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I.	 Introduction

THE smart grid technologies are a step towards developing the utility 
industry, whereas it could overcome the drawbacks of the existing 

power grid [1]. The high demand for electricity cannot serve the high 
increasing population rate and the low response. The manual control 
and the high losses during transmission made the manufacturers think 
about alternative solutions. Smart grids can deal with the needs of the 
high population [2], achieve reliability, automated control which leads 
to the high response, and decrease the losses in transmission lines by 
providing efficiency of data transmission from head to tail [3]–[5].

The feeding of the smart grid [6] can be renewable energy resources 
(e.g., photovoltaic (PV) and wind) in parallel with the utility grid to 
provide a low overall cost. On the other side, these resources have 
negative impacts on the distribution system, such as the high power 
loss due to the back feeding of the power flow [7], fluctuation and 
unbalanced voltage [8], and voltage rise [9].

Many researchers evaluated the steady-state conditions of 
distribution system by using the state-of-the-art techniques, such 
as Gauss-Seidel and Newton-Raphson, which supposed that the 
system is already stable [10]. The power flow techniques have been 
applied to determine the steady-state operation conditions during 
transmitting the electricity, Kirchhoff’s current law and other methods 
to determine the voltage magnitude, angle, and active/reactive power. 
Other iterative methods are detailed in [11], [12]. A technique for the 
multiphase unbalanced system, which was developed to deal with 
different types of loads (constant current, constant power, and constant 
impedance), is presented in [13]. To model the harmonics resulting by 
the variable load with the time variant, a simulator is modeled based 
on the openDSS program to estimate the value of harmonics [14]. 

Impact of PV integration was studied in [15]. A study for modeling and 
simulating the penetration effects by two feeders in different scenarios 
is illustrated in [16]. 

A quasi-static time-series (QSTS) is presented for analyzing and 
simulating the operation of PV distribution system and evaluating the 
effects of the PV integration during a specified duration (day or year).

In [17], several works have been proposed to reduce the execution 
time of QSTS. The authors presented two methods for shortening 
the time-series for power flow calculations in the presence of the 
distributed generation. The size of the input data, as well as the power 
flow calculation, was decreased. The first method depends on down-
sampling data through reducing time resolution. This method has the 
disadvantage of losing the peak values during down-sampling. The 
second method chooses the similar intervals, and then performs the 
calculation on them. This method also has the disadvantage of missing 
the rest of data, which makes the simulations inaccurate.

In [18] and [19], the neural networks control the electrical systems 
with nonlinear dynamic characteristics. Ref [20] explained the use of 
neural networks with fully connected neuron learning combined with 
power flow for optimizing smart grids.

The limitation of the methods reported in the literature is that they 
take very long execution time to estimate smart grid state. In this paper, 
we propose a fast method (SE-NN) to calculate the state of the smart 
grid (voltage, active power, and reactive power) in a short time and 
accurate way using a neural network model. 

II.	 Background

Power flow analysis is essential for monitoring system distribution 
by calculating active/reactive power, currents, and voltages at each 
time step for a specified duration. Iterative power flow methods are 
used for determining the operation of the system at the steady-state 
condition. In [21], a Newton-Raphson method algorithm was used for 
solving non-linear equations. The problem with this method is that the 
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memory space is not sufficient for large-scale systems. A modified 
Gauss-Seidel algorithm was presented in [22]. This algorithm solves 
the problem of the limited memory size with small execution time. 

The state estimation is used for estimating the power flow solution 
of different real-time information because of the large number of nodes, 
few phase measurements, and disability of the system to be hardly 
provided with a meter at each node and each branch. The commonly 
used state estimator is weighted least square criteria (WLS). A study 
on state estimation depending on Tikhonov regularization compared 
with the WLS is detailed in [23]. Due to the changeable nature of 
the energy environment, the distribution system needs new system 
modeling that can adapt to the new advanced technologies. In [24], the 
authors discussed the new methodologies for wide area monitoring and 
analyzing of the smart grids. Another approach for wide-area network 
estimation called multi-area state estimation (MASE) is illustrated 
in [25]. This approach relies on a two-step procedure, the overall 
network area is divided into subareas according to its geographical 
characteristics and measurement estimator. The first step is performing 
all the available measurements for each area. The subareas have the 
same nodes number and the estimator is working in parallel for low 
execution time. In the second step, the data of the first step is processed 
and refined for different operation conditions. The previous methods 
have drawbacks of the long execution time [26]. In general, iterative 
power flow methods require a long time to estimate the states of 
the smart grid. In this paper, we propose a fast method for real-time 
analysis with high accuracy. To demonstrate the effectiveness of our 
method, we have compared it with a well-known power flow method.  

III.	The Proposed Method 

A.	Neural Networks
The artificial neural networks are a close simulation of the human 

brain. We use the neural network in state estimation because of its 
high efficiency in processing signals and predicting output in a fast 
and accurate way. The neural network model either contains one layer 
(input and output are directly connected), two layers (the first layer 
for receiving data, and the other layer for output results) or multilayer 
whereas three or more layers are connected in parallel (input layer, 
hidden layer(s), and output layer) [27]–[29].

There are many algorithms to train neural networks; the preferable 
one is the back-propagation algorithm in which the error is calculated 
by computing the difference between the target and the measured 
output, and the weights are adjusted and propagated backward from 
the output to the input until finding the weights that minimize the error. 
Then the network is being learned for the desired output. More details 
about learning of neural network can be found in [30]. Fig. 1 shows a 
neural network containing three layers. The first layer is the input layer 
which contains four neurons, the second layer is the hidden layer that 
contains three neurons, and the last one is the output layer.

Input layer Hidden layer Output layer
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Fig. 1. The architecture of neural networks. 

The connection lines w and b denote the weights and biases. The 
output of the first layer can be expressed as follow:
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where yj is the summation of the inputs xi multiplied by the weights 
wij, and added to the biases bj [30]. Using equation (2), the weights are 
updated every iteration until the errors are minimized to a level equal 
or less than the threshold value (0.05).

)( measuredactualoldnew yyww −+= α 	 (2)

where α is the learning rate which is adjusted to a small value. The 
output of the summation function (yj) is the input to another function 
called activation function. The common types of activation function 
are shown in Fig. 2. 
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Fig. 2. The common types of activation functions.

The step function or threshold function in Fig.2 (a) is limited with 
(-1 or +1), If the output is less than or equal to 0, the output will be -1, if 
it is more than 0, the resulting output will be +1. In Fig.2 (b), the output 
of the linear function is increasing linearly from -1 to +1. In Fig.2 (c), 
the output of the sigmoid function is increasing from 0 to +1. The final 
output of the neural network (z) can be expressed using equation (3). 
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where f is the activation function, and the updated weights and 

biases are w~ and b~.

B.	SE-NN Method
In the proposed method, the network is constructed directly between 

the input data and the desired output. The input of the network is a 
training data set divided into samples within a limited duration called 
load factor. The load factor samples can be presented by the following 
equation:  

	 (4)

where t is the time step, and m is the number of samples. The output 
of the network is the state estimation for the generated load profiles 
which are sampled by the load factor along with a specified duration. 
If we considered that the output is presented by a matrix A as shown 
in equation (5), each element in the matrix A represents the state of a 
known bus or line at a known sample. 
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	 (5)
The rows in the matrix A represent the bus number (in case of 

voltage calculation) or the line number (in case of losses calculations). 
Note that the number of lines is less than the number of buses by one. 
The columns represent the values of the input sample with regards 
to the data set.  The symbol X can be replaced with V, P or Q. For 
example, if we want to find the voltage at bus 15 through all durations, 
we will extract the vector of 15th row of the matrix as below:

	 (6)
Another example, if we want to find the reactive losses at line 10 (the 

line from bus 10 to bus 11), we will extract the vector of 10th row of the 
matrix as the following equation:

	 (7)

In our approach, we used an efficient method for solving the power 
flow called quadratic based backward/forward sweep (QBBFS) [31]. 
Unlike the traditional quadratic based methods that cannot be employed 
for the unbalanced systems, the QBBFS method accommodates 
multiphase systems and different load types. Although QBBFS is an 
efficient method, it requires a long time to estimate the state of the grid. 
The QBBFS method is used for the large system, where the backward 
sweep is used for calculating the branch currents from the far ends, 
and the forward sweep is used for calculating the voltages from the 
slack bus. In QBBFS, the iteration is repeated until reaching to high 
convergence rate. Fig. 3 shows the steps of estimation the real-time 
voltage using a neural network model.

C.	The Solution Steps
1.	 Read the data inputs from the load profiles.
2.	 Sample the input data and solve it using QBBFS method. 
3.	 Redirect the QBBFS outputs (voltages or re/active power) to the 

SE-NN model.  
4.	 Create the SE-NN model using the feed forward neural network 

with initial parameters and Levenberg-Marquardt algorithm that 
has high efficiency. 

5.	 Train the SE-NN model with the initialize network created and 
training parameters. In the training process, the actual QBBFS 
output is compared with the measured SE-NN output until 
the network performance goal is met (maximum 300 epochs, 
minimum 5% gradient and 1e-3 goal error). If the goal is not met, 
the weights and biases are updated with the learning machine rate 
until the error is equal or less than the network goal. 

6.	 Once the model is trained, it would be able to simulate the output 
results for any change in the input data set (Load Factor).

7.	 Finally, the results are printed.
The proposed algorithm overcomes the high complexity of the 

computational methods. The function of the QBBFS method is to solve 
the power flow and redirect the output for training the network, once 
the network model is learned, the model is saved and used to simulate 
and reproduce the output rapidly and accurately for any new input data 
without the need for the QBBFS method. 

IV.	Assessing the Accuracy of the Proposed Method

To validate the accuracy of the proposed method, we compute the 
difference between the actual output using the QBBFS method and the 
network output using the SE-NN method. To perform this we compute 
different types of errors such as the mean square error (MSE) which is 
expressed as the average of the square difference between the actual 
output and the network output.

	 (8)

where M is the size of the duration, i denotes to the bus number 
(for voltage calculations) or the line number (for losses calculations), 
and X represents the state estimation (e.g., voltage, active or reactive 
power),  is the QBBFS output, and  is the SE-NN output. 
In equation (9) we calculate the square root of the mean of the squared 
difference between actual and estimated output which is called the 
root mean square error (RMSE). The maximum value of the absolute 
difference between actual and measured output which is called the 
maximum absolute error (MAE)) is expressed in (10). The mean 
absolute percentage error (MAPE) and the sum of the squared error 
(SSE) are expressed in (11) and (12), respectively.

	 (9)

	  (10)
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Fig. 3.  The flowchart of the SE-NN method.
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	 (11)

	 (12)

The maximum values of the previous errors are computed to 
evaluate the accuracy of the proposed method.

V.	 Results and Discussions

This section presents the results of state estimation using the proposed 
SE-NN method in smart grids. This method has been implemented at 
2.20GHZ CPU, Intel Core i5 and 4GB RAM using MATLAB. The 
test is applied to a 33-bus distribution system as shown in Fig. 4. To 
assess the performance of the proposed method, two training datasets 
with different sizes are provided (200 and 1440 data resolutions). To 
validate the accuracy of the proposed method, the following steps are 
carried out:
•	 We analyze the state estimation of the smart grid using two training 

datasets (200 and 1440 samples).
•	 We compare the proposed SE-NN method and the exact QBBFS 

method.
•	 To validate the accuracy of the proposed method, we calculate 

MSE, RMSE, MAE, MAPE, and MSSE.
•	 For outlining the contribution of the proposed method, we calculate 

the execution time for producing the SE-NN output and then 
compare it with the execution time of the exact one.

1 2 3 7 8 94 5 6 10 11 12 13 14 15

31 32 3328 29 3022 26 2719 20 21

23 24 25

16 17 18

Fig. 4. The single-line diagram of the 33-bus distribution system.

A.	Voltage Estimation 
Fig. 5 shows a comparison between the actual voltages computed 

by the exact power flow method and the estimated voltage computed 
by the SE-NN method with data resolution of 200 for three buses (10, 
25 and 32 buses). We use the per unit expression as a fraction of the 
base unit for simplifying the calculations. The other dataset is applied, 
which is a day data per minutes containing 1440 samples (24*60).  Fig. 
6 shows the estimated and exact voltages at 10, 25, and 32 buses. It 
is important to note that there is a little difference between the actual 
and estimated voltages for both data resolutions. This implies that the 
proposed method gives very accurate estimations of voltages.
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Fig. 5. The actual and estimated voltages magnitudes with 200 data resolution 
of different buses (a) bus 10, (b) bus 25, and (c) bus 32.
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Fig. 6. The actual and estimated voltages magnitudes with 1440 data resolution 
of different buses (a) bus 10, (b) bus 25, and (c) bus 32.

B.	Active Power Estimation
The same data resolutions are applied for computing active power 

losses. We choose three lines (1, 25 and 30) for testing the datasets. The 
active power losses for the three lines with 200 and 1440 data sets are 
shown in Fig. 7 and Fig. 8, respectively. The total active losses for all 
the system are also shown in Fig. 9 for 200 and 1440 data resolutions. 

We notice a strong match between the losses computed by the proposed 
method and the exact one.
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Fig. 7. The actual and estimated active power loss magnitudes with 200 data 
resolution of different lines (a) line 1, (b) line 25, and (c) line 30.
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Fig. 8. The actual and estimated active power loss magnitudes with 1440 data 
resolution of different lines (a) line 1, (b) line 25, and (c) line 30.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

250

300

350

Load Factor

Lo
ss

es
(k

w
)

 

 

Actual Active Losses
Estimated Active Losses

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

50

100

150

200

250

300

350

Load Factor

Lo
ss

es
(k

w
)

 

 

Actual Active Losses
Estimated Active Losses

(b)

Fig. 9. The total actual and estimated active losses magnitudes for the two data 
resolutions (a) 200 data resolution, and (b) 1440 data resolution.

C.	Reactive Power Estimation
The reactive losses are also computed for testing the accuracy of 

the proposed method with respect to the exact method. A comparison 
between the actual reactive losses computed by the QBBFS method and 
the estimated reactive losses computed by the SE-NN method with 200 
and 1440 samples at three lines (1, 25, and 30) are shown in Fig. 10 and 
Fig. 11, respectively. The total reactive losses in the distribution system 
are shown in Fig. 12 for both data resolutions. Similar to the active 
power loss estimation results, the reactive power estimation results of 
the proposed method are very close to the exact QBBFS method.
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Fig. 10. The actual and estimated reactive power loss magnitudes with 200 
data resolution of different lines (a) line 1, (b) line 25, and (c) line 30.
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Fig. 11. The actual and estimated reactive power loss magnitudes with 1440 
data resolution of different lines (a) line 1, (b) line 25, and (c) line 30.
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Fig. 12. The total actual and estimated reactive losses magnitudes for the two 
data resolutions (a) 200 data resolution, and (b) 1440 data resolution.

D.	 Performance Comparison
To assess the validity of the proposed method, the different errors 

are computed for comparing the QBBFS and SE-NN outputs of 
voltages and re/active power loss. Table I demonstrates the maximum 
value of the MSE, RMSE, MAE, MAPE, and SSE at all busses for 200 
samples. As we can see, the values of errors are very small. In the case 
of increasing data size to 1440, errors are still small, as illustrated in 
Table II. This demonstrates the high accuracy of the proposed method.

TABLE I. Maximum Values of Errors at 200 Data Eesolutions

Errors Voltages Active losses Reactive losses

MMSE 4.0765e-04 9.5776e-04 9.3902e-04

MRMSE 0.0202 0.0309 0.0306

MAE 0.2164 0.2440 0.2354

MAPE 5.8776e-04 0.3169 0.3074

MSSE 0.0819 0.1925 0.1887

TABLE II. Maximum Values of Errors at 1440 Data Resolutions

Errors Voltages Active losses Reactive losses

MMSE 1.2011e-04 9.9229e-04 9.9254e-04

MRMSE 0.0110 0.0312 0.0315

MAE 0.0324 0.2638 0.1735

MAPE 6.4528e-04 0.5831 0.2910

MSSE 0.1730 1.4289 1.4293

For further illustrating the effectiveness and contribution of the SE-
NN method, the required time for producing the output from QBBFS 
and SE-NN is compared. With the 200-data resolution, the QBBFS 
method takes longer execution time (around 16 sec) than the SE-NN 
method which is not exceeding 0.5 sec, as shown in Table III. For 
the data size of 1440, a slight change occurs in the execution time of 
the SE-NN (less than 0.6 sec), while the execution time of QBBFS 
increases dramatically (more than 115 sec), as shown in Table IV. 
It worth noting that the computational performance of the SE-NN 
method is not affected by increasing the data size as in the case of the 
iterative method.

TABLE III. Execution Time with 200 Data Resolution

Method Voltages Active losses Reactive losses

QBBFS 16.546066 16.181725 16.247039

SE-NN 0.461741 0.223520 0.437750

TABLE IV. Execution Time with 1440 Data Resolution

Method Voltages Active losses Reactive losses

QBBFS 128.972066 115.736379 116.249624

SE-NN 0.589995 0.239677 0.471077

VI.	Conclusion

In this paper, the SE-NN method has been proposed for estimating 
the state of smart grid systems. The proposed method utilizes the feed-
forward neural network to determine the state estimation of smart grids. 
The existing power flow methods take very long execution time, while 
the proposed method estimates the state at any point in a quick and 
accurate way. The experiments have been carried out at two different 
training sets (200 and 1440 data resolution). The proposed method has 
been compared with the QBBFS method for validation. SE-NN has the 
ability to estimate the state of smart grid rapidly with high accuracy 
rate. The proposed method can be a helpful tool for system operators 
for monitoring the real-time operation of smart grids. The future work 
will be directed to simulating large-scale distribution systems with 
renewable energy sources, such as photovoltaic and wind generation 
systems. In addition, we will use deep learning methods to estimate the 
state of smart grids  
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