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Abstract

Contemporary cloud application and Edge computing orchestration systems rely on controller/worker design 
patterns to allocate, distribute, and manage resources. Standard solutions like Apache Mesos, Docker Swarm, 
and Kubernetes can span multiple zones at data centers, multiple global regions, and even consumer point 
of presence locations. Previous research has concluded that random network partitions cannot be avoided in 
these scenarios, leaving system designers to choose between consistency and availability, as defined by the 
CAP theorem. Controller/worker architectures guarantee configuration consistency via the employment of 
redundant storage systems, in most cases coordinated via consensus algorithms such as Paxos or Raft. These 
algorithms ensure information consistency against network failures while decreasing availability as network 
regions increase. Mainstream blockchain technology provides a solution to this compromise while decentralizing 
control via a fully distributed architecture coordinated through Byzantine-resistant consensus algorithms. This 
research proposes a blockchain-based decentralized architecture for cloud resource management systems. We 
analyze and compare the characteristics of the proposed architecture concerning the consistency, availability, and 
partition resistance of architectures that rely on Paxos/Raft distributed data stores. Our research demonstrates 
that the proposed blockchain-based decentralized architecture noticeably increases the system availability, 
including cases of network partitioning, without a significant impact on configuration consistency.
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I. Introduction

Contemporary cloud application and Edge computing management 
systems rely on centralized architectures to distribute and 

manage application configuration across the network [1]. The most 
prevalent implementations are designed around the controller/worker 
pattern, in which a controller node receives one or more requests 
and then communicates with worker nodes to execute them. In this 
architecture, the controller and worker constantly run a loop to ensure 
that the controller has an up-to-date view of the system and that the 
worker receives the latest scheduled configuration. The controller/
worker pattern allows system designers to simplify the scheduling and 
allocation of resources by assuming that a consistent global state view 
is available to the controller nodes.

Intrinsic to the centralized architecture design is the requirement 
to implement strong security measures. It only requires the security 
compromise of the controller nodes in the system to take control 
of the entire network. It is common for system designers to isolate 
controller nodes from the application data plane [2] to restrict 
orchestrated application access to the control plane, further increasing 
the deployment complexity across network boundaries [3]-[4]. 

However, as these systems’ topological complexity and scale increase, 
many questions arise, such as latency, reliability, and load balancing 
(Fig. 1). In most cases, as a single point of failure, the controller is 
replicated and strategically placed to minimize the impact of hardware 
failures [5]. As the number of zones increases, so does the number of 
controller replicas, thus increasing the system’s overall fragility. 

Fig. 1. Typical redundant Controller/Worker architecture.
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System designers rely on data storage solutions to guarantee 
configuration consistency across controller nodes, therefore inheriting 
their underlying consistency and availability characteristics. System 
availability against machine failures is addressed through controller 
active redundancy [6] across regions or zones. However, this topology 
makes network partitions more likely, forcing system designers to 
choose between consistency and availability. According to the CAP 
theorem [7], any distributed data store can provide only two of three 
guarantees (Fig. 2): consistency, availability, or partition resistance.

Fig. 2. CAP Theorem lemma [4].

 Because system designers cannot prevent network failures [8], 
the compromise between consistency and availability is typically 
addressed by implementing consensus schemes such as the Paxos and 
Raft algorithms [9]. Architectures based on these algorithms require 
that most control nodes are available, and those worker nodes can 
connect to one of those nodes to ensure access to the most recent view 
of the system. If a controller network connection is interrupted, it can 
no longer perform its designated function.

However, modern cloud-based applications are typically designed 
to satisfy the need for scale, availability, and globally distributed 
access. These applications are designed to be resilient against transient 
failures and do not require absolute consistency of the control plane 
data to ensure availability across fragile global environments. Instead, 
those applications can benefit from increased availability of the 
underlying control system to ensure the triggering of actions when 
failures or scaling events occur.  

Mainstream blockchain technology can provide an alternative 
solution by decentralizing the control plane with a fully distributed 
architecture that relies on the eventual consistency achieved through 
Byzantine-resistant consensus algorithms [10] and strong security 
enforced via defined cryptographic rules. Because of distributed 
consensus, all nodes in the network can validate the order of 
cryptographically signed system management transactions to reach 
an agreement on which application configuration blocks to add to the 
blockchain, including scenarios where parallel chains evolve during a 
network partition event. In this scenario, the control plane is available 
if any node in the network is reachable, functioning, and capable of 
recording transactions onto the longest known blockchain, maximizing 
availability in place of consistency. In contrast, controller/worker 
architecture’s availability depends on having access to a controller 
node, even if the underlying storage systems were configured to use 
eventual consistent consensus schemes. 

The main contributions of our work are (a) a design for a 
decentralized hybrid control/worker node, (b) a set of transaction 
validation rules for system state information, and (c) three theorems 
(maximum availability, eventual consistency, partition primacy) from 
the properties of the proposed system. The remainder of this paper 
is organized as follows: Section II explores related work and existing 
research. Section III describes the proposed integrated architecture for 
hybrid control/work nodes, the structure of the proposed blockchain, 
and validation logic. Our results are discussed in Section IV, and 
conclusions and suggestions for future research are presented in 
Section V. 

II. Related Work

State-of-the-art application management technologies simplify 
automation via declarative configuration, where state updates are 
propagated over time in what is known as intent-record consistency. 
This means that the system will eventually reflect the most current 
configuration as scheduled by a central controller. The system records 
any requests submitted to be later processed by the controller nodes.

Examples of systems based on controller/worker architecture 
include Cloud Foundry [11], Apache Mesos [12], Docker Swarm [13], 
and Kubernetes [14]. As previously stated, the architecture of these 
systems prioritizes intent-record consistency and availability through 
controller replication [15].

Apache Mesos, Docker Swarm, and Kubernetes store configuration 
state in Etcd, a key-value store, using the Raft consensus algorithm to 
ensure consistency and partition resistance. Essentially, the controller 
returns the confirmation to the client only when a quorum of storage 
nodes coordinated by an algorithmically selected leader acknowledges 
the request. Reads are linearizable, implying that once a write is 
completed, all later read should return the value of that write or the 
value of the last write. Alternatively, Cloud Foundry utilizes MySQL, 
a relational database that relies on the Paxos algorithm. However, in 
practical terms, the only difference between Paxos and Raft is the 
leader’s election mechanism [16].

For example, when a user submits an intent request, the desired 
configuration change is first stored in either Etcd or MySQL. Depending 
on the system, the transaction is then confirmed to the user, who 
reasonably expects the request to be distributed and committed. Once 
the configuration change is committed, the controller can execute the 
scheduling algorithm and communicate the changes to the affected 
worker nodes to achieve a consistent global state that matches the 
user’s intentions [17]. These mechanisms, in aggregate, provide intent-
record state consistency that guarantees high statistical availability 
and good network partition resistance if the controllers can connect to 
storage nodes and the storage nodes can achieve a quorum (Table I).

TABLE I. Partition Resistance Examples of Paxos/Raft

Servers Quorum Failure Tolerance1

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

8 5 4
1 Server failure or networked partitioned
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In the case of network partition across data center zones or regions 
(Table III), nodes placed in a partition outside the quorum cannot be 
managed or provide system updates, leading to potential outages. For 
example, an application might not be able to react to an autoscaling 
event, or a node failure cannot be redeployed. Raft and Paxos drive 
consistency and availability (up to a few failed nodes proportional to 
the number of replicas) from the point of view of an external consumer 
with equal access to all the replicas. In most cases, replicas are 
collocated with the nodes. If a replica loses network access, collocated 
nodes cannot be operated.

To date, little practical research has been performed to weaken 
the criteria for replica consistency to improve the partition tolerance, 
availability, and performance of cloud systems owing to the non-
monotonic nature of the system configuration. Non-monotonicity 
occurs when a new configuration change request alters the previous 
configuration state request [18]. Consequently, request ordering 
determines the global state of the system. However, because of 
the characteristics of the eventual system consistency described 
previously, a system of rules that disambiguates potentially conflicting 
configuration requests can provide acceptable levels of consistency. 
For the most part, system operators prioritize their focus on the 
system’s final state and, in most cases, can infer the consequences of 
intermediate states during configuration changes.

A well-defined set of transaction ordering rules implemented as a 
cryptographic protocol and persisting results on a blockchain presents 
an opportunity to leverage mainstream consensus algorithms to solve 
the challenges presented by the CAP theorem.

The feasibility of implementing blockchain technology control 
systems has been demonstrated using a multi-tier architecture to 
record and distribute configurations across multiple control nodes 
[16]. Existing implementations leverage smart contracts to substitute 
access control and preserve the sequence of change requests. However, 
deployment control is still delegated to a traditional controller/worker 
cluster architecture. While a fully distributed blockchain across all 
regions can yield similar results concerning global availability, it still 
depends on the availability of the local cluster controller to ensure all 
nodes can be operated, therefore not impacting the CAP properties of 
the system or the security of the control nodes.

Concerning blockchain performance, previous work has 
determined that the throughput characteristics of three-tier control 
systems utilizing a general-purpose blockchain as a record store yield 
good results [19].

Fig. 3. Focus on Availability and Partition Resistance.

The objective of this research (Fig. 3) is to evaluate the 
implementation of a highly available and partition resistant [18] cloud 
management system offering a solution that utilizes a purpose-built 
blockchain to store system state to record configuration efficiently 
and in a verifiable and permanent manner [20]. 

This research evolves previous approaches by integrating control 
and work nodes into a single hybrid component and using Byzantine 

resistance consensus algorithms to coordinate the blockchain’s 
agreement, termination, and validity.

Existing blockchains implementation like Ethereum, Cardano, 
Solana, Hyperledger, or any other general-purpose blockchain with 
support for smart contracts can be used to manage and execute 
purpose-built smart contracts containing the logic of configuration 
disambiguation, scheduling, and access control. However, using 
existing blockchains will require a network of Oracles capable of 
performing active functions, including failure detection. In addition, 
to ensure the same level of availability, it would require every node 
running the software to also operate as a general-purpose blockchain 
node alongside the required Oracles. We decided against this approach 
due to the runtime, management, and overhead. Although outside 
the scope of this research, we consider implementing the solution 
using general-purpose smart contract blockchains worth studying 
for Web3 applications that rely on both traditional stacks and smart 
contracts. Future research will evaluate and compare the overhead 
costs of running a general-purpose vs. purpose-built blockchain to be 
deployed to each node.

III. Proposed Framework

This proposal is structured into three sections. First, we cover the 
architecture of the hybrid controller/worker node and its connectivity 
to other nodes. The second section describes how the system state 
configuration is encoded into the blockchain structure, followed by 
global ordering rules that ensure transaction validity to be applied by 
participating nodes.

A. System State Blockchain
In blockchain-centric systems, a natural pattern is decentralizing 

control and replacing authority with Byzantine-resistant consensus 
patterns [21]. Applying this pattern to the cloud management space 
may seem unintuitive at first glance, yet this solution addresses the 
primary goals of this research.

This yields a highly available peer-to-peer architecture [22] of 
compute nodes collectively converging into a state that matches the 
sequence of intents stored in the blockchain.  While the primary 
function of nodes is to host workloads, nodes maintain a full copy of 
the blockchain and participate in the consensus process as both block 
creators and validators.

Nodes are connected to other nodes using a peer-to-peer (P2P) 
gossip protocol. When a node is added to the network, the initial 
discovery of peer nodes is performed using dynamic DNS. Once a node 
is connected to other nodes, it can receive a list of other known nodes 
and blocks. In addition, the node can validate the list of known nodes 
obtained with the configuration stored in the blockchain. There may 
be additional security warranties when adding a node to the network 
depending on the consensus algorithm, for example, client certificate 
authentication in Proof of Authority schemes.

The nodes receive direct connections from users. Users submit new 
transactions and inspect the state of the node and the last known system 
state, according to the longest chain stored by that node. Additionally, 
nodes are assigned the responsibility of communicating with external 
services, for example, updating a DNS entry or configuring a new load 
balancer.

We incorporate the existing Kubernetes architecture elements for 
the proposed solution, such as the Kubelet component, which provides 
the actuation of state configuration changes by communicating with 
the node host operating system. As such, the components of a hybrid 
node include (Fig. 4):
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Fig. 4. Decentralized blockchain/worker node architecture.

1. The peer manager is responsible for maintaining a list of known 
peers. It creates and maintains TCP connections and receives new 
connections from peers. The peer manager communicates with 
other nodes via the P2P gossip protocol. 

2. The consensus manager is dedicated to applying consensus 
rules to maintain the longest valid chain known by the node by 
determining which blocks should be added to the chain or even 
discarding dead-end chains. The consensus manager is integrated 
very closely with the peer manager, such that it can adapt the 
node chain to new information, including blocks and alternative 
chains. In addition, a node, depending on the consensus algorithm, 
may be selected for mining a new block. The consensus manager 
communicates the new block to the other peer nodes.

3. The validator is responsible for analyzing the contents of a block 
and ensuring that all new transactions are valid. Transaction order, 
transaction inputs and outputs, locking script execution, and other 
block rules are related to the consensus algorithm. 

4. Pending changes comprise a list of known pending transactions. 
Each block maintains a list of pending transactions. When a new 
block is received or minted, the transactions in the block are 
removed from the pending list.

5. The block factory is responsible for mining a new block based on 
the inputs of the pending change list. It communicates with the 
consensus manager, ensuring that the block is valid by verifying 
with the validator. Any invalid transactions are reported until a 
block is valid and ready to be communicated.

6. The scheduler is a component that watches for newly created 
resources with no assigned nodes.

7. API is the front end of the contents of the state of the cluster and 
transaction management. Users connect to the node via an API to 
interact with the cluster without directly operating a node.

8. State Manager maintains the databases and indexes required to 
store and operate the cluster.

9. Blocks are key-value pair databases indexing every block and 
transaction of the blockchain by its hash value.

10. State is a document-oriented database with content resulting from 
executing all transactions in the blockchain.

11. The controller manager is responsible for maintaining the 
configuration and state of the services external to the cluster.

12. Kubelet is part of the Kubernetes architecture. It is responsible for 

connecting to the Docker runtime and ensuring that all pods and 
containers run according to the cluster state determined by the 
blockchain.

B. Blockchain Structure
Transaction data is stored in blocks organized into a linear sequence 

(Fig. 5). New transactions are added to the blocks, and blocks are added 
at the end of the blockchain. Each block indirectly contains the hash 
of each transaction calculated by adding every transaction to a Merkle 
tree and storing the root. Additionally, every block includes the hash 
of the previous block’s header. In essence, every time a block is added 
to the chain, the harder it is to change or remove previous blocks, and 
every transaction in the blockchain is irreversible and final. 

Fig. 5. Blockchain structure.

Block transactions contain each of the changes in the system’s 
configuration submitted by users. The structure and content are like 
those utilized in cryptocurrency ledgers, with differences compared 
to the input and output of the transactions referring to hierarchical 
resource definitions. For example, to create a new resource within a 
folder or namespace, the transaction input must meet two conditions: 
a reference to the most recent transaction with a parent resource as 
an output and a script or data satisfying the requirements of the input 
transaction script.

When a user submits a transaction, it is possible to refer to a parent 
resource directly or indirectly to satisfy the validation requirements.

The input of direct access transactions refers to the most recent 
transaction with the targeted resource as the output. It is the user’s 
responsibility to identify the latest transaction and produce the input 
script data that meets the requirements of the script securing the 
resource.

The input of indirect access transactions refers to a transaction 
used to create or update a hierarchical resource. For example, starting 
a new deployment refers to the output of the transaction used to create 
or update the namespace where it would be contained.

C. Transaction Validation
All nodes check every transaction during the block forming 

process. A block is constructed by assembling ordered transactions 
from the pending transaction list. The selection of transactions to be 
included in a block is critical for the system design. Transaction order 
is performed using both topological and canonical rules.

Topological ordering by ordering transactions according to their 
positions in the resource hierarchy. Topological ordering ensures that 
sequential transactions that depend on a previous transaction that 
manages a parent resource are evaluated to maximize transaction 
validity. For example, a resource cannot be created until a parent 
resource is created.
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Canonical ordering is performed when two resources have 
equivalent inputs and outputs in a resource hierarchy. When this 
occurs, transactions are ordered by transaction ID, calculated as the 
SHA256 of the transaction data. Canonical ordering ensures that the 
output is unique and deterministic given the same set of transactions. 
In other words, given the same set of unordered transactions, the 
result after ordering would be the same regardless of who performs 
the ordering or when the operation is performed.

Additionally, when two chains evolve independently due to a 
network partition event, nodes that adopt a new longer chain would 
move transactions on the shorter chain to the pending changes list and 
be evaluated accordingly.

IV. Results and Discussion

The proposed architecture provides the foundation for a fully 
distributed configuration management system that stores the global 
configuration in a blockchain structure and is distributed across all 
the nodes in the network. This architecture solution offers improved 
network-partitioning resistance and availability.

Network partitioning occurs when a group of nodes is isolated and 
cannot communicate with the remaining nodes in the network. This is 
a common scenario when those nodes are not in the same data center 
or the data center is partitioned into two or more availability zones. 
Note that in the proposed architecture, when a network partition 
occurs, there is a risk that transactions submitted to the partition with 
the shortest chain will become invalid once the network connectivity 
is restored. The transactions are appended to the Pending Changes 
list (Fig. 6).

Fig. 6. Chain resolution after Network Partition.

So far, we have discussed the core components and behaviors of the 
system. From the analysis conducted throughout this study, we can 
deduce that the system meets the following propositions:

Proposition 1: Any node can accept a transaction.

Proposition 2: A single node can add a block to the chain.

Proposition 3: Nodes do not require connection to other nodes to 
accept transactions.

Proposition 4: A group of nodes (more than one node), where 
each node can connect to others, will generate a chain faster than 
a group with fewer nodes.

Proposition 5: A node will always accept the longest chain 
available.

Therefore, we can formulate the following three theorems by the 
principle of mathematical logic.

1. Theorem: Maximum Availability
If a node is available, the system is available.

Proof of Theorem 1. P1 ∧ P2 ∧ P3 ⟹ T1. If any node can accept 
a transaction (Proposition 1), and a single node can add a block to 
the chain (Proposition 2), and nodes do not require the connection to 
other nodes to accept transactions (Proposition 3), then if a node is 
available, the system is available. 

2. Theorem: Eventual Consistency
A transaction can only be considered irreversibly committed when 

it is part of a block in the longest chain, and is part of the current chain 
for most of the nodes in the network.

Proof of Theorem 2. P3 ∧ P4 ⟹T2. If nodes do not require the 
connection to other nodes to accept transactions (Proposition 3), and 
a group of nodes (more than one node), where each node can connect 
to others, will generate a chain faster than a group with fewer nodes 
(Proposition 4), then a transaction can only be considered irreversibly 
committed when it is part of a block that is in the longest chain, and it 
is part of the current chain for most of the nodes in the network. 

3. Theorem: Partition Primacy
A network partition with the majority of nodes generates the 

longest chain with irreversibly committed transactions.

Proof of Theorem 3. P4 ∧ P5 ⟹T3. If a group of nodes (more than 
one node), where each node can connect to others, will generate a 
chain faster than a group with fewer nodes (Proposition 4), and a node 
will always accept the longest chain available (Proposition 5), then a 
network partition with the majority of nodes generates the longest 
chain with irreversibly committed transactions. 

4. Examples
Traditional Paxos/Raft-based systems are available if most replica 

nodes are available to achieve quorum and maintain the configuration 
store consistency (Table II).  When there are three zones, both systems 
are reliable when one fault occurs. However, the differences are 
revealed when two Paxos/Raft replicas fail, preventing the system 
from achieving a quorum and leading to system failure. Note that in 
this proposal (Table III), only users who can access a partition with 
available nodes will be able to submit transactions. 

TABLE II. Availability Examples of Paxos/Raft

Zones/Replicas Replica Faults Partitions Paxos/Raft

3 / 3 1 0 Available

3 / 3 2 0 Fault

3 / 3 0 2 Fault

9 / 9 4 0 Available

9 / 9 5 0 Fault

9 / 9 0 3 Fault

3 / 3 1 0 Available

3 / 3 2 0 Fault

Additionally, as stated in the Partition Primacy and Eventual 
Consistency theorems, only nodes in the largest partition will be able 
to confirm transactions irreversibly.
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TABLE III. Availability Examples of the Proposed Solution

Zones/Replicas Replica Faults Partitions Proposed
3 / 300 50 / 50 / 50 0 Available
3 / 300 100 / 0 / 0 0 Available1

3 / 300 100 / 100 / 100 0 Fault
3 / 300 100 / 0 / 0 1 Available1

3 / 300 50 / 50 / 50 1 Available2

3 / 300 50 / 50 / 50 2 Available2

3 / 300 50 / 50 / 50 3 Available2

1 Not accessible from failed partitions.
2 Transactions cannot be considered irreversible until restored.

In the Paxos/Raft system, when the number of zones is expanded 
to nine, and thus, the number of replicas, the statistical availability 
increases dramatically. However, in cases where multiple network 
partitions occur, the system can become unavailable because of the 
inability of replicas to talk to each other and thus prevent a quorum, 
even with no replica failures. As stated in the theorem of maximum 
availability, our proposal becomes unavailable only when all the 
nodes fail.

V. Conclusions and Future Research

In the proposed decentralized architecture, the system is available as 
long as the nodes are accessible to the user. However, the intent-record 
consistency is compromised and replaced with eventual consistency. 
In essence, a user querying a different node that received the change 
might obtain a response that does not include the most recent change, 
that is, until that change is broadcast through the network and adopted 
in a block that is part of the longest computed chain. This scenario, we 
believe, is an acceptable compromise.

Integrating the blockchain node capabilities, scheduler, and 
container management agent reduces management overhead by 
reducing the number of software components to be deployed 
and managed. Since our proposal does not allow the execution of 
general-purpose smart contracts, the security surface is reduced, and 
configuration management operations costs stay constant.

Minting an additional block to the blockchain is perhaps the most 
critical operation [23] to meet the desired consistency and performance 
requirements. In future research, we will analyze different algorithms 
that can potentially be used to ensure that blocks are minted, validated, 
and added to the blockchain throughout the network while minimizing 
the trust required. In essence, these algorithms enable the capability to 
achieve consensus on which blocks to add to the chain based on rules 
that ensure fairness and security for all participants. Examples of these 
algorithms are as follows:

1. Proof of Work (PoW) is a consensus algorithm based on 
demonstrable computational effort across a fixed time window, 
forcing each party to upfront a total energy/computational cost 
proportional to their weight on the consensus effort.

2. Proof of Space (PoS) is a consensus algorithm based on 
demonstrable storage capacity requiring every participant to pre-
compute and store an established function output. Participants 
must be able to prove knowledge of that output at any time, 
ensuring a commitment to integrity by upfronting the storage 
cost.

3. Proof of Authority (PoA) is a consensus mechanism based on 
the proven identity of the participants. This algorithm requires 
establishing a level of trust across the participants.

4.  Proof of Stake (PoS) is a consensus algorithm based on demonstrable 
funds requiring all participants to deposit a monetary amount in 
an escrow account controlled by a cryptographic protocol.

It should be noted that the proposed architecture integrates data and 
control planes, thereby forcing the re-evaluation of existing security 
threat models. Future research should compare current architectures 
to secure control and application data.
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