Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto (UNIR)
dc.contributor.authorArgyros, Ioannis K
dc.date2016-01
dc.date.accessioned2017-08-07T15:23:23Z
dc.date.available2017-08-07T15:23:23Z
dc.identifier.issn1872-7166
dc.identifier.urihttp://reunir.unir.net/123456789/5336
dc.description.abstractWe present a new convergence analysis, for the secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz conditions in the convergence analysis. The new convergence analysis leads to more precise error bounds and to a better information on the location of the solution than the corresponding ones in earlier studies. Numerical examples validating the theoretical results are also provided in this study. (C) 2015 International Association for Mathematics and Computers in Simulation (IMACS).es_ES
dc.language.isoenges_ES
dc.publisherMathematics and Computers in Simulationes_ES
dc.relation.ispartofseries;vol. 119
dc.relation.urihttp://dl.acm.org/citation.cfm?id=2840449es_ES
dc.rightsclosedAccesses_ES
dc.subjectsecant methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectFrechet-derivativees_ES
dc.subjectJCRes_ES
dc.titleNew improved convergence analysis for the secant methodes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.matcom.2015.08.002


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem