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Abstract
The essential guidelines are presented of a postgraduate course on electrochemistry for master studies at the University of 
Valencia (Spain). This course has been designed for students with a minimal knowledge of electrochemistry. It is based on 
laboratory experiments that, starting from an initial theoretical core, promotes the in-laboratory discussion of concepts, 
operations, functional relations, etc. The course, although focused on voltammetric techniques, covers the main concepts 
and experimental aspects of electrochemistry and particular attention is put to erroneous conceptions regarding fundamen-
tal physicochemical concepts and operations (misconceptions) as well as on general aspects of the scientific methodology 
(meta-conceptions) around this discipline.
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Introduction

Since the times of Faraday, electrochemistry has played an 
ever-growing capital role in the development of concepts 
and theories in physics and chemistry [1]. Currently, elec-
trochemistry is directly involved in important application 
fields, namely, energy generation and storage, electrosyn-
thesis, corrosion, and electroanalysis [2–7]. Figure 1 sum-
marizes one of the possible schemes of the main areas of 
electrochemistry divided into fundamental research and 
fields of application.

In spite of this significant role, electrochemistry is not eve-
rywhere presented as an individual subject in the curriculum of 

chemistry studies, and is mainly covered in physical chemistry 
and analytical chemistry programs [8, 9]. There, electrochem-
istry is usually taught within thermodynamics and kinetics 
(in physical chemistry), and within “instrumental methods” 
(in analytical chemistry), where it is taught together—and 
preferentially—with spectroscopy (atomic and molecular) 
and chromatographic techniques, in graduate and postgradu-
ate (master) courses. In the context of the recent Bologna re-
organization of university studies in Europe [10], postgraduate 
masters have been implemented as tools for effectively linking 
the recent graduates to the professional context in two direc-
tions: research associated to universities and R&D programs 
and normalized professional activities such as analytics, plant 
and process control in industry, etc. [9].

In this context, the University of Valencia (Spain) devel-
oped since 2010 a “master of analytical techniques in chem-
istry” (Técnicas analíticas en Química, TAC), ascribed 
to the departments of analytical chemistry and inorganic 
chemistry, to be imparted to graduates in physics, chem-
istry, biology, chemical engineering, and environmental 
sciences. The subject comprised a monographic course 
on “electrochemical techniques” with a scheduled time  
equivalent of 24 h with mixed theoretical–experimental 
character. The “open” character of this master implies that 
a part of the students have only a very basic (almost naïve) 
knowledge of electrochemistry so that there is a need to 
address the concepts for “non-electrochemists.” This situa-
tion can be seen as particularly interesting [11] but in turn 
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involves difficulties from the educational point of view. It 
is known that alternative conceptions are particularly influ-
ential in chemistry imparted to non-chemists, in particular  
with regard of electrochemistry, as recently reviewed by 
Tsarpalis [12]. The current report describes the aims, struc-
ture, and epistemological and educational basis of an educa-
tional project devoted to impart an electrochemistry course 
in the frame of the aforementioned master.

Educational approach

Challenges on teaching electrochemistry

The first challenge to be faced in the postgraduate elec-
trochemistry course is topical: roughly, first-level electro-
chemistry is confined to the Nernst equation(s) and the 
Faraday laws of electrolysis in general chemistry courses 
[13], whereas a second-level electrochemistry is provided 
in instrumental analysis courses. The latter is focused on 
coulometry, potentiometry, and amperometry, frequently 
extended to the essential aspects of voltammetry, including 
stripping analysis for trace metals in solution. The access to 
this second-level approach to electrochemistry is exclusively 
given to chemistry graduates. It is not taught for biology and 
chemical engineering graduates.

The second problem deals with the wide variety of 
techniques and application fields of electrochemistry [14, 
15]. These range from pH measurements, widely used by 
chemists, engineers, biologist, etc., to techniques used in 
specialized contexts, such as electrochemical impedance 

spectroscopy, which is important in corrosion science and 
polymer science. Keeping in mind that the aim of the post-
graduate course is to link the instruction of graduates to a 
future professional context, it seems obvious that the lack of 
specific treatment of electrochemistry is a problem superim-
posed to the variety of techniques potentially accessed by the 
graduates in their future professional activity.

A third (group of) issue(s) deals with the intrinsic diffi-
culties of teaching/learning electrochemistry, most of them 
common to all science, but several of which are specific 
to chemistry and electrochemistry. The persistence of mis-
conceptions, spontaneous conceptions, or alternative con-
ceptions, widely studied by educational research in the last 
decades [16, 17], is one of the essential trends in this regard. 
The “spontaneous conceptions” refer to those acquired by 
the students as a result of a variety of influences differing 
from the genuine scientific knowledge. These were char-
acterized by (i) the variety of influences determining their 
generation (“common sense,” mass media information, …) 
and (ii) their reluctance to be changed by means of most 
conventional educational approaches. The first examples 
were studied around the persistence of a pre-Galilean view 
of motion in secondary school students despite orthodox 
instruction [16, 17]. Subsequent research identified erro-
neous conceptions having the above characteristic trends 
in almost all branches of science, chemistry in particular 
[18–20]. Research in electrochemistry teaching has been 
focused on common misconceptions of students in under-
standing electrochemical cells [21, 22], electric circuits 
and oxidation–reduction equations [23], galvanic cells and 
potentials [24–28], among others [29–33]. However, these 

Fig. 1   Main areas of electro-
chemical science dealing with 
its fundamental research and the 
corresponding application fields
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studies are largely focused on secondary school students and 
there are no systematic studies at the graduate/postgraduate 
level. Table 1 summarizes several of the described students’ 
misconceptions in electrochemistry.

In the graduate/postgraduate context, studies on analyti-
cal chemistry education showed the existence of a “black 
box” view of instrumentation [34, 35], which even extends 
to electrochemistry. For our purposes, the relevant point to 
emphasize is that such misconceptions concern not only 
specific concepts and methods, but also meta-conceptions. 
The meta-conceptions involve concepts sustained by con-
crete definitions and also concepts “in flux,” associated 
with operational and or relational definitions [36], analytical 
strategies, and operational skills [34]. The meta-conceptions 
can be viewed as the spontaneous ideas about of how sci-
ence works, how scientific knowledge in constructed, and 
how science and technology are applied to solve problems. 
Ultimately, these meta-conceptions deal with something like 
a naive epistemology. Several were characterized around 
chemical analysis [34, 35] and also operate in the context of 
teaching electrochemistry (see Table 2).

Additionally, postgraduate teaching should involve the anal-
ysis of uncertainties in measurements, which are frequently 
misinterpreted even in the research literature, including differ-
entiation/integration [37]. Also, the links between thermody-
namics and kinetics [38, 39], the meaning of the Butler-Volmer 
equation and electron transfer coefficients [40–42], nucleation 
phenomena, etc., need careful attention [43, 44].

Methodological approaches

There is a variety of methodological options available for edu-
cational purposes. Specifically treating instrumental analysis, 
purely laboratory-based approaches [45], and mixed theory/
laboratory [46] approaches, as well as investigative [47], 
technological-based [48], among others [49–53], strategies 
have been proposed. In the field of electrochemistry, there 
are plenty of experiments available for their use in education 
(graduate level) [54–61], all essentially focused on voltam-
metric measurements. However, the problem is how to inte-
grate the experiments into a significant teaching of basic con-
cepts of basic electrochemical basic concepts and techniques.

In this context, the transition between preconceived ideas 
of the studied phenomena and the “scientific,” elaborated 
understanding of the same plays a crucial role in higher 
education [62], where students’ unreflective studying may 
lead to a fragmented perception of scientific knowledge [63]. 
Inquiry-based approaches [64, 65] emphasize the interest 
of integrating the conceptual knowledge into the inquiry 
and discovery sequences [66, 67], ultimately aimed to con-
struct scientific description of phenomena (either physical or 
physical-technological) consistently with the hypothetical-
deductive nature of science [68]. In this regard, given the 
organization constraints (vide infra), the proposed postgrad-
uate course is based on a series of laboratory experiments 
conceived as investigative, laboratory mini-projects [69] 
with a des-regulated configuration. The central idea is to 
obtain a series of empirical results immediately submitted to 
collective discussion through open questions complemented 
by exercises to be solved at home.

Aims, structure, and methodology 
of the postgraduate master

The postgraduate master was conceived on the basis of two 
main aims:

(a)	 To promote the understanding of the fundamental sci-
ence concepts and procedures involved in electrochemis-
try with particular attention to common misconceptions.

(b)	 To promote an operational view of the concepts and 
methods involved in the most common electrochemical 
techniques.

The lessons, in total 24 h, are taught to two groups of 
12 postgraduate students. The classroom/laboratory ses-
sions are divided into one preliminary classroom session 
(3 h) and five laboratory sessions (20 h). Finally, a written 
test follows (1 h). This structure is common and necessarily 
adopted to all disciplines within the TAC master. According 
to this educational structure, the adopted methodology com-
bines investigative [47], mixed theory/laboratory [46], and 
discovery [49] approaches. They follow an inquiry learning 

Table 1   Some common misconceptions described in electrochemistry teaching [21–23]

Misconceptions Source

Electrons flow through the salt bridge and electrolyte solutions to complete the circuit [21, 23]
Plus and minus signs assigned to the electrodes represent net electronic charges [21, 23]
Water is unreactive in the electrolysis of aqueous solutions [21, 23]
Half-cell potentials are absolute and can be used to predict the spontaneity of individual half-cells [22]
Electrochemical cell potentials are independent of ion concentrations [22]
Ions move only due to the application of an electric field [21–23]
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philosophy [62–67] by presenting a series of “open,” de-
regulated laboratory experiments. The latter comprise data 
analyses involving inferences and predictions with detailed 
concept clarifications. Table 1 summarizes the structure 
and topics of the course. For reasons of time confinements, 
experiments are based on voltammetric measurements using 
conventional equipment. Due to the availability of three 
potentiostatic devices, the group of 12 students is divided 
into 3 groups, each group working with an electrochemical 
device in the research laboratory. The customary safety cau-
tions were adopted.

The first “theoretical” session starts with the description 
of the well-known experiment of water electrolysis, present-
ing a basic concept of electrochemistry. Here, the emphasis 
is put on the idea that electrochemistry is focused on pro-
cesses involving the transfer of electrons (more generally, 
charge) across the interface separating an ionic conductor 
(the electrolyte) and an electronic conductor (the electrode). 
This process is treated as a heterogeneous chemical reac-
tion coupled to processes of charge transport (diffusion as 
a typical case) in each of the involved phases. Possible par-
allel chemical reactions (e.g., gas evolution, precipitation/
dissolution of solids) are mentioned in order to outline how 
complicate the overall electrode process may be. Depend-
ing on the electron transfer rate and the rate of transport 
of electroactive species, the electrochemical processes can 
be divided into electrochemically reversible (operationally, 
“fast” charge transfer as compared to a slower transport) 
and electrochemically irreversible (similarly, “slow” charge 
transfer as compared to a faster transport). This distinction 
is essential, because only reversible processes can provide 
electrochemical parameters having thermodynamic signif-
icance; i.e., only for such processes, the Nernst equation 
applies. It is also important to remark that electrochemical 
measurements are an important source of thermodynamic 
and kinetic data. However, most electrochemical data (for 
instance, most standard electrode potentials) are not obtained 
from direct electrochemical measurements because of the 
irreversibility of the involved electrochemical processes. 
An approximation to this generalized, introductory view to 
electrochemistry can be seen in [70].

Each laboratory session was conducted upon launching 
an experiment whose performance was accompanied/fol-
lowed by possible descriptions, predictions, etc., intercalat-
ing explanations and concept definitions. In the development 
of the laboratory lessons, attention was paid to the clarifica-
tion of electrochemistry concepts, procedures, and scope. 
Figure 2 shows a simplified scheme representative of the 
implementation of misconceptions and meta-conceptions in 
the laboratory lessons. The experiments have been selected 
among well-known electrochemical processes following a 
flexible sequence in which the students are challenged to 
propose explanations and predictions and subsequently 
propose methods for testing predictions. Two consecu-
tive experiments are scheduled in each laboratory session, 
as described in Table 3, but eventually, additional experi-
ments are performed. The discussions are intended to clarify 
experimental aspects (what concrete operations/observations 
provide information on electrochemical features), conceptual 
aspects (what concepts are involved in descriptions), and 
integrated explanations.

Discussion

Table 4 summarizes the experiments, conceptual aspects, 
and implications to be discussed in the laboratory sessions 
L1 and L2, both structured around molecular electrochem-
istry. Session L1.1 starts from a brief description of the cell, 
electrodes, equipment, software, etc., and the performance 
of cyclic voltammograms using air-saturated aqueous buffer 
solutions (sodium acetate buffer at pH 4.75 and potassium 
phosphate at pH 7.00) at glassy carbon and gold working 
electrodes. Figure 3 depicts typical cyclic voltammograms 
recorded at Au electrodes in these solutions. Here, the stu-
dents are challenged to describe the different voltammetric 
signals appearing in the voltammograms. The oxygen evolu-
tion reaction (OER), the hydrogen evolution reaction (HER), 
and the reduction of dissolved oxygen (oxygen reduction 
reaction, ORR) can easily be seen by the students at both 
glassy carbon and Au (or alternatively Pt) electrodes. At Au 
electrodes, however, additional processes appear consisting 

Table 2   Summary of meta-conceptions about electrochemistry

Meta-conception Context

Electrochemistry as “complete” scientific field Static view of science: currently accepted theories are complete and “true”
Theories can entirely be verified by experimentation Popper’s falsacionism and equivalent epistemological issues neglected
Experiments are “unique,” always conclusive Non-critic view of science, ultimately, neglecting Kuhn’s view of paradigms 

and directly related epistemological views
Electrochemical processes are all described by the Nernst 

equations
Negation of complexity, reductionism in science: science is limited to several 

laws which apply to all situations
Superficial view of instrumentation and processes Instruments operate as “black boxes” without need of critical data interpretation
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of an anodic wave at ca. 1.0 V vs. Ag/AgCl followed by a 
sharp cathodic peak at ca. 0.5 V in the subsequent potential 
scan in the negative direction. The interpretation of these 
signals in terms of Au oxidation to a fine layer of gold 
oxide(s)/oxohydroxydes has motivated abundant literature 
[71, 72]; for the purposes of the course, the relevant point to 
underline is the non-inert character of the electrodes. 

Several “open” questions can be proposed to the students 
around the application of the Nernst equations:

–	 Are the recorded (approximate) electrode potentials equal 
to those expected from the standard potentials?

–	 Are the potentials shifted according to the experimental 
pH variations?

Fig. 2   Simplified scheme for 
the possible implementation of 
strategies for removal miscon-
ceptions and meta-conceptions 
in the laboratory lessons
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Table 3   Structure of the postgraduate course on electrochemistry

Session (time/hours) Type (place) Matters

1 (3) Classroom Water electrolysis and electrochemical processes; general view of electrochemistry and application fields. 
Classification of electrochemical methods

Thermodynamic and kinetic descriptions of electrochemical processes; charge transfer across interfaces 
and charge transport through phases; the Helmholtz double layer

Electrochemical processes as heterogeneous reactions: electrochemical mechanisms: HER
Impedance measurements, fundamentals of electrochemical impedance spectroscopy

2 (4) (L1.1)
(L1.2)

Cyclic voltammetry, instrumentation, types of electrodes, HER, ORR, and OER processes at glassy 
carbon and gold electrodes

Study of an electrochemically reversible process; operational parameters; reversibility tests and diffusion 
control tests

Deviations from reversibility and uncompensated ohmic drops
3 (4) (L2.1)

(L2.2)
Cyclic voltammetric study of apparently irreversible processes: electrochemical irreversibility vs. coupled 

chemical reactions; diagnostic criteria
“Free” see text

4 (4) (L3.1)
(L3.2)

Electrochemistry of surface-confined species: stripping processes and trace metal analysis
Electropolymerization; conducting polymers and strategies of electrode modification

5 (4) (L4.1)
(L4.2)

Solid-state electrochemistry; voltammetry of microparticles and ion intercalation processes: Prussian 
blue electrochemistry

Solid contact potentiometric sensing
6 (4) (L5.1)

(L5.2)
Polarization curves and corrosion potentials
Impedance techniques: Nyquist and Bode representations; modeling and fitting

7 (1) Classroom Written test
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–	 How to explain the differences between the response at 
glassy carbon and Au electrodes?

–	 What is the role of the Ag/AgCl reference electrode and 
how to explain its (essentially) constant potential?

Apart from the general aspects dealing with the available 
potential range, these questions are addressed to identify 
the electrochemical processes which frequently occur under 
non-thermodynamic control and need considering the kinet-
ics of the charge transfer charge transport processes.

With regard to the electrode materials, it is important 
to remark on the need to deeply treat the interpretative 
schemes on electrochemical phenomena. For instance, the 
students frequently propose that “there is different hydrogen 
overpotential at carbon and at Pt”; the question is that this 
overpotential can be seen as the expression of the kinetic 
complications appearing in the electrochemical process. The 
Volmer-Heyrovsky and Volmer-Tafel mechanisms of HER 
can be briefly discussed here.

Several important details can be treated here, for instance, 
the need for supporting electrolyte and the definition from the 
above experiments of the “solvent window”; i.e., the inter-
val of potentials available for studying other electrochemical 
processes. This “solvent window” depends on the electrode 
material and the pH, as can be clearly seen upon examining 
the voltammograms in Fig. 2b, recorded at pH 4.75 and pH 
7.00. The solvent window also depends on the currents which 
are measured. The smaller these currents are, the narrower 
the window. Additional questions can be optionally treated 
here: mercury electrodes and non-aqueous solvents. Another 
important question is the cleaning/activation of solid elec-
trodes, also accessible to available experimentation.

The session L1.2 is centered on the voltammetry of a 
1–5 mM solution of K4Fe(CN)6 in 0.10 M KCl at differ-
ent potential scan rates. This permits to study an essentially 
reversible electrochemical system with well defined and 
essentially symmetrical anodic and cathodic peaks [51, 52]. 
In this case, the electrochemical process is a single electron 

Table 4   Electrochemical experiments and aspects to be subsequently developed. Laboratory sessions L1 and L2

Experiment Questions/concrete aspects Subsequent implications

L1.1: CV in buffered aqueous solutions What are the extreme processes at highly 
positive and highly negative potentials?

Observation of differences depending on the 
electrode material

pH dependence of the voltammetric records
Observation of the response of dissolved oxygen
The Ag/AgCl reference electrode as a “redox 

buffer”

Available range of potentials: “the solvent 
window”

Electrode kinetics for oxygen evolution reaction 
and hydrogen evolution reaction

The inertness of the electrodes, formation (and 
stripping) of Pt and Au electrodes

The need/convenience of degasification
The need of supporting electrolyte

L1.2: CV in a Fe(CN)6
4− aqueous solution Electrochemically reversible voltammetric 

response, peak currents and peak potentials
Variation of such parameters with the potential 

scan rate
Reversibility criteria and diffusive control 

criteria
Influence of resistive and capacitive effects

The problem of defining a proper base line for 
current measurements

Separation of experimental data from the strict 
reversibility criteria: electrode kinetics vs. 
resistive and capacitive effects

Testing the independence of the mid-peak 
potential on the potential scan rate

Testing the proportionality of the peak current on 
the square root of potential scan rate

L2.1: CV in a dopamine aqueous solution Apparently irreversible voltammetric response
Electrochemical irreversibility vs. coupled 

chemical reactions
Possible diagnostic criteria upon varying the 

potential scan rate
Analysis of the voltammetric response involving 

different voltammetric signals in different 
potential regions

Exposition of the complicated voltammetric 
pathway for the electrochemical oxidation of 
dopamine

Testing the possible reversibility of the electron 
transfer process, voltammetry at high potential 
scan rate

Attribution of voltammetric signals for the 
reduction of dopamine quinone

Description of different possible electrochemical 
pathways

L2.2: Several alternative options Voltammetry of Fe(CN)6
3−/Fe(CN)6

4−

Voltammetry of air-saturated Bu4NPF6/DMSO
Voltammetry of Cu(II) in concentrated chloride 

solutions
Research projects

Determination of the redox state
Electrochemistry in non-aqueous solvents, 

generation of reactive species
Successive electrons transfers/stabilization of 

oxidation states via complexation
Presentation of research projects on 

electrochemistry
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transfer (Fe(CN)6
4−  → Fe(CN)6

3−  + e−) but the interpreta-
tion of the voltammetric features is not trivial. Here the foot 
of the peak corresponds to a region of Nernstian control 
where the current growths exponentially upon varying the 
potential, but the justification of the appearance of a peak 
requires the consideration of the depletion of oxidized/
reduced species in the vicinity of the electrode so that pass-
ing the peak. A more detailed discussion is made based on 
the general equation expressing the proportionality of the 
current to the gradient of concentration of the electroactive 
species in the vicinity of the electrode. The variation of the 
concentration gradients along the voltammogram, although 
qualitatively, can promote a rather complete view of the cou-
pled mass transfer/electron transfer process [14, 38].

Importantly, the students should realize that the well-
established theoretical diagnostic criteria [73–75] for revers-
ibility (typically, peak potential separation of 59 mV (for a 
one-electron transfer) at 298 K, peak potentials independent 
on the potential scan rate) are generally not accomplished 
as a result of deviations from reversibility and the presence 
of uncompensated resistive and capacitive effects distorting 
the voltammetric response [74, 76]. In practice, the process 
would be considered as reversible when the half sum of 
the cathodic and anodic peak potentials, i.e., the mid-peak 
potential, remains independent of the potential scan rate. 
The students are challenged to verify this behavior upon 
performing experiments at different sweep rates. The same 
experimental arrangement allows us to verify the condition 
of diffusive control (peak current proportional to the square 
root of the potential scan rate). Here, the students should 
previously define a criterion for peak current measurement 
by defining a proper base line.

The session L2.1 is structured around the voltammetry of 
a 1–5 mM dopamine solution in phosphate or acetate buffer. 
Here, the response is clearly different from that recorded in 
potassium hexacyanoferrate solutions, the cyclic voltammo-
grams displaying an anodic peak with no coupled cathodic 
counterpart. The interpretation of this voltammetry involves 
the consideration of two possibilities: an irreversible elec-
tron transfer process and/or coupled chemical reactions. The 
voltammetry of dopamine has been widely studied [77–79] 
and consists of an initial two-electron oxidation yielding 
dopamine quinone which is followed by fast cyclization 
reaction and other subsequent processes. Operational cri-
teria for testing this complicated pathway can be obtained 
by varying the potential scan rate. The central idea is that at 
high sweep rates the experimental observation time is short 
enough to detect the initial oxidation product before it reacts 
significantly. Then, the students can predict that, at large 
sweep rates, a cathodic signal coupled to the initial oxidation 
peak should appear.

The session L2.2 is conceived as a flexible academic 
space for introducing, optionally, aspects complementing the 
precedent core of voltammetric issues. In several courses, 
the research projects under development were presented by 
collaborators. In several others, different alternatives were 
treated (see Table 4). One of them is the electrochemistry in 
non-aqueous solvents, based on the reversible reduction of 
dissolved oxygen to the superoxide anion radical in DMSO 
solution (important remark: the need of the disposal of suit-
able supporting electrolytes such as Bu4NPF6) [80]. This 
process offers the possibility of easily studying the impor-
tance of chemical reactions coupled to electron transfer, 
simply adding water or any proton-donating species [81]. 
Another alternative is to discuss how to discern the oxida-
tion state of an electroactive species in cyclic voltammetry, a 
problem for which different proposals are available [82, 83]. 
Finally, another interesting case study is the voltammetry of 
Cu(II) in aqueous media containing high concentrations of 
chloride ions. Here, the voltammograms, as illustrated in 
Fig. 4, show two pairs of cathodic/anodic peaks correspond-
ing to the stepwise reduction of Cu(II)-chloride complexes 
to Cu(I)-chloride complexes and Cu metal. This experiment 
provides an excess to discuss the stabilization of the Cu(I) 
oxidation state by chloride complexation, the estimate of 
complexation constants from voltammetric data, dispropor-
tionation equilibria, and stripping analysis.

The session L3.1 is devoted to the study of the conven-
tional stripping analysis of trace metal ions in aqueous 
media. Experiments with ca. 0.1 mM CuSO4·5H2O solutions 
in acetate buffer are carried out using glassy carbon working 
electrodes. Testing the influence of the potential range, elec-
trodeposition potential, and electrodeposition time is carried 
out, eventually using pulsed techniques (differential pulse 
voltammetry or square wave voltammetry) as a detection 
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100

50I
/  
�A

0

�50

�100

ORR

HER

OER

Au oxidation

Gold oxide(s) 
reduction

Fig. 3   Cyclic voltammograms at Au electrode (geometrical surface 
area 0.018 cm2) recorded in air-saturated aqueous solutions buffered 
with 0.25  M HAc/NaAc (pH 4.75,  red lines) and 0.10  M KH2PO4/
K2HPO4 (pH 7.00, black lines). Potential scan initiated at 0.0 V vs. 
Ag/AgCl in the negative direction; potential scan rate 50 mV s−1
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mode. Importantly, the well-known capabilities and limi-
tations of this technique for multicomponent analysis are 
discussed [14, 84]. This discussion opens the introduction 
of electrode modification strategies.

In all cases, the structure of the laboratory lessons is con-
figured around an initial core of experimental features with 
its concomitant series of explanatory schemes, derivations, 
and related aspects. Particular importance is paid to make 
explicit the operational aspects and functional relations to 
be known. This is the case of electropolymerization as illus-
trated in Fig. 5. Here, the formation of polyaniline layers on 
a glassy carbon electrode is demonstrated by the progres-
sive decrease of the initial oxidation wave of the monomer 
at + 1.0 V coupled with the increase of the peak height for 
reversible reduction/oxidation of polyaniline forms in succes-
sive scans. Electropolymerization is seen within the frame of 
an important concept: electrode modification. Here, a variety 
of modification strategies can be applied involving a tremen-
dous variety of materials. It is important to connect the idea 
of electrode modification with the basic concept of electro-
catalysis and its application not only for analytical purposes 
but also for preparative ones and energy production [85, 86].

The sessions L4.1 and L4.2 are devoted to the introduc-
tion of ion-insertion electrochemistry, which is of crucial 
importance in the fields of electroanalysis and energy pro-
duction and storage. The first session is devoted to the elec-
trochemistry of Prussian blue-modified graphite electrodes 
in contact with 0.10 M KCl solution. The oxidation and 
reduction of Prussian blue have been widely studied in the 
context of the voltammetry of immobilized particles [87–89] 

literature, being the classical example [90–92] of ion inser-
tion electrochemistry [93]. Applications in the heritage field 
are also presented [94–97]. Electrocatalysis is often intro-
duced using the reduction of H2O2 at Prussian blue-modified 
graphite electrodes.

Table 5 summarizes an example of development of an 
educational sequence initiated by the performance of a 
single experiment: the voltammetry of a microparticulate 
deposit of Prussian blue (PB) transferred by abrasion onto 
the surface of a graphite lead. The relevant point to empha-
size is that the electrochemical processes can be described 
in terms of the reduction and oxidation in the solid state 
mediated by the entrance/issue of K+ ions into/from the 
solid lattice. This experiment provides an opportunity for 
removing an extended misconception: that electrochemical 
processes operate necessarily through dissolved species and, 
in particular, that only dissolved species can be analyzed by 
means of electrochemical methods.

The first-level description of the experimental results cor-
responds to the appearance of two one-electron essentially 
reversible couples. The solid-state nature of such processes 
involves the need of a second-level description, based on 
the coupling of electron transfer across the electrode|PB 
interface and the electron transport in the PB solid [87–93]. 
This experiment is expanded to develop a potentiometric 
sensor for K+ ion determination and the concomitant treat-
ing of the concepts of sensitivity and selectivity. The ses-
sion L4.2 is just devoted to the application in the analytical 
field through so-called solid contact potentiometric sensors. 
We used the sensing of chloride and perchlorate ions using 
microparticulate deposits of Au(I)-Cu(I) heterotrimetallic 
alkynyl cluster complexes containing ferrocenyl groups [98, 
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Fig. 4   Cyclic voltammograms at glassy carbon electrode (geometrical 
surface area 0.071 cm2) recorded in an air-saturated 2 mM CuSO4·5H2O 
solution in 0.50 M NaCl. Potential scan initiated at 0.25 V vs. Ag/AgCl 
in the negative direction; potential scan rate 50  mV  s−1. Black line: 
extended potential range; red line: potential range restricted to the region 
where the Cu(II)/Cu(I) interconversion occurs
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Fig. 5   Repetitive cyclic voltammetry at glassy carbon electrode (geo-
metrical surface area 0.071 cm2) immersed into 0.01  M solution of 
aniline hydrochloride in 0.10  M H2SO4. Potential scan initiated at 
0.0 V in the positive direction; potential scan rate 50 mV s−1
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99]. These deposits provide essentially reversible ferrocenyl-
based oxidation processes mediated by anion insertion. The 
formal potentials become linearly dependent on the loga-
rithm of the anion concentration in a wide range of concen-
trations. Here, two aspects can be discussed: (i) ideally, the 
response is Nernstian and slopes of 59 mV decade−1 should 
be obtained when the temperature is of 25 °C and (ii) the 
formal potentials deviate from linearity at high anion con-
centrations. By the first token, it is pertinent to remark that 
there is the possibility of potentiometric sensing even when 
non-Nernstian behavior is operative. By the second, there is 
an opportunity to discuss a frequently neglected theoretical 
aspect: thermochemical activities rather than concentrations 
enter, strictly, in the Nernst equation. Deviations from the 
above linearity derive from the fact that the numerical value 
of activities and concentrations diverge as larger is the con-
centration of the analyte.

Session L.5 is built around the study of eurocent coins 
(or equivalent) in contact with electrolytes having different 
aggressive characters: water, 0.10 M NaClO4, 0.10 M NaCl. In 
the first part (L5.1), the potentiodynamic polarization curves 
are obtained. Figure 6 illustrates typical results. Here, for 
reasons of time economy, potential scan rates of 10 mV s−1, 
higher than those routinely used in this type of measure-
ments, are employed. The discussion is limited to the general 

information provided by this technique around the corrosion 
potential. Eventually, the discussion of the Tafel regions and 
the calculation of the corrosion resistance are made.

The second part of the session is devoted to record the EIS 
data on eurocent coins in contact with the above electrolytes. 

Table 5   Concepts, misconceptions and meta-conceptions in the laboratory session L4.1. B: basic ideas and operations; 1D: first-level descrip-
tion; 2D: 2nd-level description; MR: misconceptions/meta-conceptions to be removed; PD: predictions; OP: open problems

Action/observation Discussion

Preparation of Prussian blue-modified graphite electrode (B) strategies of electrode modification; in this case abrasive attachment of an 
insoluble solid to an inert electrode

Cyclic voltammetric response in contact with 0.10 M KCl 
aqueous solution

(1D) voltammetric features corresponding to two essentially reversible couples
(MR) the analyte does not is necessarily in solution
(OP) it is possible to use this strategy for analyzing solids?
(2D) topotactic solid-to-solid transformation involving the ingress/issue of K+ 

ions into/from the solid lattice
(MR) most solids are permeable to the diffusion of ions and electrons through 

their lattice
(PD) from the model of Scholz, the peak potentials should vary with the 

concentration of supporting electrolyte
Voltammetry upon varying the concentration of the supporting 

electrolyte
Deviations from linearity in the Ep vs. log[K+] plots

(1D) shift of peak potentials and variation of peak currents upon varying the 
electrolyte concentration

(MR) redox potentials are effectively dependent on the concentration of 
species

(MR) Application of the Nernst equation requires reversibility
(2D) linear variation of peak potentials on the logarithm of the concentration 

of K+ is predicted from the usual form of the Nernst equation
(2D) linearity is attained estimating activities
(MR) thermochemical activities rather than concentrations should be 

considered
(OP) It is possible to prepare a potentiometric sensor for K+ ion determination 

based in Prussian blue-modified electrodes?
(OP) selectivity; determination of K+ ion in the presence of interferents such 

as Na+

(OP) There are other possible strategies for electrode modification?
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Fig. 6   Potentiodynamic polarization curves recorded for eurocent coins 
immersed into deionized water (red line) and 0.10 M NaCl (black line). 
Potential scan initiated at − 0.65  V in the positive direction; potential 
scan rate 10 mV s−1



	 Journal of Solid State Electrochemistry

1 3

The impedance spectra are obtained at the open circuit 
potential previously approximated by a short equilibration 
(2–5 min) time. Optionally, the bias potential can be fixed 
at ca. − 0.60 V vs. Ag/AgCl in order to use the reduction of 
dissolved oxygen as a redox probe [100]. The impedance 
spectra are initially modeled using the Randles circuit intro-
ducing subsequent modifications (replacement of capacitors 
by constant phase elements, addition of Warburg elements). 
The essential educational aims are to present the three basic 
representations (Nyquist and Bode plots), discuss the physi-
cal meaning of the basic circuit elements, namely, solution 
resistance (Rs), charge transfer resistance (Rct), and double-
layer capacitance (Cdl) and fitting experimental data to the 
proposed equivalent circuits, establishing several opera-
tional associations; for instance, between inclined sections 
in Nyquist plots with Warburg elements. Figure 7 shows 
the Nyquist plot corresponding to the impedance spectrum 
recorded for a eurocent coin in contact with mineral water. 
This can be used to illustrate how successive equivalent cir-
cuits lead to approximate experimental data starting from 
the classical Randles circuit (Fig. 7a) and incorporating new 
elements (two parallel RC units in Fig. 7b) representative of 
the resistance and the capacity associated with the corrosion 
patina. Of course, it has to be emphasized that the modeling 
process is not arbitrary and that the circuit elements should 
necessarily have a definite physical meaning.

Implications for teaching/learning

Annotations taken during the open laboratory lessons, sys-
tematically performed since 2012, permitted us to identify 
several specific misconceptions and meta-conceptions in the 
graduate students. These are complemented by the results 
obtained in the writing test usually carried out several days 
after the end of the series of laboratory sessions. Here, we 
attempted to acquire information not only on specific elec-
trochemical issues but also on general abilities. An example 
of the “final test” is provided as an Annex. As relevant con-
clusions for learning/teaching, one can mention:

(a)	 The students underestimate to a great extent the capa-
bilities of electrochemistry. This is reflected, for 
instance, by the ignorance of the use of electrosynthesis 
as the main method to fabricate aluminum [7] always 
exhibited by ca. 90% of students (see Fig. 8a).

(b)	 A significant proportion of students (around 60%) was 
not aware of the existence of methods of data treatment 
(deconvolution, mathematical differentiation, etc.) 
applicable to electrochemical (and other instrumental) 
techniques (see also Fig. 8a).

(c)	 The electrochemical process was usually seen as revers-
ible-like and the kinetics of the electron transfer pro-
cess was frequently considered as a negligible matter. 

Fig. 7   Experimental imped-
ance spectrum (black circles) 
recorded for a eurocent coin 
in contact with mineral water. 
“Best” simulated spectra using 
a the simplest Randles circuit 
and b more complex circuit 
with two parallel RC units (red 
circles)
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Then, the overall electrochemical experiment is seen as 
a single, monolithic process with no kinetic constraints 
nor modification of the composition of the system.

(d)	 The electrochemical experiment was seen as depending 
almost exclusively on the composition of the electrolyte 
solution; the reference electrode, composition of the 
working electrode, the presence of dissolved oxygen, 
etc., are generally ignored.

(e)	 The electrode was understood as an inert component 
of the system at all. Electrode cleaning, activating, and 
modifying was frequently avoided.

(f)	 The students suffer from a tendency to perform an 
“automatic” analysis of data. In cases in which one dis-
parate point (see Annex, Exercise 1A), or a non-linear 
tendency (Annex, exercise 1B) appear, these features 
are ignored; simply, by do not performing the pertinent 
graphical representation. Incorrect problem solving was 
of ca. 90% (Fig. 8b).

(g)	 In analytical applications, interference of other than 
the analyte electroactive compounds are regarded as 
absent. The same for subtle matrix effects associated 
with parallel reactions. In fact, the standard addition 
method, a general analytical method, was correctly 
applied (Annex, exercise 1C) by only ca. 50% of gradu-
ates (Fig. 8b, c).

(h)	 Electrochemical techniques were applied exclusively to 
analytes in solution. The possibility of solid-state electro-
chemistry analysis was in generally not considered avoided.

(i)	 Once described in the laboratory sessions, the stu-
dents correctly identify electrochemical processes (see 
Annex, exercise 2) with errors and/or omissions around 
10%. However, the percentage of erroneous responses 
increases up to ca. 50% when predictive issues are 
demanded (Fig. 8c).

(j)	 The routine interpretation of data resulted in omission 
of the activity/concentration dichotomy (Fig. 8d).

(k)	 The traditional focus of redox chemistry in the inor-
ganic context motivates a lack in organic electrochem-
istry when, for instance, the oxidation of catechols to 
quinones is treated (Fig. 8d).

In summary, current data suggest that there is a need of a 
serious consideration of general learning problems in chem-
istry from a much more practical perspective not limited to 
electrochemistry.

Conclusions

A proposal of postgraduate course on electrochemistry cor-
responding to master studies in the University of Valen-
cia (Spain) to be imparted to students with minimal pre-
vious studies on this discipline is described. As essential 
guidelines, the attendance of covering the main conceptual 
and operational aspects of electrochemistry, focused on 

Fig. 8   Year by year data concern-
ing several general and specifi-
cally electrochemical misconcep-
tions detected in the described 
postgraduate course in the 
2012–2022 period. Percentages of 
a students ignoring Al electro-
chemical production (i) and ignor-
ing the deconvolution method 
for data treatment (ii); b students 
analyzing peak current vs. square 
root of scan rate data without the 
pertinent graphical representation 
(i, see Annex, exercise 1A, B) 
and ignoring the essentials of the 
standard additions method of data 
analysis (ii, see Annex, exercise 
1C); c incomplete identification of 
electrochemical processes (i, see 
Annex, exercise 2) and incorrect 
drawing of the cyclic voltam-
mogram at a different pH (ii, see 
Annex exercise 2); d erroneous 
interpretation of deviations from 
linearity in potentiometric calibra-
tions (i) and ignorance of organic 
electrochemistry (ii, see text)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

a) b)

c) d)

(i) (i)

(i)

(i)

(ii)

(ii)

(ii)

(ii)

0

50

100100

50

0

00

50 50

100 100

2012                     2017                           2022 2012                       2017                           2022

2012                       2017                           20222012                       2017                           2022



	 Journal of Solid State Electrochemistry

1 3

voltammetric techniques, and the attendance to misconcep-
tions and meta-conceptions around the same.

The proposed methodology is based on the performance 
of open, partially regulated laboratory experiments, giving 
opportunity for an in-lab discussion of concepts, relation-
ships, and operational aspects dealing with the main electro-
chemistry topics. There are, however, significant problems 
associated with the presence of misconceptions and meta-
conceptions conditioning the learning. 

Annex

Writing “final test”

It consists of three questions within the general types exem-
plified above.

1(A).- We obtain the following data corresponding to the 
variation of peak current with potential scan rate for the 
oxidation of ferrocene at Pt electrode (data recorded for a 
2.0 mM ferrocene solution in DMF using 0,10 M Bu4NPF6 
as the supporting electrolyte):

v (mV/s) 5 10 50 100 200 500 1000
ipc (μA) 23 35 71 104 199 238 327

Discuss if the process can be considered as diffusion- 
controlled.

1(B):- We obtain the following data corresponding to 
the variation of peak current with potential scan rate for 
the oxidation of Fe(CN)6

4− at glassy carbon electrode (data 
recorded for a 2.0 mM K4Fe(CN)6 plus 0.10 M KCl aque-
ous solution):

v (mV/s) 5 10 50 100 200 500 1000
ipc (μA) 10 18 96 192 383 940 1780

Discuss if the process can be considered as diffusion- 
controlled.

1(C).- We dispose of a Cu2+ solution of unknown con-
centration. An aliquot of the same is spiked with different 
volumes of a standard solution of Cu2+ and the peak current 
for the stripping peak recorded in a conventional experi-
ment are recorded. Based in the following experimental data, 
calculate the concentration of Cu2+ in the problem solution.

Conc. of added Cu2+ (μM) 20 30 40 50 60
Peak current (μA) 55 76 93 114 135

2.- The figure below shows two cyclic voltammograms 
recorded at a gold electrode (geometrical surface area 0.018 
cm2) on a 2 mM K4Fe(CN)6 plus 0.25 M HAc/NaAc aqueous 
solution at pH 4.75 previously degasified. Describe all the 

electrochemical processes and draw (approximately) the vol-
tammogram to be recorded in the extended potential range 
in an equivalent solution at pH 8.75.

3.- The figure below shows three Nyquist plots corre-
sponding to three different impedance spectra. Discuss:

(a)	 What spectrum would be the most appropriate to be 
described by a Randles circuit.

(b)	 What spectrum would require for its description (at 
least) two capacitive elements.

(c)	 What spectrum shows significant diffusive effects.
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