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I.	 Introduction

RADIAL structure of distribution systems along with the high ratio 
of current to voltage levels lead to an increase in the power loss 

and voltage deviation of distribution systems [1]. Therefore, real power 
loss and voltage deviation are considered one of the crucial problems 
in the restructured power system. Reactive power compensation 
devices would allow Static Var Compensator be the effective method to 
overcome these technical issues, whereby injecting a sufficient reactive 
power in suitable distribution system points which help in improving 
the voltage profile and decreasing the power loss. 

Various VAR compensator types are utilized to enhance the steady-
state transmittable power and control the voltage profile along the 
transmission line [2]. Capacitor banks, voltage regulators, Dynamic 
Voltage Restorer (DVR) and Distributed Flexible AC Transmission 
System devices (D-FACTS), are examples of such compensators. 
Recently, a reactive power compensation using the PV inverter is used 
in distribution systems to relax the voltage regulator [3]. However, 
D-FACTS devices are considered the best way to enhance voltage 
profile in power systems by increasing the capacity of the transmission 
line and controlling power flow in a flexible and fast way [4, 5]. There 
are different kinds of these devices such as the series compensator, 
shunt compensator, combined series–series compensator, and 
combined series–shunt compensator [6]. The Static Var Compensator 
(SVC) is considered a shunt FACTS device compensator. It has the 
ability to control the line power flow by injecting convenient reactive 
power into the system. 

Decreasing the power losses can be achieved with integrated 
renewable energy resources. Recently, different methods have been 

presented using neural networks and machine learning to decrease 
the power and energy losses in the distribution system in existence of 
photovoltaic (PV) [7, 8]. In addtion, some methods have been presented 
to determine the power loss in smart grids [9, 10]. A steady-state security 
region-based chance-constrained model has been established to solve 
the power injection uncertainties of renewable energy resources [11].

Proper location and size of SVC decrease power losses and 
reduce Voltage Deviation (VD) to enhance the voltage profile. Many 
studies have addressed the optimal size and location of the SVC. 
Two different optimization methodologies have been investigated to 
solve the optimization problem, the first methodology tried to solve 
the optimization problem with a single objective function such as 
minimizing the total power loss while the second dealt with multi-
objective function. However, both the total power loss and voltage 
deviation can be simultaneously minimized in distribution systems 
using Multi-Objective Optimization Problems (MOOP). A Pareto 
dominance concept can be used to classify the solutions of the MOOP as 
dominated or non-dominated solutions. An optimal location and setting 
of SVC using non-dominated sorting particle swarm optimization are 
introduced in [12]. Improvement by voltage profile using SVC in a 
distribution substation is presented in [13]

Many algorithms have been applied to solve MOOP such as; Pareto 
Archived Evolution Strategy (PAES) [14], Nondominated Sorting 
Genetic Algorithm (NSGA-II) [15], Strength Pareto Evolutionary 
Algorithm(SPEA) and improved version SPEA2 [16], Multi-objective 
Particle Swarm Optimization (MOPSO) [17], Pareto Envelope-based 
Selection Algorithm II (PESA-II)[18].

Nevertheless, all papers in the survey have solved the optimal SVC 
placement problem as a deterministic case neglecting load fluctuation 
[19]. The electric load can be affected by time and weather condition, 
however, there are random factors components depending on the 
consumers that cannot be modeled [20]. So, the deterministic load 

Keywords

Probabilistic Load Flow, 
SVC, Radial Distribution 
Systems, Multi-objective 
Particle Swarm 
Optimization.

Abstract

This paper proposes a solution procedure for probabilistic load flow problem considering the optimal allocation 
of Static Var Compensator (SVC) in radial distribution systems. Pareto Envelope-based Selection Algorithm 
II (PESA-II) with fuzzy logic decision maker is developed to determine the optimal location and size of SVC 
based on the minimum total power losses and Voltage Deviation (VD). Combined cumulants and gram-chalier 
expansion are used for solving the probabilistic load flow problem. The proposed algorithm is tested on 33- bus 
and 69-bus distribution systems. The developed algorithm gives an acceptable solution with low number of 
iterations and less computation cost compared with the Monte Carlo method.

Probabilistic Load Flow Solution Considering Optimal 
Allocation of SVC in Radial Distribution System
Walaa Ahmed1, Ali Selim1,2, Salah Kamel1,3, Juan Yu3, Francisco Jurado2* 

1 Department of Electrical Engineering, Faculty of Engineering, Aswan University, 81542 Aswan (Egypt) 
2 Department of Electrical Engineering, University of Jaén, 23700 EPS Linares, Jaén (Spain) 
3 State Key Laboratory of Power Transmission Equipment and System Security and New Technology, 
Chongqing University, Chongqing 400030 (China) 

Received 26 July 2018 | Accepted 24 October 2018 | Published 5 November 2018 



- 153 -

Regular Issue

flow method does not satisfactory analyze the performance and the 
impact of SVC in the distribution system under load uncertainty. As 
a consequence, the method treats with specific values neglecting any 
uncertainties in the system, this can be done by using the Probabilistic 
Load Flow (PLF) [21]. PLF is presented in [22, 23] and further 
developed in [24, 25]. PLF can be solved by an analytical technique 
or Monte Carlo method [26]. Monte Carlo is a more accurate method, 
however, the analytical technique can give an acceptable solution 
with less computational cost compared to the Monte Carlo method 
[27]. There are different analytical methods to solve the PLF problem, 
like cumulants method [28, 29], or point estimate method [30]. These 
methods utilized the convolution properties to present the input and the 
output values of the systems as random variables [31, 32]. Moreover, 
the main feature of these methods is their computational efficiency in 
treating with random variables. A study of PLF by using a combined 
Cumulants and the Gram-Charlier expansion is presented in [31]. 

In this paper, a multi-objective function and probabilistic load 
flow are used to study the performance of including optimal SVC 
in the radial distribution system. Therefore, the topic discussed, and 
contribution of the work could be summarized as follows:
•	 Developing probabilistic load flow algorithm considering the 

optimal allocation of Static Var Compensator (SVC) in radial 
distribution systems;  

•	 Pareto Envelope-based Selection Algorithm II (PESA-II) is used as 
a multi-objective optimization method to find the optimal location 
and size of SVC;

•	 Fuzzy logic decision maker is developed, and incorporated into 
PESA-II to find the best solution from the Pareto optimal set;

•	 Power loss and voltage deviation are used as multi-objective 
functions to be minimized.

•	 Combined cumulants and gram-chalier expansion are used for 
solving the probabilistic load flow problem;

•	 The developed algorithm is validated using 33- bus and 69-bus 
distribution systems;

•	 The number of iterations and computation time required for solving 
the probabilistic load flow problem are reduced compared with the 
Monte Carlo method.

The paper is organized as follows: Section II introduces the 
mathematical model of the probabilistic load flow. Section III 
describes the optimization process using PESA-II. Section IV gives the 
numerical results. Finally, the conclusions are presented in Section V.

II.	 Probabilistic Load Flow Analysis

The load flow is represented by a system of non-linear equations 
that reflect the balance at steady state in the network between the power 
consumed and the power produced, Generally speaking, probabilistic 
load flow calculations consist of two parts linearization of load flow 
equations and convolution calculations. The cumulant method is used 
to perform convolution computation of random variables and the 
Gram–Charlier series expansion, to compute their distributions.

 ∑  	 (1)

 ∑ 	 (2)

The active and reactive power 𝑃, � at bus 𝑖 are calculated using the 
voltage �𝑖 and the values of the conductance �𝑖�, susceptance �𝑖�, and 
the angle θ𝑖� between the bus 𝑖 and the connected bus 𝑘 for all � buses 
of the system.

A.	Linear Approximation

The linearization of load flow equations is performed around the 
solution obtained with a deterministic load flow, based on the expected 
values of the system. These expected values are obtained after solving 
the problem of the deterministic method of the Newton-Raphson load 
flow calculation. To illustrate this technique, two random variables 
X and Y are considered. At some point in the problem, these random 
variables are multiplied to give a third random variable Z.

	 (3)

If the deviations of X and Y are represented around their mean values 
  and   by  and , respectively, the following can be assumed.

 , and   	 (4)

It is obtained, after neglecting the terms of the second order 

 	 (5)

Therefore, if changes of random variables are small, the variable 
Z can be linearized since the expected values for X and Y are known. 
This technique can be applied to the angles and voltages in (6) of the 
load flow. Thus, the

 ∑  	 (6)

 ∑ 	 (7)

Where �’, �’, 𝑔’, �’, �’’, �’’, 𝑔’’ and �’’ are calculated from system 
parameters and expected values for the variables.

B.	Convolution Calculation
Suppose that there are two independent random variables X and Y, 

and their probability density functions  and , respectively, 
then Z = X + Y is still a random variable. The probability density 
function of Z is:

	 (8)

Its distribution function is 

 	 (9)

C.	Moments and Cumulants
The convolution random variables can be replaced by the sum of 

their cumulants. The cumulants and moments of a random variable 
are the set of constants that reveal the properties of X and determine 
its distribution function [27]. However, cumulants have a number of 
properties that make their manipulation more useful. The cumulant 
method has low computational cost [28, 30]. It is also a flexible method 
that uses any random variable and not just normal distributions. Most 
statistical calculations using cumulants method are simpler than the 
corresponding calculation using moments.

When a random variable distribution is known, its moment of 
every order can then be obtained. Suppose the density function of a 
continuous random variable x is g(x), then its υ-order moment αυ can 
be calculated by the following equation:

 	 (10)

When υ= 1, the expectation of the random variable x,

	 (11)

From the expectation μ, the central moment of every order  
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can be calculated. Then the central moment of every order  can be 
solved by the expectation,

	 (12)

The relationships between the cumulants and the moments of every 
order are given in [28, 30].

D.	Gram–Charlier Expansion
The Gram–Charlier series expansion is mainly used in probabilistic 

production simulation [28]. These series represent the random variable 
distribution function by using the derivatives of the random variable. 
The coefficients of the series are formed by the random variable 
moments. 

1! Ф 2! Ф 3! Ф  
	 (13)

1! 2! 3!  	 (14)

Where Ф  and  represent the cumulative distribution 
function (CDF) and probabilistic density function (PDF) of a normal 
distribution with m=0 and and σ=1;  are constant coefficients.

 
	 (15)

Where H x  it is the Hermite polynomial of order υ. In practice 
coefficients Gram-expansion Charlier  can be expressed in terms of 
moments central random variable expansion object. The first seven 
coefficients are

   , 

  

III.	Optimization Model 

This section presents the optimization methodologies which are 
used in this paper to determine the optimal size and location. The 
optimization model is based on PESA-II algorithm, two optimization 
approaches are presented in the following subsection:

A.	Objective Functions and Constraints 
The two objectives functions that should be minimized are  and 

Voltage Deviation (VD)

	 (16)

Where the power loss in each branch � connected between two 
buses � and � is calculated as: 

_ I  	 (17)

The total power losses for all branches �_�� in the distribution 
system can be expressed as follows:  

 
	 (18)

The voltage deviation at bus 𝑖 in terms of the specified voltage  
can be calculated as follow:

 

	 (19)

and 

 	 (20)

B.	PESA-II Algorithm
PESA-II algorithm can be concluded in the following steps [18]: 

Step 1: Initialize number of population and two population-based 
parameters, the size of the Internal Population (IP) and the maximum 
size of the archive, or External Population (EP)
Step 2: Evaluate the objective functions for each individual �𝑖 

chromosome in the population.
Step 3: Find the nondominated members and incorporate the non-

dominated members of IP into EP.
Step 4: If a termination criterion has been reached, then stop, returning 

the set of chromosomes in EP as the result. Otherwise, delete the current 
contents of IP, and repeat the following until �𝑖 new candidate solutions 
have been generated:

-- With probability ��, select two parents from EP, produce 
a single child via crossover, and mutate the child. With 
probability (l – �� ), select one parent and mutate it to produce 
a child.

Step 5: increment the iteration number, endif iteration number is 
greater than max iter, otherwise go to step 2.

C.	Fuzzy Decision-Making
As shown in Fig. 1, a Pareto optimal set is determined using 

PESA-II, however, the main concern of the decision-maker is to find 
the best compromise solution from the Pareto set. A fuzzy decision-
making approach is used in this paper to find the optimal Pareto point 
according to the decision-maker preferences. Fuzzy logic is considered 
a range decision in which the output is obtained by fuzzification of 
inputs and outputs, from the associated membership functions (MFs). 
Hence, the value of the objective function F of individual n can be 
normalized as follows:

 
Optimal SVC Size and 

Location 

Objective functions
(Ploss , VD)

Problem 
constraints

 (PESA-II)

Non-dominant 
sort Pareto Front

Uloss, UDV, 
and Uw

Decision maker 
preferences 

Fuzzy Decision 
Making

Fig.1.  PESA-II with the fuzzy decision-making process.
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	 (21)

where,  and  are the minimum and maximum value of the 
ith objective function among all non-dominated solutions respectively. 

All normalized values are fuzzified using five triangular MFs for 
the two inputs power loss U , voltage deviation U , and the output 
weighting of the Pareto solution U , as shown in Fig. 2, the output U
, can be calculated using the rules as shown Fig. 3 and given in Table I. 
After applying the fuzzy decision making on the Pareto set, the output 
U  is a weighting factor between [0 ~ 1] for each solution in the Pareto 
set according to the fuzzy rules, hence the best solution will be the one 
that has the maximum weighting value.  

TABLE I. Rules of the Fuzzy Controller (VL =Very Low, L= Low, M= 
Medium, H= High, and VH= Very High)

UVD

VL L M H VH

UPloss

VL VL VL VL VL VL

L VL L L L L

M VL L M M M

H VL L M H H

VH VL L M H VH

a. Normalized power loss membership plot.

b. Normalized voltage deviation memberships plot.

c. Normalized weighting membership plot.

Fig. 2. Fuzzy membership plot for normalized objective functions values.

Fig. 3. Fuzzy rules.

IV.	Results

In this section, the obtained results of two standard test systems are 
presented and comprehensively discussed. 

A.	 33-Bus Radial System
The proposed approach is tested on the 33-bus radial distribution 

system. The single line diagram is displayed in Fig. 4. Statistical data 
of loads at all PQ buses are given in [33] and modeled as normal 
variables. The results of mean and standard deviation of voltages at 
PQ buss in the system without including SVC are given in Table II. 
The results in Table II show that the voltage obtained by the analytical 
technique is virtually identical to the results obtained with MCS. Also, 
it can be seen in Fig. 5 that CDFs for analytical technique and MCS at 
bus 18 and bus 33 are virtually identical. 

There are two cases of connected SVC based on the SVC numbers: 
case 1 for one SVC and case 2 for two SVC. The optimal size and 
location for the two cases obtained by different multi-objective 
optimization algorithms are summarized in Table III and Table IV. It 
is obvious from the two tables that PESA-II gives the better solution 
for the optimal size and location for SVC compared to the other 
optimization algorithms.

Fig.4. 33 bus single line diagram.
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TABLE II. 
Voltages in 33-Bus Distribution System Without Including SVC

Bus Analytical technique Monte Carlo

µ σ µ Σ

2 0.997031 3.74E-05 0.997027 0.000038

3 0.982922 0.000232 0.982894 0.000236

4 0.975425 0.000318 0.975381 0.000326

5 0.968013 0.000416 0.967953 0.000426

6 0.949573 0.00068 0.949471 0.000698

7 0.946056 0.00071 0.945945 0.000729

8 0.932426 0.000886 0.932283 0.000906

9 0.926108 0.000985 0.92595 0.001006

10 0.920248 0.001089 0.920074 0.001111

11 0.919381 0.001105 0.919205 0.001129

12 0.91787 0.001136 0.91769 0.001160

13 0.91171 0.001265 0.911515 0.001290

14 0.909425 0.001318 0.909225 0.001344

15 0.908002 0.001342 0.907799 0.001368

16 0.906624 0.001371 0.906416 0.001396

17 0.904581 0.001402 0.904368 0.001429

18 0.903969 0.001413 0.903754 0.001440

19 0.996503 4.28E-05 0.996498 0.000043

20 0.992926 0.000145 0.992921 0.000143

21 0.992221 0.000173 0.992217 0.000172

22 0.991584 0.000211 0.991579 0.000210

23 0.979338 0.000326 0.979309 0.000331

24 0.972671 0.000547 0.972639 0.000553

25 0.969348 0.000655 0.969315 0.000664

26 0.947647 0.000715 0.94754 0.000734

27 0.945087 0.000765 0.944975 0.000786

28 0.933669 0.00102 0.93353 0.001048

29 0.925466 0.001218 0.925307 0.001251

30 0.921915 0.001304 0.921747 0.001339

31 0.917762 0.001366 0.917585 0.001403

32 0.916849 0.001381 0.916669 0.001418

33 0.916566 0.001383 0.916385 0.001421

Base MVA=100 Base KV=12.66
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Fig. 5. CDF of the voltage at bus 18 and bus 33 without SVC.

TABLE III. Optimal Size and Location of Single SVC Using Different 
Optimization Algorithms for 33 Bus System

Method SVC 
Location

SVC Size 
(kVAR)

Power losses 
(kW)  VD (p.u)

MOPSO 7 2137.70 158.77 0.0632
NSGA II 7 2146.46 158.89 0.0631
PESA-II 7 1896.35 156.38 0.0653
SPEA2 7 2400.69 163.38 0.0608

TABLE IV. Optimal Size And Location of Two SVC Using Different 
Optimization Algorithms for 33 Bus System

Method SVC 
Location

SVC Size 
(kVAR)

Power losses 
(kW)

VD 
(p.u)

MOPSO
14 1071.60

194.14 0.0307
30 1847.60

NSGA II
14 1041.57

191.77 0.0308
30 1851.95

PESA-II
13 1225.18

184.57 0.0367
30 1509.74

SPEA2
14 1053.00

192.97 0.0307
30 1854.70

Fig. 6 shows the voltage profile of 33 bus with SVC control 
device in the mentioned two cases. Fig. 7 and Fig. 8 gives the Pareto 
Optimal Front for 33-bus for single SVC and two SVCs respectively. 
Fig. 9 gives PDF and CDF of voltages at bus 18 with and without 
SVC. Fig. 10 shows PDF and CDF of voltages at bus 33. Expected 
voltage profile of 33 bus system with single SVC in 24 hours is shown 
in Fig. 11, however Fig. 12 gives the SD of it in 24 hours. Expected 
voltage profile of 33 bus system with two SVC in 24 hours is shown 
in Fig. 13, however, Fig. 14 gives the SD of it in 24 hours. Table V 
gives a comparison between expected SD values with/without SVC, 
the expected value of Vmin and Vmax are improved in both cases. 
Also, Qlosses is decreased in case 1 and case 2 compared to the base 
case, however, the standard deviation is not improved in the two cases 
compared to without SVC. Computational times of two cases are 
presented in Table VI.
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TABLE V. Stochastic Information of the System With/Without SVC 
for 33 Bus System

Without SVC One SVC Two SVCs
Mean SD Mean SD Mean SD

Vmax 0.9970 0.00005 0.9976 0.00004 0.9978 0.00004
Vmin 0.9131 0.00243 0.9307 0.00196 0.9588 0.00377

Ploss (kW) 202.67 0.00218 156.38 0.00205 184.57 0.00208
Qloss (kVAR) 135.14 0.00557 122.82 0.00457 112.12 0.00550

VD 0.0869 0.00025 0.0653 0.00023 0.0367 0.00019

TABLE VI. Computation Times

Analytical technique (s) MCS (s)
Without SVC 15.0 1611.8
With one SVC 69.08 10 516
With two SVCs 73.93 11 978

B.	 69-Bus Test System
The proposed approach is also tested on 69-bus radial distribution 

system shown in Fig. 15  [34]. CDF of the voltage at bus 27 and bus 
65 without SVC are shown in Fig. 16. Table VII and Table VIII show 
the values of optimal location and size of SVC in 69-bus system with 
different multi-objective optimization algorithms. From these tables 
the PESA-II still gives the better solution as in the previous test system. 
Fig. 17 gives PDF and CDF of voltages at bus 27 bus with and without 
SVC. Fig. 18 shows PDF and CDF of voltages at bus 65. Fig. 19 shows 
voltage profile of 69 bus in different cases. Pareto Optimal Front for 69 
bus is shown in Fig. 20 and Fig. 21. Expected voltage profile of 33 bus 
system with single SVC in 24 hours is shown in Fig. 22; however, Fig. 
23 gives the SD of it in 24 hours. Expected voltage profile of 69 bus 
system with two SVC in 24 hours is shown in Fig. 24, however, Fig. 25 
gives the SD of it in 24 hours. 

Table IX gives a comparison between expected and SD values with/
without SVC, the expected value of Vmin and Vmax are improved in 
both cases also Qlosses is decreased in case 2 than case 1, however, the 
standard deviation is not improved in two cases compared to without 
SVC. Table X gives computation time of two cases.

Fig. 15. 69 bus single line diagram.

TABLE VII. Optimal Size and Location of Single SVC Using Different 
Optimization Algorithms for 69 Bus System

Method SVC 
Location

SVC Size 
(kVAR)

Power losses 
(kW)  VD (p.u)

MOPSO 63 3055.60 278.17 0.0444
NSGA II 63 2306.92 196.64 0.0541
PESA-II 60 2245.33 184.11 0.0603
SPEA2 62 2370.93 196.80 0.0542

TABLE VIII. Optimal Size and Location of Two SVC Using Different 
Optimization Algorithms for 69 Bus System 

Method SVC 
Location

SVC Size 
(kVAR)

Power losses 
(kW)

VD 
(p.u)

MOPSO
55 2567.40

302.69 0.0398
63 2387.40

NSGA II
56 1627.94

297.87 0.0397
63 2651.04

PESA-II
56 1394.32

265.40 0.0429
63 2508.19

SPEA2
56 1791.39

298.17 0.0397
63 2581.24
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Fig. 16. CDF of voltage at bus 27 and bus 65 without SVC.
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Fig. 17.  PDF and CDF of without/with implementation SVC at bus 27.
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Fig. 18.  PDF and CDF of without/with implementation SVC at bus 65.
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Fig. 19.  Voltage profile of 69 bus with control device in different cases.

Fig. 20.  Pareto Optimal Front for 69 bus with single SVC.
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Fig. 21.  Pareto Optimal Front for 69 bus with two SVC.
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Fig. 22.  Expected voltage profile of 69 bus system with single SVC.
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Fig. 23.  Standard Deviation of 69 bus system with single SVC.
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Fig. 24.  Expected voltage profile of 69 bus system with two SVC.
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Fig. 25.  Standard Deviation of 69 bus system with two SVC.

TABLE IX. Stochastic Information of the System With/Without SVC 
for 69 Bus System

Without SVC One SVC Two SVCs
Mean SD Mean SD Mean SD

Vmax 0.9999 1.13E-06 0.9999 1.13E-06 1.0001 1.12E-06
Vmin 0.9092 0.00124 0.9622 0.00109 0.9557 0.0045

Ploss (kW) 224.949 0.008723 184.11 0.007723 265.40 0.007686
Qloss (kVAR) 102.145 0.007653 129.582 0.007379 145.35 0.010197

VD 0.0908 0.00123 0.0603 0.000988 0.0429 0.00458

TABLE X. Computation Times

Analytical technique (s) MCS (s)
Without SVC 32.012 3611.8
With one SVC 80.57 12 709
With two SVCs 85.23 12 845

V.	 Conclusion

In this paper, the probabilistic load flow problem considering the 
optimal location and size of SVC in radial distribution system has been 
solved. Pareto Envelope-based Selection Algorithm II (PESA-II) has 
been utilized to achieve the target of this paper and minimize the total 
power loss and voltage deviation based on the optimal location and 
size of SVC. Combined cumulants and gram-chalier expansion have 
been used for solving probabilistic load flow problem. The proposed 
methodology has been validated using the standard 33- bus and 69-bus 
distribution systems. The results give an acceptable solution with a low 
number of iterations and less computation cost compared to the Monte 
Carlo method (MCS).
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