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Abstract

A simple but effective channel attention module is proposed for Synthetic Aperture Radar (SAR) Automatic 
Target Recognition (ATR). The channel attention technique has shown recent success in improving Deep 
Convolutional Neural Networks (CNN). The resolution of SAR images does not surpass optical images thus 
information flow of SAR images becomes relatively poor when the network depth is raised blindly leading 
to a serious gradients explosion/vanishing. To resolve the issue of SAR image recognition efficiency and 
ambiguity trade-off, we proposed a simple Channel Attention module into the ResNet Architecture as our 
network backbone, which utilizes few parameters yet results in a performance gain. Our simple attention 
module, which follows the implementation of Efficient Channel Attention, shows that avoiding dimensionality 
reduction is essential for learning as well as an appropriate cross-channel interaction can preserve performance 
and decrease model complexity. We also explored the One Policy Learning Rate on the ResNet-50 architecture 
and compared it with the proposed attention based ResNet-50 architecture. A thorough analysis of the MSTAR 
Dataset demonstrates the efficacy of the suggested strategy over the most recent findings. With the Attention-
based model and the One Policy Learning Rate-based architecture, we were able to obtain recognition rate of 
100% and 99.8%, respectively.
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I. Introduction

IMAGES of the Earth's surface taken by employing Synthetic 
Aperture Radar (SAR) systems, an observation tool, regardless 

of the weather condition, is referred to as SAR images. The SAR 
Automatic Target Recognition (ATR), which is an essential part of 
SAR image interpretation, is one long-term research complex problem 
for researchers across the globe since it is generally applied in not 
only the military field but also in the civilian ones mainly since it is 
usable in any weather and time of the day. Contrary to the optical 
images with colors considered rich, SAR images can be distinguished 
by the possession of solid grayscale pixels with regions that have high 
intensities representing the targets. SAR image classification, which 
tags per pixel in accordance with one or more retrieved characteristics, 
is crucial to SAR image comprehension. In a broad sense, SAR 
image analysis might be used widely in a variety of fields, including 
monitoring of the environment and natural resources [1], hydrological 
and agribusiness modeling [2], and urban planning [3]. The architecture 

of SAR ATR which is basic is composed of three components which 
are detection and discrimination, alongside classification [4]. In the 
first component – detection, target regions or areas are extracted by 
a detector named Constant False Alarm Rate (CFAR) detector [5]. 
In the second component – discrimination, the application of the 
discriminator is for the identification of the candidate areas that are 
located by the targets with respect to the output of stage one. The 
third component – classification makes use of a classifier to identify 
the category of every target type.

Convolutional Neural networks (CNN) that are deep learning-based 
have been seen as one of the approaches that are extensive enough to 
both classify and detect SAR images. Nevertheless, with the limitation 
in available data for SAR images [6], employing the convolutional 
neural network for the SAR ATR task results in overfitting (when 
a model fits exactly against its training data, resulting in a poor 
performance against unseen data, defeating its purpose). There were 
three rudimentary steps taken to address this complication. The first 
option we call the transfer learning [7] mechanism. Here, a CNN is pre-
trained  using huge and extensive data  before calibrating the model 
again for precise SAR recognition problems. However, the disparity 
between SAR and optical images causes low-performance accuracy in 
SAR Images. On the other hand, a number of unmarked SAR images 
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could be a good replacement for optical ones. The third option is image 
enhancement [8]. However, this method is not usually considered 
in most studies. Furthermore, the performance of the outcome of 
the studies employing image enhancements via CNNs models was 
not promising. This can be explained by the need to substantially 
strengthen the CNN Algorithm employed in these studies.

The master plan for refinement regarding the architecture of 
CNN generally consists of the expansion of the network’s deepness 
and breadth. However, when the deepness is further stretched, there 
is a greater possibility of the network running into the challenge of 
vanishing/exploding gradients [9][10]. To resolve this challenge, 
ResNet [11] was proposed by Kaiming et al., which is composed of 
many residual modules that are superimposed. After the fusion of 
two layers, each dynamic ranges the value of the input and that of 
the output. Applying the principle of similarity projection makes the 
optimization of the variables’ weighting on the network levels more 
rational. Additionally, this aids in stopping the problem of contours 
that dissipate or explode when the range is increased. For instance, 
in the recognition challenge utilizing the ImageNet data, the loss 
observed was decreased to roughly 3.57% when a deeper ResNet is 
made of tiers that exceed 100 [11]. Although it is known that the 
expansion of the depth of the network does not go on without bounds 
since one that is too deep is most likely to lead to overfitting. The 
other possible expansion is in the width of the architecture leading 
to the extraction of more features which is an advantage but may 
lead to generating more parameters and increasing the computational 
requirement as well as leading to overfitting.

This paper introduces a new attention-based ResNet architecture 
appropriate for the SAR recognition task to address this problem. This 
architecture focused more on extracting features because of the fewer 
representatives obtained from images of SAR. We summarize our key 
contributions as follows.

• We propose a simple channel attention mechanism for SAR ATR 
involving only a handful of parameters while attaining clear 
performance gains by eliminating discretization and using the 
right cross-channel interaction.

• We also explore the use of one policy learning rate in the ResNet 
backbone for SAR ATR.

• Finally, tests were done to see how well the proposed simple 
channel attention and the one policy learning rate worked on the 
ResNet-50 architecture for SAR ATR.

The following is how this document is organized: Section II 
reviews the theory of SAR ATR and attention mechanism for image 
recognition and classification, followed by the proposed integration 
of the Simple Channel Attention module in ResNet-50 architecture 
in Section III. Section IV provides the dataset and data preprocessing 
while the experimental results and analysis are seen in Section V. We 
concluded in Section VI. 

II. Related Works

A. Introduction
Present-day major methods of classifying SAR-ATR are commonly 

subdivided into three methods which are template-based [12], model-
based [13], and pattern-based [14]. The classic system of SAR-ATR 
that is template-based puts the least Mean Square Error (MSE) 
criteria to get the type of the target from a stored database used as 
a reference for the target images or templates [15]. The system that 
is model-based examines the detail of every image and finds out the 
contribution of every part of its recognition [16]. Weighed against 
the other two methods, the strategy that is based on the principle 

of pattern recognition devoted an outstanding contribution to the 
task of image classification in the years past. The architecture that is 
pattern-based is designed for the extraction of features by initiating 
extractors of features which transforms the raw image to feature 
vectors with low dimensions. The output vectors are then categorized 
into groups by the classifier. A couple of ATR algorithms have seen a 
wide application for the classification of SAR images as well as their 
recognition, Artificial Neural Networks (ANN) being an example [17] 
with Support Vector Machine (SVM) [18] and Convolutional Neural 
Networks (CNN) [19] being other examples. 

Not very long ago a significant surge was ignited in the field of 
pattern recognition by deep learning algorithms which transcended 
with high recognition in the interpretation of images in remoting 
sensing [20]. This includes recognition of SAR targets where deep 
learning models, such as autoencoder and CNN, have found successful 
applications. Knag et al. [21] used a stacked autoencoder which they 
developed to achieve feature fusion by applying that to SAR target 
classification. The utmost often used deep learning technique for 
SAR image classification and recognition is the CNN, with several 
high-content articles employing different training methods and 
architectures. CNN was first employed and verified by Morgan 
[22] for SAR Target  classification. The structure of All-Convolution 
Networks (A-ConvNets) was proposed by this author for SAR target 
classification. We saw the use of CNN architecture which experimented 
with the MSTAR dataset for SAR target recognition in another 
research work [19]. The results demonstrate that the recognition rate 
may be considerably improved using CNN. When the convolutional 
layer is employed in another study [23], instead of the fully connected 
layer in CNN, the over-fitting concern is amazingly minimized, the 
parameter count is reduced, and the recognition rate is subsequently 
increased. Due to small samples of MSTAR datasets and overfitting, 
Li et al. [24] used an autoencoder to prepare the network beforehand, 
and the SAR images used by Jun et al. [8] were modified to enhance 
the sample size. Some researchers improved the network structure 
to improve CNN recognition performance. Zhuangzhuang [25] 
increased the class differentiating the performance of CNN, employed 
SVM for information classification, and added the class conditional 
independence measurement to the error cost function.

Other strategies, such as inception [26][27] and Xception [28], 
were put out to enhance the CNN model  performance and further 
address the problem. The inception/X-caption techniques do not 
only expand the width but also split the number of channels into 
independent sections. The sections having varying configurations 
are the concatenation fusion of the feature extraction obtained from 
various scales so that there can be enough features acquired and work 
at preventing computational complexity. A network architecture that 
is a combination of inception module and ResNet called Inception-
ResNet was proposed recently with the aim of considering both the 
depth and width simultaneously. Even though these techniques have 
been shown to improve performance for the classification of optical 
images, they are not applied in the field of SAR images yet. Moreover, 
the attributes of the images from SAR differ from those of optical 
images. Thus, it is theorized that it is not suitable to use methods that 
perform well in optical images directly for the SAR-ATR field, as such 
there is a need for improvements.

To further improve CNN’s recognition rate and adaptability for SAR 
ATR, this study offers integration of simple channel attention in the 
ResNet-50 architecture. The simple channel attention achieves better 
performance by applying dimensionality reduction during learning 
and an appropriate cross-channel interaction to decrease model 
complexity. Our findings provide further evidence that our method 
can raise classification accuracy for the MSTAR database.
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B. Attention Mechanism
A conceptual system that resembles brain activity is called the 

Attention Mechanism (AM) [29]. AM primarily emphasizes the 
important aspects while suppressing irrelevant details. With minimal 
cost, the AM  may be added to the CNN architecture and trained 
alongside the CNN [30]. Attention modules vary according to their 
implementation ideas, such as the Convolutional Block Attention 
Module (CBAM) [31] which paves the path for diverse feature maps to 
automatically learn pixel relationships and Channel Attention Modules 
which create a weight matrix to assess each channel’s significance. 
In addition to channel attention, the spatial attention module, which 
accumulates the weight matrix of characteristics in a spatial context, 
focuses on “where” relevant information might be obtained.

This study focused on the channel attention mechanism, improving 
deep Convolutional Neural Networks (CNNs). Nevertheless, most 
current approaches are intended to build more advanced modules 
of attention for improving performance, thereby increasing the 
complexity of the model. This paper proposed Simple Channel 
Attention (SCA) which simply requires a few arguments while 
attaining apparent performance gain on SAR ATR.

III. Proposed Architecture

Considering that  SAR image is substantially less vulnerable to 
reflection circumstances, overfitting is prone to happen while training 
CNN using SAR raw data. Since CNN is made up of huge parameters, 
there is severe overfitting because there aren’t enough training data. 
By using an attention technique, this article streamlines the utilization 
of ResNet topology. Top-down convolutional layers gain the feature 
maps from the ResNet backbone network. An attention mechanism 
is then used to process each feature map. The results obtained using 
the attention mechanism are then passed through a fully connected 
layer that gives through the feature vectors. The final feature map is 
then passed through our classifier, and the classification results are 
acquired at the end.

A. Proposed Simple Attention Mechanism
The Channel Attention mechanism demonstrated high-

performance results in improving deep CNNs. SE-Net [32] provides 
us with a useful method to examine channel attention and exhibits 
encouraging results. Therefore, the attention-module design may be 
classified in two ways: (1) improved feature aggregation; (2) pairing 
the channel and spatial attention. The proposed attention mechanism 
concerns the efficient convolutions designed for lightweight CNNs. Our 
simple channel attentions focus on the neighborhood interconnected 
interaction, similar to channel local attention [33] and channel-wise 
convolution [34]. In contrast, our approach probes a 1D convolution 
with adjustable Gaussian kernel size to replace fully connected layers 
in the channel attention module. Following the parameters of channels 
attention in SE Block, we assume

 (1)

Where  denotes channel-wise global average 
pooling (GAP) and ReLU activation function [35]. We set the sizes 
of w1 and w2 to  and  to prevent high model complexity. 
As much as Eq. (1), reducing dimensionality can minimize the model 
computational cost. It disrupts the weights’ and the channel’s straight 
relationship.

Both the efficiency and effectiveness of our simple channel 
attention mechanism can be guaranteed by using the band matrix wk 
of efficient channel attention to getting the interaction of the local 
cross-channels. We defend the band matrix wk thus;

 (2)

Where wk in Eq. (2) involves k * C parameters and the weight of yi  
is computed by solely taking into account the association between k 
neighbors of yi thus

 (3)

Where  explains k adjacent channels of yi in sets. To distribute a 
constant learning rate per channel, Eq. (3) can be rewritten as follows:

 (4)

Which can only be executed by a fast 1D convolution with k kernel. 
Since our attention module is directed at capturing local cross-channel 
interaction, the 1D convolution kernel size k needs to be computed; 
thus, we adopt the below equation [5]; 

 (5)

Where |t|odd denotes the nearest odd number of t. Note: we set γ  
and b to 3 and 1 respectively according to our experiments. Fig. 3 
illustrates the implemented attention mechanism.

B. One Policy Learning Rate
The learning rate is a hyper-parameter that determines how far 

our network’s weights are adjusted in response to the loss gradient. 
Conventionally, we  begin training the model by gradually raising 
the learning rate from low to high, halting when the loss becomes 
uncontrollable. As a result, getting it correctly might not be easy, as 
shown in Fig. 1. Mathematically we have:

 (6)

very high learning rate

low learning rate

high learning rate

good learning rate

epoch

loss

Fig. 1. Convergence effects of illustration of learning rates.

Gradient descent can be sluggish if it is too small or might overshoot 
the minimum if it is too great. It might either fail to converge or diverge 
right. Smith [36] stated that one might estimate a reasonable learning 
rate by first training a model with a low learning rate and then raising 
it (either gradually or rapidly) during every iteration, a process she 
called one policy learning rate. A learning rate scheduler approach 
enables (1) quicker network training and (2) a better understanding 
of the ideal learning rate. Several parameters are held constant during 
the experimentation, and the best learning rate is determined as the 
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training advances. Weight decay, maximum learning rate, optimizer, 
and initial learning rate are examples of such parameters, with weight 
decay updating the learning rate by a critical factor in each epoch.

C. Backbone Network
This paper used a lightweight deep learning network (ResNet50[11]) 

as its proposed model backbone, a deep convolutional neural 
network with a light design. It has 50 layers that, instead of learning 
unattributed functions, redefine as residual functions using the layer 
inputs. A stack of similar or “residual” blocks makes up the ResNet 
architecture. This block functions as a convolutional layer stack. A 
block’s output is also related to its input through an identity mapping 
mechanism. The feature mapping is continually down-sampled 
via depthwise convolution and the expansion in channel depth to 
retain the computational complexity per layer. To enable a lower 

computational workload while computing the 3x3 convolutions in the 
ResNet50 model, we have a three-layer bottleneck block that employs 
three convolutions to reduce and restore channel depth. We denote the 
flow chat diagram of our proposed architecture in Fig. 2.

D. Proposed Architecture Summary
Investigating how well the squeeze-and-excitation network (SENet) 

performs is the suggested model’s main objective, which is the 
learning of channel attention to every convolution block and results 
in noticeable performance gains for various deep CNN architectures 
[37]-[40]. Although SeNet obtains higher precision, it frequently 
results in higher computational costs and a heavier computational 
complexity [11]. This paper concentrated on only three convolutional 
blocks while avoiding dimension reduction and accurately preserving 
cross-channel interaction as seen in Fig 4. 

IV. Experiment

A. Dataset and Data Pre-Processing
We used the MSTAR data for our experiment and evaluations. It 

was created using stationary SAR and target measurements that were 
released by the MSTAR research and funded by the Air Force Research 
Laboratory (AFRL) and the Defense Advanced Research Project Agency 
(DARPA)  [41]. It comprises ten types of tactical ground targets, as 
depicted in Fig. 5. The images at a 17° angle of depression were used for 
training while using the images at a 15° angle of depression for testing, 
as seen in Table I. In contrast, Table II illustrates the actual target model 
vs. the number of images. We used the original preprocessed data [41] 
in our experiment as a preprocessing technique. Before feeding to our 
network, all image is resized to a fixed size of 224 x 224 after some data 
augmentation such as random rotation and normalizing.

TABLE I.  MSTAR Dataset Partition

Angle Total Number

Training Set 17° 2,752

Testing Set 15° 2,425

(a) SE Block (b) E�cient Channel Attention (ECA) Module

(Ours) Simple Channel Attention (SCA) Module
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Artillery Class Truck Class

Truck Class
0 1 2 3 4

5
0=2S1, 1=ZSU_23_4, 2=BRDM_2, 3=BTR_60, 4=SN_132, 5=SN_9563,

6=D7, /=ZIL 131, 8=T62, 9=SN_C71

6 7 8 9

Tank Class

Fig. 5. Pictorial representation of the MSTAR Dataset.

B. Evaluation Metrics
General evaluation matrices including Classification Accuracy, 

Precision, Recall, F1 Score, and IoU are applied in this paper. The 
percentage of accurately classified SAR imaging samples to all samples 
is used to calculate the classification accuracy. A higher percentage 
of correctly classified samples indicates a better classification 
performance. Mathematically we can express the classification 
accuracy as:

 (7)

Where TP= True Positives, TN= True Negatives, FP= False Positives 
and FN= False Negatives.

The precision value equals ground truth SAR imagery pixels in 
the projected SAR imagery area divided by the number of predicted 
SAR Imagery pixels. The recall value is the percentage of detected 
SAR imagery pixels over the ground truth region. Mathematically, we 
express the Precision and Recall as:

 (8)

The F-score indicates the average overall performance as computed 
by precision and recall. This is how the F-Measure score is calculated 
mathematically:

 (9)

Analyzing the classification results and the loss value much 
further, we used the confusion matrix to envision them. It highlights 
the errors the classifier makes when handling multi-class situations. 
The predicted category is represented on the horizontal axis, while 
the vertical represents the correct category. Hence diagonal elements 
are the correctly classified SAR images Each SAR class’s classification 
performance is represented by its lateral elements in the standardized 
confusion matrix. The following illustrates how to compute the 
Minimum Error using the loss and variance of the ground truth and 
the forecasted value [42]:

 (10)

Where  = predicted values, yn = the ground truth, and N = number 
of samples. In direct contrast to Accuracy, the lower the loss value, the 
better the model performance.

C. Implementation Details
We carried out our experiment on a windows OS computer based 

on the python environment, with 2.30GHz CPU Intel(R) Core (TM) 
i5-8300H and NVIDIA GeForce GTX 1050 Ti GPU (4g memory). We 
established the network using the open-source Pytorch deep learning 
framework, which we found to be an amazing resource. To increase 
our  training performance, we used distributed processing relying 
on the CUDA 8.0 and CUDNN 5.1 prerequisites. The MSTAR dataset 
was used for evaluating our model. Fig. 1 displays samples of SAR 
images together with matching optical views. The input photos are 
randomly rotated horizontally and resized to 224 × 224. The training 
hyperparameters include  1e-4 weight decay, 0.9 momenta, 256 mini-
batch, SGD optimizer, the initial learning rate of 0.1 and a reduction in 
learning rate of 10 per 30 epochs, 100 iterations.
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Fig. 4. Incorporating the proposed simple channel attention into the ResNet50 architecture. The proposed attention mechanism is incorporated into the second, 
third and fourth convolutional block to avoid the higher computational cost and computational complexity.

TABLE II. Target Description of MSTAR Database. There Are Three Types of Classes Thus the Artillery Class, Truck Class and the Tank Class

Target Model θ
Artillery Class Truck Class Tank Class

2S1 ZSU_23_4 BRDM_2 BTR_60 SN_132 SN_9563 D7 ZIL131 T62 SN_C71

Training Set 17 300 299 299 257 233 233 300 299 299 233

Test Set 15 274 274 274 195 196 195 274 274 273 196
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V. Experimental Results and Analysis

A. Recognition Performance Result
The proposed method is validated and discussed in this section using 

experimental results. First, the training and validation graph of the two 
proposed models is illustrated in Fig. 6, whereas Fig. 7 illustrates the 
training and validation loss graph. Table III. represents results from 
our two-model setup for the ten categories of targets. We realized 
that the ReNet-50 architecture based on the simple channel attention 
recognition rate is 100%, whereas we had a recognition rate of 99.8% 
in the ResNet-50 setup with one policy learning rate. As shown in Fig. 
8 and Table III for the attention-based model, we obtained only 0.01 
classification error in the SN_132 and SN_9563 class under precision, 
SN_9563, and SN_C71 class under precision-Recall and finally SN_9563 
category under f1-score. Regardless of the similarities of some images 
in some categories, with the help of simple attention, our model could 
recognize the appropriate class for the test datasets.

Fig. 8 illustrates the visual performance of the proposed model 
against the one-policy learning rate architecture. We test using just one 
image from each of the MSTAR three classifications. (Artillery Class, 
Truck Class and the Tank Class). The first and second row depicts the 
simple attention mechanism and the one policy learning rate visual 
performance result respectively. We further undertook an empirical 
comparison with a few recent state-of-the-rat results to validate the 
claims that the proposed model uses few model parameters compared 
to the previous work, thus attaining better results, as seen in Table IV. 
These CNN models have broader and deeper frameworks, and their 
findings are all lifted directly from the original articles. The findings 
above show that our proposed model  outperforms benchmarked 
models while having substantially lower computational complexity. It 
is important to note that our simple attention can remarkably increase 
the performance of the comparable CNN models.
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TABLE IV. Model Parameter Contrast Between the Proposed Model 
Vs. Recent State-of-the-Art Models

REF #. Param. FLOPs IoU@0.5 IoU@1

Ref [46] 74.45M 14.10G - 98.18

Ref [60] 25.90M 5.36G - 99.54

Ref [46] 46.66M 7.53G - 98.52

Ref [42] 31.79M 5.52G - 99.12

Ref [50] 27.35M 7.34G - 99.18

Ref [46] 42.49M 7.35G - 98.35

Ours 24.37M 3.86G 1.00 0.994

Class 0 pred as: 0

Class 0 pred as: 0

Class 1 pred as: 1 Class 7 pred as: 7

Class 1 pred as: 1 Class 7 pred as: 7

Fig. 8. Visual representation of the prediction outcome of the attention-based 
model vs. the One policy learning rate model.

Table III and Fig. 10 show that our one policy learning rate-based 
model had many misclassified samples due to similarities of the 
images among some classes against the attention-based model shown 
in Fig. 9. For the Precision, we had a misclassification rate between 
0.01% - 0.05% in the 2S1, SN_132, D7, SN_9563, ZIL131 and C71 classes. 
For the Recall, the misclassification rate is between 0.01% - 0.06% in the 
BTR_60, BRDM_2, SN_9563, SN_132 and C71 classes. The F1-score had 
a misclassification rate between 0.01% - 0.04% in the BTR_60, BRDM_2, 
SN_132, D7, C71, ZIL131 and SN_9563 classes. The misclassifications 
result from the similarities between images in some of the classes.
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Fig. 9. Attention-Based Model Confusion Matrix of MSTAR Dataset. The 
accuracy of the test set is 100%.

B. Result Comparison and Discussion
As indicated in Eq. (4), our simple attention module involves a 1D 

convolution Kernel size denoted with K. When K is kept constant in the 
selected convolution blocks, our model records its best performance at 
k=9, which was obtained by an adaptive method using Eq. (5); thus, we 
fixed k=9 all through the experiment. Furthermore, the findings reveal 
that different deep CNNs have their best k, thus indicating that k had a 
positive influence on the proposed model performance. Moreover, we 
noted that the fluctuation of the accuracy performance between the 
proposed model and the one policy learning rate model was much for 
the one policy learning rate; thus, we concluded that deeper networks 
are more responsive to constant kernel size than shallower networks. 
Finally, substituting the SE Blocks with the primary proposed attention 
network with different amounts of k consistently produced superior 
results, demonstrating that avoiding dimension reduction and local 
cross-channel communication has a favorable influence on learning 
channel attention.

Furthermore, the proposed technique’s performance is evaluated 
alongside 25 excellent state-of-the-art results from 2014 up to date 
using the same MSTAR Dataset. We pointed out the architectures 
used by each author in their work. We noted that our work is the 

TABLE III. Classification Accuracies of the Ten Classes of the Target for the Attention-Based Model Vs. the One Policy Learning Rate-Based 
Model

Class
Ours (Model based on an Attention Module) Ours (Model based on One Policy Learning rate)

Precision Recall F1-Score Support Precision Recall F1-Score Support
2S1 1.00 1.00 1.00 274 0.99 1.00 1.00 274

BRDM_2 1.00 1.00 1.00 274 1.00 0.99 0.99 274
BTR_60 1.00 1.00 1.00 195 1.00 0.94 0.97 195

D7 1.00 1.00 1.00 274 0.99 1.00 0.99 274
SN_132 0.99 1.00 1.00 196 0.97 0.99 0.98 196

SN_9563 0.99 0.99 0.99 195 0.95 0.97 0.96 195
SN_C71 1.00 0.99 1.00 196 0.98 0.99 0.98 196

T62 1.00 1.00 1.00 273 1.00 1.00 1.00 273
ZIL131 1.00 1.00 1.00 274 0.99 1.00 0.99 274

ZSU_23_4 1.00 1.00 1.00 274 1.00 1.00 1.00 274

Accuracy 1.00 2425 0.99 2425
Macro Avg 1.00 1.00 1.00 2425 0.99 0.99 0.99 2425

Weighted Avg 1.00 1.00 1.00 2425 0.99 0.99 0.99 2425
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TABLE V. IoU Classification Comparison With the State-of-the-Art Methods

Author Year Authors Focus IoU@0.5 IoU@1

Furukawa [43] 2018 End-To-End ATR of SAR Images Using Deep Learning - 0.923

Ours (One Policy Learning Rate Based) 2021 Synthetic Aperture Radar Automatic Target Recognition 
Based on Attention Mechanism

- 0.998

Ours (Attention Based) 2021 1.00 0.994

TABLE VI. State-of-the-Art Result Comparison. The Performance of the Two Implemented Models Beats That of the State-of-the-Art Models.  
We Analyzed the Year, the Author’s Focus and Their Approaches and the Results Obtained for the Recognition Task of SAR MSTAR Images

Author Year Authors Focus Model Accuracy

O’Sullivan et al. [44] 2001 Performance of SAR ATR with a Conditionally Gaussian Framework Gond Gauss 97%

Srinivas et al. [45] 2014 Using Discriminative Graphical Models for SAR ATR SVM 88%

Dong et al. [46] 2014 Using Sparse Encoding of a Single Gene Signal for ATR of SAR Images
Sparse Representation of a Monogenic 
Signal

93.66%

Dong et al. [47] 2015
Using Sparse Joint Encoding of a Single Gene Signal for ATR of SAR 
Images

Encoding of A Single - Gene Signal in 
Joint Sparse

93.41%

Tian et al. [25] 2016 CNN for ATR of SAR CNN 93.76%

Zhao et al. [19] 2016 CNN-Based Patch Level SAR Image Classification CNN -

Chen et al. [23] 2016 Using Deep CNN for SAR Images Identification A-ConvNet 99.13%

Gorovyi et al. [48] 2017 Effective SAR Images Recognition and Classification
Azimuth and Range Target Profiles 
Fusion

90.7%

David et al. [49] 2017 TL from Synthetic Data to Improve SAR ATR Models Convnet Model -

Furukawa [43] 2017
Deep Learning for SAR Image Classification Using Invariance and Data 
Enhancement

CNN With Data Enhancement 99.6%

Chang et al. [50] 2017 SAR Images ATR Based on Metadata Representations Metadata Representation 94.88

Lin et al. [6] 2017
SAR Target Classification Using Deep CNN With Highway Block and 
Few Labeled Training Set

Deep CNN With Highway Block 99.09%

Huang et al. [7] 2017 TL with Deep CNN For SAR Target Recognition with Few Labeled Data CNN-Transfer Learning 99.09%

Furukawa [51] 2018 End-To-End ATR of SAR Images Using Deep Learning VersNet 99.55%

Wang et al. [52] 2018 CNN-Based SAR Image Target Recognition and Identification 
CNN
SVM

96.4%
93.85%

Gao et al. [53] 2018
An Improved Deep CNN Novel Algorithm for SAR Image Target 
Identification

DCNN + ICF + SVM 99%

Dong et al. [54] 2018
SAR Target Recognition Using a Salient Detail Localized Classifier 
Framework

Keypoint-Based Local Descriptor -

Zhang et al. [55] 2019 Adaptive Region CNN for SAR Image Classification Adaptive Neighborhood-Based CNN -

Xie et al. [56] 2019 A New CNN for SAR Target Recognition Umbrella 99.54%

Xinyan et al. [57] 2019 SAR Image Target Recognition with CNN CNN 99.18%

Dong et al. [58] 2019
Target Recognition in SAR Images Via Dimension Reduction in The 
Frequency Domain

Bandwidth Modeling Approach for 
Sparse Signals

-

Zhang et al. [55] 2019
SAR Image Classification Using Adaptive Neighborhood-Based 
Convolutional Neural Network

Adaptive Neighborhood-Based CNN -

Wu et al. [59] 2020 SAR Images ATR Based on CNN + SVM

AlexNet
AlexNet + SVM
Hybrid CNN
Hybrid CNN +SVM

98.52%
98.35%
99.05%
99.18%

Wang et al. [60] 2020
SAR Target Recognition Using Recouped Non-Negative Matrix 
Induction and Meta-Learning

Depreciation and Amortization Non-
Negative Matrix Deduction and Meta-
Learning

97.9%

Lie et al. [61] 2021 Discrete Wavelet Transforms for Slight Discoloration in SAR Images Contourlet-CNN -

Miao et al. [62] 2021 Azimuth and Elevation Lower Bound Reconstruction for SAR Images
Adaptive Restoration with Azimuthal 
Sensitivity Restrictions

99.12%

Ours 2021
Synthetic Aperture Radar Automatic Target Recognition Based on 
Attention Mechanism

ResNet with Simple Attention Mechanism
ResNet With One-Policy Learning Rate

100%
99.8%



Regular Issue

- 75 -

first to implement an attention mechanism for the ATR SAR image 
recognition task; thus, we have established a new interest in research 
for further studies. Although the identified architectures demonstrate 
outstanding performance in the SAR images, as illustrated in Table V 
and Table VI, it is seen that the proposed architecture outperforms all 
the methods for SAR ATR and classification.
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Fig. 10.  One Policy Learning Rate-Based Model Confusion matrix of MSTAR 
Dataset. The test set yielded 99.8% accuracy.

VI. Conclusion

This article presents a new approach via an attention mechanism 
to tackle the limitation of SAR image ATR. Specifically, the channel 
attention mechanism is reviewed. We then proposed a simple channel 
attention mechanism that uses a few parameters. Yet, it yields good 
performance, avoids reducing dimensionality during learning, 
maintains cross-channel interaction performance, and decreases the 
complexity of the model. We fussed our simple attention module into 
the ResNet Architecture as our network backbone. We also examined 
the one policy learning rate to weigh up the potential of the attention 
mechanism on the ResNet-50 architecture. The total identification 
accuracy of the ten different MSTAR SAR images is 99.8% using the 
one policy-based architecture and 100% using the simple attention-
based architecture. Therefore, we can say  that the attention-based 
module we created is promising to be used as a standard for SAR target 
identification systems.
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