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Abstract

Counting cells in a Neubauer chamber on microbiological culture plates is a laborious task that depends on 
technical experience. As a result, efforts have been made to advance computer vision-based approaches, increasing 
efficiency and reliability through quantitative analysis of microorganisms and calculation of their characteristics, 
biomass concentration, and biological activity. However, variability that still persists in these processes poses a 
challenge that is yet to be overcome. In this work, we propose a solution adopting a YOLOv5 network model 
for automatic cell recognition and counting in a case study for laboratory cell detection using images from a 
CytoSMART Exact FL microscope. In this context, a dataset of 21 expert-labeled cell images was created, along 
with an extra Sperm DetectionV dataset of 1024 images for transfer learning. The dataset was trained using the pre-
trained YOLOv5 algorithm with the Sperm DetectionV database. A laboratory test was also performed to confirm 
result’s viability. Compared to YOLOv4, the current YOLOv5 model had accuracy, precision, recall, and F1 scores of 
92%, 84%, 91%, and 87%, respectively. The YOLOv5 algorithm was also used for cell counting and compared to the 
current segmentation-based U-Net and OpenCV model that has been implemented. In conclusion, the proposed 
model successfully recognizes and counts the different types of cells present in the laboratory.
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I. Introduction

Scientists have collected large amounts of data thanks to 
measurement-taking in bioengineering, tissue engineering, 

regenerative medicine, and biomedical research where microscopy 
and sample preparation techniques have been able to provide images 
of different phenomena of study and where the quantification of 
information plays an essential role for the analysis of more accurate 
and reliable statistics [1]–[3]. Obtaining useful and accurate 
information from an image quickly and easily remains a challenge 
in many research areas. Especially in biology and medicine, it is 
essential to measure cellular characteristics, such as shape and size, for 
statistical analysis when comparing different samples or experiments 
[4]. For this purpose, different methods can be used such as the use 
of vital dyes, the use of counting chambers, or the use of automatic 

cytometers. It often involves manual counting of thousands of cells with 
certain markers or measuring their shape and characteristics [5]. This 
manual process is tedious and time-consuming, which increases the 
workload of technicians [6]. Therefore, researchers propose automatic 
models such as plate counting [7], real-time quantitative PCR [8], 
hemocytometers [9], automatic cell counting instruments [10], and 
flow cytometry counting in biological systems. A clear example where 
the use of automatic counting tools can be beneficial is in the study 
of leukemia, which is a type of cancer that occurs in the human bone 
marrow and produces abnormal white blood cells in excess. These 
white blood cells can vary greatly in number and behavior compared 
to normal ones, which can indicate that the immune system is failing 
and that the patient is exposed to antigens. Therefore, white blood cell 
counts are a quantitative measure of disease progression [11]. 

It is possible to address the task of cell counting in images using 
state-of-the-art detection techniques such as YoloV5 [12]. These 
systems can be trained to adapt autonomously to the task, using data 
provided by researchers in their laboratories. Although there are 
several automatic analyzers capable of counting cells and providing 
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statistics, these often present limitations in terms of accuracy, speed, 
and resolution [13]. These factors can hinder the accurate identification 
of cells, especially when there is overlap, which can negatively affect 
the quality of counting. Detection-based methods first determine the 
centroid locations of cells and then count them to estimate the total 
number of cells. Due to the success of these systems in counting and 
detection tasks in various areas such as agriculture, urban systems, 
and driving [14]–[16], it has been shown that the accuracy of these 
methods is strongly influenced by the accuracy of the detection results. 
However, in practical applications, such as fruit detection in clusters, 
where objects are densely concentrated and surrounded by structures 
that can interfere with detection, cell arrest could positively favor 
the results [17]. The paper [18] presents a promising approach to cell 
counting using the YOLOv3 detection technique. While this method 
has shown significant improvements over manual cell counting 
methods, it has some limitations that have prompted the need for 
further research. The performance of YOLOv3 is heavily influenced 
by the accuracy of the detection results, which can be hindered by 
overlapping cells and other interfering structures. Moreover, YOLOv3 
struggles with handling of small objects and dealing with large 
variance in object scales. The need for a more efficient and accurate 
cell counting method is evident, especially in the study of diseases like 
leukemia where precise white blood cell counts are crucial [11].

In light of these challenges, this paper proposes a new cell 
counting method based on the YOLOv5 model, which offers several 
improvements over YOLOv3. Our proposed model aims to serve as 
a more accurate and efficient solution to cell counting in real-time 
in microscopic images, a task challenged by the low quality of visual 
features and the criticality of accurately locating cells for correct 
classification. Our initial results suggest that the proposed YOLOv5 
model improves the prediction accuracy on a database of images taken 
by microbiology experts with a CytoSMART Exact FL microscope.

This work is an extended version of a preliminary paper presented 
in [19]. In this version, we have incorporated a more advanced object 
detection model, based on a machine-learning method that detects 
objects without the need for an exhaustive search. The proposed 
model applies to cell counting in real-time in microscopic images, 
which is a difficult task due to the low quality of visual features and the 
importance of locating the desired object for correct cell classification. 
We have compared our implementation with a method we had worked 
with previously [19]. The results indicate that the proposed yolov5 
model improves prediction accuracy on the database that contains 
images taken by experts in microbiology with a CytoSMART Exact 
FL (Fluorescence) microscope that captures cells for counting. Fig 1 
shows the components of the cell counting application.

After this introductory section, the remainder of this article is 
structured as follows: Section II provides a review of related work 
in the areas of image processing and deep learning. Section III 
describes the methods and network used in our study, including the 
handling of the Neubauer Cell Counting Chamber, the CytoSMART 
Exact FL microscope, the data set used, and the implementation of 
YOLOv5. Section IV covers our experimental setup and results, with 
a focus on training validation, materials used, model tuning, and the 
results obtained. The counting results are discussed in E. The article 
concludes with Section V, where we summarize our findings and offer 
some concluding thoughts.

II. Related Work

Cell counting is performed using electronic and optical technologies 
that analyze images [20], [21]. Previously, it was performed on a cell 
suspension sample by manually manipulating of the hemocytometer, 
flow cytometry, and chemical compounds, which was time-
consuming and error-prone [22]. However, with the introduction of 
image analysis, cells can be identified and counted more accurately. 
Initial studies focus on handcrafted features and use statistical models 
to detect and classify cells [23], [24]. In recent years, cell counting 
has been achieved in an automated way thanks to the use of image 
processing and machine learning techniques [25], [26].

A. Image Processing
Cell counting plays a crucial role in various biomedical applications, 

such as cancer detection, drug discovery, and toxicity testing. However, 
traditional manual cell counting methods, performed by skilled workers 
using microscopes and counting chambers, are labor-intensive, time-
consuming, and prone to human error, making standardization and 
result replication challenging across different samples [27], [28]. 
Moreover, distinguishing between cells of similar size and shape or 
cells that cluster together can lead to inaccuracies in cell counts [29]. 
To address these issues, automated cell counting techniques have 
been developed. One early approach involved electronic particle 
counting, which detected cells passing through a small aperture 
using impedance or light scattering. Although quick and precise, this 
method failed to differentiate between live and dead cells and required 
high cell density [30]. These techniques can be categorized into direct 
and indirect methods. Direct methods involve marking cells with 
stains or dyes and counting them based on fluorescence or absorbance. 
Indirect methods rely on analyzing morphological characteristics like 
size, shape, and texture to identify and count cells in digital images. 
Automated cell counting techniques can also be classified based on 
deep learning, machine learning, or image processing approaches. 
In light of the limitations and advancements in cell counting, the 
present work aims to propose an improved methodology by building 
upon the studies conducted by Payasi and Patidar [31], Acharya and 
Kumar [21], Clarke et al. [32], and Kaur et al. [33]. These studies have 
contributed valuable insights into counting tuberculosis bacilli, red 
blood cells, colonies, and platelets, respectively. However, each study 
has specific limitations related to image preprocessing, segmentation, 
feature extraction, and counting algorithms, which the present work 
seeks to address and overcome. By incorporating advancements in 
image processing, machine learning, and other relevant techniques, 
the goal is to develop a more accurate and robust automated cell 
counting method for enhanced biomedical applications.

B. Deep Learning
In the field of automated cell counting, two primary methodologies 

are employed: detection-based and regression-based methods. 
Detection-based methods, which aim to identify and count cell centers, 
are instrumental in locating individual cells and their precise positions, 

Fig. 1. The figure shows the components of cell counting using YOLOv5 and the 
CytoSMART microscope. The sample is mixed and placed in the hemocytometer. 
The sample rests, then is covered and observed under the microscope. YOLOv5 
automatically identifies and counts the cells in the large squares. The software 
calculates the total number of cells. This completes the cell count.
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fitting specific lab conditions [18], [34], [35]. Conversely, regression-
based techniques are more suitable for assessing cell sample density 
and conditions associated with cell dispersion, rather than individual 
or clustered cells [31], [32], [36]. In related work, Kumaar et al. [37] 
proposed a novel approach for brain tumor classification using a pre-
trained Auxiliary Classifying Style-Based Generative Adversarial 
Network, demonstrating the broader applicability of machine learning 
techniques in the medical field.

In the context of automated cell counting and medical imaging, 
another study worth mentioning uses deep learning for detecting 
Ventricular Septal Defects in ultrasound images. Chen et al. (2021) 
proposed a modified YOLOv4-DenseNet algorithm for this purpose. 
They found the algorithm to be effective, and it outperformed other 
methods such as YOLOv4, YOLOv3, YOLOv3–SPP, and YOLOv3–
DenseNet in terms of the mAP-50 metric. This study demonstrates 
the applicability of deep learning methods like YOLOv4-DenseNet in 
medical imaging and could provide insights for enhancing automated 
cell counting techniques [38].

The limitations of the aforementioned methods illustrate the 
challenges inherent in cell counting and analysis. These techniques, 
while effective in their specific applications, illustrate the need for a 
more versatile approach that can account for the diversity of cell types 
and variations in cell morphology.

Kaur et al.’s method [39], for instance, uses the circular Hough 
transform to count platelets in blood images. This method is effective 
due to the size and shape characteristics of platelets. However, when 
applied to cells of different sizes and shapes, its effectiveness may 
decrease.

The machine learning approach proposed by other researchers [22] 
employs the YOLO object detection and classification algorithm to 
identify and count three types of blood cells. This method is innovative 
in its use of machine learning for cell counting, but its generalizability 
to other cell types may be limited.

In a subsequent study, an algorithm using YOLOv3 for counting red 
and white blood cells was introduced [18]. This method relies on image 
density estimation for counting grouped red blood cells, which may 
lead to inaccuracies due to variations in cell grouping and distribution.

Single-stage detector methods, such as YOLO [40], are pivotal tools 
in cell counting due to their speed, efficiency, and accuracy. They are 
typically faster than two-stage detection methods, like R-CNN (Region 
with Convolutional Neural Networks), which is a critical advantage in 
healthcare applications where time can be essential, such as in disease 
diagnosis and treatment. These methods are capable of detecting 
and classifying objects (in this case, cells) in a single pass through 
the network, which can be more efficient in terms of computational 
resources than methods requiring multiple passes [41]. Although 
single-stage detection methods may not be as precise as some two-
stage detection methods, their performance is often sufficient for 
many applications, including cell counting. In summary, single-stage 
detection methods offer a balance between speed, efficiency, and 
accuracy that makes them valuable for cell counting and analysis.

These methods exhibit the complex challenges associated with 
cell counting and analysis. They underscore the need for a method 
that is not only effective with a specific type of cell or under specific 
conditions but can also adapt to different cell types and conditions. 
This study aims to address these challenges by developing a more 
versatile and accurate approach to cell counting and analysis.

III. Methods Network

The proposed method consists of three elements: image capture 
using a CytoSMART Exact FL microscope with open API for cells in 

Neubauer plates, labeling and cell detection and counting. Due to the 
existence of several types of Neubauer plates, an additional database 
was searched to strengthen the model and then tests were performed 
with images under laboratory conditions.

A. Handling of the Neubauer Cell Counting Chamber
The counting chamber system involves placing a small amount of 

the cell suspension to be counted in the center of a special slide called 
a counting chamber. This slide has a known surface pattern and a fixed 
height. Next, the chamber is covered with a coverslip that rests on 
pillars that determine the volume of the suspension between the slide 
and the coverslip. Then, the chamber is observed under a microscope, 
and the cells or particles that are found within the areas marked by 
the pattern, are counted. Finally, the concentration of cells or particles 
in the suspension is calculated using the number of cells counted, the 
area, and the volume of the chamber. This system is mainly used in 
blood analysis, counting bacterial, sperm, and fungal cells [42].

The microscope was used to capture the information presented on 
CytoSMART Exact FL neubauer cameras. Using the 6.4 MP CMOS 
camera combined with 10x magnification, the CytoSMART Exact FL 
can view and count cells down to 4 µm in diameter [43].

B. CytoSMART Exact FL Microscope
The CytoSMART Exact FL microscope is a key tool in biological 

research due to its advanced, integrative features. Unlike other 
microscopes, it combines high-resolution imaging with cloud-based 
analysis and automated cell counting, offering a comprehensive 
solution for cellular studies. Its fluorescence capabilities allow 
visualization and quantification of fluorescently labeled cells, crucial 
for various forms of research. The cloud-based platform facilitates 
collaboration and remote analysis, fitting well with the modern trend 
of remote work. Despite its advanced features, the CytoSMART 
Exact FL is user-friendly, making it accessible to a wide user base. 
Its compact design further enhances its practicality in various lab 
settings. In essence, the CytoSMART Exact FL microscope, with its 
unique combination of features, provides convenience, efficiency, and 
accuracy, making it indispensable in cellular research [44].

C. Data Set
This research was based on the Sperm DetectionV4 Image Dataset 

[45], which consists of a total of 1024 images. Of these images, 820 
were used for training with pixel-level annotations, 104 for testing, 
and 100 for validation. For our case study, we needed data on cells 
obtained through CytoSMART’s Neubauer Exact FL cameras. Since 
object detection methods require object position data, we needed to 
create our own labels for the data. We used an annotation tool that 
exports boxes as coordinates that will be used later for training. This 
tool allowed us to locate the cells within a rectangle, generating 
a specific label for each patch. All of this was done through the 
LabelImg program, as shown in Fig 2. In total, this image set consists 
of 16 training images and 5 validation images.

D. YOLOV5
YOLOv5, the base of our proposed method, employs advanced 

modules such as Mosaic, Focus, BottleneckCSP, SPP, and PANet 
to enhance object detection performance [46]. Its architecture is 
composed of three key parts: a backbone network, a detection neck, 
and three detection heads.

The training images, denoted as I with dimensions H × W × C 
(height, width, and number of channels, respectively), first undergo 
mosaic processing before being fed into the backbone network. 
This backbone network, consisting of convolutional layers, extracts 
features at multiple scales, transforming the input image into a set of 
feature maps, F = F1, F2, ..., Fn, where each Fi has size Hi = Wi × Ci.
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Following feature extraction, these maps are then processed by the 
detection neck, which applies a series of , where T is the 
transformation operation, and  is the transformed feature map.

The detection heads make final predictions for objects of varying 
sizes. Each detection head outputs a tensor, D = D1, D2, ..., Dm, where Di 
represents a detected object and consists of the object’s category ci, 
confidence score si, and bounding box position bi = (xi, yi, wi, hi) (with 
xi, yi being the coordinates of the box’s center, and wi, hi being the 
width and height of the box, respectively).

YOLOv5 utilizes the FPN-PAN structure, CSP2 structure from 
CSPNet, and PANet as the neck for feature aggregation, improving 
the detection of objects of varying scales. The model employs a new 
FPN structure in the feature extractor, and the PAN structure helps 
transfer robust localization features from lower to higher feature 
maps, improving low-level feature propagation and enhancing the 
feature fusion capability of the Neck network [47].

The loss function for YOLOv5 was changed from binary cross-
entropy to focal loss. This can be explained as:

Binary cross-entropy loss:

 (1)

(1) Binary cross-entropy is used to judge the difference between 
the predicted result of a classification model and the true value. If the 
predicted value p(yi) is closer to 1, then the value of the loss function 
should be closer to 0, that is, the smaller the difference between the 
predicted result and the true value, the smaller the value of the loss 
function.

Focal loss:

 (2)
(2) where Lossfl is the Focal loss function, the α weight factor is 

used to regulate the balance between positive and negative samples, 
the γ weight factor is to regulate the weight balance between difficult 
samples. yi is the true value of the tag, 1 is a positive sample and the 
rest is a negative sample, p(yi) is the predicted value output by the 
network model.

Compared to the binary cross-entropy loss, the focal loss dynamically 
scales the loss contribution from easy samples and focuses on hard 
samples. By down-weighting easy examples and emphasizing hard 
examples, the focal loss accelerates model convergence and improves 
accuracy -which is important for object detection tasks like in YOLOv5.

For transfer learning, YOLO-v5 used pre-trained weights from 70 
epochs trained on the COCO dataset. The model was trained for a 
maximum of 20 trials with a patience level of 100, meaning that 
training would stop after 20 consecutive trials without improvement. 
The image resolution was set to 640 px by 640 px, and the batch size 
was 32. Model performance during training was evaluated using visual 
analysis of the training loss and validation curves. To test the model’s 
performance, a set of images with correct and faulty states were 
processed from the camera.

IV. Experimental Setup and Results

This section presents the experiments that were carried out to 
evaluate the effectiveness of the proposed approach. First, the data 
set used in the research is described, then the performed experiments 
are analyzed, and the results obtained with the proposed approach are 
compared with other competitive approaches.

A. Data Augmentation
In the context of cell counting using the YOLOv5 object detection 

model, data augmentation is applied to the microscopy image data 
of the cells. Techniques include image translation, where images are 
shifted horizontally or vertically. This can help the model generalize 
to scenarios where the cells may not be perfectly centered in the field 
of view. Rotation or scaling of images can help the model learn to 
recognize cells in various orientations and sizes. Flipping images 
horizontally or vertically can assist the model in recognizing cells 
that can appear in different orientations within a biological sample. 
Adjusting the brightness and contrast of images can help the model 
generalize to different lighting conditions that can occur during 
microscopic imaging. Lastly, image cropping can create ’new’ images 
by focusing on different parts of the original image, which can help 
the model learn to recognize cells even when only a part of them is 
visible. This is particularly useful in scenarios where cells may be 
partially obscured by other biological material.

B. Training Validation
The YOLOv5-based network was pre-trained using the sperm 

detection database, and the obtained weights were saved for future 
use. The appropriate number of epochs to train a new dataset of 
molds was determined by selecting the 205-epoch model, which took 
approximately 40 minutes to complete. During the model training 
process, the training and validation dataset was used, while an 
additional test dataset of 5 images was presented to independently 
evaluate the model performance.

C. Materials
After 50 epochs, the YOLOv5 model demonstrated good 

performance. However, as the epochs were increased, all losses 
including classification loss, box loss, and objectness loss increased, 
resulting in a decrease in the model’s performance. The YOLOv5 model 
was used to detect cells under various microscope imaging conditions 
after creating a labeled dataset to achieve optimal cell detection. 
During the model training, several image resolutions were used, but 
an appropriate image resolution of 500×500 pixels was chosen.

After training the model, the precision, recall, and average precision 
(AP) of the detected objects were calculated and compared with other 
models [46].

 (3)

 (4)

Fig. 2. The figure shows the annotation of cell images using a labeling program. 
The user loads an image, selects cells by clicking or drawing rectangles, the 
program assigns unique labels, and saves coordinate data and cell sizes. This 
process is repeated on multiple images to create a training data set that trains 
a neural network to automatically detect cells.
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 (5)

 (6)

D. Model Tuning
The study was conducted on a local machine that included a 16 

GB NVidia RTX2080 GPU, 32 GB main memory, 1.9 GHz CPU and 
SSD hard disk. cuDNN 10 was used to run YOLOv5 on this GPU. 
The YOLOv5 architecture was tuned and configured to fit the sperm 
detectionV4 image dataset by using transfer learning. Previously 
pre-trained weights were used, which were trained on the sperm 
detectionV4 dataset. The last three YOLOv5 and convolutional layers 
were adjusted to match the number of classes present in the dataset.

The original pre-trained YOLOv5 model was trained on 2 classes, 
so we reconfigured it to a single "valid" class to address the sparseness 
of our dataset. To further address data sparsity and cover semantic 
variations, we applied several data augmentation techniques before 
and during YOLOv5 training. Data augmentation parameters were 
tuned to generate multiple images from a single image and enrich 
the training data. Additionally, we set the number of batches to 6 
to increase model robustness and better fit GPU memory, and the 
number of training epochs to 50, at which point the model stabilized. 
Other hyperparameters were kept at default values [48].

Finally, we trained and tested YOLOv5 on our local machine using 
the laboratory’s dataset. We trained YOLOv5 for 50 iterations, saving 
weights every 10 iterations. We then plotted mean average precision 
(mAP) vs. a number of iterations at four different saved weight points 
to analyze performance over training.

E. Results
Fig 3 shows how the YOLOv5 model performs as it is trained. The 

top row shows the results of the model using the training set, while 
the bottom row shows the results of the model using the validation 
set. It can be seen that the accuracy of the model in detecting drone 
objects improved significantly after 50 epochs, reaching a loss of 
less than 0.03. To avoid overtraining, the early stopping technique 
was used, which means that the training process is stopped when no 

noticeable improvements in performance are observed. In Fig. 3, some 
fluctuations in the signals can be seen, which are common during the 
training process and are due to divergent weights.

Table I compares the approach proposed in this research for the 
object detection task with other competing methods in the literature. 
As shown in the table, the best results are achieved with the yolov5 
model. As the dataset used in this research contains small objects, such 
as cells, the accurate detection of these objects is a critical challenge 
for object detection models. In this context, the yolov5 model has 
proven to be an effective choice, as it achieves the best results for the 
cell detection task.

TABLE I. The Testing Results of Different Object Detection 
Algorithms. Accuracy. F1: F1-score. FPS: Frames Per Second; FPS 
Represents the Detection Speed of the Algorithm Under CPU 

Computing Conditions, Respectively

Model Accuracy Precis Recall F1Score FPS

Yolov4 0.90 0.80 0.89 0.84 30.85

Yolov5 0.92 0.84 0.91 0.87 35.86

Despite the cell model’s commendable detection rate and satisfactory 
loss value outcomes, there remain instances where the test set images 
display errors. These errors primarily arise from excessive occlusion 
and light interference that confound the localization and classification 
modules, as depicted in Fig 4.

Simultaneously, the functionality of our cell detection system is 
vividly illustrated. The system’s efficiency and precision come to the 
fore through a microscopic view of a cell sample, where bounding 
boxes produced by our system are prominently displayed. Each of 
these boxes encapsulates a single cell, thereby underlining the system’s 
adeptness in accurately identifying and isolating individual cells 
within the sample. This integration of the two paragraphs provides a 
balanced view of the system’s capabilities and areas for improvement.

The application of deep learning models in cell counting has shown 
promising results, improving accuracy and efficiency in biological 
research. This article focuses on the evaluation of YOLOv5 in 
comparison with its predecessor, YOLOv4, for automatic cell counting 
using fluorescence microscopy.
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Fig. 3. YOLOv5: (top row) training, and (bottom row) validation graphs.
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The choice to compare YOLOv5 with YOLOv4 is deliberate. YOLOv4 
is a previous version of the You Only Look Once (YOLO) series of 
object detection models. Comparing YOLOv5 with YOLOv4 allows us 
to highlight the improvements and advancements in the latest version, 
demonstrating why YOLOv5 is a more suitable choice for our study.

F. Counting Result
The cell counting results from the computer vision models are 

summarized in Table II. The YOLOv5 model achieved a mean relative 
error of 1.84% on the cell counting task, significantly outperforming 
the U-Net model which attained an error of 39.9%. This substantial 
discrepancy in performance can be attributed to the superior ability 
of the YOLOv5 framework to handle the complexity and nuances 
of the cell counting environment. In particular, the YOLOv5 model 
can efficiently detect objects amid semantic clutter and occlusions, 
enabling it to generate more accurate cell counts than the U-Net 
approach which struggles with such challenging conditions.

TABLE II.: Microscope Cell Count Results With the Yolov5 and 
Semantics Technique, Where N Tests Is the Number of Tests, R Error Is 

the Relative Error, and A RE Error Is the Average Relative Error

Techniques Exp N Test Re Error A R Error FPS

Yolo V5

1 201/201 0%

1.84%

28

2 150/148 1.3% 36

3 522/500 4.21% 30

4 323/317 1.86% 35

U-Net [49]

1 201/124 38.30%

39.9%

28

2 150/86 42.66% 36

3 522/284 45.59% 30

4 323/216 33.12% 35

In the domain of automated cell counting, various models exhibit 
different levels of precision and operational efficiency. This work 
examines and contrasts two methodologies: YOLOv5, U-Net, and 
OpenCV. Table II presents experimental results using these techniques, 

comparing their relative errors and processing speed (FPS). The 
evaluation includes U-Net, a deep-learning model previously used in 
our laboratory, and YOLOv5, the most recent model adopted for cell 
detection and counting.

OpenCV is a programming function library used alongside U-Net 
for cell counting after segmentation. Performance metrics, namely 
relative error and FPS, provide a comprehensive evaluation of each 
model’s capabilities. Relative error quantifies the deviation between 
expected and actual cell counts, whereas FPS measures the speed of 
processing frames, thereby demonstrating each model’s efficiency.

V. Conclusion

In this work, we demonstrate the application of a deep learning 
system for cell counting. The proposed YOLOv5 model, applied to 
CytoSMART Exact FL microscope images, enables a customized 
tool for the specific use case of counting different cells studied in 
the laboratory. Our model adopted object detection and multi-object 
tracking technology to achieve feasible cell detection and counting. 
The proposed architecture was compared with a segmentation-based 
method, which yielded promising results by outperforming the 
current method implemented in the laboratory. The introduction of 
semantic expert context labels improves the detection of clustered 
or overlapping cells. Automating cell counting could save time 
spent on this tedious and time-consuming task, freeing workers to 
focus on other important tasks and reducing costs and workload. 
The network used transfer learning to adapt network weights from 
a Sperm DetectionV4 database. To verify the effectiveness of the 
algorithm, a dataset of cell count use cases obtained in the laboratory 
was used to train and test the algorithm. Experimental results indicate 
that, compared to the original U-Net segmentation-based network 
implemented in the laboratory, the improved network achieves faster 
image processing, averaging 32.25 fps versus 0.95 fps per image for 
the previous system. The accuracy, precision, recall and F1 score for 
detection between YOLOv4 90%, 80%, 89% and 84%, and YOLOv5 
reached 92%, 84%, 91% and 87%, respectively. Counting performance 
had a mean relative error of 1.84% for YOLOv5 versus 39.9% for U-Net, 
demonstrating considerable improvement.

As future work it is necessary to expand the database to include a 
larger number of events for which the current algorithm may not be 
prepared, this could give a better perspective if there are changes in 
scale or new cells are brought into the laboratory.
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