
Regular Issue

- 39 -

I.	 Introduction

COMPUTER security has always been the discipline responsible
for the protection of data stored in a physical or logical computer

system. In recent years, technological growth has been such that this
security has focused on minimizing any risk to information, combating
all types of vulnerabilities that may exist in a network environment.
Cryptographic algorithms confront computer attacks that are
increasingly complex, forcing them to evolve by participating in recent
and reliable methods [1].

There are many algorithms of this type, categorized in Symmetric
(private key) and Asymmetric (public key). In symmetric cryptography,
a key is used to encrypt and decrypt data, while in asymmetric
cryptography two keys are used to perform these tasks; a public figure
and a private decipher (e.g., RSA [Rivest, Shamir and Adleman]).
Encryption is based on intensively computed mathematical functions
and deciphering is usually the reverse process using the key(s) [2],
for this DES (Data Encryption Standard) uses a 64-bit key, while AES
(Advanced Encryption Standard) uses keys of 128, 192 and 256 bits [3].

In recent years, several investigations have been presented that
relate cryptography with genetic concepts, making this field known as
an alternative to solve computer security problems. B. Beegom and S.
Jose [4] present an asymmetric cryptographic model based on a genetic
approach and expose an efficient method in which they make use of
the complexity of the DNA chains. N. Srilatha and G. Murali [5] define
their work as an efficient three-level cryptographic technique, based on
processes that use DNA sequences to transmit information.

Nowadays, for data encryption through the Internet, the HTTPS
(Hypertext Transfer Protocol Secure) protocol uses SSL/TLS-
based encryption to create a secure channel to shared data [6]. The

cryptographic protocols TLS (Transport Layer Security) and SSL
(Secure Sockets Layer) used by HTTPS use asymmetric cryptography
which uses a pair of keys for sending information, authenticating the
receiver more reliably [7].

The presented proposal uses symmetric cryptography and supports
its security on the keys more than on the same algorithm, since under
an attack it is useless to have knowledge of the algorithm used in the
encryption if the key(s) are unknown [13]. Therefore, the use of the
phases of the GA is proposed, taking advantage of numerous initial
conditions that are included in the key, achieving a quite secure
encryption. It is important to add that the security increases based on
the length of the key, but at the same time, its access is slowed, which
causes more processing time [14].

The proposed algorithm is based on operators used in Genetic
Algorithms (GA), adapted to encrypt and decrypt text. The principles of
GA were exposed by Holland in 1975 [8], and described more broadly by
Goldberg in 1989 [9], Poli, Langdon, McPhee, Michelle and Davis [23].

The main limitation at the time of the creation of a cryptographic
algorithm is the idea of innovation, since, currently, there are large
amounts of algorithms of this type. With this motivation and in order
to generate an original proposal, we decided to take advantage of GA
techniques in cryptographic development, making some modifications
without neglecting its philosophy. These alterations arise from the interest
of creating a different work, which through a clear exemplification
demonstrates that it is possible to create developments in the area of
computer security using basic concepts. Our work takes the randomness
and the order of operation of the genetic phases to arrive at a deterministic
development, proposing in addition the use of two keys (auxiliary and
main) without ceasing to be a symmetric algorithm.

II.	 Theoretical Background

A.	Genetic Algorithms
The Genetic Algorithms are an adaptive method used to solve

search and optimization problems, inspired by biological evolution

Keywords

Genetic Algorithms,
Symmetric
Cryptographic, Entropy,
Modular Arithmetic,
Computer Security.

Abstract

In this article, a symmetric-key cryptographic algorithm for text is proposed, which applies Genetic Algorithms
philosophy, entropy and modular arithmetic. An experimental methodology is used over a deterministic system,
which redistributes and modifies the parameters and phases of the genetic algorithm that directly affect its behavior,
carrying out a constant evaluation using the fitness function, in order to optimize the results. An independent
encryption is established for the auxiliary key, using a main key, in charge of increasing security. The tests are
performed over different text sizes, manipulating the parameters and criteria proposed to obtain their appropriate
values. Finally, a comparison is presented against the following cryptographic algorithms DES (Data Encryption
Standard), RSA (Rivest, Shamir and Adleman) and AES (Advanced Encryption Standard), exposing factors such
as processing time, scalability, key size, etc. It is shown that the proposed algorithm has a better performance.

Genetic Operators Applied to Symmetric Cryptography
Jefferson Rodríguez, Brayan Corredor, César Suárez *

Systems Engineer, District University Francisco José de Caldas, Bogotá (Colombia)

Received 28 November 2018 | Accepted 14 June 2019 | Published 31 July 2019

* Corresponding author.
E-mail addresses: jefsrodriguezr@correo.udistrital.edu.co (J.
Rodríguez), bjcorredorp@correo.udistrital.edu.co (B. Corredor),
casuarezp@udistrital.edu.co (C. Suárez)

DOI: 10.9781/ijimai.2019.07.006

- 40 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

[10] and based on molecular genetics; a genetic algorithm makes use
of terms specific to this field, as well as its main phases: Selection,
Crossing and Mutation [11].

Selection: The selection is the stage in which each chromosome
(representing a potential solution to the problem) goes through a
process of evaluation on a certain fitness value, where some of them
are chosen to be later transformed by the crossing and/or mutation
operators. In this process the number of chromosomes, genes and
alleles of the genotype is kept constant [12].

Crossing: The cross is a genetic operator that allows information
to be exchanged between two chromosomes to form a new one. For
binary-chain individuals, ring, one-point, two-point, and uniform
crossings are often used [12]. Fig. 1 shows the offspring that occurs
with a crossing point 4 between two parents of length 5.

1

1

1

1

1 1

00

0

0
Crossing point 4

First parent: 10111
Second parent: 10100

Offspring with crossing point 4: 11010

Fig. 1. Example of ring Crossing example.

Mutation: The mutation changes the value of the selected allele [12].
In Fig. 2 the mutation of the selected allele is shown as an example.

1 0 1 1 1 0 1 0

1 0 1 1 0 0 1 0

Mutated allele

Parent to mutate

Mutated offspring

Fig. 2. Illustration of Mutation.

Fitness Function: It is the quality control within the GA and plays
a vital role in the guide of the same, it helps to explore the search space
more effectively and efficiently [12].

The main idea of the GAs is to reproduce the random nature where
the population of individuals adapts to their environment through natural
selection, as well as the behavior of the ecosystem. Once the genetic
representation of the initial population has been defined, a set of stochastic
operators are applied iteratively: selection, crossing and mutation; under
certain quality criteria called fitness function. The application of the GAs
to optimization problems provides flexibility and adaptability, combined
with the robustness and the advantages of the global search [16].

In the philosophy of genetic algorithms, a set of terms of the
genetic language have been adopted to clarify and unify the concepts of
development of this type of algorithms, as follows: Allele: Each bit is
called Allele. Gene: Each group of alleles is called Gen. Chromosome:
Each group of genes is called Chromosome.

B.	Computer Security
Cryptographic algorithms, have mainly three measurable

characteristics: Capacity, Security and Robustness. Capacity is related
to the amount of information that the algorithm can process. Security
refers to the protection that data receive against possible attacks.

Robustness is the resistance that the method has in its entirety against
external attacks [15].

There are different types of computer attacks that try to obtain
unauthorized access to a network service, among the most common is
the Brute Force attack, which makes repeated and systematic attempts
using possible credentials, based on different parameters that usually
come from sets of credentials set by default, commonly used or valid
in previous attacks [17].

C.	Related Concepts
The work below has a strong relationship with Entropy, known as

the measure of the uncertainty associated with a random variable [18],
conceived as a measure of disorder, as well as the repetition of certain
combinations. It is measured in bits, where the number of information
bits of each character is given by:

S = log2 k	 (1)

where k is the total number of characters. The entropy of a random
source is the expected information content of the symbols it has, that is,
the expected uncertainty of each symbol, knowing only the distribution
according to the symbol [19].

As a last concept, due to its constant use in the different phases of
the proposed algorithm, we have the Modular Congruence or Modular
Arithmetic, defined as an arithmetic system for whole-number
equivalence classes introduced by Carl Friedich Gauss in his book
Disquisitiones Arithmeticae (1801) [20]. It is defined as follows:

Let a and b be any integer, and n a positive integer. If n | (a-b) we
say that a and b are congruent modulo n and we write [21]:

a ≡ b (mod n)	 (2)

III.	Methodology

An investigation-action is established, whose objective is the
development of a cryptographic text Algorithm based on principles of
computer security and genetic algorithms. The development and the
tests are carried out in MATLAB R2017a, with academic license. The
chosen methodology is experimental and is summarized in the diagram
shown in Fig. 3.

Fig. 3. Applied Methodology.

- 41 -

Regular Issue

The methodology is based on previous knowledge in the area of GA and
Computer Security, which is accompanied by a deep research and a state of
the art description, which aim to establish a clear idea of the development
of a symmetric cryptographic Algorithm that takes advantages of the
phases of the GA and other related concepts in the matter.

IV.	Proposed Cryptographic Algorithm

The proposal below is part of a deterministic system, which implies
elimination of randomness and full knowledge of the input variables.
It is important to consider that in the nomenclature worked below;
the parameters are variables established by the user under certain
conditions, while the criteria refer to constant data used to optimize
the algorithm and established under a range of tests. The flow diagram
(Fig. 4) explains the operation of the proposed algorithm.

A.	Initial Population Preparation
It starts from a random message to be encrypted, as a string of

characters based on the Latin alphabet and modern English. It is random
in nature since it is unknown. As an example, we have the text “Hola
mundo” (10 characters counting the space). Table I (annexes) shows
the conversion of the entire message to American Standard Code for
Information Interchange (ASCII) and then to binary, in this strict order
and taking the interspaces.

B.	Encryption Process
Once the Initial Text has been converted, the Initial Population

is taken as the starting point of the GA. The ring-type crossing of
the population is carried out with a single point, taking said point
from the initial conditions. One child is generated for each pair
of parents (genes). Each parent crosses 2 times, with a different
partner, which originates a new generation, replacing the previous
one. In order to achieve a greater diversity of genes, it is proposed
to use the reversalCriterion, which allows to revert the order of the
second parent digits of each crossing (or iteration) depending on
the value of the criterion. Applying a crossParameter of 6 and a
reversalCriterion of 3 (highlighted in bold) the offspring shown in
Table I (annexes) is obtained.

The Last Generation is taken to continue with the Selection of the
individuals, using the proposed Selection Equation for the Mutation,
also called Mutation Clock, taken from the definition of modular
congruence (equation 2), and defined as follows:

i ≡ 0 (mod k)	 (3)

Where i is the position of each allele Ai being 1 ≤ i ≤ n, where n is
the Population Total; and k is he mutationParameter defined between
0 < k < n in the initial conditions.

The mutation clock selects the alleles to be mutated, taking the last
generation as a string of bits without counting spaces between genes.

Fig. 4. Flow Diagram of the proposed cryptographic algorithm.

- 42 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

Thus, the algorithm continues with the alleles Mutation, to change their
values and generating a new population. For example, the value of the
mutation parameter k is taken arbitrarily equal to 5, whose process is
evidenced (in bold) in the column Alleles selected by the Mutation
Clock, in Table II (annexes).

The last population is taken as the Mutated Population, that at
the same time is the Population to Evaluate. It is evaluated with the
proposed Fitness Function based on Entropy. This function compares
groups or allele chains (not necessarily the size of the original genes)
to find their frequency within the population. Table III (annexes)
shows the value that ffCriterion must take based on the length of the
population to be evaluated.

In some cases, the number of genes is not an integer number, for
these cases, the last chain that is not the size of the ffCriterion value is
omitted and is not evaluated in the Fitness Function.

For the example case, the range of genes is from 32 to 63,
since the total number of genes is 39; therefore, the population is
divided in such a way that each gene has 6 alleles, given the value
of ffCriterion. It is important to know the total number of alleles in
the population:

totalAlle = 39 * 8 = 312 alleles	 (4)

Next, totalAlle is divided into ffCriterion to know the number of
genes that the Population to Evaluate will have.

	 (5)

C.	Fitness Function Evaluation
As a result, the population to be evaluated consists of 52 genes,

each one of 6 alleles, for a total of 312 alleles. Knowing these data, we
proceed to perform the evaluation with the Fitness Function exposed
in the pseudocode.

Where populationToEvaluate is the current population, divided
into ffCriterion size chains; repetitionParameter corresponds to

a given value in the initial conditions that defines the maximum
number of times that each of the chains of the Population to be
Evaluated can be repeated; unique, length and find are functions of
MATLAB R2017a; differentChains are all different chains within
the population to be evaluated; validChains are strings that meet
the value of repetitionParameter; ffSatisfaction is the percentage of
satisfaction to the fitness function given by the validChains divided
by differentChains; detentionCriterion is the value of the percentage
that is needed to deliver the optimal population (See section Tests and
Results, section criteria).

To elucidate the fitness function procedure, we have the following
data as input:

Given the previous case, we obtain a percentage of satisfaction to
the Fitness Function of 75%, that represents the total of different chains
in the population to be evaluated, 75% is repeated 2 times or less as it
is restricted by repetitionParameter. The value of detentionCriterion
established in 80% is greater than ffSatisfaction, for this reason, the
population does not pass the assessment and the algorithm continues
with a new iteration. When the percentage of ffSatisfaction is greater
than the detentionCriterion, the iteration will be considered optimal
and the final population is delivered in a large gene chain of 8 alleles,
as it was originally stated.

Further, the variable maxIterationParameter is defined in the initial
conditions, which limits the maximum number of times the algorithm
repeats its entire process. If the number of iterations becomes equal to
said parameter and an optimal population is not found, the algorithm
delivers the population with the best performance.

D.	Decryption Process
The decryption of the cypher text is considered as the inverse

process of the encryption using the key, in this way the initial text is
delivered in a secure way to the receiver. Fig. 5 exposes the diagram
of this process.

We propose a function that computes the approximate number of
total alleles at as a function of the characters c of the initial text:

at ≈ 8 * (4c − 1)	 (6)

V.	 Keys Generation

The Keys of a cryptographic process are pieces of information
whose main objective is to allow the encryption and decryption of data.
For the present proposal we have an auxiliary key and a main one.

A.	Main Key
It is previously created by the receiver and used by the algorithm

(like private key). It consists of 16 characters included in ASCII code
(which has 95 printable characters) arranged in a table. The selection of
this key depends on the receiver, who creates it under his own criteria,

- 43 -

Regular Issue

always fulfilling that there cannot be repeated characters

 mainKeyExamp = Tr3VQW90/am2PLu *	 (7)

For greater understanding, observe Table IV (annexes), which
shows the correct order to locate the key.

B.	Auxiliary Key
It is generated in a strict order that only the algorithm knows, it is

created as follows:
auxKey=
[crossParameter,mutationParameter,
repetitionParameter,maxIterationParameter,
reversalCriterion,ffSatisfaction,
detentionCriterion,optimalIteration
As an example, we have:

auxKeyExamp = [6, 5, 3, 200, 3, 6, 95, 2]	 (8)

Based on the above, we proceed to perform the conversion of each
number to ASCII (taken from ‘0’ ASCII code 48, to ‘9’ ASCII code 57)
and then to binary. As a result, the Auxiliary Key is obtained together
with the information on the length of each of its elements (highlighted
in bold).

auxKeyExamp = [00110101, 00110100, 00110101, 00110011,
00110101, 00110001, 00110101, 00110000,
00110100, 00111000, 00110100, 00111000,
00110101, 00110001, 00110101, 00110100,
00110101, 00110111, 00110101, 00110110,
00110101, 00110000, 00110001, 00110001,
00110001, 00110011, 00110001, 00110001,
00110010, 00110001]	 (9)

C.	Auxiliary Key Encryption
The generated Auxiliary key is encrypted with the help of the

Main Key, as the first measure the gene is separated into two parts
of four alleles each one; the first sub-chain is taken and the first two
alleles of it are allocated in the values of the first column of the Table,
subsequently the next two alleles are allocated in the first row of the

table and the sub-chain is assigned the letter corresponding to the
matching coordinate. For the first gene we have:

gene1 = 00110101 → gene11 = 00 11, gene12 = 01 01
The character corresponding to gene1 = 0011 is V, since it is

the point of intersection between row 00 and column 11. In the same
way, the process is carried out with the other genes that are part of the
main key, obtaining for each gene a pair of characters. The next step
is to convert each character to ASCII and then to binary code. Table V
(annexes) shows the information corresponding to the first two genes.
As a result, we obtain the encryptedAuxKey that consists of 180 genes,
that is, 1440 alleles.

Each digit in the criteria and parameters represent 2 characters in
the auxiliary key, which are taken from the main key and then converted
into 8 numbers in ASCII code, or 12 genes in the encrypted auxiliary
key, that is, 96 alleles; In addition, the values representing the total
number of digits of each condition in the initial auxiliary key always
add 384 alleles in the encrypted auxiliary key. The minimum number of
possible initial digits is 9 (crossParameter 1 digit, mutationParameter
1 digit, repetitionParameter 1 digit, maxIterationParameter 1 digit,
reversalCriterion 1 digit, ffSatisfaction 1 digit, detentionCriterion
2 digits, optimalIteration 1 digit), that is, 864 alleles in the
encrypted auxiliary key, which means that the key will be at least
864 + 384 = 1248 alleles. Given this value, the probability of being
guessed is:

	 (10)

The purpose of encrypting the auxiliary key is to increase security,
because if it becomes a victim of a Brute Force computer attack, the
encrypted string but not the original key could be discovered. This
key goes from being a chain composed of 30 genes to have 180 after
the encryption process, which implies a significant advance for the
algorithm in terms of the security, since its length is considerably
increased.

D.	About the Keys
The amount of information in bits that each key carries, is based

on the possible combinations that the same one can have (value that
differs from its representation in bits). Each parameter and criterion
takes a value or another depending on its own restrictions (if it has
any). The parameter value of crossParameter ranges from 1 to 7,
mutationParameter between 1 and 999, repetitionParameter between
1 and 99, maxIterationParameter between 1 and 999, reversalCriterion
between 1 and 999, ffSatisfaction between 1 and 99, detentionCriterion
between 72 and 98, optimalIteration between 1 and 999. According to
the above, the length of the auxiliary key is determined as follows -based
on equation (1), where k would be the number of total combinations-:

log2 (7 * 999 * 99 * 999 * 999 * 99 * 27 * 999)≈60.67 bits 	 (11)

Furthermore, given that the possibilities of each of the 16
characters in the main key is 95 (characters printable in ASCII code)
its information in bits is determined as follows:

log2 (9516) ≈ 105.11 bits	 (12)

VI.	Quality Analysis

For the quality analysis we have the data generated of the algorithm
developed, the tests and discussion about it, a comparative table of
speed between DES and RSA algorithms, and finally a comparison of
different factors between the AES and DES algorithms.

A.	Test and Results
The tests below are carried out based on the development of the

Fig. 5. Flow Diagram of the Decryption process.

- 44 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

proposed algorithm, it allows	 to conclude on the results thrown by
the same. Variations are made in some criteria (treated under the tests,
however, are established under the user’s criterion) to optimize the
encryption process aimed at security and performance, the treatment of
restricted parameters within their ranges is also performed.

crossParameter: This parameter is used by the algorithm in the
crossing stage, it defines the start point to select the offspring between
two genes, the maximum value that can take must not exceed the
length of a gene. Since there is always an initial population composed
of genes of 8 alleles (length 8), this variable must be contained within
a range between 1 and 7.

mutationParameter: The mutation parameter defines the alleles
to be selected in order to modify them, allowing the algorithm to
diversify the population. It is suggested to set this variable to an odd
value, because the genes are of length 8 (even number). The number of
mutated alleles varies according to the value of the parameter, if this
is greater than the size of the population, the algorithm does not make
any mutation.

repetitionParameter: This variable defines the maximum number
of times that each of the chains of the population to be evaluated can be
repeated. Its value is established according to the performance of the
algorithm, note that if the text size is long, more repeataded chains
are found.

reversalCriterion: It allows to invert the digits of the second father
of each crossing (or iteration), its value is selected based on the results
thrown by the tests itself. For these, a value is taken between 1 to 6 and
its performance is evaluated in 3 different cases according to the Fitness
Function. It is iterated 4 times and the average satisfaction percentage is
found. Table VI (annexes) shows the values that each initial condition
takes for three different cases. Table VII (annexes) shows the results
obtained by the tests carried out on the algorithm for each case.

It is observed that for Case 1 the best result (97%) is obtained in the
values of reversalCriterion of 1, 2 and 4, implying a great homogeneity
and allowing to conclude that if the initial text is short (until 4 words
or 25 characters), the value of the criterion can vary without affecting
the efficiency of the algorithm. For Cases 2 (90%) and 3 (97%) the best
performance is achieved in the value of 3, it is suggested that this should
be taken as reversalCriterion when the string is greater than 4 words.

detentionCriterion: The detention criterion establishes the
percentage of different chains that comply with the repetitionParameter,
it is used in the fitness function to evaluate if an iteration passes the
evaluation. Based on the tests carried out for the reversalCriterion, it
is suggested to establish the value of this variable in a range between
72 and 98, since this was the minimum and the maximum percentage
obtained, respectively.

B.	Runtime and Call Functions
Some compilation data of the algorithm in MATLAB are presented

in Table VIII (annexes), where the number of calls, the time spent by
each of the present functions and the total value are described. For
these tests, the cases described in Table VI are taken.

Runtime depends directly on the iterations made by the algorithm
to arrive at the optimal solution; for the tests, it was established a
detentionCriterion of 98, it carried out 2, 52 and 10 iterations for Case
1, 2 and 3 respectively. It is also observed that the function with the
highest number of calls is Convert for all cases, this function aims the
conversion of ASCII code to binary code and is used to transform the
initial text into chains that the algorithm manipulates to perform the
encryption, besides it is used in the process of creating keys.

It is also noted that the function that covers the longest runtime (a
little more than the half) is AlgorithmEncryption, since it complies the
task of carrying out the encryption process, starting from the initial

population previously converted and getting a final population, ready
for the evaluation.

VII.	 Comparison

In order to establish objective conclusions about the performance
of the proposed cryptographic algorithm, a comparison is made (at
encryption execution time) against DES and RSA [22], allowing a
comparison to be made as shown in Table IX (annexes). The value
of Total Time Algorithm Proposed takes into account the time of the
evaluation of the Fitness Function, additionaly to the creation and
encryption of the keys, but not the time of decryption.

The text size for the proposed algorithm is taken as the bit
representation of the original text, that is, the so-called Initial
Population. The values of detentionCriterion and reversalCriterion
were established in 97 and 3 respectively for the tests, while the values
of crossParameter, mutationParameter, repetitionParameter and
maxIterationParameter, respectively: 6, 5, 3 and 200 were set for text
sizes of 128 and 256 bits; 5, 7, 5 and 100 for the text sizes of 512, 1000,
2000 and 5000 bits and 5, 17, 10 and 100 for the text size of 10000.

The key length (understood as the amount of information it carries,
but not the size of its representation in bits) is 56 bits for DES and 22
bits for RSA. For the proposed Algorithm it is 105.11 bits for the main
key and 60.67 bits for the auxiliary key.

It is remarkable the performance against the DES and RSA
algorithms, the superiority in runtime against RSA is shown in Table
IX. On the other hand, the Proposed Algorithm is superior to DES in
execution time, for texts greater than 512 bits. In addition, it is observed
that each of the total times of the proposed algorithm, mostly exceed
that of the RSA encryption (except for 128 bits) and are very close to
the DES encryption time.

In Table X (annexes), different features of the AES, RSA and DES
algorithms [2] are exposed, to compare against the proposed Algorithm.

VIII.	 Conclusion

The proposed algorithm modifies the order and process of the
phases of the genetic algorithms, by applying a deterministic system,
leaving aside some random procedures.

When comparing the proposed algorithm against RSA and DES,
satisfactory performance is evidenced in several factors, demonstrating
that Genetic Algorithms are a good alternative to face problems in
computer security.

The proposed algorithm manages to disrupt the information through
entropy, evidenced in the fitness function as the different chains.

The length (amount of information that it transports) of the
auxiliary key is of 60.67 bits and of the main key is of 105.11 bits,
overcoming in this aspect the cryptographic algorithm DES and
approaching considerably to AES.

The present work exposes a development based on basic concepts
like GA, entropy, modular congruence and determinism, that together
make an efficient cryptographic process.

IX.	 Considerations

The code of the algorithm developed is in a private github
repository, with the option of being visible for those who request access
to any of the contact emails. In addition there is a demo in heroku
that performs the whole process of encryption of a given text: https://
symmetric-cryptography-genetic.herokuapp.com/

It is expected to be able to use the principles of the proposed

- 45 -

Regular Issue

algorithm in the encryption of images and audio. On the other hand,
there is a possible application in data compression.

Annexes

TABLE I. Conversion to ASCII and Binary Code. Crossing of the Initial Population (First Iteration)

Initial Message Conversion to ASCII Conversion to Binary
(Initial Population)

Position of each
parent or Gene Crossed Parents Offspring (First

Generation)

H

0 00110000 1 1 y 2 00001101

7 00110111 2 2 y 3 11001100

2 00110010 3 3 y 4 10000001

(space) 00100000 4 4 y 5 00001100

o

1 00110001 5 5 y 6 01001100

1 00110001 6 6 y 7 01100011

1 00110001 7 7 y 8 01001000

(space) 00100000 8 8 y 9 00001100

l

1 00110001 9 9 y 10 01000011

0 00110000 10 10 y 11 00001110

8 00111000 11 11 y 12 00001000

(space) 00100000 12 12 y 13 00000011

a

0 00110000 13 13 y 14 00001110

9 00111001 14 14 y 15 01001101

7 00110111 15 15 y 16 11000001

(space) 00100000 16 16 y 17 00001100

(space)

0 00110000 17 17 y 18 00001100

3 00110011 18 18 y 19 11010011

2 00110010 19 19 y 20 10001000

(space) 00100000 20 20 y 21 00001100

m

1 00110001 21 21 y 22 01000011

0 00110000 22 22 y 23 00001110

9 00111001 23 23 y 24 01001000

(space) 00100000 24 24 y 25 00100011

u

1 00110001 25 25 y 26 01001100

1 00110001 26 26 y 27 01001101

7 00110111 27 27 y 28 11000001

(space) 00100000 28 28 y 29 00001100

n

1 00110001 29 29 y 30 01001100

1 00110001 30 30 y 31 01000011

0 00110000 31 31 y 32 00001000

(space) 00100000 32 32 y 33 00001100

d

1 00110001 33 33 y 34 01000011

0 00110000 34 34 y 35 00001100

0 00110000 35 35 y 36 00001000

(space) 00100000 36 36 y 37 00100011

o

1 00110001 37 37 y 38 01001100

1 00110001 38 38 y 39 01001100

1 00110001 39 39 y 1 01000011

Source: Authors.

- 46 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

TABLE II. Population’s Selection and Mutation

Selected alleles by the mutation clock Mutated Population

00001101 11001100 10000001 00001100 01001100 01100011 01001000
00001100 01000011 00001110 00001000 00000011

00001110 01001101 11000001 00001100 00001100 11010011 10001000
00001100 01000011 00001110 01001000 00100011

01001100 01001101 11000001 00001100 01001100 01000011 00001000
00001100 01000011 00001100 00001000 00100011

01001100 01001100 01000011

00000101 11001110 10010001 10001000 01101101 01101011 00001010
00011100 11000111 00101111 00000000 01000001

00011110 11001001 11100000 00000100 01001110 11000011 00001100
00101101 01001011 01001100 01011000 10100111

01101101 01000101 10000011 00011100 11001000 01100010 00000000
01001110 01010011 10001000 00101001 00101011

00001110 01011100 11000111

Source: Authors.

TABLE III. ffCriterion Value According to the Range Where the Population Size Is Located

Genes range of numbers in the
population Value n Value according to the range Alleles chains length to compare

(ffCriterion)

4 - 7 2 22 = 4 3

8 - 15 3 23 = 8 4

16 - 31 4 24 = 16 5

32 - 63 5 25 = 32 6

2n - 2n+1 −1 n 2n n +1

Source: Authors.

TABLE IV. Main Key Distribution

00 01 10 11
00 T r 3 V
01 Q W 9 0
10 / a m 2
11 P L u *

Source: Authors.

TABLE V. Corresponding Characters for the First Two Genes of Auxiliary Key

Gene Genen
Substring value Corresponding character

(according to table 4)
Conversion to

ASCII
Conversion to binary

(encryptedAuxKey)

gene1

gene11
0011 V

0 00110000
8 00111000
6 00110110

gene12
0101 W

0 00110000
8 00111000
7 00110111

gene2

gene13
0011 V

0 00110000
8 00111000
6 00110110

gene14
0100 Q

0 00110000
8 00111000
1 00110001

Source: Authors.

TABLE VI. Initial Conditions Value for the Three Tests Cases

Initial condition Case 1 Case 2 Case 3
Initial text Hola mundo Esta es una cadena mas larga que la anterior See Text 3

Initial population (bits representation) 39 175 2051
Population to Evaluate 52 175 1367

crossParameter 6 5 5
mutationParameter 5 5 17
repetitionParameter 3 4 7

maxIterationParameter 200 200 200

Source: Authors.

- 47 -

Regular Issue

TABLE VII. Tests on reversalCriterion for Case 1, Case 2 and Case 3

reversalCriterion Different strings Valid strings Satisfaction percentage Average Satisfaction percentage

Case 1 2 3 1 2 3 1 2 3 1 2 3

1

36 68 552 36 59 516 100% 87% 93%

98% 83% 94%
33 57 569 32 45 536 97% 79% 94%
32 56 547 32 44 511 100% 79% 93%
34 65 546 32 58 513 94% 89% 94%

2

36 72 606 36 63 578 100% 88% 95%

98% 81% 95%
35 63 576 34 48 550 97% 76% 95%
33 67 607 32 57 575 97% 85% 95%
35 58 583 34 43 555 97% 74% 95%

3

32 78 659 28 68 635 88% 87% 96%

93% 90% 97%
33 70 704 33 59 684 100% 84% 97%
36 84 645 33 77 625 92% 92% 97%
34 85 628 32 81 602 94% 95% 96%

4

37 54 528 36 52 497 97% 96% 94%

98% 82% 95%
35 49 590 34 33 567 97% 67% 96%
33 62 579 33 50 548 100% 81% 95%
27 65 596 26 55 564 96% 85% 95%

5

29 50 606 26 39 585 90% 78% 97%

91% 72% 96%
33 42 633 31 27 606 94% 64% 96%
30 47 641 28 34 619 93% 72% 97%
28 47 636 24 35 616 86% 74% 97%

6

34 64 622 32 53 594 94% 83% 95%

96% 83% 95%
31 63 631 31 50 601 100% 79% 95%
31 68 641 30 55 611 97% 81% 95%
31 72 624 29 65 596 94% 90% 96%

Source: Authors.

TABLE VIII. Algorithm Performance for Case 1, Case 2 and Case 3

Function’s name Function calls Time (seconds)

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

AlgorithmEncryption 1 1 1 0,027 0,133 0,261

AuxiliaryKeyEncrypt 60 64 72 0,011 0,012 0,012

FitnessFunction 2 52 10 0,002 0,011 0,028

Unique 2 52 10 0,008 0,023 0,018

Convert 249 399 2299 0,004 0,004 0,008

Strlength 12 13 15 0,001 0,001 0,001

NewDivisionPopulationToEvaluate 2 52 10 0,001 0,029 0,045

TOTAL 328 633 2417 0,055 0,215 0,374

Source: Authors, MATLAB R2017a.

TABLE IX. Execution Time in Seconds for the Encryption DES, RSA and Proposed Algorithm

Text size (bits) DES Encrypt RSA Encrypt Proposed algorithm
Encrypt

Total time of the Proposed
algorithm

128 0.054945 0.0549 0.055 0.100

256 0.054946 0.1098 0.058 0.100

512 0.070976 0.2197 0.083 0.137

1000 0.1418 0.3846 0.125 0.187

2000 0.2835 0.7142 0.157 0.228

5000 0.6816 1.7032 0.479 0.704

10000 1.3601 3.402 1.000 1.441

Source: [22] and Authors.

- 48 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 5, Nº 7

References

[1]	 Carle, G. (2003). Network Security Chapter 7: Cryptographic Protocols.
In: http://www.ccs-labs.org/~dressler/teaching/netzsicherheit-ws0304/07_
CryptoProtocols_2on1.pdf.

[2]	 Abd, D., Abdual, H. and Hadhoud, M. (2010). Evaluating the Performance
of Symmetric Encryption Algorithms. International Journal of Network
Security, Vol. 10, No. 3, pp. 213–219.

[3]	 Mahajan, P. and Sachdeva, A. (2013). A Study of Encryption Algorithms
AES, DES, and RSA for Security. Global Journal of Computer Science
and Technology, vol. 13. In: https://computerresearch.org/index.php/
computer/article/view/272/272.

[4]	 Beegom, B. y Jose, S. (2017). “An Enhanced Cryptographic Model
Based on DNA Approach”. Presented at: 2017 International conference of
Electronics, Communication and Aerospace Technology (ICECA), Idukki,
India. Doi: 10.1109/ICECA.2017.8212824.

[5]	 Srilatha, N. and Murali, G. (2016). “Fast three level DNA Cryptographic
technique to provide better security”. Presented at: 2016 2nd International
Conference on Applied and Theoretical Computing and Communication
Technology (iCATccT), Bangalore. Doi: 10.1109/ICATCCT.2016.7912037.

[6]	 Lawrence, E., (2006). HTTPS Security Improvements in Internet Explorer
7. In: https://msdn.microsoft.com/en-us/library/bb250503(v=vs.85).aspx.

[7]	 Dierks, T. and Rescorla E., (2008). The Transport Layer Security (TLS)
Protocol, Version 1.2. In: https://tools.ietf.org/html/rfc5246.

[8]	 Holland, J. (1975). Adaptation in Natural and Artificial Systems. London,
England: MIT Press, pp. 6-16.

[9]	 Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, USA: Addison-Wesley, pp. 1-68.

[10]	 Hermawanto, D. (2013). Genetic Algorithm for Solving Simple
Mathematical Equality Problem. e-print arXiv: 1308.4675.

[11]	 Syswerda, G. (1991). Schedule optimization using genetic algorithms.
New York, USA: Lawrence Davis, pp. 322-349.

[12]	 Jhajharia, S., Mishra, S., and Bali, S. (2013). “Public key cryptography
using neural networks and genetic algorithms”. Presented at: 2013 Sixth
International Conference on Contemporary Computing (IC3), Noida,
India. Doi: https://doi.org/10.1109/IC3.2013.6612177

[13]	 Simmons, G.J. (1988). A survey of Information Authentication. IEEE
Proceedings, vol. 76, pp. 603-620, doi: https://doi.org/10.1109/5.4445

[14]	 Bhowmik, S. and Acharyya, S. (2011, June). “Image Cryptography: The
Genetic Algorithm Approach”. Presented at: International Conference on
Computer Science and Automation Engineering, Shanghai, China. Doi:
10.1109/CSAE.2011.5952458

[15]	 Conci, A., Brazil, A.L., Leal, S.B. and MacHenr, T. (2015, November).
“AES Cryptography in Color Image Steganography by Genetic
Algorithms”. Presented at: 2015 IEEE/ACS 12th International Conference
of Computer Systems and Applications (AICCSA), Marrakech, Morocco.
Doi: https://doi.org/10.1109/AICCSA.2015.7507100

[16]	 Al-Tabtabai, H., and Alex, A.P. (1999). Using Genetic Algorithms to solve
optimization problems in construction. Engineering, Construction and

Architectural Management, vol. 6, Issue: 2, pp. 121-132, doi: https://doi.
org/10.1108/eb021105

[17]	 Traberg, G., Moliari, L., Venosa, P. and Macia, N. (2015). “Automatizando
el descubrimiento de portales de autenticación y evaluación de la
seguridad mediante ataques de fuerza bruta en el marco de una auditoría
de seguridad”. Presented at: XXI Congreso Argentino de Ciencias de la
Computación, Argentina. In: http://sedici.unlp.edu.ar/handle/10915/50589

[18]	 Shannon, C.E. (1949). Communication Theory of Secrecy Systems.
The Bell System Technical Journal, vol. 28, Issue: 4, doi: http://dx.doi.
org/10.1002/j.1538-7305.1949.tb00928.x

[19]	 Othman, H., Hassoun, Y. and Owayjan, M. (2015, October). “Entropy
Model for Symmetric Key Cryptography Algorithms Based on Numerical
Methods”. Presented at: 2015 International Conference on Applied
Research in Computer Science and Engineering (ICAR), Beirut, Lebanon.
Doi: 10.1109/ARCSE.2015.7338142

[20]	 Gauss, C.F. (1801) and Clarke, A.A. (1965). Disquisitiones Arithmeticae
Translated. New Haven, Connecticut, USA, pp. 1-4.

[21]	 Jimenez, R., Gordillo, E. and Rubiano, G. (2012). Teoría de Números
(para principiantes). Bogotá, Colombia: Pro–Offset Editorial Ltda., pp.
98-104.

[22]	 Narasimham, C. and Jayaram, P. (2008). Evaluation of performance
characteristics of Cryptosystem using text files. Journal of Theoretical and
Applied Information Technology, pp. 55-59.

[23]	 Zaldaña, HR. and Castañeda E. (2015). The Use of Genetic Algorithms in
UV Disinfection of Drinking Water. International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 3, pp. 43-48.

TABLE X. Comparison Between AES, DES, RSA and Proposed Algorithm

Factors AES DES RSA Proposed algorithm
Development year 2000 1977 1978 2017

Key’s length 128, 192, 256 bits 56 bits >1024 bits 105.11 bits
Key for encrypt and decrypt Same password Same password Different password Same passwords

Block size 128 bits 64 bits least 512 bits 8 bits

Scalability Not scalable Scalable (It depends on the
block size and the password) Not scalable Scalable (It depends on the

initial text’s size)
Algorithm’s kind Symmetric Symmetric Asymmetric Symmetric
Execution time Fast Moderate slow Fast

Key’s tank Necessary Necessary Necessary Necessary

Inherent vulnerability Force attack Force attack, linear and
differential cryptanalysis attack

Force attack and “Oracle
attack”

Force attack, linear and
differential cryptanalysis attack

Rounds 10/12/14 16 1
Depends on the maximum

iteration parameter value or the
optimal iteration number

Source: [3] and Authors.

Jefferson Rodríguez Rodríguez

Jefferson Rodríguez Rodríguez was born in Bogotá,
Colombia in 1994. Aspiring to Computer Engineer in
Universidad Distrital Francisco José de Caldas. He works
in Exsis SAS since 2017 as a systems analyst. His area
of interest includes AI, computer security and backend
development.

Brayan Julián Corredor

Brayan Julián Corredor was born in Bogotá, Colombia
in 1994. Computer Engineer from Universidad Distrital
Francisco José de Caldas since 2017. He works in Stefanini
IT since 2017 as an Engineer jr. His area of interest includes
AI, computer security and frontend development.

- 49 -

Regular Issue

César Suárez Parra

César Suárez Parra was born in Bogotá, Colombia in 1956.
He got his industrial engineering degree from Fundacion
Universidad Incca de Colombia in 1980, and his mechanical
engineer degree from Fundacion Universidad Incca de
Colombia in 1992. He received his specialist degree in
applied mathematics from Universidad Sergio Arboleda in
2003 and his master degree in materials and manufacturing

processes from Universidad Nacional de Colombia in 1998. He is a teacher in
Universidad Distrital Francisco José de Caldas, dedicated to higher education
in engineering and investigations groups. He has a strong research record in
cryptography, complexity and genetic algorithms.

