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Abstract

Most existing multi-label classification models focus on distance metrics and feature spare strategies to extract 
specific features of labels. Those models use the cosine similarity to construct the label correlation matrix to 
constraint solution space, and then mine the latent semantic information of the label space. However, the label 
correlation matrix is usually directly added to the model, which ignores the interactive causality of the correlation 
between the labels. Considering the label-specific features based on the distance method merely may have 
the problem of distance measurement failure in the high-dimensional space, while based on the sparse weight 
matrix method may cause the problem that parameter is dependent on manual selection. Eventually, this leads 
to poor classifier performance. In addition, it is considered that logical labels cannot describe the importance 
of different labels and cannot fully express semantic information. Based on these, we propose an Interactive 
Causal Correlation Space Reshape for Multi-Label Classification (CCSRMC) algorithm. Firstly, the algorithm 
constructs the label propagation matrix using characteristic that similar instances can be linearly represented 
by each other. Secondly, label co-occurrence matrix is constructed by combining the conditional probability test 
method, which is based on the label propagation reshaping the label space to rich label semantics. Then the 
label co-occurrence matrix combines with the label correlation matrix to construct the label interactive causal 
correlation matrix to perform multi-label classification learning on the obtained numerical label matrix. Finally, 
the algorithm in this paper is compared with multiple advanced algorithms on multiple benchmark multi-label 
datasets. The results show that considering the interactive causal label correlation can reduce the redundant 
information in the model and improve the performance of the multi-label classifier. 
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I. Introduction

WITH the continuous development of machine learning, 
classification models have evolved rapidly. However, in actual 

scenarios, there are still problems such as unbalanced classification, 
multi-layer and multi-label. In multi-label classification, labels 
with complex dependencies are more likely to identify the same 
instance. Therefore, labels correlation is mostly considered when 
performing multi-label classification. The consideration of the unique 
characteristics of labels effectively reduces the difficulty of capturing 
important information from high-dimensional data to construct 
competitive classifiers. These all require in-depth exploration of 
potential associations or dependencies between labels [1].

In order to mine the potential information of the label space, one 
method is to use the feature sparsity strategy to extract the specific 
features of the label. Algorithms based on this strategy usually use the 

l1-norm to constraint weight matrix. The l1-norm has high sparseness, 
so that only some important features contribute to the model, thereby 
extracting label-specific features. Typical algorithms include the LLSF 
algorithm (Learning Label-Specific Features for Multi-Label Classifica-
tion) proposed by Huang et al. [2]. This algorithm assumes that each 
label is only related to certain features in the original feature space. 
The highly correlated labels have similarities. The label correlation 
and l1-norm sparsity constraints are used to extract label-specific 
features. Based on the same strategy, the LSF-CI (Multi-Label Learning 
with Label-Specific Features Using Correlation Information) algorithm 
proposed by Han et al. [3] assumes that labels are only related to 
specific features. Features contribute differently to different targets. 
Similar labels have similar features. The sparse feature weight matrix 
is constructed by considering the correlation of the targets to extract 
the label-specific features. The other method is based on a distance 
measurement strategy. The main idea of this strategy is to find a set 
of measurement reference points. Then calculate the distance from 
each label of each sample to these measurement reference points. 
Finally, the measurement result is used as the label-specific features of 
each label. The typical algorithm of the measurement strategy is the 
LIFT algorithm (Multi-Label Learning with Label-Specific Features) 
proposed by Zhang [4]. The algorithm uses k-Means clustering for 
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positive samples and negative samples respectively. The obtained 
cluster centers are regarded as the center of the sample. Euclidean 
distance is used to measure the distances of all samples to these cluster 
centers to achieve the extraction of label-specific features. 

However, some label-specific features extraction algorithms 
represented by LIFT do not consider label correlation. As an 
important means of mining features and label latent information, label 
correlation is introduced into the classification model to effectively 
improve the accuracy of multi-label classification. Based on this 
concept, the LSML algorithm (Improving Multi-Label Classification 
with Missing Labels by Learning Label-Specific Features) proposed 
by Huang et al. [5] deals with the multi-label classification of the 
missing dataset by learning high-order label correlation matrix and 
label-specific features. By learning high-level label correlation, a 
new supplementary label matrix is augmented from the incomplete 
label matrix. Then, it learns a label-specific data representation for 
each type of label. On this basis, combine the learned high-order 
label correlation to construct a multi-label classifier. The FF-MLLA 
algorithm (Multi-Label Lazy Learning Approach based on FireFly 
Method) proposed by Cheng et al. [6] uses the Firefly method to fuse 
correlation information with sample similarity information. Finally, 
the classification by singular value decomposition and extreme 
learning machine has achieved certain results.

However, the existing classification algorithms only consider the 
degree of correlation between targets when contacting the correlation 
of targets, but ignore the causality that exists in the interactive causal 
correlation. Only considering the correlation of symmetric labels will 
often cause the problem of redundant information [7] in the model, 
resulting in a decrease in the performance of the classifier. In real life, 
this asymmetric correlation is also very common. A classic explanation 
is shown in Fig. 1: The crowing of a rooster symbolizes the coming of 
dawn. The reason for the rooster’s crowing is that the hormones in 
the rooster’s brain are sensitive to light. Therefore, the disappearance 
of darkness makes this physiological phenomenon occur in roosters. 
This phenomenon indicates that there is a correlation between dawn 
and rooster crowing. The dawn is the cause, and the rooster’s crowing 
is the result. However, dawn did not appear because of the rooster’s 
crowing. This phenomenon indicates that the interactive causal 
correlation between the two is asymmetric.

Causal Correlation

Rooster crowing Early morning

Fig. 1. Interactive Causal Correlation.

In multi-label learning, label objects with complex dependencies 
also have similar causality problems. Based on this fact, the ACML 
algorithm (Asymmetry Label Correlation for Multi-Label Learning) 
proposed by Bao et al. [8] uses cosine similarity to construct a label 
correlation matrix, and then measures the adjacency between labels to 
construct a label adjacency matrix. The label adjacency matrix is used 
to constrain the label correlation matrix to link the asymmetric label 
correlation. Considering the case of multi-label learning, the correlation 
between labels may come from the dependence of labels on the same 
set of features, or the dependence of one label on another label. We 
abstract the complex relationship between labels as a relationship--
”Co-occurrence” [9]. When two label objects often appear together, 
we think that they have complex dependencies. The judgment of the 
degree of dependence between two related variables requires further 
consideration of directionality. The direction of greater dependence is 
used as the standard for inferring the interactive causal relationship 

between labels. Generally, we measure the co-occurrence relationship 
by the method of conditional probability (conditional independence 
test) [10]. That is, the probability P (Label2 | Label1), which represents 
the probability of the appearance of Label2 under the condition of 
the appearance of Label1. When this probability is greater than a 
specific threshold, we think that Label1 and Label2 have a dependency 
relationship. At the same time, the label-specific features take into 
account the unique characteristics of the label, which alleviates the 
high-dimensionality problem in multi-label learning to a certain 
extent. However, the failure of the distance measurement [11] and the 
problem of the l1-norm feature sparsity parameter [12] are selected 
manually still exists. The constraint-based conditional independence 
test method considers the causal relationship between the labels while 
further avoiding the problem of Euclidean distance failure in the high-
dimensional space. The use of naturally existing dependencies to 
extract label-specific features can also avoid the problem of l1-norm 
relying on manual parameter selection to a certain extent. Based on 
this, this paper proposes the Interactive Causal Correlation Space 
Reshape for Multi-label Classification (CCSRMC) algorithm. By 
using space reshaping [13] methods to solve logical targets, there are 
problems such as the inability to describe the importance of different 
targets and the inability to fully express latent information. On this 
basis, the label co-occurrence matrix is constructed by combining the 
conditional probability test method. Then it is combined with the label 
correlation matrix to construct the label interactive causal correlation 
matrix to perform multi-label classification learning on the obtained 
numerical label matrix. Taking into account the sparseness of the 
label space, the label space reshaping method is used to transform 
the original discrete label into continuous label, which is used to infer 
the interactive causal relationship between features and labels. Then 
it obtains the numerical label matrix and extracts the label-specific 
features for multi-label classification. The algorithm in this paper 
carries out comparative experiments and statistical hypothesis tests 
with multiple advanced algorithms on multiple benchmark multi-
label data sets. It also conducts ablation analysis with or without 
consideration of causality. The results of experiments and analysis 
verify the effectiveness of our algorithm.

The rest of this paper is organized as follows. In section Ⅱ, we 
introduce the model of the CCSRMC and the method to complete 
model optimization. In section Ⅲ, the algorithm pseudocode and 
complexity analysis of the proposed algorithm is given. In section 
Ⅳ, datasets, evaluation metrics, parameters setup are introduced. 
In section Ⅴ, we validate the proposed method with a hypothesis 
test and the sensitivity of the parameters was analyzed. Meanwhile 
experimental results on 14 benchmark datasets are given. Finally, we 
conclude our work in section Ⅵ.

II. The Proposed Method

A. Interactive Causal Inference Theory
Many scholars believe that there is a certain dependency in the 

correlation between things, which may lead to the asymmetry of the 
correlation. Scholars collectively call it causal inference [14]. Early 
causal inference algorithms can usually be divided into two categories: 
Constraint Based method and Function Based method. The constraint-
based method is also called the method based on the independence test. 
The basic idea is to transform the inference problem of the direction 
of dependence into the problem of judging the degree of dependence 
between two variables. This type of algorithm first calculates the 
dependence of the two directions at the same time, and then takes the 
direction with the greater dependence as the inferred interactive causal 
direction. Common algorithms based on conditional independent 
tests include Granger Causality (GC) [15], which is a classic causality 
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discovery tool, but it is only applicable to Gaussian cases. TE (Transfer 
Entropy) [16] is a non-linear promotion of GC. It uses the concept 
of information theory, which is equivalent to Conditional Mutual 
Information (CMI) [17]. In addition, you can also use the Kernel 
function [18] method and distance correlation [19] perform conditional 
independent testing. K2 search algorithm (K2 Search), PC algorithm 
(Peter-Clark) and IC algorithm (Inductive Causation) [20], etc. Causal 
inference algorithms usually have high algorithm complexity and poor 
adaptability to high-dimensional data in multi-label learning. In this 
paper, an interactive causal inference method based on conditional 
independence tests is used to infer the potential dependencies between 
multi-label learning. The label interactive causal inference method is a 
constraint-based algorithm, which ignores the influence of Confounder 
Variables. However, because only the dependency between the pair 
of variables is considered, the algorithm has low complexity and fast 
calculation speed, and can better handle high-dimensional data in 
multi-label learning.

Herein we introduce the label interactive causal inference method 
based on conditional independence test:

For a pair of variables (a, b). P(a=n) represents the probability 
when a=n. P(b|a=n) represents the conditional probability of variable 
b when a=n, let λ=P(a), μ=P(b|a). The label interactive causality 
inference method treats (λ, μ) as two independent random variables. 
The distance correlation coefficients of the two possible directions are 
calculated separately. The direction with the smaller coefficient is used 
as the inferred interactive causal direction.

Let fλ and fμ respectively denote the characteristic function of (λ, μ). 
fλ,μ is (λ, μ) joint characteristic function, then the distance covariance 

2 (λ, μ) of (λ, μ) is:

 (1)

The distance correlation coefficient  (λ, μ) is:

 (2)

If  (λ, λ) = 0 or  (μ, μ) = 0, then  (λ, μ) = 0. Suppose the multi-label 
dataset contains n instances, and l labels, then for any pair of labels 
(Xi, Yj | i, j = 1, 2, 3,…, l), n groups of variables  can be 
constructed. For variables λ and μ, matrices A and B are constructed 
as follows: 

 (3)

 (4)

The distance covariance can be calculated by:

 (5)

From formula (2) and formula (5), we can know:

 (6)

 (λ, μ) is always greater than 0. For any pair of variables (a, b):

If  b→a >   a→b, then a → b is the inferred interactive causal direction

If  a→b >   b→a , then b → a is the inferred interactive causal direction

B. Establishment of the CCSRMC Model
In multi-label learning [21], there are input training data X and label 

matrix Y, where X ∈  ℝn×d, Y ∈  ℝn×l, l is the number of labels, n is the number 
of training samples, d is the number of features. U = {(xi, yi) | 1 ≤ i ≤ n} 
is a multi-label training dataset, where  is the i-th 
feature vector,  is the i-th label vector. The task 
of multi-label learning is to find a mapping relationship f: X → 2Y. The 
general multi-label algorithm [22] model is:

 (7)

L(W) is the loss function, β is the regularization parameter, and  
W ∈  ℝd×l is the weight matrix.

Based on the original multi-label algorithm model, the algorithm 
in this paper uses the feature of linear representation between similar 
instances to construct the label propagation matrix P. We use formula 
(8) to calculate an N × N similarity matrix A between N instances:

 (8)

Where .

 (9)

The original label matrix Y is projected into a new numerical label 
matrix S through the label propagation matrix P to perform multi-
label classification learning. After the introduction of label correlation 
optimization, formula (7) can be expressed as:

 (10)

The first term of equation (10) is to minimize the error of the sum of 
squares. The numerical label vector Si is used instead of the logical label 
vector Yi. Numerical labels bring more semantic information and are 
more conducive to the correlation between contact labels. The second 
term completes the label propagation to the original label matrix Y. The 
third term indicates that the strong correlation between the label yi and 
the label yi leads to a great similarity between Wi and  Wj, where R ∈  ℝl×l 
is the label correlation matrix, which is calculated by cosine similarity. 
However, some existing multi-label learning algorithms usually 
directly add the label correlation matrix to the model to constrain the 
solution space when considering the label correlation. These algorithms 
ignore the asymmetry of the correlation relationship between labels. 
The algorithm in this paper uses the label correlation matrix and the 
label co-occurrence matrix to construct the label interactive causal 
correlation matrix. The label co-occurrence matrix analyzes the 
potential interactive causal relationship between the labels through the 
conditional probability test method. Considering all binary classifiers 
at the same time, the optimization can be expressed as:

 (11)

Based on the interactive causal inference theory, we get the 
following two definitions:

Definition 1: V is the label interactive causality correlation matrix, 
and V is a square matrix with a dimension of l × l. If Vmn = Vnm ≠ 0, there 
is a correlation between the corresponding labels. If Vmn = Vnm = 0, 
there is neither correlation nor interactive causality between the 
corresponding labels. If Vmn ≠ Vnm and Vmn or Vnm = 0, it means that there 
is an interactive causal relationship between the corresponding labels.
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Definition 2: R ∈  ℝl×l  is the label correlation matrix. C ∈  {0,  1}l×l is 
the label co-occurrence matrix. A ⨀ B is defined as a matrix operation, 
where A ∈  ℝl×l, B ∈  {0,  1}l×l. ⨀ means that if Bmn = 1, then Amn = 0. CC is 
the complement matrix of the label co-occurrence matrix C. Then the 
label interactive causality correlation matrix V is:

 (12)

ym, yn are a pair of labels, where i,  j = 1,  2,  ...,  n. According to the 
description of label interactive causal inference in section Ⅱ-A. Let  
λ = P(ym), μ = P(yn | ym). Assuming (λ, μ) is a pair of independent 
random variables, fλ and fμ are corresponding to its characteristic 
function, fλ,μ is its joint characteristic function. According to section 
Ⅱ-A:

If , then ym → yn is the inferred interactive causal 
direction.

If , then yn → ym is the inferred interactive causal 
direction.

In summary, we can get the label interactive causality correlation 
matrix V ∈  {0,  1}l×l, where Vmn = 0 means that there is no interactive 
causal relationship between the m-th label and the n-th label. Vmn = 1  
means that the direction of inferring the interactive causal relationship 
between the m-th label and the n-th label is m → n. Finally, the obtained 
label interactive causality correlation matrix is added to formula (11) 
to obtain the algorithm model proposed in this chapter:

 (13)

Where W = (W1,  W2,  ...,  Wl ) ∈  Rd×l, S = (S1,  S2,  ...,  Sl ) ∈  Rn×l, α > 0 and 
β > 0 are both parameters in the algorithms model. Then constraints to 
the reshaping process are considered to add, so that the reshaped label 
matrix S after the mapping has a small difference from the original 
label matrix Y:

 (14)

Using natural interactive causality to extract label-specific features 
can avoid the problem that the l1-norm feature sparse strategy relies 
on manual parameter selection to a certain extent. Too high or too low 
sparsity will lead to poor classifier performance. In addition, in order 
to prevent the algorithm from overfitting that may be caused by the 
reshaping of the numerical label matrix S. This paper uses F-norm to 
constrain matrix S and control the sparsity of matrix W. In summary, 
the CCSRMC algorithm model proposed in this paper is as follows:

 (15)

Where  γ > 0 is the parameter in the algorithm model. It can be 
seen from the above algorithm model that when the label matrix 
is reshaped, it will be affected by the weight W. What affects the 
weight W is not only the classification model after the label matrix is 
reshaped, but also the correlation between the labels [23]. The label 
correlation matrix is usually directly added to the model without 
considering the interactive causality of the correlation between the 
labels. As shown in Fig. 2, we construct a label co-occurrence matrix 
by combining conditional probability testing method on the basis of 
label propagation reshaping the rich label semantics in label space. 
The label co-occurrence matrix and the label correlation matrix are 
combined to construct the numerical label matrix obtained by the 
label interactive causal correlation matrix pair, so that multi-label 
classification learning is performed.
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Fig. 2. Interactive Causal Correlation Space Reshape.

C. Optimization of the Model
In this paper, the three variable matrices in the label space reshaping 

model are calculated by using the alternate iteration method. That is 
the label propagation dependency matrix P, the numerical labels matrix 
S, and the weight matrix W are used to complete the optimization of 
the entire model and refer to the literature [24].

 (16)

Where γ is parameter of the model. From the above algorithm model, 
it can be seen the numerical label matrix S is constantly changing. 
This matrix has correlation between labels, which means that when 
learning label-specific features, it will take the relevance between 
different labels into account. For the label propagation dependency 
matrix P, we can define , Through the label 
matrix S reshaped by the l2,1-norm sparse label space of the matrix, the 
variable matrix P is obtained as:

 (17)

 (18)

Where , D is the diagonal matrix. Then calculate the 
numerical label matrix S, the objective function is:

 (19)

In training, in order to minimize the risk of label reshaping model 
structure and prevent the occurrence of overfitting, the model 
parameter α appears in the objective function as the control parameter 
of the model weight penalty term. The number label matrix S is 
obtained as:

 (20)

Finally, the weight matrix W is calculated. The objective function is:

 (21)

The composite function derivation is performed on the weight 
matrix W. Split W into f(W) and g(W):

 (22)

 (23)

When learning tag information, the correlation between labels 
should be considered. The third item in the weight matrix W model 
is to use the F-norm to sparse the weight matrix W. The parameter 
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β  controls the sparsity of the weight matrix. Although formula (21) 
is a convex optimization problem, the objective function (21) is non-
smooth due to the non-smoothness of the regular term of l1-norm. For 
this reason, this paper uses the near-end gradient descent method [22] 
to solve the optimization problem of non-smooth objective function. 
The objective function becomes:

 (24)

 (25)

In formula (24), ℋ is the Hilbert space. Both f(W) and g(W) are 
convex functions and satisfy Lipschitz condition. For any matrix W1, 
W2 there are:

 (26)

Where Lg is Lipschitz constant. ∆W = W1 − W2. In the process of 
accelerating gradient descent, F(W) is no longer directly minimized. 
It is necessary to introduce the quadratic approximation F(W) of 
Q (W,  W(t)), so define Q (W,  W(t)):

 (27)

 (28)

 (29)

Given in the research in [25]:

 (30)

The sequence bt satisfies , which can increase the 
speed of convergence to O(t −2). So Wt can be regarded as the result of 
the t-th iteration of W:

 (31)

Where Sε [∙] is a soft threshold operator. For any parameter xij and 
, this function is defined as:

 (32)

 (33)

The Lipschitz constant is calculated as follows. For given W1 and 
W2, the Lipschitz condition is satisfied according to f(W):

 (34)

Therefore, the Lipschitz constant of the model is:

 (35)

III. Pseudocode and Complexity Analysis

A. Accelerated Gradient Descent
This section outlines the algorithm flow of CCSRMC. Solve the 

weight matrix W and obtain the interactive causal correlation matrix 
V. In Algorithm 1 Step 3 and Step 4 are more complicated. Where G(t) 
is an intermediate variable, f(⋅) represents the gradient, the algorithm 
complexity of calculating the weight matrix W is O(n2 d2 l + n2 
dl + dl2). In algorithm 2, the label interactive causality matrix: V is 
constructed with the conditional independence test method. Only the 
non-diagonal elements in the upper or lower triangular matrix need to 
be calculated. Therefore, the complexity of step 3 is O(l2). Step 4 has a 
complexity of O(l2/2).

The accelerated proximal gradient of CCSRMC is summarized in 
Algorithm 1. 

Algorithm 1: The Accelerated Proximal Gradient Method
Input: Training data matrix: X; Training label data set: Y; Parameters: α, β, γ
Output: Weight matrix: W.
1. Initialize: b0 = b1 = 1,  W0 = W1 = (XT X + γI)−1 XT Y
2. while not converged do

3.      

4.      

5.      

6.      

7.      t = t + 1

8. end while

B. Algorithm Pseudocode of Label Interactive Causal Inference 
Method

The label interactive causal inference method based on conditional 
independence test is summarized in Algorithm 2. 

Algorithm 2: The Label Interactive Causal Inference Method based on 
Conditional Independence Test

Input: Label matrix: S; Number of labels: l.

Output: Label interactive causality matrix: V.

1. for i = 1, 2, 3, …, n do

2.    for j = 1, 2, 3, …, n  do

3.             Construct P(ym) and P(yn |  ym), calculate

                        

                Construct P(yn) and P(ym |  yn), calculate

                        

4.   end for

5. end for 

6. If , then ym → yn is the inferred interactive causal                                          
                                     direction, Vmn = 1

     If , then yn → ym is the inferred interactive causal   
                                         direction, Vnm = 1
7. else, no causation, Vmn = 0
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C. Complexity Analysis
In summary, the algorithm complexity of CCSRMC is 

(ndl (nd + n + d) + nl (l2 + n3 l + n) + dl2). In order to comprehensively 
reflect the performance of CCSRMC, the algorithm complexity 
of this paper is compared with LSML [5], LSF-CI [3], FF-MLLA 
[6], LLSF [2] and ACML [8]. In comparison experiments, the 
closest comparison algorithm to the performance of this paper 
are LSML and FF-MLLA [6]. The algorithm complexity of LSML is  
O ((n + l) d2 + (n + d) l2 + ndl + d3 + l3). FF-MLLA does not give 
a specific algorithm time complexity analysis. The algorithm 
complexity of LSF-CI is O (nd2 + nd + ndl + lg2 + d3 + d2l). Although 
the complexity of the algorithm in this paper is slightly higher than 
that of the comparison algorithms, the experimental results show that 
the CCSRMC algorithm has a better classification effect on most multi-
label datasets than the comparison algorithms. Table Ⅰ summarizes the 
computational complexity of the proposed methods and comparisons.

TABLE Ⅰ. The Computational Complexity of Different Algorithm

Methods Computational complexity
LSF-CI O (nd2 + nd + ndl + lg2 + d3 + d2l)
LSML O ((n + l) d2 + (n + d) l2 + ndl + d3 + l3)
ACML O ((n + l + nl) d2 + (n + d) l2 + 3/2)
LLSF O (d2 + dl + l2 + nd + nl )

CCSRMC O (ndl (nd + n + d) + nl (l2 +n3l + n) + dl2)

IV. Experiment

A. Dataset
To illustrate the effectiveness of the algorithm, 14 multi-label datasets 

from Yahoo.com and Mulan.com are selected. Table Ⅱ is a detailed 
description. CCSRMC is a related model of multi-label classification, so 
in section Ⅳ-D, this paper selects multiple multi-label text classification 
datasets for comparison experiments. In order to reflect the universality 
of the algorithm in this paper, we also select other types of multi-label 
data sets for comparative experiments to compare and verify the 
effectiveness of the algorithm proposed in this paper. 

TABLE Ⅱ. Description of Datasets

Datasets Train Test Labels Features Domain
Birds 2 645 645 20 260 Image

Genbase2 662 662 27 1185 Biology
Enron2 1702 1702 53 1001 Text
Yeast2 2417 2417 14 103 Biology
Arts1 2000 3000 26 462 Text

Computers1 2000 3000 33 681 Text
Education1 2000 3000 33 550 Text

Science1 2000 3000 40 743 Text
Society1 2000 3000 27 636 Text

Entertainment1 2000 3000 21 640 News
Business1 2000 3000 30 438 News
Health1 2000 3000 32 612 Text

Reference1 2000 3000 33 793 Text
Recreation1 2000 3000 22 606 News

1 Yahoo Web Pages (http://archive.ics.uci.edu/ml/) 
2 Mulan (http://mulan.sourceforge.net/datasets-mlc.html)

B. Comparison Algorithm and Parameter Settings
In this experiment, five multi-label classification algorithms are 

selected for comparison with CCSRMC. LSI-CI [3] is a multi-label 
classification algorithm that promotes label-specific features learning 

by learning correlation information between features and correlation 
information between labels. Its parameters are set to α = 210, β = 28, 
γ = 1,  θ = 2−8. LLSF [2] improves the performance of multi-label 
classification by learning the cosine similarity between labels to 
perform label-specific features learning. The parameters are set to 
α = 2−4, β = 2−6, γ = 1. LSML [5] handles the multi-label classification 
of the default data set by learning high-order label correlation matrix 
and label-specific features, and the parameters are set to λ2 = 10−5, 
λ3 = 10−3, λ4 = 10−5. FF-MLLA [6] uses the firefly method to fuse 
correlation information with sample similarity information. Then it 
classifies through singular value decomposition and extreme learning 
machine. In the FF-MLLA algorithm, the number of neighbors is k=15. 
The regularization coefficient is set to 1. The kernel function chooses 
RBF. The nuclear parameter is set to 100. The training method selects 
linear regression fitting. The ACML [8] algorithm uses cosine similarity 
to construct a label correlation matrix. Then the algorithm measures 
the adjacency between the labels to construct the label adjacency 
matrix. Finally, the label adjacency matrix is used to constrain the label 
correlation matrix to link the interactive causal label correlation. Its 
parameter setting interval is α ∈  [2−10, 210],  β ∈  [2−10, 210].

C. Metric
The evaluation index of the multi-label learning system is different 

from the traditional single-label learning system. The output label of 
the multi-label learning may be partially correct, completely correct, 
or completely wrong. In this paper, five evaluation indicators that 
are widely used in multi-label tasks are compared with the above-
mentioned multi-label classification algorithms, including Hamming 
Loss, Average Precision, One-Error rate, Ranking Loss, AUC and 
Coverage rate [26] [27]. The value range of these evaluation indicators 
varies between [0,1]. For each evaluation indicator, “↑” means 
the larger, the better, and “↓” means the smaller, the better. Where  
D = {(Xit, Yil | 1 ≤ t ≤ d,  1 ≤ i ≤ m,  1 ≤ l ≤ L)} is multi-label dataset. h(∙) 
is a multi-label classifier. f(∙) is the prediction function. The definitions 
of 5 evaluation indicators are as follows:

Hamming Loss can be used to evaluate how many times a sample is 
misclassified. For example, a sample does not belong to label Li but is 
incorrectly classified into label Li. Or a sample belongs to label Li but 
is not predicted as label Li. The algorithm in this paper uses Hamming 
loss to calculate the numerical distance between the result sequence 
predicted by the classifier and the original result sequence.

 (36)

Where m is the number of samples, M is the total number of labels. 
Yi is the set of actual labels of i-th sample, Zi is the set of predicted labels 
of i-th sample. ∆ refers to the symmetric difference between the two 
sets. The smaller the Hamming loss, the better the prediction result.

In the ranking of all prediction results, the average precision 
represents the probability that the ranking is ranked before the 
labels of the related label set and belongs to the related label set. The 
indicator reflects the average precision of the classification label. This 
indicator was originally used in Information Retrieval (IR) systems to 
evaluate the retrieval performance of text sorting.

 (37)

rankf is the ranking function. When the average precision reaches 
1, the prediction effect is the best. That is, the larger the APD (f), the 
higher the performance of f(∙).

One-Error can be used to evaluate the probability that the label 
ranked first in the output result does not belong to the actual label set. It 
can reflect the times that the highest ranking object is incorrectly labeled.
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 (38)

The smaller the One-Error, the better the prediction. That is, the 
smaller the OED (f), the higher the performance of f(∙).

Ranking Loss indicates how many irrelevant labels are ranked higher 
than related labels. The ranking loss is used to indicate the average of 
the probability that a label that does not belong to the relevant label 
set is ranked in the relevant label set in the result ranking.

 (39)

The smaller the Ranking Loss, the better the prediction result. That 
is, the smaller the RLD (f), the higher the performance of f(∙).

Coverage can be used to reflect the number of labels required to 
cover all labels in the label sequence of the evaluated object.  

 (40)

The smaller the coverage, the better the prediction result, and the 
higher the performance of f(∙).

AUC (Area under the Curve of ROC) is an evaluation index that 
measures the pros and cons of a two-class model. AUC represents the 
probability that a positive example is ranked before a negative example. 
When a positive sample and a negative sample are randomly selected, 
the current classification algorithm ranks the positive sample ahead of 
the negative sample according to the calculated score value. The larger 
the AUC, the more likely the current classification algorithm will rank 
the positive samples in front of the negative samples. Therefore, the 
effect of classification is better.

 (41)

The area under the ROC curve is between 0.1 and 1. As a value, 
AUC can intuitively evaluate the quality of the classifier, the larger the 
value, the better the effect.

V. Analysis and Visualization

A. Analysis of the Results
In the experiment, this article uses a five-fold cross-validation 

method to evaluate the performance of the algorithm. Five-fold cross-
validation means that all data is randomly divided into five equal 
subsets, each subset is tested in turn, and the remaining data is used 
for training. Five-fold cross-validation is iterated five times, so the 
average value after five runs of the experiment needs to be calculated. 
The five comparison algorithms selected in this article all consider 
different symmetric label correlations.

As illustrated in Table Ⅲ, the experimental results of each algorithm 
under 14 datasets and the optimal experimental results have been 
marked in bold-type. Analyzing the above experimental results, we 
get the following conclusions: 

1. It can be seen from Table Ⅲ that in the 84 sets of experimental 
data, CCSRMC has the best results in 53 sets, with a dominant 
ratio of 63%. The evaluation index AP is significantly better than 
other comparison algorithms. The performance of 13 out of 14 
data sets is better than other comparison algorithms. In addition, 
the variance of the CCSRMC algorithm is smaller, which shows 

that the performance of CCSRMC is more stable.

2. Compared with the ACML algorithm that also takes the 
interactive causal correlation between labels into account, 
the overall performance of CCSRMC is better than the ACML 
algorithm. The reason is that although the two algorithms both 
consider the interactive causal correlation between labels, the 
CCSRMC algorithm uses the label space reshaping method to 
transform the original discrete labels into continuous labels. The 
use of continuous labels to infer the interactive causal correlation 
between features and labels cause the results of the CCSRMC 
algorithm be superior to the ACML algorithm to a certain extent.

3. The algorithm LSML combines high-order label correlation matrix 
and specific features to process the multi-label classification of 
the default data set. In the five indexes of HL, OE, RL, AUC and 
CV, the experimental results show that the algorithm CCSRMC 
proposed in this paper is significantly better than the algorithm 
LSML, which verifies the effectiveness of the algorithm in this 
paper. Thus, by considering the interactive causal relationship 
between labels, different labels with dependencies can be better 
identified and the redundant information in the model is reduced, 
which can improve the performance of the multi-label classifier to 
a certain extent.

B. Ablation Analysis
In order to verify that the introduction of interactive causal label 

correlation in the model improves the performance of the algorithm, 
we conduct related experiments for ablation analysis in this section. 
We compared CCSRMC using an interactive causal label correlation 
matrix with SRMC using a label correlation matrix. Some results are 
shown in Fig. 3. The performance of the CCSRMC algorithm using 
the interactive causal label correlation matrix is better than that of 
the CCSRMC algorithm using the label correlation matrix. It further 
illustrates the effectiveness and rationality of introducing interactive 
causal label correlation in the multi-label algorithm.

C. Parameter Sensitivity Analysis
The algorithm CCSRMC proposed in this paper has three parameters 

α, β, γ. The parameter α controls the influence of the interactive 
causal correlation between the labels on the model coefficients and 
the weight constraints that minimize structural risks and prevent 
overfitting. The parameter β controls the sparseness of label features 
extracted from the label-specific features. The parameter γ controls 
the sparsity of the numerical label matrix S. By a method that fix two 
parameter values and change one parameter value to find the optimal 
value, we found that the parameter β has no obvious change in the six 
evaluation indicators. This further verifies that we did not use l1-norm 
regularization to extract specific features, but use interactive causal 
correlation to connect specific features between labels. In this section, 
we use Bar-3 to visualize the parameter sensitivity comparison of 
parameters α and γ. The algorithm in this paper conducts parameter 
sensitivity experiments on the Emotions data set. According to the 
experimental results in Fig. 4, it can be found that the algorithm 
CCSRMC has different sensitivity to the regularization parameters 
on the six evaluation indicators. On the evaluation index of AUC, 
when the experimental interval of parameter α is set to [27, 210],  
the parameter γ is affected, which leads to the deterioration of the 
performance of the algorithm. For the HL evaluation index, as the 
parameter α interval increases, the HL index decreases and then rises. 
When the parameter α > 26, the correlation information between the 
labels obtained by the CCSRMC algorithm becomes very scarce, and 
the risk of the model structure increases, which may easily lead to 
overfitting. When the parameter γ > 22, the label specific features that 
can be extracted in the CCSRMC algorithm become very scarce, and 
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TABLE Ⅲ-A. Test Results of Each Algorithm on 6 Evaluation Indexes (Mean ± Std) 

Dataset Metric CCSRMC ACML FF-MLLA LSML LLSF LSF-CI

Birds

HL↓ 0.0475±0.0029 0.0512±0.0023 0.0476±0.0040 0.0595±0.0046 0.0506±0.0041 0.0647±0.0063

AP ↑ 0.7687±0.0304 0.7648±0.0275 0.7517±0.0247 0.7596±0.0219 0.7582±0.0350 0.6302±0.0165

OE↓ 0.2759±0.0358 0.2821±0.0301 0.3007±0.0358 0.2884±0.0458 0.2915±0.0385 0.4062±0.0233

RL↓ 0.0887±0.0143 0.0891±0.0150 0.1067±0.0116 0.0972±0.0061 0.0962±0.0232 0.2206±0.0168

CV↓ 0.1382±0.0192 0.1391±0.0210 0.1512±0.0206 0.1483±0.0162 0.1471±0.0322 0.2739±0.0156

AUC ↑ 0.9112±0.0143 0.8953±0.046 0.7714±0.0145 0.6498±0.0040 0.7690±0.0178 0.6978±0.0145

Arts

HL↓ 0.0522±0.0007 0.0536±0.0007 0.0588±0.0015 0.0582±0.0011 0.0566±0.0009 0.0561±0.0013

AP ↑ 0.6305±0.0072 0.6241±0.0141 0.5211±0.0101 0.5932±0.0069 0.5852±0.0147 0.5451±0.0100

OE↓ 0.4436±0.0087 0.4524±0.0179 0.607±0.0191 0.4762±0.0088 0.4900±0.0181 0.5090±0.0180

RL↓ 0.1350±0.0070 0.1405±0.0074 0.1571±0.0031 0.1770±0.0058 0.1841±0.0106 0.2621±0.0106

CV↓ 0.2065±0.0102 0.2141±0.0080 0.2212±0.0050 0.2567±0.0060 0.2650±0.0117 0.3448±0.0107

AUC ↑ 0.8649±0.0070 0.7832±0.0891 0.5558±0.0059 0.6723±0.0178 0.6916±0.0114 0.7102±0.0007

Computers

HL↓ 0.0326±0.0006 0.0339±0.0009 0.0383±0.0010 0.0391±0.0008 0.0389±0.0010 0.0415±0.0018

AP ↑ 0.7174±0.0034 0.7093±0.0163 0.6424±0.0041 0.6915±0.0059 0.6575±0.0064 0.5839±0.0059

OE↓ 0.3372±0.0049 0.3466±0.0171 0.4302±0.0072 0.3608±0.0060 0.4080±0.0094 0.4614±0.0072

RL↓ 0.0903±0.0043 0.0980±0.0086 0.0974±0.0044 0.1230±0.0059 0.1229±0.0059 0.2299±0.0126

CV↓ 0.1330±0.0064 0.1406±0.0106 0.1402±0.0045 0.1725±0.0051 0.1720±0.0088 0.2888±0.0170

AUC ↑ 0.9096±0.0043 0.7828±0.0916 0.6764±0.0041 0.7505±0.0165 0.6810±0.0136 0.7813±0.0068

Education

HL↓ 0.0381±0.0003 0.0371±0.0008 0.0407±0.0002 0.0411±0.0003 0.0414±0.0007 0.0418±0.0012

AP ↑ 0.6670±0.0067 0.6337±0.0153 0.5497±0.0050 0.6033±0.0082 0.5805±0.0069 0.5290±0.0166

OE↓ 0.4666±0.0083 0.4606±0.0203 0.5868±0.0079 0.4826±0.0178 0.5090±0.0070 0.5290±0.0166

RL↓ 0.0990±0.0056 0.1089±0.0057 0.1001±0.0053 0.1526±0.0068 0.1642±0.0065 0.2486±0.0081

CV↓ 0.1444±0.0053 0.1592±0.0086 0.1323±0.0067 0.2123±0.0077 0.2215±0.0068 0.3133±0.0115

AUC ↑ 0.9009±0.0056 0.8709±0.0190 0.5612±0.0037 0.6435±0.0003 0.6660±0.0160 0.6784±0.0532

Enron

HL↓ 0.0464±0.0005 0.0455±0.0006 0.0500±0.0007 0.0505±0.0014 0.0553±0.0020 0.0664±0.0066

AP ↑ 0.7061±0.0083 0.7027±0.0099 0.6546±0.0052 0.6928±0.0088 0.6609±0.0085 0.6539±0.0060

OE↓ 0.2297±0.0179 0.2279±0.0216 0.2584±0.0139 0.2444±0.0156 0.2650±0.0147 0.2644±0.0114

RL↓ 0.0841±0.0061 0.0895±0.0039 0.1000±0.0032 0.0951±0.0043 0.1258±0.0059 0.1109±0.0023

CV↓ 0.2430±0.0122 0.2547±0.0072 0.2753±0.0083 0.2695±0.0100 0.3154±0.0156 0.2779±0.0045

AUC ↑ 0.9158±0.0061 0.8367±0.0037 0.7053±0.0051 0.6329±0.0089 0.6673±0.0094 0.6307±0.0275

Genbase

HL↓ 0.0023±0.0007 0.0015±0.0004 0.9540±0.0014 0.0010±0.0005 0.4130±0.2064 0.0040±0.0012

AP ↑ 0.9946±0.0029 0.9952±0.0034 0.9926±0.0061 0.9969±0.0035 0.3133±0.1597 0.9966±0.0034

OE↓ 0.0015±0.0030 0.0015±0.0030 —— 0.0015±0.0031 0.0061±0.2239 0.0015±0.0030

RL↓ 0.0022±0.0020 0.0029±0.0025 0.0050±0.0048 0.0016±0.0028 0.0645±0.0300 0.0018±0.0030

CV↓ 0.0131±0.0049 0.0123±0.0011 0.0177±0.0084 0.0125±0.0045 0.0809±0.2143 0.0101±0.0016

AUC ↑ 0.9977±0.0020 0.8900±0.0039 0.6849±0.0288 0.7106±0.0044 0.7683±0.0303 0.5903±0.0013

Entertainment

HL↓ 0.0532±0.0010 0.0508±0.0014 0.0589±0.0005 0.0570±0.0006 0.0550±0.0015 0.0550±0.0014

AP ↑ 0.6944±0.0107 0.6925±0.0067 0.5777±0.0110 0.6731±0.0089 0.6669±0.0071 0.6351±0.0076

OE↓ 0.3948±0.0109 0.3912±0.0106 0.5668±0.0178 0.4072±0.0113 0.4092±0.0070 0.4166±0.0063

RL↓ 0.1089±0.0068 0.1163±0.0035 0.1284±0.0047 0.1422±0.0040 0.1460±0.0110 0.2215±0.0096

CV↓ 0.1523±0.0085 0.1605±0.0066 0.1661±0.0052 0.1897±0.0044 0.1918±0.0114 0.2717±0.0109

AUC ↑ 0.8910±0.0068 0.8013±0.0009 0.5879±0.0035 0.6128±0.0034 0.7600±0.1127 0.5699±0.0901
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TABLE Ⅲ-B. Test Results of Each Algorithm on 6 Evaluation Indexes (Mean ± Std) 

Dataset Metric CCSRMC ACML FF-MLLA LSML LLSF LSF-CI

Business

HL↓ 0.0278±0.0007 0.0266±0.0004 0.0261±0.0016 0.0287±0.0010 0.0295±0.0009 0.0398±0.0008

AP ↑ 0.8838±0.0055 0.8809±0.0072 0.8805±0.0110 0.8798±0.0085 0.8484±0.0090 0.7825±0.0116

OE↓ 0.1176±0.0106 0.1158±0.0074 0.114±0.0101 0.1104±0.0105 0.1452±0.0112 0.2240±0.0185

RL↓ 0.0407±0.0018 0.0443±0.0048 0.0452±0.0049 0.0485±0.0048 0.0635±0.0041 0.1036±0.0071

CV↓ 0.0818±0.0045 0.0895±0.0078 0.0833±0.0068 0.0967±0.0097 0.1096±0.0064 0.1559±0.0092

AUC ↑ 0.9592±0.0018 0.8971±0.0142 0.8520±0.0075 0.7990±0.0005 0.7168±0.0093 0.7009±0.0141

Science

HL↓ 0.0322±0.0009 0.0311±0.0006 0.0348±0.0008 0.0333±0.0007 0.0348±0.0007 0.0348±0.0007

AP ↑ 0.6041±0.0097 0.6077±0.0081 0.4556±0.0135 0.5890±0.0158 0.5521±0.0105 0.5166±0.0116

OE↓ 0.4846±0.0148 0.4772±0.0108 0.6694±0.0146 0.4884±0.0207 0.5274±0.0075 0.5512±0.0191

RL↓ 0.1171±0.0061 0.1289±0.0046 0.1568±0.0025 0.1530±0.0106 0.1774±0.0083 0.2473±0.0056

CV↓ 0.1625±0.0129 0.1778±0.0058 0.1978±0.0057 0.2048±0.0143 0.2296±0.0087 0.3027±0.0065

AUC ↑ 0.8828±0.0061 0.8600±0.0003 0.5346±0.0028 0.6415±0.0340 0.8962±0.0031 0.7624±0.0007

Society

HL↓ 0.0526±0.0020 0.0515±0.0010 0.0561±0.0015 0.0560±0.0010 0.0578±0.0011 0.0585±0.0013

AP ↑ 0.6397±0.0141 0.6360±0.0076 0.5872±0.0126 0.6128±0.0118 0.5930±0.0071 0.5158±0.0108

OE↓ 0.3946±0.0183 0.3900±0.0106 0.4634±0.0178 0.4028±0.0183 0.4462±0.0099 0.5192±0.0192

RL↓ 0.1407±0.0069 0.1517±0.0061 0.1503±0.0051 0.1879±0.0054 0.1857±0.0042 0.2820±0.0071

CV↓ 0.2245±0.0116 0.2387±0.0115 0.2274±0.0069 0.2847±0.0064 0.2755±0.0061 0.3820±0.0090

AUC ↑ 0.8592±0.0069 0.7723±0.0087 0.6280±0.0066 0.7098±0.0037 0.6449±0.0083 0.7222±0.0056

Yeast

HL↓ 0.2055±0.0038 0.2000±0.0033 0.1955±0.0072 0.2608±0.0082 0.2008±0.0036 0.0585±0.0013

AP ↑ 0.7504±0.0109 0.7570±0.0067 0.7626±0.0089 0.6102±0.0082 0.7587±0.0091 0.5158±0.0108

OE↓ 0.2407±0.0175 0.2291±0.0146 0.2304±0.0106 0.3583±0.0192 0.2275±0.0134 0.5192±0.0192

RL↓ 0.1727±0.0070 0.1706±0.0019 0.1717±0.0078 0.3463±0.0122 0.1696±0.0054 0.2820±0.0071

CV↓ 0.4510±0.0057 0.4534±0.0041 0.4543±0.0115 0.6233±0.0131 0.4530±0.0053 0.3820±0.0090

AUC ↑ 0.8272±0.0070 0.7823±0.0010 0.7499±0.0089 0.6381±0.0107 0.6710±0.0036 0.6563±0.0096

Health

HL↓ 0.0301±0.0012 0.0331±0.0008 0.0407±0.0011 0.0413±0.0006 0.0356±0.0010 0.0389±0.0009

AP ↑ 0.7840±0.0073 0.7821±0.0062 0.7069±0.0088 0.7646±0.0098 0.7571±0.0059 0.6980±0.0094

OE↓ 0.2578±0.0138 0.2510±0.0068 0.3776±0.0121 0.2644±0.0109 0.2764±0.0141 0.3172±0.0162

RL↓ 0.0609±0.0040 0.0677±0.0041 0.0685±0.0045 0.0876±0.0044 0.0905±0.0034 0.1651±0.0060

CV↓ 0.1183±0.0078 0.1286±0.0072 0.1168±0.0074 0.1591±0.0060 0.1562±0.0035 0.2456±0.0067

AUC ↑ 0.9390±0.0040 0.7906±0.0019 0.7011±0.0046 0.6954±0.0200 0.7199±0.0011 0.6435±0.0042

Reference

HL↓ 0.0004±0.0268 0.0257±0.0008 0.0292±0.0004 0.0294±0.0010 0.0280±0.0006 0.0298±0.0014

AP ↑ 0.0095±0.7090 0.7135±0.0033 0.6301±0.0078 0.7052±0.0072 0.6634±0.0129 0.5929±0.0173

OE↓ 0.0122±0.3760 0.3642±0.0090 0.4658±0.0084 0.3666±0.0088 0.4020±0.0144 0.4692±0.0178

RL↓ 0.0045±0.0891 0.0930±0.0047 0.0934±0.0047 0.1070±0.0060 0.1398±0.0087 0.2426±0.0149

CV↓ 0.0069±0.1134 0.1194±0.0079 0.1100±0.0057 0.1354±0.0072 0.1705±0.0104 0.2745±0.0171

AUC ↑ —— 0.7505±0.056 0.6461±0.0035 0.7234±0.0093 0.6983±0.0023 0.6728±0.0003

Recreation

HL↓ 0.0559±0.0014 0.0535±0.0011 0.9361±0.0016 0.0578±0.0008 0.0571±0.0013 0.0565±0.0003

AP ↑ 0.6436±0.0125 0.6391±0.0043 0.4892±0.0039 0.6185±0.0097 0.5985±0.0148 0.5692±0.0097

OE↓ 0.4492±0.0199 0.4444±0.0092 0.6616±0.0071 0.4614±0.0102 0.4890±0.0248 0.5056±0.0113

RL↓ 0.1416±0.0027 0.1485±0.0037 0.1830±0.0015 0.1741±0.0107 0.1868±0.0045 0.2446±0.0075

CV↓ 0.1898±0.0048 0.1992±0.0059 0.2221±0.0028 0.2277±0.0123 0.2392±0.0044 0.2968±0.0088

AUC ↑ 0.8583±0.0055 0.8022±0.0071 0.5339±0.0017 0.6991±0.0189 0.7764±0.0080 0.6101±0.0019

Note: “↑” (“↓”) means that the larger (smaller) the evaluation index is, the better. The best results are displayed in bold magnification.
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Fig. 3. Ablation Analysis of CCSRMC and SRMC on 6 Evaluation Indexes.

Fig. 4.  Parameter Sensitivity Analysis Units.
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the learning effect of label-specific features decreases. For AP and CV 
evaluation indexes, it can be found that the changes of the parameters 
α and γ have a relatively stable influence on the algorithm. In the RL 
evaluation index, we observe that when the parameter α > 28, the 
performance of the algorithm drops rapidly. In the OE evaluation index, 
we found that as the parameter α increases, the performance of the 
algorithm first increases and then decreases. In the interval [2−10, 20], 
the performance of CCSRMC algorithm is relatively stable. Combining 
the sensitivity analysis of each parameter above, it is suggested 
that the parameter setting interval in this paper is αϵ[2−10, 2−1],   
βϵ[2−10, 210],  γϵ[2−10, 26].

D. Statistical Hypothesis Testing References and Footnotes
In this paper, the stability of the performance of CCSRMC and other 

comparative experimental algorithms on 14 datasets is compared by 
using the Nemenyi test [28] with a significance level of 5%. When the 
average ranking difference of the two comparison algorithms on all 
data sets is greater than the critical difference (CD), it is considered 
that there is a significant difference between the two algorithms, 
otherwise it is considered that there is no significant difference. The 
calculation formula of CD value is:

 (42)

Where the significance level is α = 0.05, k = 6, N = 14, qα = 2.850, 
so CD = 2.2518. 
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Fig.5. Parameter Sensitivity Analysis Units.

According to the results shown in Fig. 5. The higher the average 
ranking, the more dominant the algorithm. Compared with other 
comparison algorithms, the average rankings of CCSRMC are all 
the best on the four evaluation indexes of AP, AUC, RL, and CV. 
It is slightly inferior to the ACML algorithm on the OE and HL 
indexes. The average ranking of SRMC, which does not consider 
the interactive causal relationship between labels, is always inferior 
to CCSRMC. The validity and rationality of introducing interactive 
causal label correlation in the multi-label algorithm is again verified. 
In the OE index, the CCSRMC algorithm is significantly different from 
LSF-CI, FF-MLLA, and ACML. The average accuracy of CCSRMC 
is significantly different from LLSF, LSF-CI, and FF-MLLA. In the 
indexes of AUC and HL, CCSRMC is significantly different from 
other comparison algorithms except ACML. In the indexes of AUC 
and HL, CCSRMC is significantly different from other comparison 
algorithms except ACML. In terms of RL and CV evaluation indexes, 

LLSF, LSF-CI, LSML are all significantly different from CCSRMC. 
The results of Nemenyi test are consistent with the basic results of 
experimental analysis. The results of the Nemenyi test further verify 
the performance of the algorithm in this paper, which shows that the 
introduction of interactive causal inference in multi-label learning is 
reasonable and effective.

VI. Conclusion

This article is using the spatial reshaping method to transform 
the original discrete label into a continuous label. On the basic 
of solving the problems that the existence of logical label cannot 
describe the importance of different labels and cannot fully represent 
semantic information, the label co-occurrence matrix is constructed 
by combining the conditional probability test method. The label co-
occurrence matrix and the label correlation matrix are combined to 
construct the label interactive causal correlation matrix to perform 
multi-label classification learning on the obtained numerical label 
matrix. It avoids the problem that the distance failed to measure high-
dimensional space and the parameter depends on manual selection. 
The experimental results show that the method has a certain validity. 
The accuracy of multi-label classification is improved. What’s more, 
the interactive causal situation of the correlation between the labels is 
considered to reduce the redundant information in the classification 
model. However, the method we proposed still needs improvement. 
For example, the problem of missing labeling and wrong labeling 
caused by the default of label data may affect the accuracy of 
interactive causal inference. The method in this paper only considers 
the dependency relationship between paired variables (a set of labels 
or labels and features), while ignoring the influence of factors such as 
confounding variables. The experimental results on the image data set 
show that only considering the dependency between paired variables 
is not suitable for more complex scenarios. The use of continuous 
labels for training should cooperate with an appropriate dynamic 
threshold selection mechanism. Each comparison algorithm does 
not fully consider the label distribution of each sample. Although the 
introduction of interactive causal inference in multi-label learning has 
achieved certain results, the method adopted is relatively simple. Thus, 
further study and research are necessary. 
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