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Abstract

Traditional crowd counting (optical flow or feature matching) techniques have been upgraded to deep learning 
(DL) models due to their lack of automatic feature extraction and low-precision outcomes. Most of these 
models were tested on surveillance scene crowd datasets captured by stationary shooting equipment. It is very 
challenging to perform people counting from the videos shot with a head-mounted moving camera; this is 
mainly due to mixing the temporal information of the moving crowd with the induced camera motion. This study 
proposed a transfer learning-based PeopleNet model to tackle this significant problem. For this, we have made 
some significant changes to the standard VGG16 model, by disabling top convolutional blocks and replacing its 
standard fully connected layers with some new fully connected and dense layers. The strong transfer learning 
capability of the VGG16 network yields in-depth insights of the PeopleNet into the good quality of density maps 
resulting in highly accurate crowd estimation. The performance of the proposed model has been tested over a 
self-generated image database prepared from moving camera video clips, as there is no public and benchmark 
dataset for this work. The proposed framework has given promising results on various crowd categories such 
as dense, sparse, average, etc. To ensure versatility, we have done self and cross-evaluation on various crowd 
counting models and datasets, which proves the importance of the PeopleNet model in adverse defense of society.
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I. Introduction

Object detection and counting are emerging issues for the 
development of social sectors such as agriculture, wildlife 

sustainability, satellite imaging, drug molecule detection, crowd 
protection, etc. Computer vision (CV) facilitates pedestrian estimation 
to solve the social and administrative congestion monitoring problems 
which is a burning issue nowadays [1]. Automatic crowd counting is 
easier in video surveillance when the imager is stationary; however, 
it is more challenging in videos consisting of background motion 
driven by a moving camera and moving objects. Most crowd image 
databases are created by capturing from stationary cameras, resulting 
in a large number of occlusive samples, which limits the performance 
of any crowd counting (CC) mechanism. The existence of moving 
background, size of people, motion vibration, and camera position are 
some of the natural obstacles in crowd samples that also limit the people 
counting performance. There are some universally agreed challenges 
faced while developing an automated CC framework. Providing fair 
distribution of training information over live video streaming is the 
most common challenge [2] to protect the privacy of any individual 
by intentionally or unintentionally targeting individuals. Establishing 

a fair relationship between society and the monitoring system is 
another challenge to developing a reliable CC system. In addition, 
creating a simple and open-source crowd estimation model is also a 
hidden requirement for social welfare. With the mentioned challenges, 
moving camera surveillance proves to be very successful in places 
where static cameras are not installed due to any power, technical or 
geographical issues. Moving camera surveillance proves to be useful 
for our security to keep an eye on the enemy in difficult or high-
altitude places.

Rapid urban population growth is a serious matter of concern 
to us, which is being worked upon by the research community 
nowadays. According to the world demographic report, 55% of the 
world’s population today lives in urban areas, which will increase by 
about 70% in 2030 [3], as a result, our future will be surrounded by an 
unstructured and unbalanced crowd [4]. Stampedes, intentional gun 
firing, mob lynching, unnatural accidents, and unstructured traffic 
can have significant consequences for such disorderly population 
growth [5]. Moreover, the frightening worldwide casualties from 1975 
to 20191 inspired us to develop an efficient crowd counting mechanism 

1  https://publications.iom.int/system/files/pdf/wmr_2020.pdf
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in dynamic camera video surveillance environments. Modern CC 
approaches failed in accurate prediction of the crowd, resulting in 
lower accuracy; which also prompted us to work on advancing crowd 
counting via camera video surveillance.

Consecutive frame difference, context background subtraction, 
and optical flow are some traditional object detection techniques [6], 
[7], which often failed to handle some advanced pixel-level issues 
in motion parallax, moving background objects, blurring, and night 
vision. Optical flow is more robust among all but takes a longer time 
to produce real-time information than background subtraction [8]. 
Therefore, researchers are developing efficient and high-performing 
methodologies [9], [10] for automatic crowd counting nowadays via 
density map (DM) generation due to its wide spreading and exploring 
the video surveillance domain.

This study addressed the deep learning-based PeopleNet framework 
to handle the stated challenges for crowd counting in adaptive 
tracking camera environments. This framework follows a transfer 
learning CNN mechanism to perform pedestrian detection, which is 
designed by disabling the upper convolution blocks and replacing the 
last layers with new fully connected, and dense layers in the standard 
VGG16. Some significant feature extraction techniques are applied 
before inputting the crowded frames for generating good quality 
density maps (shown in Fig. 1). The construction of a crowd dataset 
in a moving camera environment and developing a lightweight, 
vision-based [11] pedestrian estimation framework is a significant 
contribution to this work.

The rest of the paper is organized into four sections. Related work 
is presented in section II. The proposed system along with detailed 
experimental work is discussed in section III. The obtained crowd 
counting results and state of art discussion are carried out IVth section, 
and finally, the paper is concluded in section V.

II. Related Work

Based on the performance, object detection techniques are 

divided into motion detection and motion estimation categories. The 
current literature work illustrates motion detection methodologies in 
traditional and advanced research levels, which is further described in 
traditional and advanced object counting methods.

A. Traditional Object Counting
Early object detection work accomplished by watershed 

segmentation algorithm [12], often suffers from feature spatiality 
and complexity issues, further solved the spatial segmentation by 
deploying color quantization via edge-preserving techniques [13]. 
Markov Random Field (MRF) model got better segmentation results 
[14], [15]; but limited to stationary video sequences. Jordan et al., [16] 
proposed an object tracking and detection scheme for both fixed and 
moving camera videos; however, it failed to solve the spatial ambiguity 
issue. Traditional object detection schemes are easy to implement but 
not intensive to advance challenges such as luminous variation [17], 
dynamic appearance [18], abrupt motion [19], occlusion [20], [21], 
complex background [22], [23], shadow [24] and camera motions [25] 
etc. The researchers embed transfer learning networks in traditional 
object detection techniques nowadays to handle these issues.

B. Advanced Object Counting
Deep Neural networks (DNNs) are more popular since 2016 for 

foreground detection [26], background subtraction [27], background 
generation [28] and deep spatial feature extraction [29], [30]. Guo and 
Qi [31] first developed Restricted Boltzmann Machines (RBMs) for 
moving object detection using background subtraction mechanisms. 
A deep auto-encoder was used by Xu et al. [32] for object detection 
in moving camera images; on the other side, a context encoder was 
presented by Qu et al. [33] for background subtraction as a backbone. 
Droogenbroeck [34], Cinelli [35] and Bautista et al [36] used CNNs for 
background subtraction.

Recent studies used two-stage [37], structured [38] and cascaded 
[39] CNN etc. Whereas a (NeREM) Neural Response Mixture and 
Mixture of Gaussian (MOG) [18] framework are employed to learn 
deep crowd features. Lempitsky et al. [10], first converted the labeled 
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images into density maps (DMs) with the sum of a fixed Gaussian 
Kernel. Y Zhang et al. [40], proposed a fixed standard deviation to 
generate density maps. A single-column CNN [41] uses ResNet50 as 
a backbone for feature extraction. Boominathan et al., [42] introduced 
a patch-based MCNN network, which consists of each column with 
a different kernel size of the same depth as each parallel column. 
This model is able to produce high quality of density maps in pure 
deep learning environment; however fails to compute the outcome in 
efficient time. CSRNet [43] further overcame the stated problem via 
using two parallel shallow and deep networks to maintain the original 
density map resolution.

III. The Model Framework

High computation power requirement is one of the significant 
limitations of existing object detection mechanisms to tackle the 
dynamic background modeling implementation in real time. Lowering 
the computational overhead to get efficient crowd estimation results 
is a primary concern in the crowd counting techniques which had not 
performed efficiently for dynamic camera crowd videos. To tackle this 
issue of existing models, the PeopleNet model has proposed in this 
work. This model comprises the following components to estimate the 
pedestrian of the given video datasets.

1. Dataset Characteristics

2. Feature Generation

3. Feature extraction

4. The PeopleNet Architecture

5. Network Training

6. Crowd Counting

7. Performance Metrics

A. Dataset Characteristics
Promising work has been done in crowd counting form free and 

surveillance crowd samples [44]. Object detection problems can be 
solved in open CV, keeping static cameras into consideration; however 
not been practiced yet for dynamic objects. The unavailability of 
tracking camera video datasets is a significant need of the current 
research trend. So, we are obliged to construct an 1101 RGB image 
database prepared from the videos shot by a static or moving device. 
These videos have the different moving effects of the observing device 
and pedestrians. The dataset samples were shot in different places such 
as a mall, street, company corridor, restaurant, highway, escalator, 
roadside, tunnel, etc. in different timings, luminous appearances, 
shadows cast, in near-zero visibility that makes the dataset more 
realistic, practical, and overwhelming than existing ones. The crowd 
samples of videos of constructed datasets made public2 for further 
research, of which the analogical description is shown in Table I.

TABLE I. Analogical Description of the Constructed Dataset

Dataset Attributes Values
Resolution 1080x1920

Frame Rate (per second) 0.75
Total Samples 1101

Test/Train Samples 220:880
Crowd Variation 0-125
Total Pedestrians 33567

Color/Format RGB/JPG
Place Multiple Locations

Property Walking, Eating
Average Crowd Size 31

Shadow/Reflection/Loitering Yes

Fig. 2. Crowd samples with their respective density maps.

2  https://www.kaggle.com/ankit87/moving-camera-dataset

Algorithm 1. Ground truth Generation

Input: A directory of .jpg files

T =  0, IC;

Function ReadImage(readpath, (T + i), IC);

 return readpath;

Function ImageResize (l, b);

 l ← HeightOfImage;

 b ← WidhtOfImage;

 return resizedImage;

Function WriteImage ((resizedImage, [readpath,
(T + i), filepattern)], filepattern);

 return writepath;

Function SaveMatFile (writepath);

 return mat;

while i = 1, to n do
 call ReadImage();

 call ImageResize();

 call WriteImage();

 [x, y] ← getCoordinates;

 imageInformation.location ← [x, y];

 imageInformation.member ← [x, 1];

 call SaveMatFile( );

end
Output: A directory of .mat files
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B. Feature Generation
The feature generation is an indivisible part of data preprocessing 

before input the information. The crowd features are generated via 
ground truth and density map generation, its whole process has 
discussed through pictorial and algorithmic way.

Ground Truth and Density Map Generation: Ground truth generation 
from the crowded images is based on current research trends [45], 
[46]. This work formulates the people estimation via density map via 
density regression function. The image frames and respective DMs 
(obtained from crowd video clips) are the training input of PeopleNet 
model. A DM of object detection is obtained from x, and y coordinates 
of the people’s head location also called GT labels. The original image 
(bottom right portion), annotated samples (Left portion), and DM 
(Upper Right portion) are shown in Fig. 3. Consider the Ii = (I1,  I2,    ,  
ITSn) are the image frames obtained (training samples) from crowded 
videos. The ground truth label nGT,i = (n1,  n2,  ....,  nXi) for center point X 
represents each people’s head presented in crowded samples; which is 
obtained via density map DGT,i, described through (1).

 (1)

The GDGT is Gaussian distribution (σ) for ’p’ pixels. The total crowd 
count in sample Ii is obtained by summing the density values for all 
pixels described in (2) and samples are shown in Fig. 2.

 (2)

Fig. 3. Obtained Image samples from Video (Right Lower), Annotation Creation 
(Left), and, generated Density Map(Right Upper) from the image sample.

C. Feature Extraction
To tackle the poor crowd counting performance due to high 

computation power demand, this work incorporated the focus of 
expansion (FOE) concept in feature preprocessing. The FOE plays a 
significant role in accurate flow estimation for CV applications such 
as range & obstacle estimation. The field effects of FOE signify the 
transformation and rotation motion caused by the dynamic camera. 
Efficient crowd feature (segment, edge-based, and texture) selection 
incorporating the feature of the expansion concept via diverging 
optical flow vectors to estimate the motion fields depicted in Fig. 4.

Consider the  = (Rx,  Ry,  Rz)
T camera motion towards P = (x,  y,  z)T 

fixed points, where FOE is computed (xFOE, yFOE) against the pixel 
corresponding to the P crowd image plane. At a particular point of 
an image, FOE is obtained by the intersection of the image plane and 
camera motion velocity, while the camera is in relocatable motion [47].

 (3)

A 3D coordinate system defines X, Y, and Z planes with the optical 
axis of the camera, which is parallel to the Z-axis and, X, Y-axis is 
parallel to the image plane for a particular location L(X, Y, Z) in a 2D 
plane at projection P(x, y, z) for the 3D plane [48]. The velocity V is 
derived under 3D space defined in (3), where Vx, Vy are velocity plane 
vectors. Rx, Ry, Rz are relocatable 3D components for focal distance f. 
Defining FOE in (4)

 (4)

 (5)

The (3) becomes in a linear system with (x0, y0) focus of expansion 
in (5) further used in (6).

 (6)

The FOE detection is based on the above properties including flow 
and matched filter with size (2w+1) × (2w+1), in Fig 4, having each 
pixel shows the angle between the origin and grid point (7).

 (7)

For the given images I1 (x,  y) and I2 (x,  y), Δt → 0 time apart, assume 
FOE based optical flow can be obtained corresponding to the flow of 
x, y-axis. Furthermore, the optical flow is tuned with segmented, edge-
based, and texture features.

• Segmented Features: The segmented features capture foreground 
entities (blob, shape and size) at reference pixels for density map 
DGT,i, of mathematical expression is described in (8).

 (8)

• Edge-Oriented Features: Consist Minkowski dimensions to 
estimate strong crowd counting ability via (9).

 (9)

• Local-Texture Features: These features are employed for density 
classification across the crowded regions r, depicted in (10).

 (10)

y

O X

Z Vectors

Fig. 4. FOE Diverging Optical flow vectors in temporal crowd.
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D. The PeopleNet Architecture
In deep learning, CNN is enough capable of automatic feature 

extraction and prediction process, which evolved into transfer 
learning. The PeopleNet model is capable of crowd estimation using 
five convolution groups of 21 layers, initially, image samples were 
provided in batches with three RGB channels, as shown in Table 
[tabsecond]. The baseline network of this work is obtained from 
VGG16 architecture by stacking max pooling, convolution, dense, and 
fully connected (FC) layers. Two significant changes have been made 
to the standard VGG16 network to make it fit for people counting 
purposes, first, we have disabled its top seven layers by freezing them 
(making their status ’false’) and added our dense layers by replacing its 
FC layers. The input videos have an original resolution of 1080×1920, 
which further took 224×224 after preprocessing and normalizing. 
The input stream passed through Conv2D groups described by the 
following changes:

1. For the 1st Conv2D group, double convolution layers with 64 filters 
of [3×3] with a stride of (1, 1) have been applied followed by a 2D 
pooling layer of size [2×2] with stride (2, 2). However, we have 
frozen the first convolution group by setting their status ‘False’.

2. In 2nd Conv2D group, a double layer with 128 filters of [3×3] and 
stride (1, 1) have convolved over the output of the previous layers. 
We obtained a 2D pooling of 128 kernels after applying a stride of 
size (2,2).

3. The 3rd Conv2D group is composed of three layers having 256 
filters of [3×3] dimensions with the stride of (1, 1). A stride (2, 2) 
and a max-pool [2×2] layer have been used in the sub-sampling 
technique.

4. The 4th Conv2D group has three consecutive convolution layers 
[3×3] with 512 filters in each and a stride (1,1) with pooling layers 
of size [2×2].

5. Likewise, the last and 5th group has convolution layers of 512 filters 
that have been convolved three times with the stride of (1, 1).

6. Finally, two fully connected layers of size 1024 and 1 are deployed 
at the end.

The proposed model works with n image frames I of Mi dimension 
matrix. A kernel K matrix is convolved through each image to create 
feature maps through equations (11) and (12).

 (11)

where

 (12)

Where y is the output image, I image frame, C convolution mask, 
and t tokens. The value of K is taken 3 to carry out this experiment for 
W × H image dimensions for the p pooling matrix. The Euclidean loss 
is replaced by average pooling in (13) to estimate the  as ground 
truth for spatial units U.

 (13)

A customized loss function is required to train the effective DL 
models, which is derived from the difference between actual and 
estimated count (EC), depicted in (14).

 (14)

Where (xi,  yi) are spatial coordinates for density map. Wnew and Wold 

are the updated and older neuron weights gained at each forward 
and back prorogation with the help of learning rate η. The actual and 
estimated people counts are used to compute the pixel-level Euclidean 
distance loss function LD(θ), which is defined in (15).

 (15)

A set of learn-able metrics (θ) derived from total sample parameters 
are Nts. The actual head-count is denoted by GT, and the estimated head-
count is denoted by HC(Ii; θ). The PeopleNet is trained from the scratch 
for random network parameters and resolves poor performance issues 
for a sparse crowd using LD(θ), which helps to meet the real-time 
computation. The loss in (16) is given by

 (16)

A popular mean of square error (MSE) loss is used to train the 
model via computing it between estimated and real pedestrian values. 
The experiment conduction used Adam as an optimizer function since 
it is best suitable for non-moving objects for noisy/sparse gradients, 
also provides a regret bound on convergence rate comparable to the 
convex optimizer eloberated in below equation (17).

 (17)

Here  and , are initialized vectors and biased 
towards 0, where β1, β2 are close to 1, whose default values are taken 
0.9 and 0.999 respectively. The density map learning paradigm D(p) 
uses a set of X and Y parameters via mapping function F using θ as a 
parameterization function to predict the labels in (18).

 (18)

After each layer, the output is defined in (19); where Oi is output f is 
filtering, P is padding unit, and S is stride.

 (19)

The proposed methodology is unique and uses shortcuts to all 
preceding blocks from each convolutional group. As a result, a 
combination of local and global features is fed to the first and last 
layers. We included padding, stride averaging, and regularization 
techniques for feature map matching.

E. Network Training
CNN-based people counting frameworks have many trainable 

parameters or complex architectures, which makes model training 
more difficult and the feeding process time-consuming. In this 
study, the PeopleNet model is performing better on fewer trainable 
parameters in less computation. For the given training set of 880 
images and their respective DMs, two counter variables F and G train 
the convolution model jointly with the help of LD (θ). Algorithm 2 
summarizes the training procedure for the proposed model. Let (II, DI)
be the pair of i^th image and density maps, and (FIi) (GDi) are original 
and refined density maps respectively, the loss (L) can be expressed 
through (20).

 (20)

|GDi −  DI| helps in training and predicting the refined density maps 
during every back and forward prorogation, and the loss tends to 
converge to the minimum level for smooth training. The training 
accuracy and validation loss statistics for 300 epochs of PeopleNet are 
shown in Fig. 5.
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TABLE II. Layered Architecture of PeopleNet Framework.

Layer Type Output Shape Parameters Trainable Status
Conv2D

64 × 64 × 224 × 224

1792 False

BatchNorm2D 128 False

Relu

Conv2D 36928 False

BatchNorm2D 128 False

Relu

MaxPoll2D

Conv2D

64 ×  128 ×  112 ×  11

73856 True

BatchNorm2D 256 True

Relu

Conv2D 147584 True

BatchNorm2D 256 True

Relu

MaxPoll2D

Conv2D

64 × 256 × 56 × 56

295168 True

BatchNorm2D 512 True

Relu

Conv2D 590080 True

BatchNorm2D 512 True

Relu

Conv2D 590080 True

BatchNorm2D 512 True

Relu

Conv2D

64 ×  512 ×  28

1110860 True

BatchNorm2D 1024 True

Relu

Conv2D 2359808 True

BatchNorm2D 1024 True

relu

Conv2D 2359808 True

BatchNorm2D 1024 True

Relu

MaxPooling2D

Conv2D 2359808 True

BatchNorm2D 1024 True

Relu

Conv2D 2359808 True

BatchNorm2D 1024 True

Relu

Conv2D 2359808 True

BatchNorm2D 1024 True

Relu

MaxPooling2D

AdaptiveAveragePooling2D

Flatten

BatchNorm2D 2048 True

DropOut

Linear

64 × 512

524288 True

Relu

BatchNorm1D 1024 True

DropOut

Linear 64 × 1 512 True
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F. Crowd Counting
The position of each person’s head is labeled with white cross 

symbols (Hx,  Hy) as a delta function (Fig. 3); which is used to compute 
the labeled images into a DM by convolving operation through Gαi. 
The inverse KNN distance method obtains labeled values from G_T by 
computing KNN distance from p(Xx,  Xy) to p(Xx,  Xy) pixel values, for H 
people heads (depicted in algorithm 2). The data samples and respective 
annotated DMs are parallel inputs provided to the PeopleNet model, 
which can generate final maps after 8 hours of intensive training.

Algorithm 2. PeopleNet Training Procedure

Input: A pair of Images and respective density maps
              
Initialize two F and G counters;
for Epoch ← 1...... NE do
 for Epoch ← 1..., .. N do
          Estimate DM (FIi).
          Generate GT (GDi).
          Update F counter using loss L in (20)
          update NG for every epoch through counter G
          if mode(Epoch, NG) == 0 then
                   update the parameter using LD(θ), (15)
          end
          else
          end
 end
end
Output: Updates values of counters F and G.
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Fig. 5. Training accuracy and loss statistics of PeopleNet.

In the experimental procedures, it has been observed that the 
obtained result is more precise upon disabling the first convolution 
layers than the other layers for the stated loss function (Fig. 6). In this 
figure, the first two rows have the original image and original DMs, 
the next rows show the output generated DMs (printed with sequence, 
PSNR, GT, and EC).

G. Performance Metrics
After widely investigating the universally accepted articles, we 

have divided the performance evaluation into the image and pixel-
level categories [24]. The quality of generated DMs is used to evaluate 
the pixel-level performance, whereas popular regression model 
enumerate the image-level performance.

1. Image Level Error
Root Mean Squared Error (RMSE) and, Mean absolute error (MAE) 

are commonly used as image-level accuracy measurement metrics 
[49], which compute the overall deviation between the estimated and 
actual samples values. The mathematical expressions of RMSE and 
MAE can be seen in (21) and (22).

 (21)

 (22)

RMSE is a more corrective measure to assess the insignificant 
sample deviation; however, MAE generally fails to secure the overall 
accuracy for huge variation data samples. Therefore, mean absolute 
percentage error (23) would be the better measurement choice.

 (23)

MAE, MAPE, and RMSE define robustness and global image-level 
accuracy. To evaluate local region accuracy, correlation coefficient r 
is another better alternative to measure the dependence between two 
variables (24), where  and .

 (24)

To measure the covariance, association or statistical relationship of 
two continuous variables, the Pearson correlation coefficient (Pr) is 
another significant test statistics, which is the fundamental measure 
the strength of the linear relationship shown in (25). Sometimes it is 
also called as coefficient of determination.

 (25)

Adjust  often suffers from score improvement in increasing 
terms, even if the model improvement remains the same, which might 
create a misguidance for the researchers. Therefore,  is used to 
improve in case of any real improvement via adjusting the increased 
estimators, in (26) k is independent variables for n observations in 
operation.

 (26)

The Normalized Root Mean Square Error (NRMSE) (27) use to 
facilitates the comparison between models with different scales to 
interpret as a fraction of the overall range that is typically resolved 
by the model.

 (27)

 is the average of observation value computed (21).

2. Pixel Level Error
PSNR (Peak signal-to-noise ratio) [50] is the most common 

pixel-level metric used to measure the error deviation between 
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corresponding and original DM pixels. The resolution size of both the 
original and degraded image matrix must be the same while working 
with the 2D matrix.

 (28)

In (28), 10log defines the square of amplitudes in terms of noise and, 
MSE is defined in (29).

 (29)

Where O and D are data matrices of original and degraded DMs. 
MAXf denote maximum signal value for M rows denoted by i and N 
columns represented by j pixels. Structural Similarity Index: SSIM( 
[50]) is used to measure the perceptual difference between two 
identical images this parameter cannot judge the better of two images.

IV. Result and Discussion

This section mainly focuses on the validation efficacy of PeopleNet 
architecture for a variety of crowd scene categories. The training 
and accuracy error deviation is expressed separately through Fig. 
5 and Fig. 7. Moreover, the comparison of the cross-scene results is 
comprehended separately for existing state of art CC models and 
benchmark datasets.

A. PeopleNet Model Performance Analysis & Validation
The crowd estimation results are validated over the test data 

samples, whose predicted results are computed and shown graphically. 
A thorough, deep, and strategic error deviation of this experiment has 
been done in three main parts as follows:

1. Scenario Error Estimation
Table III presents the results obtained from the PeopleNet framework 

on the constructed dataset. The data samples have been categorized 
into dense, sparse, and average scenarios. The framework is tested 
separately by modeling in each category to better analyze the people 
counting error. The dense category data subset contains 165 frames 
having a people range from 51 to 125, over which the PeopleNet model 
secures the MAE, RMSE, Pr , r, nrmse and SSIM as 15.514, 19.595, 0.890, 
0.944, 0.124 and, 0.31 respectively. The sparse crowd category kept a 
total of 260 samples (having people ranging between 0 to 15) and the 
model secured 12.24, 15.45, 0.912, 0.932, 0.131 and 0.37 as MAE, RMSE, 
Pr, r, nrmse and SSIM respectively. Moreover, there are 676 average 
category samples of 16-50 crowd size and secured 9.376, 12.72 as MAE 
and RMSE.

Satisfactory performance is observed for sparse category samples; 
insufficient training samples are the main cause of lower accuracy. 
Instead of training over enough samples, the model achieved 
satisfactory results for average crowd samples by securing average 
MAE and RMSE. This accuracy is low as compared to the overall 
category dataset. The proposed model performance is superior in the 

Fig. 6. Frames and their respective density maps are shown in first two rows, while last two rows represent testing output frames and generated density maps 
printed with some information viz image-sequence, PSNR value, GT and EC, etc.).

TABLE III. Performance Analysis of Proposed Model Different Category Samples

Category Total Frames Crowd Size MAE RMSE Pr r nrmse SSIM
Dense 165 51-125 15.514 19.595 0.890 0.944 0.124 0.31
Sparse 260 0-15 12.24 15.453 0.912 0.932 0.131 0.37

Average 676 16-50 9.376 12.72 0.907 0.933 0.156 0.35
Overall 1101 0-125 3.43 4.623 0.917 0.919 0.166 0.34
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overall category dataset sample with 1101 frames of people ranging 
from 0-125 and achieved MAE 3.43 and RMSE 4.623 respectively with 
SSIM 0.34. A slight difference is observed in model performance from 
various crowd categories, which indicates that the proposed model 
neither performs poorly for dense nor outperforms for sparse samples. 
The main aim to present the Table III is to test the PeopleNet’s 
robustness for low and high-crowded samples.

2. Training Error Estimation
Existing CC research focused on the accuracy parameters only, but 

the proof of how well the model training performed is still missing 
in the literature. Here we exposed the training performance through 
pictorial and factual representation. During training, the difference 
between MAE and RMSE is higher in the first 50 epochs; however, it is 
less afterward but fluctuates with a very high margin. The fluctuation 
lowered between 100 to 200 epochs. After 200 epochs, a negligible 
fluctuation is observed as both MAE and RMSE are parallel to one 
another from 150 epochs till the end. These statistics ensure a smooth 
training process without over, or under-fitting.

3. Crowd Error Estimation
The performance of any AI model mainly depends on its 

architecture, hyperparameter setting, quality, and quantity of training 
samples. In this experiment, the obtained results vary from test-to-test 
samples as they may belong to a different video clip. The accuracy 
deviation between estimated and real people obtained by the proposed 
model over 220 different image frames could be seen in Table IV.

TABLE IV. Summary of Accuracy Deviation Obtained by the Proposed 
Model Over 220 Image Frames

Frame
Number

Frame
Image

Ground
Truth

Estimated
Count

Deviation
Accuracy

1th f1 29 26.383 2.617

2nd f2 29 31.4189 -2.4189

—– —– —– —– —–

10th f10 39 49.2062 -10.2062

11th f11 06 7.3051 -1.3051

—– —– —– —– —–

50th f50 14 12.0589 1.9411

51th f51 27 27.4985 -0.4985

—– —– —– —– —–

100th f100 69 64.2111 4.7889

101th f101 23 27.5823 -4.5823

—– —– —– —– —–

150th f150 101 86.4342 14.5658

151th f151 04 6.0725 -2.0725

—– —– —– —– —–

200th f200 31 28.1497 2.8503

201th f201 23 22.8873 0.1127

—– —– —– —– —–

119th f119 03 05.1674 -2.1674

220th f220 41 48.7397 -7.7397

Furthermore, the same results are also depicted through Fig. 7, 
where a yellow slider area is mapped to render the zoomed view. 
For each edge, the quantified results have been associated, the 
absolute value represents  and the fractional values represent . 
The underestimation CC effect can be observed for more than 100 
people. Insufficient training samples for dense crowd samples may 
be the leading cause; however, the nearness of obtained results and 
parallelism of lines is evidence of the model’s outstanding results.
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Fig. 7. Accuracy deviation illustration between estimated and actual crowd count.

B. Comparative Analysis
This work focuses on the result variation, model behavior, and 

data variance on moving camera datasets after cross-testing on one 
another crowd videos. The robustness and correctness of both entities 
are contentious, which could be observed in the following cases:

1. The PeopleNet generates promising results at pixel and image 
level over moving crowd scenes, which are are complementary to 
each other. Whether the constructed dataset fulfills the current CC 
research expectations? It is a question.

2. Table III, V and VI validates the correctness of data samples by 
exploring the model’s capability in different crowd scenarios. 
Whether this novel framework is acceptable for public and 
standard crowd datasets? It is also a question.

We have answered the above questions in detailed along-with 
significant case studies 1 and 2.

1. Case Study 1
Testing the crowd counting ability of a novel model on a newly 

constructed dataset has always been challenging. Comparing the 
efficiency of some extant object counting models with the proposed 
methodology is an integral part of any comparative analysis research 
has been illustrated in Table V, which overviews the comparative 
performance analysis of existing CC models and the proposed model. 
As per our best knowledge, due scarcity of tracking camera surveillance 
crowd datasets, we are forced to compare the Constructed dataset for 
validation. Some of the universally agreed performance evaluation 
metrics have been computed for popular deep learning models such 
as ResNet50 [41], CSRNet [43], DENet [51] and, People-Flow [52] and 
presented in tabular form. These models are originally developed to 
perform the crowd counting in free or surveillance view crowd datasets 
captured by a static camera. Therefore, the performance of these CC 
models will deteriorate with the proposed database. A PSNR and SSIM 
values of 26 and 0.43 respectively ensure the high quality of density 
maps results in accurate people estimation. However, the correlation 
(Cr) and Pearson coefficient (Pr) variation were observed significantly 
across all samples. These variations have been received with different 
samples due to the architectural complexity of various models.

A dilated-CNN structure with 2,160,000 trainable parameters 
(290.024 MB) in CSRNet [43], is specially designed for density 
estimation on highly congested crowd datasets such as Shanghai-
Tech [40], WorldExpo [41], UCF _CC_50 [56] and UCSD [57] datasets. 
Its lightweight functionality along with the front (basic CNN) and 
back-end network is a significant advantage over existing models 
to generate high-quality density estimation with less hardware 
computational training effort. A decremented variation of 5-18% and 
12-21% for MAE and RMSE has registered over four different random 
sub-samples, and a decremented variation of 40-75% has registered for 



International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº6

- 70 -

TA
BL

E 
V.

 S
um

m
ar

y 
of

 C
om

pa
ri

n
g 

Pe
rf

or
m

an
ce

 M
et

ri
cs

 o
f 

D
if

fe
re

n
t 

Fr
am

ew
or

ks
 W

it
h

 O
ve

ra
ll

 a
n

d 
Se

gm
en

te
d 

Po
rt

io
n

s 
(V

iz
 S

ub
se

t1
, S

ub
se

t2
, E

tc
.) 

of
 S

el
f-

C
on

st
ru

ct
ed

 D
at

as
et

s.
 T

h
e 

Pr
op

os
ed

 
Fr

am
ew

or
k 

Pe
op

le
N

et
 H

as
 M

ar
ke

d 
W

it
h

 . 
C

SR
N

et
 [

43
] 

&
 D

EN
et

 [
51

] 
Fr

am
ew

or
ks

 A
re

 T
es

te
d 

O
ve

r 
T

w
o 

D
at

a 
Su

bs
et

s 
D

ue
 t

o 
H

av
in

g 
H

ea
vi

ly
 L

oa
de

d 
Fr

on
t 

En
d 

an
d 

Ba
ck

-E
n

d 
In

te
gr

at
ed

 
N

et
w

or
ks

. T
h

e 
D

ow
n

 A
rr

ow
 (↓

) M
ea

n
s 

th
e 

Lo
w

er
 t

h
e 

M
et

ri
cs

 H
ig

h
er

 t
h

e 
A

cc
ur

ac
y,

 a
n

d 
th

e 
up

 A
rr

ow
 (↑

) M
ea

n
s 

th
e 

H
ig

h
er

 t
h

e 
M

et
ri

cs
 H

ig
h

er
 t

h
e 

A
cc

ur
ac

y.
 T

h
e 

T
er

m
 ’N

A
’ D

en
ot

es
 N

ot
 

A
va

il
ab

le

C
at

eg
or

y
Sa

m
pl

eC
ou

nt
Pe

rf
or

m
an

ce
M

et
ri

cs

Im
ag

eL
ev

el
Pi

xe
lL

ev
el

M
od

el
s

Te
st

 
Su

bs
et

s
(2

0:
80

)/1
00

M
A

E(
↓)

R
M

SE
(↓

)
M

A
PE

(%
)(↓

)
Pe

ar
so

nC
oe

ff
ic

ie
nt

(P
r)

(↑
)

C
or

re
la

ti
on

C
oe

ff
ic

ie
nt

(r
)(↑

)
R

2 A
(↑

)
nr

m
se

(t
)

PS
N

R
(d

B
)(↑

)
SS

IM
(↑

)

C
SR

N
et

[4
3]

Su
bs

et
1

11
0:

44
1/

55
1

17
.8

9
22

.4
3

N
A

N
A

N
A

N
A

0.
13

3
13

.2
1

N
A

Su
bs

et
2

11
0:

44
1/

55
1

15
.5

1
20

.8
9

N
A

N
A

N
A

N
A

0.
12

6
14

.7
6

N
A

O
ve

ra
ll

22
0:

88
1/

11
01

10
.0

3
16

.0
9

N
A

0.
92

2
0.

93
1

0.
94

1
0.

11
7

25
.9

9
0.

43

R
es

N
et

50
[4

1]

Su
bs

et
1

55
:2

20
/2

75
3.

97
6.

70
18

.4
7

0.
95

3
0.

97
6

0.
96

9
0.

14
2

11
.4

5
N

A

Su
bs

et
2

55
:2

20
/2

75
3.

64
4.

89
21

.7
0

0.
88

6
0.

94
2

0.
91

0
0.

19
9

9.
67

N
A

Su
bs

et
3

55
:2

20
/2

75
3.

38
5.

08
20

.2
1

0.
86

5
0.

91
5

0.
89

2
0.

19
1

5.
22

N
A

Su
bs

et
4

55
:2

20
/2

75
3.

38
4.

28
21

.6
4

0.
85

6
0.

92
5

0.
87

7
0.

18
1

9.
22

N
A

O
ve

ra
ll

22
0:

88
1/

11
01

4.
14

5.
49

17
.5

3
0.

88
8

0.
93

4
0.

90
3

0.
17

6
19

.8
7

0.
30

D
EN

et
 [5

1]

Su
bs

et
1

11
0:

44
1/

55
1

6.
60

11
.2

7
21

.0
2

0.
88

7
0.

90
1

0.
89

9
0.

15
5

N
A

N
A

Su
bs

et
2

11
0:

44
0/

55
1

5.
97

11
.7

4
19

.8
3

0.
89

1
0.

92
6

0.
91

7
0.

14
3

N
A

N
A

O
ve

ra
ll

22
0:

88
1/

11
01

4.
58

6.
12

18
.7

8
0.

78
8

0.
94

7
0.

80
5

0.
15

2
N

A
N

A

Fl
ow

N
et

[5
2]

O
ve

ra
ll

22
0:

88
1/

11
01

3.
23

5.
33

17
.2

5
0.

81
0.

90
5

0.
82

2
0.

15
2

N
A

0.
26

Pe
op

le
N

et
 *

Su
bs

et
1

55
:2

20
/2

75
3.

76
5.

23
25

.1
0

0.
97

4
0.

98
7

0.
98

8
0.

12
4

39
.6

1
N

A

Su
bs

et
2

55
:2

20
/2

75
2.

95
4.

20
15

.9
0

0.
90

2
0.

95
0

0.
92

0.
14

3
34

.2
3

N
A

Su
bs

et
3

55
:2

20
/2

75
3.

25
3.

45
17

.9
0

0.
92

2
0.

93
2

0.
94

1
0.

15
7

31
.2

1
N

A

Su
bs

et
4

55
:2

20
/2

75
2.

76
3.

67
19

.0
3

0.
85

3
0.

92
4

0.
86

2
0.

16
4

47
.0

1
N

A

O
ve

ra
ll

22
0:

88
1/

11
01

3.
30

6
4.

38
19

.7
5

0.
97

7
0.

95
4

0.
92

3
0.

16
0

24
.1

2
0.

52



Regular Issue

- 71 -

the pixel level accuracy of generated DMs. A PSNR and SSIM values 
of 26 and 0.43 ensure the high quality of density maps responsible for 
accurate people estimation.

The ResNet-50 [41] model was tested over four random sub-data 
samples and secured a decrease of 55-80%, and a decrease of 30-40% 
in MAE and RMSE respectively. However, an increase of 40-50% has 
been observed for image level (PSNR) accuracy. This ensures the 
residual learning and strong feature extraction ability of the standard 
VGG19 which has been used as a backbone across 16,263,489 trainable 
parameters of ResNet50. The significant disadvantage of this network 
is to produce the low quality of density maps with poor regularization 
techniques, and as results secure lower PSNR and SSIM values. The 
percentage variation for image and pixel level accuracy is caused by 
training over lower training samples having mixing data (sparse and 
dense crowd). However, the lightweight training feature extraction 
ability is one of the significant advantages of this model, requiring 
fewer neuron weights (after training 187 MB) to perform pedestrian 
detection for dense crowd images.

The People-Flow model [52] was used to perform pedestrian 
estimation via using standard VGG16. It has a front end and its layers 
as the back end to ensure high-quality density maps. This integrated 
architecture secures 3.2, and 5.3 as MAE and RMSE; which is good 
enough but 0.152 as nrmse ensures the model’s robustness towards 
object head courting even in high crowd density samples while 
securing 0.26 as the SSIM value. The DENet [51] is an integrated 
detection (DENet) and estimation network (ENet) that performs CC 
tasks by using an encoder-decoder network as a dual-end network that 
trains separately over Mask R-CNN (9,64,983 trainable parameters). In 
comparison to 1101 samples for DENet, an increase of 30-44% in MAE 
and 85-95% in RMSE is obtained over two random sub-datasets; this 
shows vibrant performance for data variation. Due to the encoder-
decoder architecture of DENet, it disables pixel annotations, and 
computing the PSNR coefficient is nearly impossible. This universal 
network achieved MAE and RMSE values of 4.23 and 5.67, respectively, 
but failed to generate high-quality DMs due to low crowd density.

As we can see in Table V, MAE, RMSE, and MAPE lower values 
support higher regression accuracy between actual and observed 
values. The MAPE has calculated by dividing the difference by the 
actual value, in which if the actual value is close to 0 then the error 
will be very high, so MAPE is to be used only when the actual value 
is far from 0. That is the main reason for securing the MAPE of the 
PeopleNet model is higher than FlowNet for complete data samples. 
The Pearson and correlation coefficients determine the relationship 

strength, the higher the value the stronger the relationship. The 
CSRNet, ResNet50, DeNet, and FlowNet architecture showed a 
moderate degree of correlation as securing the average Pearson and 
correlation coefficients over their subset and overall testing samples 
for crowd counting purposes. Always having a higher correlation 
never means a strong relationship as it is a bi-variate relationship 
that somehow depends on the network architecture also, which has 
observed in the case of subsets testing of CSRNet model rather than 
PeopleNet. The CSRNet model adds a high number of useful variables 
as compared to existing models which results in high adjusted R2. 
However, the proposed PeopleNet model secures R2 a total of 0.977 
by clearing the misconception of lower regression accuracy for low 
to adjust  instead of having fewer neurons as CSRNet. The nrmse 
indicator is not always reliable for finding the best networks for small 
training samples, which is indeed shown in the case of ResNet50. The 
proposed model traced higher ‘nrmse’ among the models utilizing front 
and back-end training architecture. On another hand, the pixel-level 
performance of the PeopleNet model is incomparable as compared to 
existing state of art crowd counting models. The better overall object 
counting accuracy of the proposed model ensures its scalability and 
robustness even in videos shot in extreme conditions.

2. Case Study 2
Table VI shows the acquired findings over the benchmark and 

public datasets to compare overall performance without bias. Various 
statistical reports and results were presented to differentiate the 
accuracy variance for different data subsets. The RMSE for each 
random subset having 500 samples in the Mall dataset fluctuates 
between 28 and 65% when compared to the entire data samples; 
nevertheless, SAAN [53] achieved a nearly 26% increase.

The sparse, dense sub-sampling disparity has shrunk marginally in 
MAE, but it is essentially non-existent in SAAN [53] and PeopleNet. 
Because the Beijing-BRT [54] includes a total of 1280 samples, we 
computed PeopleNet results for two random and equal subsets due 
to the smaller data samples. We can see the nuanced variance in 
MAE but not in RMSE in each case; however, the proposed model has 
demonstrated superiority over the DRResNet [54] model by obtaining 
near 50% reductions in MAE and RMSE. There are 716 samples in 
the ShanghaiTech-B [40]. As a result, we only assessed PeopleNet’s 
performance on two random samples, subset1 and subset2. For 
the Beijing-BRT and ShanghaiTech-B samples, there was a 100-
200% change in MAE and RMSE, with a smaller percentage loss for 
DRResNet [54] and SPANet [55] accuracy. The obtained results present 
some image-level performance on frequently used databases; however, 

TABLE VI. Results Validation on Various Datasets, Highlighted Black Text Represents the Results Obtained on Random Sub-Samples, 
Highlighted Blue Text Represents the Results Obtained by the PeopleNet Framework

Model Dataset/ TestSubset SampleSize
(Test:Train)/Total

Performance
MAE RMSE

PeopleNet*
Mall[49]

Subset-1 100:400/500 1.648 2.116
Subset-2 100:400/500 1.799 2.193
Subset-3 100:400/500 1.407 1.708
Subset-4 100:400/500 1.589 2.094

Overall
400:1600/2000 1.247 1.33

SAAN[53] 400:1600/2000 1.28 1.68

PeopleNet*
Beijing-BRT[54]

Subset-1 128:512/640 11.65 16.179
Subset-2 128:512/640 8.933 14.325

Overall
256:1024/1280 3.172 4.1634

DRResNet[54] 256:1024/1280 1.39 2.00

PeopleNet*
Shanghai-Tech-B[40]

Subset-1 71:287/358 20.916 30.015
Subset-2 71:287/358 25.583 42.108

Overall
143:573/716 9.807 14.265

SPANet[55] 143:573/716 6.50 9.90
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the pixel-level accuracy comparison is not helpful for static devices 
captured in existing datasets. The obtained results by the PeopleNet 
model on the proposed dataset are closer to the obtained on existing 
datasets; which is solid evidence of the correctness, scalability, and 
robustness of the proposed model over constructed data samples.

V. Conclusion

Employing a novel PeopleNet framework, this study handled a 
difficult CV problem of autonomous crowd counting using a tracking 
dynamic imager. Using the feature of expansion residual mapping 
over the camera-induced motion for a self-generated head-mounted 
video dataset, this mechanism performs BEYOND and IN operations 
for visible spectrum. The technical aspect of this model is to provide 
fair people counting over moving cameras and moving people 
without intentionally or unintentionally pointing out individuals. The 
behavioral aspect of this study includes human counting in dangerous 
enemy territory or isolated places where electricity and infrastructure 
are no longer available. The PeopleNet’s experimental findings 
revealed that pedestrian recognition is done efficiently in the day or 
night environments to address occlusion. Detection of social distance 
practice violation via crowd density estimation could be another 
significant social aspect of this work.

Extend the PeopleNet model’s functionality for Covid19 like virus 
protocols via crowd monitoring in public places will be the possible 
future scope of this work.
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