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I.	 Introduction

IN music history, when a style ends and is replaced by a new way of 
thinking, theorists and musicologists try to explain the “obsolete” 

musical ideas. It is at this moment when the old style is classified, 
and the rules of the old style are systematized for future generations 
of musicians. According to Jeppesen [1], the history of music theory 
and style are far from being identical, and it is important to take into 
account the constantly recurring mistakes of the theorists with regard to 
the description of musical style. The principal inaccuracies of theorists 
according to Jeppesen [1] are:

1.	 An inclination that is common to these writers to theorize on their 
own account.

2.	 The moment of inertia which causes theorists to transfer rules 
from older textbooks to new without proper critical revision.

3.	 Inability of theorists, when describing the practices of past times, 
to discriminate between these and the elements of style typical of 
their own contemporaries, (which was the case with Fux).

4.	 Pedagogic considerations, which often tend to a simplification or 
relaxation of the set of rules belonging to the style, but often also 
to a stricter rendering of these rules “for the sake of exercise”.

Perhaps the most famous example of this theoretical approach is the 
“Gradus Ad Parnassum” of Johann Joseph Fux (1725). Fux presents 
a pedagogical method that breaks the learning task into well-defined 

graduated stages, from note against note through to florid counterpoint. 
This continues to be a standard pedagogic counterpoint text.  However, 
for modern music informatics, generating music based on such 
stylistic rules is not a good approach: in fact, music from Renaissance 
to Romanticism can be written following basically the same rules. 
For example, stylistic differences between Bach and Palestrina 
counterpoint cannot be completely defined by basic generic rules (for 
example, prohibition of parallel fifths or octaves, voice leading at 
suspensions, etc.), and implementing specific exceptions to them can 
be a very complex task.  The rule-based system achieved will become 
brittle and imprecise. Musical style must be learned from examples in 
order to model as closely as possible a musical style.

The corpus of pieces we are working with comprises 717 movements 
from Palestrina masses, comprising almost 350,000 vertical dyads 
(slices), providing a massive amount data for training statistical 
models of counterpoint. Even though these data are naturally within the 
musical style, composing a piece of music in the Renaissance style is 
not so simple as performing random walks through a statistical model. 
Counterpoint is full of imitations, canons, motifs and augmentations, 
and such devices cannot be captured by a first-order Markov model 
trained on limited data [2]. For solving these limitations and to provide 
coherence to the generated pieces, we take a piece from the corpus, 
referred to as a template, and discover its repeated patterns based 
on different viewpoints. The discovered patterns are used to cover 
the template piece and are adhered to in new music generated by the 
statistical model.

There are several arguments for using the masses of Palestrina as a test 
collection for our system. They are a model for a standard Renaissance 
style in counterpoint. Many universities and conservatories teach 
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this style as basic training for new students in composition. Another 
important aspect is the homogeneity of the corpus of pieces. There are 
no significant differences in style between the first and the last mass, 
and the number of pieces is big enough to build a probabilistic model.

At the end of the article, we present some methods for the evaluation 
of the results. To assess an automatic system of musical composition 
is always a difficult task and in this paper we use two diverse 
alternatives: a listener evaluation in a live performance setting, and 
an objective information content method. For the listener evaluation, 
even when asking an expert group in a “Turing test” setting, the 
results cannot be very reliable, as they depend on many variables 
such as the performance, involvement of the experts, and their degree 
of knowledge of the musical style. An objective way to measure the 
relative quality of generated pieces is by using the information content 
of the generated piece, which is the negative log probability according 
to the statistical model.

This article is organized as follows: Section II reviews different 
works for generation and analysis of music. Section III describes 
the corpus of Palestrina masses. Section IV explores the concept of 
probability with respect to zero- and first-order Markov models of the 
Palestrina corpus. For obtaining patterns from a template, slicing the 
scores into dyads, and generating from a statistical model, we are using 
the concept of horizontal and vertical viewpoints developed and refined 
by Conklin [3]-[6]. Section V describes how to apply restrictions 
imposed by the template during music generation. Section VI presents 
and analyses the results obtained, and Section VII positions our work 
within previous research specifically on counterpoint analysis and 
generation.

II.	 Prior Work

Artificial Intelligence is a mature field having a broad variety of 
applications, ranging from driverless cars, natural language and speech 
processing, and computer players for board games, but is hard to define 
in formal terms for of Computational Creativity [7]. Often the scientist 
and the artist speak different languages and have different goals in 
mind, but this provides an interesting breeding ground for research 
with a lot of challenges to solve. Since the 1950s different techniques 
from artificial intelligence have been used for algorithmic composition 
and music generation. In this section we comment on some of the 
milestones of music generation, divided into two groups: rule-based 
approaches and machine learning approaches. In many cases, the lines 
between some methods are blurred and employ a mixture of both types 
of model creation.

A.	Ruled-based
The generation of new music based on rules has a long tradition, 

from the works Hiller & Isaacson [8] using the ILLIAC computer at 
the University of Illinois. This early work was designed as a series 
of experiments on music composition, and rules for counterpoint 
were used in the generation of the first and second movements of 
the Illiac Suite. Rothgeb [9] encoded rules of eighteenth-century 
harmony for specifying adequate chords given bass notes. Many works 
on logic programming can be formulated as constraint satisfaction 
problems (CSPs). In this area, Ebcioglu [10] implemented rules for 
counterpoint translating constraints of fifth-species counterpoint to 
Boolean functions. In 1988 he subsequently developed 350 rules for 
the harmonic and melodic generation of Bach chorales [11]. Following 
Ebcioglu’s work, several lines of research have been developed for 
harmony or counterpoint. Tsang & Aitken [12] harmonize four-part 
chorales, and Ovans & Davison [13] create a CSP system for the first-
species counterpoint. Ramirez & Peralta [14] build a constraint logic 
programming system, for harmonizing a melody. Phon-Amnuaisuk 

[15] implemented a constraint system for harmonizing chorales in the 
style of J. S. Bach, adding control over the harmonization process in a 
flexible way. In recent years, Herremans & Sorensen [16] work with 
different counterpoint species using a variable neighborhood search 
algorithm. Komosinski & Szachewicz [17] address the difficulty of 
evaluating penalty (or reward) values for each broken (or satisfied) 
rule. The use of an additive function counting broken rules is known to 
have several drawbacks. First of all, it assumes that one can somehow 
determine the importance of each rule Another important drawback is 
that breaking one very important rule is equivalent to breaking several 
less important rules. Therefore, simple additive rule weighting function 
is found to be weak, and they propose to use a dominance relation. 
The implementation of rules by fuzzy logic to generate two-voice first 
species counterpoint is analysed by Yilmaz and Telatar [18].

 Expanding the idea of “rule”, a formal grammar may be viewed 
as a set of rules that expand high-level symbols into more detailed 
sequences of elements, in the same way that a language is constructed 
in a hierarchical structure of linguistic constituents. Some efforts to 
codify rules by hand and extend them to a grammar for automatic 
composition were made by Roads [19], Holtzman [20] and Jones [21]. 
In the 1990s some systems appear that hybridize rule-based systems 
with evolutionary algorithms using a fitness function from a rule set. 
McIntyre [22], Horner & Ayers [23] and Phon-Amnuaisuk et al. [24] 
worked in this direction in the context of four-part harmonization. For 
species counterpoint, Polito et al. [25] extracted rules and used them to 
define a fitness function followed by agents that cooperate to produce 
the composition. Gwee [26] worked with species counterpoint and a 
fitness function based on fuzzy rules.

B.	Machine Learning
Machine learning is the subfield of computer science that studies 

the ability of computers to learn without being explicitly programmed. 
Many different machine learning techniques exist and for music 
generation learning is mainly unsupervised (without negative 
examples). In this section, we will survey some research on music 
generation using grammatical inference, Markov chains, and Artificial 
Neural Networks.

1)	Grammatical Inference
As noted earlier, a grammar can be defined as a set of rules formally 

describing a language. The problem with a grammatical approach 
to composition is the difficulty in defining the rules manually. To 
tackle this issue, Cruz-Alcázar & Vidal-Ruiz [27] implemented 
several methods of grammatical inference inducing stochastic regular 
grammars to parse the compositions and make new pieces. Gilbert & 
Conklin [28] present a method to find tree structures in musical scores 
using a probabilistic context-free grammar for melodic reduction. The 
method is applied to parse phrases from Bach chorale melodies, and 
the statistical model is also used to evaluate the information content 
of the pieces. Following the ideas of Gilbert & Conklin, Groves [29] 
explores the generation of melodies from a probabilistic analytical 
model of melodies. Quick & Hudak [30] present a new class of 
generative grammars called probabilistic temporal graph grammars 
to handle temporal aspects of music in a way that retains a coherent 
metrical structure.

2)	Markov Chains
Markov Markov chains are stochastic processes transitioning in 

discrete time steps through a finite set of states. In music composition, 
the transition matrices may be trained from a corpus of pre-existing 
compositions. In an order-n Markov chain, the next state depends 
on the last n states. In a hidden Markov model (HMM), the states 
are hidden and the goal is to infer an optimal state sequence for an 
observed sequence. This approach has been studied by Farbood & 
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Schoner [31] who train a second-order HMM to generate Palestrina-
style first-species counterpoint to a specified cantus firmus line. The 
method uses Markov chains which capture the rules of counterpoint 
using probabilistic tables for harmony, melody, parallel motion, and 
cadences. Herremans et al. [31] use a first-order Markov model from a 
corpus of first species counterpoint and compare the ability of variable 
neighborhood search, iterative random walk and Gibbs sampling, 
to generate a hidden counterpoint line. Results are evaluated by 
information content  (average negative log probability of the fragment 
using the dyad transitions of the transition matrix).

Working with HMMs and Bach chorales, Allan & Williams [33] 
create a system to compose four voice textures given a soprano part. 
The chord sequence is generated using the Viterbi algorithm, and for 
the passing notes, a second HMM is employed. Whorley & Conklin 
[34] present a multiple viewpoint system of four-part harmony to 
evaluate and improve an iterative random walk technique. This is 
evaluated using information content and also with a small set of rules 
of harmony.

3)	Artificial Neural Networks
Artificial Neural Networks (ANNs) are biologically inspired models 

made of interconnected sets of nodes in several layers. Some of them 
are the input connections while others have output signals with several 
interconnected layers between.

Focusing on polyphony and counterpoint, Hild et al. [35] develop 
a model designed to solve a four-part chorale harmonization in 
Bach’s style. The system was called HARMONET and had a three-
layered architecture. An evolution of HARMONET was MELONET 
[36] and improved by Hörnel & Degenhardt [37]. Since then, many 
hybrid systems have been developed, for example NETNEG [38] 
which used an ANN trained with sixteenth-century classical music 
compositions. That generates melodic segments and polyphony was 
generated by a rule-based system of agents. Verbeurgt et al. [39] join 
Markov chains for constructing motifs and a trained ANN to assign the 
absolute pitches. Adiloglu & Alpaslan [40] used the back-propagation 
algorithm to generate two-voice first species counterpoint pieces.  
Some researchers have recently applied methods from deep learning to 
the chorale harmonization problem [41][42].

C.	Generation Using Patterns
As suggested by Conklin [2], the construction of computational 

methods for musical style imitation has been far more difficult than 
initially imagined. Listening to music and perceiving its structure is an 
easy task for specially trained musicians but building computational 
models to mimic these processes is a hard problem. The use of patterns 
during generation can help to ensure coherence and intra-opus repetition 
in generated pieces. A method for the detection of melodic phrases in 
the masses of Palestrina is described by Knopke & Jurgensen [43], 
based on the use of suffix arrays to find repeated patterns. Sidorov 
et al.[44] present an approach to music analysis, in which an inferred 
grammar is explains the structure of a musical work.

Data mining is a process of extracting small pieces of valuable 
information from large data. A special situation is when data is in the 
form of sequences, and several sequential pattern mining methods have 
been developed in the last decade [45]. Using the idea of viewpoints 
[2]-[5], music can be converted into a string (or parallel strings) of 
features and analysed using sequential pattern mining methods. In our 
research, for analysing patterns, we are using the gap-BIDE algorithm 
[46] with zero gaps between sequences. This will be further explained 
in Section IV.B.

Some researchers have developed methods for combining patterns 
and constraints with Markov models. Pachet, Roy and Barbieri [47] 
try to solve unary and adjacent binary constraints with Markov models 

using arc-consistency techniques and re-normalization. Collins et 
al. [48] describe and evaluate a computational model of stylistic 
composition using discovered patterns to constrain a Markov model 
of vertical slices. Conklin [5], focused on trance music, explores a new 
approach to generating high probability and coherent chord loops from 
a statistical model trained on a chord sequence corpus. David Cope’s 
Experiments in Musical Intelligence [49] is a system for algorithmic 
composition heavily based on the conservation of patterns.

III.	Palestrina’s Masses

The style of Palestrina can be seen as a combination of melodic 
lines in a polyphonic environment, characterized by the tension 
between harmonic and melodic elements. The line is the starting point 
of Palestrina’s style, and the harmony does not have an independent 
sphere of interest as in Bach counterpoint. Jeppesen [1] analyses 
Palestrina’s style using different aspects such as rhythm, modes, lyrics, 
melody, harmony and dissonance. His point of view is very clear about 
the secondary role played by harmony: “…The exactions arising out 
of harmonic aspects are really only intended to ensure the sonority of 
the individual harmonic moments. ´Harmonic´ does not signify here 
any independent sphere of interest; chords had not yet reached a stage 
when they had their own vigorous life, as in Bach’s works”. All that 
is required in vertical chords is clearness and sonority. The imitation 
is the base for constructing the polyphony. Accidentals are limited to 
F, G and C-sharp and B and E flat, found in plainsongs and related 
to Gregorian modes. De la Motte [51] mention that, “Palestrina just 
polished and refined a language developed by Josquin 70 years before”. 
The accidentals of Palestrina are a natural evolution of the polyphony 
of Josquin des Prés, where E flat was always associated with B-flat and 
C, F and G sharp embellishments of the notes D, G and A.

The corpus of pieces we are working with consists of 101 masses 
composed by Palestrina (see Table I). These masses were published 
between 1554 and 1601, after his death in 1594. The date of composition 
of the different pieces is very difficult to determine, and each mass 
consists of various movements: Kyrie, Gloria, Credo, Sanctus, 
Benedictus, Agnus Dei. Each movement is divided into sections based 
on the text. The masses and the movements vary in the number of 
voices from three to six. For example, Benedictus in many masses is 
written in three voices and Kyrie in five or six. Table I describes is the 
corpus of pieces we have, using the data of music21 [52], a Python-
based toolkit for computer-aided musicology developed by MIT.

Taking into account just two voices, the number of vertical slices 
available is almost 350,000 which provides enough information for 
constructing a reasonably accurate first-order Markov model, as is 
explained in the next section.

Table I. Corpus of Pieces of Palestrina from music21
Mass part Pieces

Agnus 186
Benedictus 99

Credo 98
Gloria 101
Kyrie 129

Sanctus 104
Total: 717

IV.	Viewpoints for Pattern Discovery

For the generation of polyphony, both horizontal (melodic) and 
vertical (harmonic) aspects must be modelled and we use the concept 
of viewpoints, developed and refined by Conklin [2]-[5], from the 
horizontal and vertical perspective. In our work, the generation of 
imitative counterpoint is developed at two levels, corresponding to 
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the short- and long-term models of viewpoints. Long term or stylistic 
aspects are modelled using vertical slices and short term or intra-opus 
aspects using patterns discovered in a template piece. A template 
piece of music is transformed into a higher level description derived 
from the basic surface representation, by converting the sequence of 
basic events into sequences of derived viewpoint elements. A linked 
viewpoint is a combination of two or more viewpoints that models their 
interaction simultaneously. Following these steps, pattern discovery is 
performed on the transformed representation.

A.	Horizontal Viewpoints
Each voice of the chosen template piece is cut into phrases which are 

assumed to be separated by rests. This division of phrases is possible 
in Palestrina vocal music, where music is thought taking into account 
the phrases of the text, and rests are written between separate ideas, 
never as part of a musical idea. Once the score is divided, each phrase 
of Palestrina music is treated as a sequence of linked viewpoint values. 
To better understand the concept of viewpoint, we take a melody of 
Palestrina. The sequence of notes is converted to a sequence of features 
derived from the musical surface (Fig. 1), for example, absolute pitch 
(pitch), name of note (spell), melodic contour, duration contour, 
interval (diaintc), or an abstract interval class (scalestep), as will be 
explained below. A pattern is a sequence of features (𝑣1,...,𝑣𝑖) where 
each 𝑣𝑖 is a feature (e.g. scale step linked with duration contour).

1 2 3 4 5 6 7 8 9 10 11 12
pitch 60 67 64 65 64 66 67 69 62 67 66 67
spell C G E F E F# G A D G F# G

contour 
(pitch) + + + - + + + - + - +

contour 
(dur) + - + - - + = = + - +

diaintc J5 m3 m2 m2 M2 m2 M2 J5 J4 m2 m2
scalestep J45 Mm3 Mm2 Mm2 Mm2 Mm2 Mm2 J45 J45 Mm2 Mm2

Fig. 1. Different viewpoints applied to a melody of Palestrina. Agnus from 
Beata Marie Virginis. altus, bars 5 to 9.

The scalestep viewpoint groups successive intervals and is flexible 
enough to find patterns in Renaissance style. The values of that 
viewpoint are:
•	 Unison and Octave (J18)
•	 Minor second and Major second (Mm2)
•	 Minor third and Major third (Mm3)
•	 Perfect fourth and Perfect fifth (J45)
•	 Minor sixth – Major sixth (Mm6)	
•	 Minor seventh - Major seventh (Mm7)

The repetitions of patterns in Palestrina are not merely exact 
transpositions of intervals. For example, a minor second can be 
converted to a major second, as is shown in Fig. 2. Using the syntax 
above, and taking into account just the scalestep viewpoint, the pattern 
indicated in Fig. 2 would be represented as:

J45, Mm3, Mm2, Mm2, Mm2, Mm2, Mm2	  (1)

This pattern has seven components and represents the boxed 
segment in Fig. 2 (the soprano, altus and bassus of the Agnus from 
Beata Marie Virginis).

Fig. 2. Agnus from Beata Marie Virginis, bars 1 to 6. Palestrina. Pattern with 
different intervals.

B.	Pattern Discovery
Data mining is the computational process of discovering interesting 

patterns in large data sets.  This interdisciplinary subfield of computer 
science is growing, and the number of algorithms and researchers in the 
field highlights its importance. Sequential pattern mining has become 
an essential data mining task, with broad applications, including market 
and customer analysis, web log analysis or pattern discovery in protein 
sequences  A survey on sequential pattern mining and the approach of 
the different algorithms, addressing efficiency and scalability, has been 
summed up by Khan & Jain [43].

Algorithms for sequential pattern mining include SPADE, Sequential 
PAttern Discovery using Equivalence classes [50], PrefixSpan, Prefix-
projected Sequential pattern mining [51] , GSP, Generalized Sequential 
Pattern algorithm [52] CloSpan, Closed Sequential pattern mining [53], 
BIDE, BI-Directional Extension [54] or SPAM, Sequential Pattern 
Mining using A Bitmap Representation [55]. In our experiments we are 
using gap-BIDE [44], an extension of the BIDE algorithm for mining 
closed sequential patterns with possible gap constraints. Currently, we 
are working at zero gap level without taking into account gaps in the 
sequences.

To apply sequential pattern mining to Palestrina masses, each 
piece in the corpus is converted to a viewpoint sequence, with phrase 
boundaries indicated by rests, as explained in Section IV.A. The linked 
viewpoint for discovering patterns is:

scalestep ⊗ contour(dur)	 (2)

This particular linking of viewpoints allows the discovery of  flexible 
patterns, e.g. augmented and diminished patterns. The viewpoint can 
also capture inversions, though it should be noted that equivalence 
according to the viewpoint is a necessary but not a sufficient condition 
for inversion. The vocal lines in Palestrina are very flexible and the 
imitations are sometimes just hinted at. Fig. 3 contains examples of 
patterns found in the Agnus II from the mass

The pattern 91 is an inverted scale made by six short equal notes 
plus a long note. Pattern 3 is more complex, typical of Palestrina 
music, where neither the durations are exact nor the melodic contour, 
but an attentive listener can easily identify the similarity of the two 
instances of this pattern. Regarding duration and melodic contour, 
pattern 1 is clearest but possibly a human musicologist would have 
taken the previous note of this pattern dismissing the different duration 
and interval of the first note in the different presentations.

C.	Ranking Patterns
A huge number of patterns can be typically found in a template 

piece: some trivial, and some method for ranking them is necessary 
[6]. In this paper we establish a ranking of patterns based on a binomial 
distribution that computes the probability of obtaining an observed 
number of occurrences in a given number of sequence positions within 
the template piece.
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Patterns
<J45,+>, <Mm3,->, <Mm2,+>, <Mm2,->, <Mm2,->, <Mm2,+>, <Mm2,=>
<J45,+>, <Mm3,->, <Mm2,+>
<J45,+>, <Mm3,->, <Mm2,+>, <Mm2,+>, <Mm2,->, <Mm2,+>

Fig. 4. A list of features and their counts (upper pie chart). Example of pattern 
encoding (lower table) from Beata Marie Virginis of Palestrina (see Fig. 1).

To rank patterns, it is necessary to know the background distribution 
of pattern components. Fig. 4 shows a distribution of the values of 
the viewpoint defined in (1). For example, <Mm2,=> indicates a scale 
step of a minor or major second with an equal duration, or <J45,+> 
indicates a scale step of perfect fourth or fifth where the second note 
has a higher duration. Clearly, the most probable interval is the second 
(69.4%) divided into same duration as the previous note (30.0%), 
higher duration than the previous note (21.4%) and lower duration 
than the previous note (18.0%). The rest of the melodic intervals have 
a much lower probability. This illustrates that, for example, patterns 
comprising predominantly <Mm2,=> features are not surprising and 
will not be significant unless they occur very frequently in the piece. 
The binomial pattern ranking, as described below, handles these effects 
in the piece.

The background probability of a pattern gives the probability of 
finding it in a random segment with the same zero-order distribution 
as the corpus. The background probability ( of a pattern ) using a zero-
order model of the corpus is:

 	 (3)

where:
•	 𝑐(𝑣𝑖) is the total count of feature 𝑣𝑖 ,
•	 � is the total number of places in the corpus where the viewpoint 

is defined.
Using the background probability of a pattern, its interest I can be 

defined using the binomial distribution which gives the probability of 
finding exactly k occurrences of the pattern in a sequence of length 
t, where the background probability is b. Then the negative log 
probability of finding at least the observed number of occurrences of 
the pattern.

�(�)=−ln�(�;�;�)	 (4)

where:
•	 �� gives the cumulative probability (right tail) of the binomial 

distribution,
•	 t approximates the maximum number of positions that can be 

possibly matched by the pattern,
•	 k is the number of times the pattern appears in the template piece.

with t calculated as follows:

	 (5)
where:

•	 𝑝 is the number of phrases,
•	 �� is the length phrase i,
•	 � is the length of the pattern.

D.	Building the Template
Fig. 5 is one example of different patterns found in one fragment 

of Agnus from Beata Marie Virginis of Palestrina, ordered by their 
interest value Eq. (3). The number followed by a colon (:) indicates the 
interest for each pattern. The same melody can be covered by patterns 
in many different ways. To cover a template, the ranking according to 
their interest value is used. If a lower pattern in the ranking overlaps 
with one higher, the lower pattern is not considered. This simple greedy 
algorithm is repeated until reach the last pattern, trying to complete the 
template. In this way, the template will be covered by non-overlapping 
interesting patterns. The template obtained will be used for creating the 
new piece as is explained in the next section.

Fig. 3. Agnus II from Ascendo ad Patrem, bars 14 to 21. Palestrina. Patterns detail of patterns using  scalestep ⊗ contour(dur).
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E.	Vertical Viewpoints. Markov Model
For constructing the Markov model, two voices are selected and cut 

into slices (see Fig. 6). In this first approach, we have taken the highest 
and lowest voice for a better result, removing the inner voice. Usually, 
the music that follows harmonic constraints entrusts to the lower part 
(bass) an important role in the harmonic context, while the higher part 
(soprano) is more appropriate for defining melodies.

Fig. 6. An example of two-voice slicing.

The slicing process is the same as the full expansion method explained 
by Conklin [4], dividing when a new event appears in one voice. In 
our method, we do not retain ties between notes. In Renaissance vocal 
music, whether a note is repeated or tied sometimes depends on the text 
and furthermore durations are conserved from the template.

Taking into account pitch and duration, the number of slices in the 
corpus is 347,748. The zero-order Markov model is calculated counting 
the number of repeated slices and dividing by the total. The number of 
different slices is 1582 distributed as is shown in Fig. 7.

The vertical axis is the number of repetitions (logarithmic scale) and 
the horizontal the rank in the slice ordered by repetitions. Counting the 
number of next unique slices (first-order Markov model), also ordered 
by the number of repetitions (zero-order model), the results are shown 
in Fig. 8, where the number of different paths ranges from 0 and 183.

The piece now can be treated as a sequence of regular simultaneities 
where it is possible to apply different constraints that filter the possible 
paths. For example, based on the melody of Palestrina at the top of 
the Fig. 9, we illustrate the system with different restriction levels for 
creating a new upper voice. The upper voice is generated applying 
a random walk among the possible vertical slices using a first-order 
model. It is a short phrase, and it was easy to find solutions through 
forward generation with just one template and different viewpoint 
constraints in the lower voice. Ranking from strongest to weakest, 
and using linked viewpoints, they are labelled as pitch ⊗ duration, 
scalestep ⊗ duration and duration.

Fig. 7. Zero order distribution of repetitions.

Fig. 8. Distribution of unique next slices, first-order Markov model.

V.	 Applying the Model to the Template

This section explains a method for generating new music based 
on a template which has been annotated with patterns, as described 

Fig. 5. Agnus from Beata Marie Virginis,of Palestrina. Altus, bars 5 to 9. Different patterns ordered by their interest (Equation 4). The first number gives the rank 
of the pattern, and the second the value for the first position of a pattern.
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in Section IV. The idea is to fill the template with the slices and 
probabilistic paths obtained by the first-order model. The steps are as 
described below.

A.	Forward Generation
For generating new music, one piece from the corpus is chosen, and 

patterns are discovered in the piece using the viewpoint scalestep ⊗ 
contour(duration) as mentioned earlier. Once the final template is 
constructed, for constraining notes within areas covered by patterns, 
the viewpoint

scalestep ⊗ contour(dur) ⊗ contour(pitch)	 (6)

is used. Note that this represents a slightly more restrictive linked 
viewpoint than that used for pattern discovery (1), in that the regions 
are also required to conserve pitch contour. The generated music, 
therefore, conserves the abstract qualities of scale step, duration 
contour, and pitch contour. Further, in this article, the exact rhythm 
from the Palestrina template is used, therefore, the conservation of 
duration is assured. For describing the method, we take Benedictus 
from the mass Descendit Angelus Domini as a template and proceed 
with the next steps:
•	 Remove internal voices retaining the highest and lowest.
•	 Divide the template into regions organized by the patterns. If 

the region is a pattern, the viewpoint shown in Eq. (6) is used 
for horizontal restrictions.   If the region is not a pattern, just the 
duration viewpoint remains;

•	 Filter the vertical slices by the different constraints. If at one point 
it is not possible to find a next slice, a backtracking algorithm is 
performed (see Section V. B).

There is a probability associated with each piece, using the statistical 
model. Different results will be obtained choosing pieces with different 
overall probabilities, as will be commented in Section VI.

B.	Backtracking Algorithm
Due to the severe restrictions forced by the template, it is possible 

to encounter some points where all slices to continue the piece have 
zero probability at the slices generated. This problem was due to the 

bottleneck arising from the availability of very few continuations for 
some slices of the corpus. To solve this problem, a double backtracking 
algorithm has been implemented at two different levels, pattern and 
template. At the pattern level, the system goes one, or several steps back 
if no possible solutions are obtained for some slice. If the backtracking 
at pattern level reaches the first slice, the system goes back one (or 
several steps back) from the patterns of the template. This method is 
faster and permits a scattered group of solutions uniformly distributed.

VI.	Results and Evaluation

The method described in Section V have been used to generate 
new pieces based on the Benedictus from the mass Descendit Angelus 
Domini as the template. This Benedictus is composed of just three 
voices (as most of the Benedictus in Palestrina masses are).   The 
main purpose of taking a three voices piece is that we have to remove 
just one staff, and the counterpoint, imitations, and harmony are less 
affected than in a four or five voices piece.

The evaluation of a system for generating music is always a complex 
task. If the generation is limited to a very narrow and particular type 
of composition (first-species counterpoint, i.e.), the evaluation can 
be defined regarding “how many rules have been broken”. Some 
examples in this sense can be analysed in [34][18][40][31]. In the 
case of Palestrina, the evaluation of broken rules such as parallel 
fifths or octaves of two consecutive slices is not possible because 
slice transitions are taken directly from the corpus. It is therefore not 
possible to find parallel fifths or octaves of two consecutive slices 
unless they specifically are in the Palestrina corpus. Some unusual 
melodic movements in Palestrina style possibly appear, mainly related 
to the use of accidentals, but is very difficult to measure violations of 
accidental use automatically.

A.	Computational Evaluation
Some research has found a close relation between information 

content and the “quality” of the results in a statistical model [3][34] 
The information content can be defined for a sequence of slices  
�1,..., �� as follows:

Fig. 9. Generation of upper voice based on different constraints in lower voice.
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 	 (7)

�(𝑒𝑖|𝑒𝑖˗1) where is the probability of eventi 𝑒𝑖 in the first-order 
Markov model.

Taking Agnus II from the mass L’homme Armé as a template, we 
have generated 1000 pieces distributed as follows:
•	 500 pieces, choosing the next slice of the first-order Markov model 

from the upper third of the next slice distribution. This option will 
produce a group of solutions of low information content.

•	 500 pieces, choosing the next slice of the first-order Markov model 
from the lower half of the next slice distribution. This option will 
produce a group of solutions of high information content.

The distribution of the original corpus of pieces and the pieces 
generated using the zero- and first-order Markov model is shown in 
orange in Fig. 10. In this figure, the pieces generated, based on the 
Agnus II from the mass L’homme Armé, are in green and yellow. The 
green cluster indicates the pieces generated with the low information 
content and the yellow one the pieces with high information content. 
The information content of the original template is 4.50 as indicated 
in Fig. 10.

Taking just the values of the information content of the first-order 
Markov model from the original template, the distribution is shown in 
Fig. 10, where the 1000 pieces generated are divided into two groups of 
entropy based on the probability of next slices. Choosing the next slice 
from the upper third, ranking them from highest to lowest probability 
(blue bars, left part), they are centred around 4.65, that is slightly higher 
than the information content of the original template, 4.50. Taking next 
slices from the second half of the ranking, the information content is 
clearly higher, centred around 5.4. This second group explores less 
probable links between slices.

B.	Listener Evaluation
For listener evaluation, we have taken three pieces: the original 

Palestrina and one of each group of Fig. 11 (low information content, 
high information content). The information content of these pieces is 

4.65 and 5.54 respectively. They were interpreted by a professional 
choir at “The Vortex Jazz Club” in London, which is a small concert 
hall with a maximum capacity of 100 people. The audience was asked 
to identify which of the three pieces was the original and asked for 
their degree of confidence in the decision, on a five-point scale. 55 
questionnaires were returned. The results showed that 49.1% identified 
correctly the template and 50.9% were deceived, as is seen in Fig. 12. 
On the questionnaire were some a questions about musical knowledge 
like “Do you play an instrument?, How long have you played or sung?, 
What types of music do you listen?”. Analysing the responses, 33/55 
(60%) have played an instrument or sung for more than five years, 
and 40/55 (72.7%) listen to classical music, which indicates at least an 
average musical knowledge and a trained ear.  

Fig. 11. Distribution of information content first-order Markov model of 1000 
pieces generated divided into two groups of entropy based on the probability 
of next slices.

Fig. 10. Information content distribution using zero and first-order Markov Model. In orange the original corpus of pieces of Palestrina. In green and yellow the 
pieces generated based on the Agnus II from the mass L’homme Armé with low and high information content.
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Fig. 12. Results of the question: which piece is the original?

The results obtained indicates a clear difference between the pieces 
generated with high and low entropy. Low entropy pieces are closer to 
the original style and even can deceive around the 50% of an audience 
with musical knowledge. It is possible that the melody and jumps in 
the vocal line of the high entropy piece are identified as “out of style” 
even without breaking counterpoint rules. Fig. 13 shows the results of 
the question, “How confident are you on a scale 1 to 5?”.

Fig. 13. Results of the question: How confident are you on a scale 1 to 5?

VII.	 Discussion

In this section, we take a closer look at the main milestones and 
the different approach to the counterpoint generation for comparing 
with our research. Starting from the past century, Gjerdingen [59] 
creates a computer program for counterpoint species writing rules by 
hand. Gjerdingen recognises that the counterpoint rules remind an Old 
Testament patriarch calling out the commandments, “…Thou shalt have 
no tritones; Thou shalt not leap dissonance; Thou shalt not commit 
parallel fifths; and so on.” Those rules are implemented using functions 
that control the melodic line and vertical intervals. The evaluation is 
made taking a cantus firmus and comparing examples of the book of 
Jeppesen & Glen [60]. Their main goal is to create small fragments of 
counterpoint, given a cantus firmus, following rules as closer as the 
examples of the book, but not to the real Renaissance style.

One step forward can be considered the work of Farbood & Schoner 
[31]. In this case, the rules are not implemented by hand. Each rule 
is implemented as a probability table where illegal transitions are 
described by probability zero. The transition probabilities for generating 
a counterpoint line are obtained by multiplying the individual values 
from each table, assuming the rules are independent. A database of 
species counterpoint (12 pieces composed by human and 44 generated 

by the computer) is used as training data for the Markov model. The 
research is limited to first species counterpoint, and the main objective 
is to infer rules from a corpus of pieces, not to generate florid imitative 
counterpoint.

Adiloglu & Alpasl [40] also work on first species, but in their case 
using neural networks combined with back-tracking algorithm. The 
input layer represents the notes coming from the cantus firmus and the 
output layer the new counterpoint generated. The result is evaluated in 
two steps, by the counterpoint rules (parallel fifths, and octaves) and by 
asking a group of musical experts. In this case, the rules are not inferred 
from the corpus as in the Farbood & Schoner [31] work. Adiloglu & 
Alpaslan [40] ask a group of experts about the quality of the music 
generated, a musicologist, a composer and a choir director. According 
to their opinion, the melodies generated are generally correct but there 
are some cases in which the rules were not obeyed. The music experts 
also commented that the melodies produced do not always sound 
interesting. It is important to underline that first species, note against 
note, is the very first exercise for the student in counterpoint. In our 
case, we are comparing real masterpieces against pieces automatically 
generated.

Herremans & Sörensen [16] develop a variable neighbourhood 
search (VNS) algorithm that can generate musical fragments of 
arbitrary length consisting of a first species counterpoint melody given 
a cantus firmus. The VNS is a local search algorithm that starts from 
a randomly generated melody and improves it by changing one or two 
notes at a time. When no improving fragments can be found in any of 
the neighbourhoods, a local optimum is reached. In order to get out 
of this local optimum, a perturbation strategy is used. The algorithm 
reverts back to the best found fragment and changes a predefined 
percentage of the notes to a random allowed pitch.

The previous research work with species counterpoint (mainly first 
species), and it is not taken into account the complexity of imitations 
and structure of the counterpoint. Knopke & Jürgersen [43] try to 
identify common melodic phrases in the masses of Palestrina mapping 
multi-character music symbols into single-character tokens to build a 
suffix array structure. This research is focused just on analyses and not 
in generation. They claim that this system identifies all transpositions, 
inversions, retrogrades and retrograde inversions of unknown melodic 
segments. One limitation is that they do not use abstract viewpoints, 
just pitch and rhythm, and slight changes in imitations are disregarded.

VIII. Conclusions and Future Work

This paper presents a method for generating new music based on 
the corpus of masses of Palestrina. To sum up, comparing our research 
with previous work, our research is made working with real pieces of 
Palestrina, regarding the complexity of the counterpoint. The species 
are simple exercises invented for training, but they are not proper 
compositions. An exercise in species is a short piece of music without 
any kind of coherence or imitation, just one cantus firmus (usually 
in whole notes) and a second melody in the same duration (first 
species) or shorter (rest of species). For the template, we use different 
combinations of linked viewpoints, much more flexible than simple 
pitch and rhythm. Small mutations in imitations are very common, and 
the patterns detected should be robust to these changes. Regarding the 
work of Knopke & Jürgersen [43], for the identification is required 
the exact matching of the patterns. For example, non-exact intervals (a 
fourth by a fifth or a third minor by major) or mutations in a melody, 
very common in counterpoint music, are not considered. Filling a 
template identifying imitation is a way of retaining some grade of 
coherence into the piece. The counterpoint is based on the motifs 
that are repeated in different voices. One possibility explored in this 
article is to have a template to fill. This reinforce a strong, but possible 
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constraint that limits the number of possible paths. The employment 
of templates extracted from a piece is just one possibility for working 
with coherence, but this concept is nor even considered in the previous 
works.

The method, for practical purposes, is limited to two voices taking a 
template from the corpus without overlapping patterns. The gap-BIDE 
algorithm and the binomial distribution explained in Section IV.B 
works correctly detecting patterns. From an intuitive point of view, the 
ranking of the patterns discovered, in most of the cases, is related to the 
importance of the pattern in the piece. The greedy covering algorithm 
is quite simple and will be revised in a future version. Though this 
aspect is not the main goal of the project, a deeper research finding 
strengths and weaknesses of the method for finding patterns, template 
extracted and the covering algorithm should be done.

Regarding the Markov model, a first-order imodel s a good approach 
for ensuring correctly linked slices with rhythm and pitch constraints, 
preventing “weak” successive chords having grammatical errors such 
as parallel fifths, and parallel octaves, without implementing these 
devices using specific rules. This model does not organize harmonic 
regions, and “non-idiomatic” melodic movements can appear, mainly 
associated with accidentals. In this sense, a second-order model 
implementation could be an improvement for generating better 
melodies, but the training data would decrease exponentially. The 
main goal of this work is that the template complements some weaker 
aspects of the first-order Markov model and provides some kind of 
melodic coherence. In other systems, for example, David Cope’s EMI 
[49], the coherence is achieved analysing bigger slices of the pieces, 
somehow inspired by the idea of Musikalisches Würfelspiel of some 
classical composers. In our case, the slices are reduced to the minimum 
rhythmic value and the possible structural information obtained, 
sparse. The template, therefore, provides the necessary scaffolding for 
the melodic ideas.

Section V.B commented on the double backtracking algorithm 
performed if no solution is found. The processing time is very high to 
find solutions using random walks when the group of optimum linked 
slices is very small, and in some cases, there may not be a solution due 
to the hard requirements of the patterns selected.  The backtracking 
algorithm is faster than a simple random walk and provides a group of 
solutions homogeneously distributed. Another possibility that could be 
implemented in a future version is a depth-first search to explore all the 
different paths, which might lead to more heterogeneity in the results.

This model is made and tested for two voices due to the sufficient 
population of dyads in the corpus, but it is possible to extend to three 
or more voices using different viewpoints such as vertical intervals and 
duration. The zero-order Markov model will grow significantly, and 
the slices with higher probabilities will possibly decrease, augmenting 
the dead-end solutions, but hopefully, the corpus is large enough to find 
paths and create new and interesting pieces.
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