

expresiones de odio en los entornos digitales asociados a este

tipo de medios. Este dataset está compuesto por 574.760

registros. A pesar de tratarse de un dataset con una buena

cantidad de registros, sufre del problema del desbalanceo de

clases, donde existe una etiqueta que está representada en

menor medida. Del total de registros, 12.296 están etiquetados

como ODIO (el 2,1% de los datos), mientras que el 97,9%

restante se corresponde con la etiqueta de NO_ODIO.

Por lo general, el desbalance de datos afecta a los algoritmos

en su proceso de generalización, traduciéndose en que nuestro

modelo entrenado no tenga una capacidad de predicción que

nos sirva para su uso posterior [33]. Debido a este problema, se

ha decidido crear tres versiones balanceadas del dataset

original, de modo que podamos llevar a cabo diferentes pruebas

en nuestra comparativa. Para ello, seleccionaremos todos los

mensajes etiquetados como ODIO y añadiremos la misma

cantidad de mensajes etiquetados como NO_ODIO, atendiendo

a diferentes criterios para cada uno de los nuevos datasets.

Llamaremos a estas versiones de los datasets V1, V2 y V3

respectivamente.

• Selección aleatoria de textos (V1): Tomaremos todos

los textos etiquetados como ODIO y añadiremos

aleatoriamente la misma cantidad de textos de

NO_ODIO.

• Selección de textos de longitud homogénea (V2): En

nuestro dataset original tenemos textos que van desde

1 sola palabra hasta una longitud máxima de 3044. A

la hora de entrenar un algoritmo para que pueda

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

6

aprender a clasificar textos en ODIO y NO_ODIO, será

importante conocer si obtener un subconjunto de textos

de longitud homogénea supone alguna mejora en el

rendimiento. Para ello crearemos un nuevo dataset

balanceado, consistente en textos de longitud

homogénea.

• Selección de textos correspondientes a un mismo

medio (V3): Escogeremos textos relacionados con un

solo medio de entre todos los disponibles (EL PAÍS, EL

MUNDO, LA VANGUARDIA, 20MIN y ABC).

Elegiremos el medio en función de cual tenga el mejor

balance entre muestras ODIO y NO_ODIO y,

dependiendo de los resultados obtenidos por el dataset

anterior, seleccionaremos o no únicamente textos de

longitud homogénea

4.2. Análisis y preparación de los datos

El primer paso en nuestro estudio consistió en un análisis

pormenorizado de los datos disponibles en el dataset de

Hatemadia, con el fin de entenderlos en profundidad y

comprobar la calidad de los mismos. Inicialmente se realizó un

estudio de los valores nulos con el objetivo principal de

identificar estos registros y decidir cómo proceder con ellos.

Finalmente, se eliminaron todos aquellos datos que no

aportaban valor a nuestro estudio. Una vez terminamos el

tratamiento de los valores nulos en el dataset, se realizó un

análisis exploratorio de los datos, donde nos deshicimos de

columnas innecesarias para nuestro estudio y pudimos

comprobar el problema de desbalanceo de clases que sufre

nuestro dataset, con 562.464 observaciones de NO_ODIO,

frente a 12.296 de ODIO. Tras ello, preparamos

implementamos una función que aplicaba un flujo de limpieza

y preprocesado de los datos, realizando tareas como la

eliminación de urls y caracteres especiales, eliminación de

palabras de longitud<2, eliminación de espacios en blanco

sobrantes, tokenización y lematización, de modo que los datos

quedaran correctamente preparados para alimentar nuestros

modelos. Asimismo, se realizó un estudio de la longitud de los

textos. Analizar la longitud de los textos como una variable más

nos reveló información importante sobre nuestros datos, como

la longitud máxima y mínima, así como su distribución.

Finalmente, tuvimos que aplicar un proceso de tokenización a

los datos, de modo que fueran legibles por los modelos. La

arquitectura BERT tiene su propia forma de tokenizar los datos,

por lo que tuvimos que tratar de forma separada este proceso:

por un lado, para los tres modelos de deep learning y, por otro,

BETO.

4.3. Modelos de DL para la detección de odio

Para realizar nuestra comparativa, hemos seleccionado un

total de 4 modelos predictivos, una red neuronal simple (SNN),

una red convolucional (CNN), una red LSTM y el Transformer

para el idioma español BETO.

Para decidir el diseño final de los modelos a utilizar, como

el número de capas de convolución para la CNN, número y

tamaño de los filtros, añadir o no más de una capa densa de

neuronas, decidir si incluir capas de dropout, etc, hemos

8 https://huggingface.co/dccuchile

realizado pruebas tomando distintas combinaciones, entre ellas

las configuraciones presentadas en el trabajo de [34], donde se

realiza un análisis comparativo de modelos con el objetivo de

detectar racismo y xenofobia en twitter usando redes CNN,

LSTM y transfer learning. Finalmente, hemos optado por las

arquitecturas que se describen a continuación:

SNN: Este sencillo modelo consistirá en una primera capa

de embedding que será posteriormente aplanada y conectada

directamente a una capa densa de 1 neurona con una función de

activación sigmoid, que será la encargada de devolver el

resultado de la clasificación binaria.

CNN: Esta red estará compuesta por una primera capa de

embedding, seguida por una capa convolucional 1D

(probaremos diferente número y tamaño de filtros para

seleccionar la mejor combinación). La función de activación

utilizada en esta capa será la función ReLU (Unidad Lineal

Rectificada), que en la actualidad es la función de activación

con más éxito y más utilizada en redes de neuronas profundas

[35]. A la salida de esta capa de convolución se le aplicará una

función de MaxPooling para reducir el tamaño de las muestras,

y el resultado se conectará a una capa densa de 1 neurona con

una función sigmoid.

LSTM: Utilizaremos en primer lugar una capa de

embedding, seguida de una capa LSTM (probaremos diferente

número de neuronas para poder seleccionar la mejor opción).

La salida irá conectada, al igual que en los casos anteriores, a

una capa densa de 1 neurona con función de activación

sigmoid.

BETO: Finalmente, utilizaremos en nuestra comparativa el

modelo transformer monolingüe para el idioma español BETO,

tanto la versión cased como uncased (“dccuchile/bert-base-

spanish-wwm-cased” y “dccuchile/bert-base-spanish-wwm-

uncased” respectivamente). Estos modelos se pueden encontrar

en la web de Hugging Face8, y son accesibles desde el código

a través de la biblioteca Transformers9.

4.4 Parametrización

Con el fin de garantizar que los resultados obtenidos por la

red neuronal sean lo más elevados posibles, se han realizado

una serie de pruebas en las que se ha comprobado el

rendimiento del modelo en función del valor de determinados

parámetros que mostramos en las Tablas 1, 2 y 3.

Tabla 1: Parámetros seleccionados para CNN

Tabla 2: Parámetros seleccionados para LSTM

9 https://huggingface.co/docs/transformers

Parámetro Opciones probadas Opción seleccionada

Batch size 25, 50, 100 50

Epochs 2, 3, 5 2

N_Filtros 32, 64, 128 64

Optimizador Adam, SGD Adam

Learning rate 1e−2, 1e−3 1e−3

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

7

Tabla 3: Parámetros seleccionados para BETO

4.4 Métricas de evaluación

Como métricas para comparar los distintos modelos vamos

a utilizar la accuracy (Acc) o exactitud, que indica el número

de muestras correctamente clasificadas para todas las clases

sobre el total de muestras, la F1-score, una métrica que combina

Precisión y Recall, y a Macro-F1, que se trata de la media no

ponderada de las puntuaciones F1-score.

𝐴𝑐𝑐=
TP+TN

TP+TN+FP+FN
 ; Precisión = TP

TP+FP
; 𝑅𝑒𝑐𝑎𝑙𝑙 =

TP

TP+FN

F1-score =
2∗Precisión∗Recall

Precisión+Recall
 ; Macro-F1 =

sum(F1−scores)

número de clases

Donde: TP representa las muestras negativas correctamente

clasificadas, FP las muestras positivas clasificadas como

negativas, FN las negativas clasificadas como positivas y FP

las positivas clasificadas como negativas.

V. EVALUACIÓN Y RESULTADOS

Para cada uno de los modelos seleccionados, realizaremos

experimentos con las distintas versiones del dataset descritos

en el apartado anterior. Todos los experimentos han sido

ejecutados desde la versión gratuita colab, configurando el

entorno para hacer uso del modo de ejecución GPU (Tesla T4),

lo que nos ha permitido ejecutar nuestros modelos hasta 10

veces más rápido que desde el entorno básico.

Resultados con dataset completo

Las pruebas realizadas para el dataset completo muestran

unos resultados propios de un dataset desbalanceado (Figura 2).

Al final, al modelo le basta con predecir siempre la clase

dominante para conseguir un 98% de accuracy (acertando

siempre los textos de NO_ODIO conseguimos acertar un 98%

de las ocasiones). Sin embargo, esto implica que nunca predice

la etiqueta ODIO, y esto se traduce en un recall del 0% para

esta clase. Por lo tanto, estos modelos entrenados con el dataset

completo no son útiles en absoluto para resolver nuestro

problema.

Figura 2: Matriz de confusión con dataset completo para todos los

modelos

Estos mismos resultados se han obtenido para los diferentes

valores de batch_size y epochs.

Resultados con datasets balanceados (V1, V2, V3)

La Tabla 4 muestra los resultados obtenidos por los modelos

para cada una de las versiones del dataset balanceado V1, V2,

y V3. Estos resultados se han conseguido con un batch_size de

tamaño 50 y 2 épocas. Hemos comprobado que más allá de la

tercera epoch perdemos accuracy para el conjunto de test

debido al fenómeno overfitting o sobreajuste del modelo al

conjunto de entrenamiento.

Tabla 4: Comparativa de resultados en test

A diferencia de lo que ocurría con el dataset completo, para

los datasets balanceados se obtienen unos valores razonables

para todas las métricas, con excepción del modelo LSTM al

entrenarse con el dataset V1. En este caso, nuestro modelo no

pasa de un 49% de accuracy y un 0% de F1 para la clase de

NO_ODIO. Es evidente que el modelo LSTM no funciona bien

para este dataset V1, pues únicamente predice la clase de

ODIO. El motivo de este comportamiento es la longitud

máxima de los textos (3044 caracteres) que hace que los

mensajes más cortos estén compuestos mayoritariamente por

valores 0 (tras el proceso de padding), perjudicando el

rendimiento de nuestro algoritmo basado en la arquitectura

RNN. Confirmamos este punto con los resultados de los

datasets V2 y V3, donde obtenemos unos resultados bastante

buenos, cercanos a los obtenidos por CNN.

Por otro lado, observamos que con dataset balanceado V2

empeoramos ligeramente todas las métricas con respecto al

dataset V1. Esto indica que el hecho de tener unos textos de

longitud homogénea no ha ayudado en este sentido a los

modelos a predecir mejor. Sin embargo, debemos comentar que

el tiempo de ejecución sí mejoró, reduciéndose

aproximadamente un 30% al acotarse la longitud de los textos.

Para el dataset V3, observamos unas métricas por debajo de lo

conseguido con el dataset V2. Creemos que estos resultados se

deben a la reducción del número total de registros de

entrenamiento (hemos pasado de 23.932 registros en V2 frente

a 10.268 registros en V3). Al tener menos muestras para

aprender, los modelos caen en overfitting, sobre ajustándose a

los datos de entrenamiento, y no es capaz de generalizar

correctamente

VI. DISCUSIÓN

En primer lugar, debemos comentar que el dataset original

presenta un desbalanceo de clases tan acuciado que resulta

inservible, pues todos los modelos entrenados con este dataset

terminan prediciendo siempre la clase dominante.

Si nos centramos en las pruebas realizadas con los tres

datasets balanceados, observamos que los mejores resultados

SNN CNN LSTM BETO (cased)

V1 86% 87% 49% 89%

V2 83% 85% 84% 87%
V3 76% 83% 80% 84%

V1 86% 87% 0% 88%
V2 83% 85% 84% 86%
V3 77% 83% 79% 84%

V1 85% 87% 66% 89%
V2 82% 85% 83% 87%

V3 75% 82% 80% 84%

Accuracy

F1-score (NO_ODIO)

F1-score (ODIO)

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

8

en términos de accuracy y F1 los encontramos con BETO

(cased) entrenado con el dataset V1, seguido por CNN

entrenado también con V1 y empatado con BETO entrenado

con V2 (Tabla 4).

Estos resultados nos podrían llevar a pensar que un dataset

balanceado de selección aleatoria (V1) es la mejor opción para

entrenar nuestros modelos. Sin embargo, este dataset entraña

una serie de desventajas: por ejemplo, el modelo LSTM no

funciona correctamente con este dataset debido a la longitud

máxima de los textos (3.044 palabras) que hace que los

mensajes más cortos estén compuestos mayoritariamente por

valores 0 (padding), perjudicando el rendimiento de nuestro

algoritmo basado en la arquitectura de red recurrente. Se ha

comprobado que, con textos de longitud homogénea, este

modelo alcanza una exactitud cercana a la obtenida por CNN

(aunque con tiempos de entrenamiento entre 2 y 3 tres veces

superiores en LSTM).

La Tabla 5 muestra los resultados del estado del arte (SOA)

para la detección de discurso de odio en español obtenidos a

partir de los conjuntos de datos de HaterNet y HatEval, además

de un dataset ad-hoc creado en el trabajo de [36]. Comparamos

estos resultados con nuestra mejor propuesta en términos de

macro-F1, el modelo BETO cased entrenado con el dataset

balanceado V1.

Para el conjunto de datos HaterNet, el modelo de [37]

presenta un modelo BETO (cased) que supera a nuestra

propuesta en términos de F1 para la etiqueta NO_ODIO,

alcanzando un 89% frente a nuestro 88%. Sin embargo, en

términos de macro-F1, nuestro modelo BETO mejora los

resultados de [37], en un 14%. El motivo es que nuestro modelo

es capaz de predecir mejor la etiqueta de odio, seguramente a

consecuencia de haber sido entrenado con un dataset mejor

balanceado y con un mayor número de muestras de textos de

odio. En la Tabla 6 mostramos la distribución de cada dataset.

En el estudio de [36] se generaron un total de ocho modelos

predictivos: seis usando algoritmos de aprendizaje superficial,

uno generado a partir de los votos de esos modelos anteriores y

otro usando aprendizaje profundo. Los mejores resultados los

obtuvo este último modelo, basado en una red neuronal

recurrente GRU, alcanzando un macro-F1 del 77%. Nuestra

propuesta mejora este resultado en un 16%.

En cuanto al conjunto de datos HatEval, [37] y [25]

superaron el mejor resultado obtenido en la competición de

SemEval-2019 Task 5, probando un modelo BETO (cased) y

Robertuito (uncased) respectivamente. El modelo Robertuito es

el que alcanza mejor rendimiento en términos de Macro-F1, con

un 80%. Nuestro modelo BETO cased entrenado sobre el

dataset V1 supera los resultados de [25] con una mejora del

11%.

Tabla 5: Resultados SOA para detección de discurso de odio en español

Comparando estos resultados destacamos la importancia de

entrenar estos modelos de transfer learning sobre un dataset

balanceado con el mayor número posible de registros, con el fin

de obtener un modelo que reajuste sus parámetros en base a la

información del dataset sin caer en el fenómeno de overfitting,

de modo que a posteriori sea capaz de generalizar con la llegada

de nuevos datos.

Tabla 6: Distribución de los datasets en español

VII. CONCLUSIONES

Si bien los resultados a partir del dataset original no son

buenos debido al problema del desbalanceo de clases, los

modelos generados a partir de los datasets balanceados tienen

unas prestaciones más que aceptables, concluyendo que la

detección automática de expresiones de odio es viable para

estos datasets balanceados, siendo BETO (versión cased) el

modelo que mejor resultados ofrece en términos de accuracy y

F1-score, seguido muy de cerca por el modelo CNN. No

recomendaríamos LSTM para análisis de textos extensos, al

menos cuando la longitud de los textos del dataset no sea

homogénea, a la vista de los resultados obtenidos por este

modelo con V1. Por el contrario, tanto BETO como CNN han

respondido bien a todas las versiones de los datasets

balanceados, por lo que los convierte en los modelos más

versátiles

Finalmente, como líneas futuras planteamos. realizar las

mismas pruebas presentadas en este trabajo, pero con un dataset

balanceado con mayor cantidad de registros. Nuestros datasets

balanceados han permitido generar un conjunto de

entrenamiento del orden de 20K registros, lo que ha dificultado

la capacidad de los modelos para generalizar, cayendo en el

problema de overfitting o sobreajuste tras las primeras épocas

de entrenamiento.

REFERENCIAS

[1] Arango, A., Pérez, J., & Poblete, B. (2019). Hate Speech

Detection is Not as Easy as You May Think: A Closer Look at
Model Validation. Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information
Retrieval, 45-54. https://doi.org/10.1145/3331184.3331262

[2] García-Díaz, J. A., Jiménez-Zafra, S. M., García-Cumbreras, M.

A., & Valencia-García, R. (2022). Evaluating feature

combination strategies for hate-speech detection in Spanish using
linguistic features and transformers. Complex and Intelligent
Systems. https://doi.org/10.1007/s40747-022-00693-x

[3] Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel
Pardo, F. M., Rosso, P., & Sanguinetti, M. (2019). SemEval-

2019 Task 5: Multilingual Detection of Hate Speech Against

Immigrants and Women in Twitter. Proceedings of the 13th
International Workshop on Semantic Evaluation, 54-63.
https://doi.org/10.18653/v1/S19-2007

[4] Fersini, E., Rosso, P., & Anzovino, M. (2018). Overview of the
Task on Automatic Misogyny Identification at IberEval 2018.
https://figure-eight.com/

[5] Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful

Modelo Dataset F1 (NO_ODIO) F1 (ODIO) Macro-F1

SVM (SemEval-2019 Task 5) HatEval 76% 70% 73%

RNN-GRU [36] Ad-hoc - - 77%

BETOcased [37] HaterNet 89% 66% 78%

BETOcased [37] HatEval 80% 76% 78%

Robertuitouncased [25] HatEval - - 80%

BETOcased (Nuestra propuesta) Hatemedia (V1) 88% 89% 89%

Dataset n_registros NO_ODIO ODIO

HatEval 6.600 3.861 (59%) 2.739 (41%)

HaterNet 6.000 4.433 (74%) 1.567 (26%)

 Ad-hoc [36] 10.213 3879 (38%) 6334 (62%)

Hatemedia (V1) 24.546 12.273 (50%) 12.273 (50%)

https://doi.org/10.1145/3331184.3331262
https://doi.org/10.1007/s40747-022-00693-x
https://doi.org/10.18653/v1/S19-2007
https://figure-eight.com/

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

9

People? Predictive Features for Hate Speech Detection on

Twitter. NAACL.

[6] Davidson, T., Warmsley, D., Macy, M., & Weber, I. (2017).

Automated Hate Speech Detection and the Problem of Offensive
Language. http://arxiv.org/abs/1703.04009

[7] Bohra, A., Vijay, D., Singh, V., Akhtar, S. S., & Shrivastava, M.

(2018). A Dataset of Hindi-English Code-Mixed Social Media
Text for Hate Speech Detection.
https://github.com/deepanshu1995/HateSpeech-Hindi-

[8] Pereira-Kohatsu, J. C., Quijano-Sánchez, L., Liberatore, F., &
Camacho-Collados, M. (2019). Detecting and Monitoring Hate

Speech in Twitter. Sensors, 19(21).
https://doi.org/10.3390/s19214654

[9] Urdaneta, L. A. (2019, abril). Reducir el número de palabras de

un texto: lematización y radicalización (stemming) con Python.

https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-
palabras-de-un-texto-lematizaci%C3%B3n-y-
radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa

[10] Luhn, H. P. (1957). A Statistical Approach to Mechanized
Encoding and Searching of Literary Information. IBM Journal of

Research and Development, 1(4), 309-317.
https://doi.org/10.1147/rd.14.0309

[11] Firth, J. R. (1957). A synopsis of linguistic theory 1930-55.

Studies in Linguistic Analysis (Special Volume of the
Philological Society), 1952-59, 1-32.

[12] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J.

(2013). Distributed Representations of Words and Phrases and
their Compositionality. arXiv.
https://doi.org/10.48550/ARXIV.1310.4546

[13] Melnyk, L. (2021). Hate speech targets in COVID-19 related
comments on Ukrainian news websites. Journal of Computer-

Assisted Linguistic Research, 5(1), 47-75.
https://doi.org/10.4995/jclr.2021.15966

[14] Dash, S., Grover, R., Shekhawat, G., Kaur, S., Mishra, D., & Pal,

J. (2021). Insights Into Incitement: A Computational Perspective

on Dangerous Speech on Twitter in India.
http://arxiv.org/abs/2111.03906

[15] Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global
Vectors for Word Representation. Proceedings of the 2014

Conference on Empirical Methods in Natural Language

Processing (EMNLP), 1532-1543.
https://doi.org/10.3115/v1/D14-1162

[16] Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017).

Enriching Word Vectors with Subword Information.
Transactions of the Association for Computational Linguistics,

5, 135-146. https://doi.org/10.1162/tacl_a_00051

[17] Burnap, P., & Williams, M. (2015). Cyber Hate Speech on
Twitter: An Application of Machine Classification and Statistical

Modeling for Policy and Decision Making: Machine

Classification of Cyber Hate Speech. Policy & Internet, 7.
https://doi.org/10.1002/poi3.85

[18] Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., & Chang, Y.
(2016). Abusive language detection in online user content. 25th

International World Wide Web Conference, WWW 2016, 145-
153. https://doi.org/10.1145/2872427.2883062

[19] Sachdeva, J., Chaudhary, K. K., Madaan, H., & Meel, P. (2021).

Text Based Hate-Speech Analysis. Proceedings - International

Conference on Artificial Intelligence and Smart Systems, ICAIS

2021, 661-668.
https://doi.org/10.1109/ICAIS50930.2021.9396013

[20] Badjatiya, P., Gupta, S., Gupta, M., & Varma, V. (2017). Deep
Learning for Hate Speech Detection in Tweets. Proceedings of

the 26th International Conference on World Wide Web

Companion - WWW 17 Companion.
https://doi.org/10.1145/3041021.3054223

[21] Gambäck, B., & Sikdar, U. K. (2017). Using Convolutional

Neural Networks to Classify Hate-Speech. Proceedings of the
First Workshop on Abusive Language Online, 85-90.
https://doi.org/10.18653/v1/W17-3013

[22] Wang, C. (2018). Interpreting Neural Network Hate Speech
Classifiers.

[23] Vigna, F. del, Cimino, A., Dell’orletta, F., Petrocchi, M., &

Tesconi, M. (2017). Hate me, hate me not: Hate speech detection
on Facebook. https://curl.haxx.se

[24] Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling. http://arxiv.org/abs/1412.3555

[25] Pérez, J. M., Furman, D. A., Alemany, L. A., & Luque, F. (2021).

RoBERTuito: a pre-trained language model for social media text
in Spanish. http://arxiv.org/abs/2111.09453

[26] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, Ł. ukasz, & Polosukhin, I. (2017).
Attention is All you Need. En I. Guyon, U. von Luxburg, S.

Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems

(Vol. 30). Curran Associates, Inc.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee9
1fbd053c1c4a845aa-Paper.pdf

[27] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. Proceedings of the 2019 Conference

of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171-4186.
https://doi.org/10.18653/v1/N19-1423

[28] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O.,
Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa:

A Robustly Optimized BERT Pretraining Approach.
http://arxiv.org/abs/1907.11692

[29] Lample, G., & Conneau, A. (2019). Cross-lingual Language
Model Pretraining. http://arxiv.org/abs/1901.07291

[30] Cañete, J., Chaperon, G., Fuentes, R., Ho, J.-H., Kang, H., &

Pérez, J. (2020). SPANISH PRE-TRAINED BERT MODEL

AND EVALUATION DATA.
https://github.com/josecannete/spanish-corpora

[31] Pires, T., Schlinger, E., & Garrette, D. (2019). How Multilingual

is Multilingual BERT? Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics, 4996-5001.
https://doi.org/10.18653/v1/P19-1493

[32] de la Rosa, J., Ponferrada, E. G., Villegas, P., Salas, P. G. de P.,

Romero, M., & Grandury, M. (2022). BERTIN: Efficient Pre-
Training of a Spanish Language Model using Perplexity
Sampling. http://arxiv.org/abs/2207.06814

[33] Chawla, N. v, Japkowicz, N., & Kotcz, A. (2004). Editorial:

http://arxiv.org/abs/1703.04009
https://github.com/deepanshu1995/HateSpeech-Hindi-
https://doi.org/10.3390/s19214654
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://medium.com/qu4nt/reducir-el-n%C3%BAmero-de-palabras-de-un-texto-lematizaci%C3%B3n-y-radicalizaci%C3%B3n-stemming-con-python-965bfd0c69fa
https://doi.org/10.1147/rd.14.0309
https://doi.org/10.48550/ARXIV.1310.4546
https://doi.org/10.4995/jclr.2021.15966
http://arxiv.org/abs/2111.03906
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1002/poi3.85
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1109/ICAIS50930.2021.9396013
https://doi.org/10.1145/3041021.3054223
https://doi.org/10.18653/v1/W17-3013
https://curl.haxx.se/
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2111.09453
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1901.07291
https://github.com/josecannete/spanish-corpora
https://doi.org/10.18653/v1/P19-1493
http://arxiv.org/abs/2207.06814

Carlos Simón Gallego
Máster Universitario en Inteligencia Artificial

10

Special Issue on Learning from Imbalanced Data Sets. SIGKDD

Explor. Newsl., 6(1), 1-6.
https://doi.org/10.1145/1007730.1007733

[34] Benítez-Andrades, J. A., González-Jiménez, Á., López-Brea, Á.,
Aveleira-Mata, J., Alija-Pérez, J. M., & García-Ordás, M. T.

(2022). Detecting racism and xenophobia using deep learning

models on Twitter data: CNN, LSTM and BERT. PeerJ
Computer Science, 8. https://doi.org/10.7717/PEERJ-CS.906

[35] Ramachandran, P., Zoph, B., & Le, Q. v. (2017). Searching for
Activation Functions. http://arxiv.org/abs/1710.05941

[36] Amores, J. J., Blanco-Herrero, D., Sánchez-Holgado, P., & Frías-

Vázquez, M. (2021). Detecting ideological hatred on Twitter.

Development and evaluation of a political ideology hate speech

detector in tweets in Spanish. Cuadernos.Info, 49, 98-124.
https://doi.org/10.7764/cdi.49.27817

[37] Plaza-del-Arco, F. M., Molina-González, M. D., Ureña-López,
L. A., & Martín-Valdivia, M. T. (2021). Comparing pre-trained

language models for Spanish hate speech detection. Expert

Systems with Applications, 166.
https://doi.org/10.1016/j.eswa.2020.114120

[38] Nguyen, H.-T., Nguyen, M., & Le. (2017, enero). An Ensemble
Method with Sentiment Features and Clustering Support.

https://doi.org/10.1145/1007730.1007733
https://doi.org/10.7717/PEERJ-CS.906
http://arxiv.org/abs/1710.05941
https://doi.org/10.7764/cdi.49.27817
https://doi.org/10.1016/j.eswa.2020.114120

