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Abstract

The solution of the Parameterized Expectations Algorithm (PEA) is well defined based on asymptotic properties. 
In practice, it depends on the specific replication of the exogenous shock(s) used for the resolution process. 
Typically, this problem is reduced when a sufficiently long replication is considered. In this paper, we suggest 
an alternative approach which consists of using several, shorter replications. A centrality measure (the median) 
is used then to discriminate among the different solutions using two different criteria, which differ in the 
information used. On the one hand, the distance to the vector composed by median values of PEA coefficients 
is minimized. On the other hand, distances to the median impulse response is minimized. Finally, we explore 
the impact of considering alternative approaches in an empirical illustration.
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I. Introduction

THE Parameterized Expectations Algorithm (PEA) is a widely 
applied method for solving nonlinear stochastic dynamic models 

with rational expectations (see [1]-[8]) The PEA scheme involves 
approximating the conditional expectation functions in the Euler 
equations with certain parametric functions, and the use of a numerical 
optimization method to estimate parameter values.

A common problem with the PEA is that the solutions are obtained 
from a specific replication of exogenous random process(es).  Due to the 
asymptotic properties of the algorithm and increasing computational 
costs, authors typically have considered only one replication of the 
exogenous shocks but with a sufficiently long simulation length.  
However, as [9] pointed out: “... it may be necessary to use an extremely 
long simulation in order to obtain the same fitted coefficients of the 
approximating function across replications of the simulation”. By 
contrast, [10] claim that only quantitative differences are observed 
(qualitative properties remain). In any event, they all agree that basing 
one’s conclusions on a “non-unique” solution may cause results to be 
less robust than otherwise.

Contrary to [9] proposal which involves a parallel implementation 
of the PEA algorithm that enables a sufficiently long replication, we 
adopt a different approach consisting of sampling a sufficient number 
of shorter replications, in the framework of a Montecarlo experiment. 
A centrality measure (the median) is used to discriminate among the 
different solutions.  The criteria differ in the information used. On the 
one hand, the distance to the vector composed by median values of 
PEA coefficients is minimized. On the other hand, distances to the 
median impulse response is minimized.

We consider two models to frame the discussion: the simple 
neoclassical growth model, and the Cooley and Hansen (1989) model, 
that adds to the previous model a non-convexity, indivisible labour and 
introduces money via a cash-in-advance constraint in consumption.

Our main conclusion is that the criterion choosing the replication 
closest to the median impulse-response function appears to be the most 
suitable criterion for several reasons: (i) there is no bias in using shorter 
simulations which allows one to face much lower computational costs, 
(ii) it shows how different solutions behave when a transitory/permanent 
shock is applied (qualitative robustness is indirectly checked), and (iii) 
it provides a band of confidence around the final choice (the level of 
uncertainty is measured). Additionally, summary statistics may be 
obtained from the distribution of estimated coefficients.

II. The PEA

Consider an economy characterized by a vector of n endogenous 
variables, zt, and by a vector of s exogenously given shocks, ut. Let the 
process {zt , ut} be represented by a system

 (1)

where g: ℝm x ℝn x ℝn x ℝs →  ℝq and ϕ: ℝ2n → ℝm; the vector zt 
includes all endogenous and exogenous variables that are inside the 
expectation, and ut follows a first-order Markov process. It is assumed 
that zt is uniquely determined by (1) if the rest of arguments are given. 
The functions g(∙) and ϕ(∙) are known functions once the structural 
parameters of the economy are fixed. Alternatively, let the solution 
be expressed as a law of motion h such that the vector zt generated 
by zt = h(zt−1, ut) fulfills (1), given that all past information relevant to 
forecast ϕ(zt+1, zt) can be summarized in a finite-dimension function 
of {zt-1 , ut}.

Obtaining a solution to (1) using PEA consists of finding a 
parametric function φ(β; zt-1 , ut), such that for a positive integer ν, β 
∈ 𝔻ν, where 𝔻ν ⊂ {β ∈ ℝ∞: i-th element of β is zero if i > ν}, the process 



Special Issue on Artificial  Intelligence in Economics, Finance and Business

- 27 -

{zt (β)} satisfies for all t the set of equations

 (2)

and the order of ν is such that when solving  
, then β = G(β). This 

problem is solved by use of the following Gauss-Newton updating 
rule: βi = β i−1 + λG(β i−1) at each iteration i. Given these conditions, 
the stochastic process {zt (β)} is the PEA approximated solution. 
Under certain regularity conditions over the functions defining the 
equilibrium in (1), the function g(∙) is invertible in its second argument, 
and equation (2) can be written as (see [3])

 (3)

for stationary and ergodic processes. [11] shows that under those 
regularity conditions, fulfilled by standard business cycle models, it 
is always possible to find an approximated function hβ(∙) arbitrarily 
close to the true law of motion of the system h(∙). Under the true law of 
motion h(zt−1, ut), the true process  verifying (1) is stationary. 
For the approximation to be acceptable, given initial conditions {z0, u0} 
and an initial vector β, the resulting process  verifying (2) 
has to be stationary.

The PEA as presented in [2] can be written as follows:

• Step 1. Fix initial conditions u0 and z0; draw and fix a random 
series  from a given definition. Replace the conditional 
expectation in (1) with a function φ(β; zt-1 , ut) and compute zt(β)  
from (3).

• Step 2. For a given β ∈ 𝔻ν recursively calculate  according 
to 

• Step 3. Find a G(β) that satisfies  

. In order to perform 
this step, one can run a nonlinear least squares regression with the 
sample {zt (β), ut}, taking ϕ(zt+1(β), zt(β)) as a dependent variable, 
φ(∙) as an explanatory function, and ξ as a parameter vector to be 
estimated.

• Step 4. Compute the vector βi+1 for the next iteration, βi+1 = βi + 
λG(βi), λ ∈ (0,1) 

Iterate on Steps 2-4 until ‖βi+1 − βi‖ is below a certain tolerance 
value, for all t.

III. The Models

For simplicity, and without loss of generality, we have selected 
two quite standard models to address the discussion: the one-sector 
stochastic growth model (SN henceforth) and the Cooley and Hansen 
model (CH henceforth) presented in [12]. Consider firstly the SN 
model,

where logθt = ρ log θt−1) + ϵt with ϵt ~ (0, σ2), the initial condition  
(k−1, θ0) is given. ct is consumption at time t, kt-1 the beginning of period 
t capital stock, 0 < δ < 1 is the subjective discount factor, 0 < α < 1 the 
capital share in production, 0 < d < 1 the depreciation rate, and 0 < ρ < 1. 
But for the case with logarithmic utility, γ = 1, and full depreciation 
of capital, d = 1, a closed-form solution to this model is not known. 
Following [4], we approximate the conditional expectation by

where β = (β0, β1, β2) is a vector of coefficients to be found. To 
simulate the model, parameter values are fixed as: 

(the subscript ss refers to the steady-state values) and θ0 = 1.

The CH model is slightly more complex in that it includes a non-
convexity, indivisible labour. Money is introduced via a cash-in-
advance constraint in consumption. The competitive equilibrium is 
non-Pareto-optimal and the second welfare theorem does not apply. 
The representative firm solves a standard profit maximization problem, 
while households seek to maximize their time preferences subject 
to their holdings of money balances and a set of standard budget 
constraints. There are two sources of uncertainty in this economy: an 
autoregressive shock to technology, θt, and an autoregressive logged 
money growth rate, log gt. Reference [3] preferred specification for the 
approximating function φ(∙) to the expectation term is a third-order 
polynomial such that, 

where μt is the Lagrange multiplier attached to the household’s 
budget constraint, and N denote hours worked. Following [3], we will 
adopt as baseline parameterization:

IV. Selection Criteria Between PEA Solutions

Potential criteria should rely on the statistical properties of 
distributions obtained from the simulation of the models: estimated 
coefficients, simulated variables or impulse-response functions. Prior 
intuitions are next discussed. Firstly, how each solution behaves 
cannot be determined using the simulated series as they depend on 
the replication used.

Secondly, it looks reasonable, in line with studies in the field of 
the functional analysis facing similar problems (see [13]), to choose 
methods that reduce the probability of obtaining an “extreme” (less 
representative) solution: that with highest or lowest values of the 
reference distribution. Thus, commonly used concepts of centrality 
within a distribution may be considered. In this respect, we use the 
concept of median but our conclusions are robust to changes in the 
chosen measure.1

Thirdly, general or model-specific criteria based on economic 
theory can be applied as well. A chosen replication should verify 
some meaningful constraint(s) dictated by economic theory. Impulse-
response functions are typically used to determine solutions behaviour. 
As an instance, in the context of the SN model, [10] discusses the 
convenience of a monotonic response of consumption to a technology 
shock (pp. 12-13).

Fourthly, note that values coming from different replications do 
not represent a PEA solution. Therefore, choosing independently ideal 
values is not an option and a compromised choice should be done.

In the light of previous arguments, we suggest the following 
selection criteria:

• Minimum distance to median coefficients
First, we compute a vector composed by the median value for 
each coefficient ( ). Next, we compute the distance of each vector 

1  Results remain if distances are computed with respect to either average 
values or the concept of statistical depth (see [16]).
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of coefficients to the reference vector. Finally, the replication 
minimizing this distance, , is chosen. Analytically,

where βr is the coefficient vector of replication r.

• Minima distance to median impulse response
First, we compute the median impulse response, , as a vector 

composed by the median value of different responses at period h, , 
(h = 1, …, H). Next, we compute the distance of each response to 
the reference response and, again, we choose those minimizing it. 
Analytically,

where  and  is the vector composed by 
the response at period h, (h=1, …, H) of replication .

Within this category, we distinguish between transitory  and 
permanent .

We consider previous criteria to discriminate among solutions. 
Consequently, we may define  as the replications 
which respectively maximize the corresponding distances. If no 
significant differences are observed between both choices (min and 
max), we conclude that the criterion becomes non-informative.

These criteria are systematically checked in our Monte Carlo 
experiment. We consider 250 independent draws of exogenous shocks 
of varying size T for each model. We choose T ∈ {1000, 10000, 20000, 
30000, 40000, 50000} with the aim of checking progressively the gains 
obtained from increases in the simulation length.2

As a convergence criterion, we use the L2-distance between the 
β-vectors obtained in two subsequent iterations be less than 10-5. With 
respect to the initialization of the algorithm, to the light of results 
shown in [14], we consider the approach suggested by [15].

V. Results and Discussion

Table I presents the number of the simulation (among the 250 
independent draws) chosen according to each criteria. It can be 
observed that the different criteria rarely agree. Indeed, the only 
coincidence is referred to the replication maximizing L2 distance to 
reference values obtained in the case of CH model. Therefore, in order 
to formulate a final proposal, we are forced to discriminate in this 
section between the different criteria suggested before.

Table II includes summary statistics which allow us to explore, 
firstly, the relevance of the central issue of this paper (to determine 
whether there are significant differences between different PEA 
solutions) and, secondly, how the selection criteria exposed above 
perform in the cases of the SN and CH models. 

The main conclusion is that distributions are much more similar for 
simulation lengths greater than 1,000. A decreasing trend in σK is also 
observed when T grows, in line with the asymptotic properties of this 
algorithm, but this parameter is mostly constant within each distribution.

Furthermore, there are significant differences regarding the cross 
correlation between the responses of central variables of the CH 
model. By contrast, the SN model shows no big differences among 
the solutions. This latter result indicates the relevance of considering 
selection criteria when the complexity of model raises. Additionally, 
selection criteria based on impulse-responses achieve reasonable (and 
stable) values for all the simulation lengths considered -they are in the 

2  Indeed, a wider grid of lengths has been explored. For the sake of brevity, 
only results relative to those mentioned here are shown.

range achieved for the longest distribution of simulations- whereas 
criterion based on median coefficients satisfy this condition only from 
T=10,000.

TABLE I. Chosen Replications.  Refer to Replications 
Minimizing/Maximizing L2 Distance to Reference Values  

( )

Choices minimizing L2 distance to reference values

Replication 
length

SN model CH model

1,000 129 236 13 27 240 219
10,000 68 80 51 54 247 40
20,000 221 226 161 92 111 95
30,000 158 151 164 38 93 136
40,000 125 71 32 27 111 154
50,000 99 200 201 71 149 48

Choices maximizing L2 distance to reference values
Replication 
length

SN model CH model

1,000 41 41 41 25 199 199
10,000 115 21 217 6 51 51
20,000 195 41 184 154 98 98
30,000 18 57 7 32 143 143
40,000 57 198 30 44 117 117
50,000 195 212 91 195 94 44

Notes: (1) Monte Carlo experiment: (a) 250 independent replications are 
computed for each length and model, (b) L2 distance between subsequent 
vectors obtained is required to be less than 10-5, (c) Reference [15] approaches 
is used to initialise the algorithm. (2) Figures indicate the number of the 
simulation (among the 250 independent draws) chosen according to each 
criteria.

We further look in detail how the values of the coefficients change 
according to each replication length and selection criteria. Fig. 1 
presents the distribution of coefficients for the SN model, and Fig. 2 
those of the CH model. On each box, the central mark is the median, 
the edges of the box are the 25th and 75th percentiles, the whiskers 
extend to the most extreme data points not considered outliers, and 
outliers are plotted individually. Moreover, solutions minimizing and 
maximizing distance to reference values of different criteria selected 
above are remarked.

Some conclusions can be drawn: (i) we confirm again, from a 
different perspective, that the variance is reduced when the replication 
length is increased. The gain loses importance for lengths higher than 
20000. (ii) Median values of coefficients are almost equal for lengths 
higher than 10000.3 (iii) The criteria based on coefficients and those 
based on median responses are not coincident (as we commented 
before) in the sense that those based on median responses do not 
clearly discriminate between choices minimizing and maximizing 
distance within the distribution of the coefficients. (iv) The criterion 
based on median coefficients is more precise on those with a high 
variability. Otherwise, choices may be further away from the 
corresponding median value. As an instance, see coefficients β8 and 
β4 of the CH model.

Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show the responses of k (capital in 
both models) to a transitory/permanent technology shock for each 
simulation length and model. Additionally, replications minimizing/
maximizing L2 distance to reference values of different criteria are 
remarked.4 

3  Tests statistics confirm this finding. The results are available upon request.
4  For the sake of simplicity, criteria based on different types of shocks are not 
compared within the same graph.
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TABLE II. Summary Statistics.  Refer to Replications Minimizing/Maximizing L2 Distance to Reference Values ( )

Standard Neoclassical model

Transitory shock Permanent shock

T=1000 T=10000 T=20000 T=30000 T=40000 T=50000 T=1000 T=10000 T=20000 T=30000 T=40000 T=50000

σk

max 0,0276 0,0089 0,0053 0,0044 0,0040 0,0033 0,2635 0,0855 0,0550 0,0482 0,0407 0,0367

min 0,0273 0,0088 0,0052 0,0043 0,0039 0,0032 0,0273 0,0088 0,0052 0,0043 0,0039 0,0032

ρ(IR(c)t, IR(k)t)

max 0,9858 0,9776 0,9766 0,9768 0,9760 0,9757 0,9990 0,9986 0,9985 0,9985 0,9985 0,9985

rβ
min 0,9678 0,9735 0,9735 0,9734 0,9735 0,9744 0,9980 0,9983 0,9983 0,9983 0,9983 0,9984

rIRt
min 0,9781 0,9737 0,9737 0,9739 0,9738 0,9741 0,9986 0,9983 0,9983 0,9983 0,9983 0,9984

rIRp
min 0,9745 0,9736 0,9740 0,9739 0,9739 0,9738 0,9983 0,9983 0,9983 0,9983 0,9983 0,9983

min 0,9603 0,9690 0,9712 0,9710 0,9717 0,9718 0,9972 0,9980 0,9982 0,9982 0,9982 0,9982

ρ(IR(c)t, IR(c)t+1)

max 0,9971 0,9968 0,9968 0,9967 0,9967 0,9967 0,9999 0,9999 0,9999 0,9998 0,9998 0,9998

rβ
min 0,9968 0,9967 0,9967 0,9967 0,9967 0,9967 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

rIRt
min 0,9966 0,9967 0,9967 0,9967 0,9967 0,9967 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

rIRp
min 0,9967 0,9967 0,9967 0,9967 0,9967 0,9967 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

min 0,9964 0,9965 0,9966 0,9966 0,9966 0,9966 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

ρ(IR(k)t, IR(k)t+1)

max 0,9915 0,9897 0,9893 0,9892 0,9892 0,9891 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

rβ
min 0,9874 0,9886 0,9886 0,9886 0,9886 0,9888 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

rIRt
min 0,9897 0,9886 0,9886 0,9887 0,9886 0,9887 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

rIRp
min 0,9889 0,9886 0,9887 0,9887 0,9887 0,9886 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

min 0,9859 0,9877 0,9879 0,9881 0,9882 0,9882 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

Cooley and Hansen (1989) model

Transitory shock Permanent shock

T=1000 T=10000 T=20000 T=30000 T=40000 T=50000 T=1000 T=10000 T=20000 T=30000 T=40000 T=50000

σk

max 0,0650 0,0190 0,0150 0,0125 0,0097 0,0088 0,0669 0,0194 0,0153 0,0130 0,0102 0,0091

min 0,0639 0,0188 0,0149 0,0123 0,0096 0,0087 0,0639 0,0188 0,0149 0,0123 0,0096 0,0087

ρ(IR(y)t, IR(N)t)

max 0,9584 0,8982 0,9129 0,8936 0,8750 0,8786 0,9991 0,9083 0,9193 0,9089 0,8701 0,8842

rβ
min 0,3592 0,7210 0,7641 0,7680 0,7201 0,7347 -0,8260 0,6743 0,6084 0,6617 0,5262 0,5802

rIRt
min 0,5512 0,7985 0,7790 0,7632 0,7940 0,7826 0,2206 0,7272 0,7073 0,6689 0,7143 0,7260

rIRp
min 0,6709 0,7685 0,8604 0,7456 0,7420 0,8112 0,7593 0,4874 0,7982 0,6063 0,6458 0,7919

min -0,9993 0,4826 0,5613 0,3613 0,6190 0,6132 -1,0000 -0,1905 -0,1305 -0,6397 0,1462 0,0887

ρ(IR(y)t, IR(π)t)

max 0,9101 -0,9413 -0,9426 -0,9251 -0,9468 -0,9455 0,9570 -0,2571 -0,3187 0,2101 -0,5609 -0,5123

rβ
min -0,8879 -0,9527 -0,9527 -0,9530 -0,9515 -0,9523 0,4732 -0,9191 -0,8756 -0,9065 -0,8303 -0,8628

rIRt
min -0,9455 -0,9538 -0,9536 -0,9530 -0,9538 -0,9537 -0,6302 -0,9375 -0,9299 -0,9112 -0,9315 -0,9389

rIRp
min -0,9523 -0,9515 -0,9549 -0,9522 -0,9529 -0,9542 -0,9622 -0,7959 -0,9624 -0,8764 -0,9012 -0,9664

min -0,9580 -0,9556 -0,9554 -0,9552 -0,9549 -0,9549 -0,9987 -0,9979 -0,9973 -0,9963 -0,9887 -0,9918

ρ(IR(y)t, IR(y)t+1)

max 0,9809 0,4634 0,4630 0,4614 0,4569 0,4581 0,9997 0,9902 0,9898 0,9893 0,9872 0,9878

rβ
min 0,4980 0,4480 0,4486 0,4489 0,4473 0,4477 0,9928 0,9790 0,9768 0,9784 0,9745 0,9761

rIRt
min 0,4451 0,4505 0,4500 0,4488 0,4503 0,4502 0,9683 0,9808 0,9803 0,9786 0,9804 0,9809

rIRp
min 0,4521 0,4484 0,4534 0,4489 0,4480 0,4522 0,9831 0,9737 0,9833 0,9767 0,9781 0,9837

min 0,4349 0,4442 0,4438 0,4452 0,4451 0,4462 0,9683 0,9681 0,9690 0,9696 0,9695 0,9694
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Coe�icient #1 Coe�icient #2 Coe�icient #3

Fig. 1. Boxplots of functional form coefficients of parameterized expectations. SN model.  refer to replications minimizing/maximizing L2 distance to 
reference values ( ). (1) Monte Carlo experiment: (a) 250 independent replications are computed for each length and model, (b) L2 distance between 
subsequent β-vectors obtained is required to be less than 10-5, (c) Reference [15] approach is used to initialise the algorithm.
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Fig. 2. Boxplots of functional form coefficients of parameterized expectations. CH model.  refer to replications minimizing/maximizing L2 distance to 
reference values ( ). (1) Fig. 1. notes applies here.
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Fig. 3. Responses of k to a transitory technology shock. SN model.  refer to replications minimizing/maximizing L2 distance to reference values  
( ). (1) Fig. 1. notes applies here.
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Firstly, we observe how all responses are qualitatively equal but we 
have tested that they are statistically different.5 The most interesting 
result, robust across models and types of shock, is the coincidence 
(tested statistically) of median responses for different lengths. Again, 
in line with the asymptotic properties of the algorithm, the level of 
uncertainty is reduced if longer replications are considered. Moreover, 
the criterion based on median coefficients results non-informative 

5  For the sake of brevity, the results are not included here. They are available 
upon request

in terms of their responses. This finding confirms, again, the non-
coincident choices we would achieve for criteria based on coefficients 
and those based on impulse-response functions.

These criteria do not only help to choose between different solutions 
but also to measure the robustness of the estimated coefficients. 
Firstly, the boxplot figures provide summary statistics relative to 
estimated values. Secondly, the impulse-response functions can be 
used to construct bands of confidence around the median response, 
which surely might add robustness to one specific analysis.
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Fig. 5.  Responses of k to a permanent technology shock. SN model.  refer to replications minimizing/maximizing L2 distance to reference values (
). (1) Fig. 1. notes applies here.
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Fig. 4.  Responses of k to a transitory technology shock. CH model.  refer to replications minimizing/maximizing L2 distance to reference values  
( ). (1) Fig. 1. notes applies here.
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Another relevant issue to be explored is the sensitivity of these 
criteria to the number of replications used. In this regard, we compute 
L2 distance (error) to the replication we would choose according to 
each criterion but considering a varying number of replications, 

starting from the assumption that longest length replications are 
closer to the true solution. The resulting errors are shown in Fig. 7 and 
Fig. 8. Left (right) panels show how error evolves with the number of 
replications and the sample size. It can be seen that 75-100 replications 
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Fig. 6.  Responses of k to a permanent technology shock. CH model.   refer to replications minimizing/maximizing L2 distance to reference values 
( ). (1) Fig. 1. notes applies here.
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Fig. 7. Relative error with respect to the true solution (Minimal distance to reference values for T=50,000). SN model. (II)  refers to replications minimizing 
L2 distance to reference values. (1) Fig. 1. notes applies here.
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are enough to minimize the error and generate the existing variance. 
With respect to the replication length, no significant improvements 
in the minimization choice are achieved from considering lengths 
greater than 10,000.6 They also prove that gains in dispersion (a lower 
distance from the “true” solution to replication maximizing distance 
to reference values) are obtained mainly from 1,000 to 20,000. After 
then, error mainly remains at the same values. The latter result 
mainly confirms our findings regarding the variability of coefficients 
distributions.

VI. Conclusions 

We find significant differences among different solutions which 
clearly establish the relevance of this issue (increasing with the level of 
complexity of the model). Additionally, robust results are obtained due 
to the summary statistics we compute from the distributions achieved. 
By contrast, if only one sufficiently long simulation is considered 
(what people have commonly done so far), there is no guarantee that 
a representative solution is obtained (there is heterogeneity among 
solutions even for T=50,000).

Moreover, median values are almost equal for different simulation 
lengths and, therefore, there is no bias in using them. However, the 
variance among solutions is clearly higher when shorter replications 
are considered. On the contrary, different criteria rarely accord with 
their choices. Hence, any decision related to the criterion to be adopted 
may have consequences on one specific application. However, criteria 
based exclusively on estimated coefficients ignore the economic 
performance of these solutions, which represent a significant 

6  We have checked that there are no relevant differences among 5000 and 
10000. This information is available upon request.

drawback. Note that there is no guarantee of selecting a non-extreme 
solution if one is finally interested in, for example, observing how will 
respond our model to a shock (impulse-response functions).

All in all, the median response criterion appears to be the most 
suitable criterion for several reasons: (i) there is no bias in using 
shorter simulations (it allows one to face much lower computational 
costs), (ii) it shows how different solutions behave when a transitory/
permanent shock is applied, and (iii) it provides a band of confidence 
around the final choice (the level of uncertainty is measured).

Finally, we discuss the number of replications needed to capture the 
main properties of the distributions under observation. In our exercise, 
75-100 replications are enough to minimize the error and generate the 
existing variance due to the use of shorter replications.
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