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Abstract

The evolution towards Smart Cities is the process that many urban centers are following in their quest for 
efficiency, resource optimization and sustainable growth. This step forward in the continuous improvement of 
cities is closely linked to the quality of life they want to offer their citizens. One of the key issues that can have 
the greatest impact on the quality of life of all city dwellers is the quality of the air they breathe, which can lead 
to illnesses caused by pollutants in the air. The application of new technologies, such as the Internet of Things, 
Big Data and Artificial Intelligence, makes it possible to obtain increasingly abundant and accurate data on 
what is happening in cities, providing more information to take informed action based on scientific data. 
This article studies the evolution of pollutants in the main cities of Castilla y León, using Generative Additive 
Models (GAM), which have proven to be the most efficient for making predictions with detailed historical 
data and which have very strong seasonalities. The results of this study conclude that during the COVID-19 
pandemic containment period, there was an overall reduction in the concentration of pollutants.
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I. Introduction

The move towards Smart Cities is the evolution to which cities are 
tending, as they have become centres of population concentration 

that seek to maintain the quality of life of all their inhabitants. These 
increasingly overpopulated population centres. In fact, since 2008 and 
worldwide, there are more inhabitants in cities than in rural areas, and 
the trend continues to rise for cities (Fig. 1) [1]. 
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Fig. 1. Evolution of the rural population in Spain from 1960 to 2021. Source: 
World Bank [1].

People move to urban centres for many reasons, including to 
improve their quality of life, but maintaining the social indicators 
that people expect when they move to cities can be a difficult task for 
local, regional and other authorities involved in urban development 
[2]. This is partly due to some endemic problems in cities, such as air 
pollution, traffic (which costs €270 billion a year in Europe [3]), or the 
lack of green spaces (whose health benefits have been demonstrated 
in numerous studies [4]). 

The maintenance of air quality in cities is one of the fundamental 
elements for the preservation and improvement of the quality of 
life of citizens. In fact, the World Health Organization (WHO) has a 
database by country that identifies the number of deaths attributable 
to pollution-related diseases. The WHO itself has determined that 
99% of the population lives in places where the limits for pollutants  
suspended in the air are exceeded [5]. In Spain, for the year 2019, the 
estimated average percentage of deaths due to pollution was 3.32%.

A polluted environment can also influence the spread of respiratory 
diseases, with airborne particles acting as vectors of transmission [6] 
or even weakening the most vulnerable people, making them more 
susceptible to respiratory diseases.

At this point is where smart cities appear, seeking to improve the 
quality of life of citizens through the use of new technologies to achieve 
greater efficiency and sustainability of population services [7]. One of 
the main principles sought by the so-called Smart Cities is sustainability 
through the reduction of the environmental impact of the processes 
carried out in cities and the implementation of green technologies [8].

The success of the improvements introduced by Smart Cities 
consists of a balance between the quality of life perceived by citizens 
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(for example, through the introduction of green areas near residential 
spaces [9]), the continuous actions carried out to obtain information 
about the environment [10] and to know which are the critical points 
on which action should be taken to maintain the citizens’ perception 
of quality of life, as well as to avoid situations of eco-anxiety [11] and 
other disorders derived from climate change.

The set of technologies used to collect data from cities and to have 
more information about what is happening in them comprises a series 
of innovative technologies such as:

• The Internet of Things (IoT). It allows to monitor the 
environment with different devices capable of capturing 
information from the surroundings, such as sensors to measure 
the pollutants present in the air and other magnitudes such as 
humidity, temperature, pressure [12].

• Big Data. Dealing with all the data produced by IoT devices 
requires a range of techniques to process and store it in the best 
way for later use [13].

• Artificial Intelligence (AI). This discipline and its most 
important branches such as machine learning make it possible to 
create predictive models from data sets [14].

• Blockchain. Distributed ledger technologies such as blockchain 
are used in smart cities to improve the efficiency, transparency 
and security of data management systems and services [15].

The current work mainly combines: the Internet of Things (IoT), 
which are those devices or stations installed in cities and responsible 
for capturing data on pollutants present in the environment; Big Data, 
which compiles all the information obtained and makes it available 
to researchers to carry out this type of study; as well as Artificial 
Intelligence, which allows modelling what happens in the environment 
according to variations in the data.

All the data processing has been carried out using generative 
additive models (GAM) that have shown better performance than 
other machine learning models, such as Long Short Term Memory 
(LSTM) networks and Autoregressive Integrated Moving Average 
(ARIMA) models (used as predictive models in other works that point 
out that predictions with this type of networks can be improved [16]).

The rest of the article is structured as follows: Section II contains 
a series of related works that have carried out studies on air quality 
in cities and that use Artificial Intelligence models to carry them out. 
Section III performs a predictive and evolutionary analysis of the 
different pollutants found in suspension in some of the most important 
cities of the region of Castilla y León (Spain). Section IV gathers the 
most important conclusions drawn from the study of the evolution of 
these pollutants. Finally, Section V contains the future lines of work 
along which the present study could advance.

II. Related Works

This section reviews some of the most important works related to 
the study of air quality in different urban areas. This section deals with 
those works that have studied the effect of airborne pollutants in the 
environment by different methods and how they influence the quality 
of life in cities [17].

In most of the occasions, more than knowing the current situation 
of air quality in which a city is, it is sought through historical series 
[18] to know what will be the evolution in the future. All this in order 
to know whether the trend is upward or downward for each of the 
pollutants and to determine whether the corrective measures that can 
be applied have the expected effect.

These prediction actions are carried out by means of Machine 
Learning models that allow modeling the behavior of the evolution 

of these pollutants. Some of the most outstanding studies on pollutant 
evolution have been carried out using Long Short Term Memory 
(LSTM) networks and ARIMA models [19] and, more recently, 
generative additive models (GAM) [20]. Among the studies that use 
this type of models to predict the evolution of pollutants, those of 
Hasnain [21] and Shen [22] that study the evolution of pollutants in 
relevant cities of the Asian continent such as Seoul or regions such as 
Jiangsu in China, stand out.

Another area of interest on pollutants in cities is urban heat 
islands, areas where the temperature is significantly higher than 
the surrounding areas due to heat absorption and retention such as 
buildings and roads. Studies such as Swamy’s [23] or Ngarambe’s 
[24] have shown that heat islands can increase air pollution levels 
by increasing atmospheric stability and decreasing the height of the 
boundary layer, which limits the dispersion of pollutants.

Also important for pollutant dispersion are wind gusts, which can 
influence air quality by dispersing pollutants or transporting them 
to other areas. Studies have shown that wind gusts can influence the 
dispersion of fine particles in the atmosphere [25]. In addition, the 
presence of wind gusts can also influence the formation of pollution 
clouds, which can increase the levels of ozone and other pollutants in 
the air [26].

Air quality is directly dependent on human actions such as road 
traffic and industry. In fact, some studies have shown that during 
times of home confinement during the COVID-19 pandemic, air 
quality improved as virtually all air pollutants decreased [27].

From the studies reviewed, it is determined that air quality is not 
something that depends only on the pollutants themselves that are 
present in the air, but that their dispersion and concentration can 
be influenced by air gusts or be part of the heat island effect. The 
presence of these pollutants can be modeled by different Machine 
Learning models, being more accurate those that handle the concept 
of seasonality such as GAM models.

III. Experiment and Results

The experiment was based in the expansion of the task already 
proposed by López-Blanco et al. [20], where it was proved that the 
model based in the implementation of Generative Additive Model 
obtained better prediction results of pollutants than those obtained by 
LSTM and ARIMA.

To exemplify this statement, Fig. 2 and Fig. 3 demonstrate the 
application of LSTM recurrent networks. The main characteristic is 
that information can persist in the layers of the network, generating 
loops that allow the recall of previous states, thus creating long-term 
memory, which makes them ideal for learning from situations and 
making predictions. However, it requires data with a highly pronounced 
seasonality [28], which is not present in the current dataset.
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Fig. 2. Evaluation of LSTM network of pollutant O3 in Valladolid (Spain).
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Fig. 3. Evaluation of LSTM network of pollutant CO in Valladolid (Spain).

As observed in these images, the obtained results from their 
evaluation do not provide predictive capability, as the networks either 
suffer from overfitting or impute the value of the previous day based 
on the considered time window.

Hence, this proposal employed the suitability of GAM as a criterion 
and applied it to the most populous urban areas in Castilla y León, 
namely: Ávila, Burgos, León, Palencia, Ponferrada, Salamanca, Segovia, 
Soria, Valladolid and Zamora.

Due to the previous analysis, a possible effect of the lockdown on 
air quality has been detected. Therefore, the spatiotemporal impact 
of COVID-19 lockdown measures have been evaluated in these 
population centers, to establish a comparison and determine the 
variation in atmospheric pollutant concentrations from the three years 
prior to the lockdown period.

A. Analysis and Forecasting Model

1. Description of the Dataset
The pollutants used in the study are: CO, NO2, O3 and PM2.5. PM10 

has also been taken into account, either as a predictor or indicator of 
particles, in those provinces where PM2.5 had missing values. The CO 
pollutant is measured in mg/m3, while the rest are measured in µg/m3.

The presence of these pollutants in the air is a problem for human 
health, as many respiratory diseases have been shown to be caused by 
air pollution. Cancer of the respiratory tract is one of them caused in 
part by the presence of airborne PM [29].

All the pollutants studied affect human health, for example carbon 
monoxide (CO), produced by incomplete combustion of fossil fuels, 
reduces the blood’s ability to carry oxygen; NO2 and O3 can cause 
airway irritation, respiratory problems and aggravation of asthma, 
hence the decision to include them in the study.

The dataset used contains daily concentration data of pollutants 
recorded at the air quality control stations of the Regional Government 
of Castilla y León [30]. The period of this data ranges from 1997 to 
2020 (both included), during which there are certain periods of missing 
values in the different population centers studied. In general, PM2.5 
and CO pollutants have large temporal gaps without data in most 
provinces, leading to various situations, which has led us to analyze 
each population center separately to examine their data and possible 
correlations between pollutants.

These facts can be observed in Fig. 4 and Fig. 5, showing the 
mentioned temporal evolution in the population centers of León and 
Ponferrada, respectively.

2. Proposed Model
For the analysis of the temporal series taking tendencies, seasonality 

and holidays into account, the Prophet package was used. Prophet is 
a tool to carry out precise and efficacious predictions, with a time 

of seconds to adjust the model. Equation (1) shows the expression 
followed by the model.

 (1)

The assessment of the Prophet model’s performance uses (1), 
where y(t) is the predicted value determined by a linear or logistic 
equation; g(t), as can be seen in (1) represents non-periodic changes; 
seasonality is given by s(t), which represents periodic changes 
(weekly, monthly, annual); the h(t) component contributes with 
information about holidays and events; and finally, e(t) covers the 
noise portion of the time series, indicating random fluctuations that 
cannot be predicted [31].
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Fig. 5. Historical evolution of pollutants in the population center of Ponferrada 
(Spain).
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Fig. 4. Historical evolution of pollutants in the population center of León 
(Spain).
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This results in a model composed of three sub-models: the Trend 
model, Seasonality model, and Holidays model [32].

The trend model, called Nonlinear Saturating Growth, is represented 
by the logistic growth model expressed in (2).

 (2)

where C is the maximum capacity (the maximum value of the 
curve), k is the growth rate (representing the “slope” of the curve), and 
m is an offset parameter.

The seasonality model employs Fourier series for approximations, 
based on (3). The seasonal component s(t) provides a flexible model of 
periodic changes due to weekly and annual seasonality.

 (3)

Seasonality is key when predicting new values. Prophet offers 
components to plot the seasonality in weekly, annual or trendy 
intervals taking into account the historic series. The Fig. 6 shows the 
seasonality plot of the O3 concentration in the population center of 
Valladolid in historic, annual and weekly trends. The data of the first 
10 years (2011-2020) comprised the initial training data. To validate the 
model, we used the data from 2020 as a test for the model and were 
able to compare and analyze the predicted values generated by the 
model with the actual values. In this process, we utilized wind velocity 
as a regressor variable. Finally, Prophet was used to predict the air 
quality for the different pollutants in the years 2021 and 2022.
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Fig. 6. Components of the Model of Valladolid (O3 trends graph, overall trend, 
yearly and weekly).

Therefore, this study applied GAM networks implemented in 
Prophet to forecast air quality. The air quality data from the Regional 
Government of Castilla y León [30] and the meteorological data from 
AEMET [33] were used as inputs. These data were preprocessed to 
deal with errors and missing values, using interpolation or other 
highly correlated pollutants as regressors. Then, the Prophet model 
was trained with these data to predict the values for the year 2020, 
incorporating wind velocity as a regressor. The predicted values were 
compared with the actual values, and a statistical analysis of the model 
performance, trend and seasonality was performed.

Finally, a two-year forecast for each pollutant was generated, 
examining the trends and seasonality patterns. The proposed model 
can be observed in Fig. 7, and its implementation in each population 
center and pollutant is described in Section III-A-4.
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Fig. 7. The proposed architecture of prediction model for air quality.

3. Statistical Analysis
In assessing the model’s efficacy, various statistical measures were 

computed: Pearson’s correlation coefficient, mean squared error, root 
mean squared error, and mean absolute error. The Pearson correlation 
coefficient (R) was employed to ascertain if the model exhibited 
overfitting or underfitting. Optimal values are approximately 0.5, 
indicating that the model adheres to the series’ overall pattern without 
overfitting.

The mean squared error (MSE) represents the average squared 
discrepancy between estimated and predicted values. The root mean 
squared error (RMSE) is the square root of MSE. The mean absolute 
error (MAE) is determined by averaging the differences between 
given and actual values. As RMSE assigns greater weight to outliers 
compared to MAE, the disparity between the two reflects the influence 
of outliers within the dataset [21].

 (4)

 (5)

 (6)

 (7)

where  and  are the actual and predicted values respectively, and 
n represent the number of samples.

4. Results and Discussion
After selecting the algorithm to be employed, it is necessary to 

mention that it has been decided to implement the Generative Additive 
Model (GAM) from Prophet, which results highly convenient for the 
data series which encompass extense periods of detailed historic 
observations, with pronounced seasonalities which involve previously 
identified relevant, although irregular elements, as well as data points 
with significative outliers whose non linear growth trends approach 
a limit.
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The prediction of the temporal series can be observed in Fig. 8, 
along with the seasonality in Fig. 6, and later in the detailed analysis 
which is explained after each pollutant. To carry out this prediction 
and due to the casuistics of the previously commented data, it has been 
opted to use the NO2 as additional regressor to predict the missing 
values in the PM2.5 and CO series that had a strong linear correlation 
(Pearson correlation coefficient). This method has been carried out in 
the population center of Salamanca (0.71 and 0.59, respectively) and 
León (0.54 and 0.73, respectively).
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Fig. 8. NO2 (µg/m3) forecasting vs. real values 2020 in León (Spain).

In Valladolid it was only used for the pollutant PM2.5 (0.65).

In Burgos and Ponferrada, the PM10 was previously used as regressor 
for the PM2.5 due to its high correlation (0.75 and 0.88 respectively). 
Subsequently in Burgos (0.77 and 0.76 respectively) the previous 
method was used for the prediction of the PM2.5 and CO.

In Soria, Zamora, Palencia and Segovia the same method is used, 
but working with the PM10 since there is not enough data to predict 
the PM2.5.

In Ávila, for the CO pollutant there are neither data or ways to 
correlate them to make a prediction. And for the particle analysis the 
PM10 was used due to the PM2.5 not having enough data.

In constructing the models, various seasonalities have been 
employed: weekly and annual. This is done to account for the impact 
of predefined Spanish holidays and the influence of weekly traffic 
patterns, which are higher on weekdays and lower on weekends. 
With these considerations, a one-year prediction is made; and for this 
purpose, from the initial dataset,we retain the part of the historical 
series with the least noise and the longest length possible. Thus, 
we truncate the data’s beginning, as seen in Fig. 4 and Fig. 5, which 
exhibits more noise and has a higher value difference compared to 
more recent data. Consequently, the first 14 years for NO2 and O3 and 
the first 5 years for CO and particle analysis, whether

PM2.5 or PM10 in provinces, have been removed due to the 
aforementioned casuistry.

Within each pollutant, the followed seasonality will be examined 
in detail. To verify the goodness of the model’s performance, the 
statistics mentioned earlier in Section 3 have been utilized.

NO2

The results of the analysis are shown in Table I, where the Pearson 
correlation coefficient, the MSE, the RMSE and the MAE can be seen. 
These values denote the appropriateness of the model in fitting the 
historical data, as well as the accuracy of predictions; for instance, 
Salamanca exhibits both the highest Pearson correlation coefficient 
(0.68) and the lowest RMSE (3.46µg/m3) which implies that its model 
best catches the overall trend and the lowest forecast error. On the 
other hand, Soria has the lowest Pearson correlation coefficient (0.37) 
as well as the highest RMSE (10.12µg/m3), which means that its model 
has the worst fit to the general trend and the highest forecast error as 

well as a wide confidence interval. This results might be due to Soria’s 
series having more noise, more variability or more external factors 
affecting its behavior.

TABLE I. NO2 2020 Model Performance Statistics for the Different 
Population Centers

Pop. Center R MSE RMSE MAE
Ávila 0.43 19.33 4.40 3.13

Burgos 0.37 38.56 6.21 4.66
León 0.48 72.13 8.49 6.93

Palencia 0.38 28.33 5.32 4.16
Ponferrada 0.48 19.51 4.42 3.03
Salamanca 0.68 11.98 3.46 2.74

Segovia 0.36 23.92 4.89 3.72
Soria 0.37 102.40 10.12 8.45

Valladolid 0.41 58.91 7.68 6.19
Zamora 0.47 31.84 5.64 4.22

In addition to the statistical data from conducting the proposed 
analysis, it has been decided to plot a comparison between the actual 
values and the predicted values in the year 2020 and analyze the 
behavior of the model visually.
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Fig. 9. NO2 (µg/m3) forecasting vs. real values 2020 in Salamanca (Spain).
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Fig. 10. NO2 (µg/m3) forecasting vs. real values 2020 in Soria (Spain).

We can see in Fig. 8, Fig. 9 and Fig. 10 that the adjustment in the 
examples is good, even predicting peaks in the series; which confirms 
the statistical values of this pollutant discussed. We can also observe 
that between the periods of March and May 2020, the predicted values 
remain above the actual values, which is a general fact in all the 
analyzed population centers.

Finally, we performed a two-year prediction in which the prediction 
is displayed alongside the error margins, where the black points 
represent the actual values, the dark blue trendline is the temporal 
pattern that the model learns from and uses for predictions, and 
the lighter blue areas represent the error margins of the two-year 
prediction, where the actual values are no longer shown.
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Fig. 11. NO2 (µg/m3)  two years prediction in Salamanca (Spain).
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Fig. 12. NO2 (µg/m3)  two years prediction in Burgos (Spain).

In Fig. 11 and Fig. 12 we can verify how the statistical results 
translate into the prediction, the trend of the series and the possible 
outliers, and their effect on the model.

Along with this, we obtain the components of the model, in which 
seasonality plays a prominent role, as discussed in the model (2).

In all the analyzed population centers, the trend observed in Fig. 13 
is followed, which is exemplified by Valladolid. In this figure, we can 
see how the trend in recent years for NO2 concentration is decreasing, 
and the prediction is that it will continue this pattern in the coming 
years. Weekly, it follows a stable pattern during workdays, declining 
on weekends. As for the annual trend, it experiences a decrease from 
March to August, with the highest values occurring during the first 
and third four-month period of the year.
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Fig. 13. Components of the Model of Valladolid (NO2 trends graph, overall 
trend, yearly and weekly).

PM2.5

From the results in Table II corresponding to the analysis of 
the PM2.5, in the population centers where data or correlation was 
available, the following conclusions can be drawn:

TABLE II. PM2.5 2020 Model Performance Statistics for the Different 
Population Centers

Pop. Center R MSE RMSE MAE
Burgos 0.25 6.69 2.59 1.98
León 0.40 6.25 2.50 2.04

Ponferrada 0.17 89.51 9.46 5.50
Salamanca 0.30 12.45 3.53 2.65
Valladolid 0.24 23.02 4.80 3.90

The effectiveness of the prediction models varies between different 
population areas, as demonstrated by the R, MSE, RMSE, and MAE 
values. In general terms, the PM2.5 prediction models show variable 
performance in different population areas, with a moderate fit in most 
cases. This suggests that the models capture the general trend in PM2.5 
pollution levels but are not overfitted. Greater prediction accuracy is 
observed in areas such as León, while in areas like Ponferrada, the 
model’s performance is lower. Pearson correlation coefficients (R) 
range between 0.17 and 0.40, suggesting that there is some variability 
in the quality of the predictions between different population areas.

It is observed that some areas, such as León, have a higher Pearson 
correlation coefficient (0.40) and a lower error (RMSE of 2.50), indicating 
that the prediction model is more accurate in these areas (Fig. 14). 
On the other hand, areas like Ponferrada show a lower correlation 
coefficient (0.17) and a higher error (RMSE of 9.46), suggesting a lower 
performance of the model in this area (Fig. 15).
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Fig. 14. PM2.5 (µg/m3) forecasting vs. real values 2020 in León (Spain).
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Fig. 15.  PM2.5 (µg/m3) forecasting vs. real values 2020 in Ponferrada (Spain).

In Fig. 16 and Fig. 17, we observe the two-year predictions for these 
pollutants in the cases of Burgos and León respectively. We see that 
outliers appear, but as observed in the statistical analysis, the behavior 
in León is superior, adjusting to the stationary trend.
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Fig. 16. PM2.5 (µg/m3) two years prediction in Burgos (Spain).
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Fig. 17. PM2.5 (µg/m3) two years prediction in León (Spain).

Regarding the trend followed by this pollutant (Fig. 18), a decrease 
is observed in relation to recent years, predicting that this pattern will 
continue in the coming years. Weekly, it reaches its maximum peak 
during the middle of the week, being lower during the first and last 
days of the week. The same occurs inversely in the annual trend, with 
the first quarter and the last four months of the year being the highest 
points, and oscillating during the second quarter at the lowest values.
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Fig. 18. Components of the Model of León (PM2.5 trends graph, overall trend, 
yearly and weekly).

PM10

The PM10 prediction models also show variable performance among 
the analyzed population areas (where PM2.5 analysis was not possible), 
with a moderate fit in most cases. This indicates that the models capture 
the general trend in PM10 pollution levels without being overfitted. 
Differences in R, RMSE, and MAE values between population areas 

suggest variability in the quality of predictions across different areas. 
Soria serves as an example of the best-performing case. In Soria, the 
PM10 prediction model exhibits a Pearson correlation coefficient (R) 
of 0.29, an RMSE of 8.63, and an MAE of 5.96. These values indicate a 
moderate fit and acceptable performance in predicting pollution levels 
in this area. This contrasts with Segovia, where the PM10 prediction 
model displays a Pearson correlation coefficient (R) of 0.23, an RMSE 
of 10.65, and an MAE of 7.33. Although the model’s fit is moderate, 
its performance is inferior compared to the case of Soria. The lower 
correlation and higher error values indicate that the model may not be 
as accurate in predicting PM10 pollution levels in Segovia (Table III).

TABLE III. PM10 2020 Model Performance Statistics for the Different 
Population Centers

Pop. Center R MSE RMSE MAE
Ávila 0.28 135.23 11.63 6.26

Palencia 0.27 82.71 9.09 5.99
Segovia 0.23 113.32 10.65 7.33

Soria 0.29 74.51 8.63 5.96
Zamora 0.27 66.23 8.14 5.13

PM10 exhibits a moderate and variable adjustment, similar to PM2.5, 
depending on the analyzed population center. The model’s prediction 
for 2020 is shown in Fig. 19 and Fig. 20, taking the cases of Soria and 
Segovia, respectively. We see that, like PM2.5, the adjustment is highly 
sensitive to possible outliers and changes in peaks reached by the 
series. This can be explained by the fact that NO2 does not work well 
as a regressor for filling missing values in the series in all population 
centers.
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Fig. 19. PM10 (µg/m3) forecasting vs. real values 2020 in Soria (Spain).
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Fig. 20. PM10 (µg/m3) forecasting vs. real values 2020 in Segovia (Spain).

Similarly, the two-year prediction and its adjustment to the trend 
and the impact of outliers are presented in Fig. 21 and Fig. 22.
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Fig. 21. PM10 (µg/m3) two years prediction in Segovia (Spain).
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Fig. 22. PM10 (µg/m3) two years prediction in Soria (Spain).

The trend followed in the urban centers where PM10 has been 
analyzed shows an upward tendency in recent years, which is 
expected to continue growing (Fig. 23). On a weekly basis, it follows 
the pattern of the highest values during workdays, decreasing to 
the minimum values on weekends. Annually, the stationary trend 
oscillates throughout the year, reaching maximums in March and in 
July-August, and decreasing to minimums at the end of the year.
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Fig. 23. Components of the Model of Soria (PM10 trends graph, overall trend, 
yearly and weekly).

O3

The performance of time series prediction models for the O3 pollutant 
varies depending on the population centers under consideration, 
as evidenced by the calculated evaluation measures (Table IV). It is 
noted that Salamanca exhibits the best model fit, with high accuracy 
and low variability, followed by Burgos and Segovia, which display 

low-to-medium accuracy and low-to-medium variability. In contrast, 
Zamora presents the worst model fit, with moderate-to-high accuracy 
and very high variability, followed by Palencia and Ponferrada, which 
demonstrate moderate-to-low accuracy and high variability. The 
remaining population centers show intermediate values between these 
two groups. These differences can be attributed to various factors that 
influence the nature of the time series for each city, such as data quality, 
seasonality, the cyclical component, complexity, and heterogeneity.

TABLE IV. O3 2020 Model Performance Statistics for the Different 
Population Centers

Pop. Center R MSE RMSE MAE
Ávila 0.45 277.98 16.67 12.69

Burgos 0.36 221.97 14.90 11.48
León 0.46 266.98 16.34 12.26

Palencia 0.43 312.71 17.68 13.32
Ponferrada 0.47 288.22 16.98 13.50
Salamanca 0.61 175.88 13.26 10.44

Segovia 0.47 231.92 15.23 11.91
Soria 0.42 214.86 14.66 11.18

Valladolid 0.49 278.60 16.91 12.69
Zamora 0.49 335.15 18.31 14.40

In Fig. 24 and Fig. 25, we can observe the model fit in the 2020 
prediction alongside the actual values. Salamanca and Zamora are 
shown, as previously mentioned, as examples of the results of the 
statistical analysis. In these images, it is demonstrated that Salamanca's 
fit is better, even successfully predicting maximum peaks accurately.
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Fig. 24. O3 (µg/m3) forecasting vs real values 2020 in Salamanca (Spain).
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Fig. 25. O3 (µg/m3) forecasting vs real values 2020 in Zamora (Spain).

Additionally, the two-year predictions for the other pollutants are 
included. In Fig. 26 and Fig. 27, we can see in more depth the trend fit 
and the differences in the model fit between both provinces, and the 
reason for the variability detected with the higher RMSE in Zamora, 
due to the presence of a larger number of outliers resulting in a slightly 
worse prediction fit.
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Fig. 26. O3 (µg/m3) two years prediction in Salamanca (Spain).
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Fig. 27. O3 (µg/m3) two years prediction in Zamora (Spain).

Regarding the stationary trend of the O3 pollutant, the graphs in 
Fig. 6 and Fig. 28 of Valladolid and Segovia urban centers are included 
(as previously mentioned, one urban center is used as an example of 
the general pattern). In these figures, it can be seen that since 2019, the 
trend has been decreasing and is expected to continue. Weekly, a pattern 
similar to that presented by NO2 is found, with an increase on weekends. 
Moreover, in O3, there is a certain midweek peak. Annually, it is observed 
that the highest values are reached in the months of the second quarter 
of the year, while the lowest values occur in the rest of the quarters.
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Fig. 28. Components of the Model of Segovia (O3 trends graph, overall trend, 
yearly and weekly).

CO
Upon analyzing the results Table V corresponding to the CO pollutant 

in different population centers, we can draw several conclusions. 
Firstly, it can be seen that in Avila there are no adequate data or 

correlations available to predict CO levels. Regarding the performance 
of the models in other areas, significant variations are noticed in terms 
of Pearson correlation coefficient (R), MSE, RMSE, and MAE.

TABLE V. CO 2020 Model Performance Statistics for the Different 
Population Centers

Pop. Center R MSE RMSE MAE
Ávila - - - -

Burgos 0.06 0.03 0.17 0.14
León 0.25 0.05 0.22 0.19

Palencia 0.01 0.01 0.08 0.07
Ponferrada 0.88 0.01 0.07 0.05
Salamanca 0.17 0.06 0.24 0.19

Segovia 0.09 0.02 0.13 0.11
Soria 0.28 0.005 0.07 0.05

Valladolid 0.02 0.02 0.16 0.13
Zamora 0.77 0.005 0.07 0.06

For example, in Ponferrada and Zamora, the models seem to be 
overfitted, as they exhibit very high Pearson correlation coefficients 
(0.88 and 0.77, respectively). This could be due to the use of NO2 as a 
regressor for the missing CO values in their respective series.

In other areas, such as Burgos, León, Palencia, Salamanca, Segovia, 
Soria, and Valladolid, the results vary in terms of fit and accuracy. Some 
areas like León and Soria (Fig. 29 and Fig. 30) show moderate correlation 
coefficients (0.25 and 0.28, respectively), while others such as Palencia 
and Valladolid display very low correlations (0.01 and 0.02, respectively).
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Fig. 29. CO3 (mg/m3) forecasting vs. real values 2020 in Ponferrada (Spain).
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Fig. 30. CO3 (mg/m3) forecasting vs. real values 2020 in Soria (Spain).

This effect is even more pronounced in the two-year prediction, 
which partly explains the obtained statistical values. In Fig. 31, it 
can be seen how the model follows the series trend and is capable of 
approximating the periods with missing values since it has enough data 
and does not present a large number of outliers that might confuse it. 
Meanwhile, in Fig. 32, the prediction is not entirely accurate due to the 
large number of outliers and some periods in the series that lack of data.
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Fig. 31. CO3 (mg/m3) two years prediction in Ponferrada (Spain).
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Fig. 32. CO3 (mg/m3) two years prediction in Soria (Spain).

In summary, the table results indicate that the models used to 
predict CO levels in different population centers present variations 
in their performance and accuracy. These variations can be attributed 
to differences in modeling approaches, data quality, and correlations 
between the pollutants used as regressors. In future research, it would 
be advantageous to investigate alternative modeling approaches and 
additional factors, such as wind gusts or the so-called heat island 
effect, with the aim of enhancing the accuracy of CO predictions in 
these population areas.
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Fig. 33. Components of the Model of Ponferrada (CO trends graph, overall 
trend, yearly and weekly).

Finally, regarding the trend, the study of the stationary trend is 
presented, specifically for Ponferrada, but generalizing to the rest of 
the urban centers. In Fig. 33, it can be observed that there has been 
a downward trend in recent years, although it has slowed down and 
stagnated. Weekly, during the weekend, the values increase, reaching 

the highest peak between Sunday and Monday, and then decreasing 
after Monday, taking the lowest values between Wednesday and 
Friday. Annually, it can be observed that the trend begins to increase 
from October until the end of the year. During the first two quarters of 
the year, the trend is decreasing.

B. COVID-19’s Impact on Air Quality
As analyzed in the one-year predictions in Section 4, the predicted 

value of pollutants in general, although particularly notable in NO2, is 
higher than the actual values between the periods of March and May 
2020, while it adjusts for the rest of the year’s prediction, even to the 
highest peaks. According to numerous studies, a sudden decrease in 
pollutant concentrations has been observed worldwide: Malaysia [34], 
northern China [35] and Brescia (Lombardy) [36].

This has led us to investigate this period in depth and how it fits 
within the historical time series of each population centers. To this end, 
in this part of the research, we partitioned the time series data into six 
distinct periods for analysis. The pre-lockdown phase spanned from 
December 1, 2019, to March 13, 2020 (103 days), while the lockdown 
period extended from March 14, 2020, to June 21, 2020 (99 days). The 
post-lockdown phase occurred between June 22, 2020, and September 
30, 2020 (100 days). Additionally, we included three comparative 
periods (P4-P6), which corresponded to the same lockdown dates in 
the years 2017, 2018 and 2019.

The results are shown by pollutant with their respective 
spatiotemporal variations in each population centers. To perform 
the analysis, with the mentioned dates, they have been combined 
to provide a perspective on air quality during the lockdown period. 
The following variations (in%) were considered in averaged over 
the periods detailed below(the order followed is important, as it 
corresponds to the row number of the variation in the heatmap):

1. Variation between the lockdown period and the pre-lockdown 
period.

2. Variation between the post-lockdown period and the period 
ranging from the beginning of the pre-lockdown to the end of the 
lockdown.

3. Variation between the 2020 lockdown period and the average of 
the same dates in 2017, 2018, and 2019.

4. Variation between the average of the entire year 2020 and the 
average of the entire year 2019.

5. Variation between the average of the entire year 2020 and the 
average of the years 2017, 2018, and 2019.

NO2

As previously discussed, one of the most notable effects of this 
decrease occurs in NO2. It has been decided to display the analysis of 
the different proposed variations in a heatmap, as shown in Fig. 34. In 
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this heatmap, it can be observed that the impact of the lockdown has 
led to a significant reduction in the 2020 lockdown period compared 
to the average of previous years in all studied population centers, in 
more detail in Fig. 35. This has resulted in a generalized decrease in 
this pollutant in 2020 compared to previous years.
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Fig. 35. Variation of NO2 between the 2020 lockdown period and the average 
of the same dates in 2017, 2018, and 2019 for the different population centers.

The largest percentage decreases are found in the first of the 
proposed variations. In this case, in addition to the "lockdown factor", 
the decrease in values is due to the stationary trend of the pollutant 
(Fig. 13) that occurs during the lockdown period.

O3

In the case of the O3 pollutant, a similar behavior is observed during 
the lockdown period, as shown in Fig. 36, although its decrease is not 
as pronounced.
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Fig. 36. Variation of O3 between the 2020 lockdown period and the average 
of the same dates in 2017, 2018, and 2019 for the different population centers.

At the same time, as can be seen in the heatmap of this pollutant in 
Fig. 37, this leads to a decrease in the average values in 2020 across all 
population centers compared to the other years analyzed.

The increase observed during the lockdown period, compared to 
the period preceding it, is due to the stationary trend in which the 
highest peaks are reached during the lockdown, as can be seen in Fig. 
28.
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Fig. 37. Variation of O3 in different time periods for the different population 
centers.

PM2.5

In the population centers with data available for this pollutant, 
this analysis has been carried out. In this pollutant, we begin to see 
disparate behaviors among population centers during the lockdown 
period. In that period, compared to the average of previous years, 
only Valladolid and León experience a significant decrease (-12.47% 
and -10.48%, respectively) as show in the Fig. 38. Meanwhile, in the 
rest of the provinces, there is a slight increase in the following order: 
Ponferrada (+0.68%), Salamanca (+2.68%), and Burgos (+4.50%).
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Fig. 38. Variation of PM2.5 between the 2020 lockdown period and the average 
of the same dates in 2017, 2018, and 2019 for the different population centers.
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Fig. 39. Variation of PM2.5 in different time periods for the different population 
centers.

Some of the most striking data are those presented by Salamanca 
and Burgos concerning the variation between the lockdown period and 
the one immediately preceding it (Fig. 39). Furthermore, both values 
are at the extremes of the scales and outside the range of the other 
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population centers: While Salamanca shows a decrease of −41.36%, 
Burgos increases by 14.54% during that period. The data provided by 
Burgos is especially noteworthy, given that the stationary trend in that 
period is a decrease in pollutant values.

Finally, it should be noted that in the population centers of 
Salamanca, Valladolid, and León, there is a decrease in PM2.5 values 
during 2020, while in Burgos and Ponferrada, there is an increase 
compared to 2019 and another one during the years 2017, 2018, and 
2019 although at a lower rate.

PM10

The analysis has been carried out for those population centers 
where it was not possible to do so with the PM2.5 particle pollutant, 
due to the lack of data for that period and pollutant.

During the lockdown period, as seen in Fig. 40, all population 
centers manage to reduce their values compared to the average of 
previous years, achieving a significant decrease in Zamora (−27.93%) 
and Palencia (−27.46%); except for Ávila, which increased its values by 
12.43% in this comparison.
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Fig. 40. Variation of PM10 between the 2020 lockdown period and the average 
of the same dates in 2017, 2018, and 2019 for the different population centers.

All population centers follow the stationary trend in PM10, 
experiencing a decrease during the lockdown period compared to the 
previous period, as observed in Fig. 41.
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Fig. 41. Variation of PM10 in different time periods for the different population 
centers.

When comparing the data for the entire year 2020, Ávila is again 
found to be one of the provinces that stood out from the rest, registering 
an increase of up to 24% compared to 2019 and 17.27% compared to the 
averages of the years 2017, 2018, and 2019. Soria also stands out in the 
comparison of 2020 with 2019, with an increase in data of 20.07%.

A generalized decrease is observed in the rest of the population 
centers.

CO
The analysis of the CO pollutant has yielded diverse results (Ávila 

lacked data for the analysis pertaining to the periods intended to be 
scrutinized). On the one hand, it has shown a significant decrease 
during the lockdown period in the population centers of Valladolid, 
Soria, Ponferrada, and Segovia; and on the other hand, Salamanca, 
León, Burgos, Zamora, and Palencia experienced relevant increases 
(Fig. 42).
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Fig. 42. Variation of CO between the 2020 lockdown period and the average 
of the same dates in 2017, 2018, and 2019 for the different population centers.

However, as seen in the heatmap in Fig. 43, Valladolid and Segovia 
recovered part of the lost values during the period following the 
lockdown, compared to the progress of the year so far. This is also due 
to the stationary trend, which causes the lowest levels to be reached 
during the period of the year in which the lockdown occurred (Fig. 33).
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Fig. 43. Variation of CO in different time periods for the different population 
centers.

Delving into seasonality, it is seen that the variation between the 
lockdown period and the immediately preceding period, in general 
(except for Palencia), all population centers decrease their values, 
although in different ways depending on the impact during the lockdown.

Therefore, this leads to a decrease in 2020 compared to previous 
years in the population centers of Valladolid, Soria, Ponferrada, and 
Segovia; along with León, in the comparison of 2020 with 2019. The 
other group of provinces ended 2020 with a significant increase in 
their values compared to other years. This last point may be explained 
by the increasing trend of this pollutant over a few years, and one of 
the possible forecasts is that it will increase in the coming years, as can 
be seen in Fig. 33.
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IV. Conclusions

The conclusions drawn from this study highlight the critical 
importance of having accurate predictions of pollutants, as this is 
essential for implementing measures to mitigate the damages caused 
by air pollution. Furthermore, it is important to investigate the causes, 
relationships, and trends of these pollutants in the short and long term, 
taking into account possible events that may alter their behavior, such 
as COVID-19. Accurate prediction allows for better information on air 
quality, enabling governmental organizations to prepare health plans 
that anticipate high levels of air pollution. Thus, they can adapt to any 
health event caused by atmospheric pollution phenomena.

The Prophet model has allowed us to make predictions that 
demonstrate a strong ability to forecast air quality in different 
spatial scenarios: various population centers with distinct regional 
characteristics; and temporal scenarios: in the short and long term, where 
attention should be paid to trends and seasonality. The possibilities for 
exploration with this approach are extensive in the field of air quality, 
surpassing ordinary prediction models such as LSTM or ARIMA. 
Particularly noteworthy are the cases of NO2 y O3 pollutants, where a 
high degree of accuracy is achieved, even for occasional peak levels. 
Moreover, they exhibit a precise prediction in any of the population 
centers according to the studied statistics. Furthermore, they show 
a precise forecast in any of the urban areas according to the statistics 
analyzed. This work therefore illustrates that Prophet has a broad 
capacity to forecast atmospheric pollution, and due to the fast training 
time and the lack of a complex system, it can be applied to other regions.

For the remaining pollutants discussed, several limitations regarding 
available data have hindered the model’s ability to make accurate 
predictions, leading us to assess the importance of outliers, such as 
unanticipated meteorological events. Nonetheless, such intentionality 
was attributed to the constraints imposed by meteorological 
parameters on the adaptability of the model’s prediction window.

In this study, emphasis is also placed on the analysis of trends for 
each pollutant and the seasonality they exhibit. This aids in achieving 
greater prediction accuracy and developing air quality plans that 
adapt accordingly.

Behavioral or restrictive events in society, such as COVID-19, 
disrupt the aforementioned factors, resulting in a significant impact 
on air quality and trends. In the current study, the implications of 
the lockdown due to the COVID-19 pandemic on air quality were 
assessed, in terms of variation and comparison among the studied 
population centers (the largest population centers in Castilla y León, 
Spain) during different periods surrounding the COVID-19 lockdown. 
It would be interesting to investigate, in future research, whether this 
event changed the behavior of the population and the interaction of 
pollutants with the environment.

The results showed a significant decrease in NO2 y O3 pollutants. 
This decline was not limited to the lockdown period, but the 
trend contributed to making 2020 one of the years with the lowest 
concentration of these pollutants in a long time. For the other 
pollutants, a decrease was also observed in most population centers, 
demonstrating how COVID-19 further emphasized the slope of 
the trend followed by these pollutants. It is worth noting that, in 
contrast to the other selected pollutants, CO experienced an increase 
in more than half of the studied population centers, confirming that 
its trend does not follow a decreasing pattern but rather stagnates. In 
general terms, with the exception of CO, a significant reduction in all 
atmospheric pollutants was observed during the closure period in the 
major population centers of Castilla y León. The findings of this study 
will be valuable for local municipal agencies and the administration of 
the Castilla y León region in order to establish rules and regulations 
aimed at enhancing and updating air quality in the future.

A. Limitations of the Study
The limitations of this study include geographical, as the study was 

limited to the provincial capitals and main cities of Castilla y León, and 
although the methodology of the experiment can be replicated, the 
results are only comparable and hardly extrapolable.

It should also be noted that the data are open data from government 
sources, where the accuracy of the sensors used to measure air quality 
is unknown. The study also does not include a review of meteorological 
data, such as wind gusts (speed and direction) or rainfall, which are 
relevant to pollutant dispersion.

V. Future Work Lines

Future research directions will focus on investigating the following 
aspects:

• To study and investigate the effects of wind gusts and their 
direction on the dispersion and concentration of these pollutants; 
identifying areas with higher pollutant concentrations would 
allow for the installation of green spaces in smart cities, which 
could improve air quality.

• To develop a federated learning architecture where different IoT 
devices for environmental monitoring can aggregate their readings 
and contribute to the training of models based on their location.

• To research Physics-Informed Neural Networks (PINNs) that are 
used to solve differential equations with applications in weather 
modeling, which may also help understand the movement of 
pollutant particles in the environment.

• To investigate long-term predictions based on the segmentation of 
time series into subseries that serve as input tokens to Transformer 
models and the independence of each channel. This approach 
would benefit from local information and long-term memory 
capabilities.
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