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Abstract: The aim of this study was to develop and refine a heterologous mouse model of endometriosis-
associated pain in which non-evoked responses, more relevant to the patient experience, were evaluated.
Immunodeficient female mice (N = 24) were each implanted with four endometriotic human lesions
(N = 12) or control tissue fat (N = 12) on the abdominal wall using tissue glue. Evoked pain responses
were measured biweekly using von Frey filaments. Non-evoked responses were recorded weekly for
8 weeks using a home cage analysis (HCA). Endpoints were distance traveled, social proximity, time
spent in the center vs. outer areas of the cage, drinking, and climbing. Significant differences between
groups for von Frey response, climbing, and drinking were detected on days 14, 21, and 35 post
implanting surgery, respectively, and sustained for the duration of the experiment. In conclusion, a
heterologous mouse model of endometriosis-associated evoked a non-evoked pain was developed to
improve the relevance of preclinical models to patient experience as a platform for drug testing.

Keywords: endometriosis; heterologous model; pain; evoked and non-evoked response

1. Introduction

Endometriosis is estimated to affect 10% of women of reproductive age [1–5]. Chronic
pain is a disabling symptom reported in approximately 50–60% of affected women [2] and
has a high impact on the quality of life of the patients [6–9] as well as high socioeconomic
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cost including health care expenses [10–12]. Endometriosis patients are often treated with
repeated surgeries, and no current medical treatment is able to reliably alleviate chronic
pelvic pain. Many drugs, when administered long-term, have unacceptable side effects [4].

In the quest to develop new and effective treatments, a number of preclinical models
of endometriosis have been developed and used to both explore the etiology of pain
mechanisms and to facilitate the development of drugs for treatment. The use of primates
is hampered by economic and ethical considerations making rodents a more feasible option
for this purpose. In practice, however, promising preclinical data in rodent models are often
not reproduced in clinical trials, leading to increased attrition rates in the drug discovery
pipeline. This apparent problem in translation from rodent models may be due to (1) the
inability to fully model the complex physiology of human endometriosis (construct validity)
and/or (2) limitations in the ability to use reliable and reproducible behavioral measures as
a surrogate measure of ‘pain’ in such models (face validity).

In regard to construct validity, the main limitation arises from the fact that rodents
do not menstruate and therefore cannot develop spontaneous endometriosis [13]. Murine
“lesions” consisting of psedudodecidualized tissue can be generated and implanted in
recipients to mimic the “menstruating” phenotype of endometriosis in a homologous model.
However, still, it can be questioned whether such murine donor tissue recapitulates the
pathophysiology of endometriotic lesions. In this context, heterologous models, although
not free of limitations [14], allow to focus on the pathophysiology of the disease by using
lesions recovered from patients as a source of donor material. However, most, if not all,
of the studies assessing pain in these models have been conducted in the homologous
animal setting.

With regard to face validity, the challenges of reliably assessing pain in rodent models
have been reviewed [15,16]. As pain perception cannot be reported by rodents, surrogate
measures based on altered behavior (i.e., non-evoked responses) and/or altered response to
stimuli (evoked responses) are used [17–19]. Although pain experienced by endometriosis
patients may be exacerbated by physical stimuli (i.e., dysuria, dyspareunia dyschezia) [2,20],
much of the chronic pain suffered by patients may not be directly tied to an obvious
mechanical stimulus. With this background, it is likely that approaches to testing pain
in rodent models based on non-evoked responses might be more relevant to the patient
experience and useful for translational studies.

Given the potential advantages mentioned above, we reasoned that it would be
timely to explore whether a heterologous model of endometriosis-associated pain could be
developed and refined. For this purpose, mice were implanted with human endometriosis
tissue lesions, and their reactions were explored using both evoked and non-evoked
behavioral responses.

2. Materials and Methods
2.1. Experimental Design

A total of 24, 8–10-week-old female B6.129S-Rag2tm1Fwa Cd47tm1Fpl Il2rgtm1Wjl/J
(TKO) immunodeficient mice (The Jackson Laboratory, Bar Harbor, ME, USA) were used for
the study. Due to their CD47 deficiency, this strain of mice is resistant to the onset of Graft
Versus Host Disease. All animals were housed in specific pathogen-free conditions at 26 ◦C
with a 12 h light/12 h dark cycle and fed ad libitum. The study was approved by the Insti-
tutional Animal Care Committee at the University of Valencia (2020/VSC/PEA/0135), and
all procedures were performed following the guidelines for the care and use of mammals
from the National Institutes of Health.

A summary of the experimental design is given in Figure 1. Briefly, mice were ran-
domly assigned to experimental or control groups to be xenografted with 4 human en-
dometriotic lesions (N = 12) or fat (N = 12) respectively on the inner peritoneal wall in
the abdominal area. Four days before xenograft surgery, all mice were given a 17β-E2
oestradiol pellet. In each group, half of the animals (N = 6) were employed for assessment
of evoked pain responses to von Frey filaments on the abdominal wall and hind paw. In
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addition, nesting behaviors were also assessed as a representative measure of a non-evoked
test requiring minimal operator manipulation. The remaining animals (N = 6) in each
group were implanted with a small transponder chip in the left groin and left undisturbed
in their cages for automated monitoring of non-evoked responses using an in cage analysis
system (Actual Analytics Ltd., Edinburgh, UK; detailed procedures described below). To
minimize human intervention, animals were assessed weekly for non-evoked responses,
while evoked responses were assessed every two weeks (with the exception of the initial
week). The time course of the experiment was 8 weeks (56 days) from the time of model
induction (i.e., lesion implant surgery). At the end of the experiment, mice were sacrificed,
and lesions were excised for histological analysis and immunofluorescent detection of
nerve fibers.
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Figure 1. Experimental design: image shows schematic representation of timeline. Recipients that
were 6–8-week-old immunocompromised animals were implanted with a 17β-E2 pellet in the neck
and, if required, a microtracker chip in the groin. 4 days later, mice underwent surgery to place
human tissue (endometriotic lesions or fat) in the peritoneal cavity. Behavioral non-evoked and
evoked pain responses were monitored every week starting on day 7 after surgery.

2.2. Heterologous Mouse Model of Endometriosis
2.2.1. Preparation of Endometriosis Recipient Mice: Oestradiol Pellet and Chip
Implantation

Four days in advance of surgery to implant human tissue, all mice (N = 24) received
60-day-release capsules containing 18 mg of 17β-E2 (Innovative Research of America,
Sarasota, FL, USA) placed under the neck skin to stimulate survival and growth of lesions.
Additionally, during the same procedure, a standard ISO 2 × 12 mm pre-packed and sterile
RIFD tag microchip (PeddyMark, Elsenham, UK) was inserted subcutaneously into the
groin area of mice intended for HCA-monitoring (N = 12). During these procedures, mice
were briefly anesthetized with isoflurane 2% (Abbott Laboratories, Queenborough, UK).

2.2.2. Obtention and Preprocessing of Human Endometrial Biopsies

The use of human tissue specimens was approved by the Institutional Review Board
and Ethics Committee of INCLIVA (2017-253, 2017). Human ectopic endometrial tissue and
fat were acquired from 2 patients undergoing laparoscopy surgery to remove endometriotic
lesions. Peritoneal and endometrioma lesions (both types of lesions present in both patients),
as well as small pieces of periovarian fat, were carefully excised during surgery and
selected by their visual appearance (i.e., free of apparent necrosis or burns) for subsequent
processing. “Fresh” tissues were placed immediately into maintenance M199 medium
containing 10% fetal bovine serum and antibiotic-antimycotic solution (Gibco, New York,
NY, USA) and transported on ice to the laboratory. Fragments from each patient were
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placed on a 10 cm Petri dish, cut into 3–5 mm3 pieces with a scalpel, and placed on ice, ready
to be implanted in half of the animals of each subgroup. A small number of pre-processed
tissue fragments were fixed in PFA 4% for preimplantation histological analysis.

2.2.3. Endometrial Fragment Implantation

Mice were injected with buprenorphine 5 mg/kg (s.c) and anesthetized with isoflurane
2% (Abbott Laboratories, Queenborough, UK). A small incision was made in the abdominal
area with sharp scissors to access the peritoneal cavity. Subsequently, 4 pieces of human
tissues consisting either of lesions (usually two pieces of endometrioma and two pieces of
peritoneal lesions) or fat (control) per mouse were glued on the inner face of the peritoneal
wall with biological tissue glue (Vetbond™ Tissue Adhesive, 3M, Fisher Scientific, Madrid,
Spain). The muscular and skin incisions were closed with absorbable 6/0 sutures, as was
previously described by our group [21,22].

2.3. Behavioral Tests
2.3.1. Mechanical Hypersensitivity

A von Frey test was used to evaluate the mechanical pain thresholds. The animals
were acclimated for 2 h in a methacrylate compartment (8 cm long × 8 cm wide × 12 cm
high) placed on an elevated mesh platform. Hyperalgesia was determined by measuring
the withdrawal response to a punctate mechanical stimulation (von Frey hair filaments
0.02–2 g force, Stoelting, Dublin, Ireland) of the abdomen and hind paw using the up–
down paradigm [23] starting with the 0.6 g filament. Filaments were applied twice for
2–3 s, between-application intervals of at least 30 s to avoid sensitization to mechanical
stimulation. The response was considered positive if the mice immediately showed licking,
biting, flinching, or rapid withdrawal of the stimulated area.

2.3.2. Nesting

To perform nesting analysis, a cage was virtually divided into 6 areas of equivalent
space, and six pieces of cotton were placed, one in the center of each of the areas (Figure 2A).
Subsequently, mice were placed in the designated cage for 3 h, and their ability to build
the nest was evaluated by the operator using two parameters: (1) number of empty areas
based on Negus 2015 [24] and (2) quality of the nest based on Deacon 2006 [25] with brief
modifications. Areas were considered empty if they were clear of cotton material (see
Figure 2B for illustrative examples). The quality of the nest was coded according to the
following scale: 1 = cotton ball untouched/not broken, 2 = cotton ball partially broken,
3 = cotton was totally broken (see Figure 2C for illustrative examples).

2.3.3. Home Cage Activity (HCA)

The Home Cage Analyzer (HCA; Actual Analytics Ltd., Edinburgh, UK, https://www.
actualanalytics.com/products (accessed on 16 February 2022)) is an instrument that allows
continuous automated monitoring of individual animal behavior in groups of mice. The
system contains an array of 18 detectors beneath the cage, which are capable of detecting
the RIFD trackers inserted in the mice to monitor locomotor activity. The list of parameters
measured includes distance traveled, time spent in the center vs. outer regions of the cage,
and social proximity to cage-mates. The system is also equipped with a video camera
that allows collecting near-infrared (NIR) footage. Additional behaviors automatically
measured from the NIR video included time spent drinking and climbing [26]. Mice were
inserted with RFID tags 4 days before surgical model induction. Once lesions had been
placed, mice were put back on their cages (N = 3 mice per cage) and left undisturbed for
the whole experiment. HCA recordings were performed weekly for 48 consecutive hours
over a period of 8 weeks. Actual HCA Analyser™ software was used to analyze the raw
data files generated by the HCA and to download the behavior results into a spreadsheet
for further analysis.

https://www.actualanalytics.com/products
https://www.actualanalytics.com/products
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Figure 2. Schematic image of nesting test. (A) Example of a cage divided into 6 equivalent areas
in which a piece of cotton is placed in each area. After 3 h, the total number of cleared spaces was
counted (B). Illustrative examples of different nest quality scores: 1 = cotton not broken, 2 = cotton
partially broken, 3 = cotton totally broken (C).

2.4. Histology and Immunofluorescence

For histological purposes, lesion fragments collected preimplantation as well as
xenografted lesions collected from mice at the end of the experimental run (i.e., 56 days
after implantation) were fixed in 4% PFA overnight at 4 ◦C, before being embedded in
paraffin wax, and slices cut at 5 µm. Tissue sections were placed on slides, deparaffinized in
xylol, rehydrated in decreasing concentrations of alcohol, and distilled water before being
stained with haematoxylin and mounted for analysis by a pathologist.

For immunofluorescent analysis of nerve fibers, lesion tissue fragments pre and post
implantation were fixed with PFA 4% and subsequently cryoprotected in 30% sucrose phos-
phate buffer for 48 h. Afterward, samples were frozen in OCT embedding compound, cut
into sections of 20 µm width using a cryostat, and incubated with anti-β-III tubulin (1:100,
PA5-85639, Thermo Fisher Scientific, Waltham, MA, USA) primary antibody, overnight at
4 ◦C. The next day, sections were incubated with a secondary goat anti-rabbit Alexa 594
(1:500, A11012 Thermo Fisher Scientific) antibody for 1 h at room temperature, labeled with
DAPI (1:1000, Thermo Fisher Scientific) for 5 min, and coverslips were added together with
antifade mounting medium (Vector Laboratories, Burlingame, CA, USA) for visualization.

2.5. Statistical Analysis

Data were expressed as mean ± SEM. Data were analyzed with the SigmaPlot 12.0
program (Systat Software Inc., San Jose, CA, USA). A one-way ANOVA followed by Student
Newman–Keuls post-hoc test was used to discern the effects of the lesion implant vs. control
group in each time point evaluated. p < 0.05 was considered statistically significant.
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3. Results
3.1. Mice with Human Endometriotic Lesions Present with Decreased Abdominal and Hind Paw
Thresholds in Von Frey Tests

We evaluated the development of hyperalgesia to a mechanical stimulus in the hind
paw and abdominal area during a time course after human tissue implantation (endometri-
otic lesion or fat tissue) in recipient mice. Overall, significant decreases in pain thresholds
to mechanical stimulation (increased sensitivity) were detected in the experimental versus
control groups, from 14 to 28 days post surgery, and were sustained for the duration of the
experiment. The pattern of response to the von Frey test was different depending on the
test site. On the abdomen, mechanical pain threshold values started low in both groups,
and control animals increased their threshold values starting 28 days after model induction;
while in the experimental group, these thresholds were consistently low over the time
course and up to 56 days after model induction (Figure 3A). In contrast, mechanical pain
evaluation at the hind-paws revealed higher pain thresholds at day 7 for both groups, but in
control animals, these thresholds remained high at all times while in lesion-implanted mice,
thresholds abruptly decreased on day 14 and remained low for the rest of the observation
period (Figure 3B).
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Figure 3. Evaluation of abdominal and hind paw mechanical pain thresholds in a heterologous model
of endometriosis. Graphs show abdominal (A) and hind paw (B) mechanical threshold in animals
implanted with human endometriotic lesion (red line) or fat tissue (blue line) at several time points
after implanting surgery. Data in each time point are expressed as mean ± SEM values of each group
(N = 6 per group). A one-way repeated ANOVA followed by Student Newman–Keuls post-hoc
test was performed to analyze comparisons between groups. ** p < 0.01 = statistically significant
differences between lesion and control groups at each time point.

3.2. Nesting Behaviors Remained Unchanged in the Heterologous Model

Parameters associated with nesting were quite stable over the time course in both
groups. Mice implanted with lesions showed a trend to a slight decrease in the number of
cleared zones (Figure 4A) and on nest quality (Figure 4B) with respect to the control group
at some specific time points. However, no statistically significant differences were found
between groups at any time point.
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Figure 4. Nest building time course in animals with endometriosis or its control. (A) Nest building
was evaluated by counting the number of cleared areas or (B) with a quality score (1 = intact
bedding, 2 = bedding partially broken, 3 = bedding totally broken). Lesion and control groups are
represented by red and blue lines. Data in each time point express mean ± SEM values of each group
(N = 6 per group). A one-way repeated ANOVA followed by Student Newman–Keuls post-hoc test
was performed to analyze comparisons between groups. Statistically significant differences between
groups were not detected.

3.3. Mice with Human Endometriotic Lesions Present with Decreased Climbing and Drinking
during Home Cage Analysis (HCA)

Non-evoked behavioral tests were simultaneously recorded and analyzed using the
HCA equipment. Locomotion was evaluated as “distance travelled” by each mouse during
48 h recordings performed weekly over 8 weeks, with no differences between groups
detected (Figure 5A). Mice with endometriosis tissue implants tended to spend more time
isolated and shown thigmotactic behavior (i.e., they spent more time near the edges of the
cage compared to control (fat implanted) animals (Figure 5B,C)), with statistically significant
differences being detected at two specific time points (Figures 5B and 5C, respectively)
in each case. However, overall in these small groups, the differences in behaviors were
quite variable, and any clear trend or strong differences between groups sustained over the
duration of this experiment could be detected. Regarding the parameter “time in centre
zones”, lesion and control groups showed a similar temporal course without significant
differences between both (Figure 5D).

The drinking patterns of the animals exhibited some behavioral variability between
groups during the first 28 days of the experiment. However, thereafter (day 35), dif-
ferences emerged with endometriosis-lesion-containing mice spending significantly less
time drinking than controls, and this was maintained until the end of the experiment
(Figure 5E). Lesion-implanted animals also spent significantly less time climbing compared
to control animals starting on day 21. The significant decrease in climbing behavior in the
experimental group remained until the end of the evaluation period, with statistically sig-
nificant differences against the control group detected at most of the time points evaluated
(Figure 5F).
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Figure 5. Comparison of temporal pattern of home cage activity between animals implanted with
endometriosis lesions or fat. Parameters analyzed were distance traveled (A), time isolated (B), time
spent in centers zone (C), thigmotactic (D), and the time spent climbing (E) and drinking (F). The
lesion and control groups are represented by the red and blue lines, respectively. Each point and
vertical line represent the mean ± SEM of the values obtained of 6 animals. A one-way repeated
ANOVA followed by Student Newman–Keuls post-hoc test was performed to analyze comparisons
between groups during the time course. * p < 0.05, ** p < 0.01 = Statistically significant differences
between lesion and control groups at each time point.



Biomedicines 2022, 10, 501 9 of 15

3.4. Post-Implantation Lesions Preserve the Histological Architecture and Nerve Fiber Density of
Human Lesions at Time of Surgery

Overall, the histologic appearance of endometriotic tissue preimplantation was in
agreement with the pattern expected from their anatomical location in the patients. Specifi-
cally, endometrioma (ovarian) lesions were characterized by a dense stromal tissue devoid
of glands, and at some points, foci of ovarian tissue adjoining the abnormal areas with the
presence of primary and primordial follicles was detected. In superficial peritoneal lesions,
most of the tissue sections were characterized by abundant dense stromal tissue devoid
of glands (Figure 6A). A minor number of sections presented small occluded glands with
sparse and sporadic distribution. The tissue was moderately innervated with frequent
nerve fibers detected using immunostaining for beta III tubulin (Figure 7). Lesions recov-
ered from animals did not show any significant alteration of the tissue architecture when
compared to their preimplantation counterparts (Figure 6C). Lesions from endometrioma
origin retained their dense stromal tissue with no glands, and lesions of peritoneal origin
were small and barely detectable, thus in agreement with observations in preimplantation
tissue. In some lesions, apparent foci of inflammation/tissue remodeling were revealed
by the presence of macrophages in the form of giant cells in the peripheral zones of the
endometriotic tissues (Figure 6C). The extent of innervation was also similar after the
implanting period, and no obvious changes in density/frequency were observed (Figure 7).
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Figure 6. Image in (A) shows representative histological section of an endometriotic lesion recovered
from human patients before being implanted in mice. Image in (B) shows representative observation
of the macroscopic appearance of lesions (white arrows) recovered from mice at sacrifice at the end of
the study period. Image in (C) shows representative histological section of an endometriotic lesion
recovered from mice at the end of the study period. Note the parallels in the overall tissue architecture
between the fresh and implanted tissues in regards to dense stromal tissue and few/absent glands.
Note also detail of presence of immune cell infiltrate (i.e., giant cells, black arrows) in implanted
tissue. Scale bar is represented in histological images.
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4. Discussion

Overall, pain is the main endpoint assessed in endometriosis clinical trials in agree-
ment with authorities (i.e., FDA, EMA) requirements for drug approval for such indication.
Therefore a great effort is being taken by academic and pharmaceutical entities to develop
a reliable animal model for preclinical testing of endometriosis-associated pain. Setting up
animal models providing clinical transferability requires a deep knowledge of endometrio-
sis physiopathology, which in turn demands appropriate models for research. A potential
way to overcome this vicious circle picture is to empirically mimic endometriosis condi-
tions in models in the belief that this will reflect the human disease physiology and, as a
consequence, associated symptomatology. With such an approach herein, we attempted to
establish and validate a new heterologous mouse model of endometriosis-associated pain.

Our results revealed differences in evoked and non-evoked pain-associated behaviors
that were affected by the implantation of endometriotic lesions in comparison to a control
tissue (fat). Specifically, significant differences between groups were found in the mechan-
ical pain thresholds on the abdomen and hind paw (evoked) as well as in drinking and
climbing behaviors (non-evoked) that were sustained for the duration of the experiment.

In regard to evoked manifestations, the pattern of response to the von Frey test was
different depending on the test site. In the hind paw, the increased sensitivity in the
experimental animals was observed starting on day 14 post implantation. The timing is
consistent with reports from others in the homologous model [27,28] and agrees with the
period required for neuroangiogenesis to take place in lesions [27–30]. Central [31] and/or
cross-organ sensitization [32] are likely mechanisms to explain the altered responses to
von Frey stimulus in hind paw provided its anatomical distance to the xenografts tissue.
Notably, this mechanism was not activated in the controls with fat tissue implants. The
Wang group [33] also used fat as a control tissue in their rat model of endometriosis and
showed that expression of the TRPV1 channel was increased in the dorsal root ganglia
adjacent to endometrial tissue lesions but not those formed from fat, providing a plausible
mechanism by which pain pathways are altered by endometriosis lesions that would be in
agreement with our results. In contrast to hind-paws, abdominal von Frey threshold values
were low since the beginning of the time course, and differences between groups became
evident 28 days after lesion implantation. Similar experiences in the homologous model
have been reported; however, lowered abdominal von Frey thresholds in endometriosis
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vs sham-operated animals as early as one week post implantation [34]. Provided that
xenografted tissue and surgery scars are anatomically close to the abdominal sites where
von Frey filaments are applied, a potential explanation for divergent findings between
studies might be as follows: Surgery and or tissue implantation resulted in an inflammatory
insult masking/overlapping/mimicking pain due to peripheral nerve sensitization in
endometriosis lesions. As long as mice recovered from the inflammatory insult, abdominal
von Frey thresholds would rise to normal values in the controls while maintained low in
the endometriosis animals in whom peripheral sensitization persisted.

In regard to non-evoked responses, drinking and climbing behaviors showed signifi-
cant differences between test and control animals sustained over time. While this is the
first time that such behaviors are reported to be altered in a mouse model of endometriosis,
the same parameters have been used to identify non-mechanical-associated pain in mouse
models of neuropathy and cancer disease [35,36]. It is of note that both climbing and
drinking showed sustained alterations starting 21 and 35 days after lesion implantation,
respectively. These observations are in agreement again with the idea that alteration of
non-evoked responses (i.e., “chronic pain”) starts to be detected once lesions are established
in the recipient animals [29] but not at earlier stages [37].

Neuroangiogenesis has been suggested to play a key role in the onset of pain [30],
but this statement might be somehow simplistic attending to clinical observations. In this
regard, vessel density does not seem to be related to pain experience as reflected by the poor
vascularization of deep infiltration lesions (DIE), which tend to provoke the most painful
experiences [38]. Indeed, even among DIE lesions, those with higher vascularization have
not been linked with higher scores in patient pain questionaries [39]. A more accepted
consensus relies on the fact that pain tends to be exacerbated by perineural and immune
cell infiltration [38,40]. In a similar fashion, we speculate that evoked and non-evoked
altered responses in our model arise from inflammation and sensitization of innervated
lesions. Indeed, we observed nerve fibers as well as infiltration of immune cells inside the
lesions in our model. We have to agree, however, that ours is mostly an exploratory study,
and further analysis of the factors influencing evoked and non-evoked responses will be
required to validate the model. Another weakness of our model is that the immune system
of recipient animals is defective on the lymphoid lineage. So, although monocytes [41]
and mast cells [38], which play an important n role in endometriosis-related inflammatory
pain [42], are present, their interaction with the adaptive system is not preserved.

Overall, the major strengths of this study rely on the efforts to enhance face and
construct validity of this newly developed animal model. In order to increase the construct
validity, ectopic lesions rather than eutopic endometrium were used as the source of
donor material, thus better reflecting the pathophysiology of disease. In an attempt to
improve face validity (i.e., for a better characterization of pain-associated behavior), we
combined both evoked and non-evoked measures in the model with special attention to
the latter [43]. Non-evoked tests are not free of limitations with acknowledged challenges
in their execution and in the unbiased interpretation of results. For example, behavioral
responses may be assessed in an unnatural environment (i.e., animals are isolated, tested
out of the cage, social interactions are neglected) involving human contact, which may
induce stress, thus increasing the risk of bias and decreasing the quality of the recorded
data. To circumvent this limitation, we used an HCA in cage system, which allowed
a noninvasive way of observing rodents in their home cages, thereby preserving social
interactions and avoiding operator bias [26,44].

An additional advantage of our model is the use of biological tissue glue for implanting
lesions. Such a procedure is compatible with appropriate construct validity and is very
helpful for the recovery of precious implanted tissue at the end of the experiment. In
regard to the former, the widely used rat model described by Berkley et al. in their seminal
paper [45] uses a stitch to position tissue on the mesentery. Stitch models injury the host
recipient tissue and require the use of full-thickness uterus as donor material so that they
can put the stitch through myometrium, which obviously is not a physiological replication
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of the human disease. In regards to the latter, while direct injection of the endometrium
into the peritoneum [46] may model retrograde menstruation, in that model, the lesions
form randomly and with a low percentage of the tissue attaching/surviving. In our view
thus, the use of biological tissue glue should be considered as a useful refinement of the
current homologous and heterologous rodent models of endometriosis.

Overall, there are a couple of findings from this study that seem to arise as “policymak-
ers” for subsequent exploration/better characterization of animals models of endometriosis-
associated pain in the future.

First, we would like to point on the convenience of combining evoked and non-evoked
tests in the analysis of pain responses. In this regard, recording of climbing time and the
von Frey test might be a useful example of how a combination of evoked and non-evoked
tests can be used to allow a better characterization of pain in the endometriosis models [47].
Although highly speculative, the drastic and erratic changes in drinking during the first
3–4 weeks might merely reflect disturbance/discomfort associated with surgery, which
otherwise could not have been properly identified without the use of the von Frey test in
the abdomen.

Second, we would like to claim attention to the need/convenience to assure/extend
lesion survival to allow identification and follow-up of the whole plethora of “pain” re-
sponses. A clear example of the above is the non-evoked climbing parameter, which became
“unmasked” after 35 days post implantation surgery. In this context, one of the questions
arising from our findings is whether the administration of exogenous oestradiol that we
used to promote lesion survival might compromise the translatability of the model. A
recent study comparing the characteristics of different homologous models suggests that,
in the absence of oestradiol supplementation, lesion survival might not be consistently
maintained beyond 21–28 days [42]. As our study results suggest, at least 3–4 weeks are
required to initiate the full range of behaviors associated with pain, suggesting it is an
important supplement. To our knowledge, there have not been any other studies analyzing
the effects of oestradiol on lesion survival in the heterologous mouse model [48]beyond
day 21 days post implantation, and our results are therefore novel. To assess the effects of
lesion survival and the translational relevance of our model, a next logical step for further
evaluation will be to determine the minimal dose of oestradiol required to support tissue
survival and the alteration of pain-associated behaviors over a sufficient sustained period
of time after model induction.

5. Conclusions

While a range of preclinical homologous animal models have been used to better
understand the etiology of endometriosis-associated pain, non-evoked tests for charac-
terization of pain-like behaviors have been rarely used [34,49–51]. There has not been a
single report (to our knowledge) employing heterologous models for such purpose and no
apparent reason for such asymmetry in their use.

In conclusion, in this study, we have developed, for the first time, a heterologous
mouse model of endometriosis-associated pain in which alteration of both evoked and
non-evoked behaviors can be identified starting 14–28 days after lesion implantation and
are sustained for 56 days. After further validation and refinement, we hope this model
will provide a platform for testing potential medical therapies for endometriosis-associated
pain and improve translation for patient benefit.
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