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A B S T R A C T   

In this article, the Improved Mayfly Algorithm (IMA) is used as an upgraded form of the Mayfly Algorithm (MA), 
featuring simulated binary crossover and polynomial mutation operators replacing the arithmetic crossover and 
standard distribution mutation operators of the MA. With MA, IMA’s achievements and significance are 
acknowledged. The algorithms achieve a final best solution for the investigated objective functions of the optimal 
power flow problem in a deregulated electrical power market under different load conditions. The overall load of 
the power system varies between half of the base load (-50%) and twice the base load (+100%). The investigated 
objective functions are associated with the financial worth of generators, dissipation of active power in trans-
mission lines, variation of voltage magnitudes at the system bus, and voltage stability index at the load bus of the 
power system networks. The result achieved by GA, PSO, MA and IMA are attained using the IEEE-30 bus test 
system in a deregulated power system. Investigations are conducted on the best solutions for each objective 
function; offers of generators and bids of loads; generator sales and load purchases; and system revenues asso-
ciated with different load scenarios. The simulated outcomes have confirmed that IMA would triumph over GA, 
PSO and MA.   

1. Introduction 

The process of deregulation in the energy power market is being 
launched to boost the power sector’s efficiency and offer competition 
among the stakeholders (i.e., GENCOs and DISCOs) to reduce the price 
of electricity. With the advent of deregulation in the electric power 
market over the last two decades, the framework of the electricity 
market has transitioned from a vertical model in which greater impor-
tance is given to GENCOs, then to TRANSCOs, and finally to DISCOs, to a 
horizontal model in which equal importance is given to all companies. 
As a result, these enterprises operate freely in the electricity market [1]. 
In a deregulated energy market, firms that generate power (GENCOs) 
are assigned to the generator bus, firms that transfer power (TRANSCOs) 
are assigned to the transmission lines, and firms that distribute power 
(DISCOs) to the load bus [2]. By adopting a bidding strategy, suppliers’ 
profits (GENCOs) are maximised while customers’ payments (DISCOs) 
are reduced. GENCOs give the offers, whereas DISCOs provide the bids 
[3]. Deregulation occurs in underdeveloped nations owing to a lack of 

financial resources for the growth of the power sector [4]. The pricing 
structure in the deregulated electrical power market is complicated and 
multi-layered, with pricing as blocks of providers and customers [5]. 

Nowadays, the electrical market is deregulated, encouraging 
competition among various market actors such as GENCOs and DISCOs, 
resulting in lower power rates. The decisions on selling and purchasing 
energy are left to the sellers (GENCOs) and customers in a deregulated 
electricity market (DISCOs). The emphasis of the deregulated energy 
market is mainly on the problems of offers for power sales and bids for 
power purchases [6]. Because offers and bids are accessible in blocks, 
the market clearing price (MCP) plays a vital role in strategic bidding 
problems. The MCP identifies the functional blocks for the market 
clearing process. Sellers make offers, and buyers make bids to sell and 
acquire power. The market operator takes offers and bids from sellers 
and buyers and grades seller offer concerning buyer bids. When deter-
mining the grades, the market operator creates a supply and demand 
curve for the supplier and buyer. The MCP is defined as the point at 
which the supply curve created by suppliers and the demand curve 
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developed by customers intersect [7]. The Central Electricity Regulatory 
Commission (CERC), Independent System Operator (ISO), Transmission 
Utilities (TU), Central Generation Utilities (CGU), Power Pool Controller 
(PPC), State Electricity Regulatory Commission (SERC), State Utilities 
(SU), and Regional Load Dispatch Center (RLDC) are the components of 
India’s deregulated electricity power system [8]. 

Aside from research studies, one of the important tools useful for 
operation and control of deregulated energy market is optimum power 
flow (OPF). An OPF’s purpose is to compute the state and control vari-
ables of every portion of the system at any moment. The values of the 
system control variables are often set via market decision-making [9]. 
The pricing mechanism of suppliers and customers in any market is 
influenced by (a) the number of sellers and buyers in the market; (b) the 
size and location of the market; (c) bidding and settlement of the market 
in future markets; (d) available information about the correlated mar-
kets; and (e) choice availability and risk management for competitors 
(suppliers’ and customers’) [11]. For example, suppliers are compen-
sated for services delivered to clients, while customers are paid for 
services gained from suppliers through marginal pricing [10]. 

GENCOs are concerned with effective load distribution and using 
available generating capacity. TRANASCOs are concerned about low bus 
voltage magnitude, line congestion, and line losses [12]. There are two 
sorts of electricity markets. The first is the real-time market, while the 
second is the day-ahead market. A real-time market is a one-way market 
in which the competitor buys or sells power for the whole operational 
day. Prices for that electricity are established based on daily or hourly 
demand and supply. The day-ahead market is a two-way market in 
which the competitor buys or sells power ahead of the working day. 
Electricity prices are established based on daily or hourly demand and 
availability [13]. 

In earlier days, the power market was regulated and designed as 
vertical architecture in which power is transmitted from GENCOs to 
TRANSCOs and then to DISCOs. The customer has no choice but to 
purchase the power at their own cost. TRANSCOs must purchase ac-
cording to the cost fixed by GENCOs, or GENCOs must generate the 
power at the cost fixed by TRANSCOs. Similarly, DISCOs must buy the 
power that TRANSCOs fix. The customers have to pay DISCOs at a price 
fixed by them. With the deregulated system in the power market, the 
vertical structure is redesigned into horizontal architecture in which 
GENCOs, TRANSCOs, DISCOs and customers can make their own de-
cisions. In deregulated power market, GENCOS can generate power at 
different prices and transmit it to different TRANSCOs. TRANSCOs can 
buy power from different GENCOs at different prices and distribute to 
different DISCOs at different prices. Finally, the customer has a choice to 
buy the power from different DISCOs based on their preference. This 
increases the researchers’ interest in working on the deregulated power 
market. The best solution to the optimal power flow problem in regu-
lated power systems is obtained by setting the optimal values for the 
objective functions’ decision variables and control variables while 
satisfying the equality and inequality constraints. This helps power en-
gineers in the planning and operation of the power system. The optimal 
power flow solution in a deregulated power system gives the compro-
mise solution for both GENCOs and DISCOs. GENCOs provide offers for 
the generating capacities, and DISCOs provide bids. The optimal solu-
tion gives the compromise solution between the GENCOs sales and 
DISCOs purchase. For better optimal solutions, meta-heuristic algo-
rithms are implemented. 

In the literature, several meta-heuristic algorithms have been 
designed to solve complex, undefined problems in different applications. 
Each of these algorithms has unique advantages in dealing with the 
specific nature of the problem. An algorithm’s performance is evaluated 
by its explorative and exploitative capabilities and the intrinsic char-
acteristics of the sample data used. Modified algorithms attempt to 
merge two or more meta-heuristics so that another can address the de-
ficiencies of one method. For example, an algorithm with good inves-
tigation ability can be combined with one with good enslavement ability 

to achieve a good trade-off between the overall system’s explorative and 
exploitative capabilities. Presently, this would be an aggressive field of 
research. According to the No Free Lunch (NFL) theorem, the perfor-
mance of any solution method would be the same if averaged across all 
problems in the category. This indicates that new algorithms may lead to 
different outcomes for a given problem, but on the whole, they are 
equivalent. This has urged researchers to focus on early research and 
adopt novel problem-specific strategies for enhanced performance. The 
authors propose a hybrid algorithm, the Improved Mayfly Algorithm 
(MA), based on GA, PSO, and FA and simulated binary crossover and 
polynomial mutation operators to solve the OPF problem in this paper. 
MA is a recently proposed metaheuristic that has been demonstrated to 
be effective in dealing with real-world problems. Despite being similar 
to PSO, MA appears to have a more remarkable ability than PSO to find a 
more optimal solution and thus has a better chance of finding the 
globally optimal solution. However, in some cases, premature conver-
gence degrades the final solution’s effectiveness. As previously stated, 
an algorithm with high exploitation ability can be combined with 
another algorithm with high exploration ability. The PSO algorithm 
effectively explores the search space, whereas the FA algorithm exploits 
and improves existing relevant features. The relevant features highlight 
that we should use MA to solve the OPF problem. When the simulated 
binary crossover and polynomial mutation operators are combined in 
the MA, the IMA algorithm can find a better solution. As a result, IMA 
can result in higher search space exploitation and overall performance 
enhancement. The advantages of IMA are the convergence rate and 
convergence speed to obtain the best solution. The parameters of IMA, 
nuptial dance nonstop and random flight co-efficient enhance the bal-
ance between exploration and exploitation and assist in escaping from 
local optima. 

The work’s contribution has been as described in the following:  

• For the first time, the OPF problem is solved under deregulated 
environment considering different load levels.  

• In a deregulated electricity market, fuel cost, active power losses, 
voltage deviation, and voltage stability are being used as objective 
functions to solve the OPF problem. 

• This paper considers Improved Mayfly Algorithm (IMA) that in-
corporates simulated binary crossover and polynomial mutation into 
the original Mayfly Algorithm (MA) for solving the problem 

• The proposed IMA’s performance is analysed for different mathe-
matical test functions having unimodal, multimodal, fixed- 
dimension test functions and is compared with GA, PSO and MA  

• The comparison of optimum solutions obtained from IEEE-30 bus 
system are reported to assess the performance of evolutionary algo-
rithms via., GA, PSO, MA and IMA.  

• The performance of IMA is evaluated under a diversity of load 
scenarios.  

• The generator offers and load bids, as well as system revenues gained 
by applying the IMA, are presented. 

The following is the structure of this paper: Section II formulates the 
optimal power flow problem in a deregulated electricity market with 
objective functions such as total fuel cost, total active power losses, total 
voltage deviation, and total voltage stability index while taking equality 
and inequality constraints into account, followed by Section I. Section III 
describes the framework of the Improved Mayfly Algorithm, and Section 
IV reports the validation and comparison results of IMA with GA, PSO 
and MA with +100% overload and − 50% under load. This section also 
includes the generator sales and load purchases at +100% base load, at 
base load, and − 50% base load, as well as the system revenues utilizing 
IMA. Finally, section V brings this study to a close with conclusions and 
future initiatives. 
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2. OPF problem formulation 

The OPF problem [14] can be arithmetically represented as f (x,u) 
exposed to 

e (x, u) = 0 (1)  

ie (x, u) ≤ 0 (2)  

f: The value of the objective function to be reduced or raised, i.e., total 
fuel cost (TFC), total active power loss (TAPL), total voltage deviation 
(TVD), voltage stability index (VSI); e: A set with equality constraints; ie: 
A set with inequality constraints x: The vector contains state variables, 

x =
[
PS,VT

Ln
,QT

Gn
,ST

TLn

]
(3)  

PS: Active power of node located at the slack bus; 
VT

Ln
: Voltage magnitude of nth node located at load bus; 

QT
Gn

: Reactive power of nth node located at generator bus; 
ST

TLn
: Apparent power of nth node of transmission lines; u: The vector 

contains control variables, 

u =
[
PT

Gn
,VT

Gn
,QT

Cn
,TT

Tn

]
(4)  

PT
Gn

: Active power of nth node located at generator bus; 
VT

Gn
: Voltage magnitude of nth node located at generator bus; 

QT
Cn

: Reactive power of nth node placed with VAR compensator; 
TT

Tn
: Tap setting ratio of nth transformer 

The objective functions considered for the OPF problem are TFC, 
TAPL, TVD and VSI [15]. The mathematical expressions for analysing 
the objective functions are given below. 

Total Fuel Cost (TFC) is the cost of all the generators committed to 
generating power. The minimum TFC indicates the lowest generation 
cost. 

TFC : F1 = TFCG − TFCDL

TFCG =
∑NG

k=1
PcoQ

G k ∗ PcoP
G k

TFCDL =
∑NDL

k=1
PcbQ

DL k ∗ PcbP
DL k

(5)  

PcoQ
G k: Cleared offer quantity of kth node of generator bus; 

PcoP
G k: Cleared offer price of the kth node of generator bus; 

PcbQ
DL k: Cleared bid quantity of kth node of dispatched load; 

PcbP
DL k: Cleared bid price of the kth node of dispatched load; 

NG: Total number of generator bus; 
NDL: Total number of dispatched loads; 
Total Active Power Losses (TAPL) is the sum of real power losses at 

the transmission lines. The minimum TAPL indicates the maximum 
power transfer capability of the lines. 

TAPL : F2 =
∑NTL

k=1

∑NTL

j=1
Gjk

(
V2

j +V2
k − 2VjVkcosδjk

)
(6)  

Gjk: Conductance between kth and jth node of the transmission line; 
Vj: Voltage magnitude of jth node at transmission line; 
Vk: Voltage magnitude of kth node at transmission line; 
δjk: Voltage phase between the kth and jth node of the transmission 

line; 
NTL: Total number of transmission lines of the system; 
Total Voltage Deviation (TVD) is the deviation of the system from the 

ideal condition. The minimum TVD indicates the system operation in 
ideal condition. 

TVD : F3 =
∑NL

k=1
|(VL k − 1)| (8)  

VL k: Voltage magnitude of kth node at load bus; 
NL: Total number of load bus; 
Voltage Stability Index (VSI) is the ability of the system to withstand 

away from collapse. The minimum VSI indicates that the system is far 
away from voltage collapse. 

VSI : F4 = min(max(Ln)); n = 1, 2, ...,NL (9)  

L index, Ln =

⃒
⃒
⃒
⃒
⃒
1 −

∑NG

k=1
Hjk
Vj
Vk

⃒
⃒
⃒
⃒
⃒
j = 1, 2,…, NL (10)  

Hjk: Partial inversion matrix of YBUS between jth node at load bus and kth 

node at generator bus 
The solution to the OPF problem is generally agreed upon with the 

confirmation of the constraint. The restrictions shackled to the OPF 
problem are equality and inequality constraints. Equality constraints are 
confined to nullifying the active power in the power system (smart grid) 
[16], and inequality constraints are confined to the limits of active 
power and voltage magnitude at generator bus, transformer’s tap per-
centage and VAR values of shunt compensators. 

The equality constraint is given by below Eq. (11) 

∑NB

K=1
PG k − PL k − |Vk|

∑NB

j=1

⃒
⃒Vj
⃒
⃒
(
Gkjcosδkj +Bkjsinδkj

)
= 0 (11)  

PG k: Active power of kth node at generator bus; 
PL k: Active power of kth node at load bus; 
Vk: Voltage magnitude of kth node at the bus; 
Vj: Voltage magnitude of jth node at the bus; 
Gjk: Conductance between the kth and jth node at the bus; 
Bjk: Suspectance between the kth and jth node at the bus; 
δjk: Voltage phase between the kth and jth node of the bus; 
NB: Total number of the bus; 
The inequality constraints are given by below Eqs. (12) – (15) 

Real power,PLPG k ≤ PG k ≤ PHPG k; k ∈ NG (12)  

Voltage magnitude,VLPG k ≤ VG k ≤ VHPG k; k ∈ NG (13)  

Transformer ratio,TLPk ≤ Tk ≤ THPk ; k ∈ NT (14)  

VAR compensator,QLPC k ≤ QC k ≤ Q
HP
C k; k ∈ NC (15)  

LP: Lowest position; 
HP: Highest position; 
VG k: Voltage magnitude of kth node located at generator bus; 
Tk: Tap ratio of the kth transformer; 
QC k: VAR value of kth shunt compensator; 
NC: Total number of shunt compensators; 

3. Improved mayfly algorithm 

The Mayfly Algorithm (MA) is a perspective of Konstantinos Zer-
voudakis in 2020 that seems to be motivated by mayfly community 
behavior [17]. The term was adopted because mayflies appear solely 
during May in the British Empire. MA is enhanced as a composite design 
using a combination of PSO, FA, and GA [18]. GA is a population-based 
evolution design founded on social theories drawn from Darwin’s the-
ory, which was introduced by Holland in 1960 and further examined by 
Goldberg in 1989. GA is used to attain the objective of complex chal-
lenges. GA responses are produced in the form of chromosomes. Genetic 
operators such as crossover and mutation are used to renovate the 
chromosomes. The best alternative result is obtained by replacing the 
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worst result through the phases of selection and recombination. PSO is 
also a population-based swarm intelligence approach developed by 
Kennedy and Ebelhart in 1995 to deal with recurring optimization 
problems based on the swarm behavior of fishes or birds of prey. The 
location of the particles in the swarm represents the result obtained by 
PSO during the search period. The present location of the particles is 
renewed using a simple mathematical method of increasing with particle 
position change [19]. The particle’s velocity is determined by its pre-
vious local and global positions. In addition to GA and PSO, FA is a 
population-based swarm intelligence process based on the behavior of 
fireflies, proposed by Xin She Yang in 2008 to resolve two simultaneous 
and different combinatorial undefined problems. The intensity diver-
gence of light decides the effectiveness of FA. Each firefly is represented 
by light intensity, which is a fitness rating. The firefly that is accom-
panied by lower intensity is lured to high intensity. The fireflies that 
accompany the same light intensity fluctuate in any direction. 
High-quality findings are achieved by keeping the current location, 
attraction coefficient, and random constant updated with the latest [20]. 

The suggested IMA is a nature-inspired algorithm that combines the 
benefits of the evolutionary algorithm (GA), the swarm intelligence al-
gorithm (PSO), and the population-based algorithm (FA). The critical 
phases of IMA are (i) initialisation, (ii) male mayfly updating, (iii) fe-
male mayfly updating, and (iv) male mayfly mating with female 
mayflies. 

Initialise the positions and velocities of mayflies as given in Eqs. (16) 
– (19) 

xmmf
i =

[
xmmf

1 , xmmf
2 , xmmf

3 ,……, xmmf
n

]
(16)  

vmmf
i =

[
vmmf

1 , vmmf
2 , vmmf

3 ,……, vmmf
n

]
(17)  

xfmf
i =

[
xfmf

1 , xfmf
2 , xfmf

3 ,……, xfmf
n

]
(18)  

vfmf
i =

[
vfmf

1 , vfmf
2 , vfmf

3 ,……, vfmf
n

]
(19)  

xmmf
i : Positions of ith male mayfly, i = 1, 2, 3… n;xfmf

i : Positions of ith 

female mayfly, i = 1, 2, 3… n;vmmf
i : Velocities (change of positions) of ith 

male mayfly, i = 1, 2, 3… n;vfmf
i : Velocities of ith female mayfly, i = 1, 2, 

3… n; 
The updated velocity of the male mayfly is given by Eqs. (20) & (21) 

ff
(
xmmf

ij (t)
)
≥ best

(
pmf

ij
)
, vmmf

ij (t + 1) =

g ∗ vmmf
ij (t) + a1e− βr2

p

(
pbest

ij − xmmf
ij (t)

)
+ a2e− βr2

g

(
gbest

j − xmmf
ij (t)

) (20)  

otherwise 

vmmf
ij (t+ 1) = vmmf

ij (t) + d ∗ r (21)  

vmmf
ij (t + 1): ith male mayfly velocity in jth dimension during (t + 1)th 

iteration; 
vmmf

ij (t): ith male mayfly velocity in jth dimension during tth iteration; 

xmmf
ij (t + 1): ith male mayfly position in jth dimension during (t + 1)th 

iteration; 
xmmf

ij (t): ith male mayfly position in jth dimension during tth iteration; 
pbest

ij : The individual best position during (t + 1)th iteration; 
gbest

j : The global best position during tth iteration; 
rp: Cartesian distance between individual and personal best; 
rg: Cartesian distance between individual and global best; g: The 

gravitational coefficient; a1 and a2: The positive attractive co-efficient; 
β: The fixed visible co-efficient; 
d: The nuptial co-efficient; 
r: The random number 
The personal best solution of male mayfly is given in Eq. (22) 

pbest
ij = {

xmmf
ij (t + 1), if f

(
xmmf

ij (t + 1)
)
≤ f
(

pbest
ij

)

xmmf
ij (t), otherwise

(22) 

The global best position is given by Eq. (23) 

gbest
j = min

{
f
(
pbest

1

)
, f
(
pbest

2

)
,……, f

(
pbest

j

)}
(23) 

The updated velocity of the female mayfly is given by Eqs. (24) & 
(25) 

iff
(
xfmf

ij (t)
)
≥ f
(
xmmf

ij (t)
)
vfmf

ij (t+ 1)

= g ∗ vfmf
ij (t) + a2e− βr2

mfmf
(
xmmf

ij (t) − xfmf
ij (t)

)
(24)  

otherwise 

vfmf
ij (t+ 1) = g ∗ vfmf

ij (t) + fl ∗ r (25)  

vfmf
ij (t + 1): ith female mayfly velocity in jth dimension during (t + 1)th 

iteration; 
vfmf

ij (t): ith female mayfly velocity in jth dimension during tth iteration; 

xfmf
ij (t + 1): ith female mayfly position in jth dimension during (t +

1)th iteration; 
xfmf

ij (t): ith female mayfly position in jth dimension during tth iteration; 
pbest

ij : The individual best position during (t + 1)th iteration; 
rmfmf : Cartesian space between the male and female mayflies; fl: 

Random walk co-efficient. 
Recombination is done through crossover and mutation. Simulated 

binary crossover and polynomial mutation are used to obtain better new 
solutions. 

The simulated binary crossover [21] is implemented using Eq. (26) & 
(27) 

mf 1
new = 0.5

[
(1+ ε) ∗ vmmf

ij (t)+ (1 − ε) ∗ vfmf
ij (t)

]
(26)  

mf 2
new = 0.5

[
(1 − ε) ∗ vfmf

ij (t)+ (1+ ε) ∗ vmmf
ij (t)

]
(27)  

ε =

⎧
⎪⎨

⎪⎩

2rd if r ≤ 0.5
[

1
2(1 − r)

]d

if r > 0.5
(28)  

d =
1

(di + 1)
(29) 

The polynomial mutation [22] is implemented through Eq. (30) 

mf new(t+ 1) = mf new(t) +
{

mf max
new (t) − mf min

new(t)
}

σm (30)  

σm= {
2r

1
mi − 1 − 1 ifr ≤ 0.5

1 − 2(1 − r)
1

mi+1 ifr > 0.5
(31)  

mi: The mutation index; di: The crossover index; 
The IMA approach is most likely as follows: 
Begin 
Fix the positions and velocities of male mayflies at random. 
Fix the positions and velocities of female mayflies at random. 
Create the objective functions and measure the fitness value of each 

function. 
Calculate the desired results using the selected mayflies. 
While the finish condition is unsatisfactory, 
Mayfly velocities should be increased. 
Determine the fitness values of mayflies. 
Consider the new outcome of those mayflies. 
Sort the mayflies into groups. 
Take advantage of crossover and mutation. 
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Calculate the fitness of the offspring. 
Divide the mayflies in whatever way. 
Replace the worst mayflies with the greatest mayflies. 
Improve the pbest and gbest 
Finish while. 
Find the best solution. 
Quit 
The following explains the IMA implementation procedure [23]: 

Initially, mayfly positions and velocities are to be indicated within the 
boundaries of the lower and higher values. Each mayfly’s goal function 
value is to be calculated. Next, examine the mayfly’s fitness value and 
the halting point. If the stopping criterion is not reached, bring the 
mayfly velocities, male and female, up to date at another time. Next, 
determine the fitness of current mayflies and sort the mayflies based on 
fitness value, from highest to lowest fitness value. Separate the mayflies 
into male and female mayflies after sorting. Perform the simulated bi-
nary crossover and polynomial mutation to improve the fitness value of 
mayflies. Replace the worst mayfly with the best mayfly to bring indi-
vidual and global best fitness function values up to date. This procedure 
is repeated until meeting the stopping criteria to get the best possible 
outcome. 

To test the effectiveness of IMA, various test functions viz., unimodal, 
multimodal and fixed-dimension test functions that are reported in [23] 
are considered. The best objective function values of various test func-
tions along with its convergence characteristics with respect to IMA, 
MA, PSO and GA are reported in Appendix A. Based on the results, it is 
noted that the performance of IMA is better than MA, PSO and GA in 

terms of convergence to the optimum value and speed of convergence 
for solving mathematical test functions. 

4. Results and discussions 

The significance of GA, PSO, MA and the proposed IMA, is tested 
using MATPOWER [15] in MATLAB on a standard test system, specif-
ically, an IEEE-30 bus system in a deregulated power market with 
distinct load settings. The test system combines 30 buses, 41 branches, 
six fully committed generators, and 20 loads, 17 of which are fixed and 3 
of which are dispatched. Two shunt compensators are installed between 
the transmission lines. The system’s maximum generating capacity is 
360 MW, although the actual operational generation is 215.3 MW. The 
average fixed load is 151.6 MW. The dispatched loads ranged from 60 
MW to 90 MW. Each transmission line has a total power transfer ca-
pacity of 33.1 MW. 3.67 MW is the total active power loss. The solution 
to the OPF problem for the test system in a deregulated environment is 
simulated using 14 control variables. The load is changed between 50% 
of the base load (− 50%) and 200% of the base load (+100%). 

During the simulation, the following algorithm parameters are 
considered: For GA, maximum number of iterations is set as 200; the 
number of population is 40; crossover and mutation probabilities are 0.7 
and 0.3 and the mutation rate is 0.1. For PSO, maximum number of it-
erations is set as 200; the number of particles is chosen as 40; inertia 
weight is 1 and damping ratio 0.9, personal and global learning co-
efficients are 1.5 and 2 respectively. For MA, For GA, maximum number 
of iterations is set as 200; the number of mayflies is 40; inertia weight is 

Table 1 
The best solution for TFC and TAPL using different algorithms.  

S.No % Load TFC ($/Hr) TAPL (MW) 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 2973.9837 2972.6730 2970.9240 2968.4399 3.7348 3.6343 3.5971 3.3249 
2 − 40% 2976.8924 2975.6243 2973.1514 2969.9544 3.6564 3.5647 3.5303 3.3552 
3 − 30% 2979.0065 2977.8958 2975.7442 2971.8575 3.5824 3.4976 3.4701 3.3933 
4 − 20% 2981.6380 2979.4729 2978.7079 2974.0869 3.5135 3.4625 3.4191 2.2838 
5 − 10% 2984.9972 2983.7828 2982.0515 2976.6866 3.5267 3.4138 3.3746 2.2150 
6 BL 2989.0348 2987.7254 2985.7816 2979.8076 3.7189 3.6939 3.6717 2.2653 
7 +10% 2992.1276 2990.9735 2989.9058 2985.7408 3.8201 3.7947 3.7542 2.3221 
8 +20% 2997.6429 2996.9365 2994.4324 2986.7876 3.9536 3.8962 3.8448 2.3936 
9 +30% 3052.6492 3049.7846 3036.2447 2990.9480 2.9137 2.7030 2.6269 2.4692 
10 +40% 3008.7153 3006.5927 3004.7283 2995.6013 4.1965 4.1249 4.0507 2.5579 
11 +50% 3018.4839 3014.7829 3010.5153 3000.5081 4.2838 4.2521 4.1664 2.6584 
12 +60% 3035.6926 3019.7924 3016.7402 3005.9261 4.4149 4.3527 4.2909 2.7639 
13 +70% 3048.7290 3029.4519 3023.6829 3011.7815 4.5347 4.4648 4.4175 2.8864 
14 +80% 3063.6493 3038.8391 3032.4084 3018.0857 4.9251 4.6854 4.5629 3.0097 
15 +90% 3120.6830 3109.7382 3103.7230 3025.4211 5.1879 5.1276 5.0582 3.2251 
16 +100% 3398.6429 3338.5693 3319.8683 3142.9432 5.7834 5.2325 5.1603 3.3755  

Table 2 
The best solution for TVD and VSI using different algorithms.  

S.No % Load TVD (p.u) VSI 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 0.6968 0.6814 0.6773 0.6650 0.0918 0.0809 0.0751 0.0750 
2 − 40% 0.6805 0.6708 0.6656 0.6497 0.0967 0.0855 0.0770 0.0769 
3 − 30% 0.6817 0.6711 0.6609 0.6361 0.0994 0.0889 0.0793 0.0791 
4 − 20% 0.6826 0.6723 0.6612 0.6379 0.1037 0.0928 0.0817 0.0802 
5 − 10% 0.6839 0.6734 0.6615 0.6197 0.1069 0.0969 0.0844 0.0827 
6 BL 0.6847 0.6758 0.6618 0.6124 0.1085 0.0995 0.0874 0.0855 
7 +10% 0.6850 0.6769 0.6622 0.6288 0.1138 0.1037 0.0905 0.0884 
8 +20% 0.6889 0.6778 0.6627 0.6033 0.1164 0.1059 0.0939 0.0917 
9 +30% 0.6907 0.6815 0.6704 0.6037 0.1196 0.1087 0.0960 0.0954 
10 +40% 0.6917 0.6828 0.6706 0.6093 0.1236 0.1127 0.1013 0.0994 
11 +50% 0.6959 0.6858 0.6771 0.6013 0.1269 0.1158 0.1053 0.1037 
12 +60% 0.7086 0.6909 0.6838 0.6223 0.1297 0.1197 0.1095 0.1081 
13 +70% 0.7156 0.7008 0.6910 0.6044 0.1326 0.1252 0.1139 0.1128 
14 +80% 0.7197 0.7018 0.6978 0.6096 0.1367 0.1280 0.1179 0.1176 
15 +90% 0.7455 0.7321 0.7236 0.6483 0.1398 0.1359 0.1220 0.1220 
16 +100% 0.7507 0.7458 0.7206 0.6631 0.1407 0.1386 0.1261 0.1261  
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0.8 and damping ratio 1, personal and global learning coefficients are 1 
and 1.5 respectively; nuptial dance value is set to be 5; random flight 
value is fixed as 1 and the mutation rate is 0.01. For IMA, maximum 
number of iterations is considered as 200; the number of mayflies is 40; 
the crossover and mutation indices are chosen as 0.3 and 0.18. All other 
remaining parameters are set similar to MA. 

In deregulated electrical power markets, suppliers’ offers to sell 
power and consumers’ bids to purchase power are designed based on 
blocks. OPF can compute the necessary allocations and pricing [24]. The 
following steps are taken into account in deregulated power markets: (i) 
The blocks containing offers and bids are translated to the associated 
generator capacities and costs; (ii) OPF is used to determine generator 
allocations and prices; and (iii) generator allocations and nodal prices 
are converted to a set of cleared offers and bids. The capacity and pro-
posals for three blocks of six generators are gathered from [15]. 

The first block of all generators is assigned a capacity of 12 MW for 
$20/MWh, while the subsequent two blocks are allotted capacities of 24 
MW each at various rates. [15] is used to tabulate the three blocks of 
dispatched load capacity and bids. Each load block is assigned a capacity 
of 10 MW, with the first block costing $100/MWh and the following 
blocks costing various amounts. 

Tables 1 and 2 shows the best solution for each objective functions, 
TFC, TAPL, TVD, and VSI using GA, PSO, MA and IMA. From Table 1, the 
ideal solution for the objective function, TFC with GA, PSO, MA and IMA 
are 2973.9837 $/hr, 2972.6730 $/hr, 2970.9240 $/hr and 2968.4399 
$/hr at − 50% load. At base load condition, the best solutions are 
2989.0348 $/hr, 2987.7254 $/hr, 2985.7816 $/hr and 2979 $/hr are 
achieved respectively with GA, PSO, MA and IMA. The ideal solution for 
the objective function, TFC with +100% load by using GA, PSO, MA and 

IMA are 3398.6429 $/hr, 3338.5693 $/hr, 3319.8683 $/hr and 
3142.9432 $/hr. From Table 1, the ideal solution for the objective 
function, TAPL with GA, PSO, MA and IMA are 3.7348 MW, 3.6364 MW, 
3.5971 MW and 3.3249 MW at − 50% load. At base load condition, the 
best solutions are 3.7189 MW, 3.6939 MW, 3.6717 MW and 2.2150 MW 
are achieved respectively with GA, PSO, MA and IMA. The ideal solution 
for the objective function, TAPL with +100% load by using GA, PSO, MA 
and IMA are 5.7834 MW, 5.2325 MW, 5.1603 MW and 3.3755 MW. 

From Table 2, the ideal solution for the objective function, TVD with 
GA, PSO, MA and IMA are 0.6968 p.u, 0.6814 p.u, 0.6773 p.u and 
0.6650 p.u at − 50% load. At base load condition, the best solutions are 
0.6847 p.u, 0.6758 p.u, 0.6618 p.u and 0.6124 p.u are achieved 
respectively with GA, PSO, MA and IMA. The ideal solution for the 
objective function, TVD with +100% load by using GA, PSO, MA and 
IMA are 0.7507 p.u, 0.7458 p.u, 0.7208 p.u and 0.6631 p.u. From 
Table 2, the ideal solution for the objective function, VSI with GA, PSO, 
MA and IMA are 0.0918, 0.0809, 0.0751 and 0.0751 at − 50% load. At 
base load condition, the best solutions are 0.1085, 0.0995, 0.0874 and 
0.0855 are achieved respectively with GA, PSO, MA and IMA. The ideal 
solution for the objective function, VSI with +100% load by using GA, 
PSO, MA and IMA are 0.1407, 0.1386, 0.1261 and 0.1261. The solution 
attained by IMA is the best optimal solution than the solution accom-
plished by GA, PSO and MA for all objective functions. 

Fig. 1 compares optimum solutions for objective functions, TFC, 
TAPL, TVD, and VSI using GA, PSO, MA and IMA. According to Fig. 1(a), 
the best solution for objective function TFC with GA, PSO, MA and IMA 
are ascendant, with load variation ranging from − 50% to +100% of the 
base load. The best solution lowers for the following rise in load and then 
increases for the next increase in load. According to Fig. 1(b), the 

Fig. 1. Comparison of objective function’s optimal solutions with MA and IMA, (a) TFC (b) TAPL, (c) TVD, (d) VSI.  

V.B. K et al.                                                                                                                                                                                                                                      



Electric Power Systems Research 214 (2023) 108867

7

optimal solution for the objective function TAPL with GA, PSO, MA and 
IMA are in the descendant direction with a load variation of 50% of the 
base load and the ascending direction with a load variation ranging from 
− 50% to 100% of the base load. The ideal solution for the next rise in 
load increases for the following increase in load. According to Fig. 1(c), 
the ideal solution for objective function TVD with GA, PSO, MA and IMA 
are inconsistent, accompanied by load variation ranging from − 50% to 
+100% of the base load. According to Fig. 1(d), the ideal solution for 

objective function VSI with GA, PSO, MA and IMA are ascendant, with 
load variation ranging from − 50 to +100% of the base load. 

Fig. 2 depicts the voltage magnitudes at various bus points for 
objective functions TFC, TAPL, TVD, and VSI using IMA with load var-
iations of − 50% of base load and +100% of base load. According to the 
figure, the voltage magnitudes for all objective functions with specified 
load fluctuation are violated at bus points 13, 22, and 27. 

Table 3 summarises the sales of generators with IMA at − 50% load 

Fig. 2. Comparison of voltage magnitude for different objective function with load variation of − 50%, BL and +100% using IMA, (a) TFC, (b) TAPL, (c) TVD, (d) VSI.  

Table 3 
Generator sales at − 50% load using IMA.  

OF TFC TAPL TVD VSI 

G Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

G1 34.9995 46.8916 34.9995 46.8916 34.9995 46.8212 34.9995 46.9227 
G2 36 47.1120 36 47.1120 36 47.0409 36 47.1431 
G3 36 49.0947 36 49.0947 36 49.0702 36 49.1108 
G4 36 47.0936 36 47.0936 36 47.0330 36 47.1221 
G5 36 48.5289 36 48.5289 36 48.4870 36 48.5504 
G6 36 47.7455 36 47.7455 36 47.6810 36 47.7749  

Table 4 
Load purchases at − 50% load using IMA.  

OF TFC TAPL TVD VSI 

Load Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

L1 30 48.3180 30 48.3180 30 48.2538 30 48.3496 
L2 10.0307 49.9217 10.0307 49.9218 10.0118 49.8947 10.0279 49.9377 
L3 20 51.7587 20 51.7587 20 51.6886 20 51.7905  
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with all objective functions. The capacity of generator G1 is 34.9995 
MW. The quantity sold by generators G2 to G6 is the same for all 
objective functions, and it is 36 MW at different selling prices. 

Table 4 summarises the purchasing of loads using IMA at − 50% of 
the load with different objective functions. The quantity purchased by 
loads L1 and L3 is the same for all objective functions, and it is 30 MW 
and 20 MW for different purchase prices. The quantity purchased by 
load L2 is approximately 10 MW. 

Table 5 summarises the sales of generators with IMA at base load 
with various objective functions. The quantity sold by generators G2 to 
G5 is the same for all objective functions, and it is 36 MW at different 
selling prices. Generator G1 sold 35.1962 MW and 35.2095 MW for 
objective functions TFC and TVD at 50 $/MWh.G6 sold 50.59419 MW 
and 50.79383 MW for objective functions TAPL and VSI at 58.6529 
$/MWh and 58.6610 $/MWh, respectively. The generator G1 cannot 
serve the objective functions of TAPL and VSI. 

Table 6 summarises the purchasing of loads using IMA at base load 
with different objective functions. For example, the quantity purchased 
by load L2 is the same for all objective functions, and it is 10 MW at 

various buying costs. However, for objective functions, TFC and TVD are 
30 MW and 20 MW at various purchase rates. 

Generators offer quantities at varied selling prices for distinct 
objective functions. Table 7 summarises the sales of generators with IMA 
at +100% of the base load with different objective functions. For TFC, 
generators G3 and G6 sold 34.3330 MW and 43.6416 MW for 60 $/MWh 
and 44.9478 $/MWh, respectively. The amounts sold by generators G3 
and G6 to the objective function TAPL are 36 MW and 53.5893 MW at 60 
$/MWh and 58.0097 $/MWh, respectively. G3 and G6 generators sold 
33.8235 MW and 44.1762 MW for 60 $/MWh and 44.9445 $/MWh, 
respectively, for TVD. The quantity sold by generators G2 and G6 is 36 
MW and 60 MW to the objective function VSI at 63.0602 $/MWh and 
49.2307 $/MWh, respectively. As a result, the generator sells a 
maximum quantity at a minimum price and a minimum quantity at a 
maximum price. 

Table 8 summarises the purchasing of loads using IMA at base load 
with different objective functions. As a result, the loads buy a minimum 
quantity at a maximum price and a maximum quantity at a minimum 
price. For example, load L2 purchased a minimum quantity of 10 MW, 

Table 5 
Generator sales at base load using IMA.  

OF TFC TAPL TVD VSI 

G Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

G1 35.1962 50.0000 0 59.2127 35.20948 49.9999 0 59.2186 
G2 36 50.2390 36 59.0142 36 50.2387 36 59.0207 
G3 36 52.8224 36 60.0000 36 52.8419 36 60.0000 
G4 36 50.3054 36 58.5886 36 50.3106 36 58.5968 
G5 36 52.0631 36 59.6618 36 52.0757 36 59.6653 
G6 36 50.9993 50.5942 58.6529 36 51.0028 50.7938 58.6610  

Table 6 
Load purchases at base load using IMA.  

OF TFC TAPL TVD VSI 

Load Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

L1 30 51.5486 20.685 59.8509 30 51.5548 20.8839 59.8610 
L2 10 53.6710 10 61.1354 10 53.6894 10 61.1368 
L3 20 55.2538 10.0001 61.0559 20 55.2573 10.0001 61.0647  

Table 7 
Generator sales at +100% load using IMA.  

OF TFC TAPL TVD VSI 

G Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

Quantity 
Sold 
(MW) 

Selling 
Price 
($/MWh) 

G1 34.9995 47.4057 0 58.8094 34.9995 47.3877 0 60.2409 
G2 36 48.4676 36 58.6533 36 48.4702 36 63.0602 
G3 34.3330 60.0000 36 60.0000 33.8235 60.0000 35.7656 61.0537 
G4 35.9999 42.0000 36 57.7859 35.9999 42.0000 36 42.0001 
G5 36 57.9984 36 59.7611 36 57.7855 36 57.4134 
G6 43.6416 44.9478 53.5983 58.0097 44.1762 44.9445 60.0004 49.2307  

Table 8 
Load purchases at +100% load using IMA.  

OF TFC TAPL TVD VSI 

Load Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

Quantity 
Bought 
(MW) 

Purchase 
Price 
($/MWh) 

L1 30 50.1299 22.5787 59.5404 30 50.1591 18.543 65.1365 
L2 10 62.4484 10 61.4042 10 62.4405 9.4434 68.6326 
L3 24.3103 49.5935 10.0003 60.1192 24.3182 49.5932 20 53.3097  
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Table 9 
Earnings of the system for objective function TFC and TAPL with load variation using different algorithms.  

S. No Loadvariation TFC TAPL 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 6091.74 6093.58 6093.43 6095.01 6090.59 6092.48 6093.43 6095.01 
2 − 40% 6082.56 6084.49 6086.65 6089.81 6079.32 6083.59 6086.56 6089.81 
3 − 30% 6592.92 6595.64 6598.40 6601.17 6591.16 6594.46 6598.28 6601.13 
4 − 20% 6598.73 6601.96 6604.98 6607.14 6400.99 6403.27 6406.85 6409.90 
5 − 10% 6602.80 6605.39 6609.56 6613.45 6386.64 6397.94 6399.58 6402.67 
6 BL 6610.83 6612.29 6616.78 6620.19 6394.73 6395.16 6397.98 6401.39 
7 +10% 6619.26 6622.16 6628.14 6630.98 6484.16 6486.83 6389.08 6394.06 
8 +20% 6627.74 6628.86 6632.40 6634.51 6375.83 6379.64 6382.77 6385.40 
9 +30% 6635.98 6636.09 6639.21 6642.39 6376.68 6378.82 6381.86 6386.94 
10 +40% 6642.37 6644.73 6646.68 6650.78 6363.05 6366.37 6368.98 6372.18 
11 +50% 6649.92 6652.24 6655.46 6659.78 6357.49 6359.15 6361.97 6369.15 
12 +60% 6659.85 6662.18 6666.89 6669.42 6361.72 6364.24 6368.93 6370.92 
13 +70% 6667.72 6669.29 6675.78 6679.80 6362.56 6365.04 6368.56 6372.86 
14 +80% 6682.39 6684.32 6688.74 6691.02 6364.98 6366.75 6369.99 6374.94 
15 +90% 6946.16 6948.95 6950.38 6955.29 6362.63 6365.78 6367.57 6371.09 
16 +100% 6714.34 6716.73 6719.87 6724.74 6435.75 6438.92 6441.54 6446.55  

Table 10 
Earnings of the system for objective function TVD and VSI with load variation using different algorithms.  

S. No Loadvariation TVD VSI 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 6074.74 6076.38 6079.63 6089.70 6084.47 6087.56 6090.11 6095.96 
2 − 40% 6586.56 6589.48 6591.89 6598.00 6083.83 6085.48 6088.98 6090.37 
3 − 30% 6595.83 6596.65 6599.67 6603.35 6594.62 6595.95 6597.15 6601.11 
4 − 20% 6597.27 6598.73 6601.76 6608.83 6384.49 6386.72 6389.67 6397.93 
5 − 10% 6602.18 6604.75 6609.93 6614.46 6392.05 6394.64 6395.89 6402.67 
6 BL 6611.32 6614.46 6616.59 6620.49 6406.62 6408.38 6409.67 6412.18 
7 +10% 6620.90 6623.03 6626.87 6630.98 6386.74 6389.95 6391.67 6399.42 
8 +20% 6621.63 6625.64 6629.74 6634.72 6376.84 6378.26 6382.59 6385.40 
9 +30% 6633.27 6636.48 6638.29 6642.51 6377.62 6379.39 6382.95 6386.93 
10 +40% 6641.38 6643.17 6645.76 6650.81 6364.15 6365.08 6368.86 6373.07 
11 +50% 6354.94 6357.53 6359.98 6369.16 6354.38 6358.57 6361.83 6369.15 
12 +60% 6658.18 6660.29 6662.86 6669.21 6356.96 6359.38 6362.74 6370.92 
13 +70% 6367.53 6369.03 6371.98 6373.04 6364.36 6367.74 6369.52 6372.86 
14 +80% 6368.28 6369.64 6372.55 6375.04 6365.28 6368.65 6371.87 6374.91 
15 +90% 7352.74 7353.37 7355.87 7367.83 6921.86 6924.89 6927.89 6933.16 
16 +100% 6708.56 6710.69 6712.54 6716.57 5553.98 5556.63 5559.89 5567.24  

Fig. 3. Comparison of revenues for different objective function with GA, PSO, MA and IMA.  
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Table 11 
Elapsed duration for objective function TFC and TAPL using different algorithms.  

S.No % Load TFC TAPL 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 16,649 15,793 14,419 13,289 16,539 15,759 14,272 13,887 
2 − 40% 16,728 15,950 14,715 13,505 16,893 15,658 14,417 13,278 
3 − 30% 16,957 15,871 14,708 13,477 16,048 15,835 15,017 13,584 
4 − 20% 16,826 15,539 14,946 13,788 16,752 15,895 15,748 13,327 
5 − 10% 16,046 15,902 14,019 13,313 16,859 15,892 14,614 13,195 
6 BL 16,869 15,746 14,177 13,400 16,274 15,372 14,310 13,419 
7 +10% 16,037 15,659 14,318 13,074 16,850 15,562 14,656 13,089 
8 +20% 16,659 15,027 14,686 13,608 16,784 15,931 14,553 13,977 
9 +30% 16,728 15,739 14,798 13,047 16,937 15,469 14,847 13,905 
10 +40% 16,794 15,802 14,764 13,088 16,692 15,048 14,798 13,841 
11 +50% 16,802 15,374 14,721 13,347 16,085 15,374 14,089 13,257 
12 +60% 16,684 15,950 14,841 13,248 16,672 15,739 14,874 13,748 
13 +70% 16,712 15,756 14,108 13,980 16,947 15,936 14,275 13,786 
14 +80% 16,893 15,590 14,180 13,971 16,872 15,702 14,319 13,409 
15 +90% 16,750 15,839 14,922 13,541 16,650 15,849 14,971 13,610 
16 +100% 16,159 15,764 14,947 13,492 16,664 15,948 14,905 13,534  

Table 12 
Elapsed duration for objective function TVD and VSI using different algorithms.  

S.No % Load TVD VSI 
GA PSO MA IMA GA PSO MA IMA 

1 − 50% 16,523 15,476 14,420 13,428 16,428 15,984 14,719 13,195 
2 − 40% 16,435 15,788 14,064 13,310 16,518 15,759 14,574 13,414 
3 − 30% 16,876 15,652 13,928 13,544 16,739 15,948 15,454 13,467 
4 − 20% 16,456 15,735 13,772 13,252 16,493 15,956 15,548 13,328 
5 − 10% 16,724 15,915 13,521 13,273 16,856 16,002 13,988 13,620 
6 BL 16,983 15,167 14,654 13,865 16,026 15,679 14,179 13,541 
7 +10% 16,672 15,624 14,046 13,529 16,736 15,786 14,998 13,172 
8 +20% 16,294 15,809 14,689 13,137 16,813 15,924 14,093 13,801 
9 +30% 16,730 15,371 14,335 13,191 16,147 15,087 14,556 13,685 
10 +40% 16,892 15,643 14,834 13,874 16,583 15,745 14,526 13,214 
11 +50% 16,739 15,783 15,446 13,278 16,724 15,835 14,332 13,257 
12 +60% 16,546 15,694 14,218 13,408 16,803 15,925 14,447 13,107 
13 +70% 16,783 15,067 14,248 13,127 16,649 15,863 14,749 13,923 
14 +80% 16,926 15,915 14,788 13,964 16,826 15,629 14,127 13,484 
15 +90% 16,453 15,893 14,409 13,486 16,883 15,683 14,584 13,810 
16 +100% 17,021 15,989 15,191 13,962 16,037 15,963 14,088 13,507  

Fig. 4. Comparison of computation period for different objective function with GA, PSO, MA and IMA.  
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10 MW, 10 MW, and 9.4434 MW at 62.4484 $/MWh, 61.4042 $/MWh, 
62.4405 $/MWh, and 68.6326 $/MWh, respectively for TFC, TAPL, 
TVD, and VSI. 

In a deregulated energy market, the system’s revenues are deter-
mined by the balance between the supplier’s sales and the buyer’s 
purchases. Table 9 and 10 shows the revenues of the test system 
employing GA, PSO, MA and IMA with load variations ranging from 
− 50% to +100% of the base load. According to Table 9, for objective 
function TFC, as load rises, profits increase, and earnings decrease 
concerning the base load as load declines. In the case of objective 
function TAPL, revenues drop as load rises and increase as load de-
creases about the base load. According to Table 10, the objective func-
tion TVD, as load grew, profits climbed, and earnings decreased to the 
base load as load declined. In the case of objective function VSI, profits 
drop as load rises and increase as load decreases for the base load. 

The comparison of revenues achieved for different objective func-
tions by implementing GA, PSO, MA and IMA are shown in Fig. 3. It is 
observed that for objective function, TFC, the revenue is maximum when 
the load is increased to 90% of base load. For objective function, TAPL, 
the revenue is maximum when the load is decreased by 30% of base 
load. Maximum revenue is achieved at +90% load for the objective 
function TVD and VSI. 

Table 11 and Table 12 shows the elapsed period for computation of 
each objective function using GA, PSO, MA and IMA in terms of CPU 
processing clock pulses. The table shows that the time taken by IMA is 
less than the time taken by MA, PSO and GA. The comparison of 
computation time required to execute the best solution of each objective 
function with different algorithms is represented in Fig. 4. 

Table 1 and Table 2, Table 9 and Table 10, Table 11 and Table 12 
illustrate the performance of IMA over MA, PSO and GA concerning 
about the best values of optimum solution, revenues earned and 
computation period for each objective function related to the OPF 
problem in the deregulated power market. The only limitation of IMA is 
that it suffers from the initial parameter tuning. 

5. Conclusions 

The IMA, MA, PSO and GA have been used in this research to find the 
best solution for the OPF problem with several distinct load conditions 
in deregulated electricity markets. The MA is a hybrid algorithm that 
considers the benefits of the GA, PSO, and FA to find the best solution. It 
is further improved to IMA by employing the simulated binary crossover 
operator for the arithmetic crossover operator and the polynomial dis-
tribution mutation for the standard distribution mutation operator. The 
aspects of GA used in the exploitation include simulated binary cross-
over and polynomial mutation. FA’s random shuffle function improves 
exploration. The IMA, MA, PSO and GA were performed on an IEEE-30 
bus system with varying loads, and their performance was assessed using 
the best solution, revenue earning and elapsed time. The system’s load is 
changed from half load (− 50%) to full load and double load (+100%). 
The ideal solutions of the objective functions determined by IMA are 
more acceptable than MA, PSO and GA for all load settings. The best 

solution achieved by implementing IMA for the objective functions’ TFC 
and VSI is upstairs when the load is raised and downstairs when the load 
is lowered concerning the base load. Even if the load is raised or lowered 
with the base load, the ideal solutions for TAPL are found upwards. The 
best solutions for TVD fluctuate in an unspecified way with the load 
change. The provider provides a greater quantity at a higher price, while 
the customer purchases more quantity at a lower price. In a deregulated 
power market, using IMA to solve the OPF issue forces suppliers to sell 
the maximum amount at the lowest price and the minimum quantity at 
the highest price. 

The decision-making gap between supplier sales and consumer 
purchases skews the system’s profitability. Similarly, the buyer pur-
chases the minuscule amount at the highest price and the most signifi-
cant quantity at the lowest price. Earnings increase as load increases and 
decrease as load decreases with the base load for the objective functions 
TFC and TVD. Earnings for objective functions TAPL and VSI fall and rise 
as load increases and decreases relative to the base load. It is observed 
that there is an average additional earning of 2$/Hr by implementing 
IMA. As a result, IMA outperforms the other evolutionary algorithms 
with respect to individual objective functions under different load 
conditions. 

The research work might be expanded such that IMA is used to find 
the optimum solution to an OPF challenge, including contingency 
analysis such as generator bus outages, load bus outages, and line out-
ages. The Improved Multi-Objective Mayfly Algorithm (IMOMA) is to be 
implemented to obtain an optimal solution for the multi-objective OPF 
problem under dynamic and random loading scenarios. Objective 
functions include fuel cost with valve point loading, fuel cost with 
various fuels, fuel cost with a piece-wise linear function, carbon emis-
sion, and penalty function. In addition, installation and optimum sizing 
of FACTS devices and DG with IMA and IMOMA might be considered for 
future work that will assist in analyzing operational and planning 
studies related to power systems in a deregulated environment. 
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Appendix 

Mathematical Test Functions and the Best Objective Function Values obtained from IMA, MA, PSO and GA   

S. 
No. 

Function LowerBound UpperBound Dim Best Objective function value 
IMA MA PSO GA 

1 f1(x) =
∑n

i=1x2
i − 100 100 10 2.36E-118 3.77E-83 5.78E-12 1.6041 

2 
f2(x) =

∑n
i=1|xi | +

∏n

i=1
|xi|

− 10 10 10 1.59E-67 3.65E-55 1.51E-07 0.0164 

(continued on next page) 
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(continued ) 

S. 
No. 

Function LowerBound UpperBound Dim Best Objective function value 
IMA MA PSO GA 

3 f3(x) =
∑n

i=1(
∑i

j=1x2
j )

− 100 100 10 2.44E-47 0.0898 0.0065 7.0461 

(continued on next page) 

Fig. A. Convergence Characteristics of Mathematical Test Functions.  
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(continued ) 

S. 
No. 

Function LowerBound UpperBound Dim Best Objective function value 
IMA MA PSO GA 

4 f4(x) = maxi{|xi |, 1 ≤ i ≤ n} − 100 100 10 3.78E-38 0.0174 0.0096 1.5419 
5 f5(x) =

∑n− 1
i=1 {100(xi+1 − x2

i )
2
+ (xi − 1)2

} − 30 30 10 7.1761 6.5999 237.3175 72.9306 

6 f6(x) =
∑n

i=1([xi + 0.5])2 − 100 100 10 0.0129 0.0001 3.50E-13 1.5722 
7 f7(x) =

∑n
i=1ix4

i + random[0,1) − 1.28 − 1.28 10 0.0002 0.0011 0.0062 0.0074 
8 f8(x) =

∑n
i=1 − xisin(

̅̅̅̅̅̅̅
|xi|

√
) − 500 500 10 − 2719.1977 − 3121.53 − 3617.37 − 2589.37 

9 f9(x) =
∑n

i=1[x2
i − 10cos(2πxi) + 10] − 5.12 5.12 10 0 0 14.92438 31.8897 

10 
f10(x) = − 20exp

(

− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− exp
(

1
n
∑n

i=1
cos(2πxi)

)

+ 20 

+ e 

− 32 32 10 4.44E-15 7.99E-15 1.16E-06 1.6467 

11 
f11(x) =

1
4000

∑n
i=1

x2
i −

∏n

i=1
cos
(

xi
̅̅
i

√

)

+ 1 
− 600 600 10 0 0.5497 0.1157 0.5507 

12 f12(x) =
π
n
{10 sin(πy1) +

∑n− 1
i=1 (yi − 1)2 [1 + 10 sin2(πyi+1)]}

− 50 50 10 4.63E-12 0.0005 0.0016 0.0841 

13 f13(x) = 0.1{sin2(3πxi) +
∑n

i=1(xi − 1)2
[1 + sin2(3πxi + 1)] +

(xn − 1)2
[1 + sin2(2πxn)]}+

∑n
i=1u(xi ,5,100,4)

− 50 50 10 0.0058 0.00092 0.0109 3.7801 

14 

f14(x) =

[
1

500
+
∑25

j=1
1

j +
∑2

i=1(xi − aij)
6

]− 1 − 65.53 65.53 2 2.9821 0.9980 0.9980 0.9980 

15 
f15(x) =

∑11
i=1

[

ai −
x1(b2

i + bix2)

b2
i + bix3 + x4

⎤

⎦

2 − 5 5 4 0.0003 0.0007 0.0008 0.0204 

16 f16(x) = 4x2
1 − 2.1x4

1 +
1
3

x6
1 + x1x2 − 4x2

2 + 4x4
2 

− 5 5 2 − 1.0316 − 1.0316 − 1.0316 − 1.0316 

17 
f17(x) =

(
x2 −

5.1
4π2x2

1 +
5
πx1 − 6

)2
+ 10

(
1 −

1
8π

)

cosx1 + 10 
[− 5,0] [10,15] 2 0.3979 0.3979 0.3979 0.3979 

18 f18(x) = [1 + (x1 + x2 + 1)2
(19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]

×

[30 + (2x1 − 3x2)
2X(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

− 2 2 2 3 3.0001 3 3 

19 f19(x) = −
∑4

i=1ci exp( −
∑3

j=1aij(xj − pij)
2
) 0 1 3 − 3.8626 − 3.8572 − 3.8628 − 3.8627 

20 f20(x) = −
∑4

i=1ci exp( −
∑6

j=1aij(xj − pij)
2
) 0 1 60 − 3.2935 − 3.1826 − 3.2031 − 3.322 

21 f21(x) = −
∑5

i=1 [(x − ai)(x − ai)
T
+ ci]

− 1 0 10 4 − 10.1607 − 10.1329 − 10.1532 − 10.1532 
22 f22(x) = −

∑7
i=1 [(x − ai)(x − ai)

T
+ ci]

− 1 0 10 4 − 10.5633 − 10.3791 − 10.4029 − 10.4029 
23 f23(x) = −

∑10
i=1 [(x − ai)(x − ai)

T
+ ci]

− 1 0 10 4 − 10.7731 − 10.5219 − 10.5364 − 10.5264   

Highlights for Review 

In this paper, Improved Mayfly Algorithm (IMA) is applied as enhanced variant of Mayfly Algorithm (MA), by replacement of stimulated binary 
crossover and polynomial mutation operators in the place of arithmetic crossover and normal distribution mutation operator’s of MA. The accom-
plishment and influence of IMA is distinguished with MA. The algorithms are handled out to bring successful conclusion with optimum solution for the 
considered objective functions of the optimal power flow problem in deregulated electricity power market under distinct load environment. The total 
load of the power system is varied from half of the base load (− 50%) to double of the base load (+100%). The objective functions that are treated, have 
connection with financial value of the generators, active power loss in the transmission lines, potential change and potential ability of the power 
system networks. The goal reached that has been accomplished by IMA is obtained on the IEEE-30 bus test system in deregulated environment. The 
investigations are performed on the optimal solution of each objective function, offers of generators and bids of loads, generator sales and load 
purchases, and earnings of the system accompanying distinct load conditions. The simulated results have guaranteed the predominance of IMA over 
MA. 

The work’s contribution has been as described in the following:  

• For the first time, the OPF problem is solved under deregulated environment considering different load levels.  
• In a deregulated electricity market, fuel cost, active power losses, voltage deviation, and voltage stability are being used as objective functions to 

solve the OPF problem.  
• This paper considers Improved Mayfly Algorithm (IMA) that incorporates simulated binary crossover and polynomial mutation into the original 

Mayfly Algorithm (MA) for solving the problem  
• The proposed IMA’s performance is analysed for different mathematical test functions having unimodal, multimodal, fixed-dimension test 

functions and is compared with GA, PSO and MA  
• The comparison of optimum solutions obtained from IEEE-30 bus system are reported to assess the performance of evolutionary algorithms via., 

GA, PSO, MA and IMA.  
• The performance of IMA is evaluated under a diversity of load scenarios.  
• The generator offers and load bids, as well as system revenues gained by applying the IMA, are presented. Fig. 3 
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