
 Special Issue on Improvements in Information Systems and Technologies

-50-

Abstract — The entertainment robotics have been on a peak

with AIBO, but this robot brand has been discontinued by the

Sony in 2006 to help its financial position. Among other reasons,

the robot failed to enter into both the mainstream and the

robotics research labs besides the RoboCup competitions,

however, there were some attempts to use the robot for

rehabilitation and emotional medical treatments. A native

software development environment (Open-R SDK) was provided

to program AIBO, nevertheless, the operating system (Aperios)

induced difficulties for the students and the researchers in the

software development. The author of this paper made efforts to

update the Open-R and overcome the problems. More

enhancements have been implemented in the core components,

some software methodologies were applied to solve a number of

restrictions and the achievements are summarized here.

Keywords — AIBO, Aperios, toolchain, Open-R, SDK, URBI.

I. INTRODUCTION

IBO [5] was ahead of its time and the robot hardware can

be still competitive for robotics research, however, the

main emphasize of the industry is on humanoids, drones,

manufacturing and healthcare services these years. Simpler

four-legged robots (e.g Pleo [10], i-Cybie [6]) compared to

AIBO have been on the market with similar target audience

though less than a million entertainment robots with total value

of US$ 166 million was sold in 2011 [12]. Interpreting these

numbers, this is a small business segment worldwide with low

demand and people are not familiar with robots.

Pleo [10], developed by Ugobe and later Jetta, imitates a

baby dinosaur and the owner needs to teach from a toddler

stage until a mature. This robot has two processors, 18 motors,

plenty of sensors (camera, touch sensors, microphones,

infrared distance sensor etc.) and it is capable for locomotion.

Actions can be programmed in Python language, but the image

and sound processing is slow and unreliable while AIBO ERS-

7 can capture medium resolution images with 30 Hz and 2

msecs compression time.

i-Cybie [6] resembles a dog like AIBO and it can

autonomously recharge itself, however, the repairs are not easy

because of the lack of the modular design. It was sold during

2005-2006 without development environment, but the

community did modifications to the hardware (Super i-Cybie)

with soldering a communication port near the CPU and

installing a new bootloader. With these changes, i-Cybie can

be programmed in C under Windows and the sensors are

accessible, but the SDK was abandoned in pre-alpha state with

frequent freezes and almost no documentation.

A South Korean company (Dongbu Robot) sells a robot dog

[3], which has a similar hardware configuration to AIBO, but

Genibo does not have an open, low level software

development environment, making impractical for researches.

Currently, there is no such an advanced and highly

sophisticated quadruped system on the market like AIBO. If

the shortcomings of the software environment can be fixed, the

robot can be used for upcoming research topics. Several

efforts have been done by the author of this study to renew the

potential of the programming tools for AIBO. The next chapter

gives a general overview of the operating system (Aperios)

and the software development environment for AIBO then the

updates of the cross compilation toolchain and a higher level

middleware engine are described in details. The last chapters

present the general development practices before a conclusion

and an acknowledgment chapter.

II. APERIOS, OPEN-R SDK

The Aperios, a real time operating system, was developed

by the Sony's Computer Science Laboratory for TV set top

boxes and AIBO. While the scheduling produces low latency,

it is a closed, proprietary operating system without a Unix-like

environment and lacking on-demand binary loader (shared

libraries) or a reliable console emulator via serial connection.

There is no modern multithreading; the applications run as

Open-R objects [11], loaded during the boot process from a

memory stick, and they can communicate to each other with an

inter-object messaging system. One object corresponds to one

individual thread and the system scheduler gives control for a

program in every 33 milliseconds (30 Hz). When a runtime

error (e.g segmentation fault, division by zero or memory

corruption) happens, the robot crashes and a dump is written to

the memory stick (emon.log) before the immediate shut down.

In practice, the crash cause can be obtained from this file, but

instead of a meaningful backtrace, only crash address in the

memory is provided. The compiler optimizations along with

the function inlining make almost impossible to determinate

the exact place of the error in the source codes.

The native software development kit, called Open-R SDK,

is primarly targeted the Linux based systems although there

was a Cygwin based version for Windows systems. The

A

Csaba Kertész

Tampere University of Applied Sciences (TAMK), Research Department, Tampere, Finland

Vincit Oy, Tampere, Finland

Improvements in the native development

environment for Sony AIBO

DOI: 10.9781/ijimai.2013.237

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-51-

gcc/newlib/binutils toolchain does not contain standard C

programming APIs (e.g socket communication, data and time

management) though some replacements are available.

These restrictions are troublesome for the native C/C++

development on AIBO because the written codes must be

"perfect" to avoid any crash or memory leaks in the limited,

not upgradable resources (e.g ERS-7: 576 Mhz MIPS

processor, 64 MB RAM).

The update process of the software development kit is

discussed in the following chapter.

III. TOOLCHAIN UPDATE

The Linux flavor of the Open-R SDK was selected for

upgrade with newer components because the Windows version

would be extremely hard to update. The official toolchain

relies on four components to build programs for AIBO:

1. Gcc 3.3.x: a compiler to build C/C++ sources into mipsel

object code.

2. Binutils 2.15: linker tools to assembly static libraries.

3. Newlib 1.15: minimal C library for non-Linux systems.

4. Pre-built Open-R system libraries and header files (robot

hardware, network communication, date, time and other

replacement APIs).

 These tools are outdated and the C++ template support in

gcc 3.x was quite incomplete, therefore, typical source codes

do not build with this compiler nowadays. Extra efforts are

required for backward compatibility and maintaining the

changes over time. The intention was to bring the modern

softwares to AIBO when the author of this paper upgraded the

core components of the toolchain.

The building process for AIBO has four steps:

Step 1. The sources are cross compiled into object codes for

the mipsel target.

Step 2. A static library is assembled from the compiled

object codes and the prebuilt Open-R libraries.

Step 3. A new C++ source file is created with some Open-R

tools because the Aperios needs a special descriptor about

the exported symbols.

Step 4. The generated file is cross compiled and linked

together with the static library. The result file is executable on

the robot.

Since the Open-R object loading is hard coded and

encrypted into the operating system, to update the cross

compiler and the linker tools, the newer versions have to

produce a compatible binary for Aperios. These programs are

evolved mostly together, thus the choices are determinated

which gcc/binutils release pairs can be tried as well as the delta

between the gcc 3.3 and the later compilers grown over time.

Because the verification method of the different compilers is to

boot up the robot dog with a cross compiled binary and check

if the robot runs or shuts down unexpectedly, the selection was

done with trial and error in this first phase.

The original toolchain was distributed by Sony with a build

script and some patches against the vanilla sources of the

binutils, gcc and newlib. The patches were updated for later

versions and a working set of the components were found: gcc

4.1.2, binutils 2.17 while the newlib remained the same. The

last remaining challenge was the crashing exception handling.

After low level debugging of the cross compiler with printf()

and sleep() commands, the memory address translations were

fixed when the exceptions are rethrown.

The unmodified, prebuilt Open-R libraries were compiled

with the standard C++ library (libstdc++) in the gcc 3.3. Two

software built against different versions of libstdc++ can not

be mixed during linking (undefined symbols, redefinitions), as

a result, all gcc 3.3 specific symbols were renamed in the

Open-R libraries along with a copy of the old standard C++

library. In practice, some static memory allocation overhead

(~120kB) happen for the new toolchain and the prebuilt Open-

R libraries will call the old standard C++ implementation, but

it does not result any abnormal operation in the applications on

the robot. After these all kinds of modifications, it is

interesting that the toolchain can be bootstrapped and

compiled with the latest gcc versions (4.4-4.6.1) under Ubuntu

Linux without updates to the build patches.

Finally, some words about the auxiliary tools. A helper

source file is created during Step 3 with an application called

gensnap. This script was written by Sony in Perl to dump the

symbols with their addresses into text form with

readelf/objdump for analysis and it outputs the needed new

source file for Step 4 in the building process without any

validation. This stage was slow while the Perl is an interpreted

language. The gensnap and a validator (gensnapval) tools were

written by the author in C++ along with a program

(crashparser) to read the crash dump from emon.log and show

the demangled symbol of the crashed function as well as where

the return address points.

After the reborn of the original AIBO toolchain was

described in these sections, the next chapter presents the

update attempt of a new version of an interpreter engine.

IV. URBI 2 PORT

The Universal Robot Body Interface (URBI) was developed

by Jean-Christophe Baillie [1] and later by the Gostai

company. An URBI engine usually runs on a robot with an

interpreter to parse scripts written in urbiscript language to

manipulate the robot actuators and query the sensors. Remote

objects for the robot can be created on the computer side to

execute the heavy computations on the PC, but the bandwidth,

the quality and the latency of the network connectivity limit

this configuration.

The original URBI engine was written for Aibo and it was

updated until version 1.5. Since the AIBO brand has been

discontinued by Sony and the platform is difficult for

development, it was dropped from the supported platforms in

URBI 2.x. The author of this paper attempted to backport the

new engine to AIBO and these efforts led to the toolchain

upgrade described in the previous chapter.

After about half year programming, an alpha version of the

URBI 2 engine built with the new toolchain was finished for

 Special Issue on Improvements in Information Systems and Technologies

-52-

AIBO, the unnecessary features were cut, a setjmp()-based

coroutine implementation was done and the software was

adopted to the AIBO specific APIs, resulting a ~200kB patch

against the URBI 2.3. The urbiscript tests passed, the engine

was run on the robot, but the main bottleneck was the

performance to finish the port.

In the URBI 2.x branch, more and more language primitives

of the urbiscript were written in the script itself and relied

extensively on the bison based parser. The further porting was

stopped because writing some language constructs back to the

native code and maintaining it with the upcoming URBI

releases needed many efforts and the acceptable performance

was not guaranteed. The URBI 2.x was claimed to run on the

Spykee [9] (CPU: Armel, 200 Mhz) and the ERS-7 has a more

powerful processor (MIPS, 576 Mhz), but the parser

overloaded the CPU in idle state after constructing a couple of

pure objects in urbiscript when it should not have any

overhead (e.g without objects the parser consumed about 800

μs/cycle opposed to 16 msecs/cycle with 20 objects). The

performance penalty could come from the fragmented memory

usage and many cache misses, but the URBI 2.x did not prove

to suit for AIBO as an embedded system. Albeit it was not a

clear success, the efforts were rewarded by a 3rd place on the

URBI Open Source Content in 2010.

The next chapters describe details about the development

practices used in a real project for AIBO.

V. DEVELOPMENT PRACTICES

The open source AiBO+ project
7
 [7]-[8] is an attempt to

write an alternative artificial intelligence for the Sony ERS-7

from the grounds. The first step of the project was the

selection of a development environment and since the URBI 2

engine was not a viable option (Chapter 4), the Open-R SDK

was updated (Chapter 3) and chosen.

By the reason of the Open-R SDK is a cross compilation

toolkit, the usual architecture of the computers (x86/x64) and

AIBO (MIPS) are different. Thus the Open-R binaries are not

executable on the computer where they were built whilst a rich

set of the debug tools (e.g valgrind, gdb, code coverage) are

available there. A solution was needed to test the implemented

algorithms without a real robot. The architectural, module,

singleton and observer design patterns [2] have been applied to

define functionally separated modules, but maintaining the

interconnections between the objects with events. The

behaviors, the actuator controllers have been developed in

distinct components and integrated with a glue layer to the

robot. Except this latter part, all other codes can be compiled

on the host machine and tests are defined to verify the correct

results with mocked hardware functions.

Usually, the bugs can be revealed and fixed with the

previously mentioned patterns easily, but the performance and

a solid medium for troubleshooting are also important.

 The next subchapters describe several compiler

7 The project web address: http://aiboplus.sf.net

optimizations, and in addition, improved WiFi stability for

debugging.
TABLE I

HARDWARE FEATURES OF THE SONY AIBO ROBOTS

Robot name Processor Memory Wireless

ERS-110 R4300i aka VR4300 (100

Mhz, RISC, MIPS)

16 MB No

ERS-2x0 RM5321 (192 Mhz, RISC,

MIPS)

32 MB 802.11b

(optional)

ERS-2x0A RM5321 (384 Mhz, RISC,

MIPS)

32 MB 802.11b

(optional)

ERS-3xx RM5321 (192 Mhz, RISC,

MIPS)

32 MB No

ERS-7 RM7000 (576 Mhz, RISC,

MIPS)

64 MB 802.11b

(built-in)

A. Compiler optimizations

 The faster execution is the primary reason to use compiler

optimizations, however, the restricted resources in embedded

systems introduce some trade-offs. The Sony robots have 16-

64 MB RAM and their processors are limited to 100-576 Mhz

(Table 1). The memory consumption is a major challenge

because the dynamic memory allocations done by an Aperios

program (Open-R object) decrease the overall available

memory in the system and they are not usable by other objects

anymore. The freed heap memory can be reallocated by the

same Open-R object again, but it does not increase the free

system memory anymore.

 The data and code segments of a binary are loaded to the

system memory, therefore, both the lower memory utilization

and the faster execution through the less processor cache

misses can benefit from a smaller program size. On the other

hand, the function inlining can boost the performance, but it

raises the chance of the 1st and 2nd level cache misses and the

compiled code will reserve more system memory after loading.

This trade-off needs a clever compromise to balance the

memory usage and the fast execution.

 Many optimizations of the compiler (gcc) and the linker

(binutils) were examined to achieve improvements on the size

individual flags almost accumulated after combining them

together (Table 2) and the size of the compiled Open-R objects

were reduced by ~25-35 %. The flags had no negative side-

effects on the stability, but less static memory allocations and

they have been used in the development of the AiBO+ project

for years now. Table 2 contains gcc options for the ERS-7

robot model which have not been tested for the ERS-2x0

series, but all flags should behave the same, except the

processor tuning flags (-mtune=vr5000 -march=vr5000 for

ERS-2x0/ERS-2x0A).

Albeit the minimal size is an important measure, the shorter

execution time what really matters. The most aggressive

compiler optimization for speed (-O3) inlines the functions

heavily and increases the binary size, nevertheless, it is faster

1.5-2 times than the compiler optimization for size (-Os).

http://aiboplus.sf.net/

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 3.

-53-

TABLE II

COMPILER FLAGS FOR SMALLER EXECUTABLE SIZE (RM7000, ERS-7). EACH

ROW SHOWS THE IMPACT ON THE BINARY SIZE OF SOME COMPILER FLAGS

WHILE THE LAST ROW HAS THE FINAL RESULT WHEN ALL FLAGS ARE APPLIED

WITH THE SUM OF THE INDIVIDUAL IMPACTS IN BRACKETS.

Option Description Impact on

binary size

(URBI2

server)

Impact on

binary size

(AiBO+

server)

-mtune=rm7000 -

march=rm7000

Optimization for the CPU in

ERS-7

-11.8 % -8.5 %

-fdata-sections

-ffunction-sections

Removes the unused binary

data from the code and data

sections

-23.4 %

-17.9 %

-fno-enforce-eh-

specs

Skip the runtime check of

the C++ exception

specifications

-1.03 %

-0.99 %

-fno-threadsafe-

statics

Skip the thread-safe

initialization of local static

variables

All flags applied -34.7 %

(-38.23 %)

-24.60 %

(-27.39 %)

B. Wireless connectivity

 The wireless connection is the only useful and direct

debugging tool for application development on AIBO. The

2x0 series can be equipped with an optional 802.11b WLAN

card which is built-in into the ERS-7M1/2/3. After the boot

process, the robot dog can connect to a WiFi network, a telnet

session may be opened on the port 59000. The system

messages from Aperios and the debug messages of the Open-R

objects are printed to this console. A solid connection is

essential in this situation and it was analyzed by Hemel et al

[4] to compare the ad-hoc and interactive mode performances

with TCP transmission. They found the ad-hoc mode less

reliable and fast than the connection via an access point. The

best transfer rates were achieved when the computer was

connected to a wireless router or access point with wired

connection while AIBO used its wireless LAN card.

A basic requirement is the quick and frequent transfers of

small packets. The robot can not satisfy this expectation with

TCP sockets which are slow to deliver packets over the

network (>= ~40 ms) and the socket state may be stuck for

several hundred milliseconds caused by retransmissions.

Therefore, the UDP transport layer was chosen and a

minimalistic protocol was built upon. The log messages, the

robot state and the camera images are bundled into a packet

and sent to the computer. By compressing the content, a

smaller packet (~5 kB/datagram) can be transmitted in every

100 msecs whereto an acknowledgment response is received.

The UDP is a connectionless protocol, packets can be lost

or their order changed and the WiFi in ERS-7 has stability

issues to be improved. To ensure the utmost arrived packets,

an algorithm was developed whose pseudo code is shown in

Figure 1. The steps are executed every time when a new packet

is received from the robot and lists of the missing and received

packets are maintained to handle the cases of lost or reordered

datagrams. In the AiBO+ project, an ERS-7 opens a UDP

socket to the computer automatically, it constructs and sends

the datagrams continuously. Each packet has a unique,

incremented ID and if the identifier of the arrived packet on

PC side is higher than expected, the non-received IDs between

the previous packet and the current are marked as missing.

When missing packets are detected, higher latencies are taken

into account and the oldest lost packets are requested again in

a rotating order. This heuristic algorithm can recover the

connection in most situations, but a bigger congestion can

happen with high number of missing packets (element_count

(MissingPacketIDs) >= 50) and the missing IDs are considered

lost. Despite this technique, sometimes the socket to AIBO can

be disconnected by unrecoverable problems on the link or

internet layers which are out of control inside the operating

systems.

Fig. 1. Heuristic algorithm to improve the network connection stability

between a computer and Sony AIBO ERS-7

The last chapter summarizes the conclusions of the paper

and gives an insight in the future work.

VI. CONCLUSION

When the AIBO brand was discontinued by Sony, it created

a gap in the market and none of the upcoming developments

could fill the need for a sophisticated quadruped robot with

software access to the low level hardware.

The work detailed in this paper improved the toolchain

support for AIBO and a more robust network connectivity was

achieved. The compiled binaries have less size by ~30 % with

gcc 4.1.2, modern softwares can be built for ERS-7 and the

memory utilization is made better. The results have been used

in the AiBO+ project successfully in the past years and the old

 MissingPacketIDs = ∅ // Sorted vector (ascending)
 RequestedPacketIndex = -1

 ArrivedPacketIDs = ∅ // Sorted vector (ascending)

 Function PacketArrived(Packet, NewPacketID)
 if (NewPacketID ∈ ArrivedPacketIDs)
 Return

 if (NewPacketID ∈ MissingPacketIDs)
 MissingPacketIDs = MissingPacketIDs \ {NewPacketID}
 else

 if (NewPacketID – 1 >= ArrivedPacketIDs[last] + 1)
 Iterate (ID = ArrivedPacketIDs[last] + 1 to NewPacketID - 1)
 if (ID ∉ MissingPacketIDs)

 MissingPacketIDs = MissingPacketIDs ∪ {ID}
 end

 if (element_count(MissingPacketIDs) > 50)
 MissingPacketIDs = ∅

 RequestedPacketIndex = -1

 end

 if (MissingPacketIDs ≠ ∅)

 MaxRotationIndex = min(element_count(MissingPacketIDs), 5)
 RequestedPacketIndex = (RequestedPacketIndex+1) mod

 MaxRotationIndex

 Request packet with ID = MissingPacketIDs[RequestedPacketIndex]
 end

 ArrivedPacketIDs = ArrivedPacketIDs ∪ {NewPacketID}
 if (sizeof(ArrivedPacketIDs) > 100)
 ArrivedPacketIDs = ArrivedPacketIDs \ {ArrivedPacketIDs[0]

 Special Issue on Improvements in Information Systems and Technologies

-54-

gcc 3.x based as well as the new updated gcc 4.x based

toolchains can be downloaded by anybody from a Personal

Package Archive (PPA) for Ubuntu Linux
8
. The URBI 2 was

not been finished, but it provided important experiences.

The future work can include the examination of more

compiler flags for further optimizations in speed and size, but

the current results needs also an applicability check for the

ERS-2x0/ERS-2x0A models whose CPU and optional wireless

cards are different from the ERS-7 model.

ACKNOWLEDGMENT

Thanks to other AIBO community members for sharing

their AIBO tricks (AiboPet) and the valuable help in the

maintenance of the robot dogs used in the project (WolfBob,

Pablo). The advices from employees of Gostai company were

also appreciated while porting the URBI 2 engine to AIBO.

REFERENCES

[1] J.-C. Baillie, “URBI: Towards a Universal Robotic Low-Level

Programming Language” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS05), 2005.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns:

Elements of Reusable Object-Oriented Software”, Pearson Education,

USA, 2004.

[3] Genibo SD – User Manual, Gongbu Robot, Bucheon, South-Korea,

2011.

[4] Z. Hemel, J. Loriente, and L. Raphael, “Measuring the Wireless

Performance of an AIBO”, Trinity College, NDS Paper, March 2006.

[5] L. Hohl, R. Tellez, O. Michel, and A. J. Ijspeert, “Aibo and Webots:

Simulation, Wireless Remote Control and Controller Transfer”, In:

Robotics and Autonomous Systems, Vol. 54, Num. 6, 2006, p. 472-485.

[6] i-Cybie Quick Start Owner ’s Guide, Hasbro/Tiger Electronics, 2001.

[7] C. Kertész, “A synchronized system concept and a reference

implementation for a robot dog”, 14th Finnish Artificial Intelligence

Conference (STeP), Espoo, Finland, 2010.

[8] C. Kertész, “Dynamic behavior network”, IEEE 10th Jubilee

International Symposium on Applied Machine Intelligence and

Informatics (SAMI), Herl'any, Slovakia, 2012.

[9] A. A. Kist, A. Maxwell, P. Gibbings, R. Fogarty, W. Midgley, and K.

Noble, “Engineering for primary school children: learning with robots in

a remote access laboratory”, 39th SEFI Annual Conference: Global

Engineering Recognition, Sustainability and Mobility (SEFI 2011),

Lisbon, Portugal, 2011.

[10] Pleo Programming Guide, Ugobe, 2008.

[11] F. M. Rico, W. R. Gonzalez-Careaga, J. María, J. M. C. Plaza, and V.

M. Olivera, “Programming Model Based on Concurrent Objects for the

AIBO Robot”, Journal: Actas de las XII Jornadas de Concurrencia y

Sistemas Distribuídos, Spain, 2004.

[12] World Robotics: Service Robots, IFR (International Federation of

Robotics), Statistical Department, Frankfurt am Main, Germany, 2012.

Csaba Kertész received his BSc degree in Computer

Sciences focused on Artificial Intelligence from Budapest

Tech and MSc in Computer Sciences from University of

Szeged, Hungary. He is a Lead Engineer at Vincit Oy and

works for Tampere University of Applied Sciences

(TAMK) in Technical Lead/AI Specialist role in Tampere,

Finland. His research interests include image processing

in robotics, behavior-based systems and specialization in Sony AIBO robot

dog.

.

