
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 88 -

* Corresponding author.

E-mail address: alberto.arias@gmail.com

Keywords

Blockchain, Cloud
Computing, Distributed
Systems, Paxos, Raft.

Abstract

Contemporary cloud application and Edge computing orchestration systems rely on controller/worker design
patterns to allocate, distribute, and manage resources. Standard solutions like Apache Mesos, Docker Swarm,
and Kubernetes can span multiple zones at data centers, multiple global regions, and even consumer point
of presence locations. Previous research has concluded that random network partitions cannot be avoided in
these scenarios, leaving system designers to choose between consistency and availability, as defined by the
CAP theorem. Controller/worker architectures guarantee configuration consistency via the employment of
redundant storage systems, in most cases coordinated via consensus algorithms such as Paxos or Raft. These
algorithms ensure information consistency against network failures while decreasing availability as network
regions increase. Mainstream blockchain technology provides a solution to this compromise while decentralizing
control via a fully distributed architecture coordinated through Byzantine-resistant consensus algorithms. This
research proposes a blockchain-based decentralized architecture for cloud resource management systems. We
analyze and compare the characteristics of the proposed architecture concerning the consistency, availability, and
partition resistance of architectures that rely on Paxos/Raft distributed data stores. Our research demonstrates
that the proposed blockchain-based decentralized architecture noticeably increases the system availability,
including cases of network partitioning, without a significant impact on configuration consistency.

DOI: 10.9781/ijimai.2023.02.002

Blockchain Based Cloud Management Architecture
for Maximum Availability
Alberto Arias Maestro1*, Oscar Sanjuan Martinez1, Ankur M. Teredesai2, Vicente García-Díaz3

1 Universidad Internacional de La Rioja, Logroño (Spain)
2 University of Washington, Tacoma, WA (USA)
3 University of Oviedo, Oviedo (Spain)

Received 10 May 2022 | Accepted 20 January 2023 | Early Access 1 February 2023

I. Introduction

Contemporary cloud application and Edge computing management
systems rely on centralized architectures to distribute and

manage application configuration across the network [1]. The most
prevalent implementations are designed around the controller/worker
pattern, in which a controller node receives one or more requests
and then communicates with worker nodes to execute them. In this
architecture, the controller and worker constantly run a loop to ensure
that the controller has an up-to-date view of the system and that the
worker receives the latest scheduled configuration. The controller/
worker pattern allows system designers to simplify the scheduling and
allocation of resources by assuming that a consistent global state view
is available to the controller nodes.

Intrinsic to the centralized architecture design is the requirement
to implement strong security measures. It only requires the security
compromise of the controller nodes in the system to take control
of the entire network. It is common for system designers to isolate
controller nodes from the application data plane [2] to restrict
orchestrated application access to the control plane, further increasing
the deployment complexity across network boundaries [3]-[4].

However, as these systems’ topological complexity and scale increase,
many questions arise, such as latency, reliability, and load balancing
(Fig. 1). In most cases, as a single point of failure, the controller is
replicated and strategically placed to minimize the impact of hardware
failures [5]. As the number of zones increases, so does the number of
controller replicas, thus increasing the system’s overall fragility.

Fig. 1. Typical redundant Controller/Worker architecture.

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 89 -

System designers rely on data storage solutions to guarantee
configuration consistency across controller nodes, therefore inheriting
their underlying consistency and availability characteristics. System
availability against machine failures is addressed through controller
active redundancy [6] across regions or zones. However, this topology
makes network partitions more likely, forcing system designers to
choose between consistency and availability. According to the CAP
theorem [7], any distributed data store can provide only two of three
guarantees (Fig. 2): consistency, availability, or partition resistance.

Fig. 2. CAP Theorem lemma [4].

 Because system designers cannot prevent network failures [8],
the compromise between consistency and availability is typically
addressed by implementing consensus schemes such as the Paxos and
Raft algorithms [9]. Architectures based on these algorithms require
that most control nodes are available, and those worker nodes can
connect to one of those nodes to ensure access to the most recent view
of the system. If a controller network connection is interrupted, it can
no longer perform its designated function.

However, modern cloud-based applications are typically designed
to satisfy the need for scale, availability, and globally distributed
access. These applications are designed to be resilient against transient
failures and do not require absolute consistency of the control plane
data to ensure availability across fragile global environments. Instead,
those applications can benefit from increased availability of the
underlying control system to ensure the triggering of actions when
failures or scaling events occur.

Mainstream blockchain technology can provide an alternative
solution by decentralizing the control plane with a fully distributed
architecture that relies on the eventual consistency achieved through
Byzantine-resistant consensus algorithms [10] and strong security
enforced via defined cryptographic rules. Because of distributed
consensus, all nodes in the network can validate the order of
cryptographically signed system management transactions to reach
an agreement on which application configuration blocks to add to the
blockchain, including scenarios where parallel chains evolve during a
network partition event. In this scenario, the control plane is available
if any node in the network is reachable, functioning, and capable of
recording transactions onto the longest known blockchain, maximizing
availability in place of consistency. In contrast, controller/worker
architecture’s availability depends on having access to a controller
node, even if the underlying storage systems were configured to use
eventual consistent consensus schemes.

The main contributions of our work are (a) a design for a
decentralized hybrid control/worker node, (b) a set of transaction
validation rules for system state information, and (c) three theorems
(maximum availability, eventual consistency, partition primacy) from
the properties of the proposed system. The remainder of this paper
is organized as follows: Section II explores related work and existing
research. Section III describes the proposed integrated architecture for
hybrid control/work nodes, the structure of the proposed blockchain,
and validation logic. Our results are discussed in Section IV, and
conclusions and suggestions for future research are presented in
Section V.

II. Related Work

State-of-the-art application management technologies simplify
automation via declarative configuration, where state updates are
propagated over time in what is known as intent-record consistency.
This means that the system will eventually reflect the most current
configuration as scheduled by a central controller. The system records
any requests submitted to be later processed by the controller nodes.

Examples of systems based on controller/worker architecture
include Cloud Foundry [11], Apache Mesos [12], Docker Swarm [13],
and Kubernetes [14]. As previously stated, the architecture of these
systems prioritizes intent-record consistency and availability through
controller replication [15].

Apache Mesos, Docker Swarm, and Kubernetes store configuration
state in Etcd, a key-value store, using the Raft consensus algorithm to
ensure consistency and partition resistance. Essentially, the controller
returns the confirmation to the client only when a quorum of storage
nodes coordinated by an algorithmically selected leader acknowledges
the request. Reads are linearizable, implying that once a write is
completed, all later read should return the value of that write or the
value of the last write. Alternatively, Cloud Foundry utilizes MySQL,
a relational database that relies on the Paxos algorithm. However, in
practical terms, the only difference between Paxos and Raft is the
leader’s election mechanism [16].

For example, when a user submits an intent request, the desired
configuration change is first stored in either Etcd or MySQL. Depending
on the system, the transaction is then confirmed to the user, who
reasonably expects the request to be distributed and committed. Once
the configuration change is committed, the controller can execute the
scheduling algorithm and communicate the changes to the affected
worker nodes to achieve a consistent global state that matches the
user’s intentions [17]. These mechanisms, in aggregate, provide intent-
record state consistency that guarantees high statistical availability
and good network partition resistance if the controllers can connect to
storage nodes and the storage nodes can achieve a quorum (Table I).

TABLE I. Partition Resistance Examples of Paxos/Raft

Servers Quorum Failure Tolerance1

1 1 0

2 2 0

3 2 1

4 3 1

5 3 2

6 4 2

7 4 3

8 5 4
1 Server failure or networked partitioned

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 90 -

In the case of network partition across data center zones or regions
(Table III), nodes placed in a partition outside the quorum cannot be
managed or provide system updates, leading to potential outages. For
example, an application might not be able to react to an autoscaling
event, or a node failure cannot be redeployed. Raft and Paxos drive
consistency and availability (up to a few failed nodes proportional to
the number of replicas) from the point of view of an external consumer
with equal access to all the replicas. In most cases, replicas are
collocated with the nodes. If a replica loses network access, collocated
nodes cannot be operated.

To date, little practical research has been performed to weaken
the criteria for replica consistency to improve the partition tolerance,
availability, and performance of cloud systems owing to the non-
monotonic nature of the system configuration. Non-monotonicity
occurs when a new configuration change request alters the previous
configuration state request [18]. Consequently, request ordering
determines the global state of the system. However, because of
the characteristics of the eventual system consistency described
previously, a system of rules that disambiguates potentially conflicting
configuration requests can provide acceptable levels of consistency.
For the most part, system operators prioritize their focus on the
system’s final state and, in most cases, can infer the consequences of
intermediate states during configuration changes.

A well-defined set of transaction ordering rules implemented as a
cryptographic protocol and persisting results on a blockchain presents
an opportunity to leverage mainstream consensus algorithms to solve
the challenges presented by the CAP theorem.

The feasibility of implementing blockchain technology control
systems has been demonstrated using a multi-tier architecture to
record and distribute configurations across multiple control nodes
[16]. Existing implementations leverage smart contracts to substitute
access control and preserve the sequence of change requests. However,
deployment control is still delegated to a traditional controller/worker
cluster architecture. While a fully distributed blockchain across all
regions can yield similar results concerning global availability, it still
depends on the availability of the local cluster controller to ensure all
nodes can be operated, therefore not impacting the CAP properties of
the system or the security of the control nodes.

Concerning blockchain performance, previous work has
determined that the throughput characteristics of three-tier control
systems utilizing a general-purpose blockchain as a record store yield
good results [19].

Fig. 3. Focus on Availability and Partition Resistance.

The objective of this research (Fig. 3) is to evaluate the
implementation of a highly available and partition resistant [18] cloud
management system offering a solution that utilizes a purpose-built
blockchain to store system state to record configuration efficiently
and in a verifiable and permanent manner [20].

This research evolves previous approaches by integrating control
and work nodes into a single hybrid component and using Byzantine

resistance consensus algorithms to coordinate the blockchain’s
agreement, termination, and validity.

Existing blockchains implementation like Ethereum, Cardano,
Solana, Hyperledger, or any other general-purpose blockchain with
support for smart contracts can be used to manage and execute
purpose-built smart contracts containing the logic of configuration
disambiguation, scheduling, and access control. However, using
existing blockchains will require a network of Oracles capable of
performing active functions, including failure detection. In addition,
to ensure the same level of availability, it would require every node
running the software to also operate as a general-purpose blockchain
node alongside the required Oracles. We decided against this approach
due to the runtime, management, and overhead. Although outside
the scope of this research, we consider implementing the solution
using general-purpose smart contract blockchains worth studying
for Web3 applications that rely on both traditional stacks and smart
contracts. Future research will evaluate and compare the overhead
costs of running a general-purpose vs. purpose-built blockchain to be
deployed to each node.

III. Proposed Framework

This proposal is structured into three sections. First, we cover the
architecture of the hybrid controller/worker node and its connectivity
to other nodes. The second section describes how the system state
configuration is encoded into the blockchain structure, followed by
global ordering rules that ensure transaction validity to be applied by
participating nodes.

A. System State Blockchain
In blockchain-centric systems, a natural pattern is decentralizing

control and replacing authority with Byzantine-resistant consensus
patterns [21]. Applying this pattern to the cloud management space
may seem unintuitive at first glance, yet this solution addresses the
primary goals of this research.

This yields a highly available peer-to-peer architecture [22] of
compute nodes collectively converging into a state that matches the
sequence of intents stored in the blockchain. While the primary
function of nodes is to host workloads, nodes maintain a full copy of
the blockchain and participate in the consensus process as both block
creators and validators.

Nodes are connected to other nodes using a peer-to-peer (P2P)
gossip protocol. When a node is added to the network, the initial
discovery of peer nodes is performed using dynamic DNS. Once a node
is connected to other nodes, it can receive a list of other known nodes
and blocks. In addition, the node can validate the list of known nodes
obtained with the configuration stored in the blockchain. There may
be additional security warranties when adding a node to the network
depending on the consensus algorithm, for example, client certificate
authentication in Proof of Authority schemes.

The nodes receive direct connections from users. Users submit new
transactions and inspect the state of the node and the last known system
state, according to the longest chain stored by that node. Additionally,
nodes are assigned the responsibility of communicating with external
services, for example, updating a DNS entry or configuring a new load
balancer.

We incorporate the existing Kubernetes architecture elements for
the proposed solution, such as the Kubelet component, which provides
the actuation of state configuration changes by communicating with
the node host operating system. As such, the components of a hybrid
node include (Fig. 4):

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 91 -

Fig. 4. Decentralized blockchain/worker node architecture.

1. The peer manager is responsible for maintaining a list of known
peers. It creates and maintains TCP connections and receives new
connections from peers. The peer manager communicates with
other nodes via the P2P gossip protocol.

2. The consensus manager is dedicated to applying consensus
rules to maintain the longest valid chain known by the node by
determining which blocks should be added to the chain or even
discarding dead-end chains. The consensus manager is integrated
very closely with the peer manager, such that it can adapt the
node chain to new information, including blocks and alternative
chains. In addition, a node, depending on the consensus algorithm,
may be selected for mining a new block. The consensus manager
communicates the new block to the other peer nodes.

3. The validator is responsible for analyzing the contents of a block
and ensuring that all new transactions are valid. Transaction order,
transaction inputs and outputs, locking script execution, and other
block rules are related to the consensus algorithm.

4. Pending changes comprise a list of known pending transactions.
Each block maintains a list of pending transactions. When a new
block is received or minted, the transactions in the block are
removed from the pending list.

5. The block factory is responsible for mining a new block based on
the inputs of the pending change list. It communicates with the
consensus manager, ensuring that the block is valid by verifying
with the validator. Any invalid transactions are reported until a
block is valid and ready to be communicated.

6. The scheduler is a component that watches for newly created
resources with no assigned nodes.

7. API is the front end of the contents of the state of the cluster and
transaction management. Users connect to the node via an API to
interact with the cluster without directly operating a node.

8. State Manager maintains the databases and indexes required to
store and operate the cluster.

9. Blocks are key-value pair databases indexing every block and
transaction of the blockchain by its hash value.

10. State is a document-oriented database with content resulting from
executing all transactions in the blockchain.

11. The controller manager is responsible for maintaining the
configuration and state of the services external to the cluster.

12. Kubelet is part of the Kubernetes architecture. It is responsible for

connecting to the Docker runtime and ensuring that all pods and
containers run according to the cluster state determined by the
blockchain.

B. Blockchain Structure
Transaction data is stored in blocks organized into a linear sequence

(Fig. 5). New transactions are added to the blocks, and blocks are added
at the end of the blockchain. Each block indirectly contains the hash
of each transaction calculated by adding every transaction to a Merkle
tree and storing the root. Additionally, every block includes the hash
of the previous block’s header. In essence, every time a block is added
to the chain, the harder it is to change or remove previous blocks, and
every transaction in the blockchain is irreversible and final.

Fig. 5. Blockchain structure.

Block transactions contain each of the changes in the system’s
configuration submitted by users. The structure and content are like
those utilized in cryptocurrency ledgers, with differences compared
to the input and output of the transactions referring to hierarchical
resource definitions. For example, to create a new resource within a
folder or namespace, the transaction input must meet two conditions:
a reference to the most recent transaction with a parent resource as
an output and a script or data satisfying the requirements of the input
transaction script.

When a user submits a transaction, it is possible to refer to a parent
resource directly or indirectly to satisfy the validation requirements.

The input of direct access transactions refers to the most recent
transaction with the targeted resource as the output. It is the user’s
responsibility to identify the latest transaction and produce the input
script data that meets the requirements of the script securing the
resource.

The input of indirect access transactions refers to a transaction
used to create or update a hierarchical resource. For example, starting
a new deployment refers to the output of the transaction used to create
or update the namespace where it would be contained.

C. Transaction Validation
All nodes check every transaction during the block forming

process. A block is constructed by assembling ordered transactions
from the pending transaction list. The selection of transactions to be
included in a block is critical for the system design. Transaction order
is performed using both topological and canonical rules.

Topological ordering by ordering transactions according to their
positions in the resource hierarchy. Topological ordering ensures that
sequential transactions that depend on a previous transaction that
manages a parent resource are evaluated to maximize transaction
validity. For example, a resource cannot be created until a parent
resource is created.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 92 -

Canonical ordering is performed when two resources have
equivalent inputs and outputs in a resource hierarchy. When this
occurs, transactions are ordered by transaction ID, calculated as the
SHA256 of the transaction data. Canonical ordering ensures that the
output is unique and deterministic given the same set of transactions.
In other words, given the same set of unordered transactions, the
result after ordering would be the same regardless of who performs
the ordering or when the operation is performed.

Additionally, when two chains evolve independently due to a
network partition event, nodes that adopt a new longer chain would
move transactions on the shorter chain to the pending changes list and
be evaluated accordingly.

IV. Results and Discussion

The proposed architecture provides the foundation for a fully
distributed configuration management system that stores the global
configuration in a blockchain structure and is distributed across all
the nodes in the network. This architecture solution offers improved
network-partitioning resistance and availability.

Network partitioning occurs when a group of nodes is isolated and
cannot communicate with the remaining nodes in the network. This is
a common scenario when those nodes are not in the same data center
or the data center is partitioned into two or more availability zones.
Note that in the proposed architecture, when a network partition
occurs, there is a risk that transactions submitted to the partition with
the shortest chain will become invalid once the network connectivity
is restored. The transactions are appended to the Pending Changes
list (Fig. 6).

Fig. 6. Chain resolution after Network Partition.

So far, we have discussed the core components and behaviors of the
system. From the analysis conducted throughout this study, we can
deduce that the system meets the following propositions:

Proposition 1: Any node can accept a transaction.

Proposition 2: A single node can add a block to the chain.

Proposition 3: Nodes do not require connection to other nodes to
accept transactions.

Proposition 4: A group of nodes (more than one node), where
each node can connect to others, will generate a chain faster than
a group with fewer nodes.

Proposition 5: A node will always accept the longest chain
available.

Therefore, we can formulate the following three theorems by the
principle of mathematical logic.

1. Theorem: Maximum Availability
If a node is available, the system is available.

Proof of Theorem 1. P1 ∧ P2 ∧ P3 ⟹ T1. If any node can accept
a transaction (Proposition 1), and a single node can add a block to
the chain (Proposition 2), and nodes do not require the connection to
other nodes to accept transactions (Proposition 3), then if a node is
available, the system is available.

2. Theorem: Eventual Consistency
A transaction can only be considered irreversibly committed when

it is part of a block in the longest chain, and is part of the current chain
for most of the nodes in the network.

Proof of Theorem 2. P3 ∧ P4 ⟹T2. If nodes do not require the
connection to other nodes to accept transactions (Proposition 3), and
a group of nodes (more than one node), where each node can connect
to others, will generate a chain faster than a group with fewer nodes
(Proposition 4), then a transaction can only be considered irreversibly
committed when it is part of a block that is in the longest chain, and it
is part of the current chain for most of the nodes in the network.

3. Theorem: Partition Primacy
A network partition with the majority of nodes generates the

longest chain with irreversibly committed transactions.

Proof of Theorem 3. P4 ∧ P5 ⟹T3. If a group of nodes (more than
one node), where each node can connect to others, will generate a
chain faster than a group with fewer nodes (Proposition 4), and a node
will always accept the longest chain available (Proposition 5), then a
network partition with the majority of nodes generates the longest
chain with irreversibly committed transactions.

4. Examples
Traditional Paxos/Raft-based systems are available if most replica

nodes are available to achieve quorum and maintain the configuration
store consistency (Table II). When there are three zones, both systems
are reliable when one fault occurs. However, the differences are
revealed when two Paxos/Raft replicas fail, preventing the system
from achieving a quorum and leading to system failure. Note that in
this proposal (Table III), only users who can access a partition with
available nodes will be able to submit transactions.

TABLE II. Availability Examples of Paxos/Raft

Zones/Replicas Replica Faults Partitions Paxos/Raft

3 / 3 1 0 Available

3 / 3 2 0 Fault

3 / 3 0 2 Fault

9 / 9 4 0 Available

9 / 9 5 0 Fault

9 / 9 0 3 Fault

3 / 3 1 0 Available

3 / 3 2 0 Fault

Additionally, as stated in the Partition Primacy and Eventual
Consistency theorems, only nodes in the largest partition will be able
to confirm transactions irreversibly.

 Special Issue on AI-driven Algorithms and Applications in the Dynamic and Evolving Environments

- 93 -

TABLE III. Availability Examples of the Proposed Solution

Zones/Replicas Replica Faults Partitions Proposed
3 / 300 50 / 50 / 50 0 Available
3 / 300 100 / 0 / 0 0 Available1

3 / 300 100 / 100 / 100 0 Fault
3 / 300 100 / 0 / 0 1 Available1

3 / 300 50 / 50 / 50 1 Available2

3 / 300 50 / 50 / 50 2 Available2

3 / 300 50 / 50 / 50 3 Available2

1 Not accessible from failed partitions.
2 Transactions cannot be considered irreversible until restored.

In the Paxos/Raft system, when the number of zones is expanded
to nine, and thus, the number of replicas, the statistical availability
increases dramatically. However, in cases where multiple network
partitions occur, the system can become unavailable because of the
inability of replicas to talk to each other and thus prevent a quorum,
even with no replica failures. As stated in the theorem of maximum
availability, our proposal becomes unavailable only when all the
nodes fail.

V. Conclusions and Future Research

In the proposed decentralized architecture, the system is available as
long as the nodes are accessible to the user. However, the intent-record
consistency is compromised and replaced with eventual consistency.
In essence, a user querying a different node that received the change
might obtain a response that does not include the most recent change,
that is, until that change is broadcast through the network and adopted
in a block that is part of the longest computed chain. This scenario, we
believe, is an acceptable compromise.

Integrating the blockchain node capabilities, scheduler, and
container management agent reduces management overhead by
reducing the number of software components to be deployed
and managed. Since our proposal does not allow the execution of
general-purpose smart contracts, the security surface is reduced, and
configuration management operations costs stay constant.

Minting an additional block to the blockchain is perhaps the most
critical operation [23] to meet the desired consistency and performance
requirements. In future research, we will analyze different algorithms
that can potentially be used to ensure that blocks are minted, validated,
and added to the blockchain throughout the network while minimizing
the trust required. In essence, these algorithms enable the capability to
achieve consensus on which blocks to add to the chain based on rules
that ensure fairness and security for all participants. Examples of these
algorithms are as follows:

1. Proof of Work (PoW) is a consensus algorithm based on
demonstrable computational effort across a fixed time window,
forcing each party to upfront a total energy/computational cost
proportional to their weight on the consensus effort.

2. Proof of Space (PoS) is a consensus algorithm based on
demonstrable storage capacity requiring every participant to pre-
compute and store an established function output. Participants
must be able to prove knowledge of that output at any time,
ensuring a commitment to integrity by upfronting the storage
cost.

3. Proof of Authority (PoA) is a consensus mechanism based on
the proven identity of the participants. This algorithm requires
establishing a level of trust across the participants.

4. Proof of Stake (PoS) is a consensus algorithm based on demonstrable
funds requiring all participants to deposit a monetary amount in
an escrow account controlled by a cryptographic protocol.

It should be noted that the proposed architecture integrates data and
control planes, thereby forcing the re-evaluation of existing security
threat models. Future research should compare current architectures
to secure control and application data.

References

[1] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega,
Flexible, scalable schedulers for large compute clusters”, in Proceedings
from the European Conference on Computer Systems, Prague, Czech
Republic, 2013, pp. 351-364, doi: 10.1145/2465351.2465386.

[2] G. Dasher, I. Envid, and B. Calder, “Architectures for Protecting Cloud
Data Planes”, Google, Mountain View, CA, USA, 2022. Accessed: Nov. 15,
2022. [Online]. Available: https://arxiv.org/abs/2201.13010, doi: 0.48550/
arXiv.2201.13010.

[3] A. Kumar, S. Avinash Kumar, V. Dutt, A. Dubey, S. Narang, “A Hybrid
Secure Cloud Platform Maintenance Based on Improved Attribute-Based
Encryption Strategies”, International Journal of Interactive Multimedia
and Artificial Intelligence, In Press, pp. 1-8, 2021, doi: 10.9781/
ijimai.2021.11.004.

[4] G. Zhang, X. Chen, L. Zhang, B. Feng, X. Guo, J. Liang, Y. Zhang, “STAIBT:
Blockchain and CP-ABE Empowered Secure and Trusted Agricultural IoT
Blockchain Terminal”, International Journal of Interactive Multimedia
and Artificial Intelligence, vol. 7, no. 5, pp. 66-75, 2022, doi: 10.9781/
ijimai.2022.07.004.

[5] A. Berenberg, and B. Calder, “Deployment Archetypes for Cloud
Applications”, ACM Computing Surveys, vol. 55, no. 3, pp. 1-48, 2022,
doi:10.48550/arXiv.2105.00560.

[6] S. Sebastio, R. Ghosh, and T. Mukherjee, “An availability analysis
approach for deployment configurations of containers”, IEEE
Transactions on Services Computing, vol. 14, no. 1, pp. 16-29, 2018,
doi:10.1109/TSC.2017.2788442.

[7] E. Brewer, “Spanner, truetime and the cap theorem”, Google, Mountain
View, CA, USA, 2022. Accessed: Nov. 15, 2022. [Online]. Available:
https://research.google/pubs/pub45855.

[8] P. Bailis, and K. Kingsbury, “The network is reliable: An informal survey
of real-world communications failures”, Queue, vol. 12, no. 7, pp. 20-32,
2014, doi:10.1145/2639988.2655736.

[9] L. Lamport, “The part-time parliament”, ACM Transactions on Computer
System, vol. 16, no. 2, pp 133-169, 1998, doi:10.1145/3335772.3335939.

[10] V. Gramoli, “From blockchain consensus back to Byzantine consensus”,
Future Generation Computer Systems, vol. 107, no. C, pp. 760-769, 2020,
doi:10.1016/j.future.2017.09.023.

[11] D. Bernstein, “Cloud Foundry Aims to Become the OpenStack of PaaS”,
in IEEE Cloud Computing, vol. 1, no. 2, pp. 57-60, 2014, doi:10.1109/
MCC.2014.32.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center”, 8th USENIX Symposium on Networked
Systems Design and Implementation, vol. 11, pp. 22-22, 2011.

[13] N. Naik, “Building a virtual system of systems using docker swarm in
multiple clouds”, IEEE International Symposium on Systems Engineering
(ISSE), pp. 1-3, 2016, doi: 10.1109/SysEng.2016.7753148.

[14] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and Kubernetes”, Communications of the ACM, vol. 59, no. 5, pp.
50-57, 2016, doi:10.1145/2890784.

[15] S. Davidson, “Optimism and consistency in partitioned distributed
database systems”, ACM Transactions on Database Systems (TODS), vol.
9, no. 3, pp. 456-481, 1984, doi:10.1145/1270.1499.

[16] H. Howard, M. Schwarzkopf, A. Madhavapeddy, and J. Crowcroft, “Raft
refloated: Do we have consensus?”, ACM SIGOPS Operating Systems
Review, vol 49, no. 1, pp. 12-21, 2015, doi:10.1145/2723872.2723876.

[17] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
Omega, and Kubernetes: Lessons learned from three container-
management systems over a decade”, Queue, vol. 14, no. 1, pp. 70–93,
2016, doi:10.1145/2898442.2898444.

[18] J. Hellerstein, and P. Alvaro, “Keeping CALM: when distributed
consistency is easy”, Communications of the ACM, vol. 63, no. 9, pp. 72-
81, 2020, doi: 10.48550/arXiv.1901.01930.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 8, Nº1

- 94 -

[19] J. Yang, J. Dai, H. B. Gooi, H. Nguyen and A. Paudel, “A Proof-of-Authority
Blockchain Based Distributed Control System for Islanded Microgrids”,
IEEE Transactions on Industrial Informatics, vol. 18, no. 11, pp. 8287-
8297, 2022, doi:10.1109/TII.2022.3142755.

[20] P. K. Sharma, M. Chen and J. H. Park, “A Software Defined Fog Node
Based Distributed Blockchain Cloud Architecture for IoT”, IEEE Access,
vol. 6, pp. 115-124, 2018, doi: 10.1109/ACCESS.2017.2757955.

[21] G. Nguyen, and K. Kim, “A survey about consensus algorithms used in
blockchain”, Journal of Information processing systems, vol. 14, no. 1, pp.
101-128, 2018, doi:10.3745/JIPS.01.0024.

[22] I. Weber, V. Gramoli, A. Ponomarev, M. Staples, R. Holz, A. Tran, and
P. Rimba, “On availability for blockchain-based systems”, IEEE 36th
Symposium on Reliable Distributed Systems (SRDS), Hong Kong, China,
pp. 64-73, 2017, doi:10.1109/SRDS.2017.15.

[23] G. Carrara, L. Burle, D. Medeiros, C. Vinicius, and D. Mattos,
“Consistency, availability, and partition tolerance in blockchain: a survey
on the consensus mechanism over peer-to-peer networking”, Annals of
Telecommunications, vol. 75, no. 3, pp. 163-174, 2020.

Alberto Arias Maestro

Alberto Arias Maestro is a PhD student at Universidad
Internacional de La Rioja. He has 20+ years of experience
in large-scale software system design and development.
Previously, he led teams at Google Cloud for open-
source tech and multi-cloud interoperability. He founded
ElasticBox, a multi-cloud app management startup. Prior to
ElasticBox, he served as VP of Architecture at DynamicOps

and led the design of a private cloud platform used by Fortune 500 firms. He
holds a Master’s in computer science from Pontifical University of Salamanca.

Oscar Sanjuan Martinez

Dr. Oscar Sanjuan Martinez is a professor in the Department
of Computer Science at the Universidad Internacional
de La Rioja, and he is currently a VP of Engineering at
Lumen. Before joining Lumen, he was an interim associate
professor at the University of Oviedo and Director of the
R + D + I Office at the Pontifical University of Salamanca.
He also led the Software Engineering Department at the

Pontifical University of Salamanca as a Director for the Madrid Campus and
Author Biography as a professor in the Department of Languages, Computer
Systems, and Software Engineering. His current research interests include cloud
computing, intelligent agents, and blockchain systems.

Ankur Teredesai

Prof. Ankur Teredesai is a full professor of computer
science and systems at the School of Engineering &
Technology, University of Washington. Today, healthcare
technology solutions are complex, with an increasing
emphasis on AI-driven software. Dr. Teredesai’s research
on AI regulation of solutions for the personalization of
decisions in healthcare has widespread application. He is

an invited member of a global industrial and governmental partnership, pushing
the boundaries of innovation and policy in this field. Prof. Teredesai has
published 100+ papers on machine learning, and his work has been deployed
across various industries (advertising, recommendation systems, and global
health systems). This work has been recognized in popular press as well as in
academic citations. Since 2009, his research contributions have advanced our
understanding of the risk and utilization of chronic conditions such as diabetes
and heart failure. In 2015, after years of collaborative and applied research on
large clinical and claims datasets, Prof. Teredesai founded KenSci, a spin-off
at the University of Washington, which was acquired in 2021. Prof. Teredesai
served as the Information Officer for ACM SIGKDD (Special Interest Group
in Knowledge Discovery and Data Mining) from 2006 to 2018 and as the
past general chair of KDD 2019. He is currently an associate editor for ACM
SIGKDD Explorations and serves several program committees of conferences
on AI and machine learning. Prof. Teredesai is an active advocate and mentor
for non-traditional female students to pursue computing careers.

Vicente García-Díaz

Dr. Vicente García-Díaz is an associate professor in the
Department of Computer Science at the University of
Oviedo, Spain. He is a software engineer with a Ph.D.
in computer science. He has a master’s in occupational
risk prevention and qualifies as a university expert in
blockchain application development. He is part of the
editorial and advisory boards of several indexed journals

and conferences and has been the editor of several special issues in books and
indexed journals. He has supervised 100+ academic projects and has published
100+ research papers in journals, conferences, and books. His teaching interests
are primarily the design and analysis of algorithms and the design of domain-
specific languages. His current research interests include decision-support
systems, health informatics, and e-learning. Engineer, Ph.D. in Computer
Science. He has a master’s in occupational risk prevention and qualifies as a
university expert in blockchain.

